WorldWideScience

Sample records for absorption cooling technology

  1. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  2. Increasing utilisation of district heating through absorption cooling technology; Oekat fjaerrvaermeutnyttjande med hjaelp av absorptionstekniken

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik; Ingvarsson, Paul; Zinko, Heimo

    2010-10-15

    The purpose of the research project presented in this report was to find ways to return a lower temperature from the generator of the chillers in a supply/return connection. The initial target is 40 deg C. Ideally, the absorption chiller and possible ulterior uses of the remaining heat in the heat carrier (the water flowing through the generator) should be as close as possible to a pure heat load. The hot-water driven absorption chillers used today to produce cooling in DH networks are exclusively so-called single-effect (Sweden) chillers with water and lithium bromide as working pair. This study aims at raising as much as possible the upper bounds on the absorption chiller capacity that may be connected to a DH network, by lowering the temperature at the outlet. To this end, several approaches have been used: - A search for alternative designs of the absorption chiller, focusing on commercially available and tested technology, both those yielding a large temperature decrease over the generator and those that may be operated at lower temperatures than the conventional solutions; - An examination of the impact of further uses of the remaining heat on temperature in the return line. larger. Smaller units are considered only if they can be used to illustrate a principle. As a complement to this investigation, a few other issues have been treated: - What temperature levels should a system actually be designed for? - The LAVA method to calculate the impact of supply and return temperatures in the DH network on the economics of power production is presented; - Interesting technical solutions using desiccant-aided evaporative cooling are shortly described; - The modern developments in the field of working pairs (refrigerant and absorbent) are reviewed. Assumptions made here are that there is a significant demand for cooling, and that the demand is large enough to justify operating the cogeneration plant at a load level exceeding its lowest acceptable part load rather than

  3. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  4. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  5. Techno-Economic Analysis of Solar Absorption Cooling for Commercial buildings in India

    OpenAIRE

    Muthalagappan Narayanan

    2017-01-01

    Space cooling and heating always tends to be a major part of the primary energy usage. By using fossil fuel electricity for these purposes, the situation becomes even worse. One of the major electricity consumptions in India is air conditioning. There are a lot of different technologies and few researchers have come up with a debate between solar absorption cooling and PV electric cooling. In a previous paper, PV electric cooling was studied and now as a continuation, this paper focuses on so...

  6. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  7. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  8. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  9. Overview of Resources for Geothermal Absorption Cooling for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  10. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  11. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  12. Information technology equipment cooling method

    Science.gov (United States)

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  13. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  14. Testing and further development of a solar absorption cooling plant

    Science.gov (United States)

    Amannsberger, K.; Heckel, H.; Kreutmair, J.; Weber, K. H.

    1984-12-01

    Ammonia water absorption cooling units using the process heat of line-focusing solar collectors were developed and tested. Reduction of the evaporation temperature to minus 10 C; development of an air-cooled rectifying device for the refrigerant vapor; dry cooling of absorber and condenser by natural draft; refrigerating capacities of 14 to 10 kW which correspond to air temperatures of 25 to 40 C and 24 kW power consumption to heat the machine; auxiliary power requirement 450 W; full compatibility with changing heat input and air temperature, adaptation by automatic stabilization effects; and power optimization under changing boundary conditions by a simple regulating procedure independent of auxiliary power are achieved. The dynamic behavior of the directly linked collector-refrigeration machine system was determined. Operating conditions, market, and economic viability of solar cooling in third-world countries are described. Ice production procedures using absorption cooling units are demonstrated.

  15. Theory, technology, and technique of stochastic cooling

    International Nuclear Information System (INIS)

    Marriner, J.

    1993-10-01

    The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques

  16. Review on absorption technology with emphasis on small capacity absorption machines

    Directory of Open Access Journals (Sweden)

    Labus Jerko M.

    2013-01-01

    Full Text Available The aim of this paper is to review the past achievements in the field of absorption systems, their potential and possible directions for future development. Various types of absorption systems and research on working fluids are discussed in detail. Among various applications, solar cooling and combined cooling, heating and power (CCHP are identified as two most promising applications for further development of absorption machines. Under the same framework, special attention is given to the small capacity absorption machines and their current status at the market. Although this technology looks promising, it is still in development and many issues are open. With respect to that fact, this paper covers all the relevant aspects for further development of small capacity absorption machines.

  17. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  18. Techno-Economic Analysis of Solar Absorption Cooling for Commercial buildings in India

    Directory of Open Access Journals (Sweden)

    Muthalagappan Narayanan

    2017-11-01

    Full Text Available Space cooling and heating always tends to be a major part of the primary energy usage. By using fossil fuel electricity for these purposes, the situation becomes even worse. One of the major electricity consumptions in India is air conditioning. There are a lot of different technologies and few researchers have come up with a debate between solar absorption cooling and PV electric cooling. In a previous paper, PV electric cooling was studied and now as a continuation, this paper focuses on solar thermal absorption cooling systems and their application in commercial/office buildings in India. A typical Indian commercial building is taken for the simulation in TRNSYS. Through this simulation, the feasibility and operational strategy of the system is analysed, after which parametric study and economic analysis of the system is done. When compared with the expenses for a traditional air conditioner unit, this solar absorption cooling will take 13.6 years to pay back and will take 15.5 years to payback the price of itself and there after all the extra money are savings or profit.  Although the place chosen for this study is one of the typical tropical place in India, this payback might vary with different places, climate and the cooling demand. Article History: Received May 12th 2017; Received in revised form August 15th 2017; Accepted 1st Sept 2017; Available online How to Cite This Article: Narayanan, M. (2017. Techno-Economic Analysis of Solar Absorption Cooling for Commercial Buildings in India.  International Journal of Renewable Energy Development, 6(3, 253-262. https://doi.org/10.14710/ijred.6.3.253-262

  19. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  20. Economic performance optimization of an absorption cooling system under uncertainty

    International Nuclear Information System (INIS)

    Gebreslassie, Berhane H.; Guillen-Gosalbez, Gonzalo; Jimenez, Laureano; Boer, Dieter

    2009-01-01

    Many of the strategies devised so far to address the optimization of energy systems are deterministic approaches that rely on estimated data. However, in real world applications there are many sources of uncertainty that introduce variability into the decision-making problem. Within this general context, we propose a novel approach to address the design of absorption cooling systems under uncertainty in the energy cost. As opposed to other approaches that optimize the expected performance of the system as a single objective, in our method the design task is formulated as a stochastic bi-criteria non-linear optimization problem that simultaneously accounts for the minimization of the expected total cost and the financial risk associated with the investment. The latter criterion is measured by the downside risk, which avoids the need to define binary variables thus improving the computational performance of the model. The capabilities of the proposed modeling framework and solution strategy are illustrated in a case study problem that addresses the design of a typical absorption cooling system. Numerical results demonstrate that the method presented allows to manage the risk level effectively by varying the area of the heat exchangers of the absorption cycle. Specifically, our strategy allows identifying the optimal values of the operating and design variables of the cycle that make it less sensitive to fluctuations in the energy price, thus improving its robustness in the face of uncertainty.

  1. Absorption solar cooling systems using optimal driving temperatures

    International Nuclear Information System (INIS)

    Lecuona, Antonio; Ventas, Rubén; Vereda, Ciro; López, Ricardo

    2015-01-01

    The optimum instantaneous driving temperature of a solar cooling facility is determined along a day. The chillers compared use single effect cycles working with NH 3 /LiNO 3 , either conventional or hybridised by incorporating a low pressure booster compressor. Their performances are compared with a H 2 O/LiBr single effect absorption chiller as part of the same solar system. The results of a detailed thermodynamic cycle for the absorption chillers allow synthesizing them in a modified characteristic temperature difference model. The day accumulated solar cold production is determined using this optimum temperature during two sunny days in mid-July and mid-September, located in Madrid, Spain. The work shows the influences of operational variables and a striking result: selection of a time-constant temperature during all the day does not necessarily imply a substantial loss, being the temperature chosen a key parameter. The results indicate that the NH 3 /LiNO 3 option with no boosting offers a smaller production above-zero Celsius degrees temperatures, but does not require higher hot water driving temperatures than H 2 O/LiBr. The boosted cycle offers superior performance. Some operational details are discussed. - Highlights: • Instantaneous optimum driving temperature t g,op for solar cooling in Madrid. • 3 absorption cycles tested: H 2 O/LiBr and NH 3 /LiNO 3 single effect and hybrid. • The t g,op of the hybrid cycle is 16 °C lower than both single effect cycles. • The best fixed driving temperature can reach almost the same behaviour than t g,op

  2. Innovative technologies for Faraday shield cooling

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-01-01

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm 2 ;. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach

  3. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  4. Ab-sorption machines for heating and cooling in future energy systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tozer, R.; Gustafsson, M.

    2000-12-15

    After the Executive Summary and a brief introductory chapter, Chapter 2, Sorption Technologies for Heating and Cooling in Future Energy Systems, reviews the main types of sorption systems. Chapter 3, Market Segmentation, then considers the major segments of the market including residential, commercial/institutional and industrial, and the types of sorption hardware most suitable to each. The highly important residential and commercial/institutional markets are mostly concerned with air-conditioning of buildings. More applications are identified and discussed for the industrial market, including refrigeration, food-storage cooling, process cooling, and process heating at various temperature ranges from hot water for hand-washing to high-temperature (greater than 130C). Other interesting industrial applications are absorption cooling or heating combined with co-generation, desiccant cooling, gas turbine inlet air cooling, combining absorption chillers with district heating systems, direct-fired absorption heat pumps (AHPs), and a closed greenhouse concept being developed for that economically important sector in the Netherlands. Most of the sorption market at this time comprises direct-fired absorption chillers, or hot water or steam absorption chillers indirectly driven by direct-fired boilers. Throughout the report, this category of absorption chillers is referred to generically as 'direct-fired'. In addition, this report covers absorption (reversible) heat pumps, absorption heat transformers, compression-absorption heat pumps, and adsorption chillers and heat pumps. Adsorption systems together with desiccant systems are also addressed. Chapter 4, Factors Affecting the Market, considers economic, environmental and policy issues. The geographical make-up of the world sorption market is then reviewed, followed by a number of practical operating and control considerations. These include vacuum requirements, crystallisation, corrosion, maintenance, health and

  5. Absorption technology for solar and waste heat utilization

    International Nuclear Information System (INIS)

    Grossman, G.

    1993-01-01

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered air conditioning, gas-fired domestic cooling and waste-heat-powered temperature boosters are some of the applications on which intensive research and development has been conducted. This paper describes the operation of absorption systems and discusses several practical applications. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes. (author)

  6. Performance of a compact solar absorption cooling system

    International Nuclear Information System (INIS)

    Mulyanef; Kamaruzzaman Sopian

    2006-01-01

    This paper describes the performance of a compact solar absorption system. Purpose of compact solar is collector, generator and condenser in one unit. At present, two types of absorption cooling systems are marketed: the lithium bromide-water system and the ammonia-water system. In the lithium bromide-water system, water vapor is the refrigerant and ammonia water system where ammonia is the refrigerant. In addition, the ammonia-water system requires higher generator temperature 120 o C to 150 o C than a flat-plate solar collector can provide without special techniques. The lithium bromide-water system operates satisfactorily at a generator temperature of 75 o C to 100 o C, achievable by a flat-plate collector. The lithium bromide-water system also has a higher COP than the ammonia-water system. The disadvantage of the lithium bromide-water systems is that the evaporators cannot operate at temperature below 0 o C since the refrigerant is water. The Coefficient of Performance (COP) system is 0.62 and the concentration of LiBr-H 2 O is 50%

  7. Approaching hospital administration about adopting cooling technologies.

    Science.gov (United States)

    Kirkland, Lisa L; Parham, William M; Pastores, Stephen M

    2009-07-01

    The purpose of this article is to provide intensivists with information and examples regarding cooling technology selection, cost assessment, adaptation, barriers, and presentation to hospital administrators. A review of medical and business literature was conducted using the following search terms: technology assessment, organizational innovation, intensive care, critical care, hospital administration, and presentation to administrators. General recommendations for intensivists are made for assessing cooling technology with descriptions of common new technology implementation stages. A study of 16 hospitals implementing a new cardiac surgery technology is described. A description of successful implementation of an induced hypothermia protocol by one of the authors is presented. Although knowledgeable about the applications of new technologies, including cooling technology, intensivists have little guidance or training on tactics to obtain a hospital administration's funding and support. Intensive care unit budgets are usually controlled by nonintensivists whose interests are neutral, at best, to the needs of intensivists. To rise to the top of the large pile of requisition requests, an intensivist's proposal must be well conceived and aligned with hospital administration's strategic goals. Intensivists must understand the hospital acquisition process and administrative structure and participate on high-level hospital committees. Using design thinking and strong leadership skills, the intensivist can marshal support from staff and administrators to successfully implement cooling technology.

  8. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  9. Energy and parametric analysis of solar absorption cooling systems in various Moroccan climates

    Directory of Open Access Journals (Sweden)

    Y. Agrouaz

    2017-03-01

    Full Text Available The aim of this work is to investigate the energetic performance of a solar cooling system using absorption technology under Moroccan climate. The solar fraction and the coefficient of performance of the solar cooling system were evaluated for various climatic conditions. It is found that the system operating in Errachidia shows the best average annual solar fraction (of 30% and COP (of 0.33 owing to the high solar capabilities of this region. Solar fraction values in other regions varied between 19% and 23%. Moreover, the coefficient of performance values shows in the same regions a significant variation from 0.12 to 0.33 all over the year. A detailed parametric study was as well carried out to evidence the effect of the operating and design parameters on the solar air conditioner performance.

  10. Gas-cooled reactor technology: a bibliography

    International Nuclear Information System (INIS)

    Raleigh, H.D.

    1981-09-01

    Included are 3358 citations on gas-cooled reactor technology contained in the DOE Energy Data Base for the period January 1978 through June 1981. The citations include reports, journal articles, books, conference papers, patents, and monographs. Corporate, Personal Author, Subject, Contract Number, and Report Number Indexes are provided

  11. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  12. Recent advances in cooled-semen technology.

    Science.gov (United States)

    Aurich, Christine

    2008-09-01

    The majority of horse registries approve the use of artificial insemination, and horse breeding has widely taken benefit from the use of cooled-stored semen. New insights into cooled-semen technology open possibilities to reduce problems such as impaired semen quality after cooled-storage in individual stallions. The stallion itself has major impacts on quality and fertility of cooled-stored semen. Dietary supplementation of antioxidants and polyunsaturated fatty acids improves semen quality in a variety of species, but only few studies on this topic exist in the horse. Proper semen collection and handling is the main key to the maintenance of semen quality during cooled-storage. Semen collection should be achieved by minimal sexual stimulation with a single mount; this results in high sperm concentration, low content of seminal plasma and minimal contamination with bacteria. Milk-based semen extenders are most popular for semen processing and storage. The development of more defined extenders containing only the beneficial milk ingredients has made extender quality more constant and reliable. Semen is often centrifuged to decrease the seminal plasma content. Centrifugation results in a recovery rate of only 75% of spermatozoa in the semen pellet. Recovery rates after centrifugation may be improved with use of a "cushion technique" allowing higher centrifugation force and duration. However, this is not routinely used in cooled-semen technology. After slow-cooling, semen-storage and shipping is best performed at 5 degrees C, maintaining semen motility, membrane integrity and DNA integrity for up to 40 h after collection. Shipping containers created from Styrofoam boxes provide maintenance of semen quality at low cost.

  13. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  14. Hybrid Cooling Loop Technology for Robust High Heat Flux Cooling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a hybrid cooling loop and cold plate technology for space systems thermal management. The proposed...

  15. Experimental evaluation of a direct air-cooled lithium bromide-water absorption prototype for solar air conditioning

    International Nuclear Information System (INIS)

    Gonzalez-Gil, A.; Izquierdo, M.; Marcos, J.D.; Palacios, E.

    2011-01-01

    A new direct air-cooled single-effect LiBr-H 2 O absorption prototype is described and proposed for use in solar cooling. As distinguishing aspects, it presents: an adiabatic absorber using flat-fan sheets; an air-cooling system that directly refrigerates both the condenser and the absorber and; the possibility of being operated also as a double-effect unit. A solar facility comprising a 48 m 2 field of flat-plate collectors was used to test the single-effect operation mode of the prototype. Results from an experimental campaign carried out in Madrid during summer 2010 are shown and operation parameters corresponding to two typical summer days are detailed. The prototype worked efficiently, with COP values around 0.6. Cooling power varied from 2 kW to 3.8 kW, which represented about 85% of the prototype's nominal capacity. Chilled water temperatures mostly ranged between 14 o C and 16 o C, although the lowest measured value was of 12.8 o C. Condensation and absorption temperatures were under 50 o C and 46 o C, respectively, even with outdoor temperatures of 40 o C. Driving water temperature ranged between 85 o C and 110 o C. As a mean, the system was able to meet 65% of the cooling demand corresponding to a room of 40 m 2 . No signs of crystallization were observed during about a hundred hours of operation. - Highlights: → A novel direct air-cooled single-effect absorption prototype is described. → Feasibility of air-cooled technology for LiBr-H 2 O absorption cooling is proved. → An adiabatic absorber using flat-fan sheets avoids crystallization of the solution. → A field of flat-plate collectors powers the chiller at temperatures from 85 to 110 o C. → The prototype works with thermal COP about 0.6.

  16. Experimental results of a direct air-cooled ammonia–lithium nitrate absorption refrigeration system

    International Nuclear Information System (INIS)

    Llamas-Guillén, S.U.; Cuevas, R.; Best, R.; Gómez, V.H.

    2014-01-01

    Absorption thermal cooling systems driven by renewable energy are a viable option in order to reduce fossil fuel consumption and the associated emissions. This work shows the results of an air cooled absorption cooling prototype working with an ammonia–lithium nitrate mixture at high ambient temperatures. An absorption refrigeration system was designed and built. The prototype is a one stage ammonia–lithium nitrate air cooled chiller. The experimental system was instrumented to evaluate each component. This paper shows the operation conditions in the experimental unit as well as some of the heat loads encountered at different operating conditions. The system was operated successfully at ambient temperatures in the range of 25–35 °C. A series of test showed that even at ambient temperatures it can be operated at evaporator temperatures below 10 °C producing chilled water for air conditioning applications such as radiative cooling panels. The system proved to stabilize very quickly and no risk of crystallization was encountered so the first results are promising in order to continue with the development of a more advanced prototype. - Highlights: •Experimental results of a direct air-cooled ammonia–lithium nitrate system. •The prototype is a one stage ammonia–lithium nitrate air cooled chiller. •The absorption system was operated successfully at ambient temperatures. •Cooling loads of 4.5 kW were reached in the chilled water side

  17. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  18. CFC environmental problems and cooling technology

    International Nuclear Information System (INIS)

    Hornung, M.O.

    1991-08-01

    The aim of the report is to provide a broad survey of the technological problems imposed on the production of cooling systems by the demands for reduction in the use of chlorofluorocarbons as refrigerants. With regard to industrial research in this area the present situation is clarified and possible future developments are discussed. The influence of CFC gasses on the global environment and international and national legislation within this field are explained. Alternative refrigerants and cooling processes, and ways of reducing refrigerant leakage, are described. It is concluded that currently the use of alternative refrigerants is the policy which is generally accepted, and intensive research is being carried out in this field. R134a should substitute R12 in the cases of household refrigerators and air conditioning, and will soon be commercially available. The use of R22 and ammonia will be extended. This is a practical policy to follow up commercially, whereas the policy of alternative processes presents more problems because they are not so developed and there is less available know-how in this area. The possibilities for hermetic sealing of cooling systems are unrealistic and should anyway be regarded only as a supplement to alternative refrigerants. Within the European Community it is intended to provide standards and regulations in relation to air pollution from refrigerants. (AB) (58 refs.)

  19. Thermal Energy for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  20. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Science.gov (United States)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  1. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    Science.gov (United States)

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  2. Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city

    International Nuclear Information System (INIS)

    Li, Zeyu; Ye, Xiangyang; Liu, Jinping

    2014-01-01

    Highlights: • The meteorological data during the working period of air conditioning was measured. • The suitable working range of collector temperature of system was gotten. • The characteristic of hourly and monthly total efficiency of system were obtained. • The yearly performance of system was calculated. - Abstract: Due to the absence of cooling tower and independent on water, the air cooled solar double effect LiBr/H 2 O absorption cooling system is more convenient to be used in commercial building and household use. The performance with collector temperature is an important field for such system. The paper mainly deals with the performance with collector temperature for the solar air cooled double effect LiBr/H 2 O absorption cooling system in subtropical city. The parameters of system are: aperture area of collector array is 27 m 2 , tilted angle of collector with respect to the horizontal plane is 20 toward to south evaporator temperature is 5 °C and the cooling capacity is 20 kW. The simulation is based on the meteorological data of monthly typical day which was summarized from a year round measured data. A corresponding parametric model was developed. The hourly and average performance with the collector temperature for monthly typical day was obtained and discussed. It was found that the suitable working range of inlet temperature of collector is 110–130 °C to improve performance and lower the risk of crystallization. The difference of hourly total efficiency in 9:00–16:00 is less, and the monthly total efficiency from May to October is approximate. The yearly performance of system including total efficiency, cooling capacity per area of collector and solar fraction was given. Furthermore, the effect of effectiveness of heat exchanger and pressure drop on total efficiency and solar fraction was studied and compared. The paper can serve as a preliminary investigation of solar air cooled double effect LiBr/H 2 O absorption cooling system in

  3. Enhancement of LNG plant propane cycle through waste heat powered absorption cooling

    International Nuclear Information System (INIS)

    Rodgers, P.; Mortazavi, A.; Eveloy, V.; Al-Hashimi, S.; Hwang, Y.; Radermacher, R.

    2012-01-01

    In liquefied natural gas (LNG) plants utilizing sea water for process cooling, both the efficiency and production capacity of the propane cycle decrease with increasing sea water temperature. To address this issue, several propane cycle enhancement approaches are investigated in this study, which require minimal modification of the existing plant configuration. These approaches rely on the use of gas turbine waste heat powered water/lithium bromide absorption cooling to either (i) subcool propane after the propane cycle condenser, or (ii) reduce propane cycle condensing pressure through pre-cooling of condenser cooling water. In the second approach, two alternative methods of pre-cooling condenser cooling water are considered, which consist of an open sea water loop, and a closed fresh water loop. In addition for all cases, three candidate absorption chiller configurations are evaluated, namely single-effect, double-effect, and cascaded double- and single-effect chillers. The thermodynamic performance of each propane cycle enhancement scheme, integrated in an actual LNG plant in the Persian Gulf, is evaluated using actual plant operating data. Subcooling propane after the propane cycle condenser is found to improve propane cycle total coefficient of performance (COP T ) and cooling capacity by 13% and 23%, respectively. The necessary cooling load could be provided by either a single-effect, double-effect or cascaded and single- and double-effect absorption refrigeration cycle recovering waste heat from a single gas turbine operated at full load. Reducing propane condensing pressure using a closed fresh water condenser cooling loop is found result in propane cycle COP T and cooling capacity enhancements of 63% and 22%, respectively, but would require substantially higher capital investment than for propane subcooling, due to higher cooling load and thus higher waste heat requirements. Considering the present trend of short process enhancement payback periods in the

  4. Technological readiness of evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Juhn, P.E.

    1999-01-01

    Nuclear energy has evolved to a mature industry that supplies over 16% of the world's electricity, and it represents an important option for meeting the global energy demands of the coming century in an environmentally acceptable manner. New, evolutionary water cooled reactor designs that build on successful performance of predecessors have been developed; these designs have generally been guided by wishes to reduce cost, to improve availability and reliability, and to meet increasingly stringent safety objectives. These three aspects are important factors in what has been called technological readiness for an expanded deployment of nuclear power; a major increase in utilization of nuclear power will only occur if it is economically competitive, and meets safety expectations. To this end, the industry will also have to maintain or improve the public perception of nuclear power as a benign, economical and reliable energy source. (author)

  5. System technology improves the chances of solar cooling

    International Nuclear Information System (INIS)

    Schmid, W.

    2008-01-01

    This article takes a look at the increasing range of products on offer in the solar cooling area. Such an increase applies in particular to products in the low and medium power ranges under 30 kilowatts. Several hindrances to the expansion of the solar air-conditioning (SAC) market are named, both in the technological as well as in the operational area. The author states that a considerable amount of optimisation work is still to be done. Market offerings using absorption and adsorption techniques are examined, as are silica gel-based systems. Companies in the German-speaking parts of Europe active in the area are listed and their work is reviewed. The opinions of various experts that were presented at a congress on the subject are noted. Planning tools made available by the International Energy Agency's Task 38 'Solar air-conditioning and refrigeration' are mentioned.

  6. Exergoeconomic Assessment of Solar Absorption and Absorption–Compression Hybrid Refrigeration in Building Cooling

    Directory of Open Access Journals (Sweden)

    Yue Jing

    2018-02-01

    Full Text Available The paper mainly deals with the match of solar refrigeration, i.e., solar/natural gas-driven absorption chiller (SNGDAC, solar vapor compression–absorption integrated refrigeration system with parallel configuration (SVCAIRSPC, and solar absorption-subcooled compression hybrid cooling system (SASCHCS, and building cooling based on the exergoeconomics. Three types of building cooling are considered: Type 1 is the single-story building, type 2 includes the two-story and three-story buildings, and type 3 is the multi-story buildings. Besides this, two Chinese cities, Guangzhou and Turpan, are taken into account as well. The product cost flow rate is employed as the primary decision variable. The result exhibits that SNGDAC is considered as a suitable solution for type 1 buildings in Turpan, owing to its negligible natural gas consumption and lowest product cost flow rate. SVCAIRSPC is more applicable for type 2 buildings in Turpan because of its higher actual cooling capacity of absorption subsystem and lower fuel and product cost flow rate. Additionally, SASCHCS shows the most extensive cost-effectiveness, namely, its exergy destruction and product cost flow rate are both the lowest when used in all types of buildings in Guangzhou or type 3 buildings in Turpan. This paper is helpful to promote the application of solar cooling.

  7. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  8. Modeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectors

    International Nuclear Information System (INIS)

    Marc, Olivier; Praene, Jean-Philippe; Bastide, Alain; Lucas, Franck

    2011-01-01

    Solar cooling applied to buildings is without a doubt an interesting alternative for reducing energy consumption in traditional mechanical steam compression air conditioning systems. The study of these systems should have a closely purely fundamental approach including the development of numerical models in order to predict the overall installation performance. The final objective is to estimate cooling capacity, power consumption, and overall installation performance with relation to outside factors (solar irradiation, outside temperature...). The first stage in this work consists of estimating the primary energy produced by the solar collector field. The estimation of this primary energy is crucial to ensure the evaluation of the cooling capacity and therefore the cooling distribution and thermal comfort in the building. Indeed, the absorption chiller performance is directly related to its heat source. This study presents dynamic models for double glazing solar collectors and compares the results of the simulation with experimental results taken from our test bench (two collectors). In the second part, we present an extensive collector field model (36 collectors) from our solar cooling installation at The University Institute of Technology in St Pierre, Reunion Island as well as our stratified tank storage model. A comparison of the simulation results with real scale solar experimental data taken from our installation enables validation of the double glazing solar collector and stratified tank dynamic models.

  9. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  10. Investigation of Absorption Cooling Application Powered by Solar Energy in the South Coast Region of Turkey

    Directory of Open Access Journals (Sweden)

    Ozgoren M.

    2013-04-01

    Full Text Available In this study, an absorption system using ammonia-water (NH3-H2O solution has been theoretically examined in order to meet the cooling need of a detached building having 150 m2 floor area for Antalya, Mersin and Mugla provinces in Turkey. Hourly dynamic cooling load capacities of the building were determined by using Radiant Time Series (RTS method in the chosen cities. For the analysis, hourly average meteorological data such as atmospheric air temperature and solar radiation belonging to the years 1998-2008 are used for performance prediction of the proposed system. Thermodynamic relations for each component of absorption cooling system is explained and coefficients of performance of the system are calculated. The maximum daily total radiation data were calculated as 7173 W/m2day on July 15, 7277 W/m2 day on July 19 and 7231 W/m2day on July 19 for Mersin, Antalya and Mugla, respectively on the 23° toward to south oriented panels from horizontal surface. The generator operating temperatures are considered between 90-130°C and the best result for 110°C is found the optimum degree for maximum coefficient of performance (COP values at the highest solar radiation occurred time during the considered days for each province. The COP values varies between 0.521 and 0.530 for the provinces. In addition, absorber and condenser capacities and thermal efficiency for the absorption cooling system were calculated. The necessary evacuated tube collector area for the different provinces were found in the range of 45 m2 to 47 m2. It is shown that although the initial investment cost is higher for the proposed absorption cooling system, it is economically feasible because of its lower annual operation costs and can successfully be operated for the considered provinces.

  11. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world's total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world's final energy use -- more than the combined global demand for electricity and transport -- solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  12. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world’s total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world’s final energy use – more than the combined global demand for electricity and transport – solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  13. Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector

    International Nuclear Information System (INIS)

    Mazloumi, M.; Naghashzadegan, M.; Javaherdeh, K.

    2008-01-01

    Ahwaz is one of the sweltering cities in Iran where an enormous amount of energy is being consumed to cool residential places in a year. The aim of this research is to simulate a solar single effect lithium bromide-water absorption cooling system in Ahwaz. The solar energy is absorbed by a horizontal N-S parabolic trough collector and stored in an insulated thermal storage tank. The system has been designed to supply the cooling load of a typical house where the cooling load peak is about 17.5 kW (5 tons of refrigeration), which occurs in July. A thermodynamic model has been used to simulate the absorption cycle. The working fluid is water, which is pumped directly to the collector. The results showed that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 57.6 m 2 , which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy

  14. Experimental assessment of an absorption cooling system utilizing a falling film absorber and generator

    International Nuclear Information System (INIS)

    Domínguez-Inzunza, L.A.; Hernández-Magallanes, J.A.; Soto, P.; Jiménez, C.; Gutiérrez-Urueta, G.; Rivera, W.

    2016-01-01

    Highlights: • A new prototype of an absorption cooling system using NH_3/LiNO_3 was developed. • Falling films shell and tubes heat exchangers were used as absorber and generator. • Evaporator temperatures as low as 4 °C were achieved. • The COP varied between 0.27 and 0.62 depending on the system temperatures. • A flow recirculation in the absorber was implemented showing an increase in COP. - Abstract: This study presents the results of the evaluation of an ammonia/lithium nitrate absorption cooling system. The generator and the absorber are shell and tubes falling film heat exchangers while the rest of the components are compact plate heat exchangers. A parametric study was carried out in order to determine the coefficients of performance and cooling capacities at different operating conditions. Also, an analysis was carried out to determine the influence of the absorber solution recirculation on the system performance. The generator temperatures varied between 80 °C and 100 °C, while the cooling water temperatures varied from 20 °C to 34 °C. Cooling capacities up to 4.5 kW and evaporator temperatures as low as 4 °C were achieved with the system. The internal coefficients of performance varied between 0.3 and 0.62 depending on the system operating temperatures. The system also showed good stability and repeatability.

  15. Improvement of Cooling Technology through Atmosphere Gas Management

    Energy Technology Data Exchange (ETDEWEB)

    Renard, Michel; Dosogne, Edgaar; Crutzen, Jean Pierre; Raick, Jean Mare [DREVER INTERNATIONAL S.A., Liege (Belgium); Ji, Ma Jia; Jun, Lv; Zhi, Ma Bing [SHOUGANG Cold Rolling Mill Headquarter, Beijin (China)

    2009-12-15

    The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Driver international developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas: the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipment between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

  16. Performance modelling and simulation of an absorption solar cooling system for Malaysia

    International Nuclear Information System (INIS)

    Assilzadeh, F.; Ali, Y.; Kamaruzzaman Sopian

    2006-01-01

    Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler

  17. Experimental assessment of an absorption cooling system operating with the ammonia/lithium nitrate mixture

    International Nuclear Information System (INIS)

    Hernández-Magallanes, J.A.; Domínguez-Inzunza, L.A.; Gutiérrez-Urueta, G.; Soto, P.; Jiménez, C.; Rivera, W.

    2014-01-01

    This paper reports the experimental results of a single effect absorption cooling system of 3 kW of nominal cooling capacity operating with ammonia–lithium nitrate solution. The system was designed and built in the Instituto de Energías Renovables of the Universidad Nacional Autónoma de México and can be used for food conservation or air conditioning. The absorber and generator are falling film heat exchangers. The condenser, evaporator and solution heat exchanger are compact plate heat exchangers. The heat was supplied to the generator at temperatures between 85 °C and 105 °C, while the cooling water temperatures to remove the heat produced during the condensation and absorption varied between 18 °C and 36 °C. The results showed that the system can produce up to 2.7 kW of cooling capacity at heating water temperatures of 95 °C and can achieve evaporator temperatures as low as 1 °C. The experimental coefficients of performance varied between 0.45 and 0.70. Because of the developed system do not need a rectifier and reasonable good coefficients of performance were achieved, the developed system seems to be a good alternative to be used for food conservation or air conditioning. - Highlights: • An absorption cooling system was developed using NH 3 –LiNO 3 . • The achieved COP (coefficients of performance) are the highest reported for a system using NH 3 –LiNO 3 . • Evaporator temperatures as low as 1 °C were achieved. • COP varied between 0.45 and 0.7. • The developed system seems to be a good alternative for food conservation and air conditioning

  18. Upgrading of technology of absorptive cleaning of oily wastewaters

    OpenAIRE

    Pavluh, L. I .

    2013-01-01

    Oily wastewater treatment technology is improved through the improvement of the absorptive properties of sorbents based on plant waste. The cost of flowsheets for treatment of wastewaters contaminated with oil products is presented.

  19. Deep lake water cooling a renewable technology

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, C.

    2003-06-01

    In the face of increasing electrical demand for air conditioning, the damage to the ozone layer by CFCs used in conventional chillers, and efforts to reduce the greenhouse gases emitted into the atmosphere by coal-fired power generating stations more and more attention is focused on developing alternative strategies for sustainable energy. This article describes one such strategy, namely deep lake water cooling, of which the Enwave project recently completed on the north shore of Lake Ontario is a prime example. The Enwave Deep Lake Water Cooling (DLWC) project is a joint undertaking by Enwave and the City of Toronto. The $180 million project is unique in design and concept, using the coldness of the lake water from the depths of Lake Ontario (not the water itself) to provide environmentally friendly air conditioning to office towers. Concurrently, the system also provides improved quality raw cold water to the city's potable water supply. The plant has a rated capacity of 52,200 tons of refrigeration. The DLWC project is estimated to save 75-90 per cent of the electricity that would have been generated by a coal-fired power station. Enwave, established over 20 years ago, is North America's largest district energy system, delivering steam, hot water and chilled water to buildings from a central plant via an underground piping distribution network. 2 figs.

  20. Evaluating the income and employment impacts of gas cooling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J. [Oak Ridge National Lab., TN (United States); Laitner, S.

    1995-03-01

    The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

  1. Norwegian contribution to the IEA Annex 24 - Absorption Machines for Heating and Cooling; IEA annex 24. Absorpsjonsmaskin for oppvarming og kjoeling

    Energy Technology Data Exchange (ETDEWEB)

    Grandum, Svein

    2000-01-01

    This report summarizes the Norwegian contribution to the IEA Annex 24 - Absorption Machines for Heating and Cooling in Future Energy Systems. Thermally operated heat pumps and coolers have not been widely used in Norway. They are not economically competitive compared to compression heat pumps because of Norway's cheap hydroelectric power. If the present trend in Norway's use of electricity persists, Norway will soon be dependent on imported electric power. This calls for measures to reduce the consumption of electricity, and the role of absorption heat pumps will be of increasing importance, especially for cooling purposes. For larger commercial buildings that require climate cooling, absorption coolers based on waste heat may have a good total economy. Industrial processes that have an excess of heat at a high temperature and which need cooling, may profit from the use of this type of cooler. Information dissemination is important for efficient use of this technology. The research work done at Institute of energy technology, Kjeller, Norway, is an important contribution to this end.

  2. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  3. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  4. Cogen-absorption plants for refrigeration purposes and turbine air inlet cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langreck, Juergen [Colibri bv (Netherlands)

    2000-04-01

    Most cogeneration systems produce power and heat but with absorption refrigeration plants (ARP) the products are power and 'cold'. An ARP driven by heat from a turbine exhaust can provide the cooling for the inlet air with very low consumption of electricity, consequently there is a significant increase in power output from the cogeneration unit. Two different ARP systems are currently available but the author describes only the ammonia-water system, which can achieve temperatures down to -60 degrees C. The article discusses the principle behind ARP, the capital cost and returns on investment, how the cogeneration plant is linked to the ARP, ARP for turbine inlet air cooling, and the potential applications of cogeneration-ARP.

  5. Host-country Absorption of Technology

    DEFF Research Database (Denmark)

    Lorentzen, Jochen; Møllgaard, Peter; Rojec, Matija

    2003-01-01

    This paper provides an analysis of technology transfer in automotive supply networks in six EU candidate countries with important vehicle (component) industries. We survey more than 400 firms, representing roughly half of the automotive supply industry. In addition, we have in-depth information...... from 39 case studies. We address the generation, the origin, and the quality of technology transfer. In terms of generation, we look at the determinants of who receives technology along the value chain, and who passes it on. In terms of origin, we compare local and foreign-owned firms and those...

  6. Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle

    Directory of Open Access Journals (Sweden)

    Hasan Sh. Majdi

    2016-03-01

    Full Text Available The objective of this work is to develop a computer simulation program to evaluate the performance of solar-assited combined ejector absorption (single-effect cooling system using LiBr/H2O as a working fluid and operating under steady-state conditions. The ejector possess no moving parts and is simple and reliable, which makes it attractive for combination with single-stage absorption cycle for further improvement to the system's performance. In this research, improvement to the system is achieved by utilizing the potential kinetic energy of the ejector to enhance refrigeration efficiency. The effects of the entrainment ratio of the ejector, operating temperature, on the thermal loads, and system performance have been investigated. The results showed that the evaporator and condenser loads, post-addition of the ejector, is found to be permanently higher than that in the basic cycle, which indicates a significant enhancement of the proposed cycle and the cooling capacity of the system increasing with the increase in evaporator temperature and entrainment ratio. The COP of the modified cycle is improved by up to 60 % compared with that of the basic cycle at the given condition. This process stabilizes the refrigeration system, enhanced its function, and enabled the system to work under higher condenser temperatures.

  7. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  8. IAEA activities in gas-cooled reactor technology development

    International Nuclear Information System (INIS)

    Cleveland, J.; Kupitz, J.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  9. ABSORPTIONS IN THE VISIBLE OF PROTONATED PYRENE COLLISIONALLY COOLED TO 15 K

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, F.-X.; Gause, O.; Rice, C. A.; Maier, J. P., E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstr. 80, 4056-CH Basel (Switzerland)

    2013-12-01

    Protonated polycyclic hydrocarbons have been added to the list of suggested carriers of diffuse interstellar absorptions. To test this proposition requires laboratory spectra measured under interstellar conditions, in particular with the rotational and vibrational degrees of freedom equilibrated to low temperatures. This has been achieved for protonated pyrene with absorption bands in the visible, using an ion trap and collisional cooling to ≈15 K. A two-photon excitation-dissociation scheme was employed to record the (1) {sup 1} A' ← X {sup 1} A' electronic spectrum on around 10{sup 5} ions per duty cycle. The origin band of the absorption spectrum of this relatively large polycyclic aromatic species with 27 atoms is located at 4858.86 Å. Two further comparably intense spectral features are present at 4834.48 and 4809.32 Å. This is one of the largest protonated aromatics studied in the gas phase and compared to astronomical observations; however, it is not a carrier of known diffuse interstellar bands.

  10. Personal Ice Cooling System (PICS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDPs) in which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. As buildings are demolished as part of the DOE Fernald Environmental Management Project's (FEMP's) D and D Plan, many of the activities are performed in hot weather and usually require use of various types and layers of personal protective equipment (PPE). While PPE is designed to protect the worker from contamination, it also significantly compromises the body's ability to cool itself, leading to potentially serious heat stress situations. This report describes a comparative demonstration between the methodology currently used for heat stress management (i.e., limited stay times and cool-down rooms) and an alternative personal ice cooling suit technology. The baseline methodology for heat stress management is limited stay times when working in hot conditions. The FEMP's Safety Performance Requirements outline the procedures and stay times to be followed and consider the temperature of the working environment, work load, and the type and amount of PPE required for the job. While these common criteria for determining stay times, other sites may have different requirements. This demonstration investigates the feasibility of using the personal ice cooling suite as a tool for managing heat stress in workers at the FEMP. This report provides a comparative analysis of

  11. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  12. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  13. Safety technology for air-cooled heat exchangers

    International Nuclear Information System (INIS)

    Kawai, Masafumi; Miyamoto, Hitoshi

    2011-01-01

    The air-cooled heat exchanger is a device that enables a large amount of heat exchange (cooling) by utilizing the atmosphere as a stable and infinite heat sink. It is widely used in general industrial plants, and nowadays it is also utilized in nuclear facilities. This type of exchanger is advantageous in that it can be constructed in any location without having to be near the sea or rivers. It can be operated safely if a natural disaster, such as a tsunami or flood, occurs, thus contributing to the safety of the mother facility. IHI's air-cooled heat exchangers are designed to ensure safe operation and withstand a large earthquake or severe atmospheric conditions. This report describes the technologies used to establish these safety features and their performance. (author)

  14. Open absorption system for cooling and air conditioning using membrane contactors. 2006 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R. [Materials Science and Technology (EMPA), Abteilung Bautechnologien, Duebendorf (Switzerland)

    2006-11-15

    This illustrated annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reports on work being done on the development of an open absorption system for cooling and air-conditioning. The report reviews the construction of a first prototype and the manufacture of its components. The conceptual design of this new type of air handling unit (AHU), operating with a liquid desiccant, is discussed. The AHU is to be autonomous and the system will not require additional mechanical refrigeration. It is to be thermally driven at temperatures below 80 {sup o}C. Waste heat sources, solar collectors, district heating plants and co-generation systems are targeted as providers of thermal energy at this temperature level. Work carried out is reported on, including that on two-stream membrane contactors.

  15. Energy and Exergy Based Optimization of Licl-Water Absorption Cooling System

    Directory of Open Access Journals (Sweden)

    Bhargav Pandya

    2017-06-01

    Full Text Available This study presents thermodynamic analysis and optimization of single effect LiCl-H2O absorption cooling system. Thermodynamic models are employed in engineering equation solver to compute the optimum performance parameters. In this study, cut off temperature to operate system has been obtained at various operating temperatures. Analysis depicts that on 3.59 % rise in evaporator temperature, the required cut-off temperature decreased by 12.51%. By realistic comparison between thermodynamic first and second law analysis, optimum generator temperature relative to energy and exergy based prospective has been evaluated. It is found that optimum generator temperature is strong function of evaporator and condenser temperature. Thus, it is feasible to find out optimum generator temperature for various combinations of evaporator and condenser temperatures. Contour plots of optimum generator temperature for several combinations of condenser and absorber temperatures have been also depicted.

  16. Influence of vapor absorption cooling on humidification-dehumidification (HDH desalination

    Directory of Open Access Journals (Sweden)

    C. Chiranjeevi

    2016-09-01

    Full Text Available The desalination yield in humidification-dehumidification (HDH process is increased by proposing cooling plant integration with two stage operation. The current work is targeted on the investigation of vapor absorption refrigeration (VAR parameters on overall energy utilization factor (EUF. The dephlegmator heat is recovered internally in VAR instead of rejecting to environment. This work can be used to control the operational conditions of VAR to enhance the desalination and cooling together. The studied process parameters in VAR are strong solution concentration, separator or generator temperature, dephlegmator effectiveness, circulating water inlet temperature and evaporator temperature. Out of these five variables, lower limit of separator temperature, upper limit of dephlegmator effectiveness and lower limit of circulating water temperature are fixed in the specified range to attain the optimum strong solution concentration and optimum evaporator temperature. At the specified boundaries of three variables, the optimized strong solution concentration and evaporator temperature are 0.47 and 10 °C respectively. At this condition, the maximized cycle EUF is 0.358.

  17. A study of the cool gas in the Large Magellanic Cloud. I. Properties of the cool atomic phase - a third H i absorption survey

    Science.gov (United States)

    Marx-Zimmer, M.; Herbstmeier, U.; Dickey, J. M.; Zimmer, F.; Staveley-Smith, L.; Mebold, U.

    2000-02-01

    The cool atomic interstellar medium of the Large Magellanic Cloud (LMC) seems to be quite different from that in the Milky Way. In a series of three papers we study the properties of the cool atomic hydrogen in the LMC (Paper I), its relation to molecular clouds using SEST-CO-observations (Paper II) and the cooling mechanism of the atomic gas based on ISO-[\\CII]-investigations (Paper III). In this paper we present the results of a third 21 cm absorption line survey toward the LMC carried out with the Australia Telescope Compact Array (ATCA). 20 compact continuum sources, which are mainly in the direction of the supergiant shell LMC 4, toward the surroundings of 30 Doradus and toward the eastern steep \\HI\\ boundary, have been chosen from the 1.4 GHz snapshot continuum survey of Marx et al. We have identified 20 absorption features toward nine of the 20 sources. The properties of the cool \\HI\\ clouds are investigated and are compared for the different regions of the LMC taking the results of Dickey et al. (survey 2) into account. We find that the cool \\HI\\ gas in the LMC is either unusually abundant compared to the cool atomic phase of the Milky Way or the gas is clearly colder (\\Tc\\ ~ 30 K) than that in our Galaxy (\\Tc\\ ~ 60 K). The properties of atomic clouds toward 30 Doradus and LMC 4 suggest a higher cooling rate in these regions compared to other parts of the LMC, probably due to an enhanced pressure near the shock fronts of LMC 4 and 30 Doradus. The detected cool atomic gas toward the eastern steep \\HI\\ boundary might be the result of a high compression of gas at the leading edge. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  18. Status of liquid metal cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  19. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  20. Advanced technologies for water cooled reactors 1990. Pt. 1

    International Nuclear Information System (INIS)

    1991-05-01

    The meeting was attended by 20 participants from 12 countries who reviewed and discussed the status and progress of national programmes on advanced water-cooled reactors and recommended to the Scientific Secretary a comprehensive programme for 1991/1992 which would support technology development programmes in IWGATWR Member States. This summary report outlines the activities of IWGATWR since its Second Meeting in June 1988 and main results of the Third Meeting

  1. Advanced technologies for water cooled reactors 1990. Pt. 2

    International Nuclear Information System (INIS)

    1991-05-01

    The main purpose of the meeting was to review and discuss the status of national programmes, the progress achieved since the last meeting held in June 1988 in the field of advanced technologies and design trends for existing and future water cooled reactors. 24 specialists from 14 countries and the IAEA took part in the meeting and 12 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  2. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  3. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  4. Gas-cooled reactor coolant circulator and blower technology

    International Nuclear Information System (INIS)

    1988-08-01

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  5. Can Coolness Predict Technology Adoption? Effects of Perceived Coolness on User Acceptance of Smartphones with Curved Screens.

    Science.gov (United States)

    Kim, Ki Joon; Shin, Dong-Hee; Park, Eunil

    2015-09-01

    This study proposes an acceptance model for curved-screen smartphones, and explores how the sense of coolness induced by attractiveness, originality, subcultural appeal, and the utility of the curved screen promotes smartphone adoption. The results of structural equation modeling analyses (N = 246) show that these components of coolness (except utility) increase the acceptance of the technology by enhancing the smartphones' affectively driven qualities rather than their utilitarian ones. The proposed coolness model is then compared with the original technology acceptance model to validate that the coolness factors are indeed equally effective determinants of usage intention, as are the extensively studied usability factors such as perceived ease of use and usefulness.

  6. Personal Ice Cooling System (PICS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE`s Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDPs) in which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE`s projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. As buildings are demolished as part of the DOE Fernald Environmental Management Project`s (FEMP`s) D and D Plan, many of the activities are performed in hot weather and usually require use of various types and layers of personal protective equipment (PPE). While PPE is designed to protect the worker from contamination, it also significantly compromises the body`s ability to cool itself, leading to potentially serious heat stress situations. This report describes a comparative demonstration between the methodology currently used for heat stress management (i.e., limited stay times and cool-down rooms) and an alternative personal ice cooling suit technology. The baseline methodology for heat stress management is limited stay times when working in hot conditions. The FEMP`s Safety Performance Requirements outline the procedures and stay times to be followed and consider the temperature of the working environment, work load, and the type and amount of PPE required for the job. While these common criteria for determining stay times, other sites may have different requirements. This demonstration investigates the feasibility of using the personal ice cooling suite as a tool for managing heat stress in workers at the FEMP. This report provides a comparative analysis of

  7. Solar sorptive cooling. Technologies, user requirements, practical experience, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Treffinger, P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Hardthausen (Germany); Hertlein, H.P. [eds.] [Forschungsverbund Sonnenenergie, Koeln (Germany)

    1998-09-01

    Sorptive cooling techniques permit the use of low-temperature solar heat, i.e. a renewable energy of low cost and world-wide availability. The Forschungsverbund Sonnenenergie intends to develop solar sorptive cooling technologies to the prototype stage and, in cooperation with the solar industry and its end users, to promote practical application in air conditioning of buildings and cold storage of food. The workshop presents an outline of the state of development of solar sorptive cooling from the view of users and developers. Exemplary solar cooling systems are described, and the potential of open and closed sorptive processes is assessed. Future central activities will be defined in an intensive discussion between planners, producers, users and developers. [German] Der Einsatz von Sorptionstechniken zur Kaelteerzeugung erlaubt es, als treibende Solarenergie Niedertemperatur-Solarwaerme einzusetzen, also eine regenerative Energie mit sehr geringen Kosten und weltweiter Verfuegbarkeit. Der Forschungsverbund Sonnenenergie hat sich als Aufgabe gestellt, die Techniken der solaren Sorptionskuehlung bis zum Prototyp zu entwickeln und mit Industrie und Nutzern die praktische Anwendung voranzubringen. Die Anwendungsfelder sind die Klimatisierung von Gebaeuden und die Kaltlagerung von Lebensmitteln. Der Workshop gibt einen Ueberblick zum Entwicklungsstand der solaren Sorptionskuehlung aus der Sicht der Anwender und Entwickler. Bereits ausgefuehrte Beispiele zur solaren Kuehlung werden vorgestellt und das Potential geschlossener und offener Sorptionsverfahren angegeben. In intensiver Diskussion zwischen Planern, Herstellern, Nutzern und Entwicklern sollen kuenftige Arbeitsschwerpunkte herausgearbeitet werden. (orig.)

  8. Commercial sector gas cooling technology frontier and market share analysis

    International Nuclear Information System (INIS)

    Pine, G.D.; Mac Donald, J.M.; McLain, H.A.

    1990-01-01

    This paper describes a method, developed for the Gas Research Institute of the United States, that can assist planning for commercial sector natural gas cooling systems R and D. These systems are higher in first cost than conventional electric chillers. Yet, engine-driven chiller designs exist which are currently competitive in U.S. markets typified by high electricity or demand charges. Section II describes a scenario analysis approach used to develop and test the method. Section III defines the technology frontier, a conceptual tool for identifying new designs with sales potential. Section IV describes a discrete choice method for predicting market shares of technologies with sales potential. Section V shows how the method predicts operating parameter, cost, and/or performance goals for technologies without current sales potential (or for enhancing a frontier technology's sales potential). Section VI concludes with an illustrative example for the Chicago office building retrofit market

  9. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature.......This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...

  10. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  11. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  12. Manufacturing and joining technologies for helium cooled divertors

    International Nuclear Information System (INIS)

    Aktaa, J.; Basuki, W.W.; Weber, T.; Norajitra, P.; Krauss, W.; Konys, J.

    2014-01-01

    Highlights: • The manufacturing and joining technologies developed at KIT for helium cooled divertors are reviewed and critically discussed. • Various technologies have been pursued and further developed aiming divertor components with very high quality and sufficient reliability. • Very promising routes have been found for which however still R and D works are necessary. • Technologies developed are also useful for other divertor and even blanket concepts, particularly those with tungsten armor. - Abstract: In the helium cooled (HC) divertor, developed at KIT for a fusion power plant, tungsten has been selected as armor as well as structural material due to its crucial properties: high melting point, very low sputtering yield, good thermal conductivity, high temperature strength, low thermal expansion and low activation. Thereby the armor tungsten is attached to the structural tungsten by thermally conductive joint. Due to the brittleness of tungsten at low temperatures its use as structural material is limited to the high temperature part of the component and a structural joint to the reduced activation ferritic martensitic steel EUROFER97 is foreseen. Hence, to realize the selected hybrid material concept reliable tungsten–steel and tungsten–tungsten joints have been developed and will be reported in this paper. In addition, the modular design of the HC divertor requires tungsten armor tiles and tungsten structural thimbles to be manufactured in high numbers with very high quality. Due to the high strength and low temperature brittleness of tungsten special manufacturing techniques need to be developed for the production of parts with no cavities inside and/or surface flaws. The main achievement in developing the respective manufacturing technologies will be presented and discussed. To achieve the objectives mentioned above various manufacturing and joining technologies are pursued. Their later applicability depends on the level of development

  13. Use of process steam in vapor absorption refrigeration system for cooling and heating applications: An exergy analysis

    Directory of Open Access Journals (Sweden)

    S. Anand

    2016-12-01

    Full Text Available The exponential increase in cost of conventional fuels shifts the interest toward the use of alternative as well waste energy sources for the operation of refrigeration and air-conditioning units. The present study therefore analyzes the performance of a process steam-operated vapor absorption system for cooling and heating applications using ammonia and water as working fluids based on first and second laws of thermodynamics. A mathematical model has been developed based on exergy analysis to investigate the performance of the system. The different performance parameters such as coefficient of performance (COP and exergetic efficiency of absorption system for cooling and heating applications are also calculated under different operating conditions. The results obtained show that cooling and heating COP along with second law efficiency (exergy efficiency increases with the heat source temperature at constant evaporator, condenser, and absorber temperature. Also, COP as well as exergy efficiency increases with an increase in the evaporator temperature at constant generator, condenser, and absorber temperature. The effect of ambient temperature on the exergetic efficiency for cooling and heating applications is also studied. The results obtained from the simulation studies can be used to optimize different components of the system so that the performance can be improved significantly.

  14. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... evaporation. Two outdoor summer climates were simulated in the study, i.e. the design summer climate of Las Vegas and the extreme summer climate of Copenhagen represented hot/dry and warm/dry climates. The results showed that the flash evaporative cooling technology, a simple and green cooling technology......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature....

  15. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    Science.gov (United States)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  16. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  17. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  18. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  19. Material System Engineering for Advanced Electrocaloric Cooling Technology

    Science.gov (United States)

    Qian, Xiaoshi

    Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor

  20. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  1. Cooling performance and energy saving of a compression-absorption refrigeration system driven by a gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.G.; Guo, K.H. [Sun Yat-Sen University, Guangzhou (China). Engineering School

    2006-07-01

    The prototype of combined vapour compression-absorption refrigeration system was set up, where a gas engine drove directly an open screw compressor in a vapour compression refrigeration chiller and waste heat from the gas engine was used to operate absorption refrigeration cycle. The experimental procedure and results showed that the combined refrigeration system was feasible. The cooling capacity of the prototype reached about 589 kW at the Chinese rated conditions of air conditioning (the inlet and outlet temperatures of chilled water are 12 and 7{sup o}C, the inlet and outlet temperatures of cooling water are 30 and 35{sup o}C, respectively). Primary energy rate (PER) and comparative primary energy saving were used to evaluate energy utilization efficiency of the combined refrigeration system. The calculated results showed that the PER of the prototype was about 1.81 and the prototype saved more than 25% of primary energy compared to a conventional electrically driven vapour compression refrigeration unit. Error analysis showed that the total error of the combined cooling system measurement was about 4.2% in this work. (author)

  2. Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine

    International Nuclear Information System (INIS)

    Novella, R.; Dolz, V.; Martín, J.; Royo-Pascual, L.

    2017-01-01

    Highlights: • Enough power in the exhaust gases is available to operate the absorption cycle. • Three engine operating points are presented in the article. • Improvement potential up to 4% is possible in the engine indicated efficiency. • Engine indicated efficiency benefit was experimentally confirmed by direct testing. - Abstract: This paper deals with the thermodynamic analysis of an absorption refrigeration cycle used to cool down the temperature of the intake air in an Internal Combustion Engine using as a heat source the exhaust gas of the engine. The solution of ammonia-water has been selected due to the stability for a wide range of operating temperatures and pressures and the low freezing point. The effects of operating temperatures, pressures, concentrations of strong and weak solutions in the absorption refrigeration cycle were examined to achieve proper heat rejection to the ambient. Potential of increasing Internal Combustion Engine efficiency and reduce pollutant emissions was estimated by means of theoretical models and experimental tests. In order to provide boundary conditions for the absorption refrigeration cycle and to simulate its effect on engine performance, a 0D thermodynamic model was used to reproduce the engine performance when the intake air is cooled. Furthermore, a detailed experimental work was carried out to validate the results in real engine operation. Theoretical results show how the absorption refrigeration system decreases the intake air flow temperature down to a temperature around 5 °C and even lower by using the bottoming waste heat energy available in the exhaust gases in a wide range of engine operating conditions. In addition, the theoretical analysis estimates the potential of the strategy for increasing the engine indicated efficiency in levels up to 4% also at the operating conditions under evaluation. Finally, this predicted benefit in engine indicated efficiency has been experimentally confirmed by direct

  3. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    Science.gov (United States)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  4. Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; You, Tian; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2014-01-01

    Highlights: • A combined heating/cooling/DHW system based on GSAHP is proposed in cold regions. • The soil imbalance is effectively reduced and soil temperature can be kept stable. • 20% and 15% of condensation/absorption heat is recovered by GSAHP to produce DHW. • The combined system can improve the primary energy efficiency by 23.6% and 44.4%. - Abstract: The amount of energy used for heating and domestic hot water (DHW) is very high and will keep increasing. The conventional ground source electrical heat pump used in heating-dominated buildings has the problems of thermal imbalance, decrease of soil temperature, and deterioration of heating performance. Ground source absorption heat pump (GSAHP) is advantageous in both imbalance reduction and primary energy efficiency (PEE) improvement; however, the imbalance is still unacceptable in the warmer parts of cold regions. A combined heating/cooling/DHW (HCD) system based on GSAHP is proposed to overcome this problem. The GSAHPs using generator absorber heat exchange (GAX) and single-effect (SE) cycles are simulated to obtain the performance under various working conditions. Different HCD systems in Beijing and Shenyang are simulated comparatively in TRNSYS, based on which the thermal imbalance, soil temperature, heat recovery, and energy efficiency are analyzed. Results show that GSAHP–GAX–HCD is suitable for Beijing and GSAHP–SE–HCD is suitable for Shenyang. The imbalance ratio can be reduced to −14.8% in Beijing and to 6.0% in Shenyang with an annual soil temperature variation of only 0.5 °C and 0.1 °C. Furthermore, about 20% and 15% of the total condensation/absorption heat is recovered to produce DHW, and the PEE can reach 1.516 in Beijing and 1.163 in Shenyang. The combined HCD systems can achieve a PEE improvement of 23.6% and 44.4% compared with the normal heating/cooling systems

  5. Evaluation of the dew point cooling technology; Beoordeling technologie dauwpuntskoeling

    Energy Technology Data Exchange (ETDEWEB)

    Bootsveld, N.R.; Afink, J. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Amersfoort (Netherlands); Uges, P.G.H. (ed.) [Standex Periodieken, Veenendaal (Netherlands)

    2003-01-01

    Results of measurements on an indirect adiabatic dew point cooling system are presented and discussed. The cooling system has been developed by ComfortAir, Raalte, Netherlands. [Dutch] De meetresultaten van door ComfortAir in samenwerking met TNO-MEP uitgevoerde metingen aan een indirect werkende adiabatische dauwpuntkoeler worden gepresenteerd en besproken.

  6. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  7. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  8. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles

    International Nuclear Information System (INIS)

    Rashidi, Jouan; Ifaei, Pouya; Esfahani, Iman Janghorban; Ataei, Abtin; Yoo, Chang Kyoo

    2016-01-01

    Highlights: • Proposing two new power and cooling cogeneration systems based on absorption chillers and Kalina cycles. • Model-based comparison through thermodynamic and economic standpoints. • Investigating sensitivity of system performance and costs to the key parameters. • Reducing total annual costs of the base system up to 8% by cogeneration. • Increasing thermal efficiency up to 4.9% despite of cooling generation. - Abstract: Two new power and cooling cogeneration systems based on Kalina cycle (KC) and absorption refrigeration cycle (AC) are proposed and studied from thermodynamic and economic viewpoints. The first proposed system, Kalina power-cooling cycle (KPCC), combines the refrigerant loop of the water-ammonia absorption chiller, consisting of an evaporator and two throttling valves with the KC. A portion of the KC mass flow enters the evaporator to generate cooling after being condensed in the KPCC system. KPCC is a flexible system adapting power and cooling cogeneration to the demand. The second proposed system, Kalina lithium bromide absorption chiller cycle (KLACC), consists of the KC and a single effect lithium bromide-water absorption chiller (AC_L_i_B_r_-_w_a_t_e_r). The KC subsystem discharges heat to the AC_L_i_B_r_-_w_a_t_e_r desorber before condensing in the condenser. The performance and economic aspects of both proposed systems are analyzed and compared with the stand alone KC. A parametric analysis is conducted to evaluate the sensitivity of efficiencies and the generated power and cooling quantities to the key operating variables. The results showed that, thermal efficiency and total annual costs decreased by 5.6% and 8% for KPCC system but increased 4.9% and 58% for KLACC system, respectively. Since the power-cooling efficiency of KLACC is 42% higher than KPCC it can be applied where the aim is cooling generation without considering economic aspects.

  9. Simulation of the compressor-assisted triple-effect H{sub 2}O/LiBr absorption cooling cycles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Soo; Ziegler, F. [Bavarian Center for Applied Energy Research, Garching (Germany); Lee, Huen [Korea Advanced Inst. of Science and Technology, Taejon (Korea). Dept. of Chemical Engineering

    2002-03-01

    The construction of a triple-effect absorption cooling machine using the lithium bromide-based working fluid is strongly limited by the corrosion problem caused by the high generator temperature. In this study four compressor-assisted H{sub 2}O/LiBr cooling cycles were suggested to solve the problem by lowering the generator temperature of the basic theoretical triple-effect cycle. Each cycle includes one compressor at a different state point to elevate the pressure of the refrigerant vapor up to a useful condensation temperature. Cycle simulations were carried out to investigate both a basic triple-effect cycle and four compressor-assisted cycles. All types of compressor-assisted cycles were found to be operable with a significantly lowered generator temperature. The temperature decrements increase with elevated compression ratios. This means that, if a part of energy input is changed from heat to mechanical energy, the machine can be operated in a favorable region of generator temperature not to cause corrosion problems. In order to obtain 40 K of generator temperature decrement (from 475.95 K) for all cycles, 3-5% of cooling capacity equivalent mechanical energies were required for operating the compressor. A great advantage of the investigated triple-effect cycles is that the conventionally used H{sub 2}O/LiBr solution can be used as a working fluid without the danger of corrosion or without integrating multiple solution circuits.(author)

  10. Experimental diagnosis of the influence of operational variables on the performance of a solar absorption cooling system

    International Nuclear Information System (INIS)

    Venegas, M.; Rodriguez-Hidalgo, M.C.; Salgado, R.; Lecuona, A.; Rodriguez, P.; Gutierrez, G.

    2011-01-01

    This paper presents the analysis of the performance of a solar cooling facility along one summer season using a commercial single-effect water-lithium bromide absorption chiller aiming at domestic applications. The facility works only with solar energy using flat plate collectors and it is located at Universidad Carlos III de Madrid, Spain. The statistical analysis performed with the gathered data shows the influence of five daily operational variables on the system performance. These variables are solar energy received along the day (H) and the average values, along the operating period of the solar cooling facility (from sunrise to the end of the cold-water production), of the ambient temperature (T -bar ), the wind velocity magnitude (V), the wind direction (θ) and the relative humidity (RH). First order correlation functions are given. The analysis of the data allows concluding that the most influential variables on the daily cooling energy produced and the daily averaged solar COP are H, V and θ. The period length of cold-water production is determined mainly by H and T -bar .

  11. Experimental diagnosis of the influence of operational variables on the performance of a solar absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Venegas, M.; Rodriguez-Hidalgo, M.C.; Lecuona, A.; Rodriguez, P.; Gutierrez, G. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Salgado, R. [Dpto. Ingenieria Mecanica, Universidad Interamericana de Puerto Rico, Recinto de Bayamon, 500 Carretera Dr. John Will Harris Bayamon, PR 00957-6257 (United States)

    2011-04-15

    This paper presents the analysis of the performance of a solar cooling facility along one summer season using a commercial single-effect water-lithium bromide absorption chiller aiming at domestic applications. The facility works only with solar energy using flat plate collectors and it is located at Universidad Carlos III de Madrid, Spain. The statistical analysis performed with the gathered data shows the influence of five daily operational variables on the system performance. These variables are solar energy received along the day (H) and the average values, along the operating period of the solar cooling facility (from sunrise to the end of the cold-water production), of the ambient temperature (anti T), the wind velocity magnitude (V), the wind direction ({theta}) and the relative humidity (RH). First order correlation functions are given. The analysis of the data allows concluding that the most influential variables on the daily cooling energy produced and the daily averaged solar COP are H, V and {theta}. The period length of cold-water production is determined mainly by H and anti T. (author)

  12. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  13. The absorption and emission spectrum of radiative cooling galactic fountain gas

    Science.gov (United States)

    Benjamin, Robert A.; Shapiro, Paul R.

    1993-01-01

    We have calculated the time-dependent, nonequilibrium thermal and ionization history of gas cooling radiatively from 10(exp 6) K in a one-dimensional, planar, steady-state flow model of the galactic fountain, including the effects of radiative transfer. Our previous optically thin calculations explored the effects of photoionization on such a flow and demonstrated that self-ionization was sufficient to cause the flow to match the observed galactic halo column densities of C 4, Si 4, and N 5 and UV emission from C 4 and O 3 in the constant density (isochoric) limit, which corresponded to cooling regions homogeneous on scales D less than or approximately equal to 1 kpc. Our new calculations which take full account of radiative transfer confirm the importance of self-ionization in enabling such a flow to match the data but allow a much larger range for cooling region sizes, i.e. D(sub 0) greater than or approximately equal to 15 pc. For an initial flow velocity v(sub 0) approximately equal to 100 km/s, comparable to the sound speed of a 10(exp 6) K gas, the initial density is found to be n(sub h,0) is approximately 2 x 10(exp -2) cm(exp -3), in reasonable agreement with other observation estimates, and D(sub 0) is approximately equal to 40 pc. We also compare predicted H(alpha) fluxes, UV line emission, and broadband x-ray fluxes with observed values. One dimensional numerical hydrodynamical calculations including the effects of radiative cooling are also presented.

  14. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  15. Adoption of milk cooling technology among smallholder dairy farmers in Kenya

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Andersen, Laura Mørch; Pedersen, Søren Marcus

    2014-01-01

    Factors influencing adoption of milk cooling technology were studied with data for 90 smallholder dairy farmers who were randomly selected from seven dairy cooperative societies in Kiambu County, Kenya. Logistic regression identified the age of the household head, daily household milk consumption......, freehold land ownership, fodder production area, number of female calves, cooperative membership and cooperative services as significant factors influencing farmers’ willingness to invest in milk cooling technology. These findings offer an entry point for increased interventions by policy makers...... and various dairy sector stakeholders in promoting milk cooling technology with the aim of significantly reducing post-harvest losses and increasing the sector’s competitiveness....

  16. He-cooled divertor for DEMO. Fabrication technology for tungsten cooling fingers

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J.; Norajitra, P.; Widak, V.; Krauss, W. [Forschungszentrum Karlsruhe GmbH (Germany)

    2008-07-01

    A modular helium-cooled divertor design based on the multi-jet impingement concept (HEMJ) has been developed for the ''post-ITER'' demonstration reactor (DEMO) at the Forschungszentrum Karlsruhe [1, 2]. The main function of the divertor is to keep the plasma free from impurities by catching particles, such as fusion ash and eroded particles from the first wall. From the divertor surface, a maximum heat load of 10 MW/m{sup 2} at least has to be removed. The whole divertor is split up into a number of cassettes (48 according to the latest design studies [3]). Each cassette is cooled separately. The target plates are provided with several cooling fingers to keep the thermal stresses low. Each cooling finger consists of a tungsten tile which is brazed to a thimble-like cap made of a tungsten alloy W-1%La2O3 (WL10) underneath. The thimble has to be connected to the ODS EUROFER steel structure, which is accomplished by brazing again. The tungsten/tungsten brazing is exposed to 1200 C operation temperature while the tungsten/steel brazing joint must withstand 700 C operating temperature. Cooling of the finger is achieved by multi-jet impingement with helium. The inlet temperature of helium is 600 C and rises up to 700 C at the outlet. With this kind of cooling, a mean heat transfer coefficient of 35.000 W/(m{sup 2*}K) can be reached. This compact report will focus on the manufacturing of such a cooling finger unit at FZK. It will cover the machining of the tungsten tile as well as of the thimble and, the brazing of the parts. The major aim of this activity is, on the one hand, to obtain functioning mock-ups with high quality and high reliability, in particular in terms of minimising the surface roughness, cracks, and micro-cracks. On the other hand, effort should also be laid on realising the mass production from economic point of view. (orig.)

  17. Development of design technology for dual-cooled fuel

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho

    2010-03-01

    Primary purpose of the project is to complete a basic design of the power uprating dual-cooled fuel's structural components for an actual use in the existing nuclear power plants. It also includes a basic design of the components of a dual-cooled fuel rod. To this end, during the three years of the first stage (2007.03.∼2010.02.), concepts and technical issues of the structural components such as a supporting structure, guide thimbles and instrumentation tube and the top and bottom end pieces were derived in order to comply with the functional requirements and design criteria of them. Basic design was carried out to resolve the issues by using analytical methods as well as experiments, and observed finally is that a structural compatibility of the designed dual-cooled fuel to the Korean Standard Nuclear Power Plant (OPR-1000). As for the dual-cooled fuel rod's components such as a plenum spring, a spacer and end plugs, a concept of them was established by using the basic dimension and array produced by other sub-projects. In turn, the basic design was completed by using the finite element analysis and conventional mechanical design formulae. Additionally, a welding method and equipment for a dual-cooled fuel rod specimen was also successfully developed to prepare for the irradiation tests at the HANARO. It was shown that a dual-cooed fuel for the OPR-1000 can be designed after manufacturing the partial assembly with the designed components and their drawings. The first stage was completed with passing the Gate checks proposed at the beginning. During the second stage(2010.03.∼2012.02.), researches on the mechanical behavior and structural integrity of the designed dual-cooled fuel will be conducted for preparing a license of it, which should be done when the dual-cooled fuel is commercialized

  18. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Christopher L. [Univ. of Oklahoma, Norman, OK (United States); Pavlish, John H. [Univ. of Oklahoma, Norman, OK (United States)

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  19. Combination of low energy and mechanical cooling technologies for buildings in Central Europe

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.L.M.

    2004-01-01

    This paper discusses options for incorporating low energy cooling technologies combined with standard mechanical cooling in buildings in central Europe. Case studies, design recommendations and role of computer simulation of building and system in the design process are presented. Applicability of

  20. Mixture preparation by cool flames for diesel-reforming technologies

    Science.gov (United States)

    Hartmann, L.; Lucka, K.; Köhne, H.

    The separation of the evaporation from the high-temperature reaction zone is crucial for the reforming process. Unfavorable mixtures of liquid fuels, water and air lead to degradation by local hot spots in the sensitive catalysts and formation of unwanted by-products in the reformer. Furthermore, the evaporator has to work with dynamic changes in the heat transfer, residence times and educt compositions. By using exothermal pre-reactions in the form of cool flames it is possible to realize a complete and residue-free evaporation of liquid hydrocarbon mixtures. The conditions whether cool flames can be stabilised or not is related to the heat release of the pre-reactions in comparison to the heat losses of the system. Examinations were conducted in a flow reactor at atmospheric pressure and changing residence times to investigate the conditions under which stable cool flame operation is possible and auto-ignition or quenching occurs. An energy balance of the evaporator should deliver the values of heat release by cool flames in comparison to the heat losses of the system. The cool flame evaporation is applied in the design of several diesel-reforming processes (thermal and catalytic partial oxidation, autothermal reforming) with different demands in the heat management and operation range (air ratio λ, steam-to-carbon ratio, SCR). The results are discussed at the end of this paper.

  1. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  2. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    Science.gov (United States)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  3. An Overview of the Thermal Calculation and the Cooling Technology for Active Magnetic Bearing

    Science.gov (United States)

    Zhang, Li; Yu, Meiyun; Luo, Yanyan; Liu, Jun; Ren, Yafeng

    2017-10-01

    The cooling process of AMB is that the energy loss is sent out to the outside world when the system is operating. The energy loss transfers to the surrounding medium in the form of heat, which leads to raise the temperature of system components and influences the performance of the system. So it is necessary to study the internal loss of the magnetic bearing system and thermal calculation method. Three kinds of thermal calculation methods are compared, which is important for the design and calculation of cooling. At the same time, the cooling way, the cooling method, and the cooling system is summarized on the basis of cooling technology of active magnetic bearing, and the design method of the cooling system is studied. But for the active magnetic bearing system, when designing the cooling system, heat dissipation of the motor can not be ignored. It is important not only for the performance of the active magnetic bearing system and stable operation, and but also for the improvement of the cooling technology.

  4. Cooling performance and energy saving of a compression-absorption refrigeration system assisted by geothermal energy

    International Nuclear Information System (INIS)

    Kairouani, L.; Nehdi, E.

    2006-01-01

    The objectives of this paper are to develop a novel combined refrigeration system, and to discuss the thermodynamic analysis of the cycle and the feasibility of its practical development. The aim of this work was to study the possibility of using geothermal energy to supply vapour absorption system cascaded with conventional compression system. Three working fluids (R717, R22, and R134a) are selected for the conventional compression system and the ammonia-water pair for the absorption system. The geothermal temperature source in the range 343-349 K supplies a generator operating at 335 K. Results show that the COP of a combined system is significantly higher than that of a single stage refrigeration system. It is found that the COP can be improved by 37-54%, compared with the conventional cycle, under the same operating conditions, that is an evaporation temperature at 263 K and a condensation temperature of 308 K. For industrial refrigeration, the proposed system constitutes an alternative solution for reducing energy consumption and greenhouse gas emissions

  5. Technology assessment of dew point cooling; Beoordeling technologie dauwpuntskoeling

    Energy Technology Data Exchange (ETDEWEB)

    Uges, P.G.H. [Koudetechnisch Centrum, Nijmegen (Netherlands); Reinder, T.M.

    2003-03-01

    Results of measurements on an indirect adiabatic dew point cooling system are presented and discussed. The cooling system has been developed by OxyCom (formerly ComfortAir), Raalte, Netherlands. [Dutch] De techniek van dauwpuntskoeling is gebaseerd op bet principe van indirecte verdamping van water in een secundair circuit, waarbij geen extra vocht aan de te koelen luchtstroom wordt toegevoegd en waarmee luchttemperaturen worden bereikt die net boven het dauwpunt liggen en dus onder de natteboltemperatuur. Dauwpuntskoeling is een technische ontwikkeling met goede toekomstverwachtingen. Voorzover bekend zijn er tot op heden geen meetgegevens gepubliceerd met een dergelijke indirect werkende koeler. Dit artikel geeft de meetresultaten weer van een door OxyCorn in samenwerking met TNO-MEP uitgevoerd meetprogramma. Dit artikel is gebaseerd op de TNO-MEP rapportage met als auteurs N.R. Bootsveld en J. Afink en heeft eerder in het blad Koude en Luchtbehandeling, januari 2003, gestaan.

  6. Cooling a telecommunication shelter using mini-eolic technology

    OpenAIRE

    García Cipolletti, Juan Carlos

    2014-01-01

    Refrigeration nowadays is needed in many applications throughout different sectors. Especially in electronic components where material temperature raises considerably and cooling is necessary in order to maintain the optimal working conditions for its correct function. Telecommunication shelters are no exception, and high temperatures are reached in their components. Therefore, there is an important develop to be done in this sector in order to reduce costs of energy for this process. In this...

  7. High-Temperature Gas-Cooled Reactor Critical Experiment and its Application to Thorium Absorption Rates

    International Nuclear Information System (INIS)

    Bardes, R.G.; Brown, J.R.; Drake, M.K.; Fischer, P.U.; Pound, D.C.; Sampson, J.B.; Stewart, H.B.

    1964-01-01

    In developing the concept of the HTGR and its first prototype at Peach Bottom, General Atomic made the decision that a critical experiment was required to provide adequately certain necessary input data for the nuclear analysis. The specific needs of the nuclear design theory for input data relating to thorium absorptions led to an experimental design consisting of a central lattice-type critical assembly with surrounding buffer and driver regions. This type of assembly, in which the spectrum of interest can be established in the relatively small central lattice having a desired geometry, provides a useful tool for obtaining a variety of input data for nuclear analysis surveys of new concepts. The particular advantages of this approach over that of constructing a mock-up assembly will be discussed, as well as the role of the theory in determining what experiments are most useful and how these experiments are then used in verifying design techniques. Two relatively new techniques were developed for use in the lattice assembly. These were a reactivity oscillation technique for determining the thorium Doppler coefficient, and an activation technique for determining both the resonance integral of thorium dispersed in graphite and its temperature dependence (activation Doppler coefficient). The Doppler coefficient measurement by reactivity oscillation utilized the entire central fuel element in a technique which permitted heating this fuel element to 800°F and accurately subtracting experimentally the thermal-base effects, that is, those effects not contributing to the thorium resonance capture. Comparison of results with theory for a range of conditions shows excellent agreement. The measurement of the thorium resonance integral and its temperature dependence will be described. The technique developed for measuring resonance capture makes use of gold as the standard and vanadium as die material giving the 1/v absorption rate. This technique is dictated by the fact

  8. Performance of one and a half-effect absorption cooling cycle of H2O/LiBr system

    International Nuclear Information System (INIS)

    Wang Jianzhao; Zheng Danxing

    2009-01-01

    The performances of half-effect, single-effect and double-effect H 2 O/LiBr absorption cooling cycles were analyzed, and it was found that there is an obvious blank for generation temperature between the maximum generation temperature of the single-effect cycle and the minimum generation temperature of the double-effect cycle. It was proposed that the one and a half-effect (1.5-effect) cycle can fill up the blank perfectly. The state of the art in the 1.5-effect cycles was reviewed and analyzed, and two new configurations of 1.5-effect cycles were proposed. Three configurations of 1.5-effect cycles, which are suitable for H 2 O/LiBr as working fluids, were selected to be analyzed in detail. The 1.5-effect cycle shows the optimum performance at the foregoing blank of generation temperature. For example, under the conditions of evaporation temperature t E is 5 deg. C, and condensation temperature t C is 42 deg. C, and absorption temperature t A is 37 deg. C, the optimum range of generation temperature t G for the 1.5-effect cycle is from 110 deg. C to 140 deg. C. The coefficient of performance of the 1.5-effect cycle is about 1.0, which is more than 30% higher than that of the single-effect cycle at the same condition. The effects of the efficiency of solution heat exchanger, the generation temperature, the absorption temperature (or the condensation temperature) and the evaporation temperature on the performances of the three configurations of 1.5-effect cycle were analyzed. It was shown that the configuration II, which is composed with a high-temperature single-effect subcycle and a low-temperature half-effect subcycle, has the highest coefficient of performance and the best operational flexibility. Among the four parameters analyzed, the performances of 1.5-effect cycles are most sensitive to the change of absorption temperature (or condensation temperature), and then to the change of generation temperature.

  9. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Jinping

    2015-01-01

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  10. Integrated Microelectronics and Photonics Active Cooling Technology (IMPACT)

    National Research Council Canada - National Science Library

    Bowers, John

    2003-01-01

    ...) coolers and their integration with microelectronics and photonics. The majority of our research involves the development of this new technology through nanostructured materials design and growth...

  11. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Broothaerts, J.; Heylen, P.R.; Eschrich, H.; Geel, J. van

    1974-11-01

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO 2 -PuO 2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  12. Biochemical fundamentals of rational radurization technology of cooled meat

    International Nuclear Information System (INIS)

    Gel'fand, S.Yu.; Anisimov, B.N.

    1974-01-01

    A series of experiments has been conducted in the last few years to explore the possibility of prolonging the storage life of meat in a cooled state. These experiments have shown that a clearly promising approach is to use relatively low doses of ionizing radiation (300-600 Krad). Irradiation of meat and fowl with such doses strongly reduced microbial contamination while increasing 3- to 5-fold the storage life of the products at low above-zero C temperatures. An important consideration is that the organoleptic and nutritive properties remain largely unchanged. The present communication reports the main results of biochemical studies necessary before an irradiation scheme for semifinished meat products can be developed. (E.T.)

  13. PREFACE: 7th International Conference on Cooling & Heating Technologies (ICCHT 2014)

    Science.gov (United States)

    2015-09-01

    The Kyoto protocol has initiated a pledge from almost all developing and developed countries to be committed to reducing CO2 emissions. Development of new renewable energy technologies are also of interest in this conference. Greenhouse gases have contributed to global warming and other man-made disasters. Cooling and Heating communities also have responsibilities towards the commitment of reducing the greenhouse gas emissions. In addition, depleting natural resources also act as a threat to the Cooling and Heating industries, causing them to develop highly efficient equipment and innovative technologies. The 1st International Conference on Cooling & Heating Technologies was held in Hanoi Vietnam (Jan. 2005). Whereas the 2nd, 3rd, 4th and 5th ICCHT conferences were held in Dalian, China (Jul. 2006), Tokyo, Japan (Jul. 2007), Jinhae, Korea (Oct. 2008) and Bandung, Indonesia (Dec. 2010) respectively. The 6th International Conference on Cooling & Heating Technologies (ICCTH2012) was held in Xi'an in China on November 9-12, 2012. It is our pleasure to welcome you to the 7th International Conference on Cooling & Heating Technologies (ICCTH2014) on 4th - 6th November 2014 at the Grand Dorsett Subang Hotel, Subang Jaya, Selangor Darul Ehsan, Malaysia The Theme of the Conference is ''Sustainability and Innovation in Heating & Cooling Technologies''. The sub-themes are:- • CO2 Reduction and Low Carbon Technologies • HVAC System and Natural Ventilation • Energy & Alternative Energy • Computational Fluid Dynamics • Low Temperature & Refrigeration Engineering In conjunction with the Conference, an Exhibition will be organized as an integral part of the Conference. Project experiences, product solutions, new applications and state-of-the art information will be highlighted.

  14. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China

    International Nuclear Information System (INIS)

    Yan, Shuiping; Fang, Mengxiang; Zhang, Weifeng; Zhong, Weilong; Luo, Zhongyang; Cen, Kefa

    2008-01-01

    This paper firstly evaluated the CO 2 absorption performance of a membrane gas absorption system (MAS) and chemical absorption system (CAS) using the overall mass transfer coefficient (K G a V ) as a basis for comparison. MAS selected microporous polypropylene (PP) hollow fiber membrane contactors to capture CO 2 from the simulated flue gas while CAS used a randomly packed column containing stainless Pall packing. Aqueous monoethanolamine (MEA) solution was adopted in both absorbers. Experimental results show that if the fresh membranes were tested, MAS has the higher K G a V values than that of CAS. However, when all the membrane pores were completely wetted or 50% pores were plugged, CAS inversely performs better than MAS in terms of K G a V values. In addition, the economic performance of MAS and CAS was also estimated. Results indicate that if the real operational time of membrane module is reduced to less than the critical value affected by the membrane price, the CO 2 captured cost of MAS is inversely higher than that of CAS. Therefore, the current well-accepted statement that MAS is superior to CAS in any case may be somewhat arbitrary unless membrane pore-wetting and pore-plugging problems, how to reduce the membrane price and how to prolong the membrane lifetime can be solved perfectly in the future. (author)

  15. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    Science.gov (United States)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  16. Methods and technologies for cost reduction in the design of water cooled reactor power plants

    International Nuclear Information System (INIS)

    1991-05-01

    The Specialists Meeting was organized in the framework of the IAEA International Working Group on Advanced Technologies for Water-Cooled Reactors. Its purpose was to provide an international forum for review and discussion on recent results in research and development on different methods and technologies of current and advanced water-cooled reactor power plants, which can lead to reduced investment and operation, maintenance and fuel-cycle costs of the plants. 27 specialists representing 10 countries and the IAEA took part in the meeting. 10 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.

    Science.gov (United States)

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.

  18. Influence of Technological Assets on Organizational Performance through Absorptive Capacity, Organizational Innovation and Internal Labour Flexibility

    Directory of Open Access Journals (Sweden)

    Encarnación García-Sánchez

    2018-03-01

    Full Text Available Organizational innovation is increasingly mandatory for firms to overcome their competitors. Organizational innovation is especially relevant in today’s dynamic and turbulent environments, where other internal variables—such as technological assets, employee training, coordination of new management capabilities, and new flexible human resources and more adaptable organizational designs—must be encouraged to create value and competitive advantage. The purpose of our research is to analyse whether technological assets influence absorptive capacity (potential and realized absorptive capacity and how absorptive capacity influences internal labour flexibility, organizational innovation and performance. We achieve these goals by analysing the interrelations among internal labour flexibility, organizational innovation and performance, using the theory of resources and capabilities. A quantitative study was carried out with data gathered by personal interview using a structured questionnaire. Relationships proposed in the theoretical model were estimated through a structural equation model, using a sample of 160 European technology companies. The results show that support for technology and improvement of technological skills and technological distinctive competencies promote improvement in organizational performance through their positive influence on the processes of potential and realized absorption capacity. Potential absorptive capacity influences realized absorptive capacity, which impacts not only internal labour flexibility but also organizational innovation and organizational performance. Further, internal labour flexibility influences organizational performance through organizational innovation. This issue is of particular interest when considering the dynamic nature of turbulent technological environments in which the organization operates. Technological assets thus identify new sources of flexibility and organizational innovation based

  19. Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application

    International Nuclear Information System (INIS)

    Silk, Eric A.; Golliher, Eric L.; Paneer Selvam, R.

    2008-01-01

    Advanced on-board flight systems for future NASA space exploration programs consist of components such as laser-diode arrays (LDA's) and multi-chip modules (MCM's). Thermal management of these systems require high heat flux cooling capability (≥100 W/cm 2 ), tight temperature control (approx. ±2 deg. C), reliable start-up (on demand) and long term stability. Traditional multiphase thermal control technologies for space flight (e.g., loop heat pipes, capillary pumped loops, etc.) satisfy the temperature control, start-up and stability requirements, but their heat flux removal capabilities are limited. Spray cooling can provide high heat fluxes in excess of 100 W/cm 2 using fluorinerts and over 1000 W/cm 2 with water while allowing tight temperature control at low coolant fluid flow rates. Spray cooling has been flight proven in an open loop configuration through the Space shuttle's flash evaporator system (FES). However, several closed system issues require investigation to further advance the technology to a technology readiness level (TRL) appropriate for closed system space flight application. This paper provides a discussion of the current status of spray cooling technology as well as NASA's goals, current direction, and challenges associated with the implementation and practice of this technology in the micro-gravity environment

  20. Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit

    International Nuclear Information System (INIS)

    Izquierdo, M.; González-Gil, A.; Palacios, E.

    2014-01-01

    Highlights: • This work presents a novel solar cooling air-cooled absorption prototype for buildings. • The solution (LiB r –H 2 O) and the refrigerant (H 2 O) are cooled directly by air. • The cooling is produced from solar energy when operates in single-effect mode. • If the demand is not met the prototype is able to operate in double-effect mode. - Abstract: This work describes an installation in Madrid, Spain, designed to test a new solar-powered air-cooled absorption refrigeration system. This installation essentially consists of a-48 m 2 field of flat-plate solar collectors, a 1500-L hot water storage tank and a single and-double effect air-cooled lithium bromide absorption prototype. Designed and built by our research group, this prototype is able to operate either as a single-effect unit (4.5 kW) or as a double-effect unit (7 kW). In operation as single-effect mode, the prototype is driven by solar energy, whereas in operation as a double effect mode, an external energy source may be used. The prototype’s evaporator is connected to a fan-coil placed inside an 80-m 2 laboratory that represent the average size of a Spanish housing unit. In August 2009, the cooling system was tested in the single-effect operation mode. The results show that the system is able to meet approximately 65% of the laboratory’s seasonal cooling demand, although 100% may be reached for a few days. The prototype can also operate in double-effect mode to meet the cooling demand. In that case, the prototype is fed by thermal oil, which is warmed until it reaches the process temperature in the high-temperature generator. The prototype can operate in either single-effect mode or in double-effect mode or can also operate simultaneously both modes using the components common to both modes, namely, the absorber, evaporator, condenser, solution pumps and control equipment. This paper reports the experimental results from the prototype operating separately in single-effect and

  1. Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant

    International Nuclear Information System (INIS)

    Blanco-Marigorta, Ana M.; Victoria Sanchez-Henriquez, M.; Pena-Quintana, Juan A.

    2011-01-01

    Exergetic analysis is without any doubt a powerful tool for developing, evaluating and improving an energy conversion system. In the present paper, two different cooling technologies for the power cycle of a 50 MWe solar thermal power plant are compared from the exergetic viewpoint. The Rankine cycle design is a conventional, single reheat design with five closed and one open extraction feedwater heaters. The software package GateCycle is used for the thermodynamic simulation of the Rankine cycle model. The first design configuration uses a cooling tower while the second configuration uses an air cooled condenser. With this exergy analysis we identify the location, magnitude and the sources or thermodynamic inefficiencies in this thermal system. This information is very useful for improving the overall efficiency of the power system and for comparing the performance of both technologies.

  2. Technology development for laser-cooled clocks on the International Space Station

    Science.gov (United States)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  3. Exergetic and energetic comparison of LiCl-H_2O and LiBr-H_2O working pairs in a solar absorption cooling system

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Two working pairs (LiCl-H_2O and LiBr-H_2O) are examined in a solar absorption chiller. • The examined single effect absorption chiller is driven by flat plate collectors. • The system is analyzed energetically and energetically for 3 ambient temperatures. • LiCl-H_2O performs better than LiBr-H_2O in all the examined cases. • The optimum operating temperature is lower for the case of pair LiCl-H_2O. - Abstract: The objective of this study is to investigate the use of an alternative working pair in a solar absorption cooling system. LiCl-H_2O is the new examined pair and it is compared energetically and exegetically with the conventional pair LiBr-H_2O, which is the most usual in air-conditioning applications. The simplest solar cooling system is analyzed in order to focus in the comparison between these working fluids. Specifically, flat plate collectors, coupled with a storage tank, feed the single effect absorption chiller which produces 250 kW cooling at 10 °C. The two pairs are examined parametrically for various heat source temperature levels and for three ambient temperature levels (25 °C, 30 °C and 35 °C). The minimization of the collecting area, which means maximum exergetic efficiency, is the optimization goal in every case. The final results show that LiCl-H_2O pair performs better in all cases by giving greater exergetic efficiency. More specifically, about 8% lower collecting area is required to cover the demanded cooling load with this working pair. Another interesting result is that the optimum heat source temperature for the LiCl-H_2O is roughly lower than the respective for the LiBr-H_2O. The system is analyzed in steady state with the commercial software Engineering Equator Solver (EES).

  4. MHTGR [Modular High-Temperature Gas-Cooled Reactor] technology development plan

    International Nuclear Information System (INIS)

    Homan, F.J.; Neylan, A.J.

    1988-01-01

    This paper presents the approach used to define the technology program needed to support design and licensing of a Modular High-Temperature Gas-Cooled Reactor (MHTGR). The MHTGR design depends heavily on data and information developed during the past 25 years to support large HTGR (LHTGR) designs. The technology program focuses on MHTGR-specific operating and accident conditions, and on validation of models and assumptions developed using LHTGR data. The technology program is briefly outlined, and a schedule is presented for completion of technology work which is consistent with completion of a Final Safety Summary Analysis Report (FSSAR) by 1992

  5. Liquid nitrogen-cooled diamond-wire concrete cutting. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Liquid nitrogen-cooled diamond-wire concrete cutting can be used to cut through thick concrete walls, floors, and structures without using water to cool the cutting wire. The diamond wire is cooled with liquid nitrogen in a 0.9-m (3-ft) long by 7.6-cm (3-in.) diameter pipe housing. The nitrogen evaporates, so no contaminated liquid waste is generated. Other than the use of liquid nitrogen, the system is a conventional diamond-wire saw assembly with remote hydraulic controls. Setup of the hydraulic-powered drive wheel and the diamond wire for cutting requires a relatively short period of time using people with minimal training. Concrete dust generated during the cutting is considerable and requires control. The production rate of this improved technology is 0.78 m 2 /hr (8.4 ft 2 /hr). The production rates of traditional (baseline) water-cooled diamond-wire cutting and circular saw cutting technologies are 1.11 m 2 /hr (12 ft 2 /hr), and 0.45 m 2 /hr (4.8 ft 2 /hr), respectively. The liquid nitrogen-cooled system costs 189% more than conventional diamond-wire cutting if contaminated liquid wastes collection, treatment, and disposal are not accounted for with the baseline. The new technology was 310% more costly than a conventional diamond circular saw, under the conditions of this demonstration (no wastewater control). For cutting a 0.9-m x 3.7-m (3-ft x 12-ft) wall, the improved technology costs $17,000, while baseline diamond-wire cutting would cost $9,000 and baseline circular-saw cutting would cost $5,500. The improved system may cost less than the baseline technologies or may be comparable in cost if wastewater control is included

  6. Liquid nitrogen-cooled diamond-wire concrete cutting. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Liquid nitrogen-cooled diamond-wire concrete cutting can be used to cut through thick concrete walls, floors, and structures without using water to cool the cutting wire. The diamond wire is cooled with liquid nitrogen in a 0.9-m (3-ft) long by 7.6-cm (3-in.) diameter pipe housing. The nitrogen evaporates, so no contaminated liquid waste is generated. Other than the use of liquid nitrogen, the system is a conventional diamond-wire saw assembly with remote hydraulic controls. Setup of the hydraulic-powered drive wheel and the diamond wire for cutting requires a relatively short period of time using people with minimal training. Concrete dust generated during the cutting is considerable and requires control. The production rate of this improved technology is 0.78 m{sup 2}/hr (8.4 ft{sup 2}/hr). The production rates of traditional (baseline) water-cooled diamond-wire cutting and circular saw cutting technologies are 1.11 m{sup 2}/hr (12 ft{sup 2}/hr), and 0.45 m{sup 2}/hr (4.8 ft{sup 2}/hr), respectively. The liquid nitrogen-cooled system costs 189% more than conventional diamond-wire cutting if contaminated liquid wastes collection, treatment, and disposal are not accounted for with the baseline. The new technology was 310% more costly than a conventional diamond circular saw, under the conditions of this demonstration (no wastewater control). For cutting a 0.9-m x 3.7-m (3-ft x 12-ft) wall, the improved technology costs $17,000, while baseline diamond-wire cutting would cost $9,000 and baseline circular-saw cutting would cost $5,500. The improved system may cost less than the baseline technologies or may be comparable in cost if wastewater control is included.

  7. Evolutionary water cooled reactors: Strategic issues, technologies and economic viability. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    Symposium on evolutionary water cooled reactors: Strategic issues, technologies and economic viability was intended for managers in utilities, reactor design organizations and hardware manufacturing companies and for government decision makers who need to understand technological advances and the potential of evolutionary water cooled reactors to contribute to near and medium term energy demands. The topics addressed include: strategic issues (global energy outlook, the role of nuclear power in sustainable energy strategies, power generation costs, financing of nuclear plant projects, socio-political factors and nuclear safety requirements); technological advances (instrumentation and control, means od improving prevention and mitigation of severe accidents, development of passive safety systems); keys to economic viability (simplification, standardization, advances in construction and project management, feedback of experience from utilities into new designs, and effective management of plant operation)

  8. The Preliminary Study of High Temperature Gas Cooled Reactors (HTGRs) Technology

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2015-01-01

    High Temperature Gas Cooled Reactors (HTGRs) have attracted worldwide interest because of their high outlet temperatures, which allow them to be used for applications beyond electricity generation. HTGRs have been built and operated since as far back as the 1970s. Experimental and demonstration reactors of this type have operated in China, Great Britain, Germany, Japan, and the United States of America. This paper is written to share the valuable knowledge and information of HTGRs technology as a mean to enrich peoples understanding of the technology. This paper will present the technological features of HTGRs that allow for a modular design with inherently safe characteristics. (author)

  9. Study of design and technology factors influencing gas turbine blade cooling

    Science.gov (United States)

    Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.

    2017-11-01

    The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.

  10. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  11. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phase change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results

  12. Profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets using gastrointestinal simulation technology.

    Science.gov (United States)

    Wu, Chunnuan; Sun, Le; Sun, Jin; Yang, Yajun; Ren, Congcong; Ai, Xiaoyu; Lian, He; He, Zhonggui

    2013-09-10

    The aim of the present study was to correlate in vitro properties of drug formulation to its in vivo performance, and to elucidate the deciding properties of oral absorption. Gastrointestinal simulation technology (GST) was used to simulate the in vivo plasma concentration-time curve and was implemented by GastroPlus™ software. Lansoprazole, a typical BCS class II drug, was chosen as a model drug. Firstly, physicochemical and pharmacokinetic parameters of lansoprazole were determined or collected from literature to construct the model. Validation of the developed model was performed by comparison of the predicted and the experimental plasma concentration data. We found that the predicted curve was in a good agreement with the experimental data. Then, parameter sensitivity analysis (PSA) was performed to find the key parameters of oral absorption. The absorption was particularly sensitive to dose, solubility and particle size for lansoprazole enteric-coated tablets. With a single dose of 30 mg and the solubility of 0.04 mg/ml, the absorption was complete. A good absorption could be achieved with lansoprazole particle radius down to about 25 μm. In summary, GST is a useful tool for profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets and guiding the formulation optimization. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  13. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  14. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  15. One of possible variants of the organization for recycling lubricate cooling of technological means for small businesses

    Science.gov (United States)

    Rusica, I.; Toca, A.; Stingaci, I.; Scaticailov, S.; Scaticailov, I.; Marinescu, O.; Kosenko, P.

    2016-11-01

    In the paper we analyze the application lubricate cooling technological environment in the processing of various materials in the past century greatly have increased cutting speed and respectively, has increased productivity [1]. Today, none of production in which anyway is used metal cutting machines of all types (milling, turning, grinding, drilling, etc.) is not without lubricant cooling technological liquid which in turn are designed to reduce cutting force and the load on metal cutting machine tools and machined parts in order to increase durability machine tools and reduce errors of processing details and also in resource energy saving. When using lubricate cooling technological environment reduces the temperature in the cutting zone resulting in higher tool life and the preservation of the surface structure being treated reducing wear of metal parts of the machine. Typically, lubricant cooling process fluids is used without replacing as long as possible not yet beginning to negatively affect the quality of process. However life expectancy lubricate cooling technological environment is limited. According to existing normative acts every kind of lubricate cooling technological environment through certain time must be deleted by from the system and subjected to a recycling. Lubricate cooling technological environment must be disposed of for the following reasons: occurs the microbial and the mechanical pollution cutting fluid, free oil impairs operational characteristics cutting fluid and increases consumption.

  16. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  17. Superconductivity application technologies. Superconducting quadrupole magnet and cooling system for KEK B factory

    International Nuclear Information System (INIS)

    Tsuchiya, Kiyosumi; Yamaguchi, Kiyoshi; Sakurabata, Hiroaki; Seido, Masahiro; Matsumoto, Kozo.

    1997-01-01

    At present in National Laboratory for High Energy Physics (KEK), the construction of B factory is in progress. By colliding 8 GeV electrons and 3.5 GeV positrons, this facility generates large amounts of B mesons and anti-B mesons, and performs the elementary particle experiment of high accuracy. It is the collision type accelerator of asymmetric two-ring type comprising 8 GeV and 3.5 GeV rings. In the field of high energy physics, superconductivity technology has been put to practical use. As the objects of superconductivity technology, there are dipole magnet for bending beam, quadrupole magnet for adjusting beam, large solenoid magnet used for detector and so on. Superconducting magnets which are indispensable for high energy, superconducting wire material suitable to accelerators, and the liquid helium cooling system for maintaining superconducting magnets at 4.4 K are reported. The technologies of metallic conductors and making their coils have advanced rapidly, and also cooling technology has advanced, accordingly, superconductivity technology has reached the stage of practical use perfectly. (K.I.)

  18. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  19. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    Science.gov (United States)

    Widyolar, Bennett K.

    A solar thermal cooling system using novel non-tracking External Compound Parabolic Concentrators (XCPC) has been built at the University of California, Merced and operated for two cooling seasons. Its performance in providing power for space cooling has been analyzed. This solar cooling system is comprised of 53.3 m2 of XCPC trough collectors which are used to power a 23 kW double effect (LiBr) absorption chiller. This is the first system that combines both XCPC and absorption chilling technologies. Performance of the system was measured in both sunny and cloudy conditions, with both clean and dirty collectors. It was found that these collectors are well suited at providing thermal power to drive absorption cooling systems and that both the coinciding of available thermal power with cooling demand and the simplicity of the XCPC collectors compared to other solar thermal collectors makes them a highly attractive candidate for cooling projects.

  20. Heating up the gas cooling market

    International Nuclear Information System (INIS)

    Watt, G.

    2001-01-01

    Gas cooling is an exciting technology with a potentially bright future. It comprises the production of cooling (and heating) in buildings and industry, by substituting environmentally-friendlier natural gas or LPG over predominantly coal-fired electricity in air conditioning equipment. There are currently four established technologies using gas to provide cooling energy or conditioned air. These are: absorption, both direct gas-fired and utilising hot water or steam; gas engine driven vapour compression (GED); cogeneration, with absorption cooling driven by recovered heat; and desiccant systems. The emergence of gas cooling technologies has been, and remains, one of evolution rather than revolution. However, further development of the technology has had a revolutionary effect on the performance, reliability and consumer acceptability of gas cooling products. Developments from world-renowned manufacturers such as York, Hitachi, Robur and Thermax have produced a range of absorption equipment variously offering: the use of 100 percent environmentally-friendly refrigerants, with zero global warming potential; the ideal utilisation of waste heat from cogeneration systems; a reduction in electrical distribution and stand-by generation capacity; long product life expectancy; far less noise and vibration; performance efficiency maintained down to about 20 percent of load capacity; and highly automated and low-cost maintenance. It is expected that hybrid systems, that is a mixture of gas and electric cooling technologies, will dominate the future market, reflecting the uncertainty in the electricity market and the prospects of stable future gas prices

  1. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  2. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  3. Maximum Exergetic Efficiency Operation of a Solar Powered H2O-LiBr Absorption Cooling System

    Directory of Open Access Journals (Sweden)

    Camelia Stanciu

    2017-12-01

    Full Text Available A solar driven cooling system consisting of a single effect H2O-LiBr absorbtion cooling module (ACS, a parabolic trough collector (PTC, and a storage tank (ST module is analyzed during one full day operation. The pressurized water is used to transfer heat from PTC to ST and to feed the ACS desorber. The system is constrained to operate at the maximum ACS exergetic efficiency, under a time dependent cooling load computed on 15 July for a one storey house located near Bucharest, Romania. To set up the solar assembly, two commercial PTCs were selected, namely PT1-IST and PTC 1800 Solitem, and a single unit ST was initially considered. The mathematical model, relying on the energy balance equations, was coded under Engineering Equation Solver (EES environment. The solar data were obtained from the Meteonorm database. The numerical simulations proved that the system cannot cover the imposed cooling load all day long, due to the large variation of water temperature inside the ST. By splitting the ST into two units, the results revealed that the PT1-IST collector only drives the ACS between 9 am and 4:30 pm, while the PTC 1800 one covers the entire cooling period (9 am–6 pm for optimum ST capacities of 90 kg/90 kg and 90 kg/140 kg, respectively.

  4. Research and development needs for desiccant cooling technology 1992--1997. (Supplement to the NREL report, Desiccant Cooling: State-of-the-Art Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A A

    1992-12-01

    This report is a supplement to Desiccant Cooling: State-of-the-Art Assessment (NREL/TP-254-4147, DE93000013). In this supplement document we have described a detailed program assuming sufficient funding to implement the R&D activities needed. Desiccant dehumidification is a mature technology for industrial applications, and in recent years the technology has been used for air conditioning a number of institutional and commercial buildings. Our proposal is based on argumentative discussions at various national meetings with leaders of the technology. The goal is the penetration of the broad air conditioning market. This work is funded by the Buildings technology Office of the US Department of Energy.

  5. Assessment and status report High-Temperature Gas-Cooled Reactor gas-turbine technology

    International Nuclear Information System (INIS)

    1981-01-01

    Purpose of this report is to present a brief summary assessment of the High Temperature Gas-Cooled Reactor - Gas Turbine (HTGR-GT) technology. The focal point for the study was a potential 2000 MW(t)/800 MW(e) HTGR-GT commercial plant. Principal findings of the study were that: the HTGR-GT is feasible, but with significantly greater development risk than the HTGR-SC (Steam Cycle). At the level of performance corresponding to the reference design, no incremental economic incentive can be identified for the HTGR-GT to offset the increased development costs and risk relative to the HTGR-SC. The relative economics of the HTGR-GT and HTGR-SC are not significantly impacted by dry cooling considerations. While reduced cycel complexity may ultimately result in a reliability advantage for the HTGR-GT, the value of that potential advantage was not quantified

  6. Comparative economic performance of selected passive solar heating and cooling technologies

    Science.gov (United States)

    Rutter, W.

    1981-05-01

    The economic performance of selected passive solar heating and cooling technologies which incorporate energy storage is assessed by using a set of uniform assumptions and methodologies. Where data are available, a given system is assessed at more than one geographical location. Results are obtained in the form of both payback period and net present value for residential applications, and in terms of net present value only for industrial/commercial uses. Results indicate that ventilated trombe walls, solar roof ponds, and certain night effect/floor storage strategies are cost effective, but night effect/rock bed cooling is not. Results also show that, although direct gain out-performs trombe walls in most parts of the country, both direct gain and trombe walls usually produce a net savings in the residential sector. Generally, however, tax regulations result in net economic loss for direct gain and trombe walls used to heat industrial and commercial buildings.

  7. Resource-Saving Cleaning Technologies for Power Plant Waste-Water Cooling Ponds

    Directory of Open Access Journals (Sweden)

    Zakonnova Lyudmila

    2017-01-01

    Full Text Available One of the frequently encountered problems of power plant small cooling ponds is rapid eutrophication and related intensified development of phytoplankton (“hyperflow” and overgrowing of ponds by higher aquatic vegetation. As a result of hyper-flowering, an enormous amount of detritus settles on the condenser tubes, reducing the efficiency of the power plant operation. The development of higher aquatic vegetation contributes to the appearing of the shoals. As a result the volume, area and other characteristics of the cooling ponds are getting changed. The article describes the environmental problems of small manmade ponds of power plants and coal mines in mining regions. Two approaches to the problem of eutrophication are considered: technological and ecological. The negative effects of herbicides application to aquatic organisms are experimentally proved. An ecological approach to solving the problem by fish-land reclamation method is shown.

  8. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  9. Recent IAEA activities to support advanced water cooled reactor technology development

    International Nuclear Information System (INIS)

    Choi, J.-H.; Bilbao y Leon, S.; Rao, A.S.

    2009-01-01

    The International Atomic Energy Agency (IAEA) is the world's center of cooperation in the nuclear field. The IAEA works with its Member States and multiple partners worldwide to promote safe, secure and peaceful nuclear technologies. To catalyse innovation in nuclear power technology in Member States, the IAEA coordinates cooperative research, promotes information exchange, and analyses technical data and results, with a focus on reducing capital costs and construction periods while further improving performance, safety and proliferation resistance. This paper summarizes the recent major IAEA activities to support technology development for water cooled reactors, which is the most common type of reactor design at present and will probably still be in the near future. (author)

  10. Feasibility and Basic Design of Solar Integrated Absorption Refrigeration for an Industry

    KAUST Repository

    Akhtar, Saad

    2015-08-28

    This paper presents a review of existing solar cooling technologies and a feasibility study of a solar absorption cooling system for a packaging facility at Tetrapak Lahore, Pakistan. The review includes brief description of existing chiller technologies and solar collectors. The case study includes analysis of the solar potential and design of the cooling system at considered site. The design calculations upon which the feasibility analysis is carried out are solar collector area and type, cooling capacity, cooling area. A comparison is made between solar cooling potential of Pakistan and existing sites all across the globe. Finally an economic analysis is carried out to demonstrate the financial viability of the new cooling system.

  11. Variation and design criterion of heat load ratio of generator for air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Liming; Liu, Jinping

    2016-01-01

    Highlights: • Design criterion of heat load ratio of generator is vital to system performance. • Heat load ratio of generator changes with working condition. • Change of heat load ratio of generator for four systems was obtained and compared. • Design criterion of heat load ratio of generator was presented. - Abstract: The heat load ratio of generator (HLRG) is a special system parameter because it is not fixed at the design value but changes with the working condition. For the air cooled chiller, the deviation from the design working condition occurs easily due to the variation of the surrounding temperature. The system is likely to suffer from crystallization when the working condition is different from the designed one if the HLRG is designed improperly. Consequently, the design criterion of HLRG based on a broad range of working condition is essential and urgent to the development of air cooled lithium bromide–water double effect absorption chiller. This paper mainly deals with the variation of HLRG with the working condition as well as corresponding design criterion. Four types of double effect chillers named series, pre-parallel, rear parallel and reverse parallel flow system were considered. The parametric model was developed by the introduction of a new thermodynamic relationship of generator. The change of HLRG for different types of chillers with the working condition was analyzed and compared. The corresponding design criterion of HLRG was presented. This paper is helpful for further improvement of the performance and reliability of air cooled lithium bromide–water double effect absorption chiller.

  12. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  13. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    International Nuclear Information System (INIS)

    Bharathan, D.; Nix, G.

    2001-01-01

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures

  14. Experimental study on an innovative enthalpy recovery technology based on indirect flash evaporative cooling

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yuan, Shu; Fang, Lei

    2018-01-01

    recovery unit. The principle of the technology is to over saturate indoor exhaust air by ultrasonic atomizing humidification. The evaporation of ultrafine mists cools down indoor exhaust air to its wet-bulb temperature and makes not only sensible heat transfer but also moisture condensed in outdoor supply...... were measured to investigate and analyze its energy recover efficiencies. The results showed that in hot and humid climate, up to 71% of total heat recover efficiency could be achieved by the prototype unit, and more than 50% of the enthalpy recovered was contributed by moisture condensation...

  15. S'COOL Provides Research Opportunities and Current Data for Today's Technological Classroom

    Science.gov (United States)

    Green, Carolyn J.; Chambers, Lin H.; Racel, Anne M.

    1999-01-01

    NASA's Students' Cloud Observations On-Line (S'COOL) project, a hands-on educational project, was an innovative idea conceived by the scientists in the Radiation Sciences Branch at NASA Langley Research Center, Hampton, Virginia, in 1996. It came about after a local teacher expressed the idea that she wanted her students to be involved in real-life science. S'COOL supports NASA's Clouds and the Earth's Radiant Energy System (CERES) instrument, which was launched on the Tropical Rainforest Measuring Mission (TRMM) in November, 1997, as part of NASA's Earth Science Enterprise. With the S'COOL project students observe clouds and related weather conditions, compute data and note vital information while obtaining ground truth observations for the CERES instrument. The observations can then be used to help validate the CERES measurements, particularly detection of clear sky from space. In addition to meeting math, science and geography standards, students are engaged in using the computer to obtain, report and analyze current data, thus bringing modern technology into the realm of classroom, a paradigm that demands our attention.

  16. Challenges and innovative technologies on fuel handling systems for future sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Chassignet, Mathieu; Dumas, Sebastien; Penigot, Christophe; Prele, Gerard; Capitaine, Alain; Rodriguez, Gilles; Sanseigne, Emmanuel; Beauchamp, Francois

    2011-01-01

    The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into account various items and in particular operating strategies such as core design and management and core configuration. Moreover, the FHS will have to cope with safety assessments: a permanent cooling strategy to prevent fuel clad rupture, plus provisions to handle short-cooled fuel and criteria to ensure safety during handling. In addition, the handling and elimination of residual sodium must be investigated; it implies specific cleaning treatment to prevent chemical risks such as corrosion or excess hydrogen production. The objective of this study is to identify the challenges of a SFR fuel handling system. It will then present the range of technical options incorporating innovative technologies under development to answer the GENERATION IV SFR requirements. (author)

  17. New developments in illumination, heating and cooling technologies for energy-efficient buildings

    International Nuclear Information System (INIS)

    Han, H.J.; Jeon, Y.I.; Lim, S.H.; Kim, W.W.; Chen, K.

    2010-01-01

    This paper gives a concise review of new designs and developments of illumination, heating and air-conditioning systems and technologies for energy-efficient buildings. Important breakthroughs in these areas include high-efficiency and/or reduced cost solar system components, LED lamps, smart windows, computer-controlled illumination systems, compact combined heat-power generation systems, and so on. To take advantage of these new technologies, hybrid or cascade energy systems have been proposed and/or investigated. A survey of innovative architectural and building envelope designs that have the potential to considerably reduce the illumination and heating and cooling costs for office buildings and residential houses is also included in the review. In addition, new designs and ideas that can be easily implemented to improve the energy efficiency and/or reduce greenhouse gas emissions and environmental impacts of new or existing buildings are proposed and discussed.

  18. Proceedings (slides) of the OECD/NEA Workshop on Innovations in Water-cooled Reactor Technologies

    International Nuclear Information System (INIS)

    Spiler, Joze; Kim, Sang-Baik; ); Feron, Fabien; Jaervinen, Marja-Leena; Husse, Julien; ); Ferraro, Giovanni; Bertels, Frank; Denk, Wolfgang; Tuomisto, Harri; Golay, Michael; Buongiorno, J.; Todreas, N.; Adams, E.; Briccetti, A.; Jurewicz, J.; Kindfuller, V.; Srinivasan, G.; Strother, M.; Minelli, P.; Fasil, E.; Zhang, J.; Genzman, G.; Epinois, Bertrand de l'; Kim, Shin Whan; Laaksonen, Jukka; Maltsev, Mikhail; Yu, CHongxing; Powell, David; Gorgemans, Julie; Hopwood, Jerry; Bylov, Igor; Bakhmetyev, Alexander M.; Lepekhin, Andrey N.; Fadeev, Yuriy P.; Bruna, Giovanni; Gulliford, Jim; ); Ham-Su, Rosaura; Thevenot, Caroline; GAUTIER, Guy-Marie; MARSAULT, Philippe; PIGNATEL, Jean-Francois; White, Andrew; )

    2015-02-01

    New technologies and solutions have been developed over more than thirty years to improve the safety, performance and economics of nuclear power plants. Particular efforts were made in designing systems to prevent or mitigate nuclear accidents and, greatly limit or even avoid any offsite release of radioactivity. Reactor designs developed in the 1980's and later are often referred to as Generation III (Gen III) reactors. They offer enhanced safety compared to earlier Generation II (Gen II) designs, as well as improved performance and economics. Examples of Gen III safety design features include solutions for corium localisation, advanced containment structures, improved emergency core-cooling systems, filtered venting systems, hydrogen risk management solutions, etc. Some of these solutions have also been back-fitted or partially adapted to existing reactors, based on recommendations from regulators or modernisation efforts by the utilities operating these reactors, to bring their level of safety to levels approaching those of the more modern designs. Other innovations found in the latest water-cooled reactor designs include the use of passive safety systems, and often associated with those, a simplification in the design of the reactor. Gen III reactors also feature better economics, for example increased design lifetime up to 60 years, ability to use 100% MOX fuel and operate with higher flexibility, higher thermal efficiencies and reduced staff requirements. Modularity is often quoted as a feature of some Gen III designs as a way of reducing the construction times and simplifying the decommissioning of the plant. The scope of the Workshop includes, inter alia: - Evolution of regulatory and design requirements for commercial water-cooled reactors; - Innovations in water-cooled reactor technologies that allowed significant improvement in the level of safety, with a discussion on advantages and challenges of active vs. passive safety systems; - Innovations under

  19. New vision in fractional radiofrequency technology with switching, vacuum and cooling.

    Science.gov (United States)

    Elman, Monica; Gauthier, Nelly; Belenky, Inna

    2015-04-01

    Since the introduction of fractional technology, various systems were launched to the market. The first generation of fractional RF systems created epidermal ablation with coagulative/necrosis of the dermis with sufficient clinical outcomes, but with some limitations. The aim of this study was to evaluate the efficacy and safety of SVC technology, based on the principle of separate biological responses. Fifty-two patients were treated for 3-6 sessions using fractional RF handpiece and eight patients received combination treatments with non-invasive RF handpiece. All volunteers showed notable to significant improvement in the photoageing symptoms, without any significant complications or adverse events. Due to its wide spectrum of parameters, the SVC technology can promote different biological responses. Owing to the "Switching" technology, the control of energy depth penetration enables delivery of the necessary thermal dose to the targeted skin layer. In addition, this novel technology includes the "Vacuum" and "Cooling" mechanisms, each contributing to the safety of the treatment. The Smart Heat function reduces the necessary energy levels and thereby reduces the pain level and risks for side effects.

  20. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    In Europe more than 400 solar cooling systems have been installed. By contrast, only a small number of solar cooling installations exist in Australia - primarily adsorption and absorption systems for commercial and hospitals - although these systems are growing. As with other renewable energy technologies, cost is a challenge. However solar cooling is currently competitive with other technologies, with some suggesting that system costs have been decreasing by about 20% per annum in recent times. Australia is also leading efforts in the development of residential solar desiccant technology, currently commercialising Australian-developed technology. Commercial and industrial enterprises are increasingly aware of the impact of demand charges, the potential to install technology as a hedge against future energy price rises and opportunities associated with increased on-site generation and reduced reliance on the grid, often necessitating on-site demand reduction and management. They are also driven by environmental and corporate social responsibility objectives as well as the opportunity for energy independence and uninterruptible operation. Interestingly, many of these interests are mirrdred at residential level, inspiring CSIRO's commercialisation of a domestic scale solar air conditioner with Australian manufacturer Brevis Climate Systems. Australia and other countries are increasingly aware of solar cooling as technology which can reduce or replace grid-powered cooling, particularly in applications where large building thermal energy requirements exist. In these applications, heating, cooling and hot water are generated and used in large amounts and the relative amounts of each can be varied dynamically, depending on building requirements. Recent demonstrations of solar cooling technology in Australia include Hunter TAFE's Solar Desiccant Cooling System - which provides heating, cooling and hot water to commercial training kitchens and classrooms - GPT

  1. Air conditioning using an air-cooled single effect lithium bromide absorption chiller: Results of a trial conducted in Madrid in August 2005

    International Nuclear Information System (INIS)

    Izquierdo, M.; Lizarte, R.; Marcos, J.D.; Gutierrez, G.

    2008-01-01

    Trials were conducted to determine the performance of a commercial (Rotartica 045v) 4.5-kW air-cooled, single effect LiBr/H 2 O absorption chiller for residential use. The experiments were run at La Poveda, Arganda del Rey, Madrid, in August 2005. Three typical August days, with different outdoor temperatures, were chosen for the study. The hot water inlet temperature in the generator varied throughout the day from 80 to 107 o C. Thermal demand was calculated, along with period energy balance and COP. Variations in machine component temperatures were recorded and chilling power and the daily COP calculated for each of the three days. The results for the period as a whole showed that cooling power tended to decline with rising outdoor dry bulb temperatures. At temperatures from 35 to 41.3 o C the chilled water outlet temperature in the evaporator climbed to over 15 o C. The average COP for the period, when auxiliary equipment was included into the calculations, was 0.37

  2. High temperature gas cooled reactor technology development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-12-01

    The successful introduction of an advanced nuclear power plant programme depends on many key elements. It must be economically competitive with alternative sources of energy, its technical development must assure operational dependability, the support of society requires that it be safe and environmentally acceptable, and it must meet the regulatory standards developed for its use and application. These factors interrelate with each other, and the ability to satisfy the established goals and criteria of all of these requirements is mandatory if a country or a specific industry is to proceed with a new, advanced nuclear power system. It was with the focus on commercializing the high temperature gas cooled reactor (HTGR) that the IAEA's International Working Group on Gas Cooled Reactors recommended this Technical Committee Meeting (TCM) on HTGR Technology Development. Over the past few years, many Member States have instituted a re-examination of their nuclear power policies and programmes. It has become evident that the only realistic way to introduce an advanced nuclear power programme in today's world is through international co-operation between countries. The sharing of expertise and technical facilities for the common development of the HTGR is the goal of the Member States comprising the IAEA's International Working Group on Gas Cooled Reactors. This meeting brought together key representatives and experts on the HTGR from the national organizations and industries of ten countries and the European Commission. The state electric utility of South Africa, Eskom, hosted this TCM in Johannesburg, from 13 to 15 November 1996. This TCM provided the opportunity to review the status of HTGR design and development activities, and especially to identify international co-operation which could be utilized to bring about the commercialization of the HTGR

  3. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  4. Development of the Sodium-cooled Fast Reactor R and D and Technology Monitoring System

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-01-01

    This study presents a R and D performance monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. The prime goal of this system is to furnish project manager with reliable and accurate information of status of progress, performance and resource allocation, and attain traceability and visibility of project implementation for effective project management. In this study, the work breakdown structure, the related schedule and the expected outputs were established to derive the interfaces between projects and the above parameters was loaded PCs. The R and D performance monitoring system is composed of about 750 R and D activities within 'Development of Basic Key Technologies for Gen IV SFR' project in 2007. The Microsoft Project Professional software was used to monitor the progress, evaluate the results and analyze the resource distribution to activities

  5. Development of the Sodium-cooled Fast Reactor R and D and Technology Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-01-15

    This study presents a R and D performance monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. The prime goal of this system is to furnish project manager with reliable and accurate information of status of progress, performance and resource allocation, and attain traceability and visibility of project implementation for effective project management. In this study, the work breakdown structure, the related schedule and the expected outputs were established to derive the interfaces between projects and the above parameters was loaded PCs. The R and D performance monitoring system is composed of about 750 R and D activities within 'Development of Basic Key Technologies for Gen IV SFR' project in 2007. The Microsoft Project Professional software was used to monitor the progress, evaluate the results and analyze the resource distribution to activities.

  6. Direct imaging and new technologies to search for substellar companions around MGs cool dwarfs

    Directory of Open Access Journals (Sweden)

    Burningham B.

    2011-07-01

    Full Text Available We describe here our project based in a search for sub-stellar companions (brown dwarfs and exo-planets around young ultra-cool dwarfs (UCDs and characterise their properties. We will use current and future technology (high contrast imaging, high-precision Doppler determinations from the ground and space (VLT, ELT and JWST, to find companions to young objects. Members of young moving groups (MGs have clear advantages in this field. We compiled a catalogue of young UCD objects and studied their membership to five known young moving groups: Local Association (Pleiades moving group, 20–150 Myr, Ursa Mayor group (Sirius supercluster, 300 Myr, Hyades supercluster (600 Myr, IC 2391 supercluster (35 Myr and Castor moving group (200 Myr. To assess them as members we used different kinematic and spectroscopic criteria.

  7. Second meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Helsinki, 6-9 June 1988

    International Nuclear Information System (INIS)

    1989-05-01

    The Second Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) was held in Helsinki, Finland, from 6-9 June 1988. The Summary Report (Part II) contains the papers which review the national programmes since the first meeting of IWGATWR in May 1987 in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of these 12 papers presented at the meeting. Figs and tabs

  8. Selection of the optimal hard facing (HF technology of damaged forging dies based on cooling time t8/5

    Directory of Open Access Journals (Sweden)

    D. Arsić

    2016-01-01

    Full Text Available In exploitation, the forging dies are exposed to heating up to very high temperatures, variable loads: compressive, impact and shear. In this paper, the reparatory hard facing of the damaged forging dies is considered. The objective was to establish the optimal reparatory technology based on cooling time t8/5 . The verification of the adopted technology was done by investigation of the hard faced layers microstructure and measurements of hardness within the welded layers’ characteristic zones. Cooling time was determined theoretically, numerically and experimentally.

  9. Assessing the Engagement, Learning, and Overall Experience of Students Operating an Atomic Absorption Spectrophotometer with Remote Access Technology

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…

  10. Assessing the engagement, learning, and overall experience of students operating an atomic absorption spectrophotometer with remote access technology.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of engagement, learning, and overall experience. Feedback from students suggests that the use of remote access technology is effective in teaching students the principles of chemical analysis by atomic absorption spectroscopy. © 2014 The International Union of Biochemistry and Molecular Biology.

  11. A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications

    International Nuclear Information System (INIS)

    Shirazi, Ali; Taylor, Robert A.; White, Stephen D.; Morrison, Graham L.

    2016-01-01

    Highlights: • TRNSYS simulations of SHC single/multi-effect absorption chillers were conducted. • A detailed parametric study was conducted to find the optimal size of the tank. • The effect of tank heat loss on the performance of the configurations was analyzed. • The effect of beam and diffuse radiation on the solar field size was investigated. • Energy performance and economics of each plant were analyzed in various climates. - Abstract: The present work investigates the feasibility of solar heating and cooling (SHC) absorption systems based on combining three types of LiBr–H_2O absorption chillers (single-, double-, and triple-effect) with common solar thermal collectors available on the market. A single-effect chiller is coupled with evacuated tube collectors (ETCs) – SHC1. A double-effect chiller is integrated with parabolic trough collectors (PTCs), linear Fresnel micro-concentrating collectors (MCTs) and evacuated flat plate collectors (EFPCs) respectively – SHC2, SHC3, and SHC4. PTCs are employed to provide high-temperature heat to a triple-effect absorption chiller (SHC5). Although triple-effect chillers have been around for a while, this paper represents the first system-level analysis of these chillers coupled with high-temperature solar concentrating collectors for air-conditioning applications. A simulation model for each configuration is developed in a transient system simulation environment (TRNSYS 17). Furthermore, a unique, comprehensive perspective is given by investigating the impact of characteristic solar beam radiation to global radiation ratios on the techno-economic performance of the proposed SHC plants for a wide variety of climatic regions worldwide. The results of parametric study suggest that a storage volume of around 70 L/m"2 is a good choice for SHC1, while 40–50 L/m"2 storage capacity is sufficient for the other configurations (SHC2 to SHC5). The simulation results reveal that when the fraction of direct normal

  12. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    International Nuclear Information System (INIS)

    Stillwell, Ashlynn S; Clayton, Mary E; Webber, Michael E

    2011-01-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m 3 -enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  13. Modeling and simulation of a 100 kWe HT-PEMFC subsystem integrated with an absorption chiller subsystem

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    2012-01-01

    A 100 kWe liquid-cooled HT-PEMFC subsystem is integrated with an absorption chiller subsystem to provide electricity and cooling. The system is designed, modeled and simulated to investigate the potential of this technology for future novel energy system applications. Liquid-cooling can provide...

  14. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  15. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Downs, James [Florida Turbine Technologies Inc., Jupiter, FL (United States)

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  16. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp; Tanigawa, Hisashi; Hirose, Takanori; Nakajima, Motoki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Hayashi, Takumi; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji; Yokoyama, Kenji

    2014-10-15

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li{sub 2}TiO{sub 3} pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA.

  17. Current state-of-the-art manufacturing technology for He-cooled divertor finger

    Science.gov (United States)

    Norajitra, P.; Antusch, S.; Giniyatulin, R.; Mazul, I.; Ritz, G.; Ritzhaupt-Kleissl, H.-J.; Spatafora, L.

    2011-10-01

    A divertor concept for DEMO has been investigated at Karlsruhe Institute of Technology (KIT) which has to withstand a heat flux of 10 MW/m 2. The design utilizes small finger module composed of a small tungsten tile brazed on a thimble made from tungsten alloy. The divertor finger is cooled by helium jet impingement at 10 MPa and 600 °C. The subject of this paper is technological studies on machining and braze joining the divertor components. Goal of this task, which is considered an important R&D issue, is to find out appropriate manufacturing methods to ensure high functionality and high reliability of the divertor as well as to meet the economic aspect. One of the major requirements for manufacturing is micro-crack-free surface of tungsten parts, since crack propagations in tungsten were observed in the previous high-heat-flux tests at Efremov. Different manufacturing methods and the corresponding results are discussed in the following report.

  18. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  19. Enhancement of Cognitive Processing by Multiple Sclerosis Patients Using Liquid Cooling Technology: A Case Study

    Science.gov (United States)

    Montgomery, Leslie D.; Montgomery, Richard W.; Ku, Yu-Tsuan; Luna, Bernadette (Technical Monitor)

    1997-01-01

    Cognitive dysfunction is a common symptom in patients with multiple sclerosis (MS). This can have a significant impact on the quality of life of both the patient and of their primary care giver. This case study explores the possibility that liquid cooling therapy may be used to enhance the cognitive processing of MS patients in the same way that it provides temporary relief of some physical impairment. Two MS patients were presented a series of pattern discrimination tasks before and after being cooled with a liquid cooling garment for a one hour period. The subject whose ear temperature was reduced during cooling showed greater electroencephalographic (EEG) activity and scored much better on the task after cooling. The patient whose ear temperature was unaffected by cooling showed less EEG activity and degraded performance after the one hour cooling period.

  20. Numerical study by large-eddy simulation on effects and mechanism of air-cooling enhancing technologies

    International Nuclear Information System (INIS)

    Tamura, Akinori; Kawamura, Toshinori; Ishida, Naoyuki; Kitou, Kazuaki

    2014-01-01

    Learning from the lessons of the Fukushima Daiichi nuclear incident in which a long-term station black-out occurred, we have been developing an air-cooling system for boiling water reactors that can operate without electricity for a virtually indefinite time. Improvement in the heat transfer performance of air-cooling is key to the development of the air-cooling system. We developed air-cooling enhancing technologies for the air-cooling system by using heat transfer fins, turbulence-enhancing ribs and a micro-fabrication surface. In our previous study, the performance of these air-cooling enhancing technologies was evaluated by heat transfer tests using a single pipe of the air-cooling heat exchanger. To achieve further improvement of the heat transfer performance, it is important to understand the mechanism of the air-cooling enhancing technologies. In this study, we used the numerical analysis which is based on the filtered incompressible Navier-Stokes equation and the filtered energy equation with the large-eddy simulation in order to investigate the effects and the mechanism of the developed air-cooling enhancing technologies. We found that the analysis results agreed well with the experimental results and the empirical formula results. The heat transfer enhancement mechanism of the heat transfer fin is due to an increase in the heat transfer area. Due to a decrease in the flow velocity at the base of the fins, the increase in the Nusselt number was approximately 15% smaller than the estimated value from the area increase. In the heat transfer enhancement by the turbulence-enhancing ribs, the unsteady behavior of the large-scale vortex generated by the flow separation plays an important role. The enhancement ratio of the Nusselt number by the micro-fabrication surface can be explained by the apparent thermal conductivity. The Nusselt number was increased 4-8% by the micro-fabrication surface. The effect of the micro-fabrication surface is increased by applying

  1. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  2. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    Science.gov (United States)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  3. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    Science.gov (United States)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  4. Fabrication of TBMs cooling structures demonstrators using additive manufacturing (AM) technology and HIP

    Energy Technology Data Exchange (ETDEWEB)

    Ordás, Nerea, E-mail: nordas@ceit.es [CEIT-IK4 and Tecnun (University of Navarra), Donostia-San Sebastián (Spain); Ardila, Luis Carlos [IK4-LORTEK Joining Research Institute, Ordizia (Spain); Iturriza, Iñigo [CEIT-IK4 and Tecnun (University of Navarra), Donostia-San Sebastián (Spain); Garcianda, Fermín; Álvarez, Pedro [IK4-LORTEK Joining Research Institute, Ordizia (Spain); García-Rosales, Carmen [CEIT-IK4 and Tecnun (University of Navarra), Donostia-San Sebastián (Spain)

    2015-10-15

    Highlights: • TBM geometrically relevant component components were obtained by addtive manufacturing. • P91, a ferritic–martensitic steel metallurgically similar to EUROFER was used. • Dense core walls were obtained by SLM, though contour of cooling channel walls are slightly porous. • HIP after SLM is effective in removing the porosity and homogenizing the microstructure. • After HIP + normalizing + tempering mechanical behavior is similar to P91 as received. - Abstract: Several mock-ups, each of them consisting of six rectangular channels with dimensions according to the EU Test Blanket Modules (TBMs) specifications, were manufactured by selective laser melting (SLM) technology using P91, a ferritic–martensitic 9%Cr–1%Mo–V steel with a metallurgical behavior similar to EUROFER, the reference structural material for DEMO blanket concepts. SLM parameters led to an as-built density of 99.35% Theoretical Density (TD) that increased up to 99.74% after hot isostatic pressing (HIP). Dimensional control showed that the differences between the original design and the component are below 100 μm. By the appropriate selection of normalization and tempering parameters it was possible to obtain a material fulfilling P91 specification. The microstructure was investigated after SLM, HIP and normalizing and tempering treatments. In all cases, it consisted of thin martensitic laths. Subsize tensile samples were extracted from the mock-ups to measure the mechanical tensile properties after each step of the manufacturing process. The effect of thermal treatments on hardness was also evaluated.

  5. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, Robert [General Electric Company, NIskayuna, NY (United States)

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  6. Gas-cooled reactor technology safety and siting. Report of a technical committee meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    At the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGRs to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: the diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors; the Government approval of the budget for the construction of the 30 MWt High Temperature Test Reactor (HTTR) in Japan (The schedule contemplates a start of construction in spring 1990 on a site at the Oarai Research Establishment and about a five year construction period.); disappointment in the announced plans to shutdown both the Fort St. Vrain (FSV) plant in the United States (US) and the Thorium High Temperature Reactor (THTR-300) in Germany (These two reactors presently represent the only operating HTGRs in the world since the AVR plant in Juelich, Germany, was also shutdown at the end of 1988.); the continuing negotiations between Germany and the USSR on the terms of the co-operation between the two countries for the construction of a HTR Module supplemented by joint research and development activities aimed at increasing coolant outlet temperatures from 750 deg. C to 950 deg. C; the continued enthusiasm displayed by both the US and German representatives for the potential of the small modular designs under development in both countries and the ability for these designs to meet the stringent requirements demanded for the future expansion of nuclear power; the combining of the HTGR technology interest of ABB-Atom and Siemens in Germany into a joint enterprise, HTR GmbH, in May 1989

  7. Gas-cooled reactor technology safety and siting. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1990-01-01

    At the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGRs to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: the diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors; the Government approval of the budget for the construction of the 30 MWt High Temperature Test Reactor (HTTR) in Japan (The schedule contemplates a start of construction in spring 1990 on a site at the Oarai Research Establishment and about a five year construction period.); disappointment in the announced plans to shutdown both the Fort St. Vrain (FSV) plant in the United States (US) and the Thorium High Temperature Reactor (THTR-300) in Germany (These two reactors presently represent the only operating HTGRs in the world since the AVR plant in Juelich, Germany, was also shutdown at the end of 1988.); the continuing negotiations between Germany and the USSR on the terms of the co-operation between the two countries for the construction of a HTR Module supplemented by joint research and development activities aimed at increasing coolant outlet temperatures from 750 deg. C to 950 deg. C; the continued enthusiasm displayed by both the US and German representatives for the potential of the small modular designs under development in both countries and the ability for these designs to meet the stringent requirements demanded for the future expansion of nuclear power; the combining of the HTGR technology interest of ABB-Atom and Siemens in Germany into a joint enterprise, HTR GmbH, in May 1989

  8. Theoretical thermodynamics analysis of cooling cycle bu advanced gas absorption using solar energy; Analisis teorico-experimental de un ciclo de refrigeracion por absorcion avanzado gax, operando con energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, V. E.; Vidal, A. S.; Garcia, C. A.; Garcia-Valladares, O.; Best, R. B.; Hernandez, J. G.; Velazquez, N. L.

    2004-07-01

    In this article a solar system of refrigeration by absorption with heat exchange generator absorber (GAX) was analyzed. A theoretical thermodynamic analysis of the energetic behavior of the GAX absorption system was made. Experimental results were obtained with generation temperatures of 190 and 220 C, the evaporation temperature was set at 9 C and temperatures of cooling fluids (air and water) were set at 30 C and 28 C, respectively. It was possible to appreciate that the GAX effect decrease whether absorber, type falling film, is operated in option of parallel flow and it was increased when the absorber was operated in option of counterflow. (Author)

  9. Magical flight and monstrous stress: technologies of absorption and mental wellness in Azeroth.

    Science.gov (United States)

    Snodgrass, Jeffrey G; Lacy, Michael G; Francois Dengah, H J; Fagan, Jesse; Most, David E

    2011-03-01

    Videogame players commonly report reaching deeply "immersive" states of consciousness, in some cases growing to feel like they actually are their characters and really in the game, with such fantastic characters and places potentially only loosely connected to offline selves and realities. In the current investigation, we use interview and survey data to examine the effects of such "dissociative" experiences on players of the popular online videogame, World of Warcraft (WoW). Of particular interest are ways in which WoW players' emotional identification with in-game second selves can lead either to better mental well-being, through relaxation and satisfying positive stress, or, alternatively, to risky addiction-like experiences. Combining universalizing and context-dependent perspectives, we suggest that WoW and similar games can be thought of as new "technologies of absorption"--contemporary practices that can induce dissociative states in which players attribute dimensions of self and experience to in-game characters, with potential psychological benefit or harm. We present our research as an empirically grounded exploration of the mental health benefits and risks associated with dissociation in common everyday contexts. We believe that studies such as ours may enrich existing theories of the health dynamics of dissociation, relying, as they often do, on data drawn either from Western clinical contexts involving pathological disintegrated personality disorders or from non-Western ethnographic contexts involving spiritual trance.

  10. Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant

    International Nuclear Information System (INIS)

    Acuña, A.; Velázquez, N.; Cerezo, J.

    2013-01-01

    A diffusion absorption cooling system is analyzed to determine the appropriate fluid for the unit, based on the coefficient of performance (COP) and operating conditions, by comparing lithium nitrate (LiNO 3 ), sodium thiocyanate (NaSCN) and water (H 2 O) as absorbent substances and by using ammonia (NH 3 ) as the refrigerant. The presence of crystallization in the system is analyzed as a function of the generator and absorber temperatures. Additionally, the effects on the efficiency of the system from adding the inert gas helium (He) or hydrogen (H 2 ) are studied. A mathematical model is developed and compared to experimental studies reported in the literature. At an evaporator temperature of −15 °C, a generator temperature of 120 °C and absorber and condenser temperatures of 40 °C, the results show that the best performance is achieved by the NH 3 –LiNO 3 –He mixture, with a COP of 0.48. This mixture performs 27–46% more efficient than the NH 3 –NaSCN mixture. The NH 3 –H 2 O mixture is 52–69% less efficient than the NH 3 –LiNO 3 mixture. However, when the evaporator runs at 7.5 °C, the NH 3 –H 2 O–He mixture achieves a more efficient COP than does the NH 3 –LiNO 3 –He mixture, and the NH 3 –NaSCN–He and NH 3 –LiNO 3 –He mixtures achieve the same COP when the evaporator is at 10 °C. At temperatures below 7.5 °C, the NH 3 –NaSCN–He mixture achieves a higher COP than does the NH 3 –H 2 O–He mixture. The NH 3 –LiNO 3 mixture shows crystallization at higher temperatures in the generator than does the NH 3 –NaSCN mixture. Moreover, at the same evaporator temperature, the NH 3 –LiNO 3 mixture works at activation temperatures lower than does the NH 3 –NaSCN mixture. -- Highlights: ► We studied a diffusion absorption cooling system with different working mixtures. ► The NH 3 –LiNO 3 mixture showed more efficiency than NH 3 –H 2 O mixture and NH 3 –NaSCN mixture. ► The generator and absorber temperature

  11. Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Maginn, Edward

    2012-09-30

    This is the final report for DE-FC26-07NT43091 Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture. A detailed summary is provided of the ionic liquid (IL) discovery process, synthesis and testing results, process / systems modeling, lab-scale operational testing, corrosion testing and commercialization possibilities. The work resulted in the discovery of a new class of ionic liquids (ILs) that efficiently react with CO{sub 2} in a 1:1 stoichiometry with no water present and no increase in viscosity. The enthalpy of reaction was tuned to optimize process economics. The IL was found to have excellent corrosion behavior with and without CO{sub 2} present. In lab-scale tests, the IL was able to effectively remove CO{sub 2} from a simulated flue gas stream, although mass transfer was slower than with aqueous monoethanolamine (MEA) due to higher viscosities. The non-volatile nature of the solvent and its high thermal stability, however, make it an intriguing option. An independent systems analysis indicates that the economics of using the best IL discovered to date (NDIL0157), are at least comparable to and potentially slightly better than - the Fluor Econamine FG PlusTM process (DOE Case 12). Further work should be directed at improving mass transfer / lowering viscosity and developing commercial synthesis routes to make these ILs at scale in an inexpensive manner. Demonstration of the process at larger scales is also warranted, as is the exploration of other process configurations that leverage the anhydrous nature of the solvent and its extremely low volatility.

  12. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules.

    Science.gov (United States)

    Choonara, Bibi F; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Pillay, Viness

    2014-11-15

    The oral delivery of proteins and peptides is a dynamic research field despite the numerous challenges limiting their effective delivery. Successful oral delivery of proteins and peptides requires the accomplishment of three key tasks: protection of the macromolecules from degradation in the gastrointestinal tract (GIT), permeation through the intestinal barrier and absorption of molecules into the systemic circulation. Currently, no clinically useful oral formulations have been developed but several attempts have been made to overcome the challenges of low oral bioavailability resulting from poor absorption, poor permeation and enzymatic degradation of the proteins and peptides in the GIT. Present strategies attempt to provide structural protection of the proteins and peptides and improved absorption through the use of enzyme inhibitors, absorption enhancers, novel polymeric delivery systems and chemical modification. However, each of these technologies has their limitations despite showing positive results. This review attempts to discuss the physical and chemical barriers of the GIT with particular emphasis on the current approaches employed to overcome these barriers, including the evaluation of other non-parenteral routes of protein and peptide delivery. In addition, this review assimilates oral formulation strategies under development and within the clinical trial stage in relation to their benefits and drawbacks with regard to facilitating optimal protection and absorption of proteins and peptides, as well as pertinent future challenges and opportunities governing oral drug delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of Intermediate Cooling Technology and Its Control for Two-Stand Plate Rolling

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available In a plate rolling production line, thermomechanically controlled processing is critical for plate quality. In this paper, a set of intermediate cooling equipment of a two-stand plate mill with super density nozzles, medium pressure, and small flow is developed. Based on a simplified dynamic model, a cooling control scheme with combined feedforward, feedback, and adaptive algorithms is put forward. The new controlled rolling process and the highly efficient control system improve the controlled rolling efficiency by an average of 17.66%. The proposed intermediate cooling system can also effectively inhibit the growth of austenite grain, improve the impact toughness and yield strength of Q345B steel plate, reduce the formation of secondary oxide scale on the plate surface and the chromatic aberration of the plate surface, and greatly improve the surface quality of the steel plate.

  14. Enhancement of Cognitive Processing by Multiple Sclerosis Patients Using Liquid Cooling Technology: A Case Study

    Science.gov (United States)

    Montgomery, Leslie D.; Ku, Yu-Tsuan E.; Montgomery, Richard W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Recent neuropsychological studies demonstrate that cognitive dysfunction is a common symptom in patients with multiple sclerosis. In many cases the presence of cognitive impairment affects the patient's daily activities to a greater extent than would be found due to their physical disability alone. Cognitive dysfunction can have a significant impact on the quality of life of both the patient and that of their primary caregiver. Two cognitively impaired male MS patients were given a visual discrimination task before and after a one hour cooling period. The subjects were presented a series of either red or blue circles or triangles. One of these combinations, or one fourth of the stimuli, was designated as the "target" presentation. EEG was recorded from 20 scalp electrodes using a Tracor Northern 7500 EEG/ERP system. Oral and ear temperatures were obtained and recorded manually every five minutes during the one hour cooling period. The EEG ERP signatures from each series of stimuli were analyzed in the energy density domain to determine the locus of neural activity at each EEG sampling time. The first subject's ear temperature did not decrease during the cooling period. It was actually elevated approximately 0.05 C by the end of the cooling period compared to his mean of control period value. In turn, Subject One's discrimination performance and cortical energy remained essentially the same after body cooling. In contrast, Subject Two's ear temperature decreased approx. 0.8 C during his cooling period. Subject Two's ERROR score decreased from 12 during the precooling control period to 2 after cooling. His ENERGY value increased approximately 300%, from a precooling value of approximately 200 to a postcooling value of nearly 600. These findings might be interpreted by the following three-part hypothesis: (1) the general cognitive impairment of MS patients may be a result of low or unfocused metabolic energy conversion in the cortex; (2) such differences show up most

  15. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 1)

    International Nuclear Information System (INIS)

    1987-12-01

    The first meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. Part I of the Summary Report contains the minutes of the meeting

  16. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 2)

    International Nuclear Information System (INIS)

    1987-12-01

    The First Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. The Summary Report (Pt. 2) contains the papers which review the national programmes in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of the 10 papers presented at this meeting. Refs, figs

  17. Flat tile armour cooled by hypervapotron tube: a possible technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J.; Escourbiac, F.; Bayetti, P.; Missirlian, M.; Mitteau, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [European Fusion Development Agreement - Close Support Unit (EFDA), Garching (Germany); Schedler, B. [Plansee Aktiengesellschaft, Technology Center, Reutte/Tirol (Austria); Bobin-Vastra, I. [FRAMATOME-ANP, Centre Technique, 71 - Le Creusot (France)

    2003-07-01

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC's) are an important challenge for controlled fusion machine. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally experienced with success in Tore Supra. The components were designed for 10 MW/m{sup 2} and mock-ups were successfully fatigue tested at 15 MW/m{sup 2}, 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m{sup 2} for 1000 cycles without failure. Recently flat tile armored mock-ups cooled by Hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m{sup 2} but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by Hypervapotron tube. New tests are now scheduled to investigate these limits notably in regards to the ITER requirements. The concept could also be experimented in Tore Supra by installing a new limiter into the machine. (authors)

  18. Flat Tile Armour Cooled by Hypervapotron Tube: a Possible Technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J.; Escourbiac, F.; Bayetti, P.; Missirlian, M.; Mitteau, R. [Association Euratom CEA, DSM/DRFC/SIPP, St Paul lez Durance (France); Merola, M. [EFDA Close Support Unit, Garching (Germany); Schedler, B. [Plansee Aktiengesellschaft, Reutte (Austria). Technology Center; Bobin-Vastra, I. [Framatome-ANP, Le Creusot (France). Centre Technique

    2004-08-01

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC's) are an important challenge for controlled fusion machines. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally operated with success in Tore Supra. The components were designed for 10MW/m{sup 2} and mock-ups were successfully fatigue tested at 15MW/m{sup 2}; 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25MW/m{sup 2} for 1000 cycles without failure. Recently flat tile armoured mock-ups cooled by a hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10MW/m{sup 2} but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by hypervapotron (HV) tube. New tests are now scheduled to investigate these limits in regard to the ITER requirements. Experimental evidence of the concept could be gained in Tore Supra by installing a new limiter into the machine.

  19. Technology development for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Homan, F.J.; Turner, R.F.

    1989-01-01

    In the USA the Modular High-Temperature Gas-Cooled Reactor is in an advanced stage of design. The related HTGR program areas, the approaches to these programs along with sample results and a description of how these data are used are highlighted in the paper. (author). Figs and tabs

  20. Flat Tile Armour Cooled by Hypervapotron Tube: a Possible Technology for ITER

    Science.gov (United States)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Schedler, B.; Bayetti, P.; Missirlian, M.; Mitteau, R.; Robin-Vastra, I.

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC’s) are an important challenge for controlled fusion machines. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally operated with success in Tore Supra. The components were designed for 10 MW/m2 and mock-ups were successfully fatigue tested at 15 MW/m2, 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m2 for 1000 cycles without failure. Recently flat tile armoured mock-ups cooled by a hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m2 but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by hypervapotron (HV) tube. New tests are now scheduled to investigate these limits in regard to the ITER requirements. Experimental evidence of the concept could be gained in Tore Supra by installing a new limiter into the machine.

  1. Advanced water-cooled reactor technologies. Rationale, state of progress and outlook

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Eighty per cent of the world's power reactors are water cooled and moderated. Many improvements in their design and operation have been implemented since the first such reactor started commercial operation in 1957. This report addresses the safety, environmental and economic rationales for further improvements, as well as their relevance to currently operating water reactors

  2. Flat tile armour cooled by hypervapotron tube: a possible technology for ITER

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Bayetti, P.; Missirlian, M.; Mitteau, R.; Schedler, B.; Bobin-Vastra, I.

    2003-01-01

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC's) are an important challenge for controlled fusion machine. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally experienced with success in Tore Supra. The components were designed for 10 MW/m 2 and mock-ups were successfully fatigue tested at 15 MW/m 2 , 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m 2 for 1000 cycles without failure. Recently flat tile armored mock-ups cooled by Hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m 2 but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by Hypervapotron tube. New tests are now scheduled to investigate these limits notably in regards to the ITER requirements. The concept could also be experimented in Tore Supra by installing a new limiter into the machine. (authors)

  3. Energetic and economic evaluation of solar thermal and photovoltaic cooling system in Cuban hotel

    International Nuclear Information System (INIS)

    Díaz Torres, Yamile; Valdivia Nodal, Yarelis; Castellanos Molina, Luis Miguel; Torres del Toro, Migdalia; Monteagudo Llanes, José

    2015-01-01

    The present paper discusses the energetic and economic feasibility of using two configurations of solar cooling in a Cuban Hotel. The air conditioning hybrid system schemes are: conventional system (Chiller) interconnected in parallel with a solar- powered absorption cooling system (SACS); and a photovoltaic cooling system (PCS). There were analyzed by methodologies and thermodynamic principles governing these technologies. The results show that their uses are alternatives for reducing energy consumption and environmental impact. (full text)

  4. Evaluation on Sustainability of Technological Dimension Biopore Absorption Hole Management for Soil Water Conservation in Semarang City

    Directory of Open Access Journals (Sweden)

    Elesvera Destry

    2015-01-01

    Full Text Available Biopore technology innovation is an easy and cheap technology that can be applied in any class of society. Biopore Absorption Hole (BAH is a cylincric vertical hole with a relatively small diameter. Eventhough the diameter is not so big, it is still effective to absorb groundwater.The dimension of technology reflected how this BAH tecnology is applied to the Management of BAH within the society of Semarang City.In order to achieve maximum results, an evaluation toward the sustainability of the dimension of BAH Management technology in Semarang City needs to be performed.The objectives of this research are to:1 studying the status of technology dimension in maintaining BAH, 2 studying sensitive attributes having influence toward index value and the sustainability status of technology dimension in maintaining BAH, as well as 3 formulating the priorities for policies applicable to technology in maintaining BAH in Semarang.The research took place in three administrative villages (Srondol Wetan, Jatingaleh, and Bendan Ngisor in the city of Semarang.Those three locations were chosen to represent upper, middle, and lower regions of Semarang as water absorption area.The analysis of status determining data and leveraging factor was conducted using RAP – biopore method, while the the making of policy priorities was performed by using Analitycal Hierarchy Process (AHP.Results suggest that the status of the sustainability of Semarang’s BAH Management technology dimension was on “less sustainable” status (25,01 – 50,00. The strategy of enhancing influential sensitive attributes to improve sustainability status was a great success in affecting the values and sustainability status.

  5. Current status and future development of modular high temperature gas cooled reactor technology

    International Nuclear Information System (INIS)

    2001-02-01

    associated with these R and D programmes. Also, support of specific HTGR related research projects is included in the European Union's Fifth Framework Program beginning in 2000. Further opportunities and capabilities of the HTGR in the development of co-generation and non-electric applications are presented in Chapter 7. Spent fuel disposal and decommissioning are key issues that are significantly influencing the future of nuclear power. Chapter 8 addresses the anticipated manner of handling these areas within the PBMR and GT-MHR. Also addressed are the activities associated with spent fuel disposal and decommissioning of HTGRs previously shut down. The development and commissioning of any new nuclear plant concept is subject to risks and challenges to its commercialization. This is also evident in the closed cycle gas turbine, particularly with regard to the design and development of the power conversion system (PCS). The GT-MHR and the PBMR (as well as many other designs under consideration) incorporate state-of-the-art components in their PCS that must operate safely and efficiently for this concept to succeed. These components include magnetic bearings on the rotating machines, large compact plate-fin recuperator modules and seals between PCS components that have size, orientation or environmental operating characteristics yet to be fully demonstrated and proven. These challenges to the commercialization of the GT-MHR and PBMR are discussed in Chapter 9. The IAEA is advised on its activities in development and application of gas cooled reactors by the IWGGCR which is a committee of leaders in national programmes in this technology. The IWGGCR meets periodically to serve as a global forum for information exchange and progress reports on the national programmes, to identify areas of collaboration and to advise the IAEA on its programme. Countries with representation in the IWGGCR include Austria, China, France, Germany, Indonesia, Italy, Japan, the Netherlands, Poland, the

  6. Key technologies and applications of laser cooling and trapping "8"7Rb atomic system

    International Nuclear Information System (INIS)

    Ru, Ning; Zhang, Li; Wang, Yu; Fan, Shangchun

    2016-01-01

    Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter. In this paper development and the important applications of laser cooling and trapping atoms are introduced, some key techniques which are used to obtain "8"7Rb cold atoms in our experiments are also discussed.

  7. Development of the Technologies for Stabilization Treatment of the Water of the Recycling Cooling Systems at Thermal Power Plants

    Science.gov (United States)

    Vlasov, S. M.; Chichirova, N. D.; Chichirov, A. A.; Vlasova, A. Yu.; Filimonova, A. A.; Prosvirnina, D. V.

    2018-02-01

    A turbine-condensate cooling system is one of the less stable and most hard-to-control systems of maintaining optimal water chemistry. A laboratory recycling cooling water test facility, UVO-0.3, was developed for physical simulation of innovative zero-discharge water chemistry conditions and improvement of technological flowcharts of stabilization treatment of the initial and circulating water of the recycling cooling systems at thermal power plants. Experiments were conducted in the UVO-0.3 facility to investigate the processes that occur in the recycling water supply system and master new technologies of stabilization of the initial and circulating water. It is shown that, when using untreated initial water, scaling cannot be prevented even under low concentration levels. The main reason for the activation of scale depositing is the desorption of carbon dioxide that results in alkalization of the circulating water and, as a consequence, a displacement of the chemical reaction equilibrium towards the formation of slightly soluble hardness ions. Some techniques, viz., liming and alkalization of the initial water and the by-pass treatment of the circulating water, are considered. New engineering solutions have been developed for reducing the amount of scale-forming substances in the initial and circulating water. The best results were obtained by pretreating the initial water with alkalizing agents and simultaneously bypassing and treating part of the circulating water. The obtained experimental data underlie the process flowcharts of stabilization treatment of the initial and circulating TPP water that ensure scale-free and noncorrosive operation and meet the corresponding environmental requirements. Under the bypassing, the specific rates of the agents and the residual hardness are reduced compared with the conventional pretreatment.

  8. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  9. 4. generation sodium-cooled fast reactors. The ASTRID technological demonstrator

    International Nuclear Information System (INIS)

    2012-12-01

    The sodium-cooled fast reactor (SFR) concept is one of the four fast neutron concepts selected by the Generation IV International Forum (GIF). SFRs have favourable technical characteristics and they are the sole type of reactor for which significant industrial experience feedback is available. After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  10. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, W. J.; Lee, H. M.

    2003-01-01

    The annual production of hydrogen in the world is about 500 billion m 3 . Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  11. Cold chains, interrupted : The use of technology and information for decisions that keep humanitarian vaccines cool

    NARCIS (Netherlands)

    Comes, M.; Bergtora Sandvik, Kristin; van de Walle, B.A.

    2018-01-01

    Purpose: The purpose of this paper is to analyze how far technology and information enable, facilitate or support the planning and implementation decisions in humanitarian vaccine cold chains for vaccination campaigns. The authors specifically focus on three emerging technologies that have the

  12. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  13. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  14. A new small modular high-temperature gas-cooled reactor plant concept based on proven technology

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1982-01-01

    Based on the established and proven high-temperature gas-cooled reactor (HTGR) technologies from the Peach Bottom 1 and Fort St. Vrain utility-operated units, a new small modular HTGR reactor is currently being evaluated. The basic nuclear reactor heat source, with a prismatic core, is being designed so that the decay heat can be removed by passive means (i.e., natural circulation). Although this concept is still in the preconceptual design stage, emphasis is being placed on establishing an inherently safe or benign concept which, when engineered, will have acceptable capital cost and power generation economics. The proposed new HTGR concept has a variety of applications, including electrical power generation, cogeneration, and high-temperature process heat. This paper discusses the simplest application, i.e., a steam Rankine cycle electrical power generating version. The gas-cooled modular reactor concepts presented are based on a graphite moderated prismatic core of low-power density (i.e., 4.1 W/cm 3 ) with a thermal rating of 250 MW(t). With the potential for inherently safe characteristics, a new small reactor could be sited close to industrial and urban areas to provide electrical power and thermal heating needs (i.e., district and space heating). Incorporating a multiplicity of small modular units to provide a larger power output is also discussed. The potential for a small, inherently safe HTGR reactor concept is highlighted

  15. Preliminary matrix model for quantifying and balancing the socio-economic impact of alternative cooling system technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Cleary, D.P.; Salomon, S.N.; Pollnow, L.A.; Spangler, M.B.

    1976-01-01

    Assessment of environmental, including socio-economic, impacts of alternative technologies or courses of action is made difficult by the inability to adequately quantify the impacts. Matrix methods offer a set of techniques which allows the analyst to compare the relative impacts of alternative technologies or actions. Work is underway to develop and adapt these techniques to be used in assessing the environmental impacts of alternative cooling systems, and other alternative technological and siting options

  16. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  17. Military technology and absorptive capacity in China and India: implications for modernization

    DEFF Research Database (Denmark)

    Baark, Erik

    1997-01-01

    This paper examines the reforms that have taken place with regard to technology policies in China and India since the 1980s, and their effects on the possibilities for development of melitary capacity in the two countries.......This paper examines the reforms that have taken place with regard to technology policies in China and India since the 1980s, and their effects on the possibilities for development of melitary capacity in the two countries....

  18. Development of advanced fabrication technology for high-temperature gas-cooled reactor fuel. Reduction of coating failure fraction

    International Nuclear Information System (INIS)

    Minato, Kazuo; Kikuchi, Hironobu; Fukuda, Kousaku; Tobita, Tsutomu; Yoshimuta, Sigeharu; Suzuki, Nobuyuki; Tomimoto, Hiroshi; Nishimura, Kazuhisa; Oda, Takafumi

    1998-11-01

    The advanced fabrication technology for high-temperature gas-cooled reactor fuel has been developed to reduce the coating failure fraction of the fuel particles, which leads to an improvement of the reactor safety. The present report reviews the results of the relevant work. The mechanisms of the coating failure of the fuel particles during coating and compaction processes of the fuel fabrication were studied to determine a way to reduce the coating failure fraction of the fuel. The coating process was improved by optimizing the mode of the particle fluidization and by developing the process without unloading and loading of the particles at intermediate coating process. The compaction process was improved by optimizing the combination of the pressing temperature and the pressing speed of the overcoated particles. Through these modifications of the fabrication process, the quality of the fuel was improved outstandingly. (author)

  19. Wet bar detection by using water absorption detector

    International Nuclear Information System (INIS)

    Kim, Hee Soo; Bae, Yong Chae; Kee, Chang Doo

    2008-01-01

    Water leaks in water-cooled generator stator windings can generate serious accidents such as insulation breakdown and result in unexpected sudden outages. Thus, it is important to diagnose their water absorption for effective operation of the power plant. Especially, since the capacitance values that are measured for diagnosis are very small so special diagnosis methods like stochastic theory are needed. KEPRI developed a more advanced water absorption detector and diagnosis technology for it. They were applied to a real system and the results of the water absorption test for stator windings agree with the water leak test

  20. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  1. Absorptive capacity in solid-state technology and international knowledge transfer : the case of Philips comparative technology transfer and society

    NARCIS (Netherlands)

    Davids, M.; Verbong, G.P.J.

    2007-01-01

    After World War II, the market for vacuum tubes was threatened by the development, first, of transistors and, later, integrated circuits. It was essential for European electronic companies, including the Dutch company Philips Electronics, to adopt American technology to gain a position in the

  2. Project planning of Gen-IV sodium cooled fast reactor technology

    International Nuclear Information System (INIS)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-01

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO 2 Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety

  3. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Honma, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical information is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.

  4. Project planning of Gen-IV sodium cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-15

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO{sub 2} Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety.

  5. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Lezama-pacheco, Juan S.; Conradson, Steven D.; Clark, David L.

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO 2+x -type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO 2+x , and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO 2+x would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  6. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  7. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  8. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F.; Missirlian, M.; Schlosser, J. [Association EURATOM-CEA Cadarache, Departement de Recherches sur la Fusion Controlee, 13 - Saint Paul lez Durance (France); Bobin-Vastra, I. [AREVA Centre Technique de Framatome, 71 - Le Creusot (France); Kuznetsov, V. [Efremov Institute, Doroga na Metallostroy, St. Petersburg (Russian Federation); Schedler, B. [Plansee AG, Reutte (Austria)

    2004-07-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m{sup 2} with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m{sup 2}. These results highlight the high potential of this technology for ITER divertor application.

  9. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    International Nuclear Information System (INIS)

    Escourbiac, F.; Missirlian, M.; Schlosser, J.; Bobin-Vastra, I.; Kuznetsov, V.; Schedler, B.

    2004-01-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m 2 with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m 2 . These results highlight the high potential of this technology for ITER divertor application

  10. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  11. Development document for best technology available for the location, design, construction, and capacity of cooling water intake structures for minimizing adverse environmental impact

    International Nuclear Information System (INIS)

    Train, R.E.; Breidenbach, A.W.; Hall, E.P.; Barnes, D.

    1976-04-01

    This document presents the findings of an extensive study of the available technology for the location, design construction and capacity of cooling water intake structures for minimizing adverse environmental impact, in compliance with and to implement Section 316(b) of the Federal Water Pollution Control Act Amendments of 1972

  12. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25; Solvarmedrevet koeling. Forberedelse af evt. deltagelse i IEA, Solar Heating Cooling Task 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the exent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost

  13. The report of inspection and repair technology of sodium cooled reactors

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Uchita, Masato; Konomura, Mamoru

    2002-12-01

    Sodium is the most promising candidate of an FBR coolant because of its excellent properties such as high thermal conductivity. Whereas, sodium reacts with water/air and its opaqueness makes it difficult to inspect sodium components. These weaknesses of sodium affect not only plant safety but also plant availability (economy). To overcome these sodium weak points, the appropriate countermeasure must be adopted to commercialized FBR plants. This report describes the working group activities for sodium/water reaction of steam generators (SG), in-service inspection for sodium components and sodium leak due to sodium components boundary failure. The prospect of each countermeasure is discussed in the viewpoint of the commercialized FBR plants. 1) Sodium/water reaction. The principle of the countermeasure for sodium/water reaction accidents was organized in the viewpoint of economy (the investment of SG and the plant availability). The countermeasures to restrain failure propagation were investigated for a large-sized SG. Preliminary analysis revealed the possibility of minimizing tubes failure propagation by improving the leak detection system and the blow down system. Detailed failure propagation analysis will be required and the early water leak detection system and rapid blow system must be evaluated to realize its performance. 2) In-service inspection (ISI and R). The viewpoint of the commercialized plant's ISI and R was organized by comparing with the prototype reactor's ISI and R method. We also investigated short-term ISI and R method without sodium draining to prevent the degrading of the plant availability, however, it is difficult to realize the with the present technology. Hereafter, the ISI and R of the commercialized plants must be defined by considering its characteristics. 3) Sodium leak from the components. This report organized the basic countermeasure policy for primary and secondary sodium leak accidents. Double-wall structure of sodium piping was

  14. Interotex-innovative gas equipment for heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Winnington, T.L. [Interotex Ltd. (United Kingdom); Moore, N. [British Gas plc (United Kingdom); Valle, F.; Sanz, J. I. [Gas Natural SDG S.A. (Spain); Chavarri, J.M. [Fagor Electrodomesticos S. Coop. (Spain); Uselton, R. [Lennox Industries Inc. (United States)

    1997-10-01

    Conventionally, cooling technology for the residential market is provided by electrically driven vapour re-compression systems. But lately, due to the Montreal Protocol - restricting the utilisation of ozone depleting substances - and to the high peak demand in electricity, created by electrical air conditioning systems, there is a commercial opportunity for gas fired air conditioning appliances. This paper describes the development programme for a radical new absorption technology, from the theoretical studies, through the experimental programme, to the building, commissioning and installation of demonstration machines. It also includes an analysis of the world-wide residential cooling market and the opportunities available to manufacturers and gas utilities to introduce new gas heating and cooling technology, capable of competing effectively with electrical systems. (au)

  15. The WEST programme: Minimizing technology and operational risks of a full actively cooled tungsten divertor on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, André, E-mail: andre.grosman@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Bucalossi, Jérôme; Doceul, Louis [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Escourbiac, Frédéric [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Lipa, Manfred [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Merola, Mario [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Missirlian, Marc [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pitts, Richard A. [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Samaille, Franck; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► The WEST programme is a unique opportunity to experience the industrial scale manufacture of tungsten plasma-facing components similar to the ITER divertor ones. ► In Tore Supra, it will bring important know how for actively cooled W divertor operation. ► This can be done by a reasonable modification of the Tore Supra tokamak. ► A fast implementation of the project would make this information available in due time. ► This allows a significant contribution to the W ITER divertor risk minimization in its manufacturing and operation phase. -- Abstract: The WEST programme consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. This is obtained by inserting in vessel coils to create the X point while adapting the in-vessel elements to this new geometry. This will allow the full tungsten divertor technology to be used on ITER to be tested in anticipation of its use on ITER under relevant heat loading conditions and pulse duration. The early manufacturing of a significant industrial series of ITER-similar W plasma-facing units will contribute to the ITER divertor manufacturing risk mitigation and to that associated with early W divertor plasma operation on ITER.

  16. Study on In-Service Inspection Program and Inspection Technologies for Commercialized Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Masato Ando; Shigenobu Kubo; Yoshio Kamishima; Toru Iitsuka

    2006-01-01

    The objective of in-service inspection of a nuclear power plant is to confirm integrity of function of components necessary to safety, and satisfy the needs to protect plant investment and to achieve high plant ability. The sodium-cooled fast reactor, which is designed in the feasibility study on commercialized fast reactor cycle systems in Japan, has two characteristics related to in-service inspection. The first is that all sodium coolant boundary structures have double-wall system. Continuous monitoring of the sodium coolant boundary structures are adopted for inspection. The second characteristic is the steam generator with double-wall-tubes. Volumetric testing is adopted to make sure that one of the tubes can maintain the boundary function in case of the other tube failure. A rational in-service inspection concept was developed taking these features into account. The inspection technologies were developed to implement in-service inspection plan. The under-sodium viewing system consisted of multi ultrasonic scanning transducers, which was used for imaging under-sodium structures. The under-sodium viewing system was mounted on the under-sodium vehicle and delivered to core internals. The prototype of under-sodium viewing system and vehicle were fabricated and performance tests were carried out under water. The laboratory experiments of volumetric testing for double-wall-tubes of steam generator, such as ultrasonic testing and remote-field eddy current testing, were performed and technical feasibility was assessed. (authors)

  17. Gas-cooled reactor programs. High-temperature gas-cooled reactor base-technology program progress report for July 1, 1975--December 31, 1976

    International Nuclear Information System (INIS)

    Homan, F.J.; Kasten, P.R.

    1977-11-01

    Progress is reported in the following areas: prestressed concrete pressure vessel development, structural materials, fission product technology, kernel migration and irradiated fuel chemistry, coolant chemistry (steam-graphite reactions), fuel qualification, and characterization and standardization of graphite

  18. Cooling out of the blue

    International Nuclear Information System (INIS)

    Schmid, W.

    2006-01-01

    This article takes a look at solar cooling and air-conditioning, the use of which is becoming more and more popular. The article discusses how further research and development is necessary. The main challenge for professional experts is the optimal adaptation of building, building technology and solar-driven cooling systems to meet these new requirements. Various solar cooling technologies are looked at, including the use of surplus heat for the generation of cold for cooling systems. Small-scale solar cooling systems now being tested in trials are described. Various developments in Europe are discussed, as are the future chances for solar cooling in the market

  19. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    OpenAIRE

    Broeze, J.; Sluis, van der, S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  20. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic. Substage E2.1: Methods of and technologies for post-combustion CO2 capture from the flue gas. Substage E2.3: Selection of a chemical absorption based method for post-combustion CO2 capture. Revision 0

    International Nuclear Information System (INIS)

    Vavrova, Jana

    2010-12-01

    The following topics are described: Overview of CO 2 capture methods; Overview of absorption technologies (Amine technologies; Ammonia technologies); and the Research & Development stage (Absorption processes, chemical/carbonate loop; Membranes). (P.A.)

  1. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  2. Gas-cooled reactor coolant circulator and blower technology. Proceedings of a specialists meeting held in San Diego 30 November - 2 December 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-08-01

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs.

  3. Technologies for improving the availability and reliability of current and future water cooled nuclear power plants. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    One of the activities of the IAEA is to provide all Member States with an international source of balanced, objective information on advanced in technology for water cooled reactors. Since the global nuclear industry has a common interest in improving plant availability and reliability to assure specific individual plant and country perspective as well as to have an image of well managed competitive industry, the IAEA held a Technical Committee Meeting on Technologies for Improving the Availability and Reliability of Current and Future Water Cooled Nuclear Power Plants in September 1997. The basic aim to was to identify, review and exchange information on international developments in technologies for achieving high availability and reliability and to suggest areas where further technical advances could contribute to improvement of performance. Designs for future plants were presented in the context of how they can accommodate both the organizational and technical means for reaching even higher levels of performance. This proceedings contains the contributed papers presented at this Meeting each with a separate abstract. Four sessions were concerned with: policies, practices and procedures for achieving high reliability and availability; improving availability and reliability through better use of today`s technologies; recent advances in technologies for improving availability and reliability; achieving high availability for new plants Refs, figs, tabs

  4. Technologies for improving the availability and reliability of current and future water cooled nuclear power plants. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-11-01

    One of the activities of the IAEA is to provide all Member States with an international source of balanced, objective information on advanced in technology for water cooled reactors. Since the global nuclear industry has a common interest in improving plant availability and reliability to assure specific individual plant and country perspective as well as to have an image of well managed competitive industry, the IAEA held a Technical Committee Meeting on Technologies for Improving the Availability and Reliability of Current and Future Water Cooled Nuclear Power Plants in September 1997. The basic aim to was to identify, review and exchange information on international developments in technologies for achieving high availability and reliability and to suggest areas where further technical advances could contribute to improvement of performance. Designs for future plants were presented in the context of how they can accommodate both the organizational and technical means for reaching even higher levels of performance. This proceedings contains the contributed papers presented at this Meeting each with a separate abstract. Four sessions were concerned with: policies, practices and procedures for achieving high reliability and availability; improving availability and reliability through better use of today's technologies; recent advances in technologies for improving availability and reliability; achieving high availability for new plants

  5. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-09-01

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  6. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  7. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  8. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  9. Demonstration and Validation of Corrosion-Mitigation Technologies for Mechanical Room Utility Piping and Cooling-Tower Pumps

    Science.gov (United States)

    2015-05-01

    34advanced material for cooling pump shafts" Stainless steel (316 or 416 ) Floway Pump Company, Fresno, CA 316 or 416 stainless steel shafts to replace...pump 5 incorporating 316 stainless steel housing. .................................... 19 Figure 13. New pump 5 being installed...43 Figure 28. Pump 5 (316 Stainless Steel ), 12 months exposure. .......................................... 43

  10. The role of absorptive capactiy in technological learning in CDM projects : evidences from survey in Brazil, China, India and Mexico

    NARCIS (Netherlands)

    Doranova, A.; Costa, I.; Duysters, G.M.

    2011-01-01

    Technology transfer in Clean Development Mechanism (CDM) projects of the Kyoto Protocol has acquired increasing attention of policy makers and academia. This study is an effort to investigate CDM projects' related technology transfer process from the organisational learning and technological

  11. The role of absorptive capacity in technological learning in CDM projects : Evidences from survey in Brazil, China, India and Mexico

    NARCIS (Netherlands)

    Doranova, A.; Costa, I.; Duijsters, G.M.

    2011-01-01

    Technology transfer in Clean Development Mechanism (CDM) projects of the Kyoto Protocol has acquired increasing attention of policy makers and academia. This study is an effort to investigate CDM projects' related technology transfer process from the organisational learning and technological

  12. The design of integrated cooling processes in district heating systems; Kylprocessers design i fjaerrvaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Viktoria [Royal Inst. of Technology, Stockholm (SE). Dept. of Chemical Engineering and Technology; Setterwall, Fredrik [Fredrik Setterwall Konsult AB, Sollentuna (Sweden); Andersson, Mikael [AB Berglunds Rostfria, Boden (Sweden)

    2005-07-01

    efficiency. Are these chillers, despite their slightly higher capital cost, energy and cost effective as compared to conventional absorption chillers and vapor compression cooling technology? The main conclusions are: Absorption cooling is an energy efficient and environmentally friendly alternative as compared to the conventional vapor compression cooling. This is especially the case when absorption cooling is integrated with CHP. Coupled to CHP, the potential for absorption cooling tbe cost effective is substantial. A careful assessment of suitable prevailing conditions in the energy system along with careful design of the cooling system are of course required for definitive data. One example of an important local condition is the access to a suitable heat sink. Calculations have shown that the marginal cost (mainly the cost of required heat exchanger area in the chiller) for a low temperature driven absorption chiller is reduced by approximately 50 % when lowering the design value of the heat sink from 25 deg C to 21 deg C. Placing an absorption chiller close ta natural heat sink (e.g., a lake) will significantly lower the capital cost as compared ta case where cooling tower capacity is needed. This aspect should be considered when deciding on whether to use a larger chiller and placing it centrally, close to the heat production, or several smaller chillers tbe placed locally close to the cooling demands. In the first case, the cooling is distributed to the demands in a separate district cooling net. In the second case, the driving heat is supplied to the local machines via the district heating net. Optimal district heating supply temperature is around 90 deg C. When the district heating production is coupled to CHP, a lower annual production cost can be obtained by further lowering the supply temperature during the warm part of the year (down to 70 deg C). When integrating an absorption chiller with CHP, this study shows that it is cost effective to choose a low

  13. The Proposed Heating and Cooling System in the CH2 Building and Its Impact on Occupant Productivity

    Directory of Open Access Journals (Sweden)

    Lu Aye

    2012-11-01

    Full Text Available Melbourne's climatic conditions demand that its buildings require both heating and cooling systems. In a multi-storey office building , however, cooling requirements will dominate. How the internal space is cooled and ventilation air is delivered will significantly impact on occupant comfort. This paper discusses the heating and cooling systems proposed for the CH2building. The paper critiques the proposed systems against previous experience, both internationally and in Australia. While the heating system employs proven technologies, less established techniques are proposed for the cooling system. Air movement in the shower towers, for example, is to be naturally induced and this has not always been successful elsewhere. Phase change material for storage of "coolth" does not appear to have been demonstrated previously in a commercial building, so the effectiveness of the proposed system is uncertain. A conventional absorption chiller backs up the untried elements of the cooling system, so that ultimately occupant comfort should not be compromised .

  14. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    Science.gov (United States)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  15. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  16. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  17. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  18. Thermal cooling using low-temperature waste heat. A cost-effective way for industrial companies to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Schall, D.; Hirzel, S. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2012-11-15

    As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70C and 85C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

  19. Numerical Investigation of an Absorption-Diffusion Cooling Machine Using C3H8/C9H20 as Binary Working Fluid Étude numérique d’une machine frigorifique à absorption-diffusion utilisant le couple C3H8/C9H20

    Directory of Open Access Journals (Sweden)

    Dardour H.

    2013-05-01

    Full Text Available This paper is concerned with the analysis and the simulation of a heat-driven absorption-diffusion cooling machine which can operate with low-grade heat sources. The simplified configuration of the heat-powered absorption-diffusion refrigerating machine considered in this study is based on the Platen-Munters single pressure refrigerators principle [Platen B.C.V. and Munters C.G. (1928 Refrigerator, US Patent 1, 685-764J. Three working fluids are used, nonane as an absorbent, propane as a refrigerant and hydrogen as the inert auxiliary gas. The designed cooling capacity of the machine is 1 kW which is suitable for a domestic use for refrigeration purposes. We restricted the maximum temperature of the driving heat supplied to the generator to 130 °C, a temperature achievable with evacuated-tube solar collectors. The simulations are carried out using a commercially available flow sheeting software with the PengRobinson equation of state as property prediction method. In this paper, we analyze the heat and mass transfer characteristics in all relevant machine components (absorber, condenser, generator and solution heat exchangers. The simulations results allow determining the values of different parameters of the systems such as the refrigerant and the solvent temperatures in various points of the machine, the liquid and the vapor flow rates and compositions. The system performances were parametrically analyzed using the flow sheeting software. Performance characteristics were determined for a wide range of operating conditions allowing investigating and evaluating the effect of various design parameters. Ce papier est consacré à l’étude et l’analyse d’une machine frigorifique à absorption-diffusion. La machine est actionnée grâce à une source de chaleur de température modérée. La configuration et le principe de fonctionnement de l’appareil obéissent au modèle de Platen Munters [Platen B.C.V. and Munters C.G. (1928 Refrigerator

  20. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  1. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  2. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  3. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  4. A Review of PSA Technology Applications according to the Development of Sodium-cooled Fast Reactors in the World

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Lee, Yong Bum; Jung, Hae Yong; Kim, Sang Ji; Hahn, Do Hee; Yang, Joon Eon

    2008-12-01

    The international nuclear societies request to perform Probabilistic Safety Assessment (PSA) according to the development of Gen IV Sodium-cooled Fast Reactors (SFR). One of the major tasks of the PSA is to identify various sequences of events which could lead to the release of radioactivity. However, due to the limited operating and SFR PSA experiences, it will be difficult to derive and to quantify core damage frequency for SFR under development in Korea, so called KALIMER. Hence, in this report, the foreign PSA results, such as USA and Japan, are analyzed based on the obtained documents. Finally an approach on how to perform PSA for KALIMER is suggested

  5. International symposium on evolutionary water cooled reactors: strategic issues, technologies and economic viability. Book of extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Within the frame of growing energy demand caused by global economic growth and taking into account the Kyoto protocol on carbon dioxide emissions nuclear power plants attaining a new role. The presented papers deal mostly with improvements in NPP design, construction and safety. Some new concepts are proposed, especially in the field of inherent or passive reactor safety as well as computerised control systems. Water cooled reactors achieved already the necessary cost reduction but require some radical thinking in fuel design, construction rate, built-in safety. The key factor will be mass production in order to attain capital cost of half today's level

  6. Low-technology cooling box for storage of malaria RDTs and other medical supplies in remote areas.

    Science.gov (United States)

    Chanthap, Lon; Ariey, Frédéric; Socheat, Duong; Tsuyuoka, Reiko; Bell, David

    2010-01-23

    With the increase in use of point-of-care diagnostic tests for malaria and other diseases comes the necessity of storing the diagnostic kits and the drugs required for subsequent management, in remote areas, where temperatures are high and electricity supply is unreliable or unavailable. To address the lack of temperature-controlled storage during the introduction of community-based malaria management in Cambodia, the Cambodian National Centre for Parasitology, Entomology and Malaria Control (CNM) developed prototype evaporative cooling boxes (Cambodian Cooler Boxes - CCBs) for storage of perishable medical commodities in remote clinics. The performance of these CCBs for maintaining suitable storage temperatures was evaluated over two phases in 2005 and 2006-7, comparing conditions in CCBs using water as designed, CCBs with no water for evaporation, and ambient storage room temperatures. Temperature and humidity was monitored, together with the capacity of the RDTs recommended for storage between 2 to 30 degree Celsius to detect low-density malaria parasite samples after storage under these conditions. Significant differences were recorded between the proportion of temperatures within the recommended RDT storage conditions in the CCBs with water and the temperatures in the storage room (p concept of evaporative cooling has potential to greatly enhance access to perishable diagnostics and medicines in remote communities, as it allows prolonged storage at low cost using locally-available materials, in the absence of electricity.

  7. FY 1999 Report on the results of technological development of machine tools for rationalization of energy utilization. Development of a lathe with high precision and conservation of energy using natural phenomenon (Thermal countermeasure using self compulsory cooling and thermal insensitive structure - results of the first year); 1999 nendo energy shiyo gorika kosaku kikai nado gijutsu kaihatsu seika hokokusho. Shizen gensho wo takumi ni oyoshita sho energy koseido senban no kaihatsu (self kyosei reikyaku to netsufukan gijutsu wo mochiita netsuhenkei yokusei taisaku - dai 1 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A lathe, which is a central tool in a factory of automobiles or home electric appliances, tends to suffer decreased machining precision resulting from thermal deformation. This project is aimed at development of the energy-saving, high-precision lathe technologies using self compulsory cooling and thermal insensitive technologies as the countermeasures against the thermal deformation. The self compulsory cooling is a method of cooling by evaporation of water with an evaporative, water-absorptive cloth being bonded to a machine tool surface around the major axis. The thermal insensitive technologies include the three-dimensionally zero-center design technologies which help design a lathe in such a way to set the processing point (tool working point) at the base of thermal deformation in the X, Y and Z axis directions; material combination technologies to control thermal deformation; and coloring technologies to control thermal deformation. The development target is the high-precision lathe fabrication technologies, which realize a temporal precision change of 1 to 2 {mu}m or less per work dimension of 100mm. The activities cover 5 areas, including development of elementary technologies for each item and construction/evaluation of the full-size test unit. (NEDO)

  8. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-15

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels.

  9. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-01

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels

  10. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  11. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  12. Fuel technology and performance of non-water cooled reactors. Proceedings of an advisory group meeting held in Vienna, 5-8 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The IAEA Division of Nuclear Fuel Cycle and Waste Management has been closely involved for many years in the collection, analysis and exchange of information relating to the global development of advanced reactor fuel technology and performance. Meetings of experts in this field have been held in 1984 and 1989 and more recently in December 1994 as part of the IAEA`s programme. This publication reviews progress in advanced reactor fuel technology and performance over the past five years, principally related to non-water cooled reactors, namely high temperature gas reactors (HTGRs) and fast reactors (FRs), as well as developments pertaining to thorium fuels and the fuel fabrication technologies. It includes papers from the participants and provides recommendations in key areas where further global co-operation in this field might be usefully initiated or strengthened. The previous two Advisory Group Meetings on Advanced Fuel Technology and Performance, on which separate reports have been published (IAEA-TECDOC-352 (1985) and IAEA-TECDOC-577 (1990)), focused on all types of commercial nuclear reactors. Refs, figs and tabs.

  13. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    Science.gov (United States)

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  14. Low-technology cooling box for storage of malaria RDTs and other medical supplies in remote areas

    Directory of Open Access Journals (Sweden)

    Tsuyuoka Reiko

    2010-01-01

    Full Text Available Abstract Background With the increase in use of point-of-care diagnostic tests for malaria and other diseases comes the necessity of storing the diagnostic kits and the drugs required for subsequent management, in remote areas, where temperatures are high and electricity supply is unreliable or unavailable. Methods To address the lack of temperature-controlled storage during the introduction of community-based malaria management in Cambodia, the Cambodian National Centre for Parasitology, Entomology and Malaria Control (CNM developed prototype evaporative cooling boxes (Cambodian Cooler Boxes - CCBs for storage of perishable medical commodities in remote clinics. The performance of these CCBs for maintaining suitable storage temperatures was evaluated over two phases in 2005 and 2006-7, comparing conditions in CCBs using water as designed, CCBs with no water for evaporation, and ambient storage room temperatures. Temperature and humidity was monitored, together with the capacity of the RDTs recommended for storage between 2 to 30 degree Celsius to detect low-density malaria parasite samples after storage under these conditions. Results Significant differences were recorded between the proportion of temperatures within the recommended RDT storage conditions in the CCBs with water and the temperatures in the storage room (p Discussion and Conclusions The CCB was an effective tool for storage of RDTs at optimal conditions, and extended the effective life-span of the tests. The concept of evaporative cooling has potential to greatly enhance access to perishable diagnostics and medicines in remote communities, as it allows prolonged storage at low cost using locally-available materials, in the absence of electricity.

  15. Combined Natural Gas and Solar Technologies for Heating and Cooling in the City of NIS in Serbia

    Science.gov (United States)

    Stefanović, Velimir P.; Bojić, Milorad Lj.

    2010-06-01

    The use of conventional systems for heat and electricity production in Niš and Serbia means a constant waste of energy, and money. This problem is present in both industrial and public sector. Using conventional systems, means not only low-energy efficient systems, and technologies, but also using very "dirty" technologies, which cause heavy environment pollution. The lack of electricity in our country, and region is also present. The gas pipeline in Niš was finished not long ago, and second gas pipeline is about to be made in the next couple of years. This opens a door for implementing new technologies and the use of new methods for production of heat and electricity, while preserving our environment. This paper reports discussion of this technology with management of public institutions, which use both heat and electricity.

  16. High-temperature gas-cooled reactor base-technology program. Progress report, January 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Coobs, J.H.; Kasten, P.R.

    1976-11-01

    Progress is reported in the following areas: PCRV development, studies on structural materials, fission product technology studies, kernel migration and irradiated fuel chemistry, coolant chemistry (steam-graphite reactions), fuel qualification, and characterization and standardization of graphite

  17. High-temperature gas-cooled reactor base-technology program. Progress report, January 1, 1974--June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Coobs, J.H.; Kasten, P.R.

    1976-11-01

    Progress is reported in the following areas: PCRV development, studies on structural materials, fission product technology studies, kernel migration and irradiated fuel chemistry, coolant chemistry (steam-graphite reactions), fuel qualification, and characterization and standardization of graphite.

  18. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  19. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  20. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  1. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    Science.gov (United States)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  2. Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman

    International Nuclear Information System (INIS)

    Dawoud, B.; Zurigat, Y.H.; Bortmany, J.

    2005-01-01

    Gas-turbine inlet air cooling has been considered for boosting the power output during hot seasons. In this paper, the power requirements of several inlet air cooling techniques for gas-turbine power plants in two locations; namely, Marmul and Fahud, in Oman have been evaluated using typical meteorological year (TMY) data. The considered techniques are evaporative cooling, fogging cooling, absorption cooling using both LiBr-H 2 O and aqua-ammonia, and vapour-compression cooling systems. For evaporative cooling, an 88% approach to the wet-bulb temperature has been considered, compared with a 98% approach for fogging cooling. A design compressor inlet air temperature of 14 deg C has been assigned to LiBr-water chilling systems. For both aqua-ammonia absorption and vapour-compression refrigerating systems, a design compressor inlet air temperature of 8 deg C has been selected to avoid the formation of ice fragments as the air is drawn into the mouth of the compressor. These technologies have been compared with respect to their effectiveness in power boosting of small-size gas-turbine power plants used in two oil fields at Marmul and Fahud in the Sultanate of Oman. Fogging cooling is accompanied with 11.4% more electrical energy in comparison with evaporative cooling in both locations. The LiBr-H 2 O cooling offers 40% and 55% more energy than fogging cooling at Fahud and Marmul, respectively. Applying aqua-ammonia-water and vapour-compression cooling, a further annual energy production enhancement of 39% and 46% is expected in comparison with LiBr-H 2 O cooling at Fahud and Marmul, respectively

  3. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  4. Feasibility evaluation of two solar cooling systems applied to a cuban hotel. Comparative analysis

    International Nuclear Information System (INIS)

    Díaz Torres, Yamile; Valdivia Nodal, Yarelis; Monteagudo Yanes, José Pedro; Miranda Torres, Yudit

    2016-01-01

    The article presents an analysis of technical and economic feasibility of using two configurations of solar cooling in a Cuban hotel. HVAC hybrid schemes are: a cooler of ice water vapor compression (chiller) interconnected in parallel with a smaller capacity chiller, first with a solar-powered absorption cooling system (SACS), and then with a photovoltaic cooling system(PSC). Both were simulated taking into account the weather conditions in the region, thermodynamic calculation methodologies and principles that govern these technologies. The results show that the use of these alternatives contributes to reducing energy consumption and the environmental impact of heating, ventilation and air conditioning systems (HVAC). Economic analysis highlights that PCS is more favorable than the SACS taking into account the cooling cost generation (CCG) but energy assessment indicates that SACS has higher thermal performance for the case study to which it is applied. (author)

  5. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  6. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  7. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  8. Detailed Modelling of the Deep Decarbonisation Scenarios with Demand Response Technologies in the Heating and Cooling Sector: A Case Study for Italy

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2017-10-01

    Full Text Available Energy policies accompanying the transition towards a sustainable development process must be supported by technical analyses in which future energy scenarios are modeled and evaluated. This paper analyzes possible decarbonization scenarios in Italy for the year 2050. They envisage high electrification of transports and residential buildings, high use of renewable energies, and a modal shift towards public transport. The energy scenarios are evaluated using a software program, EnergyPLAN, starting from a reference model developed for the year 2014. Special attention has been given to the modeling of data that are unavailable in the literature, such as the time profile of heating and cooling demands, obtained with the degree-days method and validated by elaborating the results of the modeling of the residential building stock, this latter was dynamically simulated in TRNSYS. The results show that to obtain a significant decrease of greenhouse gas emissions and fossil fuel consumption, it is necessary not only to promote a deeper penetration of renewable sources, but also their integration with other technologies (cogeneration, trigeneration, power-to-heat systems, thermal storage, vehicle-to-grid operations. In fact, renewables technologies alone can raise some critical issues, such as excess and/or shortage of electricity production and non-sustainable exploitation of biomass.

  9. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  11. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    1990-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  12. Comparative analysis of thermally activated, environmentally friendly cooling systems

    International Nuclear Information System (INIS)

    Gupta, Y.; Metchop, L.; Frantzis, A.; Phelan, P.E.

    2008-01-01

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H 2 O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C -1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H 2 O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  13. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  14. Absorption and metabolization of sex hormones and their transformation into contraceptive technologies: the paths taken by medical thought in Brazil.

    Science.gov (United States)

    Bonan, Claudia; Teixeira, Luiz Antonio; Nakano, Andreza Rodrigues

    2017-01-01

    The article analyses knowledge assimilation and the development of clinical and research practices relating to sex hormones among Brazilian gynaecologists. It discusses the paths taken by medical thought from the reception of the hormones to their transformation into contraceptives. Our objective is to comprehend styles of introducing and disseminating medical technologies in the area of reproductive health in Brazil. It uses methods of historical analysis and takes as its source the Anais Brasileiros de Ginecologia, a journal published between 1936 and 1970. From the outset, the accompaniment of scientific breakthroughs in relation to sex hormones and their use to treat diverse female illnesses played a key role in the rapid medical acceptance of hormonal contraception. Scientific and technical questions (side effects, dosages) and the demographic issue formed part of the majority of the debates. Objections from the Catholic Church were considered but did not set the agenda of medical thought on contraceptives. The quest to consolidate gynaecology as a scientific, modern and cosmopolitan area of expertise, along with sanitary and demographic motives that allowed contraceptives to be classed as ethical drugs, are identified as processes underlying the assimilation and metabolization of sex hormones as hormonal contraceptives.

  15. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  16. Solar cooling systems. Classification and energetic evaluation; Solare Kuehlsysteme. Klassifizierung und energetische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Jakob [Technische Univ. Bergakademie Freiberg (Germany); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway); Eikevik, Trygve M. [NTNU, Trondheim (Norway)

    2012-07-01

    The investigation of alternative, sustainable concepts for cold production is worthwhile in times of increasing energy demand for cooling and air conditioning applications. Energy sources such as solar radiation can help to reduce the burden on the environment and energy networks. Solar electricity from photovoltaic cells or solar power from solar collectors can be used in refrigerating equipment (such as cold vapor compression chiller, absorption chiller, adsorption chillers, open systems, thermo-mechanical systems or ejector-based systems) are fed in order to produce the desired coldness. In many cases, the temporal coincidence of radiation supply and cooling requirements makes the solar cooling to a promising concept, especially at sites with a high solar radiation, large cooling demand, high energy prices, or insufficient access to public power grids. A model-based investigation of different solar cooling systems with an equivalent cooling capacity was carried out. The results show that the performance potential strongly depends on the selected technology and the site of the system. A balanced daily energy balance can be achieved with an appropriately dimensioned solar power plant with cooling concept. Depending on the system and interpretation, primary energy savings or a primary energy overhead can be achieved within a year in comparison to a conventional system.

  17. Cooling pancakes

    International Nuclear Information System (INIS)

    Bond, J.R.; Wilson, J.R.

    1984-01-01

    In theories of galaxy formation with a damping cut-off in the density fluctuation spectrum, the first non-linear structures to form are Zeldovich pancakes in which dissipation separates gas from any collisionless dark matter then present. One-dimensional numerical simulations of the collapse, shock heating, and subsequent thermal evolution of pancakes are described. Neutrinos (or any other cool collisionless particles) are followed by direct N-body methods and the gas by Eulerian hydrodynamics with conduction as well as cooling included. It is found that the pressure is relatively uniform within the shocked region and approximately equals the instantaneous ram pressure acting at the shock front. An analytic theory based upon this result accurately describes the numerical calculations. (author)

  18. Cool Sportswear

    Science.gov (United States)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  19. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    Science.gov (United States)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  20. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  1. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. No...

  2. Report of study 7.3: cooling and air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Russo, F.

    2000-07-01

    the liberalization of the electric industry will have a major impact on the use of gas for cooling due to a potential reduction in electricity prices. This threat might induce gas distribution companies to revise their own marketing initiatives and review their tariffs as well. Two important papers on air conditioning are annexed to the study group report. The first paper is entitled 'Power, heat and chilling with natural gas, fuel cells and air conditioning'. It is focused on a demonstration project, in a hospital, based on the supply of power, heat and cooling through the combined use of fuel cells, absorption cooling machines and solar collectors. The second paper is entitled 'Optimisation of a district heating and cooling system with a double approach at the cooling production and new operating schemes'. It describes a project for a centralized plant for heating, cooling and electricity production. The cooling systems are based on waste heat recovery and the use of absorption technology. (authors)

  3. Cooling tower and environment

    International Nuclear Information System (INIS)

    Becker, J.; Ederhof, A.; Gosdowski, J.; Harms, A.; Ide, G.; Klotz, B.; Kowalczyk, R.; Necker, P.; Tesche, W.

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.) [de

  4. Absorptive products

    International Nuclear Information System (INIS)

    Assarsson, P.G.; King, P.A.

    1976-01-01

    Applications for hydrophile gels produced by the radiation induced cross-linking in aqueous solution of polyethylene oxide and starch, as described in Norwegian patent 133501 (INIS RN 281494), such as sanitary napkins (diapers) and sanitary towels, are discussed. The process itself is also discussed and results, expressed as the percentage of insoluble gel and its absorptive capacity for saline solution as functions of the ratio of polyethylene oxide to starch and the radiation dose, are presented. (JIW)

  5. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  6. Current fluctuations in quantum absorption refrigerators

    Science.gov (United States)

    Segal, Dvira

    2018-05-01

    Absorption refrigerators transfer thermal energy from a cold bath to a hot bath without input power by utilizing heat from an additional "work" reservoir. Particularly interesting is a three-level design for a quantum absorption refrigerator, which can be optimized to reach the maximal (Carnot) cooling efficiency. Previous studies of three-level chillers focused on the behavior of the averaged cooling current. Here, we go beyond that and study the full counting statistics of heat exchange in a three-level chiller model. We explain how to obtain the complete cumulant generating function of the refrigerator in a steady state, then derive a partial cumulant generating function, which yields closed-form expressions for both the averaged cooling current and its noise. Our analytical results and simulations are beneficial for the design of nanoscale engines and cooling systems far from equilibrium, with their performance optimized according to different criteria, efficiency, power, fluctuations, and dissipation.

  7. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  8. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  9. NKS-R ExCoolSe mid-term report KTH severe accidents research relevant to the NKS-ExCoolSe project[KTH = Royal Institute of Technology, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hyun Sun Park; Truc-Nam Dinh [Royal Inst. of Technology (Sweden)

    2006-04-15

    The present mid-term progress report is prepared on the recent results from the KTH severe accident research program relevant to the objective of the ExCoolSe project sponsored by the NKS-R program. The previous PRE-MELT-DEL project at KTH sponsored by NKS provided an extensive assessment on the remaining issues of severe accidents in general and suggested the key issues to be resolved such as coolability and steam explosion energetics in ex-vessel which became a backbone of the ExCoolSe project in NKS. The EXCOOLSE project has been integrated with, and leveraged on, parallel research program at KTH on severe accident phenomena the MSWI project which is funded by the APRI program, SKI in Sweden and HSK in Switzerland and produced more understanding of the key remaining issues. During last year, the critical assessment of the existing knowledge and current SAMG and designs of Nordic BWRs identified the research focus and initiated the new series of research activities toward the resolution of the key remaining issues specifically pertaining to the Nordic BWRs.(au)

  10. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  11. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  12. Galactic absorption line coronae

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1981-01-01

    We have investigated whether gaseous coronae around galaxies rise to the absorption systems seen in quasar spectra. In our model, gas originally located in the disk is heated to the million degree range and rises to surround the galaxy; the gas remains bound to the galaxy. Optically thin radiative cooling drives a thermal instability in the hot gas which causes cool clouds (T 4 K) to condense out of the corona. These clouds, which follow ballistic trajectories back to the disk, are the absorption sites. A two-dimensional hydrodynamic code with radiative cooling was used to study the dynamics and thermodynamics of the corona as well as the position rate at which clouds form. Coupled to the code is a galaxy with two mass components, a disk (approx.10 11 M/sub sun/) and a dark halo (approx.10 12 M/sub sun/). In a model where the temperature at the base of the corona (in the disk) is 3 x 10 6 K, absorbing gas of column density NL> or approx. =10 18 cm 2 extends radially to 100 kpc (face-on orientation) and vertically to 60 Kpc (edge-on orientation). The total mass of gas required here (coronal plus cloud gas) is 1.4 x 10 10 M/sub sun/, while the minimum supernova heating rate is one supernova per 27 years. In two other models (base coronal temperatures of 0.50 x 10 6 K and 1 x 10 6 K), coronal gas rises from an extended gaseous disk (in the previous model, the gas comes from a typical gaseous disk approximately 15 kpc in extent). Here, column densities of 10 19 cm -2 out to a radius of 70 kpc (face-on orientation) are achieved with a total gas mass of 1.7 x 10 9 M/sub direct-product/ and 2.0 x 10 9 M/sub sun/ and minimum heating rates of approximately one supernova per 170 years and one supernova per 60 years

  13. Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-08-01

    An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

  14. Workshop on beam cooling and related topics

    International Nuclear Information System (INIS)

    Bosser, J.

    1994-01-01

    The sessions of the Workshop on Beam Cooling and Related Topics, held in Montreux from 4-8 October 1993, are reported in these Proceedings. This meeting brought together international experts in the field of accelerator beam cooling. Its purpose was to discuss the status of the different cooling techniques currently in use (stochastic, electron, ionization, heavy-ion, and laser) and their actual performances, technological implications, and future prospects. Certain theoretical principles (muon cooling, cyclotron maser cooling) were discussed and are reported on in these Proceedings. Also of interest in this Workshop was the possibility of beam crystallization in accelerators using ultimate cooling. In the first part of these Proceedings, overview talks on the various cooling techniques, their implications, present performance, and future prospects are presented. More detailed reports on all the topics are then given in the form of oral presentations or poster sessions. Finally, the chairmen and/or convenors then present summary talks. (orig.)

  15. Active and passive cooling methods for dwellings

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2018-01-01

    In this document a review of three active as well as ten passive cooling methods suitable for residential buildings is carried out. The review firstly addresses how the various technologies cool the space according to the terms of the building heat balance, under what technical conditions...... ventilation, controlled ventilation, roof coating and eco-evaporative cooling are the most suitable passive methods for an extensive use in this country....

  16. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  17. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  18. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  19. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  20. Optical absorption in dendrimers

    International Nuclear Information System (INIS)

    Supritz, C.; Engelmann, A.; Reineker, P.

    2004-01-01

    Dendrimers are highly branched molecules, which are expected to be useful, for example, as efficient artificial light harvesting systems in nano-technological applications. There are two different classes of dendrimers: compact dendrimers with constant distance between neighboring branching points throughout the macromolecule and extended dendrimers, where this distance increases from the system periphery to the center. We investigate the linear absorption spectra of these dendrimer types using the Frenkel exciton concept. The electron-phonon interaction is taken into account by introducing a heat bath that interacts with the exciton in a stochastic manner

  1. Radiative Cooling: Principles, Progress, and Potentials

    Science.gov (United States)

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  2. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    Science.gov (United States)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  3. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  4. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  5. Dry cooling towers - the Schmehausen example

    International Nuclear Information System (INIS)

    Weber, P.

    1977-01-01

    In a prototype, there are often problems which require special static, constructive, and assembling measures for their solution. In the case of the Schmehausen dry cooling tower, the demands on the assembling technology are particularly high. (orig.) [de

  6. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  7. Experimental investigation on charging and discharging performance of absorption thermal energy storage system

    International Nuclear Information System (INIS)

    Zhang, Xiaoling; Li, Minzhi; Shi, Wenxing; Wang, Baolong; Li, Xianting

    2014-01-01

    Highlights: • A prototype of ATES using LiBr/H 2 O was designed and built. • Charging and discharging performances of ATES system were investigated. • ESE and ESD for cooling, domestic hot water and heating were obtained. - Abstract: Because of high thermal storage density and little heat loss, absorption thermal energy storage (ATES) is known as a potential thermal energy storage (TES) technology. To investigate the performance of the ATES system with LiBr–H 2 O, a prototype with 10 kW h cooling storage capacity was designed and built. The experiments demonstrated that charging and discharging processes are successful in producing 7 °C chilled water, 65 °C domestic hot water, or 43 °C heating water to meet the user’s requirements. Characteristics such as temperature, concentration and power variation of the ATES system during charging and discharging processes were investigated. The performance of the ATES system for supplying cooling, heating or domestic hot water was analyzed and compared. The results indicate that the energy storage efficiencies (ESE) for cooling, domestic hot water and heating are 0.51, 0.97, 1.03, respectively, and the energy storage densities (ESD) for cooling, domestic hot water and heating reach 42, 88, 110 kW h/m 3 , respectively. The performance is better than those of previous TES systems, which proves that the ATES system using LiBr–H 2 O may be a good option for thermal energy storage

  8. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  9. Water absorption characteristic of interlocking compressed earth brick units

    Science.gov (United States)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  10. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  11. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  12. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  13. Performance evaluation on cool roofs for green remodeling

    Science.gov (United States)

    Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo

    2018-06-01

    Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.

  14. Geothermal energy, what technologies for what purposes?

    International Nuclear Information System (INIS)

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  15. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  16. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out...... and locations, using VC as a mean of indoor comfort improvement. The building-spreadsheet highlights distributions of technologies and strategies, such as the following. (Numbers in % refer to the sample of the database’s 91 buildings.) It may be concluded that Ventilative Cooling is applied in temporary......, systematically investigating the distribution of technologies and strategies within VC. The database is structured as both a ticking-list-like building-spreadsheet and a collection of building-datasheets. The content of both closely follows Annex 62 State-Of-The- Art-Report. The database has been filled, based...

  17. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  18. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  19. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  20. Renewables for Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This timely report examines the technologies, current markets and relative costs for heat and cold production using biomass, geothermal and solar-assisted systems. It evaluates a range of national case studies and relevant policies. Should the successful and more cost-effective policies be implemented by other countries, then the relatively untapped economic potential of renewable energy heating and cooling systems could be better realised, resulting in potential doubling of the present market within the next few years.

  1. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    Multiple DASs were installed at Fort Carson, and the data from all the sensors were stored and partially processed on Campbell Scientific Data Loggers. The...evaporative cooling technologies would be expected to easily overcome utility- scale water withdrawal rates. As an example, an evaluation of an...Ambient pressure Outdoor Setra 276 1% of full scale Pyranometer Horizontal Campbell Scientific CS300 5% of daily total The OAT measurement has an

  2. Device for recirculation cooling of cooling water by natural or forced chaft

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, H; Honekamp, H; Katzmann, A

    1975-10-23

    The invention is concerned with a device for recirculation cooling of cooling water by natural or forced draft. Through a cascading system mounted on supporting columns at a vertical distance to ground level, cooling air is flowing in cross- or counterflow to the cooling water freely falling from the cascading system. The cooling water collecting zone below the cascading system has an absorption floor arranged nearly horizontal and/or inclined, with a cam-type profile on its upperside, which is bounded on its circumference by at least one cooling water release channel provided below its level and/or which is divided in the sense of a surface subdivision. By these means, a reduction of the amount of material required for the supporting columns and an increase of the stability of the columns is to be achieved. Furthermore, the deposition of mud is to be avoided as for as possible, and noise generation during operation is to be reduced considerably. For this purpose, the absorption floor may be made of material sound insulating and/or may be coated with such a material.

  3. Side Stream Filtration for Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  4. Column carbon dioxide and water vapor measurements by an airborne triple-pulse integrated path differential absorption lidar: novel lidar technologies and techniques with path to space

    Science.gov (United States)

    Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.

    2017-09-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.

  5. Contribution of Renewable Cooling to the Renewable Energy Target of the EU. Policy report

    Energy Technology Data Exchange (ETDEWEB)

    Kenkmann, T.; Buerger, V. [The Oeko-Institut, Freiburg (Germany)

    2012-06-15

    Renewable cooling technologies do not play a major role in the climate protection discussion in the European Union today. At the same time the cooling demand is expected to increase significantly in the coming decades. Renewable cooling technologies could contribute to the EU renewable energy target if an appropriate political framework for a further spread of the technologies is created. This renewable cooling policy report intends to support the dissemination of renewable cooling technologies. It provides an overview of the situation, technologies and potential for cool-ing from renewable sources and identifies key areas in which further investigation is required. The report shows that there is a great need for the creation of a political framework supporting the market diffusion of renewable cooling technologies. Firstly the question of a commonly accepted definition on renewable cooling is being addressed. Secondly renewable cooling technologies are described and the today's role of cooling in European statistics and policies is analysed. In the next step existing studies are evaluated to compare the expected development of the cooling demand in Europe to the market potential of renewable cooling. At the end of the paper a long-term vision for renewable cooling is described and first steps towards a European roadmap for renewable cooling are given.

  6. Final muon cooling for a muon collider

    Science.gov (United States)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  7. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  8. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  9. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  10. "Grandma, You Should Do It--It's Cool" Older Adults and the Role of Family Members in Their Acceptance of Technology.

    Science.gov (United States)

    Luijkx, Katrien; Peek, Sebastiaan; Wouters, Eveline

    2015-12-05

    Despite its potential, the acceptance of technology to support the ability to live independently in one's own home, also called aging in place, is not optimal. Family members may play a key role in technology acceptance by older adults; however, it is not well understood why and how they exert influence. Based on open interviews with 53 community-dwelling older adults, this paper describes the influence of family members, including spouses, on the use of various types of consumer electronics by older adults as was reported by themselves. Such a broad focus enables understanding the use of technology as was reported by older adults, instead of its intended use. Our study reveals that the influence of each family member has its own characteristics. The influence of technology acceptance is a natural and coincidental part of the interaction with spouses and grandchildren in which entertainment and pleasure are prominent. This is also partly true for the influence of children, but their influence also is intentional and driven by concerns. Our study indicates the importance of including all family members when implementing technology in the lives of older adults. Besides information for children about the use(fullness) of devices, it is worthwhile to give grandchildren an important role, because older adults easily adopt their enthusiasm and it might eventually lighten the burden on children.

  11. [Effectiveness of scalp cooling in chemotherapy].

    Science.gov (United States)

    Poder, Thomas G; He, Jie; Lemieux, Renald

    2011-10-01

    The main objectives of this literature review are to determine if scalp cooling is efficient and safe, if there are side effects and if the patients' quality of life improves. In terms of effectiveness, scalp cooling seems to get good performance in its aim to prevent hair loss in patients receiving chemotherapy. The weighted average results of all identified studies indicate that this technology allows for 63.5% of patients to have a good preservation of their hair. In studies with a group of control, the weighted rates of good preservation of the hair are 50.6% with scalp cooling and 16.3% without. From the standpoint of safety technology, the main risk is that of scalp metastases. However, no study has successfully demonstrated a statistically significant difference between groups of patients receiving chemotherapy with or without scalp cooling.

  12. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  13. Development of severe accident evaluation technology (level 2 PSA) for sodium-cooled fast reactors. (5) Identification of dominant factors in ex-vessel accident sequences

    International Nuclear Information System (INIS)

    Ohno, Shuji; Seino, Hiroshi; Miyahara, Shinya

    2009-01-01

    The evaluation of accident progression outside of a reactor vessel (ex-vessel) and subsequent transfer behavior of radioactive materials is of great importance from the viewpoint of Level 2 PSA. Hence typical ex-vessel accident sequences in the JAEA Sodium-cooled Fast Reactor are qualitatively discussed in this paper and dominant behaviors or factors in the sequences are investigated through parametric calculations using the CONTAIN/LMR code. Scenarios to be focused on are, 1) sodium vapor leakage from the reactor vessel and 2) sodium-concrete reaction, which are both to be considered in the accident category of LOHRS (loss of heat removal system) and might be followed by an early containment failure due to the thermal effect of sodium combustion and hydrogen burning respectively. The calculated results clarify that the sodium vapor leak rate and the scale of sodium-concrete reaction are the important factors to dominate the ex-vessel accident progression. In addition to the understandings of the dominant factors, the analyzed results also provide the specific information such as pressure loading value to the containment and the timing of pressurization, which is indispensable as technical base in Level 2 PSA for developing event trees and for quantifying the accident consequences. (author)

  14. Passive and low energy cooling techniques for the Czech Republic

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.L.M.; Santamouris, M.

    2005-01-01

    This paper deals with the applicability of passive and low energy cooling technologies in the Czech Republic. The work includes climate analysis as well as buildings and systems analysis in order to estimate the potential of passive and low energy cooling technologies. The latter is based on case

  15. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  16. Thermoeconomic optimization of Solar Heating and Cooling systems

    International Nuclear Information System (INIS)

    Calise, F.; D'Accadia, M. Dentice; Vanoli, L.

    2011-01-01

    In the paper, the optimal thermoeconomic configuration of Solar Heating and Cooling systems (SHC) is investigated. In particular, a case study is presented, referred to an office building located in Naples (south Italy); for such building, three different SHC configurations were analyzed: the first one is based on the coupling of evacuated solar collectors with a single-stage LiBr-H 2 O absorption chiller equipped with a water-to-water electrical heat pump, to be used in case of insufficient solar radiation; in the second case, a similar layout is considered, but the capacities of the absorption chiller and the solar field are smaller, since they are requested to balance just a fraction of the total cooling load of the building selected for the case study; finally, in the third case, the electric heat pump is replaced by an auxiliary gas-fired heater. A zero-dimensional transient simulation model, developed in TRNSYS, was used to analyze each layout from both thermodynamic and economic points of view. In particular, a cost model was developed in order to assess the owning and operating costs for each plant layout. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented in order to determine the set of the synthesis/design variables able to maximize the overall thermo-economic performance of the systems under analysis. For this purpose, two different objective functions were selected: the Pay-Back Period and the overall annual cost. Possible public funding, in terms of Capital Cost Contributions and/or feed-in tariff, were also considered. The results are presented on monthly and weekly basis, paying special attention to the energy and monetary flows in the optimal configurations. In particular, the thermoeconomic analysis and optimization showed that a good funding policy for the promotion of such technologies should combine a feed-in tariff with a slight Capital Cost Contribution, allowing to achieve satisfactory Pay-Back Periods.

  17. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  18. The Cool 100 book

    Energy Technology Data Exchange (ETDEWEB)

    Haselip, J.; Pointing, D.

    2011-07-01

    The aim of The Cool 100 book is to document 100 inspiring, educational and practical examples of sustainable and accessible energy supply solutions created by, or suitable for, isolated communities in the cooler regions of the world. The book features the following projects, explored in detail: 1. Promoting Unst Renewable Energy (PURE) project, a pioneering project that demonstrates how wind power and hydrogen technologies can be combined to meet the energy needs of a remote industrial estate on the island of Unst in the British Isles. 2. The EDISON project, or Electric vehicles in a Distributed and Integrated market using Sustainable energy and Open Networks that explored increased renewable energy use and electric vehicle operation in Denmark, with a case study on the island of Bornholm. 3. The Sarfannguit Wireless Electricity Reading project, which has significantly improved utility metering and enabled improved energy management, reduced electricity demand, and the introduction of renewable energy technologies in the isolated villages of Greenland. 4. The Renewable Energy Croft and Hydrogen facility, which uses innovative technologies to support a gardening facility in the Outer Hebrides (Scotland), and is also a working laboratory for students of the local university to develop a hydrogen energy economy. 5. The Samsoe Renewable Energy Island in Denmark, an iconic example of how an island community can consume only green electricity by using a range of innovative technologies and behavioural changes to reduce demand and to harness green energy resources. 6. The Hydrogen Office Project which demonstrates how a commercial office in the coastal town of Methil in Scotland can be supported by a novel renewable, hydrogen and fuel cell energy system, and how the local community is engaged with the project. 7. The Northern Sustainable House in Nunavut, Canada, which explores the process and results of a project to design and implement housing for local families that

  19. FY 1998 Report on development of technologies for commercialization of photovoltaic power systems. International co-operative project (Information collected for IEA Solar Heating and Cooling Programme); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai kyoryoku jigyo. IEA taiyo reidanbo kyuto program ni kansuru joho shushu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The IEA/ Solar Heating and Cooling Programme (SHCP) committee members were dispatched to the IEA/SHCP Executive Committee and Expert Meetings, to collect information, present the reports and hold the discussions, among others. Described herein are the results. The third Expert Meeting of the IEA/SHCP Task 23 prepared the document covering the examples of solar energy use in large buildings and distributed them in Subtask A, and proposed and discussed the comprehensive performance evaluation methods and simulation-based design tools in Subtask C. The second workshop of the IEA/SHCP Task 25 discussed evaluation of the current technologies for solar assisted air conditioning, design of the solar assisted cooling systems, economic evaluation and market researches, investigations of cooling system hardware, and development of simulation programs and design tools. The examples of solar cooling are mostly found in Japan, and European countries are conducting experiments and field tests, because of lack of commercial grade freezers. (NEDO)

  20. D-xylose absorption

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  1. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  2. Alternatives for metal hydride storage bed heating and cooling

    International Nuclear Information System (INIS)

    Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

    1991-01-01

    The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development

  3. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Kim, Jae-Ihn

    2009-01-01

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λ ω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  4. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  5. High-Performance Energy-Efficient Cool Metal Roof Assemblies Utilizing Building Integrated Renewable Solar Energy Technologies for New and Retrofit Building Construction

    Science.gov (United States)

    2014-04-01

    technology described in this proposal was first commercialized in 2004. It has been installed in 35 states and 5 countries primarily on residential ...temperatures. o Rainwater harvesting systems help reduce demands on potable water systems and help crowded cities manage stormwater drainage problems...of high density polyisocyanurate rigid insulation board installed over the existing roof and between the sub-purlins with the top layer taped to

  6. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  7. Absorption and excretion tests

    International Nuclear Information System (INIS)

    Berberich, R.

    1988-01-01

    The absorption and excretion of radiopharmaceuticals is still of interest in diagnostic investigations of nuclear medicine. In this paper the most common methods of measuring absorption and excretion are described. The performance of the different tests and their standard values are discussed. More over the basic possibilities of measuring absorption and excretion including the needed measurement equipments are presented. (orig.) [de

  8. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  9. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  10. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  11. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  12. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  13. Multistage quantum absorption heat pumps.

    Science.gov (United States)

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  14. Thermodynamic performance optimization of the absorption-generation process in an absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Chen, Yi; Han, Wei; Jin, Hongguang

    2016-01-01

    Highlights: • This paper proposes a new thermal compressor model with boost pressure ratio. • The proposed model is an effective way to optimize the absorption-generation process. • Boost pressure ratio is a key parameter in the proposed thermal compressor model. • The optimum boost pressure ratios for two typical refrigeration systems are obtained. - Abstract: The absorption refrigeration cycle is a basic cycle that establishes the systems for utilizing mid-low temperature heat sources. A new thermal compressor model with a key parameter of boost pressure ratio is proposed to optimize the absorption-generation process. The ultimate generation pressure and boost pressure ratio are used to represent the potential and operating conditions of the thermal compressor, respectively. Using the proposed thermal compressor model, the operation mechanism and requirements of the absorption refrigeration system and absorption-compression refrigeration system are elucidated. Furthermore, the two typical heat conversion systems are optimized based on the thermal compressor model. The optimum boost pressure ratios of the absorption refrigeration system and the absorption-compression refrigeration system are 0.5 and 0.75, respectively. For the absorption refrigeration system, the optimum generation temperature is 125.31 °C at the cooling water temperature of 30 °C, which is obtained by simple thermodynamic calculation. The optimized thermodynamic performance of the absorption-compression refrigeration system is 16.7% higher than that of the conventional absorption refrigeration system when the generation temperature is 100 °C. The thermal compressor model proposed in this paper is an effective method for simplifying the optimization of the thermodynamic systems involving an absorption-generation process.

  15. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  16. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  17. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  18. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  19. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  20. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  1. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  2. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    Science.gov (United States)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  3. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  4. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  5. Development of the prediction technology of cable disconnection of in-core neutron detector for the future high-temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Kawamoto, Taiki; Suzuki, Hisashi; Shinohara, Masanori; Honda, Yuki; Katsuyama, Kozo; Takada, Shoji; Sawa, Kazuhiro

    2015-01-01

    Maintenance technologies for the reactor system have been developed by using the high-temperature engineering test reactor (HTTR). One of the important purposes of development is to accumulate the experiences and data to satisfy the availability of operation up to 90% by shortening the duration of the periodical maintenance for the future HTGRs by shifting from the time-based maintenance to condition-based maintenance. The technical issue of the maintenance of in-core neutron detector, wide range monitor (WRM), is to predict the malfunction caused by cable disconnection to plan the replacement schedule. This is because that it is difficult to observe directly inside of the WRM in detail. The electrical inspection method was proposed to detect and predict the cable disconnection of the WRM by remote monitoring from outside of the reactor by using the time domain reflectometry and so on. The disconnection position, which was specified by the electrical method, was identified by non-destructive and destructive inspection. The accumulated data is expected to be contributed for advanced maintenance of future HTGRs. (author)

  6. Elastocaloric cooling materials and systems

    Science.gov (United States)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  7. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  8. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  9. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  10. influence of sub-cooling on the energy performance of two eco

    African Journals Online (AJOL)

    PUBLICATIONS1

    frigerants, consistently exhibited better performance than R22 in sub-cooling heat ... 2014 Kwame Nkrumah University of Science and Technology (KNUST) ... sales volume among all refrigerants. .... The sub-cooling heat exchanger affects the.

  11. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  12. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  13. Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas

    International Nuclear Information System (INIS)

    Muñoz, J.; Martínez-Val, J.M.; Abbas, R.; Abánades, A.

    2012-01-01

    Highlights: ► Solar thermo-electric power plants with thermal storage for condenser cooling. ► Technology to mitigate the negative effect on Rankine cycles of the day-time high temperatures in deserts. ► Electricity production augmentation in demand-peak hours by the use of day-night temperature difference. -- Abstract: Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

  14. Python bindings for C++ using PyROOT/cppyy: the experience from PyCool in COOL

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The COOL software is used by the ATLAS and LHCb experiments to handle the time variation and versioning of their conditions data, using a variety of different relational database technologies. While the COOL core libraries are written in C++ and are integrated in the experiment C++ frameworks, a package offering Python bindings of the COOL C++ APIs, PyCool, is also provided and has been an essential component of the ATLAS conditions data management toolkit for over 10 years. Almost since the beginning, the implementation of PyCool has been based on ROOT to generate Python bindings for C++, initially using Reflex and PyROOT in ROOT5 and more recently using clang and cppyy in ROOT6. This presentation will describe the PyCool experience with using ROOT to generate Python bindings for C++, throughout the many evolutions of the underlying technology.

  15. Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2018-06-01

    This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.

  16. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  17. Evaluation of filters in RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) in OPAL research reactor at ANSTO (Australian Nuclear Science and Technology Organization) using Gamma Spectrometry System and Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jim In; Foy, Robin; Jung, Seong Moon; Park, Hyeon Suk; Ye, Sung Joon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Australian Nuclear Science and Technology Organization(ANSTO) has a research reactor, OPAL (Open Pool Australian Lightwater reactor) which is a state-of-art 20 MW reactor for various purposes. In OPAL reactor, there are many kinds of radionuclides produced from various reactions in pool water and those should be identified and quantified for the safe use of OPAL. To do that, it is essential to check the efficiency of filters which are able to remove the radioactive substance from the reactor pool water. There are two main water circuits in OPAL which are RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) water circuits. The reactor service pool is connected to the reactor pool via a transfer canal and provides a working area and storage space for the spent and other materials. Also, HWL is the upper part of the reactor pool water and it minimize radiation dose rates at the pool surface. We collected water samples from these circuits and measured the radioactivity by using Gamma Spectrometry System (GSS) and Liquid Scintillation Counter (LSC) to evaluate the filters. We could evaluate the efficiency of filters in RSPCS and HWL in OPAL research reactor. Through the measurements of radioactivity using GSS and LSC, we could conclude that there is likely to be no alpha emitter in water samples, and for beta and gamma activity, there are very big differences between inlet and outlet results, so every filter is working efficiently to remove the radioactive substance.

  18. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  19. Solar district heating and cooling: A review

    DEFF Research Database (Denmark)

    Perez-Mora, Nicolas; Bava, Federico; Andersen, Martin

    2018-01-01

    and decentralized solar district heating as well as block heating. For the different technologies, the paper describes commonly adopted control strategies, system configurations, types of installation, and integration. Real‐world examples are also given to provide a more detailed insight into how solar thermal...... technology can be integrated with district heating. Solar thermal technology combined with thermally driven chillers to provide cooling for cooling networks is also included in this paper. In order for a technology to spread successfully, not only technical but also economic issues need to be tackled. Hence......Both district heating and solar collector systems have been known and implemented for many years. However, the combination of the two, with solar collectors supplying heat to the district heating network, is relatively new, and no comprehensive review of scientific publications on this topic could...

  20. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  1. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  2. Solar-Heated and Cooled Office Building--Columbus, Ohio

    Science.gov (United States)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  3. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  4. Elastocaloric cooling device: Materials and modeling

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Pryds, Nini

    2015-01-01

    In the last decade we have witnessed the development of alternative solid-state cooling technologies based on so-called ferroic (caloric) effects. A large effort nowadays is devoted to investigating solid-state refrigeration using the magnetocaloric effect (change of temperature upon application ...

  5. Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes

    Science.gov (United States)

    Stimpson, Curtis K.

    Additive manufacturing (AM) enables fabrication of components that cannot be made with any other manufacturing method. Significant advances in metal-based AM systems have made this technology feasible for building production parts to be used use in commercial products. In particular, the gas turbine industry benefits from AM as a manufacturing technique especially for development of components subjected to high heat flux. It has been shown that the use of microchannels in high heat flux components can lead to more efficient cooling designs than those that presently exist. The current manufacturing methods have prevented the use of microchannels in such parts, but AM now makes them manufacturable. However, before such designs can become a reality, much research must be done to characterize impacts on flow and heat transfer of AM parts. The current study considers the effect on flow and heat transfer through turbine cooling features made with AM. Specifically, the performance of microchannels and film cooling holes made with laser powder bed fusion (L-PBF) is assessed. A number of test coupons containing microchannels were built from high temperature alloy powders on a commercially available L-PBF machine. Pressure drop and heat transfer experiments characterized the flow losses and convective heat transfer of air passing through the channels at various Reynolds numbers and Mach numbers. The roughness of the channels' surfaces was characterized in terms of statistical roughness parameters; the morphology of the roughness was examined qualitatively. Magnitude and morphology of surface roughness found on AM parts is unlike any form of roughness seen in the literature. It was found that the high levels of roughness on AM surfaces result in markedly augmented pressure loss and heat transfer at all Reynolds numbers, and conventional flow and heat transfer correlations produce erroneous estimates. The physical roughness measurements made in this study were correlated to

  6. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  7. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  8. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  9. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  10. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  11. Influence of carrier density on the electronic cooling channels of bilayer graphene

    NARCIS (Netherlands)

    Limmer, T.; Houtepen, A.J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-01-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25–1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons

  12. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  13. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  14. Radionuclide Absorption Demonstration System

    Data.gov (United States)

    National Aeronautics and Space Administration — After a nuclear thermal rocket (NTR) is test fired, the engine’s reactor is operated in a cool-down mode during which radioactive exhaust by-products continue to be...

  15. Absorptive routines and international patent performance

    Directory of Open Access Journals (Sweden)

    Fernando E. García-Muiña

    2017-04-01

    We enrich the treatment of the absorptive capacity phases including the moderating effects between routines associated to the traditional potential-realized absorptive capacities. Taking into account external knowledge search strategies, the deeper external relationships, the better transference and appropriation of specific external knowledge. Nevertheless, when the moderating role of assimilation is included, cooperation agreements appear as the most efficient source of external knowledge. Finally, we show that technological tools let firms store and structure the information making easier its use for international patenting. This positive effect is reinforced in the presence of exploitation routines, since technological knowledge will better fit to the industry's key factors of success.

  16. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  17. Noise from cooling towers of power parks

    International Nuclear Information System (INIS)

    Zakaria, J.; Moore, F.K.

    1975-01-01

    A study is presented of the noise pollution problem for large power parks proposed for the future. Such parks might have an area of about 75 sq. miles, and a generating capacity up to 48000 MW. A comparative analysis has been done for natural and mechanical-draft wet towers as the major sources of acoustic power. Noise radiation from single isolated towers as well as from a dispersed array of towers has been considered for both types of cooling systems. Major noise attenuation effects considered are due to the atmospheric absorption and A-weighting. Conditions of 60F and 70 percent relative humidity in a still atmosphere have been assumed

  18. Quasar Absorption Studies

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  19. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  20. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  1. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  2. LOX/Methane Regeneratively-Cooled Rocket Engine Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to advance the technologies required to build a subcritical regeneratively cooled liquid oxygen/methane rocket combustion chamber for...

  3. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  4. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  5. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  6. Total photon absorption

    International Nuclear Information System (INIS)

    Carlos, P.

    1985-06-01

    The present discussion is limited to a presentation of the most recent total photonuclear absorption experiments performed with real photons at intermediate energy, and more precisely in the region of nucleon resonances. The main sources of real photons are briefly reviewed and the experimental procedures used for total photonuclear absorption cross section measurements. The main results obtained below 140 MeV photon energy as well as above 2 GeV are recalled. The experimental study of total photonuclear absorption in the nuclear resonance region (140 MeV< E<2 GeV) is still at its beginning and some results are presented

  7. X-ray optical analyses with X-Ray Absorption Package (XRAP)

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Dejus, R.; Grace, T.

    1994-01-01

    This paper presents an X-Ray Absorption Package (XRAP) and the theoretical background for this program. XRAP is a computer code developed for analysis of optical elements in synchrotron radiation facilities. Two main issues are to be addressed: (1) generating BM (bending magnet) and ID (insertion device) spectrum and calculating their absorption in media, especially in such structural forms as variable thickness windows/filters and crystals; and (2) providing a finite difference engine for fast but sophisticated thermal and stress analyses for optical elements, such as windows and filters. Radiation cooling, temperature-dependent material properties (such as thermal conductivity and thermal expansion coefficient) etc. are taken into account in the analyses. For very complex geometry, an interface is provided directly to finite element codes such as ANSYS. Some of the present features built into XRAP include: (1) generation of BM and ID spectra; (2) photon absorption analysis of optical elements including filters, windows and mirrors, etc.; (3) heat transfer and thermal stress analyses of windows and filters and their buckling check; (4) user-friendly graphical-interface that is based on the state-of-the-art technology of GUI and X-window systems, which can be easily ported to other computer platforms; (5) postscript file output of either black/white or colored graphics for total/absorbed power, temperature, stress, spectra, etc

  8. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  9. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  10. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  11. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  12. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  13. Absorption chillers: Part of the solution

    International Nuclear Information System (INIS)

    Occhionero, A.J.; Hughes, P.J.; Reid, E.A.

    1991-01-01

    Acid rain, ozone depletion, global warming, and implementation economics are considered as they relate to the advisability of expanding the application of absorption chillers. Introductory and background information are provided to put the discussion in the proper context. Then all four issues are discussed separately as they relate to absorption chillers. Acid rain and ozone depletion concerns, and implementation economics, are found to support the expanded use of absorption chillers. The global warming concern is found to be more of a gray area, but the areas of benefit correspond well with the conditions of greatest economic advantage. All things considered, absorption chillers are believed to be part of the environmental and economic solution. It is further believed that integrated resource planning (IRP) processes that consider electric and gas technologies on an equal footing would come to the same conclusion for many regions of the United States. 9 refs., 3 tabs

  14. Insulin analogues with improved absorption characteristics.

    Science.gov (United States)

    Brange, J; Hansen, J F; Langkjaer, L; Markussen, J; Ribel, U; Sørensen, A R

    1992-01-01

    The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.

  15. Experimental analysis and dynamic simulation of a novel high-temperature solar cooling system

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; D’Accadia, Massimo Dentice; Ferruzzi, Gabriele; Frascogna, Sabrina; Palombo, Adolfo; Russo, Roberto; Scarpellino, Marco

    2016-01-01

    Highlights: • The paper presents an innovative high temperature solar cooling system. • The system is based on novel flat-plate evacuated solar thermal collectors. • Results of an experimental campaign in Saudi Arabia are reported. • A dynamic simulation model and a detailed economic analyses are developed. • Results show that the collector and the system as a whole exhibit excellent performance. - Abstract: This paper presents experimental and numerical analyses of a novel high-temperature solar cooling system based on innovative flat-plate evacuated solar thermal collectors (SC). This is the first solar cooling system, including a double-effect absorption chiller, which is based on non-concentrating solar thermal collectors. The aim of the paper is prove the technical and economic feasibility of the system, also presenting a comparison with a conventional technology, based on concentrating solar thermal collectors. To this scope, an experimental setup has been installed in Saudi Arabia. Here, several measurement devices are installed in order to monitor and control all the thermodynamic parameters of the system. The paper presents some of the main results of this experimental campaign, showing temperatures, powers, energies and efficiencies for a selected period. Experimental results showed that collector peak efficiency is higher than 60%, whereas daily average efficiency is around 40%. This prototypal solar cooling system has been numerically analysed, developing a dynamic simulation model aiming at predicting system performance. For a representative operating period, numerical data were compared with the experimental one, showing an excellent accuracy of the model. A similar system, equipped with Parabolic Trough solar thermal collectors (PTC) was also simulated in order to compare the novel solar collectors with such reference technology. For both systems a detailed thermo-economic model has been implemented in order to perform such comparison also

  16. Experimental and analytical study on thermoelectric self cooling of devices

    International Nuclear Information System (INIS)

    Martinez, A.; Astrain, D.; Rodriguez, A.

    2011-01-01

    This paper presents and studies the novel concept of thermoelectric self cooling, which can be introduced as the cooling and temperature control of a device using thermoelectric technology without electricity consumption. For this study, it is designed a device endowed with an internal heat source. Subsequently, a commonly used cooling system is attached to the device and the thermal performance is statistically assessed. Afterwards, it is developed and studied a thermoelectric self cooling system appropriate for the device. Experimental and analytical results show that the thermal resistance between the heat source and the environment reduced by 25-30% when the thermoelectric self cooling system is installed, and indicates the promising applicability of this technology to devices that generate large amounts of heat, such as electrical power converters, transformers and control systems. Likewise, it was statistically proved that the thermoelectric self cooling system leads to significant reductions in the temperature difference between the heat source and the environment, and, what is more, this reduction increases as the heat flow generated by the heat source increases, which makes evident the fact that thermoelectric self cooling systems work as temperature controllers. -- Highlights: → Novel concept of thermoelectric self cooling is presented and studied. → No extra electricity is needed. → Thermal resistance between the heat source and the environment reduces by 25-30%. → Increasing reduction in temperature difference between heat source and environment. → Great applicability to any device that generates heat and must be cooled.

  17. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  18. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  19. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  20. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  1. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  2. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  3. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  4. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  5. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  6. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  7. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...... learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning...

  8. Comment on resonant absorption

    International Nuclear Information System (INIS)

    Hammerling, P.

    1977-01-01

    An average over angles of incidence of the usual resonant absorption function is presented. This form is appropriate under experimental conditions where the angles of incidence vary greatly and in an unknown manner. For comparison a lens-ellipsoidal mirror illumination system with a known longitudinal aberration is considered. In the latter example the angles of incidence are readily obtained and the resulting resonance absorption function evaluated. The associated fields are calculated in a similar fashion. (author)

  9. Optical absorption measurement system

    International Nuclear Information System (INIS)

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  10. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  11. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  12. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  13. Desiccant cooling: State-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  14. Desiccant cooling: State-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  15. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  16. Higher quality and lower cost with innovative cooling technology. Careful planning of cold rooms and refrigerator rooms; Qualitaets- und Kostenvorteile durch innovative Kuehltechnik. Kuehl- und TK-Raeume vorausschauend planen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-03-15

    Hygienic specifications for gastronomy, catering services and industrial kitchens are very rigid. Cooling is an important element, not least as a result of trends like 'cook and chill'. Problems can be avoided by careful planning. (orig.)

  17. Higher quality and lower cost with innovative cooling technology. Careful planning of cold rooms and refrigerator rooms; Qualitaets- und Kostenvorteile durch innovative Kuehltechnik. Kuehl- und TK-Raeume vorausschauend planen

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2007-03-15

    Hygienic specifications for gastronomy, catering services and industrial kitchens are very rigid. Cooling is an important element, not least as a result of trends like 'cook and chill'. Problems can be avoided by careful planning. (orig.)

  18. Understanding Absorptive Capacities is an "Innovation Systems" Context

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    2004-01-01

    This paper seeks to broaden our understanding of the concept underlying absorptive capacity atthe macro -level, paying particular attention to the growth and development perspectives. Weprovide definitions of absorptive and technological capacity, external technology flows,productivity growth....... We also undertake to explain how the nature ofabsorptive capacity changes with stages of economic development, and the importance of thedifferent aspects of absorptive capability at different stages. The relationship is not a linear one:the benefits that accrue from marginal increases in absorptive...... capability change over time.Finally, we provide a tentative and preliminary conceptual argument of how the different stagesof absorptive capacity are related to productivity growth, economic growth and employmentcreation.Key words: New economy, absorptive capacity, knowledge...

  19. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  20. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  1. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  2. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  3. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  4. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  5. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  6. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  7. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  8. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  9. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  10. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  11. Solar-assisted absorption air-conditioning systems in buildings: Control strategies and operational modes

    International Nuclear Information System (INIS)

    Shirazi, Ali; Pintaldi, Sergio; White, Stephen D.; Morrison, Graham L.; Rosengarten, Gary; Taylor, Robert A.

    2016-01-01

    Highlights: • A simulation model of a solar driven absorption chiller is developed in detail. • Three control strategies were proposed in the solar loop of the plant. • Series and parallel auxiliary heater arrangements were investigated. • The results showed the auxiliary-heater in parallel outperformed the series one. • Solar fraction can be increased by 20% by implementing the proposed configuration. - Abstract: Solar-assisted cooling technology has enormous potential for air-conditioning applications since both solar energy supply and cooling energy demand are well correlated. Unfortunately, market uptake of solar cooling technologies has been slow due to the high capital cost and limited design/operational experience. In the present work, different designs and operational modes for solar heating and cooling (SHC) absorption chiller systems are investigated and compared in order to identify the preferred design strategies for these systems. Three control scenarios are proposed for the solar collector loop. The first uses a constant flow pump, while the second and third control schemes employ a variable speed pump, where the solar collector (SC) set-point temperature could be either fixed or adjusted to the required demand. Series and parallel arrangements, between the auxiliary heater and the storage tank, have been examined in detail from an energy efficiency perspective. A simulation model for different system layouts is developed in the transient system simulation environment (TRNSYS, Version 17). Simulation results revealed that the total solar fraction of the plant is increased by up to 11% when a variable speed solar loop pump is used to achieve a collector set-point temperature adjusted according to the building load demand. Another significant finding of this study is that a parallel configuration for the auxiliary heater out-performs a conventional series configuration. The yearly performance of an auxiliary heater in parallel with the storage

  12. Electron beam cooling by laser

    CERN Document Server

    Urakawa, J; Terunuma, N; Taniguchi, T; Yamazaki, Y; Hirano, K; Nomura, M; Sakai, I; Takano, M; Sasao, N; Honda, Y; Noda, A; Bulyak, E; Gladkikh, P; Mystykov, A; Zelinsky, A; Zimmermann, Frank

    2004-01-01

    In 1997, Z.Huang and R.Ruth proposed a compact laser-electron storage ring (LESR) for electron beam cooling or x-ray generation. Because the laser-wire monitor in the ATF storage ring has worked well and demonstrated the achievement of the world's smallest transverse emittance for a circulating electron beam, we have started the design of a small storage ring with about 10 m circumference and the development of basic technologies for the LESR. In this paper, we describe the design and experimental results of pulse stacking in a 42-cm long optical cavity. Since our primary purpose is demonstrating the proof-of-principle of the LESR, we will then discuss the future experimental plan at the KEK-ATF for the generation of high average-brilliance gamma-rays.

  13. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  14. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  15. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ Atmospheric Measurements of N(sub 2)0, CH(sub 4), CO, HCl, and NO(sub 2) from Balloon or RPA Platforms

    Science.gov (United States)

    Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.

    1998-01-01

    The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.

  16. Vitamin A absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  17. Optimum cooling of data centers application of risk assessment and mitigation techniques

    CERN Document Server

    Dai, Jun; Das, Diganta; Pecht, Michael G

    2014-01-01

    This book provides data center designers and operators with methods by which to assess and mitigate the risks associated with utilization of optimum cooling solutions. The goal is to provide readers with sufficient knowledge to implement measures such as free air cooling or direct liquid immersion cooling properly, or combination of existing and emerging cooling technologies in data centers, base stations, and server farms. This book also: Discusses various telecommunication infrastructures, with an emphasis on data centers and base stations Covers the most commonly known energy and power management techniques, as well as emerging cooling solutions for data centers Describes the risks to the electronic equipment fitted in these installations and the methods of risk mitigation Devotes  a particular focus to an up-to-date review of the emerging cooling methods (such as free air cooling and direct liquid immersion cooling) and tools and best practices for designers, technology developers, installation operators...

  18. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    Science.gov (United States)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  19. The characteristic of evaporative cooling magnet for ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, B., E-mail: xiongbin@mail.iee.ac.cn [Institute of Electrical Engineering, CAS, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ruan, L.; Gu, G. B. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Lu, W.; Zhang, X. Z.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)

    2016-02-15

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm{sup 2}. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  20. The characteristic of evaporative cooling magnet for ECRIS

    Science.gov (United States)

    Xiong, B.; Ruan, L.; Gu, G. B.; Lu, W.; Zhang, X. Z.; Zhan, W. L.

    2016-02-01

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm2. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.