Absorbing Boundary Conditions for Hyperbolic Systems
Matthias Ehrhardt
2010-01-01
This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.
Radiation (absorbing) boundary conditions for electromagnetic fields
Bevensee, R. M.; Pennock, S. T.
1987-01-01
An important problem in finite difference or finite element computation of the electromagnetic field obeying the space-time Maxwell equations with self-consistent sources is that of truncating the outer numerical boundaries properly to avoid spurious numerical reflection. Methods for extrapolating properly the fields just beyond a numerical boundary in free space have been treated by a number of workers. This report avoids plane wave assumptions and derives boundary conditions more directly related to the source distribution within the region. The Panofsky-Phillips' relations, which enable one to extrapolate conveniently the vector field components parallel and perpendicular to a radial from the coordinate origin chosen near the center of the charge-current distribution are used to describe the space-time fields.
Towards Perfectly Absorbing Boundary Conditions for Euler Equations
Hayder, M. Ehtesham; Hu, Fang Q.; Hussaini, M. Yousuff
1997-01-01
In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.
A Novel Absorbing Boundary Condition for the Frequency-DependentFinite-Difference Time-Domain Method
无
2001-01-01
A new absorbing boundary condition (ABC) for frequency-dependent finite-difference time-domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD)2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two-dimensions and three-dimensions are calculated and the validity of the ABC is verified.
High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions
Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake
2017-03-01
We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.
A new approach to implement absorbing boundary condition in biomolecular electrostatics.
Goni, Md Osman
2013-01-01
This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.
Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations.
Zhang, Jiwei; Xu, Zhenli; Wu, Xiaonan
2008-08-01
An efficient method is proposed for numerical solutions of nonlinear Schrödinger equations on an unbounded domain. Through approximating the kinetic energy term by a one-way equation and uniting it with the potential energy equation, absorbing boundary conditions are designed to truncate the unbounded domain, which are in nonlinear form and can perfectly absorb waves outgoing from the boundaries of the truncated computational domain. The stability of the induced initial boundary value problem defined on the computational domain is examined by a normal mode analysis. Numerical examples are given to illustrate the stable and tractable advantages of the method.
Local absorbing boundary conditions for nonlinear wave equation on unbounded domain.
Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei
2011-09-01
The numerical solution of the nonlinear wave equation on unbounded spatial domain is considered. The artificial boundary method is introduced to reduce the nonlinear problem on unbounded spatial domain to an initial boundary value problem on a bounded domain. Using the unified approach, which is based on the operator splitting method, we construct the efficient nonlinear local absorbing boundary conditions for the nonlinear wave equation, and give the stability analysis of the resulting boundary conditions. Finally, several numerical examples are given to demonstrate the effectiveness of our method.
Lee, Chung-Shuo; Chen, Yan-Yu; Yu, Chi-Hua; Hsu, Yu-Chuan; Chen, Chuin-Shan
2017-02-01
We present a semi-analytical solution of a time-history kernel for the generalized absorbing boundary condition in molecular dynamics (MD) simulations. To facilitate the kernel derivation, the concept of virtual atoms in real space that can conform with an arbitrary boundary in an arbitrary lattice is adopted. The generalized Langevin equation is regularized using eigenvalue decomposition and, consequently, an analytical expression of an inverse Laplace transform is obtained. With construction of dynamical matrices in the virtual domain, a semi-analytical form of the time-history kernel functions for an arbitrary boundary in an arbitrary lattice can be found. The time-history kernel functions for different crystal lattices are derived to show the generality of the proposed method. Non-equilibrium MD simulations in a triangular lattice with and without the absorbing boundary condition are conducted to demonstrate the validity of the solution.
The implementation of an improved NPML absorbing boundary condition in elastic wave modeling
Qin Zhen; Lu Minghui; Zheng Xiaodong; Yao Yao; Zhang Cai; Song Jianyong
2009-01-01
In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and comers must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.
Implementation of higher-order absorbing boundary conditions for the Einstein equations
Rinne, Oliver; Scheel, Mark A; Pfeiffer, Harald P
2008-01-01
We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar grav...
An energy absorbing far-field boundary condition for the elastic wave equation
Petersson, N A; Sjogreen, B
2008-07-15
The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.
A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS
Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.
1993-01-01
Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).
XIE Zhi-nan; LIAO Zhen-peng
2008-01-01
In this paper the explanation of the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions is further improved. And we analytically prove the proposition that for one dimensional dis- crete model of elastic wave motion, the module of reflection factor will be greater than 1 in high frequency band when artificial wave velocity is greater than 1.5 times the ratio of discrete space step to discrete time step. Based on the proof, the frequency band in which instability occurs is discussed in detail, showing such high-frequency waves are meaningless for the numerical simulation of wave motion.
Sirenko, Kostyantyn
2013-07-01
Exact absorbing and periodic boundary conditions allow to truncate grating problems\\' infinite physical domains without introducing any errors. This work presents exact absorbing boundary conditions for 3D diffraction gratings and describes their discretization within a high-order time-domain discontinuous Galerkin finite element method (TD-DG-FEM). The error introduced by the boundary condition discretization matches that of the TD-DG-FEM; this results in an optimal solver in terms of accuracy and computation time. Numerical results demonstrate the superiority of this solver over TD-DG-FEM with perfectly matched layers (PML)-based domain truncation. © 2013 IEEE.
Wittwer, David Christian
The finite difference time domain (FDTD) method has become a main stream analysis tool for engineers solving complex electromagnetic wave interaction problems. Its first principles approach affords it a wide range of applications from radar cross section (RCS) predictions of electrically large structures to molecular scale analysis of complex materials. This wide area of application may be attributed to the coupling of auxiliary differential equations with Maxwell's equations to describe the physical properties of a given problem. Previous extensions have included sub-cell models for describing lumped circuit elements within a single Yee cell, transformation of near-field information to the far-field for the analysis of antenna problems, dispersive material models and mesh truncation techniques. A review of these extensions is presented. What has not been previously developed is the ability to truncate lossy dielectric materials at the boundary of the simulation domain. Such outer boundary conditions (OBCs) are required in simulations dealing with ground penetrating radar, integrated circuits and many microwave devices such as stripline and microstrip structures. We have developed such an OBC by surrounding the exterior of the simulation domain with a lossy dispersive material based on a two time-derivative Lorentz model (L2TDLM). We present the development of the material as an absorber and ultimately as a full 3D OBC. Examples of microstrip, structures are presented to re-enforce the importance of modeling losses in dielectric structures. Finally, validation of the FDTD simulator and demonstration of the L2TDLM OBC's effectiveness is achieved by comparison with measured results from these microwave devices.
An FDTD method with FFT-accelerated exact absorbing boundary conditions
Sirenko, Kostyantyn
2011-07-01
An accurate and efficient finite-difference time-domain (FDTD) method for analyzing axially symmetric structures is presented. The method achieves its accuracy and efficiency using exact absorbing conditions (EACs) for terminating the computation domain and a blocked-FFT based scheme for accelerating the computation of the temporal convolutions present in non-local EACs. The method is shown to be especially useful in characterization of long-duration resonant wave interactions. © 2011 IEEE.
Zhang, Jiwei; Xu, Zhenli; Wu, Xiaonan
2009-04-01
This paper aims to design local absorbing boundary conditions (LABCs) for the two-dimensional nonlinear Schrödinger equations on a rectangle by extending the unified approach. Based on the time-splitting idea, the main process of the unified approach is to approximate the kinetic energy part by a one-way equation, unite it with the potential energy equation, and then obtain the well-posed and accurate LABCs on the artificial boundaries. In the corners, we use the (1,1)-Padé approximation to the kinetic term and also unite it with the nonlinear term to give some local corner boundary conditions. Numerical tests are given to verify the stable and tractable advantages of the method.
Modave, Axel; Chan, Jesse; Warburton, Tim
2016-01-01
Discontinuous Galerkin finite element schemes exhibit attractive features for accurate large-scale wave-propagation simulations on modern parallel architectures. For many applications, these schemes must be coupled with non-reflective boundary treatments to limit the size of the computational domain without losing accuracy or computational efficiency, which remains a challenging task. In this paper, we present a combination of high-order absorbing boundary conditions (HABCs) with a nodal discontinuous Galerkin method for cuboidal computational domains. Compatibility conditions are derived for HABCs intersecting at the edges and the corners of a cuboidal domain. We propose a GPU implementation of the computational procedure, which results in a multidimensional solver with equations to be solved on 0D, 1D, 2D and 3D spatial regions. Numerical results demonstrate both the accuracy and the computational efficiency of our approach. We have considered academic benchmarks, as well as a realistic benchmark based on t...
CHEN Hao; WANG Xiuming; ZHAO Haibo
2006-01-01
A rotated staggered grid finite-difference (FD) method with a perfectly matched layer (PML) method is proposed for numerically solving elastic wave equations in inhomogeneous elastic and poroe- lastic media. Compared with a standard staggered- grid FD, the former has the advantage over the latter in that its physical variables need only to be defined at two locations. In the rotated staggered grid, stress and strain components (or particle velocity and displacement components) are defined at elementary cell centers, and the velocity or displacement components (or the stress and strain components) are defined at vertexes. In this way, no elastic moduli need to be interpolated or averaged. Numerical results from the proposed method have been compared with the standard staggered FD method. The results are in good agreement with each other. Our numerical results show that the proposed algorithm can handle much stronger impedance contrast. This is especially true when simulating fractured medium filled with fluids such as water or gas without giving special treatment. On the other hand, the implemented PML absorbing boundary condition works well in efficiently reducing reflected waves from the artificial interfaces. It generates almost no reflection at artificial interfaces with a boundary of PML thickness of half a wavelength. Our theoretical analysis and numerical tests proved that the PML absorbing algorithm in the rotated staggered grid is almost identical to those in the standard staggered grid. In this paper, we also presented all of the formulations of the PML implementation and modeling examples in elastic, poroelastic, and anisotropic media.
Quantum walk with one variable absorbing boundary
Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli
2017-01-01
Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks.
Reche-López, Pedro; Hernández, Erwin
2014-01-01
In the context of wave-like phenomena, Fourier pseudospectral time-domain (PSTD) algorithms are some of the most efficient time-domain numerical methods for engineering applications. One important drawback of these methods is the so-called Gibbs phenomenon. This error can be avoided by using absorbing boundary conditions (ABC) at the end of the simulations. However, there is an important lack of ABC using a PSTD methods on a wave equation. In this paper, we present an ABC model based on a PSTD damped wave equation with an absorption parameter that depends on the position. Some examples of optimum variation profiles are studied analytically and numerically. Finally, the results of this model are also compared to another ABC model based on an hybrid formulation of the scalar perfectly matched layer. PMID:24737966
Bolesta, Alexey V.; Zheng, Lianqing; Thompson, Donald L.; Sewell, Thomas D.
2007-12-01
We report a method that enables long-time molecular dynamics (MD) simulations of shock wave loading. The goal is to mitigate the severe interference effects that arise at interfaces or free boundaries when using standard nonequilibrium MD shock wave approaches. The essence of the method is to capture between two fixed pistons the material state at the precise instant in time when the shock front, initiated by a piston with velocity up at one end of the target sample, traverses the contiguous boundary between the target and a second, stationary piston located at the opposite end of the sample, at which point the second piston is also assigned velocity up and the simulation is continued. Thus, the target material is captured in the energy-volume Hugoniot state resulting from the initial shock wave, and can be propagated forward in time to monitor any subsequent chemistry, plastic deformation, or other time-dependent phenomena compatible with the spatial scale of the simulation. For demonstration purposes, we apply the method to shock-induced chemistry in methane based on the adaptive intermolecular reactive empirical bond order force field [S. J. Stuart , J. Chem. Phys. 112, 6472 (2000)].
Clément, A.
1996-06-01
The numerical simulation of nonlinear gravity waves propagating at the surface of a perfect fluid is now usually solved by totally nonlinear time-domain numerical models in two dimensions, and this approach is being extended to three dimensions. The original initial boundary value problem is posed in an unbounded region, extending horizontally up to infinity to model the sea. Its numerical solution requires truncating the domain at a finite distance. Unfortunately, no exact nonreflecting boundary condition on the truncating surface exists in this time-domain formulation. The proposed strategy is based on the coupling of two previously known methods in order to benefit from their different, and complementary, bandwidth: the numerical "beach," very efficient in the high frequency range; and a piston-like Neumann condition, asymptotically ideal for low frequencies. The coupling method gives excellent results in the whole range of frequencies of interest and is as easy to implement in nonlinear as in linear versions. One of its major advantages is that it does not require any spectral knowledge of the incident waves.
陈明阳; 于荣金
2001-01-01
PML吸收边界以其优异的吸收能力与效果而倍受人们的关注。本文针对运用PML吸收边界的时域有限差分法的数值色散问题进行了研究，并得到了较为满意的结果，PML吸收边界在有效减少电磁波在边界上的反射的情况下，并没有带来对数值色散的不良影响。%Perfectly matched layer PML absorbing boundary condition (ABC)and its excellent absorbing abilities and effects.have attented widely.In this paper we analysis the numerical dispersion of the PML absorbing boundary condition based finite-difference time-domain FDTD method.The PML absorbing boundary condition doesnt affect the electromagnetic waves numerical wave dispersion while effectively reducing the reflection of electromagnetic waves at absorbing boundary.
An effective absorbing boundary algorithm for acoustical wave propagator
无
2007-01-01
In this paper, Berenger's perfectly matched layer (PML) absorbing boundary condition for electromagnetic waves is introduced as the truncation area of the computational domain to absorb one-dimensional acoustic wave for the scheme of acoustical wave propagator (AWP). To guarantee the efficiency of the AWP algorithm, a regulated propagator matrix is derived in the PML medium.Numerical simulations of a Gaussian wave packet propagating in one-dimensional duct are carried out to illustraze the efficiency of the combination of PML and AWP. Compared with the traditional smoothing truncation windows technique of AWP, this scheme shows high computational accuracy in absorbing acoustic wave when the acoustical wave arrives at the computational edges. Optimal coefficients of the PML configurations are also discussed.
Normal transmitting boundary conditions
廖振鹏
1996-01-01
The multi-transmitting formula (MTF) governed by a single artificial speed is analytically developed into a generalized MTF governed by a few artificial speeds to improve its capacity in simultaneous simulation of several one-way waves propagating at different speeds.The generalized MTF is then discretized and further generalized using the space extrapolation to improve its accuracies in numerical simulation of transient waves at large angles of incidence.The above two successive generalizitions of MTF based on the notion of normal transmission lead to a compact formula of local non-reflecting boundary condition.The formula not only provides a general representation of the major schemes of existing local boundary conditions but can be used to generate new schemes,which combine advantages of different schemes.
Performance of Numerical Boundary Condition based on Active Wave Absorption
Troch, Peter; De Rouck, Julien; Frigaard, Peter
2001-01-01
The performance of a new active wave generating-absorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces is presented.......The performance of a new active wave generating-absorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces is presented....
Reweighting twisted boundary conditions
Bussone, Andrea; Hansen, Martin; Pica, Claudio
2015-01-01
Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used when evaluating, for example, form factors on the lattice. Twisting is usually performed for one flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the possibility of restoring unitarity through the reweighting method. We first study some properties of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants for different boundary conditions in order to include them in the gauge averages, avoiding in this way the expensive generation of new configurations for each choice of the twisting angle, $\\theta$. As expected the effect of reweighting is negligible in the case of large volumes but it is important when the volumes are small and the twisting angles are large. In particular we find a measurable effect for the plaquette and the pion correlation function in the case of $\\theta=\\pi/2$ in a volume $16\\times 8^3$, and we observe a syst...
杜宁
2001-01-01
Mixed finite element method is used to treat a kind of second-order nonlinear hyperbolic equations with absorbing boundary conditions. explicit-intime procedures are formulated and analyzed. Optimal L2-in-space error estimates are derived.
崔国忠; 张志平; 等
2002-01-01
This paper deals with the initial boundary value value problem for the Boltzmann-Poisson system ,which arises in semiconductor physics,with absorbing boundary.The global existence of weak solutions is proved by using the stability of velocity averages and the compactness results on L1-theory under weaker conditons on initial boundary values.
崔俊海; 钟顺时
2000-01-01
本文将理想匹配层(PML)吸收边界条件用于平面微带结构的时域有限差分法(FDTD)分析中，给出平面微带结构的PML吸收边界条件，并编制程序，进行数值计算。结果表明，与传统的Mur吸收边界条件相比，采用PML吸收边界条件只需采用最简单的馈源模型就可明显地减小计算网格空间和加快收敛速度，并且可用于分析任意复杂结构的微带电路。本文方法对微带电路及微带天线的CAD设计将具有实际意义。%The perfectly matched layer (PML) absorbing boundary condition (ABC) is used in the FDTD analysis of planar microstrip structures. The PML＇ ABC for planar microstrip structures is derived and the numerical experiments are presented. It is shown that the total mesh dimensions can be decreased and the number of time steps required for convergence can be reduced greatly using a simpler feed model compared with Mur＇s absorbing boundary condition. Furthermore, this method is valid for arbitrary microstrip geometry. This new technique can be used as a powerful CAD tool in the analysis of planar microstrip circuits and microstrip antennas.
Tests and Applications of An Approach to Absorbing Reflected Waves Towards Incident Boundary
张洪生; 王炎; 许春辉; 商辉; 于小伟
2013-01-01
If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary.
邵秀民; 刘臻
2001-01-01
It is well known that in numerical computations of wave equationsby utiliz ing explicit schemes the stability is an extremely important problem when artifi cial boundaries are introduced and absorbing boundary conditions are imposed on them. In this paper, the stability of finite difference schemes for the acoustic wave equation with the first-and the second-order Clayton-Engquist-Majda absorbing boundary conditions is discussed by using energy techniques. The corresponding stability conditions (i.e., the stability bounds of the CFL number) are given, which is sharper than those stability conditions for interior schemes or other kinds of boundary conditions. Numerical results are presented to confirm the correctness of the theoretical analysis.
Boundary condition may change chaos
Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., RIAM, Kasuga, Fukuoka (Japan); Kawai, Yoshinobu [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Kasuga, Fukuoka (Japan)
2001-07-01
Role of boundary condition for the appearance of chaos is examined. Imposition of the boundary condition is interpreted as the reduction of the system size L. For a demonstration, Rayleigh-Benard instability is considered and the shell model analysis is applied. It is shown that the reduction of L reduces the number of positive Lyapunov exponent of the system, hence opens the route from the turbulence, to the chaos and to the limit cycle/fixed point. (author)
Boundary Conditions of Weyl Semimetals
Hashimoto, Koji; Wu, Xi
2016-01-01
We find that generic boundary conditions of Weyl semimetal is dictated by only a single real parameter, in the continuum limit. We determine how the energy dispersions (the Fermi arcs) and the wave functions of edge states depend on this parameter. Lattice models are found to be consistent with our generic observation. Furthermore, the enhanced parameter space of the boundary condition is shown to support a novel topological number.
Modelling classroom conditions with different boundary conditions
Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas;
2014-01-01
both specular and diffuse reflections with complex-valued acoustical descriptions of the surfaces. In this paper the PARISM model is used to simulate a rectangular room with most of the absorption located in the ceiling. This room configuration is typical for classroom conditions. The simulations......A model that combines image source modelling and acoustical radiosity with complex boundary condition, thus including phase shifts on reflection has been developed. The model is called PARISM (Phased Acoustical Radiosity and Image Source Model). It has been developed in order to be able to model...... are done using different boundary conditions in order to investigate the influence of phase shifts in reflections, the angle dependence of the reflection coefficient and the scattering coefficient. The focus of the simulations is to investigate the influence of the boundary condition on room acoustic...
Higgsless Deconstruction Without Boundary Condition
He, H J
2004-01-01
Deconstruction is a powerful means to explore the rich dynamics of gauge theories in four and higher dimensions. We demonstrate that gauge symmetry breaking in a compactified higher dimensional theory can be formulated via deconstructed 4D moose theory with {\\it spontaneous symmetry breaking} and {\\it without boundary condition.} The proper higher-D boundary conditions are automatically induced in the continuum limit rather than being imposed. We identify and analyze the moose theories which exhibit {\\it delayed unitarity violation} (effective unitarity) as a {\\it collective effect} of many gauge groups, without resorting to any known 5D geometry. Relevant phenomenological constraints are also addressed.
Incoherent boundary conditions and metastates
Enter, Aernout C.D. van; Netočný, Karel; Schaap, Hendrikjan G.
2006-01-01
In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the moment our mathematical results only apply to ferrom
Topological expansion and boundary conditions
Eynard, Bertrand
2008-01-01
In this article, we compute the topological expansion of all possible mixed-traces in a hermitian two matrix model. In other words we give a recipe to compute the number of discrete surfaces of given genus, carrying an Ising model, and with all possible given boundary conditions. The method is recursive, and amounts to recursively cutting surfaces along interfaces. The result is best represented in a diagrammatic way, and is thus rather simple to use.
A generalized theory on the penetrating boundary conditions
邵振海; 洪伟; 周健义
2000-01-01
A generalized formula for penetrating boundary conditions is derived based on the Z-transform. The well-known absorbing boundary conditions (ABCs), such as the Mur’s ABC, and Liao’s ABC, can be deduced from the formula. Furthermore, some new ABCs can also be deduced from it. The stability of these ABCs are demonstrated via Von Neumann method and their validity is verified by numerical examples.
A generalized theory on the penetrating boundary conditions
无
2000-01-01
A generalized formula for penetrating boundary conditions is derived based on the Z-transform. The well-known absorbing boundary conditions (ABCs), such as the Mur's ABC, and Liao's ABC, can be deduced from the formula. Furthermore, some new ABCs can also be deduced from it. The stability of these ABCs are demonstrated via Von Neumann method and their validity is verified by numerical examples.
Quantum "violation" of Dirichlet boundary condition
Park, I. Y.
2017-02-01
Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a tension between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum-corrected black hole solution of the 1PI action no longer obeys, in the naive manner one may expect, the Dirichlet boundary conditions imposed at the classical level. We attribute the 'violation' of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.
Quantum violation of Dirichlet boundary condition
Park, I Y
2016-01-01
Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a clash between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum corrected solution of the 1PI action no longer obeys the Dirichlet boundary conditions imposed at the classical level. We attribute the violation of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.
Role of the basin boundary conditions in gravity wave turbulence
Deike, Luc; Gutiérrez-Matus, Pablo; Jamin, Timothée; Semin, Benoit; Aumaitre, Sébastien; Berhanu, Michael; Falcon, Eric; BONNEFOY, Félicien
2014-01-01
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely...
Probability of boundary conditions in quantum cosmology
Suenobu, Hiroshi; Nambu, Yasusada
2017-02-01
One of the main interest in quantum cosmology is to determine boundary conditions for the wave function of the universe which can predict observational data of our universe. For this purpose, we solve the Wheeler-DeWitt equation for a closed universe with a scalar field numerically and evaluate probabilities for boundary conditions of the wave function of the universe. To impose boundary conditions of the wave function, we use exact solutions of the Wheeler-DeWitt equation with a constant scalar field potential. These exact solutions include wave functions with well known boundary condition proposals, the no-boundary proposal and the tunneling proposal. We specify the exact solutions by introducing two real parameters to discriminate boundary conditions, and obtain the probability for these parameters under the requirement of sufficient e-foldings of the inflation. The probability distribution of boundary conditions prefers the tunneling boundary condition to the no-boundary boundary condition. Furthermore, for large values of a model parameter related to the inflaton mass and the cosmological constant, the probability of boundary conditions selects an unique boundary condition different from the tunneling type.
Compact difference approximation with consistent boundary condition
FU Dexun; MA Yanwen; LI Xinliang; LIU Mingyu
2003-01-01
For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.
Boundary conditions of methamphetamine craving.
Lopez, Richard B; Onyemekwu, Chukwudi; Hart, Carl L; Ochsner, Kevin N; Kober, Hedy
2015-12-01
Methamphetamine use has increased significantly and become a global health concern. Craving is known to predict methamphetamine use and relapse following abstinence. Some have suggested that cravings are automatic, generalized, and uncontrollable, but experimental work addressing these claims is lacking. In 2 exploratory studies, we tested the boundary conditions of methamphetamine craving by asking: (a) is craving specific to users' preferred route of administration?, and (b) can craving be regulated by cognitive strategies? Two groups of methamphetamine users were recruited. In Study 1, participants were grouped by their preferred route of administration (intranasal vs. smoking), and rated their craving in response to photographs and movies depicting methamphetamine use (via the intranasal vs. smoking route). In Study 2, methamphetamine smokers implemented cognitive regulation strategies while viewing photographs depicting methamphetamine smoking. Strategies involved either focusing on the positive aspects of smoking methamphetamine or the negative consequences of doing so-the latter strategy based on treatment protocols for addiction. In Study 1, we found a significant interaction between group and route of administration, such that participants who preferred to smoke methamphetamine reported significantly stronger craving for smoking stimuli, whereas those who preferred the intranasal route reported stronger craving for intranasal stimuli. In Study 2, participants reported significantly lower craving when focusing on the negative consequences associated with methamphetamine use. Taken together, these findings suggest that strength of craving for methamphetamine is moderated by users' route of administration and can be reduced by cognitive strategies. This has important theoretical, methodological, and clinical implications.
Tracer dynamics in a single-file system with absorbing boundary.
Ryabov, Artem; Chvosta, Petr
2014-02-01
The paper addresses the single-file diffusion in the presence of an absorbing boundary. The emphasis is on an interplay between the hard-core interparticle interaction and the absorption process. The resulting dynamics exhibits several qualitatively new features. First, starting with the exact probability density function for a given particle (a tracer), we study the long-time asymptotics of its moments. Both the mean position and the mean-square displacement are controlled by dynamical exponents which depend on the initial order of the particle in the file. Second, conditioning on nonabsorption, we study the distribution of long-living particles. In the conditioned framework, the dynamical exponents are the same for all particles, however, a given particle possesses an effective diffusion coefficient which depends on its initial order. After performing the thermodynamic limit, the conditioned dynamics of the tracer is subdiffusive, the generalized diffusion coefficient D(1/2) being different from that reported for the system without absorbing boundary.
Determination of optical properties by variation of boundary conditions
Nickell, Stephan; Essenpreis, Matthias; Kraemer, U.; Kohl-Bareis, Matthias; Boecker, Dirk
1998-01-01
Propagation of photons in multiple scattering media depends on absorbing and scattering properties as well as the boundary conditions of the semi-infinite medium. A new method is shown that makes use of differences in boundary conditions to determine the optical properties. Induced are these different conditions by varying the reflectivity of a sensor head. We describe the influence of the change in reflectivity with the common diffusion theory. By building a ratio between the spatially-resolved diffuse reflectance under different boundary conditions it is possible to calculate the optical properties of homogeneous phantoms. Due to optical heterogeneities in living tissue, limitations of the method was observed, which restricts the application to in vivo measurements.
Boundary conditions for viscous vortex methods
Koumoutsakos, P.; Leonard, A.; Pepin, F. (California Institute of Technology, Pasadena, CA (United States))
1994-07-01
This paper presents a Neumann-type vorticity boundary condition for the vorticity formulation of the Navier-Stokes equations. The vorticity creation process at the boundary, due to the no-slip condition, is expressed in terms of a vorticity flux. The scheme is incorporated then into a Lagrangian vortex blob method that uses a particle strength exchange algorithm for viscous diffusion. The no-slip condition is not enforced by the generation of new vortices at the boundary but instead by modifying the strength of the vortices in the vicinity of the boundary. 19 refs., 5 figs.
Absorption boundary conditions for geomertical acoustics
Jeong, Cheol-Ho
2012-01-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....
Boundary conditions: The path integral approach
Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain); Clemente-Gallardo, J [BIFI, Universidad de Zaragoza, 50009 Zaragoza (Spain); Munoz-Castaneda, J M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain)
2007-11-15
The path integral approach to quantum mechanics requires a substantial generalisation to describe the dynamics of systems confined to bounded domains. Nonlocal boundary conditions can be introduced in Feynman's approach by means of boundary amplitude distributions and complex phases to describe the quantum dynamics in terms of the classical trajectories. The different prescriptions involve only trajectories reaching the boundary and correspond to different choices of boundary conditions of selfadjoint extensions of the Hamiltonian. One dimensional particle dynamics is analysed in detail.
Probability of Boundary Conditions in Quantum Cosmology
Suenobu, Hiroshi
2016-01-01
One of the main interest in quantum cosmology is to determine which type of boundary conditions for the wave function of the universe can predict observational data of our universe. For this purpose, we solve the Wheeler-DeWitt equation numerically and evaluate probabilities for an observable representing evolution of the classical universe, especially, the number of e-foldings of the inflation. To express boundary conditions of the wave function, we use exact solutions of the Wheeler-DeWitt equation with constant scalar field potential. These exact solutions include wave functions with well known boundary condition proposals, the no-boundary proposal and the tunneling proposal. We specify them introducing two real parameters which discriminate boundary conditions and estimate values of these parameters resulting in observationally preferable predictions. We obtain the probability for these parameters under the requirement of the sufficient e-foldings of the inflation.
Logarithmic Minimal Models with Robin Boundary Conditions
Bourgine, Jean-Emile; Tartaglia, Elena
2016-01-01
We consider general logarithmic minimal models ${\\cal LM}(p,p')$, with $p,p'$ coprime, on a strip of $N$ columns with the $(r,s)$ Robin boundary conditions introduced by Pearce, Rasmussen and Tipunin. The associated conformal boundary conditions are labelled by the Kac labels $r\\in{\\Bbb Z}$ and $s\\in{\\Bbb N}$. The Robin vacuum boundary condition, labelled by $(r,s\\!-\\!\\frac{1}{2})=(0,\\mbox{$\\textstyle \\frac{1}{2}$})$, is given as a linear combination of Neumann and Dirichlet boundary conditions. The general $(r,s)$ Robin boundary conditions are constructed, using fusion, by acting on the Robin vacuum boundary with an $(r,s)$-type seam consisting of an $r$-type seam of width $w$ columns and an $s$-type seam of width $d=s-1$ columns. The $r$-type seam admits an arbitrary boundary field which we fix to the special value $\\xi=-\\tfrac{\\lambda}{2}$ where $\\lambda=\\frac{(p'-p)\\pi}{2p'}$ is the crossing parameter. The $s$-type boundary introduces $d$ defects into the bulk. We consider the associated quantum Hamiltoni...
Numerical implementation of isolated horizon boundary conditions
Jaramillo, J L; Limousin, F
2006-01-01
We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasi-equilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the Conformal Thin Sandwich equations. As main results, we firstly establish the consistency of including in the set of boundary conditions a "constant surface gravity" prescription, interpretable as a lapse boundary condition, and secondly we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the Conformal Transverse Traceless equations with quasi-equilibrium horizon conditions extend to the Conformal Thin Sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon.
Memory cost of absorbing conditions for the finite-difference time-domain method.
Chobeau, Pierre; Savioja, Lauri
2016-07-01
Three absorbing layers are investigated using standard rectilinear finite-difference schemes. The perfectly matched layer (PML) is compared with basic lossy layers terminated by two types of absorbing boundary conditions, all simulated using equivalent memory consumption. Lossy layers present the advantage of being scalar schemes, whereas the PML relies on a staggered scheme where both velocity and pressure are split. Although the PML gives the lowest reflection magnitudes over all frequencies and incidence angles, the most efficient lossy layer gives reflection magnitudes of the same order as the PML from mid- to high-frequency and for restricted incidence angles.
Optimal Boundary Conditions for ORCA-2 Model
Kazantsev, Eugene
2012-01-01
A 4D-Var data assimilation technique is applied to a ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of the boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of the boundary conditions on the solution is analyzed as in the assimilation window and beyond the window. It is shown that optimal conditions for vertical operators allows to get stronger and finer jet streams (Gulf Stream, Kuroshio) in the solution. Analyzing the reasons of the jets reinforcement, we see that the major impact of the data assimilation is made on the parametrization of the bottom boundary conditions for lateral velocities u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.
Student difficulties with Boundary Conditions in electrodynamics
Ryan, Qing X; Wilcox, Bethany R
2015-01-01
Boundary conditions (BCs) are considered as an important topic that advanced physics under- graduates are expected to understand and apply. We report findings from an investigation of student difficulties using boundary conditions (BCs) in electrodynamics. Our data sources include student responses to traditional exam questions, conceptual survey questions, and think-aloud interviews. The analysis was guided by an analytical framework that characterizes how students activate, con- struct, execute, and reflect on boundary conditions. Common student difficulties include: activating boundary conditions in appropriate contexts; constructing a complex expression for the E&M waves; mathematically simplifying complex exponentials and checking if the reflection and transmission co- efficient are physical. We also present potential pedagogical implications based on our observations.
Twisted Boundary Conditions in Lattice Simulations
Sachrajda, Christopher T C
2004-01-01
By imposing twisted boundary conditions on quark fields it is possible to access components of momenta other than integer multiples of 2pi/L on a lattice with spatial volume L^3. We use Chiral Perturbation Theory to study finite-volume effects with twisted boundary conditions for quantities without final-state interactions, such as meson masses, decay constants and semileptonic form factors, and confirm that they remain exponentially small with the volume. We show that this is also the case for "partially twisted" boundary conditions, in which (some of) the valence quarks satisfy twisted boundary conditions but the sea quarks satisfy periodic boundary conditions. This observation implies that it is not necessary to generate new gluon configurations for every choice of the twist angle, making the method much more practicable. For K->pipi decays we show that the breaking of isospin symmetry by the twisted boundary conditions implies that the amplitudes cannot be determined in general (on this point we disagree ...
Multireflection boundary conditions for lattice Boltzmann models.
Ginzburg, Irina; d'Humières, Dominique
2003-12-01
We present a general framework for several previously introduced boundary conditions for lattice Boltzmann models, such as the bounce-back rule and the linear and quadratic interpolations. The objectives are twofold: first to give theoretical tools to study the existing link-type boundary conditions and their corresponding accuracy; second to design boundary conditions for general flows which are third-order kinetic accurate. Using these new boundary conditions, Couette and Poiseuille flows are exact solutions of the lattice Boltzmann models for a Reynolds number Re=0 (Stokes limit) for arbitrary inclination with the lattice directions. Numerical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates, and for Navier-Stokes flows in periodic arrays of cylinders for Re<200. These results show a significant improvement of the overall accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the new multireflection boundary conditions, reaching a level of accuracy close to the quasianalytical reference solutions, even for rather modest grid resolutions and few points in the narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much smoother with multireflection than with the other boundary conditions. Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder.
Reconstruction of boundary conditions from internal conditions using viability theory
Hofleitner, Aude
2012-06-01
This article presents a method for reconstructing downstream boundary conditions to a HamiltonJacobi partial differential equation for which initial and upstream boundary conditions are prescribed as piecewise affine functions and an internal condition is prescribed as an affine function. Based on viability theory, we reconstruct the downstream boundary condition such that the solution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions and reconstructed downstream boundary condition satisfies the internal value condition. This work has important applications for estimation in flow networks with unknown capacity reductions. It is applied to urban traffic, to reconstruct signal timings and temporary capacity reductions at intersections, using Lagrangian sensing such as GPS devices onboard vehicles.
Future Boundary Conditions in De Sitter Space
Anninos, Dionysios; Strominger, Andrew
2011-01-01
We consider asymptotically future de Sitter spacetimes endowed with an eternal observatory. In the conventional descriptions, the conformal metric at the future boundary I^+ is deformed by the flux of gravitational radiation. We however impose an unconventional future "Dirichlet" boundary condition requiring that the conformal metric is flat everywhere except at the conformal point where the observatory arrives at I^+. This boundary condition violates conventional causality, but we argue the causality violations cannot be detected by any experiment in the observatory. We show that the bulk-to-bulk two-point functions obeying this future boundary condition are not realizable as operator correlation functions in any de Sitter invariant vacuum, but they do agree with those obtained by double analytic continuation from anti-de Sitter space.
Boundary conditions for the gravitational field
Winicour, Jeffrey
2012-06-01
A review of the treatment of boundaries in general relativity is presented with the emphasis on application to the formulations of Einstein's equations used in numerical relativity. At present, it is known how to treat boundaries in the harmonic formulation of Einstein's equations and a tetrad formulation of the Einstein-Bianchi system. However, a universal approach valid for other formulations is not in hand. In particular, there is no satisfactory boundary theory for the 3+1 formulations which have been highly successful in binary black hole simulation. I discuss the underlying problems that make the initial-boundary-value problem much more complicated than the Cauchy problem. I review the progress that has been made and the important open questions that remain. Science is a differential equation. Religion is a boundary condition. (Alan Turing, quoted in J D Barrow, ‘Theories of Everything’)
Transmitting boundary and radiation conditions at infinity
廖振鹏
2001-01-01
Relationship between the radiation conditions at infinity and the transmitting boundary for numerical simulation of the near-field wave motion has been studied in this paper. The conclusion is that the transmitting boundary is approximately equivalent to the radiation conditions at infinity for a large class of infinite media. And the errors of the approximation are of the same order of magnitude as those of the finite elements or finite differences in numerical simulation of wave motion. This result provides a sound theoretical basis for the transmitting boundary used in the numerical simulation of the near-field wave motion and gives a complete explanation for the major experiences accumulated in applications of the transmitting boundary to the numerical simulation.
Anchored boundary conditions for locally isostatic networks
Theran, Louis; Nixon, Anthony; Ross, Elissa; Sadjadi, Mahdi; Servatius, Brigitte; Thorpe, M. F.
2015-11-01
Finite pieces of locally isostatic networks have a large number of floppy modes because of missing constraints at the surface. Here we show that by imposing suitable boundary conditions at the surface the network can be rendered effectively isostatic. We refer to these as anchored boundary conditions. An important example is formed by a two-dimensional network of corner sharing triangles, which is the focus of this paper. Another way of rendering such networks isostatic is by adding an external wire along which all unpinned vertices can slide (sliding boundary conditions). This approach also allows for the incorporation of boundaries associated with internal holes and complex sample geometries, which are illustrated with examples. The recent synthesis of bilayers of vitreous silica has provided impetus for this work. Experimental results from the imaging of finite pieces at the atomic level need such boundary conditions, if the observed structure is to be computer refined so that the interior atoms have the perception of being in an infinite isostatic environment.
Constructing parametric triangular patches with boundary conditions
Hui Liu; Jun Ma; Fuhua Cheng
2008-01-01
The problem of constructing a parametric triangular patch to smoothly connect three surface patches is studied. Usually, these surface patches are defined on different parameter spaces. Therefore, it is necessary to define interpolation conditions, with values from the given surface patches, on the boundary of the triangular patch that can ensure smooth transition between different parameter spaces. In this paper we present a new method to define boundary conditions. Boundary conditions defined by the new method have the same parameter space if the three given surface patches can be converted into the same form through affine transformation. Consequently, any of the classic methods for constructing functional triangular patches can be used directly to construct a parametric triangular patch to connect given surface patches with G continuity. The resulting parametric triangular patch preserves precision of the applied classic method.
Performance of Numerical Boundary Condition based on Active Wave Absorption System
Trouch, P.; Rouck, J. de; Frigaard, Peter
2001-01-01
that was first developed in the context of physical wave flume experiments, using a wave paddle. The method applies to regular and irregular waves. Velocities are measured at one location inside the computational domain. The reflected wave train is separated from the incident wave field in front of a structure......The implementation and performance of a new active wave generating‐absorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces is presented. This numerical boundary condition AWAVOF is based on an active wave absorption system...... by means of digital filtering and subsequent superposition of the measured velocity signals. The incident wave signal is corrected, so that the reflected wave is effectively absorbed at the boundary. The effectiveness of the active wave generating‐absorbing boundary condition is proved using numerical...
ADHMN boundary conditions from removing monopoles
Chen, X; Chen, Xingang; Weinberg, Erick J.
2003-01-01
Boundary conditions play an important role in the ADHMN construction of BPS monopole solutions. In this paper we show how different types of boundary conditions can be related to each other by removing monopoles to spatial infinity. In particular, we use this method to show how the jumping data naturally emerge. The results can be interpreted in the D-brane picture and provide a better understanding of the derivation of the ADHMN construction from D-branes. We comment briefly on the cases with non-Abelian unbroken symmetry and massless monopoles.
Mixed boundary conditions for piezoelectric plates
无
2009-01-01
For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions accurate to all order.A decay analysis technique is used to establish necessary conditions that the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate.For the case of axisymmetric bending and stretching of a circular plate,these decaying state conditions are obtained explicitly for the first time when the mixed conditions are imposed on the plate edge.They are then used for the correct formulation of boundary conditions for the interior solution.
An h-principle with boundary condition
Dotto, Emanuele
2010-01-01
We prove an h-principle with boundary condition for a certain class of topological spaces valued sheaves. The techniques used in the proof come from the study of the homotopy type of the cobordism categories, and they are of simplicial and categorical nature. Applying the main result of this paper...
Boundary Conditions at Infinity for Physical Theories
Trautman, Andrzej
2016-01-01
The Sommerfeld boundary conditions, imposed on hyperbolic differential equations to obtain solutions in the form of outgoing waves, are formulated here so as to make explicit the role of an appropriate null vector field. When applied to the scalar and Maxwell equations, they lead to the asymptotic form of the energy-momentum tensor representing radiation as a null, perfect dust.
Boundary Value Problems With Integral Conditions
Karandzhulov, L. I.; Sirakova, N. D.
2011-12-01
The weakly perturbed nonlinear boundary value problems (BVP) for almost linear systems of ordinary differential equations (ODE) are considered. We assume that the nonlinear part contain an additional function, which defines the perturbation as singular. Then the Poincare method is not applicable. The problem of existence, uniqueness and construction of a solution of the posed BVP with integral condition is studied.
Abstract wave equations with acoustic boundary conditions
Mugnolo, Delio
2010-01-01
We define an abstract setting to treat wave equations equipped with time-dependent acoustic boundary conditions on bounded domains of ${\\bf R}^n$. We prove a well-posedness result and develop a spectral theory which also allows to prove a conjecture proposed in (Gal-Goldstein-Goldstein, J. Evol. Equations 3 (2004), 623-636). Concrete problems are also discussed.
Time-dependent density functional theory with twist-averaged boundary conditions
Schuetrumpf, B; Reinhard, P -G
2016-01-01
Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, 3D coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a box. For finite quantum systems (atoms, molecules, nuclei), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. These artifacts can be practically cured by introducing absorbing boundary conditions (ABC) through an absorbing potential in a certain boundary region sufficiently far from the described system. But also the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust) suffer artifacts from a finite computational box. In this regime, twist- averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we exte...
Javili, A.; Saeb, S.; Steinmann, P.
2016-10-01
In the past decades computational homogenization has proven to be a powerful strategy to compute the overall response of continua. Central to computational homogenization is the Hill-Mandel condition. The Hill-Mandel condition is fulfilled via imposing displacement boundary conditions (DBC), periodic boundary conditions (PBC) or traction boundary conditions (TBC) collectively referred to as canonical boundary conditions. While DBC and PBC are widely implemented, TBC remains poorly understood, with a few exceptions. The main issue with TBC is the singularity of the stiffness matrix due to rigid body motions. The objective of this manuscript is to propose a generic strategy to implement TBC in the context of computational homogenization at finite strains. To eliminate rigid body motions, we introduce the concept of semi-Dirichlet boundary conditions. Semi-Dirichlet boundary conditions are non-homogeneous Dirichlet-type constraints that simultaneously satisfy the Neumann-type conditions. A key feature of the proposed methodology is its applicability for both strain-driven as well as stress-driven homogenization. The performance of the proposed scheme is demonstrated via a series of numerical examples.
Restructuring surface tessellation with irregular boundary conditions
Tsung-Hsien Wang
2014-12-01
Full Text Available In this paper, the surface tessellation problem is explored, in particular, the task of meshing a surface with the added consideration of incorporating constructible building components. When a surface is tessellated into discrete counterparts, certain unexpected conditions usually occur at the boundary of the surface, in particular, when the surface is being trimmed. For example, irregularly shaped panels form at the trimmed edges. To reduce the number of irregular panels that may form during the tessellation process, this paper presents an algorithmic approach to restructuring the surface tessellation by investigating irregular boundary conditions. The objective of this approach is to provide an alternative way for freeform surface manifestation from a well-structured discrete model of the given surface.
Boundary conditions in conformal and integrable theories
Petkova, V B
2000-01-01
The study of boundary conditions in rational conformal field theories is not only physically important. It also reveals a lot on the structure of the theory ``in the bulk''. The same graphs classify both the torus and the cylinder partition functions and provide data on their hidden ``quantum symmetry''. The Ocneanu triangular cells -- the 3j-symbols of these symmetries, admit various interpretations and make a link between different problems.
Semi-implicit Image Denoising Algorithm for Different Boundary Conditions
Yuying Shi
2013-04-01
Full Text Available In this paper, the Crank-Nicolson semi-implicit difference scheme in matrix form is applied to discrete the Rudin-Osher-Fatemi model. We also consider different boundary conditions: Dirichlet boundary conditions, periodic boundary conditions, Neumann boundary conditions, antireflective boundary conditions and mean boundary conditions. By comparing the experimental results of Crank-Nicolson semi-implicit scheme and explicit scheme with the proposed boundary conditions, we can get that the semi-implicit scheme can overcome the instability and the number of iterations of the shortcomings that the explicit discrete scheme has, and its recovery effects are better than the explicit discrete scheme. In addition, the antireflective boundary conditions and Neumann boundary conditions can better maintain the continuity of the boundary in image denoising.
Open Boundary Conditions for Dissipative MHD
Meier, E T
2011-11-10
In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.
Canonical group quantization and boundary conditions
Jung, Florian
2012-07-16
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
An H-Principle With Boundary Condition
Dotto, Emanuele
2010-01-01
We prove an h-principle with boundary condition for a certain class of topological spaces valued sheaves. The techniques used in the proof come from the study of the homotopy type of the cobordism categories, and they are of simplicial and categorical nature. Applying the main result of this paper to a certain sheaf we find another proof of the homotopy equivalence between the classifying space of a cobordism category and a loop space of the Thom space of the complement of the tautological bundle over the Grassmannians.
Nunes, J.C.
1991-01-01
This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft-tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta-ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radiommunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods had to be assessed. Although restricted to one radionuclide, phosphorus-32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods are compared with experimental data. Monte Carlo results compare satisfactory with experimental results for the boundaries considered.
Thermal field theories and shifted boundary conditions
Giusti, Leonardo
2013-01-01
The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedur...
Effective Hydrodynamic Boundary Conditions for Corrugated Surfaces
Mongruel, Anne; Asmolov, Evgeny S; Vinogradova, Olga I
2012-01-01
We report measurements of the hydrodynamic drag force acting on a smooth sphere falling down under gravity to a plane decorated with microscopic periodic grooves. Both surfaces are lyophilic, so that a liquid (silicone oil) invades the surface texture being in the Wenzel state. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. To quantify the effect of roughness we use the effective no-slip boundary condition, which is applied at the imaginary smooth homogeneous isotropic surface located at an intermediate position between top and bottom of grooves. Such an effective condition fully characterizes the force reduction measured with the real surface, and the location of this effective plane is related to geometric parameters of the texture by a simple analytical formula.
Ion beam interaction with a potential dip formed in front of an electron-absorbing boundary
Bailung, H; Pal, A R; Adhikary, N C; Gogoi, H K; Chutia, Joyanti [Plasma Physics Laboratory, Materials Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam (India)
2006-02-15
Evolution of a potential dip in front of an electron absorbing plate has been experimentally investigated. A potential drop of the order of T{sub e}/2 exists between the bulk plasma and the boundary of the electron space charge region where the potential minimum occurs. The dip parameters are found to obey Child's law. Necessary ion pumping is provided by the floating teflon sheet covering the back of the plate. An ion beam launched towards the plate is found to be effective to modify the dip and subsequently suppress it.
Trapping Horizons as inner boundary conditions for black hole spacetimes
Jaramillo, J L; Cordero-Carrion, I; Ibáñez, J M
2007-01-01
We present a set of inner boundary conditions for the numerical construction of dynamical black hole space-times, when employing a 3+1 constrained evolution scheme and an excision technique. These inner boundary conditions are heuristically motivated by the dynamical trapping horizon framework and are enforced in an elliptic subsystem of the full Einstein equation. In the stationary limit they reduce to existing isolated horizon boundary conditions. A characteristic analysis completes the discussion of inner boundary conditions for the radiative modes.
On Hydroelastic Body-Boundary Condition of Floating Structures
Xia, Jinzhu
1996-01-01
A general linear body boundary condition of hydroelastic analysis of arbitrary shaped floating structures generalizes the classic kinematic rigid-body (Timman-Newman) boundary condition for seakeeping problems. The new boundary condition is consistent with the existing theories under certain assu...
On reweighting for twisted boundary conditions
Bussone, Andrea; Hansen, Martin; Pica, Claudio
2016-01-01
We consider the possibility of using reweighting techniques in order to correct for the breaking of unitarity when twisted boundary conditions are imposed on valence fermions in simulations of lattice gauge theories. We start by studying the properties of reweighting factors and their variances at tree-level. That leads us to the introduction of a factorization for the fermionic reweighting determinant. In the numerical, stochastic, implementation of the method, we find that the effect of reweighting is negligible in the case of large volumes but it is sizeable when the volumes are small and the twisting angles are large. More importantly, we find that for un-improved Wilson fermions, and in small volumes, the dependence of the critical quark mass on the twisting angle is quite pronounced and results in large violations of the continuum dispersion relation.
Thermal momentum distribution from shifted boundary conditions
Giusti, Leonardo
2011-01-01
At finite temperature the distribution of the total momentum is an observable characterizing the thermal state of a field theory, and its cumulants are related to thermodynamic potentials. In a relativistic system at zero chemical potential, for instance, the thermal variance of the total momentum is a direct measure of the entropy. We relate the generating function of the cumulants to the ratio of a path integral with properly shifted boundary conditions in the compact direction over the ordinary partition function. In this form it is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang--Mills theory, and obtain the entropy density at three different temperatures.
Nunes, Josane C.
1991-02-01
This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared
Power Absorption by Closely Spaced Point Absorbers in Constrained Conditions
De Backer, G.; Vantorre, M.; Beels, C.;
2010-01-01
The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered, represent......The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered......, representing the wave climate at Westhinder on the Belgian Continental Shelf The impact of slamming, stroke and force restrictions on the power absorption is evaluated and optimal PTO parameters are determined For multiple bodies optimal control parameters (CP) are not only dependent on the incoming waves...
Effects of Boundary Conditions on Single-File Pedestrian Flow
Zhang, Jun; Seyfried, Armin
2015-01-01
In this paper we investigate effects of boundary conditions on one dimensional pedestrian flow which involves purely longitudinal interactions. Qualitatively, stop-and-go waves are observed under closed boundary condition and dissolve when the boundary is open. To get more detailed information the fundamental diagrams of the open and closed systems are compared using Voronoi-based measurement method. Higher maximal specific flow is observed from the pedestrian movement at open boundary condition.
Surface free energy for systems with integrable boundary conditions
Goehmann, Frank [Fachbereich C-Physik, Bergische Universitaet Wuppertal, 42097 Wuppertal (Germany); Bortz, Michael [Department of Theoretical Physics, Australian National University, Canberra ACT 0200 (Australia); Frahm, Holger [Institut fuer Theoretische Physik, Universitaet Hannover, 30167 Hannover (Germany)
2005-12-16
The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions.
Bucur, Dorin; Feireisl, Eduard; Nečasová, Šárka
2010-07-01
We consider a family of solutions to the evolutionary Navier-Stokes system supplemented with the complete slip boundary conditions on domains with rough boundaries. We give a complete description of the asymptotic limit by means of Γ-convergence arguments, and identify a general class of boundary conditions.
Measuring the entropy from shifted boundary conditions
Giusti, Leonardo
2013-01-01
We explore a new computational strategy for determining the equation of state of the SU(3) Yang-Mills theory. By imposing shifted boundary conditions, the entropy density is computed from the vacuum expectation value of the off-diagonal components T_{0k} of the energy-momentum tensor. A step-scaling function is introduced to span a wide range in temperature values. We present preliminary numerical results for the entropy density and its step-scaling function obtained at eight temperature values in the range T_c - 15 T_c. At each temperature, discretization effects are removed by simulating the theory at several lattice spacings and by extrapolating the results to the continuum limit. Finite-size effects are always kept below the statistical errors. The absence of ultraviolet power divergences and the remarkably small discretization effects allow for a precise determination of the step-scaling function in the explored temperature range. These findings establish this strategy as a viable solution for an accurat...
Positive solutions for the beam equation under certain boundary conditions
Bo Yang
2005-07-01
Full Text Available We consider a boundary-value problem for the beam equation, in which the boundary conditions mean that the beam is embedded at one end and fastened with a sliding clamp at the other end. Some priori estimates to the positive solutions for the boundary-value problem are obtained. Sufficient conditions for the existence and nonexistence of positive solutions for the boundary-value problem are established.
STOCHASTIC ANALYSIS OF GROUNDWATER FLOW SUBJECT TO RANDOM BOUNDARY CONDITIONS
SHI Liang-sheng; YANG Jin-zhong; CAI Shu-ying; LIN Lin
2008-01-01
A stochastic model was developed to simulate the flow in heterogeneous media subject to random boundary conditions.Approximate partial differential equations were derived based on the Karhunen-Loeve (KL) expansion and perturbation expansion. The effect of random boundary conditions on the two-dimensional flow was examined. It is shown that the proposed stochastic model is efficient to include the random boundary conditions. The random boundaries lead to the increase of head variance and velocity variance. The influence of the random boundary conditions on head uncertainty is exerted over the whole simulated region, while the randomness of the boundary conditions leads to the increase of the velocity variance in the vicinity of boundaries.
Optimal boundary conditions at the staircase-shaped coastlines
Kazantsev, Eugene
2014-01-01
A 4D-Var data assimilation technique is applied to the rectangular-box configuration of the NEMO in order to identify the optimal parametrization of boundary conditions at lateral boundaries. The case of the staircase-shaped coastlines is studied by rotating the model grid around the center of the box. It is shown that, in some cases, the formulation of the boundary conditions at the exact boundary leads to appearance of exponentially growing modes while optimal boundary conditions allow to correct the errors induced by the staircase-like appriximation of the coastline.
Improved outer boundary conditions for Einstein's field equations
Buchman, Luisa T [Center for Relativity, University of Texas at Austin, 1 University Station C1606, Austin, TX 78712-1081 (United States); Sarbach, Olivier C A [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Cd. Universitaria, C P 58040 Morelia, Michoacan (Mexico)
2007-06-21
In a recent article, we constructed a hierarchy B{sub L} of outer boundary conditions for Einstein's field equations with the property that, for a spherical outer boundary, it is perfectly absorbing for linearized gravitational radiation up to a given angular momentum number L. In this paper, we generalize B{sub L} so that it can be applied to fairly general foliations of spacetime by space-like hypersurfaces and general outer boundary shapes and further, we improve B{sub L} in two steps: (i) we give a local boundary condition C{sub L}which is perfectly absorbing including first-order contributions in 2M/R of curvature corrections for quadrupolar waves (where M is the mass of the spacetime and R is a typical radius of the outer boundary) and which significantly reduces spurious reflections due to backscatter, and (ii) we give a non-local boundary condition D{sub L} which is exact when first-order corrections in 2M/R for both curvature and backscatter are considered, for quadrupolar radiation.
Reconnection Rate in Collisionless Magnetic Reconnection under Open Boundary Conditions
HUANG Jun; MA Zhi-Wei
2008-01-01
Collisionless magnetic reconnection is studied by using two-dimensional Darwin particle-in-cell simulations with different types of open boundary conditions.The simulation results indicate that reconnection rates are strongly dependent on the imposed boundary conditions of the magnetic field Bx in the inward side. Under the zerogradient Bx boundary condition,the reconnection rate quickly decreases after reaching its maximum and no steady-state is found.Under both electromagnetic and magnetosonic boundary conditions,the system can reach a quasi-steady state.However,the reconnection rate Er≈ 0.08 under the electromagnetic boundary condition is weaker than Er≈ 0.13 under the magnetosonic boundary condition.
Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations
Ehrlacher, V.; Ortner, C.; Shapeev, A. V.
2016-12-01
Numerical simulations of crystal defects are necessarily restricted to finite computational domains, supplying artificial boundary conditions that emulate the effect of embedding the defect in an effectively infinite crystalline environment. This work develops a rigorous framework within which the accuracy of different types of boundary conditions can be precisely assessed. We formulate the equilibration of crystal defects as variational problems in a discrete energy space and establish qualitatively sharp regularity estimates for minimisers. Using this foundation we then present rigorous error estimates for (i) a truncation method (Dirichlet boundary conditions), (ii) periodic boundary conditions, (iii) boundary conditions from linear elasticity, and (iv) boundary conditions from nonlinear elasticity. Numerical results confirm the sharpness of the analysis.
Phase modulated solitary waves controlled by bottom boundary condition
Mukherjee, Abhik
2014-01-01
A forced KdV equation is derived to describe weakly nonlinear, shallow water surface wave propagation over non trivial bottom boundary condition. We show that different functional forms of bottom boundary conditions self-consistently produce different forced kdV equations as the evolution equations for the free surface. Solitary wave solutions have been analytically obtained where phase gets modulated controlled by bottom boundary condition whereas amplitude remains constant.
Normal ordering and boundary conditions in open bosonic strings
Braga, N R F; Carrion, H L; Braga, Nelson R. F.; Godinho, Cresus F. L.; Carrion, Hector L.
2004-01-01
Boundary conditions play a non trivial role in string theory. For instance the rich structure of D-branes is generated by choosing appropriate combinations of Dirichlet and Neumann boundary conditions. Furthermore, when an antisymmetric background is present at the string end-points (corresponding to mixed boundary conditions) space time becomes non-commutative there. We show here how to build up normal ordered products for bosonic string position operators that satisfy both equations of motion and open string boundary conditions at quantum level. We also calculate the equal time commutator of these normal ordered products in the presence of antisymmetric tensor background.
Quantum “violation” of Dirichlet boundary condition
I.Y. Park
2017-02-01
Full Text Available Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a tension between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum-corrected black hole solution of the 1PI action no longer obeys, in the naive manner one may expect, the Dirichlet boundary conditions imposed at the classical level. We attribute the ‘violation’ of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.
Parameter identification of stochastic diffusion systems with unknown boundary conditions
Aihara, Shin Ichi; Bagchi, Arunabha
2013-01-01
This paper treats the filtering and parameter identification for the stochastic diffusion systems with unknown boundary conditions. The physical situation of the unknown boundary conditions can be found in many industrial problems,i.g., the salt concentration model of the river Rhine is a typical ex
On domain wall boundary conditions for the XXZ spin Hamiltonian
Orlando, Domenico; Reffert, Susanne; Reshetikhin, Nicolai
In this note, we derive the spectrum of the infinite quantum XXZ spin chain with domain wall boundary conditions. The eigenstates are constructed as limits of Bethe states for the finite XXZ spin chain with quantum sl(2) invariant boundary conditions....
Periodic Boundary Conditions in the ALEGRA Finite Element Code
AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.
1999-11-01
This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.
Gravitational instability on the brane: the role of boundary conditions
Shtanov, Y; Sahni, V; Shtanov, Yuri; Viznyuk, Alexander; Sahni, Varun
2007-01-01
An outstanding issue in braneworld theory concerns the setting up of proper boundary conditions for the brane-bulk system. Boundary conditions (BC's) employing regulatory branes or demanding that the bulk metric be nonsingular have yet to be implemented in full generality. In this paper, we take a different route and specify boundary conditions directly on the brane thereby arriving at a local and closed system of equations (on the brane). We consider a one-parameter family of boundary conditions involving the anisotropic stress of the projection of the bulk Weyl tensor on the brane and derive an exact system of equations describing scalar cosmological perturbations on a generic braneworld with induced gravity. Depending upon our choice of boundary conditions, perturbations on the brane either grow moderately (region of stability) or rapidly (instability). In the instability region, the evolution of perturbations usually depends upon the scale: small scale perturbations grow much more rapidly than those on la...
Conformal Boundary Conditions and what they teach us
Petkova, V B
2001-01-01
The question of boundary conditions in conformal field theories is discussed, in the light of recent progress. Two kinds of boundary conditions are examined, along open boundaries of the system, or along closed curves or ``seams''. Solving consistency conditions known as Cardy equation is shown to amount to the algebraic problem of finding integer valued representations of (one or two copies of) the fusion algebra. Graphs encode these boundary conditions in a natural way, but are also relevant in several aspects of physics ``in the bulk''. Quantum algebras attached to these graphs contain information on structure constants of the operator algebra, on the Boltzmann weights of the corresponding integrable lattice models etc. Thus the study of boundary conditions in Conformal Field Theory offers a new perspective on several old physical problems and offers an explicit realisation of recent mathematical concepts.
Poynting Flux-Conserving Boundary Conditions for Global MHD Models
Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Lyon, J.; Merkin, V. G.; Wiltberger, M. J.
2014-12-01
Poynting Flux-conserving boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the low-altitude (or inner) boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. This method involves the mapping of both the potential from the ionosphere and the perpendicular magnetic field from the inner magnetosphere to the ghost cells of the computational domain. The single fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method. The comparisons of simulations using the standard hardwall boundary conditions of the LFM model and the flux-conserving boundary conditions show that the method reported here improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the field-aligned DC Poynting flux just above the boundary is very nearly equal to the ionospheric Joule heating, as it should be if electromagnetic energy is conserved.
Assessment of a PML Boundary Condition for Simulating an MRI Radio Frequency Coil
Yunsuo Duan
2008-01-01
Full Text Available Computational methods such as the finite difference time domain (FDTD play an important role in simulating radiofrequency (RF coils used in magnetic resonance imaging (MRI. The choice of absorbing boundary conditions affects the final outcome of such studies. We have used FDTD to assess the Berenger's perfectly matched layer (PML as an absorbing boundary condition for computation of the resonance patterns and electromagnetic fields of RF coils. We first experimentally constructed a high-pass birdcage head coil, measured its resonance pattern, and used it to acquire proton (1H phantom MRI images. We then computed the resonance pattern and B1 field of the coil using FDTD with a PML as an absorbing boundary condition. We assessed the accuracy and efficiency of PML by adjusting the parameters of the PML and comparing the calculated results with measured ones. The optimal PML parameters that produce accurate (comparable to the experimental findings FDTD calculations are then provided for the birdcage head coil operating at 127.72 MHz, the Larmor frequency of 1H at 3 Tesla (T.
Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions
Danxia Wang
2015-01-01
Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l(ux2dxuxx-ϕ(∫0l(ux2dxuxxt=q(x, in [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.
Breakup of spiral wave under different boundary conditions
Zhao Ying-Kui; Wang Guang-Rui; Chen Shi-Gang
2007-01-01
In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the instability of the system caused by the boundary effect occurs in the last two cases, resulting in the breakup of spiral wave near the boundary. With our defined average order measure of spiral wave (AOMSW), we quantify the degree of order of the system when the boundary-induced breakup of spiral wave happens. By analysing the AOMSW and outer diameter R of the spiral tip orbit, it is easy to find that this boundary effect is correlated with large values of R, especially under the Dirichlet boundary condition. This correlation is nonlinear, so the AOMSW sometimes oscillates with the variation of ε.
Boundary condition effects on maximum groundwater withdrawal in coastal aquifers.
Lu, Chunhui; Chen, Yiming; Luo, Jian
2012-01-01
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.
Effective boundary condition at a rough surface starting from a slip condition
Dalibard, Anne-Laure
2010-01-01
We consider the homogenization of the Navier-Stokes equation, set in a channel with a rough boundary, of small amplitude and wavelength $\\epsilon$. It was shown recently that, for any non-degenerate roughness pattern, and for any reasonable condition imposed at the rough boundary, the homogenized boundary condition in the limit $\\epsilon = 0$ is always no-slip. We give in this paper error estimates for this homogenized no-slip condition, and provide a more accurate effective boundary condition, of Navier type. Our result extends those obtained in previous works, in which the special case of a Dirichlet condition at the rough boundary was examined.
Heat-kernel coefficients for oblique boundary conditions
Dowker, John S; Kirsten, Klaus
1997-01-01
We calculate the heat-kernel coefficients, up to $a_2$, for a U(1) bundle on the 4-Ball for boundary conditions which are such that the normal derivative of the field at the boundary is related to a first-order operator in boundary derivatives acting on the field. The results are used to place restrictions on the general forms of the coefficients. In the specific case considered, there can be a breakdown of ellipticity.
HYCOM Initial and Boundary Conditions for Coupled COAMPS/NCOM
2016-06-07
conditions (BCs and ICs) into globally- relocatable coupled COAMPS/NCOM, (2) quantitatively evaluate HYCOM sources of ICs and BCs against other...HYCOM Initial and Boundary Conditions for Coupled COAMPS/NCOM Julie Pullen Naval Research Laboratory 7 Grace Hopper Ave. Stop 2 Monterey, CA...long-term goal of this effort is to evaluate HYbrid Coordinate Ocean Model (HYCOM) initial and boundary conditions supplied to the air-ocean coupled
Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces
Manor, Ofer; Vakarelski, Ivan U.; Tang, Xiaosong; O'Shea, Sean J.; Stevens, Geoffrey W.; Grieser, Franz; Dagastine, Raymond R.; Chan, Derek Y. C.
2008-07-01
Dynamic forces between a 50μm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.
Exponential reduction of finite volume effects with twisted boundary conditions
Cherman, Aleksey; Wagman, Michael L; Yaffe, Laurence G
2016-01-01
Flavor-twisted boundary conditions can be used for exponential reduction of finite volume artifacts in flavor-averaged observables in lattice QCD calculations with $SU(N_f)$ light quark flavor symmetry. Finite volume artifact reduction arises from destructive interference effects in a manner closely related to the phase averaging which leads to large $N_c$ volume independence. With a particular choice of flavor-twisted boundary conditions, finite volume artifacts for flavor-singlet observables in a hypercubic spacetime volume are reduced to the size of finite volume artifacts in a spacetime volume with periodic boundary conditions that is four times larger.
Boundary states and finite size effects in sine-Gordon model with Neumann boundary condition
Bajnok, Z; Takács, G
2001-01-01
The sine-Gordon model with Neumann boundary condition is investigated. Using the bootstrap principle the spectrum of boundary bound states is established. Somewhat surprisingly it is found that Coleman-Thun diagrams and bound state creation may coexist. A framework to describe finite size effects in boundary integrable theories is developed and used together with the truncated conformal space approach to confirm the bound states and reflection factors derived by bootstrap.
Extensions of diffusion processes on intervals and Feller's boundary conditions
Yano, Kouji
2012-01-01
For a minimal diffusion process on $ (a,b) $, any possible extension of it to a standard process on $ [a,b] $ is characterized by the characteristic measures of excursions away from the boundary points $ a $ and $ b $. The generator of the extension is proved to be characterized by Feller's boundary condition.
Numerical Solution for the Helmholtz Equation with Mixed Boundary Condition
无
2007-01-01
We consider the numerical solution for the Helmholtz equation in R2 with mixed boundary conditions. The solvability of this mixed boundary value problem is established by the boundary integral equation method. Based on the Green formula, we express the solution in terms of the boundary data. The key to the numerical realization of this method is the computation of weakly singular integrals. Numerical performances show the validity and feasibility of our method. The numerical schemes proposed in this paper have been applied in the realization of probe method for inverse scattering problems.
Boundary Conditions for Free Interfaces with the Lattice Boltzmann Method
Bogner, Simon; Rüde, Ulrich
2014-01-01
In this paper we analyze the boundary treatment of the Lattice Boltzmann method for simulating 3D flows with free surfaces. The widely used free surface boundary condition of K\\"orner et al. (2005) is shown to be first order accurate. The article presents new free surface boundary schemes that are suitable for the lattice Boltzmann method and that have second order spatial accuracy. The new method takes the free boundary position and orientation with respect to the computational lattice into account. Numerical experiments confirm the theoretical findings and illustrate the the difference between the old and the new method.
Topological boundary conditions in abelian Chern-Simons theory
Kapustin, Anton [California Institute of Technology, Pasadena, CA 91125 (United States); Saulina, Natalia, E-mail: saulina@theory.caltech.ed [Perimeter Institute, Waterloo (Canada)
2011-04-21
We study topological boundary conditions in abelian Chern-Simons theory and line operators confined to such boundaries. From the mathematical point of view, their relationships are described by a certain 2-category associated to an even integer-valued symmetric bilinear form (the matrix of Chern-Simons couplings). We argue that boundary conditions correspond to Lagrangian subgroups in the finite abelian group classifying bulk line operators (the discriminant group). We describe properties of boundary line operators; in particular we compute the boundary associator. We also study codimension one defects (surface operators) in abelian Chern-Simons theories. As an application, we obtain a classification of such theories up to isomorphism, in general agreement with the work of Belov and Moore.
Two Baryons with Twisted Boundary Conditions
Briceno, Raul [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davoudi, Zohreh [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States); Luu, Thomas [Lawrence Livermore National Laboratory, Livermore, CA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States)
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
A review of time domain impedance boundary conditions
Richter, Christoph
2012-01-01
International audience; Over the last 15 years, time domain impedance boundary conditions have been investigated by various authors. In a review, a general framework of time domain impedance boundary conditions is presented and then filled with a set of outstanding mathematical and numerical methods from literature. All of the authors struggled with an instability with grazing flow. Mainly this is linked to the Ingard or Myers model of the sound propagation through a sheared flow. This is rev...
A non-slip boundary condition for lattice Boltzmann simulations
Inamuro, T; Ogino, F; Inamuro, Takaji; Yoshino, Masato; Ogino, Fumimaru
1995-01-01
A non-slip boundary condition at a wall for the lattice Boltzmann method is presented. In the present method unknown distribution functions at the wall are assumed to be an equilibrium distribution function with a counter slip velocity which is determined so that fluid velocity at the wall is equal to the wall velocity. Poiseuille flow and Couette flow are calculated with the nine-velocity model to demonstrate the accuracy of the present boundary condition.
Coleman-Gurtin type equations with dynamic boundary conditions
Gal, Ciprian G.; Shomberg, Joseph L.
2015-02-01
We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman-Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel.
Guotao Wang
2012-01-01
Full Text Available We study nonlinear impulsive differential equations of fractional order with irregular boundary conditions. Some existence and uniqueness results are obtained by applying standard fixed-point theorems. For illustration of the results, some examples are discussed.
On the wave equation with semilinear porous acoustic boundary conditions
Graber, Philip Jameson
2012-05-01
The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.
Climate model boundary conditions for four Cretaceous time slices
J. O. Sewall
2007-06-01
Full Text Available General circulation models (GCMs are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth's climate system. One of the most time consuming, and often daunting, tasks facing the paleoclimate modeler, particularly those without a geological background, is the production of surface boundary conditions for past time periods. These boundary conditions consist of, at a minimum, continental configurations derived from plate tectonic modeling, topography, bathymetry, and a vegetation distribution. Typically, each researcher develops a unique set of boundary conditions for use in their simulations. Thus, unlike simulations of modern climate, basic assumptions in paleo surface boundary conditions can vary from researcher to researcher. This makes comparisons between results from multiple researchers difficult and, thus, hinders the integration of studies across the broader community. Unless special changes to surface conditions are warranted, researcher dependent boundary conditions are not the most efficient way to proceed in paleoclimate investigations. Here we present surface boundary conditions (land-sea distribution, paleotopography, paleobathymetry, and paleovegetation distribution for four Cretaceous time slices (120 Ma, 110 Ma, 90 Ma, and 70 Ma. These boundary conditions are modified from base datasets to be appropriate for incorporation into numerical studies of Earth's climate and are available in NetCDF format upon request from the lead author. The land-sea distribution, bathymetry, and topography are based on the 1°×1° (latitude x longitude paleo Digital Elevation Models (paleoDEMs of Christopher Scotese. Those paleoDEMs were adjusted using the paleogeographical reconstructions of Ronald Blakey (Northern Arizona University and published literature and were then modified for use in GCMs. The paleovegetation
Climate model boundary conditions for four Cretaceous time slices
J. O. Sewall
2007-11-01
Full Text Available General circulation models (GCMs are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth's climate system. One of the most time consuming, and often daunting, tasks facing the paleoclimate modeler, particularly those without a geological background, is the production of surface boundary conditions for past time periods. These boundary conditions consist of, at a minimum, continental configurations derived from plate tectonic modeling, topography, bathymetry, and a vegetation distribution. Typically, each researcher develops a unique set of boundary conditions for use in their simulations. Thus, unlike simulations of modern climate, basic assumptions in paleo surface boundary conditions can vary from researcher to researcher. This makes comparisons between results from multiple researchers difficult and, thus, hinders the integration of studies across the broader community. Unless special changes to surface conditions are warranted, researcher dependent boundary conditions are not the most efficient way to proceed in paleoclimate investigations. Here we present surface boundary conditions (land-sea distribution, paleotopography, paleobathymetry, and paleovegetation distribution for four Cretaceous time slices (120 Ma, 110 Ma, 90 Ma, and 70 Ma. These boundary conditions are modified from base datasets to be appropriate for incorporation into numerical studies of Earth's climate and are available in NetCDF format upon request from the lead author. The land-sea distribution, bathymetry, and topography are based on the 1°×1° (latitude × longitude paleo Digital Elevation Models (paleoDEMs of Christopher Scotese. Those paleoDEMs were adjusted using the paleogeographical reconstructions of Ronald Blakey (Northern Arizona University and published literature and were then modified for use in GCMs. The paleovegetation
PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL
Hussein A.H. Salem
2011-01-01
In this article, we investigate the existence of Pseudo solutions for some frac- tional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.
Experimental studies of pedestrian flows under different boundary conditions
Zhang, Jun
2015-01-01
In this article the dynamics of pedestrian streams in four different scenarios are compared empirically to investigate the influence of boundary conditions on it. The Voronoi method, which allows high resolution and small fluctuations of measured density in time and space, is used to analyze the experiments. It is found that pedestrian movement in systems with different boundary conditions (open, periodic boundary conditions and outflow restrained) presents various characteristics especially when the density is larger than 2 m-2. In open corridor systems the specific flow increases continuously with increasing density till 4 m-2. The specific flow keeps constant in systems with restrained outflow, whereas it decreases from 1 (m.s)-1 to zero in system with closed periodical condition.
A unified slip boundary condition for flow over a surface
Thalakkottor, Joseph John
2015-01-01
Interface between two phases of matter are ubiquitous in nature and technology. Determining the correct velocity condition at an interface is essential for understanding and designing of flows over a surface. We demonstrate that both the widely used no-slip and the Navier and Maxwell slip boundary conditions do not capture the complete physics associated with complex problems, such as spreading of liquids or corner flows. Hence, we present a unified boundary condition that is applicable to a wide-range of flow problems.
Comment on the uncertainty relation with periodic boundary conditions
Fujikawa, Kazuo
2010-01-01
The Kennard-type uncertainty relation $\\Delta x\\Delta p >\\frac{\\hbar}{2}$ is formulated for a free particle with given momentum $ inside a box with periodic boundary conditions in the large box limit. Our construction of a free particle state is analogous to that of the Bloch wave in a periodic potential. A simple Robertson-type relation, which minimizes the effect of the box boundary and may be useful in some practical applications, is also presented.
Variational Data Assimilation for Optimizing Boundary Conditions in Ocean Models
Kazantsev, Christine; Tolstykh, Mikhail
2016-01-01
The review describes the development of ideas Gury Ivanovich Marchuk in the field of variational data assimilation for ocean models applied in particular in coupled models for long-range weather forecasts. Particular attention is paid to the optimization of boundary conditions on rigid boundaries. As idealized and realistic model configurations are considered. It is shown that the optimization allows us to determine the most sensitive model operators and bring the model solution closer to the assimilated data.
STURM-LIOUVILLE PROBLEMS WITH EIGENDEPENDENT BOUNDARY AND TRANSMISSIONS CONDITIONS
Z. Akdo(g)an; M. Demirci; O.Sh. Mukhtarov
2005-01-01
The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem,which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.
Normal ordering and boundary conditions for fermionic string coordinates
Braga, N R F; Godinho, C F L; Braga, Nelson R. F.; Carrion, Hector L.; Godinho, Cresus F. L.
2006-01-01
We build up normal ordered products for fermionic open string coordinates consistent with boundary conditions. The results are obtained considering the presence of antisymmetric tensor fields. We find a discontinuity of the normal ordered products at string endpoints even in the absence of the background. We discuss how the energy momentum tensor also changes at the world-sheet boundary in such a way that the central charge keeps the standard value at string end points.
Normal ordering and boundary conditions for fermionic string coordinates
Braga, Nelson R.F. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil)]. E-mail: braga@if.ufrj.br; Carrion, Hector L. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil)]. E-mail: hlc@fma.if.usp.br; Godinho, Cresus F.L. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)]. E-mail: godinho@cbpf.br
2006-07-06
We build up normal ordered products for fermionic open string coordinates consistent with boundary conditions. The results are obtained considering the presence of antisymmetric tensor fields. We find a discontinuity of the normal ordered products at string endpoints even in the absence of the background. We discuss how the energy-momentum tensor also changes at the world-sheet boundary in such a way that central charge keeps the standard value at string end points.
Transport synthetic acceleration with opposing reflecting boundary conditions
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iterating on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.
Vibration Analysis of Annular Sector Plates under Different Boundary Conditions
Dongyan Shi
2014-01-01
Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.
Nonlinear Vibrations of Timoshenko Beams with Various Boundary Conditions
郭强; 刘曦; 钟宏志
2004-01-01
This paper is concerned with the effects of boundary conditions on the large-amplitude free vibrations of Timoshenko beams. The effects of nonlinear terms on the frequency of Timoshenko beams with simply supported ends (supported-supported, SS), clamped ends (clamped-clamped, CC) and one end simply supported and the other end clamped (clamped-supported, CS) are discussed in detail. Given a specific vibration amplitude, the change of nonlinear frequency according to the effects of boundary conditions is always in the following descending order: SS, CS, and CC. It is found that the slenderness ratio has a significant influence on the nonlinear frequency. For slender beams, the nonlinear effects of bending curvature and shear strain are negligible regardless of the boundary conditions. For short beams and especially for those of large amplitude vibrations, however, the nonlinear effects of bending curvature and shear strain become noticeable in the following ascending order: SS, CS, and CC.
Boundary conditions on internal three-body wave functions
Mitchell, Kevin A.; Littlejohn, Robert G.
1999-10-01
For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.
崔国忠; 张志平; 江成顺
2002-01-01
This paper deals with the initial boundary value problem for the BoltzmannPoisson system, which arises in semiconductor physics, with absorbing boundary. The global existence of weak solutions is proved by using the stability of velocity averages and the compactness results on L1-theory under weaker conditons on initial boundary values.
Dirichlet-to-Neumann boundary conditions for multiple scattering problems
Grote, Marcus J.; Kirsch, Christoph
2004-12-01
A Dirichlet-to-Neumann (DtN) condition is derived for the numerical solution of time-harmonic multiple scattering problems, where the scatterer consists of several disjoint components. It is obtained by combining contributions from multiple purely outgoing wave fields. The DtN condition yields an exact non-reflecting boundary condition for the situation, where the computational domain and its exterior artificial boundary consist of several disjoint components. Because each sub-scatterer can be enclosed by a separate artificial boundary, the computational effort is greatly reduced and becomes independent of the relative distances between the different sub-domains. The DtN condition naturally fits into a variational formulation of the boundary-value problem for use with the finite element method. Moreover, it immediately yields as a by-product an exact formula for the far-field pattern of the scattered field. Numerical examples show that the DtN condition for multiple scattering is as accurate as the well-known DtN condition for single scattering problems [J. Comput. Phys. 82 (1989) 172; Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam, 1992], while being more efficient due to the reduced size of the computational domain.
Optimal control problems for impulsive systems with integral boundary conditions
Allaberen Ashyralyev
2013-03-01
Full Text Available In this article, the optimal control problem is considered when the state of the system is described by the impulsive differential equations with integral boundary conditions. Applying the Banach contraction principle the existence and uniqueness of the solution is proved for the corresponding boundary problem by the fixed admissible control. The first and second variation of the functional is calculated. Various necessary conditions of optimality of the first and second order are obtained by the help of the variation of the controls.
Modeling magnetized star-planet interactions: boundary conditions effects
Strugarek, Antoine; Matt, Sean P; Reville, Victor
2013-01-01
We model the magnetized interaction between a star and a close-in planet (SPMIs), using global, magnetohydrodynamic numerical simulations. In this proceedings, we study the effects of the numerical boundary conditions at the stellar surface, where the stellar wind is driven, and in the planetary interior. We show that is it possible to design boundary conditions that are adequate to obtain physically realistic, steady-state solutions for cases with both magnetized and unmagnetized planets. This encourages further development of numerical studies, in order to better constrain and understand SPMIs, as well as their effects on the star-planet rotational evolution.
Sub-Alfvenic inlet boundary conditions for axisymmetric MHD nozzles
Cassibry, J T [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Wu, S T [Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2007-09-07
There are numerous electromagnetic accelerator concepts which require plasma expansion through a magnetic nozzle. If the inlet flow is slower than one or all of the outgoing characteristics, namely, the Alfven, slow and fast magnetosonic speeds, then the number of inlet conditions which could be arbitrarily specified are reduced by the number of outgoing characteristics (up to three). We derive the axisymmetric compatibility equations using the method of projected characteristics for the inlet conditions in the z-plane to assure the boundary conditions being consistent with flow properties. We make simplifications to the equations assuming that the inlet Alfven speed is much faster than the sonic and slow magnetosonic speeds. We compare results for various inlet boundary conditions, including a modified Lax-Wendroff implementation of the compatibility equations, first order extrapolation and arbitrarily specifying the inlet conditions, in order to assess the stability and accuracy of various approaches.
Optimal Control of a Parabolic Equation with Dynamic Boundary Condition
Hoemberg, D., E-mail: hoemberg@wias-berlin.de; Krumbiegel, K., E-mail: krumbieg@wias-berlin.de [Weierstrass Institute for Applied Mathematics and Stochastics, Nonlinear Optimization and Inverse Problems (Germany); Rehberg, J., E-mail: rehberg@wias-berlin.de [Weierstrass Institute for Applied Mathematics and Stochastics, Partial Differential Equations (Germany)
2013-02-15
We investigate a control problem for the heat equation. The goal is to find an optimal heat transfer coefficient in the dynamic boundary condition such that a desired temperature distribution at the boundary is adhered. To this end we consider a function space setting in which the heat flux across the boundary is forced to be an L{sup p} function with respect to the surface measure, which in turn implies higher regularity for the time derivative of temperature. We show that the corresponding elliptic operator generates a strongly continuous semigroup of contractions and apply the concept of maximal parabolic regularity. This allows to show the existence of an optimal control and the derivation of necessary and sufficient optimality conditions.
New approach to streaming semigroups with multiplying boundary conditions
Mohamed Boulanouar
2008-11-01
Full Text Available This paper concerns the generation of a C_0-semigroup by the streaming operator with general multiplying boundary conditions. A first approach, presented in [2], is based on the Hille-Yosida's Theorem. Here, we present a second approach based on the construction of the generated semigroup, without using the Hille-Yosida's Theorem.
Poroelastic modeling of seismic boundary conditions across a fracture.
Nakagawa, Seiji; Schoenberg, Michael A
2007-08-01
Permeability of a fracture can affect how the fracture interacts with seismic waves. To examine this effect, a simple mathematical model that describes the poroelastic nature of wave-fracture interaction is useful. In this paper, a set of boundary conditions is presented which relate wave-induced particle velocity (or displacement) and stress including fluid pressure across a compliant, fluid-bearing fracture. These conditions are derived by modeling a fracture as a thin porous layer with increased compliance and finite permeability. Assuming a small layer thickness, the boundary conditions can be derived by integrating the governing equations of poroelastic wave propagation. A finite jump in the stress and velocity across a fracture is expressed as a function of the stress and velocity at the boundaries. Further simplification for a thin fracture yields a set of characteristic parameters that control the seismic response of single fractures with a wide range of mechanical and hydraulic properties. These boundary conditions have potential applications in simplifying numerical models such as finite-difference and finite-element methods to compute seismic wave scattering off nonplanar (e.g., curved and intersecting) fractures.
Heat Flow for the Minimal Surface with Plateau Boundary Condition
Kung Ching CHANG; Jia Quan LIU
2003-01-01
The heat flow for the minimal surface under Plateau boundary condition is defined to be aparabolic variational inequality, and then the existence, uniqueness, regularity, continuous dependenceon the initial data and the asymptotics are studied. It is applied as a deformation of the level sets inthe critical point theory.
Gravitational wave extraction and outer boundary conditions by perturbative matching
Abrahams, A M; Rupright, M E; Anderson, A; Anninos, P; Baumgarte, T W; Bishop, N T; Brandt, S R; Browne, J C; Camarda, K; Choptuik, M W; Cook, G B; Evans, C R; Finn, L S; Fox, G; Gómez, R; Haupt, T; Huq, M F; Kidder, L E; Klasky, S; Laguna, P; Landry, W; Lehner, L; Lenaghan, J T; Marsa, R L L; Massó, J; Matzner, R A; Mitra, S; Papadopoulos, P P; Parashar, M; Saied, F; Saylor, P E; Scheel, M A; Seidel, E; Shapiro, S L; Shoemaker, D M; Smarr, L L; Szilágyi, B; Teukolsky, S A; Van Putten, M H P M; Walker, P; Winicour, J; York, J W
1998-01-01
We present a method for extracting gravitational radiation from a three-dimensional numerical relativity simulation and, using the extracted data, to provide outer boundary conditions. The method treats dynamical gravitational variables as nonspherical perturbations of Schwarzschild geometry. We discuss a code which implements this method and present results of tests which have been performed with a three dimensional numerical relativity code.
BPS Monopole in the Space of Boundary Conditions
Ohya, Satoshi
2015-01-01
The space of all possible boundary conditions that respect self-adjointness of Hamiltonian operator is known to be given by the group manifold $U(2)$ in one-dimensional quantum mechanics. In this paper we study non-Abelian Berry's connections in the space of boundary conditions in a simple quantum mechanical system. We consider a system for a free spinless particle on a circle with two point-like interactions described by the $U(2) \\times U(2)$ family of boundary conditions. We show that, for a certain $SU(2) \\subset U(2) \\times U(2)$ subfamily of boundary conditions, all the energy levels become doubly-degenerate thanks to the so-called higher-derivative supersymmetry, and non-Abelian Berry's connection in the ground-state sector is given by the Bogomolny-Prasad-Sommerfield (BPS) monopole of $SU(2)$ Yang-Mills-Higgs theory. We also show that, in the ground-state sector of this quantum mechanical model, matrix elements of position operator give the adjoint Higgs field that satisfies the BPS equation. It is al...
Carleman Estimates for Parabolic Equations with Nonhomogeneous Boundary Conditions
Oleg Yu IMANUVILOV; Jean Pierre PUEL; Masahiro YAMAMOTO
2009-01-01
The authors prove a new Carleman estimate for general linear second order parabolic equation with nonhomogeneous boundary conditions.On the basis of this estimate,improved Carleman estimates for the Stokes system and for a system of parabolic equations with a penalty term are obtained.This system can be viewed as an approximation of the Stokes system.
On a stochastic Burgers equation with Dirichlet boundary conditions
Ekaterina T. Kolkovska
2003-01-01
Full Text Available We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.
Gui-Qiang Chen; Dan Osborne; Zhongmin Qian
2009-01-01
We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in RN with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-fiat boundary. We observe that, under the nonhomogeneons boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in RN(n≥3) with nonhomogeneous vorticity boundary condition converge in L2 to the corresponding Euler equations satisfying the kinematic condition.
Influence of shock absorber condition on pavement fatigue using relative damage concept
Pablo Kubo
2015-12-01
Full Text Available Considering the importance of the road transportation nowadays, concerns related to pavement deterioration and maintenance have become relevant subjects. Especially for commercial vehicles, the vertical dynamic load (characterized by the tire-road interaction is directly related to wear on the road surface. Given this, the main objective of this paper is to analyse effects of vertical loads applied on the flexible pavement, considering the variation of the condition of shock absorbers from a truck's front suspension. The measurements were performed on a rigid truck, with 2 steering front axles, in a durability test track located in Brazil. With a constant load of 6 tons on the front suspension (the maximum allowed load on front axles according to Brazilian legislation, 3 different shock absorber conditions were evaluated: new, used and failed. By applying the relative damage concept, it is possible to conclude that the variation of the shock absorber conditions will significantly affect the vertical load applied on the pavement. Although the results clearly point to a dependent relationship between the load and the condition of the shock absorbers, it is recommended to repeat the same methodology, in future to analyse the influence of other quarter car model variants (such as spring rate, mass and tire spring stiffness.
Jeffrey W. Lyons
2017-01-01
Full Text Available For \\(\\alpha\\in(1,2]\\, the singular fractional boundary value problem \\[D^{\\alpha}_{0^+}x+f\\left(t,x,D^{\\mu}_{0^+}x\\right=0,\\quad 0\\lt t\\lt 1,\\] satisfying the boundary conditions \\(x(0=D^{\\beta}_{0^+}x(1=0\\, where \\(\\beta\\in(0,\\alpha-1]\\, \\(\\mu\\in(0,\\alpha-1]\\, and \\(D^{\\alpha}_{0^+}\\, \\(D^{\\beta}_{0^+}\\ and \\(D^{\\mu}_{0^+}\\ are Riemann-Liouville derivatives of order \\(\\alpha\\, \\(\\beta\\ and \\(\\mu\\ respectively, is considered. Here \\(f\\ satisfies a local Carathéodory condition, and \\(f(t,x,y\\ may be singular at the value 0 in its space variable \\(x\\. Using regularization and sequential techniques and Krasnosel'skii's fixed point theorem, it is shown this boundary value problem has a positive solution. An example is given.
On accurate boundary conditions for a shape sensitivity equation method
Duvigneau, R.; Pelletier, D.
2006-01-01
This paper studies the application of the continuous sensitivity equation method (CSEM) for the Navier-Stokes equations in the particular case of shape parameters. Boundary conditions for shape parameters involve flow derivatives at the boundary. Thus, accurate flow gradients are critical to the success of the CSEM. A new approach is presented to extract accurate flow derivatives at the boundary. High order Taylor series expansions are used on layered patches in conjunction with a constrained least-squares procedure to evaluate accurate first and second derivatives of the flow variables at the boundary, required for Dirichlet and Neumann sensitivity boundary conditions. The flow and sensitivity fields are solved using an adaptive finite-element method. The proposed methodology is first verified on a problem with a closed form solution obtained by the Method of Manufactured Solutions. The ability of the proposed method to provide accurate sensitivity fields for realistic problems is then demonstrated. The flow and sensitivity fields for a NACA 0012 airfoil are used for fast evaluation of the nearby flow over an airfoil of different thickness (NACA 0015).
The spectrum of boundary states in sine-Gordon model with integrable boundary conditions
Bajnok, Z; Takács, G; Tóth, G
2002-01-01
The bound state spectrum and the associated reflection factors are determined for the sine-Gordon model with arbitrary integrable boundary condition by closing the bootstrap. Comparing the symmetries of the bound state spectrum with that of the Lagrangian it is shown how one can "derive" the relationship between the UV and IR parameters conjectured earlier.
Boundary Conditions for NHEK through Effective Action Approach
CHEN Bin; NING Bo; ZHANG Jia-Ju
2012-01-01
We study the asymptotic symmetry group (ASG) of the near horizon geometry of extreme Kerr black hole through the effective action approach developed by Porfyriadis and Wilczek (arXiv:1007.1031v1[gr qc]).By requiring a finite boundary effective action,we derive a new set of asymptotic Killing vectors and boundary conditions,which are much more relaxed than the ones proposed by Matsuo Y et al.[Nucl.Phys.B 825 (2010) 231],and still allow a copy of a conformal group as its ASG.In the covariant formalism,the asymptotic charges are finite,with the corresponding central charge vanishing.By using the quasi-local charge and introducing a plausible cut-off,we find that the higher order terms of the asymptotic Killing vectors,which could not be determined through the effective action approach,contribute to the central charge as well.We also show that the boundary conditions suggested by Guica et al.[Phys.Rev.D 80 (2009)124008] lead to a divergent first-order boundary effective action.%We study the asymptotic symmetry group (ASG) of the near horizon geometry of extreme Kerr black hole through the effective action approach developed by Porfyriadis and Wilczek (arXiv:1007.1031vl[gr qc]). By requiring a finite boundary effective action, we derive a new set of asymptotic Killing vectors and boundary conditions, which are much more relaxed than the ones proposed by Matsuo Y et al. [Nucl. Phys. B 825 (2010) 231], and still allow a copy of a conformal group as its ASG. In the covariant formalism, the asymptotic charges are finite, with the corresponding central charge vanishing. By using the quasi-local charge and introducing a plausible cut-off, we find that the higher order terms of the asymptotic Killing vectors, which could not be determined through the effective action approach, contribute to the central charge as well. We also show that the boundary conditions suggested by Guica et al. [Phys. Rev. D 80 (2009) 124008] lead to a divergent first-order boundary effective action.
Free, transverse vibrations of thin plates with discontinuous boundary conditions
Febbo, M.; Vera, S. A.; Laura, P. A. A.
2005-03-01
Vibrations of circular and rectangular plates clamped on part of the boundary and simply supported along the remainder are analyzed by means of a method of perturbation of boundary conditions. This approach appears to be simple and straightforward, giving excellent results for the first mode and its versatility permits to extend it to higher modes of vibration without difficulty. Furthermore, it is shown that the fundamental frequency coefficient can also be determined using a modified Galerkin approach and very simple polynomial coordinate functions which yield good engineering accuracy.
The boundary conditions for point transformed electromagnetic invisibility cloaks
Weder, Ricardo [Departamento de Metodos Matematicos y Numericos, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-726, Mexico DF 01000 (Mexico)], E-mail: weder@servidor.unam.mx
2008-10-17
In this paper we study point transformed electromagnetic invisibility cloaks in transformation media that are obtained by transformation from general anisotropic media. We assume that there are several point transformed electromagnetic cloaks located in different points in space. Our results apply in particular to the first-order invisibility cloaks introduced by Pendry et al and to the high-order invisibility cloaks introduced by Hendi et al and by Cai et al. We identify the appropriate cloaking boundary conditions that the solutions of Maxwell equations have to satisfy at the outside, {partial_derivative}K{sub +}, and at the inside, {partial_derivative}K{sub -}, of the boundary of the cloaked object K in the case where the permittivity and the permeability are bounded below and above in K. Namely, that the tangential components of the electric and the magnetic fields have to vanish at {partial_derivative}K{sub +}-which is always true-and that the normal components of the curl of the electric and the magnetic fields have to vanish at {partial_derivative}K{sub -}. These results are proven requiring that energy be conserved. In the case of one spherical cloak with a spherically stratified K and a radial current at {partial_derivative}K we verify by an explicit calculation that our cloaking boundary conditions are satisfied and that cloaking of active devices holds, even if the current is at the boundary of the cloaked object. As we prove our results for media that are obtained by transformation from general anisotropic media, our results apply to the cloaking of objects with passive and active devices contained in general anisotropic media, in particular to objects with passive and active devices contained inside general crystals. Our results suggest a method to enhance cloaking in the approximate transformation media that are used in practice. Namely, to coat the boundary of the cloaked object (the inner boundary of the cloak) with a material that imposes the
Most general AdS_3 boundary conditions
Grumiller, Daniel
2016-01-01
We consider the most general asymptotically anti-de Sitter boundary conditions in three-dimensional Einstein gravity with negative cosmological constant. The metric contains in total twelve independent functions, six of which are interpreted as chemical potentials (or non-normalizable fluctuations) and the other half as canonical boundary charges (or normalizable fluctuations). Their presence modifies the usual Fefferman-Graham expansion. The asymptotic symmetry algebra consists of two sl(2)_k current algebras, the levels of which are given by k=l/(4G_N), where l is the AdS radius and G_N the three-dimensional Newton constant.
Stretched flow of Carreau nanofluid with convective boundary condition
T Hayat; M Waqas; S A Shehzad; A Alsaedi
2016-01-01
The steady laminar boundary layer flow of Carreau nanofluid over a stretching sheet is investigated. Effects of Brownian motion and thermophoresis are present. Heat transfer is characterized using convective boundary condition at the sheet. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations through suitable transformations. Results of velocity, temperature and concentration fields are computed via homotopic procedure. Numerical values of skin-friction coefficient, local Nusselt and Sherwood numbers are computed and discussed. A comparative study with existing solutions in a limiting sense is made.
Diffusion processes, Feller semigroups and Wentzell boundary conditions.
Romanelli, S
2001-01-01
Different approaches to the study of many diffusion processes in Genetics involve Probability, Functional Analysis and Partial Differential Equations, as in the case of changes in gene frequency due only to random sampling or under random fluctuation of selective advantages. In the one-dimensional case, a unified treatment of them was given by Feller. For particular classes of Markov processes, Taira showed that these different approaches are equivalent even in the N-dimensional case. It follows that the generator of a Feller semigroup on the space of real-valued continuous functions C(D), where D is a bounded domain of RN with smooth boundary, can be identified with a particular Markov transition function. Under suitable assumptions, Taira, Favini and the author proved that some classes of degenerate elliptic operators with Wentzell boundary condition generate Feller semigroups on C(D), in such a way that the diffusion phenomenon of viscosity occurs at each point of the boundary.
DYNA3D Non-reflecting Boundary Conditions - Test Problems
Zywicz, E
2006-09-28
Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.
Nonlinear Vibration Analysis of Moving Strip with Inertial Boundary Condition
Chong-yi Gao
2015-01-01
Full Text Available According to the movement mechanism of strip and rollers in tandem mill, the strip between two stands was simplified to axially moving Euler beam and the rollers were simplified to the inertial component on the fixed axis rotation, namely, inertial boundary. Nonlinear vibration mechanical model of Euler beam with inertial boundary conditions was established. The transverse and longitudinal motion equations were derived based on Hamilton’s principle. Kantorovich averaging method was employed to discretize the motion equations and the inertial boundary equations, and the solutions were obtained using the modified iteration method. Depending on numerical calculation, the amplitude-frequency responses of Euler beam were determined. The axial velocity, tension, and rotational inertia have strong influences on the vibration characteristics. The results would provide an important theoretical reference to control and analyze the vertical vibration of moving strip in continuous rolling process.
Flux change in viscous laminar flow under oscillating boundary condition
Ueda, R.; Mikada, H.; Goto, T.; Takekawa, J.
2012-12-01
The behavior of interstitial fluid is one of major interest in earth sciences in terms of the exploitation of water resources, the initiation of earthquakes, enhanced oil recovery (EOR), etc. Seismic waves are often known to increase the flux of interstitial fluid but the relationship between the flux and propagating seismic waves have not been well investigated in the past, although seismic stimulation has been applied in the oil industry for enhanced oil recovery (EOR). Many observations indicated that seismic waves could stimulate the oil production due to lowering of apparent viscosity coefficient, to the coalescence and/or the dispersion of droplets of a phase in multiphase fluids. However, the detailed mechanism of seismic stimulation has not been fully understood, either. In this study, We attempt to understand the mechanism of the flux change in viscous laminar flow under oscillating boundary condition for the simulation of interstitial flow. Here, we analyze a monophase flow in a pore throat. We first assume a Hagen-Poiseuille flow of incompressible fluid through a pore-throat in a porous medium. We adopt the Lattice Boltzmann method (LBM) in which the motion of fluid is simulated through the variation of velocity distribution function representing the distribution of discrete particle velocities. We use an improved incompressible LBKG model (d2q9i) proposed in Zou et. al. (1995) to accurately accommodate the boundary conditions of pressure and velocity in the Hagen-Poiseuille flow. We also use an half-way bounce back boundary condition as the velocity boundary condition. Also, we assume a uniform pressure (density) difference between inlet and outlet flow, and the density difference could initiate the flow in our simulation. The oscillating boundary condition is given by the body force acting on fluid particles. In this simulation, we found that the flux change is negligible under small amplitude of oscillation in both horizontal and vertical directions
Zhao, Shan; Wei, G W
2009-03-19
High-order central finite difference schemes encounter great difficulties in implementing complex boundary conditions. This paper introduces the matched interface and boundary (MIB) method as a novel boundary scheme to treat various general boundary conditions in arbitrarily high-order central finite difference schemes. To attain arbitrarily high order, the MIB method accurately extends the solution beyond the boundary by repeatedly enforcing only the original set of boundary conditions. The proposed approach is extensively validated via boundary value problems, initial-boundary value problems, eigenvalue problems, and high-order differential equations. Successful implementations are given to not only Dirichlet, Neumann, and Robin boundary conditions, but also more general ones, such as multiple boundary conditions in high-order differential equations and time-dependent boundary conditions in evolution equations. Detailed stability analysis of the MIB method is carried out. The MIB method is shown to be able to deliver high-order accuracy, while maintaining the same or similar stability conditions of the standard high-order central difference approximations. The application of the proposed MIB method to the boundary treatment of other non-standard high-order methods is also considered.
Second-order schemes for a boundary value problem with Neumann's boundary conditions
Dehghan, Mehdi
2002-01-01
A new second-order finite difference scheme based on the (3, 3) alternating direction implicit method and a new second-order finite difference technique based on the (5, 5) implicit formula are discussed for solving a nonlocal boundary value problem for the two-dimensional diffusion equation with Neumann's boundary conditions. While sharing some common features with the one-dimensional models, the solution of two-dimensional equations are substantially more difficult, thus some considerations are taken to be able to extend some ideas of the one-dimensional case. Using a suitable transformation the solution of this problem is equivalent to the solution of two other problems. The former, which is a one-dimensional nonlocal boundary value problem giving the value of [mu] through using the unconditionally stable standard implicit (3, 1) backward time-centred space (denoted BTCS) scheme. Using this result the second problem will be changed to a classical two-dimensional diffusion equation with Neumann's boundary conditions which will be solved numerically by using the unconditionally stable alternating direction implicit (3, 3) technique or the fully implicit finite difference scheme. The results of a numerical example are given and computation times are presented. Error estimates derived in the maximum norm are also tabulated.
Revisiting Johnson and Jackson boundary conditions for granular flows
Li, Tingwen; Benyahia, Sofiane
2012-07-01
In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.
A Boundary Condition for Simulation of Flow Over Porous Surfaces
Frink, Neal T.; Bonhaus, Daryl L.; Vatsa, Veer N.; Bauer, Steven X. S.; Tinetti, Ana F.
2001-01-01
A new boundary condition is presented.for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts.for two structured-grid.flow solvers, TLNS3D and CFL3D. and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented,for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.
Scattering of wedges and cones with impedance boundary conditions
Lyalinov, Mikhail
2012-01-01
This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. The applicability of the reported solution procedures and formulae to existing software packages designed for real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section.
On Vector Helmholtz Equation with a Coupling Boundary Condition
Gang Li; Jiangsong Zhang; Jiang Zhu; Danping Yang
2007-01-01
The Helmholtz equation is sometimes supplemented by conditions that include the specification of the boundary value of the divergence of the unknown. In this paper,we study the vector Helmholtz problem in domains of both C1,1 and Lipschitz. We establish a rigorous variational analysis such as equivalence, existence and uniqueness.And we propose finite element approximations based on the uncoupled solutions. Finally we present a convergence analysis and error estimates.
On the extraction of spectral quantities with open boundary conditions
Bruno, Mattia; Korzec, Tomasz; Lottini, Stefano; Schaefer, Stefan
2014-01-01
We discuss methods to extract decay constants, meson masses and gluonic observables in the presence of open boundary conditions. The ensembles have been generated by the CLS effort and have 2+1 flavors of O(a)-improved Wilson fermions with a small twisted-mass term as proposed by L\\"uscher and Palombi. We analyse the effect of the associated reweighting factors on the computation of different observables.
The XXZ model with anti-periodic twisted boundary conditions
Niekamp, Sönke; Frahm, Holger
2009-01-01
We derive functional equations for the eigenvalues of the XXZ model subject to anti-diagonal twisted boundary conditions by means of fusion of transfer matrices and by Sklyanin's method of separation of variables. Our findings coincide with those obtained using Baxter's method and are compared to the recent solution of Galleas. As an application we study the finite size scaling of the ground state energy of the model in the critical regime.
The XXZ model with anti-periodic twisted boundary conditions
Niekamp, Soenke; Wirth, Tobias; Frahm, Holger [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany)
2009-05-15
We derive functional equations for the eigenvalues of the XXZ model subject to anti-diagonal twisted boundary conditions by means of fusion of transfer matrices and by Sklyanin's method of separation of variables. Our findings coincide with those obtained using Baxter's method and are compared to the recent solution of Galleas. As an application we study the finite size scaling of the ground-state energy of the model in the critical regime.
Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions
Briant, Marc; Guo, Yan
2016-12-01
In a general C1 domain, we study the perturbative Cauchy theory for the Boltzmann equation with Maxwell boundary conditions with an accommodation coefficient α in (√{ 2 / 3 } , 1 ], and discuss this threshold. We consider polynomial or stretched exponential weights m (v) and prove existence, uniqueness and exponential trend to equilibrium around a global Maxwellian in Lx,v∞ (m). Of important note is the fact that the methods do not involve contradiction arguments.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the ...
Slarti: A boundary condition editor for a coupled climate model
Mickelson, S. A.; Jacob, R. L.; Pierrehumbert, R.
2006-12-01
One of the largest barriers to making climate models more flexible is the difficulty in creating new boundary conditions, especially for "deep time" paleoclimate cases where continents are in different positions. Climate models consist of several mutually-interacting component models and the boundary conditions must be consistent between them. We have developed a program called Slarti which uses a Graphical User Interface and a set of consistency rules to aid researchers in creating new, consistent, boundary condition files for the Fast Ocean Atmosphere Model (FOAM). Users can start from existing mask, topography, or bathymetry data or can build a "world" entirely from scratch (e.g. a single island continent). Once a case has been started, users can modify mask, vegetation, bathymetry, topography, and river flow fields by drawing new data through a "paint" interface. Users activate a synchronization button which goes through the fields to eliminate inconsistencies. When the changes are complete and save is selected, Slarti creates all the necessary files for an initial run of FOAM. The data is edited at the highest resolution (the ocean-land surface in FOAM) and then interpolated to the atmosphere resolution. Slarti was implemented in Java to maintain portability across platforms. We also relied heavily on Java Swing components to create the interface. This allowed us to create an object-oriented interface that could be used on many different systems. Since Slarti allows users to visualize their changes, they are able to see areas that may cause problems when the model is ran. Some examples would be lakes from the river flow field and narrow trenches within the bathymetry. Through different checks and options available through its interface, Slarti makes the process of creating new boundary conditions for FOAM easier and faster while reducing the chance for user errors.
Hydrodynamic boundary condition of water on hydrophobic surfaces.
Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian
2013-05-01
By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.
Maxwell boundary conditions imply non-Lindblad master equation
Bamba, Motoaki; Imoto, Nobuyuki
2016-09-01
From the Hamiltonian connecting the inside and outside of a Fabry-Pérot cavity, which is derived from the Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-wave approximation to the connecting Hamiltonian. We calculate absorption spectra by these Lindblad and non-Lindblad master equations and also by the Maxwell boundary conditions in the framework of the classical electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary conditions. Although the discrepancy is highlighted only in the ultrastrong light-matter interaction regime with a relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad one for pursuing the consistency with the classical electrodynamics.
Maxwell boundary conditions impose non-Lindblad master equation
Bamba, Motoaki
2016-01-01
From the Hamiltonian connecting the inside and outside of an Fabry-Perot cavity, which is derived from the Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-wave approximation to that Hamiltonian. We calculate absorption spectra by these Lindblad and non-Lindblad master equations and also by the Maxwell boundary conditions in framework of the classical electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary conditions. Although the discrepancy is highlighted only in the ultra-strong light-matter interaction regime with a relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad one for pursuing the consistency with the classical elec...
Outer boundary conditions for evolving cool white dwarfs
Rohrmann, R D; García-Berro, E; Córsico, A H; Bertolami, M M Miller
2012-01-01
White dwarf evolution is essentially a gravothermal cooling process, which,for cool white dwarfs, sensitively depends on the treatment of the outer boundary conditions. We provide detailed outer boundary conditions appropriate for computing the evolution of cool white dwarfs employing detailed non-gray model atmospheres for pure H composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Detailed non-gray model atmospheres are computed taken into account non-ideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman alpha quasi-molecular opacity. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 and 6100K for sequences with 0.60 and 0.90 M_sun, respectively. Detailed model atmospheres predict ages that are up to approx 10% shorter at log L/L_sun=-4 when compared with...
Solitons induced by boundary conditions from the Boussinesq equation
Chou, Ru Ling; Chu, C. K.
1990-01-01
The behavior of solitons induced by boundary excitation is investigated at various time-dependent conditions and different unperturbed water depths, using the Korteweg-de Vries (KdV) equation. Then, solitons induced from Boussinesq equations under similar conditions were studied, making it possible to remove the restriction in the KdV equation and to treat soliton head-on collisions (as well as overtaking collisions) and reflections. It is found that the results obtained from the KdV and the Boussinesq equations are in good agreement.
High Energy Boundary Conditions for a Cartesian Mesh Euler Solver
Pandya, Shishir A.; Murman, Scott M.; Aftosmis, Michael J.
2004-01-01
Inlets and exhaust nozzles are often omitted or fared over in aerodynamic simulations of aircraft due to the complexities involving in the modeling of engine details such as complex geometry and flow physics. However, the assumption is often improper as inlet or plume flows have a substantial effect on vehicle aerodynamics. A tool for specifying inlet and exhaust plume conditions through the use of high-energy boundary conditions in an established inviscid flow solver is presented. The effects of the plume on the flow fields near the inlet and plume are discussed.
Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.
2014-02-01
A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier-Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH-CBF method accurately describes both the no-slip and slip conditions.
Repulsive Casimir force from fractional Neumann boundary conditions
Lim, S.C. [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)], E-mail: sclim@mmu.edu.my; Teo, L.P. [Faculty of Information Technology, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my
2009-08-17
This Letter studies the finite temperature Casimir force acting on a rectangular piston associated with a massless fractional Klein-Gordon field at finite temperature. Dirichlet boundary conditions are imposed on the walls of a d-dimensional rectangular cavity, and a fractional Neumann condition is imposed on the piston that moves freely inside the cavity. The fractional Neumann condition gives an interpolation between the Dirichlet and Neumann conditions, where the Casimir force is known to be always attractive and always repulsive respectively. For the fractional Neumann boundary condition, the attractive or repulsive nature of the Casimir force is governed by the fractional order which takes values from zero (Dirichlet) to one (Neumann). When the fractional order is larger than 1/2, the Casimir force is always repulsive. For some fractional orders that are less than but close to 1/2, it is shown that the Casimir force can be either attractive or repulsive depending on the aspect ratio of the cavity and the temperature.
Nonstationary Stokes System in Cylindrical Domains Under Boundary Slip Conditions
Zaja¸czkowski, Wojciech M.
2017-03-01
Existence and uniqueness of solutions to the nonstationary Stokes system in a cylindrical domain {Ωsubset{R}^3} and under boundary slip conditions are proved in anisotropic Sobolev spaces. Assuming that the external force belong to {L_r(Ω×(0,T))} and initial velocity to {W_r^{2-2/r}(Ω)} there exists a solution such that velocity belongs to {W_r^{2,1}(Ω×(0,T))} and gradient of pressure to {L_r(Ω×(0,T))}, {rin(1,∞)}, {T > 0}. Thanks to the slip boundary conditions and a partition of unity the Stokes system is transformed to the Poisson equation for pressure and the heat equation for velocity. The existence of solutions to these equations is proved by applying local considerations. In this case we have to consider neighborhoods near the edges which by local mapping can be transformed to dihedral angle {π/2}. Hence solvability of the problem bases on construction local Green functions (near an interior point, near a point of a smooth part of the boundary, near a point of the edge) and their appropriate estimates. The technique presented in this paper can also work in other functional spaces: Sobolev-Slobodetskii, Besov, Nikolskii, Hölder and so on.
Negative bending mode curvature via Robin boundary conditions
Adams, Samuel D. M.; Craster, Richard V.; Guenneau, Sébastien
2009-06-01
We examine the band spectrum, and associated Floquet-Bloch eigensolutions, arising in straight walled acoustic waveguides that have periodic structure along the guide. Homogeneous impedance (Robin) conditions are imposed along the guide walls and we find that in certain circumstances, negative curvature of the lowest (bending) mode can be achieved. This is unexpected, and has not been observed in a variety of physical situations examined by other authors. Further unexpected properties include the existence of the bending mode only on a subset of the Brillouin zone, as well as permitting otherwise unobtainable velocities of energy transmission. We conclude with a discussion of how such boundary conditions might be physically reproduced using effective conditions and homogenization theory, although the methodology to achieve these effective conditions is an open problem. To cite this article: S.D.M. Adams et al., C. R. Physique 10 (2009).
Boundary conditions towards realistic simulation of jet engine noise
Dhamankar, Nitin S.
Strict noise regulations at major airports and increasing environmental concerns have made prediction and attenuation of jet noise an active research topic. Large eddy simulation coupled with computational aeroacoustics has the potential to be a significant research tool for this problem. With the emergence of petascale computer clusters, it is now computationally feasible to include the nozzle geometry in jet noise simulations. In high Reynolds number experiments on jet noise, the turbulent boundary layer on the inner surface of the nozzle separates into a turbulent free shear layer. Inclusion of a nozzle with turbulent inlet conditions is necessary to simulate this phenomenon realistically. This will allow a reasonable comparison of numerically computed noise levels with the experimental results. Two viscous wall boundary conditions are implemented for modeling the nozzle walls. A characteristic-based approach is compared with a computationally cheaper, extrapolation-based formulation. In viscous flow over a circular cylinder under two different regimes, excellent agreement is observed between the results of the two approaches. The results agree reasonably well with reference experimental and numerical results. Both the boundary conditions are thus found to be appropriate, the extrapolation-based formulation having an edge with its low cost. This is followed with the crucial step of generation of a turbulent boundary layer inside the nozzle. A digital filter-based turbulent inflow condition, extended in a new way to non-uniform curvilinear grids is implemented to achieve this. A zero pressure gradient flat plate turbulent boundary layer is simulated at a high Reynolds number to show that the method is capable of producing sustained turbulence. The length of the adjustment region necessary for synthetic inlet turbulence to recover from modeling errors is estimated. A low Reynolds number jet simulation including a round nozzle geometry is performed and the method
Applying Twisted Boundary Conditions for Few-body Nuclear Systems
Körber, Christopher
2015-01-01
We describe and implement twisted boundary conditions for the deuteron and triton systems within finite-volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twists angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length $L\\approx8-14$ fm. Of particular importance is our derivation and numerical verification of three-body analogue of `i-periodic' twist angles that eliminate the leading order finite-volume effects to the three-body binding energy.
Boundary Condition Effects on Taylor States in SSX
Han, Jeremy; Shrock, Jaron; Kaur, Manjit; Brown, Michael; Schaffner, David
2016-10-01
Three different boundary conditions are applied to the SSX 0.15 m diameter plasma wind tunnel and the resultant Taylor states are characterized. The glass walls of the wind tunnel act as an insulating boundary condition. For the second condition, a flux conserver is wrapped around the tunnel to trap magnetic field lines inside the SSX. For the last condition, the flux conserver is segmented to add theta pinch coils, which will accelerate the plasma. We used resistive stainless steel and copper mesh for the flux conservers, which have soak times of 3 μs and 250 μs , respectively. The goal is to increase the speed, temperature, and density of the plasma plume by adding magnetic energy into the system using the coils and compressing the plasma into small volumes by stagnation. The time of flight is measured by using a linear array of magnetic pick-up loops, which track the plasma plume's location as a function of time. The density is measured by precision quadrature He-Ne laser interferometry, and the temperature is measured by ion Doppler spectroscopy. Speed and density without the coils are 30km /s and 1015cm-3 . We will reach a speed of 100km /s and density of 1016cm-3 by adding the coil. Work supported by DOE OFES and ARPA-E ALPHA program.
Impedance-based outflow boundary conditions for human carotid haemodynamics.
Malvè, M; Chandra, S; García, A; Mena, A; Martínez, M A; Finol, E A; Doblaré, M
2014-01-01
In this study, we develop structured tree outflow boundary conditions for modelling the human carotid haemodynamics. The model geometry was reconstructed through computerised tomography scan. Unsteady-state computational fluid dynamic analyses were performed under different conditions using a commercial software package ADINA R&D, Inc., (Watertown, MA, USA) in order to assess the impact of the boundary conditions on the flow variables. In particular, the results showed that the peripheral vessels massively impact the pressure while the flow is relatively unaffected. As an example of application of these outflow conditions, an unsteady fluid-structure interaction (FSI) simulation was carried out and the dependence of the wall shear stress (WSS) on the arterial wall compliance in the carotid bifurcation was studied. In particular, a comparison between FSI and rigid-wall models was conducted. Results showed that the WSS distributions were substantially affected by the diameter variation of the arterial wall. In particular, even similar WSS distributions were found for both cases, and differences in the computed WSS values were also found.
Acoustic boundary conditions at an impedance lining in inviscid shear flow
Khamis, Doran; Brambley, Edward James
2016-01-01
This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Cambridge University Press. The accuracy of existing impedance boundary conditions is investigated, and new impedance boundary conditions are derived, for lined ducts with inviscid shear flow. The accuracy of the Ingard–Myers boundary condition is found to be poor. Matched asymptotic expansions are used to derive a boundary condition accurate to second order in the boundary layer thic...
Jeong, Cheol-Ho
2016-01-01
Fibrous absorbers can be installed with various air backing conditions to fulfil a given low frequency acoustic requirement. Since absorber manufacturers cannot provide the absorption coefficients for all possible mounting conditions, acousticians have difficulties knowing the absorption...... characteristics of their own configurations. This study aims to predict the absorption coefficient for various mounting conditions from a single measurement of an arbitrary mounting condition by extracting the air flow resistivity of the test specimen and the frequency-dependent effect of the chamber...... on the measured absorption coefficients. With two homogeneous fibrous absorbers, the predicted absorption coefficients agree well with the measurements....
On the trigonometric Felderhof model with domain wall boundary conditions
Caradoc, A; Wheeler, M; Zuparic, M; 10.1088/1742-5468/2007/03/P03010
2008-01-01
We consider the trigonometric Felderhof model, of free fermions in an external field, on a finite lattice with domain wall boundary conditions. The vertex weights are functions of rapidities and external fields. We obtain a determinant expression for the partition function in the special case where the dependence on the rapidities is eliminated, but for general external field variables. This determinant can be evaluated in product form. In the homogeneous limit, it is proportional to a 2-Toda tau function. Next, we use the algebraic Bethe ansatz factorized basis to obtain a product expression for the partition function in the general case with dependence on all variables.
Boundary conditions and generalized functions in a transition radiation problem
Villavicencio, M.; Jiménez, J. L.
2017-03-01
The aim of this work is to show how all the components of the electromagnetic field involved in the transition radiation problem can be obtained using distribution functions. The handling of the products and derivatives of distributions appearing in the differential equations governing transition radiation, allows to obtain the necessary boundary conditions, additional to those implied by Maxwell's equations, in order to exactly determine the longitudinal components of the electromagnetic field. It is shown that this method is not only useful but it is really convenient to achieve a full analysis of the problem.
Cauchy-perturbative matching and outer boundary conditions computational studies
Rezzolla, L; Matzner, R A; Rupright, M E; Shapiro, S L; Rezzolla, Luciano; Abrahams, Andrew M; Matzner, Richard A.; Rupright, Mark E.; Shapiro, Stuart L.
1999-01-01
We present results from a new technique which allows extraction of gravitational radiation information from a generic three-dimensional numerical relativity code and provides stable outer boundary conditions. In our approach we match the solution of a Cauchy evolution of the nonlinear Einstein field equations to a set of one-dimensional linear equations obtained through perturbation techniques over a curved background. We discuss the validity of this approach in the case of linear and mildly nonlinear gravitational waves and show how a numerical module developed for this purpose is able to provide an accurate and numerically convergent description of the gravitational wave propagation and a stable numerical evolution.
Stokes Flow with Slip and Kuwabara Boundary Conditions
Sunil Datta; Satya Deo
2002-08-01
The forces experienced by randomly and homogeneously distributed parallel circular cylinder or spheres in uniform viscous flow are investigated with slip boundary condition under Stokes approximation using particle-in-cell model technique and the result compared with the no-slip case. The corresponding problem of streaming flow past spheroidal particles departing but little in shape from a sphere is also investigated. The explicit expression for the stream function is obtained to the first order in the small parameter characterizing the deformation. As a particular case of this we considered an oblate spheroid and evaluate the drag on it.
Quantum Nuclear Pasta Calculations with Twisted Angular Boundary Conditions
Schuetrumpf, Bastian; Nazarewicz, Witold
2015-10-01
Nuclear pasta, expected to be present in the inner crust of neutron stars and core collapse supernovae, can contain a wide spectrum of different exotic shapes such as nuclear rods and slabs. There are also more complicated, network-like structures, the triply periodic minimal surfaces, already known e.g. in biological systems. These shapes are studied with the Hartree-Fock method using modern Skyrme forces. Furthermore twisted angular boundary conditions are utilized to reduce finite size effects in the rectangular simulation boxes. It is shown, that this improves the accuracy of the calculations drastically and additionally more insights into the mechanism of forming minimal surfaces can be gained.
Boundary conditions for soft glassy flows: slippage and surface fluidization.
Mansard, Vincent; Bocquet, Lydéric; Colin, Annie
2014-09-28
We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.
The effects of external conditions in turbulent boundary layers
Brzek, Brian G.
The effects of multiple external conditions on turbulent boundary layers were studied in detail. These external conditions include: surface roughness, upstream turbulence intensity, and pressure gradient. Furthermore, the combined effects of these conditions show the complicated nature of many realistic flow conditions. It was found that the effects of surface roughness are difficult to generalize, given the importance of so many parameters. These parameters include: roughness geometry, roughness regime, roughness height to boundary layer thickness, (k/delta), roughness parameter, ( k+), Reynolds number, and roughness function (Delta B+). A further complication, is the difficulty in computing the wall shear stress, tauw/rho. For the sand grain type roughness, the mean velocity and Reynolds stresses were studied in inner and outer variables, as well as, boundary layer parameters, anisotropy tensor, production term, and viscous stress and form drag contributions. To explore the effects of roughness and Reynolds number dependence in the boundary layer, a new experiment was carefully designed to properly capture the x-dependence of the single-point statistics. It was found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the skin friction due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction, near-wall roughness parameters, and inner velocity profiles as k + increases into the fully rough regime. However, in the transitionally rough regime, (i.e., 5 component shows the largest influence of roughness, where the high peak near the wall was decreased and became nearly flat for the fully rough regime profiles. In addition, the Reynolds stresses in outer variables show self-similarity for fixed experimental conditions. However, as the roughness parameter, k +, increases, all Reynolds stress
Darae Jeong
2015-01-01
Full Text Available We briefly review and investigate the performance of various boundary conditions such as Dirichlet, Neumann, linear, and partial differential equation boundary conditions for the numerical solutions of the Black-Scholes partial differential equation. We use a finite difference method to numerically solve the equation. To show the efficiency of the given boundary condition, several numerical examples are presented. In numerical test, we investigate the effect of the domain sizes and compare the effect of various boundary conditions with pointwise error and root mean square error. Numerical results show that linear boundary condition is accurate and efficient among the other boundary conditions.
Nonlinear Vibrations of Multiwalled Carbon Nanotubes under Various Boundary Conditions
Hossein Aminikhah
2011-01-01
Full Text Available The present work deals with applying the homotopy perturbation method to the problem of the nonlinear oscillations of multiwalled carbon nanotubes embedded in an elastic medium under various boundary conditions. A multiple-beam model is utilized in which the governing equations of each layer are coupled with those of its adjacent ones via the van der Waals interlayer forces. The amplitude-frequency curves for large-amplitude vibrations of single-walled, double-walled, and triple-walled carbon nanotubes are obtained. The influences of some commonly used boundary conditions, changes in material constant of the surrounding elastic medium, and variations of the nanotubes geometrical parameters on the vibration characteristics of multiwalled carbon nanotubes are discussed. The comparison of the generated results with those from the open literature illustrates that the solutions obtained are of very high accuracy and clarifies the capability and the simplicity of the present method. It is worthwhile to say that the results generated are new and can be served as a benchmark for future works.
Boundary conditions and phase transitions in neural networks. Simulation results.
Demongeot, Jacques; Sené, Sylvain
2008-09-01
This paper gives new simulation results on the asymptotic behaviour of theoretical neural networks on Z and Z(2) following an extended Hopfield law. It specifically focuses on the influence of fixed boundary conditions on such networks. First, we will generalise the theoretical results already obtained for attractive networks in one dimension to more complicated neural networks. Then, we will focus on two-dimensional neural networks. Theoretical results have already been found for the nearest neighbours Ising model in 2D with translation-invariant local isotropic interactions. We will detail what happens for this kind of interaction in neural networks and we will also focus on more complicated interactions, i.e., interactions that are not local, neither isotropic, nor translation-invariant. For all these kinds of interactions, we will show that fixed boundary conditions have significant impacts on the asymptotic behaviour of such networks. These impacts result in the emergence of phase transitions whose geometric shape will be numerically characterised.
Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels
Zhu, Huayang; Jackson, Gregory
2000-11-01
Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.
Boundary conditions for NLTE polarized radiative transfer with incident radiation
Faurobert, Marianne; Atanackovic, Olga
2013-01-01
Polarized NLTE radiative transfer in the presence of scattering in spectral lines and/or in continua may be cast in a so-called reduced form for six reduced components of the radiation field. In this formalism the six components of the reduced source function are angle-independent quantities. It thus reduces drastically the storage requirement of numerical codes. This approach encounters a fundamental problem when the medium is illuminated by a polarized incident radiation, because there is a priori no way of relating the known (and measurable) Stokes parameters of the incident radiation to boundary conditions for the reduced equations. The origin of this problem is that there is no unique way of deriving the radiation reduced components from its Stokes parameters (only the inverse operation is clearly defined). The method proposed here aims at enabling to work with arbitrary incident radiation field (polarized or unpolarized). In previous works an ad-hoc treatment of the boundary conditions, applying to case...
Spatial heterogeneity of ocean surface boundary conditions under sea ice
Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues
2016-06-01
The high heterogeneity of sea ice properties implies that its effects on the ocean are spatially variable at horizontal scales as small as a few meters. Previous studies have shown that taking this variability into account in models could be required to simulate adequately mixed layer processes and the upper ocean temperature and salinity structures. Although many advanced sea ice models include a subgrid-scale ice thickness distribution, potentially providing heterogeneous surface boundary conditions, the information is lost in the coupling with a unique ocean grid cell underneath. The present paper provides a thorough examination of boundary conditions at the ocean surface in the NEMO-LIM model, which can be used as a guideline for studies implementing subgrid-scale ocean vertical mixing schemes. Freshwater, salt, solar heat and non-solar heat fluxes are examined, as well as the norm of the surface stress. All of the thermohaline fluxes vary considerably between the open water and ice fractions of grid cells. To a lesser extent, this is also the case for the surface stress. Moreover, the salt fluxes in both hemispheres and the solar heat fluxes in the Arctic show a dependence on the ice thickness category, with more intense fluxes for thinner ice, which promotes further subgrid-scale heterogeneity. Our analysis also points out biases in the simulated open water fraction and in the ice thickness distribution, which should be investigated in more details in order to ensure that the latter is used to the best advantage.
Influence of Spanwise Boundary Conditions on Slat Noise Simulations
Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.
2015-01-01
The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.
Theory of a curved planar waveguide with Robin boundary conditions
Olendski, O.; Mikhailovska, L.
2010-03-01
A model of a thin straight strip with a uniformly curved section and with boundary requirements zeroing at the edges a linear superposition of the wave function and its normal derivative (Robin boundary condition) is analyzed theoretically within the framework of the linear Schrödinger equation and is applied to the study of the processes in the bent magnetic multilayers, superconducting films and metallic ferrite-filled waveguides. In particular, subband thresholds of the straight and curved parts of the film are calculated and analyzed as a function of the Robin parameter 1/Λ , with Λ being an extrapolation length entering Robin boundary condition. For the arbitrary Robin coefficients which are equal on the opposite interfaces of the strip and for all bend parameters the lowest-mode energy of the continuously curved duct is always smaller than its straight counterpart. Accordingly, the bound state below the fundamental propagation threshold of the straight arms always exists as a result of the bend. In terms of the superconductivity language it means an increased critical temperature of the curved film compared to its straight counterpart. Localized-level dependence on the parameters of the curve is investigated with its energy decreasing with increasing bend angle and decreasing bend radius. Conditions of the bound-state existence for the different Robin parameters on the opposite edges are analyzed too; in particular, it is shown that the bound state below the first transverse threshold of the straight arm always exists if the inner extrapolation length is not larger than the outer one. In the opposite case there is a range of the bend parameters where the curved film cannot trap the wave and form the localized mode; for example, for the fixed bend radius the bound state emerges from the continuum at some nonzero bend angle that depends on the difference of the two lengths Λ at the opposite interfaces. Various transport properties of the film such as
Homogenized boundary conditions and resonance effects in Faraday cages
Hewett, D. P.; Hewitt, I. J.
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
Homogenized boundary conditions and resonance effects in Faraday cages
Hewitt, I. J.
2016-01-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775
Homogenized boundary conditions and resonance effects in Faraday cages.
Hewett, D P; Hewitt, I J
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called 'Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
Topological susceptibility in lattice Yang-Mills theory with open boundary condition
Chowdhury, Abhishek; Harindranath, A. [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhan Nagar, Kolkata 700064 (India); Maiti, Jyotirmoy [Department of Physics, Barasat Government College,10 KNC Road, Barasat, Kolkata 700124 (India); Majumdar, Pushan [Department of Theoretical Physics, Indian Association for the Cultivation of Science,Kolkata 700032 (India)
2014-02-11
We find that using open boundary condition in the temporal direction can yield the expected value of the topological susceptibility in lattice SU(3) Yang-Mills theory. As a further check, we show that the result agrees with numerical simulations employing the periodic boundary condition. Our results support the preferability of the open boundary condition over the periodic boundary condition as the former allows for computation at smaller lattice spacings needed for continuum extrapolation at a lower computational cost.
Physiologically structured populations with diffusion and dynamic boundary conditions.
Farkas, József Z; Hinow, Peter
2011-04-01
We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. We equip the model with generalized Wentzell-Robin (or dynamic) boundary conditions. This approach allows the modelling of populations in which individuals may have distinguished physiological states. We establish existence and positivity of solutions by showing that solutions are governed by a positive quasicontractive semigroup of linear operators on the biologically relevant state space. These results are obtained by establishing dissipativity of a suitably perturbed semigroup generator. We also show that solutions of the model exhibit balanced exponential growth, that is, our model admits a finite-dimensional global attractor. In case of strictly positive fertility we are able to establish that solutions in fact exhibit asynchronous exponential growth.
Steady-State Axisymmetric MHD Solutions with Various Boundary Conditions
Wang, Lile
2014-01-01
Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars (AXPs), magnetars, isolated neutron stars etc.], and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method (FDM) and finite-element method (FEM) schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso (2001), finding that their separable semi-analytic nonlinear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. The multiplicity of nonlinear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as ...
Boundary conditions for free surface inlet and outlet problems
Taroni, M.
2012-08-10
We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.
Boundary Conditions for a New Type of Design Task
McAloone, Tim C.
2011-01-01
object and research paradigm, studying service‐oriented approaches to product development and seeking to understand how to spell the systematic development of these so-called Product/Service‐Systems (PSS). When considering the shift towards PSS in the domain of engineering, it is in......-teresting to understand the shifting focus and identification of boundary conditions that manufacturing organisations must undergo, in order to develop just as systematic an approach to the service-related aspects of their business development, as they have in place for their product development. This chapter......Manufacturing companies have traditionally focused their efforts on developing and producing physical products for the market. Currently, however, many companies are rethinking their business strategies, from selling products to providing services. In place of the product alone, the activity...
Thermal momentum distribution from path integrals with shifted boundary conditions
Giusti, Leonardo
2011-01-01
For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction, and (b) the ordinary partition function. In this form the generating function is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.
`Gas cushion' model and hydrodynamic boundary conditions for superhydrophobic textures
Nizkaya, Tatiana V; Vinogradova, Olga I
2014-01-01
Superhydrophobic Cassie textures with trapped gas bubbles reduce drag, by generating large effective slip, which is important for a variety of applications that involve a manipulation of liquids at the small scale. Here we discuss how the dissipation in the gas phase of textures modifies their friction properties and effective slip. We propose an operator method, which allows us the mapping of the flow in the gas subphase to a local slip boundary condition at the liquid/gas interface. The determined uniquely local slip length depends on the viscosity contrast and underlying topography, and can be immediately used to evaluate an effective slip of the texture. Beside Cassie surfaces our approach is valid for Wenzel textures, where a liquid follows the surface relief, as well as for rough surfaces impregnated by a low-viscosity `lubricant'. These results provide a framework for the rational design of textured surfaces for numerous applications.
Solution of MHD problems with mixed-type boundary conditions
Antimirov, M.IA.
1985-06-01
The introduction of artificial anisotropy of the dynamic viscosity in one of the subregions in which the solution is sought is utilized to derive an approximation method for MHD problems with mixed-type boundary conditions. The method is demonstrated through two problems: slow rotation of a disk and motion of a finite-width infinitely long plate in an infinite volume of a conducting fluid. The velocity and magnetic field solutions are obtained in the form of integrals of Bessel functions, and the torque is found. It is shown that when the Hartmann number approaches infinity the torque of a convex body of revolution in a longitudinal magnetic field is equal to that of a disk lying at the centerline section of the body.
Sirenko, Kostyantyn
2011-01-01
An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.
Behavior of the reversed field pinch with nonideal boundary conditions
Ho, Yung-Lung
1988-11-01
The linear and nonlinear magnetohydrodynamic stability of current-driven modes are studied for a reversed field pinch with nonideal boundary conditions. The plasma is bounded by a thin resistive shell surrounded by a vacuum region out to a radius at which a perfectly conducting wall is situated. The distant wall and the thin shell problems are studied by removing either the resistive shell or the conducting wall. Linearly, growth rates of tearing modes and kink modes are calculated by analytical solutions based on the modified Bessel function model for the equilibrium. The effects of variation of the shell resistivity and wall proximity on the growth rates are investigated. The modes that may be important in different parameter regimes and with different boundary conditions are identified. The nonlinear behaviors are studied with a three-dimensional magnetohydrodynamics code. The fluctuations generally rise with increasing distance between the conducting wall and the plasma. The enhanced fluctuation induced v x b electric field primarily oppose toroidal current; hence, loop voltage must increase to sustain the constant. Quasilinear interaction between modes typically associated with the dynamo action is identified as the most probable nonlinear destabilization mechanism. The helicity and energy balance properties of the simulation results are discussed. The interruption of current density along field lines intersecting the resistive shell is shown to lead to surface helicity leakage. This effect is intimately tied to stability, as fluctuation induced v x b electric field is necessary to transport the helicity to the surface. In this manner, all aspects of helicity balance, i.e., injection, transport, and dissipation, are considered self-consistently. The importance of the helicity and energy dissipation by the mean components of the magnetic field and current density is discussed.
Sprlak, M.; Novak, P.; Pitonak, M.; Hamackova, E.
2015-12-01
Values of scalar, vectorial and second-order tensorial parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and are well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. This fact may be documented by the terrestrial experiments Dulkyn and Magia, as well as by the proposal of the gravity-dedicated satellite mission called OPTIMA. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, we derive integral transforms between the gravitational potential and gravitational curvatures, i.e., we find analytical solutions of the boundary value problems with gravitational curvatures as boundary conditions. Secondly, properties of the corresponding Green kernel functions are studied in the spatial and spectral domains. Thirdly, the correctness of the new analytical solutions is tested in a simulation study. The presented mathematical apparatus reveal important properties of the gravitational curvatures. It also extends the Meissl scheme, i.e., an important theoretical paradigm that relates various parameters of the Earth's gravitational field.
The height of the atmospheric boundary layer during unstable conditions
Gryning, S.E.
2005-11-01
The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer
DYNAMIC SURFACE BOUNDARY-CONDITIONS - A SIMPLE BOUNDARY MODEL FOR MOLECULAR-DYNAMICS SIMULATIONS
JUFFER, AH; BERENDSEN, HJC
1993-01-01
A simple model for the treatment of boundaries in molecular dynamics simulations is presented. The method involves the positioning of boundary atoms on a surface that surrounds a system of interest. The boundary atoms interact with the inner region and represent the effect of atoms outside the surfa
Effects of Boundary Conditions on Near Field Plasma Plume Simulations
Boyd, Iain
2004-11-01
The successful development of various types of electric propulsion devices is providing the need for accurate assessment of integration effects generated by the interaction of the plasma plumes of these thrusters with the host spacecraft. Assessment of spacecraft interaction effects in ground based laboratory facilities is inadequate due to the technical difficulties involved in accurately recreating the near vacuum ambient conditions experienced in space. This situation therefore places a heavy demand on computational modeling of plasma plume phenomena. Recently (Boyd and Yim, Journal of Applied Physics, Vol. 95, 2004, pp. 4575-5484) a hybrid model of the near field of the plume of a Hall thruster was reported in which the heavy species are modeled using particles and the electrons are modeled using a detailed fluid description. The present study continues the model development and assessment by considering the sensitivity of computed results to different types of boundary conditions that must be formulated for the thruster exit, for the cathode exit, for the thruster walls, and for the plume far field. The model is assessed through comparison of its predictions with several sets of experimental data measured in the plume of the BHT-200 Hall thruster.
Sensitivity of African easterly waves to boundary layer conditions
A. Lenouo
2008-06-01
Full Text Available A linearized version of the quasi-geostrophic model (QGM with an explicit Ekman layer and observed static stability parameter and profile of the African easterly jet (AEJ, is used to study the instability properties of the environment of the West African wave disturbances. It is found that the growth rate, the propagation velocity and the structure of the African easterly waves (AEW can be well simulated. Two different lower boundary conditions are applied. One assumes a lack of vertical gradient of perturbation stream function and the other assumes zero wind perturbation at the surface. The first case gives more realistic results since in the absence of horizontal diffusion, growth rate, phase speed and period have values of 0.5 day^{−1}, 10.83 m s^{−1} and 3.1 day, respectively. The zero wind perturbation at the surface case leads to values of these parameters that are 50 percent lower. The analysis of the sensitivity to diffusion shows that the magnitude of the growth rate decreases with this parameter. Modelled total relative vorticity has its low level maximum around 900 hPa under no-slip, and 700 hPa under free slip condition.
Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions
Nemat Nyamoradi
2013-01-01
Full Text Available We consider a system of boundary value problems for fractional differential equation given by D0+βϕp(D0+αu(t=λ1a1(tf1(u(t,v(t, t∈(0,1, D0+βϕp(D0+αv(t=λ2a2(tf2(u(t,v(t, t∈(0,1, where 1<α, β≤2, 2<α+β≤4, λ1, λ2 are eigenvalues, subject either to the boundary conditions D0+αu(0=D0+αu(1=0, u(0=0, D0+β1u(1-Σi=1m-2a1i D0+β1u(ξ1i=0, D0+αv(0=D0+αv(1=0, v(0=0, D0+β1v(1-Σi=1m-2a2i D0+β1v(ξ2i=0 or D0+αu(0=D0+αu(1=0, u(0=0, D0+β1u(1-Σi=1m-2a1i D0+β1u(ξ1i=ψ1(u, D0+αv(0=D0+αv(1=0, v(0=0, D0+β1v(1-Σi=1m-2a2i D0+β1v(ξ2i=ψ2(v, where 0<β1<1, α-β1-1≥0 and ψ1, ψ2:C([0,1]→[0, ∞ are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.
Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic
Baatsen, Michiel; van Hinsbergen, Douwe J. J.; von der Heydt, Anna S.; Dijkstra, Henk A.; Sluijs, Appy; Abels, Hemmo A.; Bijl, Peter K.
2016-08-01
Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate a global geographical reconstruction for the middle-late Eocene. The generalised procedure is also reusable to create reconstructions for other time slices within the Cenozoic, suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth-age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicate that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain
An Artificial Boundary Condition for the Vortex Movements in Two Dimensions
Qiyuan Cheng
2006-01-01
An approximate artificial boundary condition based on a boundary integral equation is designed for the vortex movements. Point vortex and cloud in cell methods are used in numerical simulation of vortex motions. The numerical experiments show that the approximate artificial boundary condition is useful and sufficiently accurate in hydrodynamics.
A Note on Fractional Differential Equations with Fractional Separated Boundary Conditions
Bashir Ahmad
2012-01-01
Full Text Available We consider a new class of boundary value problems of nonlinear fractional differential equations with fractional separated boundary conditions. A connection between classical separated and fractional separated boundary conditions is developed. Some new existence and uniqueness results are obtained for this class of problems by using standard fixed point theorems. Some illustrative examples are also discussed.
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
Zuidema, P.; Adebiyi, A. A.; Ramajiguru, L.
2015-12-01
Ascension Island, a remote island located in the middle of the Atlantic Ocean within the trade-wind region oat 8S, 14.5W, experiences the outflow of biomass-burning aerosols from continental Africa, over 2000 km away, from July through November, peaking in August and September. The shortwave-absorbing free-tropospheric aerosols, located in a region of high solar irradiance, provide a climate warming that is poorly represented in global aerosol climate models. The low clouds can respond to the smoke layer in myriad possible ways that are not yet well-documented. The shortwave-warming can stabilize the free-troposphere, enhancing the low cloud fraction. The deepening boundary layer and subsiding smoke layer also increase the likelihood of aerosol-cloud microphysical interactions. Interest in this climate regime is supporting an observational strategy of a year-long DOE ARM Mobile Facility deployment to Ascension (Layered Atlantic Smoke Interactions with Clouds, or LASIC), and an NSF aircraft campaign (ObservatioNs of Fire's Impact on the southeast atlantic REgion, or ONFIRE) based on Sao Tome Island. These campaigns will be integrated with NASA, UK and African activities sharing similar goals based further south in Namibia. Initial analysis is distinguishing meteorology from aerosol impacts on the boundary layer cloud fields. The forward trajectories of emissions from over 24,000 fire sources on continental Africa show that a free-tropospheric jet can advect aerosols to above Ascension island in just one-two days. The fast transport time encourages retention of signatures of the fire sources, in particular the radiatively-crucial single-scattering albedo value. Thereafter, a deep land-based anticyclonic high recirculates over one-third of these trajectories back to the African continent, explaining the widespread extent of the aerosol layer. The free-tropospheric jet also reduces the mean atmospheric subsidence independently of shortwave absorption by the aerosols
Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations
Darmofal, David L.
1998-01-01
An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.
Stability of a flexible structure with destabilizing boundary conditions
Shubov, M.; Shubov, V.
2016-07-01
The Euler-Bernoulli beam model with non-dissipative boundary conditions of feedback control type is investigated. Components of the two-dimensional input vector are shear and moment at the right end, and components of the observation vector are time derivatives of displacement and slope at the right end. The codiagonal matrix depending on two control parameters relates input and observation. The paper contains five results. First, asymptotic approximation for eigenmodes is derived. Second, `the main identity' is established. It provides a relation between mode shapes of two systems: one with non-zero control parameters and the other one with zero control parameters. Third, when one control parameter is positive and the other one is zero, `the main identity' yields stability of all eigenmodes (though the system is non-dissipative). Fourth, the stability of eigenmodes is extended to the case when one control parameter is positive, and the other one is sufficiently small. Finally, existence and properties of `deadbeat' modes are investigated.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, P J; Ganon, G; Dekel, A; Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the mean error in the approximated relative density perturbation, $\\delta$, is smaller than 0.06, and the dispersion is 0.1. The \\rms\\ error in the estimated velocity is smaller than 60\\kms, and the dispersion is 40\\kms. For smoothing of 500\\kms\\ these numbers increase by about a factor $\\sim 2$ for $\\delta < 4-5$, but deteriorate at higher densities. The other approximations are comparable to those of Nusser \\etal for smoothing of 1000\\kms, but are much less successful for the smaller smoothing of 500\\kms.
Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions
Pao, C. V.; Ruan, W. H.
2007-09-01
The aim of this paper is to investigate the existence, uniqueness, and asymptotic behavior of solutions for a coupled system of quasilinear parabolic equations under nonlinear boundary conditions, including a system of quasilinear parabolic and ordinary differential equations. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system as well as the uniqueness of a positive steady-state solution. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i. Our approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. It is shown that the time-dependent solution converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a porous medium type of problem, a heat-transfer problem, and a two-component competition model in ecology. These applications illustrate some very interesting distinctive behavior of the time-dependent solutions between density-independent and density-dependent diffusions.
Positive solutions of quasilinear parabolic systems with Dirichlet boundary condition
Pao, C. V.; Ruan, W. H.
Coupled systems for a class of quasilinear parabolic equations and the corresponding elliptic systems, including systems of parabolic and ordinary differential equations are investigated. The aim of this paper is to show the existence, uniqueness, and asymptotic behavior of time-dependent solutions. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients D(u) may have the property D(0)=0 for some or all i=1,…,N, and the boundary condition is u=0. Using the method of upper and lower solutions, we show that a unique global classical time-dependent solution exists and converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a scalar polynomial growth problem, a coupled system of polynomial growth problem, and a two component competition model in ecology.
CT image segmentation using FEM with optimized boundary condition.
Hiroyuki Hishida
Full Text Available The authors propose a CT image segmentation method using structural analysis that is useful for objects with structural dynamic characteristics. Motivation of our research is from the area of genetic activity. In order to reveal the roles of genes, it is necessary to create mutant mice and measure differences among them by scanning their skeletons with an X-ray CT scanner. The CT image needs to be manually segmented into pieces of the bones. It is a very time consuming to manually segment many mutant mouse models in order to reveal the roles of genes. It is desirable to make this segmentation procedure automatic. Although numerous papers in the past have proposed segmentation techniques, no general segmentation method for skeletons of living creatures has been established. Against this background, the authors propose a segmentation method based on the concept of destruction analogy. To realize this concept, structural analysis is performed using the finite element method (FEM, as structurally weak areas can be expected to break under conditions of stress. The contribution of the method is its novelty, as no studies have so far used structural analysis for image segmentation. The method's implementation involves three steps. First, finite elements are created directly from the pixels of a CT image, and then candidates are also selected in areas where segmentation is thought to be appropriate. The second step involves destruction analogy to find a single candidate with high strain chosen as the segmentation target. The boundary conditions for FEM are also set automatically. Then, destruction analogy is implemented by replacing pixels with high strain as background ones, and this process is iterated until object is decomposed into two parts. Here, CT image segmentation is demonstrated using various types of CT imagery.
Reactive Boundary Conditions as Limits of Interaction Potentials for Brownian and Langevin Dynamics
Chapman, S Jonathan; Isaacson, Samuel A
2015-01-01
A popular approach to modeling bimolecular reactions between diffusing molecules is through the use of reactive boundary conditions. One common model is the Smoluchowski partial absorption condition, which uses a Robin boundary condition in the separation coordinate between two possible reactants. This boundary condition can be interpreted as an idealization of a reactive interaction potential model, in which a potential barrier must be surmounted before reactions can occur. In this work we show how the reactive boundary condition arises as the limit of an interaction potential encoding a steep barrier within a shrinking region in the particle separation, where molecules react instantly upon reaching the peak of the barrier. The limiting boundary condition is derived by the method of matched asymptotic expansions, and shown to depend critically on the relative rate of increase of the barrier height as the width of the potential is decreased. Limiting boundary conditions for the same interaction potential in b...
Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines
Qian, Wei; Werner, Wendelin
2017-01-01
We describe level-line decompositions of the two-dimensional Gaussian Free Field (GFF) with free boundary conditions. In particular, we point out a simple way to couple the GFF with free boundary conditions in a domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary touching 0-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free bo...
Error transport equation boundary conditions for the Euler and Navier-Stokes equations
Phillips, Tyrone S.; Derlaga, Joseph M.; Roy, Christopher J.; Borggaard, Jeff
2017-02-01
Discretization error is usually the largest and most difficult numerical error source to estimate for computational fluid dynamics, and boundary conditions often contribute a significant source of error. Boundary conditions are described with a governing equation to prescribe particular behavior at the boundary of a computational domain. Boundary condition implementations are considered sufficient when discretized with the same order of accuracy as the primary governing equations; however, careless implementations of boundary conditions can result in significantly larger numerical error. Investigations into different numerical implementations of Dirichlet and Neumann boundary conditions for Burgers' equation show a significant impact on the accuracy of Richardson extrapolation and error transport equation discretization error estimates. The development of boundary conditions for Burgers' equation shows significant improvements in discretization error estimates in general and a significant improvement in truncation error estimation. The latter of which is key to accurate residual-based discretization error estimation. This research investigates scheme consistent and scheme inconsistent implementations of inflow and outflow boundary conditions up to fourth order accurate and a formulation for a slip wall boundary condition for truncation error estimation are developed for the Navier-Stokes and Euler equations. The scheme consistent implementation resulted in much smoother truncation error near the boundaries and more accurate discretization error estimates.
Revisit boundary conditions for the self-adjoint angular flux formulation
Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-03-01
We revisit the boundary conditions for SAAF. We derived the equivalent parity variational form ready for coding up. The more rigorous approach of evaluating odd parity should be solving the odd parity equation coupled with the even parity. We proposed a symmetric reflecting boundary condition although neither positive definiteness nor even-odd decoupling is achieved. A simple numerical test verifies the validity of these boundary conditions.
RADIATION BOUNDARY CONDITIONS FOR MAXWELL'S EQUATIONS: A REVIEW OF ACCURATE TIME-DOMAIN FORMULATIONS
Thomas Hagstrom; Stephen Lau
2007-01-01
We review time-domain formulations of radiation boundary conditions for Maxwell's equations, focusing on methods which can deliver arbitrary accuracy at acceptable computational cost. Examples include fast evaluations of nonlocal conditions on symmetric and general boundaries, methods based on identifying and evaluating equivalent sources, and local approximations such as the perfectly matched layer and sequences of local boundary conditions. Complexity estimates are derived to assess work and storage requirements as a function of wavelength and simulation time.
Supersymmetry Breaking through Boundary Conditions Associated with the $U(1)_{R}$
Takenaga, K
1998-01-01
The effects of boundary conditions imposed on the fields for the compactified space directions to the supersymmetric theories are discussed. The boundary conditions can be taken to be periodic up to the degrees of freedom of localized $U(1)_{R}$ transformations. The boundary condition breaks the supersymmetry to yield universal soft supersymmetry breaking terms. The 4-dimensional supersymmetric QED with one flavour and the pure supersymmetric QCD are studied as toy models when one of the space coordinates is compactified on $S^1$.
The DtN nonreflecting boundary condition for multiple scattering problems in the half-plane
Acosta, Sebastian; Malone, Bruce
2013-01-01
The multiple-Dirichlet-to-Neumann (multiple-DtN) non-reflecting boundary condition is adapted to acoustic scattering from obstacles embedded in the half-plane. The multiple-DtN map is coupled with the method of images as an alternative model for multiple acoustic scattering in the presence of acoustically soft and hard plane boundaries. As opposed to the current practice of enclosing all obstacles with a large semicircular artificial boundary that contains portion of the plane boundary, the proposed technique uses small artificial circular boundaries that only enclose the immediate vicinity of each obstacle in the half-plane. The adapted multiple-DtN condition is simultaneously imposed in each of the artificial circular boundaries. As a result the computational effort is significantly reduced. A computationally advantageous boundary value problem is numerically solved with a finite difference method supported on boundary-fitted grids. Approximate solutions to problems involving two scatterers of arbitrary geo...
An Explicit Time-Domain Hybrid Formulation Based on the Unified Boundary Condition
Madsen, N; Fasenfest, B J; White, D; Stowell, M; Jandhyala, V; Pingenot, J; Champagne, N J; Rockway, J D
2007-02-28
An approach to stabilize the two-surface, time domain FEM/BI hybrid by means of a unified boundary condition is presented. The first-order symplectic finite element formulation [1] is used along with a version of the unified boundary condition of Jin [2] reformulated for Maxwell's first-order equations in time to provide both stability and accuracy over the first-order ABC. Several results are presented to validate the numerical solutions. In particular the dipole in a free-space box is analyzed and compared to the Dirchlet boundary condition of Ziolkowski and Madsen [3] and to a Neuman boundary condition approach.
S-duality of boundary conditions and the Geometric Langlands program
Gaiotto, Davide
2016-01-01
Maximally supersymmetric gauge theory in four dimensions admits local boundary conditions which preserve half of the bulk supersymmetries. The S-duality of the bulk gauge theory can be extended in a natural fashion to act on such half-BPS boundary conditions. The purpose of this note is to explain the role these boundary conditions can play in the Geometric Langlands program. In particular, we describe how to obtain pairs of Geometric Langland dual objects from S-dual pairs of half-BPS boundary conditions.
Solitonic sectors, conformal boundary conditions and three-dimensional topological field theory
Schweigert, C
2000-01-01
The correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary world sheets can be expressed in terms of Wilson graphs in appropriate three-manifolds. We present a systematic approach to boundary conditions that break bulk symmetries. It is based on the construction, by `alpha-induction', of a fusion ring for the boundary fields. Its structure constants are the annulus coefficients and its 6j-symbols give the OPE of boundary fields. Symmetry breaking boundary conditions correspond to solitonic sectors.
Borjan, Z.
2016-09-01
We consider critical Casimir force in the Ising strips with boundary conditions defined by standard normal and ordinary surface universality classes containing also the internal grain boundary. Using exact variational approach of Mikheev and Fisher we have elaborated on behaviors of Casimir amplitudes Δ++(g) , ΔOO(g) and Δ+O(g) , corresponding to normal-normal, ordinary-ordinary and mixed normal-ordinary boundary conditions, respectively, with g as a strength of the grain boundary. Closed analytic results describe Casimir amplitudes Δ++(g) and ΔOO(g) as continuous functions of the grain boundary's strength g, changing the character of the Casimir force from repulsive to attractive and vice versa for certain domains of g. Present results reveal a new type of symmetry between Casimir amplitudes Δ++(g) and ΔOO(g) . Unexpectedly simple constant result for the Casimir amplitude Δ+O(g) = π/12 we have comprehensively interpreted in terms of equilibrium states of the present Ising strip as a complex interacting system comprising two sub-systems. Short-distance expansions of energy density profiles in the vicinity of the grain boundary reveal new distant-wall correction amplitudes that we examined in detail. Analogy of present considerations with earlier more usual short-distance expansions near one of the (N), (O) and (SB) boundaries, as well as close to surfaces with variable boundary conditions refers to the set of scaling dimensions appearing in the present calculations but also to the discovery of the de Gennes-Fisher distant wall correction amplitudes.
Boundary conditions control for a Shallow-Water model
Kazantsev, Eugene
2012-01-01
A variational data assimilation technique was used to estimate optimal discretization of interpolation operators and derivatives in the nodes adjacent to the rigid boundary. Assimilation of artificially generated observational data in the shallow-water model in a square box and assimilation of real observations in the model of the Black sea are discussed. It is shown in both experiments that controlling the discretization of operators near a rigid boundary can bring the model solution closer to observations as in the assimilation window and beyond the window. This type of control allows also to improve climatic variability of the model.
Conformal field theory, boundary conditions and applications to string theory
Schweigert, C.; Fuchs, J.; Walcher, J.
2000-01-01
This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Absorption and impedance boundary conditions for phased geometrical-acoustics methods
Jeong, Cheol-Ho
2012-01-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been...... developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated...... with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce...
Absorption and impedance boundary conditions for phased geometrical-acoustics methods.
Jeong, Cheol-Ho
2012-10-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials.
Green's function of a heat problem with a periodic boundary condition
Erzhanov, Nurzhan E.
2016-08-01
In the paper, a nonlocal initial-boundary value problem for a non-homogeneous one-dimensional heat equation is considered. The domain under consideration is a rectangle. The classical initial condition with respect to t is put. A nonlocal periodic boundary condition by a spatial variable x is put. It is well-known that a solution of problem can be constructed in the form of convergent orthonormal series according to eigenfunctions of a spectral problem for an operator of multiple differentiation with periodic boundary conditions. Therefore Green's function can be also written in the form of an infinite series with respect to trigonometric functions (Fourier series). For classical first and second initial-boundary value problems there also exists a second representation of the Green's function by Jacobi function. In this paper we find the representation of the Green's function of the nonlocal initial-boundary value problem with periodic boundary conditions in the form of series according to exponents.
Boundary conditions for the Einstein-Christoffel formulation of Einstein's equations
Douglas N. Arnold
2007-02-01
Full Text Available Specifying boundary conditions continues to be a challenge in numerical relativity in order to obtain a long time convergent numerical simulation of Einstein's equations in domains with artificial boundaries. In this paper, we address this problem for the Einstein-Christoffel (EC symmetric hyperbolic formulation of Einstein's equations linearized around flat spacetime. First, we prescribe simple boundary conditions that make the problem well posed and preserve the constraints. Next, we indicate boundary conditions for a system that extends the linearized EC system by including the momentum constraints and whose solution solves Einstein's equations in a bounded domain.
Nested Bethe Ansatz for Spin Ladder Model with Open Boundary Conditions
WU Jun-Fang; ZHANG Chun-Min; YUE Rui-Hong; LI Run-Ling
2005-01-01
The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the general diagonal solution, which determines the generalboundary interaction in the Hamiltonian. We introduce the spin-ladder model with open boundary conditions. By finding the solution K± of the reflection equation which determines the nontrivial boundary terms in the Hamiltonian, we diagonalize the transfer matrix of the spin-ladder model with open boundary conditions in the framework of nested BA.
An Implicit Method for Solving Fuzzy Partial Differential Equation with Nonlocal Boundary Conditions
B. Orouji
2015-06-01
Full Text Available In this paper we introduce a numerical solution for the fuzzy heat equation with nonlocal boundary conditions. The main purpose is finding a difference scheme for the one dimensional heat equation with nonlocal boundary conditions. In these types of problems, an integral equation is appeared in the boundary conditions. We first express the necessary materials and definitions, and then consider our difference scheme and next the integrals in the boundary equations are approximated by the composite trapezoid rule. In the final part, we present an example for checking the numerical results. In this example we obtain the Hausdorff distance between exact solution and approximate solution.
A. Malvandi
2015-01-01
Full Text Available The objective of this paper is to consider both effects of slip and convective heat boundary conditions on steady two-dimensional boundary layer flow of a nanofluid over a stretching sheet in the presence of blowing/suction simultaneously. Flow meets the Navier's slip condition at the surface and Biot number is also used to consider the effects of convective heat transfer. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of nanoparticle migration owing to Brownian motion and thermophoresis. The basic partial boundary layer equations have been transformed into a two-point boundary value problem via similarity variables. Results for impermeable isothermal surface and also no-slip boundary condition were in best agreements with those existing in literatures. Effects of governing parameters such as Biot number (Bi, slip parameter (λ, thermophoresis (Nt, Prandtl number (Pr, Lewis number (Le, Brownian motion (Nb and blowing/suction (S on reduced Nusselt and Sherwood numbers are analyzed and discussed in details. The obtained results indicate that unlike heat transfer rate, concentration rate is very sensitive to all parameters among which Le, S and Pr are the most effective ones.
State-specific catalytic recombination boundary condition for DSMC methods in aerospace applications
Bariselli, F.; Torres, E.; Magin, T. E.
2016-11-01
Accurate characterization of the hypersonic flow around a vehicle during its atmospheric entry is important for a precise quantification of heat flux margins. In some cases, exothermic reactions promoted by the catalytic properties of the surface material can significantly contribute to the overall heat flux. In this work, the effect of catalytic recombination of atomic nitrogen is examined within the framework of a state-specific DSMC implementation. State-to-state reaction cross sections are derived from a detailed quantum-chemical database for the N2(v, J) + N system. A coarse-grain model is used to reduce the number of internal states and state-specific reactions to a manageable level. The catalytic boundary condition is based on an phenomenological approach and the state-specific surface recombination probabilities can be imposed by the user. This can represent an important aspect in modelling catalysis, since experiments and molecular dynamics suggest that only part of the chemical energy is absorbed by the wall, with the formed molecules leaving the surface in an excited state. The implementation is verified in a simplified geometrical configuration by comparing the numerical results with an analytical solution, developed for a 1D diffusion problem in a binary mixture. Then, the effect of catalysis in a hypersonic flow along the stagnation line of a blunt body is studied.
General Considerations of the Electrostatic Boundary Conditions in Oxide Heterostructures
Higuchi, Takuya
2011-08-19
When the size of materials is comparable to the characteristic length scale of their physical properties, novel functionalities can emerge. For semiconductors, this is exemplified by the 'superlattice' concept of Esaki and Tsu, where the width of the repeated stacking of different semiconductors is comparable to the 'size' of the electrons, resulting in novel confined states now routinely used in opto-electronics. For metals, a good example is magnetic/non-magnetic multilayer films that are thinner than the spin-scattering length, from which giant magnetoresistance (GMR) emerged, used in the read heads of hard disk drives. For transition metal oxides, a similar research program is currently underway, broadly motivated by the vast array of physical properties that they host. This long-standing notion has been recently invigorated by the development of atomic-scale growth and probe techniques, which enables the study of complex oxide heterostructures approaching the precision idealized in Fig. 1(a). Taking the subset of oxides derived from the perovskite crystal structure, the close lattice match across many transition metal oxides presents the opportunity, in principle, to develop a 'universal' heteroepitaxial materials system. Hand-in-hand with the continual improvements in materials control, an increasingly relevant challenge is to understand the consequences of the electrostatic boundary conditions which arise in these structures. The essence of this issue can be seen in Fig. 1(b), where the charge sequence of the sublayer 'stacks' for various representative perovskites is shown in the ionic limit, in the (001) direction. To truly 'universally' incorporate different properties using different materials components, be it magnetism, ferroelectricity, superconductivity, etc., it is necessary to access and join different charge sequences, labelled here in analogy to the designations 'group IV, III-V, II
Poynting flux-conserving low-altitude boundary conditions for global magnetospheric models
Xi, S.; Lotko, W.; Zhang, B.; Brambles, O. J.; Lyon, J. G.; Merkin, V. G.; Wiltberger, M.
2015-01-01
A method for specifying low-altitude or inner boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. The single-fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method, with comparisons between simulations using LFM's standard hardwall boundary conditions and the new flux-conserving boundary conditions. Identical idealized upstream solar wind and interplanetary magnetic field conditions and the same constant ionospheric conductance are used in both runs. The results show that, compared to LFM's standard hardwall boundary conditions, the flux-conserving method improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the hemispheric integrated field-aligned DC Poynting flux just above the boundary is close to the hemispheric total Joule heating of the ionosphere, as it should be if electromagnetic energy is conserved. The MHD velocity and perpendicular currents are well-behaved near the inner boundary for the flux conserving boundary conditions.
无
2011-01-01
This paper is concerned with the existence of extreme solutions to three-point boundary value problems with nonlinear boundary conditions for a class of first order impulsive differential equations. We obtain suficient conditions for the existence of extreme solutions by the upper and lower solutions method coupled with a monotone iterative technique.
Daalen, van Edwin F.G.; Broeze, Jan; Groesen, van Embrecht
1992-01-01
Radiation boundary conditions are derived for partial differential equations which describe wave phenomena. Assuming the evolution of the system to be governed by a Lagrangian variational principle, boundary conditions are obtained with Noether's theorem from the requirement that they transmit some
Question of consistent boundary conditions when simulating reversed field pinch dynamics. Revision 1
Mirin, A.A.
1986-03-01
The issue of proper boundary conditions when performing magnetohydrodynamic simulations of the reversed field pinch is examined. Of particular concern is the choice of constant current, which when combined with other commonly used boundary conditions, may, under careless implementation, lead to an inconsistency. It is shown that this may cause erroneous results. Cases both with and without Hall terms are presented.
The effect of external boundary conditions on condensation heat transfer in rotating heat pipes
Daniels, T. C.; Williams, R. J.
1979-01-01
Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.
Eigenstates of a particle in an array of hexagons with periodic boundary condition
A Nemati
2013-10-01
Full Text Available In this paper the problem of a particle in an array of hexagons with periodic boundary condition is solved. Using the projection operators, we categorize eigenfunctions corresponding to each of the irreducible representations of the symmetry group . Based on these results, the Dirichlet and Neumann boundary conditions are discussed.
Vibrations of stretched damped beams under non-ideal boundary conditions
Hakan Boyaci
2006-02-01
A simply supported damped Euler–Bernoulli beam with immovable end conditions are considered. The concept of non-ideal boundary conditions is applied to the beam problem. In accordance, the boundaries are assumed to allow small deﬂections and moments. Approximate analytical solution of the problem is found using the method of multiple scales, a perturbation technique.
马西奎; 韩社教
2002-01-01
Based on the multipole expansion theory of the potential, a satisfactory interpretation is put forward of the exact nature of the approximations of asymptotic boundary condition (called the ABC) techniques for the numerical solutions of open-boundary static electromagnetic-field problems, and a definite physical meaning is bestowed on ABC, which provide a powerful theoretical background for laying down the operating rules and the key to the derivation of asymptotic boundary conditions. This paper is also intended to reveal the shortcomings of the conventional higher-order ABC, and at the same time to give the concept of a new type of higher-order ABC, and to present a somewhat different formulation of the new nth-order ABC. In order to test its feasibility, several simple problems of electrostatic potentials are analyzed. The results are found to be much better than those of conventional higher-order ABCs.
Controlling near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Kundu, Anjan
2016-01-01
Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.
Conformal Boundary Conditions and Three-Dimensional Topological Field Theory
Felder, Giovanni; Fröhlich, Jürg; Fuchs, Jürgen; Schweigert, Christoph
2000-02-01
We present a general construction of all correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary topologies. The correlators are expressed in terms of Wilson graphs in a certain three-manifold, the connecting manifold. The amplitudes constructed this way can be shown to be modular invariant and to obey the correct factorization rules.
Conformal boundary conditions and three-dimensional topological field theory
Felder, G; Fuchs, J; Schweigert, C
2000-01-01
We present a general construction of all correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary topologies. The correlators are expressed in terms of Wilson graphs in a certain three-manifold, the connecting manifold. The amplitudes constructed this way can be shown to be modular invariant and to obey the correct factorization rules.
Modes and exceptional points in waveguides with impedance boundary conditions
Midya, Bikashkali
2016-01-01
A planar waveguide with impedance boundary, composed of non-perfect metallic plates, and with passive or active dielectric filling is considered. We show the possibility of selective mode guiding and amplification when homogeneous pump is added to the dielectric, and analyze differences in TE and TM mode propagation. Such a non-conservative system is also shown to feature exceptional points, for specific and experimentally tunable parameters, which are described for a particular case of transparent dielectric.
On the Boundary Condition Between Two Multiplying Media
Friedman, F. L.; Wigner, E. P.
1944-04-19
The transition region between two parts of a pile which have different compositions is investigated. In the case where the moderator is the same in both parts of the pile, it is found that the diffusion constant times thermal neutron density plus diffusion constant times fast neutron density satisfies the usual pile equations everywhere, right to the boundary. More complicated formulae apply in a more general case.
THE ARTIFICIAL BOUNDARY CONDITION FOR EXTERIOR OSEEN EQUATION IN 2-D SPACE
Chun-xiong Zheng; Hou-de Han
2002-01-01
A finite element method for the solution of Oseen equation in exterior domain is proposed. In this method, a circular artificial boundary is introduced to make the computational domain finite. Then, the exact relation between the normal stress and the prescribed velocity field on the artificial boundary can be obtained analytically. This relation can serve as an boundary condition for the boundary value problem defined on the finite domain bounded by the artificial boundary. Numerical experiment is presented to demonstrate the performance of the method.
Mogilevskii, Vadim
2011-01-01
We investigate in the paper general (not necessarily definite) canonical systems of differential equation in the framework of extension theory of symmetric linear relations. For this aim we first introduce the new notion of a boundary relation $\\G:\\gH^2\\to\\HH$ for $A^*$, where $\\gH$ is a Hilbert space, $A$ is a symmetric linear relation in $\\gH, \\cH_0$ is a boundary Hilbert space and $\\cH_1$ is a subspace in $\\cH_0$. Unlike known concept of a boundary relation (boundary triplet) for $A^*$ our definition of $\\G$ is applicable to relations $A$ with possibly unequal deficiency indices $n_\\pm(A)$. Next we develop the known results on minimal and maximal relations induced by the general canonical system $ J y'(t)-B(t)y(t)=\\D (t)f(t)$ on an interval $\\cI=(a,b),\\; -\\infty\\leq aboundary relation for $\\Tma$ we describe in terms of boundary conditions proper extensions of $\\Tmi$ in the case of the regular endpoint $a$ and arbitrary (possibly unequal)...
Boundary Conditions for 2D Boussinesq-type Wave-Current Interaction Equations
Mera M.
2011-01-01
Full Text Available This research focuses on the development of a set of two-dimensional boundary conditions for specific governing equations. The governing equations are existing Boussinesqtype equations which is capable of simulating wave-current interaction. The present boundary conditions consist of for waves only case and for currents only case. To simulate wave-current interaction, the two kinds of the present boundary conditions are then combined. A numerical model based on both the existing governing equations and the present boundary conditions is applied to simulation of currents only and of wave-current interaction propagating over a basin with a submerged shoal. The results of the numerical model show that the present boundary conditions go well with the existing Boussinesq-type wave-current interaction equations.
Entropy stable wall boundary conditions for the compressible Navier-Stokes equations
Parsani, Matteo; Nielsen, Eric J
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary...
Meulenbroek, B.J.; Ebert, U.; Schäfer, L.
2005-01-01
The dynamics of ionization fronts that generate a conducting body, are in simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact
Open boundary conditions for the Diffuse Interface Model in 1-D
Desmarais, J. L.; Kuerten, J. G. M.
2014-04-01
New techniques are developed for solving multi-phase flows in unbounded domains using the Diffuse Interface Model in 1-D. They extend two open boundary conditions originally designed for the Navier-Stokes equations. The non-dimensional formulation of the DIM generalizes the approach to any fluid. The equations support a steady state whose analytical approximation close to the critical point depends only on temperature. This feature enables the use of detectors at the boundaries switching between conventional boundary conditions in bulk phases and a multi-phase strategy in interfacial regions. Moreover, the latter takes advantage of the steady state approximation to minimize the interface-boundary interactions. The techniques are applied to fluids experiencing a phase transition and where the interface between the phases travels through one of the boundaries. When the interface crossing the boundary is fully developed, the technique greatly improves results relative to cases where conventional boundary conditions can be used. Limitations appear when the interface crossing the boundary is not a stable equilibrium between the two phases: the terms responsible for creating the true balance between the phases perturb the interior solution. Both boundary conditions present good numerical stability properties: the error remains bounded when the initial conditions or the far field values are perturbed. For the PML, the influence of its main parameters on the global error is investigated to make a compromise between computational costs and maximum error. The approach can be extended to multiple spatial dimensions.
Johnson, Anthony N; Hromadka, T V
2015-01-01
The Laplace equation that results from specifying either the normal or tangential force equilibrium equation in terms of the warping functions or its conjugate can be modeled as a complex variable boundary element method or CVBEM mixed boundary problem. The CVBEM is a well-known numerical technique that can provide solutions to potential value problems in two or more dimensions by the use of an approximation function that is derived from the Cauchy Integral in complex analysis. This paper highlights three customizations to the technique.•A least squares approach to modeling the complex-valued approximation function will be compared and analyzed to determine if modeling error on the boundary can be reduced without the need to find and evaluated additional linearly independent complex functions.•The nodal point locations will be moved outside the problem domain.•Contour and streamline plots representing the warping function and its complementary conjugate are generated simultaneously from the complex-valued approximating function.
闫辉; 张丽华; 周秀苗
2001-01-01
The absorbency data of super-absorbent polymers under various leaching time were measured by changing mass of exsiccated polymers or time of absorbing or initiative water volume. After analyzing the curves of absorbency via leaching time, optimum conditions for measuring absorbency of super-absorbent polymers have been obtained, namely mass of exsiccated polymers is 0.300 0 g and time of absorbing is 30 min and initiative water is 2 000 times and leaching time is 30 min, which lays a foundation normalization of measuring condition for absorbency of super-absorbent polymers.%通过改变干树脂质量、吸水时间及起始加水量，测出不同沥水时间时吸水树脂的吸水率，对吸水率～沥水时间曲线加以分析，得到了测定高吸水性树脂吸水率的最佳条件，即干树脂质量为0.300 0 g、吸水时间30 min、起始加水量为2 000倍、沥水时间为30 min，为高吸水性树脂吸水率测定条件的标准化奠定了基础。
Hou, J S; Holmes, M H; Lai, W M; Mow, V C
1989-02-01
The objective of this study is to establish and verify the set of boundary conditions at the interface between a biphasic mixture (articular cartilage) and a Newtonian or non-Newtonian fluid (synovial fluid) such that a set of well-posed mathematical problems may be formulated to investigate joint lubrication problems. A "pseudo-no-slip" kinematic boundary condition is proposed based upon the principle that the conditions at the interface between mixtures or mixtures and fluids must reduce to those boundary conditions in single phase continuum mechanics. From this proposed kinematic boundary condition, and balances of mass, momentum and energy, the boundary conditions at the interface between a biphasic mixture and a Newtonian or non-Newtonian fluid are mathematically derived. Based upon these general results, the appropriate boundary conditions needed in modeling the cartilage-synovial fluid-cartilage lubrication problem are deduced. For two simple cases where a Newtonian viscous fluid is forced to flow (with imposed Couette or Poiseuille flow conditions) over a porous-permeable biphasic material of relatively low permeability, the well known empirical Taylor slip condition may be derived using matched asymptotic analysis of the boundary layer at the interface.
CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions
Koblitz, Tilman
to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...
Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2012-08-23
The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)
Boundary conditions for Maxwell fields in Kerr-AdS spacetimes
Wang, Mengjie
2016-05-01
Perturbative methods are useful to study the interaction between black holes and test fields. The equation for a perturbation itself, however, is not complete to study such a composed system if we do not assign physically relevant boundary conditions. Recently we have proposed a new type of boundary conditions for Maxwell fields in Kerr-anti-de Sitter (Kerr-AdS) spacetimes, from the viewpoint that the AdS boundary may be regarded as a perfectly reflecting mirror, in the sense that energy flux vanishes asymptotically. In this paper, we prove explicitly that a vanishing energy flux leads to a vanishing angular momentum flux. Thus, these boundary conditions may be dubbed as vanishing flux boundary conditions.
Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
Mohammed J Uddin
Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
Second order bounce back boundary condition for the lattice Boltzmann fluid simulation
Kim, In Chan [Kunsan National Univ., Kunsan (Korea, Republic of)
2000-01-01
A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.
Sharapov, T F [Bashkir State Pedagogical University, Ufa (Russian Federation)
2014-10-31
We consider an elliptic operator in a multidimensional domain with frequently changing boundary conditions in the case when the homogenized operator contains the Dirichlet boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain estimates for the rate of convergence. A complete asymptotic expansion is constructed for the resolvent when it acts on sufficiently smooth functions. Bibliography: 41 titles.
Skewon-Axion Medium and Soft-and-Hard/DB Boundary Condition
Lindell, Ismo V
2012-01-01
The class of skewon-axion media can be defined in a simple and natural manner applying four-dimensional differential-form representation of electromagnetic fields and media. It has been recently shown that an interface of a uniaxial skewon-axion medium acts as a DB boundary requiring vanishing normal components of the D and B vectors. In the present paper a more general skewon-axion medium is considered. It is shown that a planar interface of such a medium acts as a boundary generalizing both soft-and-hard (SH) and DB boundary conditions to SHDB conditions. Reflection of a plane wave from a planar SHDB boundary is studied. It is shown that for the two eigenpolarizations the boundary can be replaced by equivalent PEC or PMC boundaries. The theory is tested with a numerical example.
Numerical simulation of Neumann boundary condition in the thermal lattice Boltzmann model
Chen, Q.; Zhang, X. B.; Zhang, J. F.
2014-03-01
In this paper, a bilinear interpolation finite-difference scheme is proposed to handle the Neumann boundary condition with nonequilibrium extrapolation method in the thermal lattice Boltzmann model. The temperature value at the boundary point is obtained by the finite-difference approximation, and then used to determine the wall temperature via an extrapolation. Our method can deal with the boundaries with complex geometries, motions and gradient boundary conditions. Several simulations are performed to examine the capacity of this proposed boundary method. The numerical results agree well with the analytical solutions. When compared with a representative boundary method, an improved performance is observed. The results also show that the proposed scheme together with nonequilibrium extrapolation method has second-order accuracy.
Livshits, Gideon I
2014-01-01
Superpotentials offer a direct means of calculating conserved charges associated with the asymptotic symmetries of space-time. Yet superpotentials have been plagued with inconsistencies, resulting in nonphysical or incongruent values for the mass, angular momentum and energy loss due to radiation. The approach of Regge and Teitelboim, aimed at a clear Hamiltonian formulation with a boundary, and its extension to the Lagrangian formulation by Julia and Silva have resolved these issues, and have resulted in a consistent, well-defined and unique variational equation for the superpotential, thereby placing it on a firm footing. A hallmark solution of this equation is the KBL superpotential obtained from the first-order Lovelock Lagrangian. Nevertheless, here we show that these formulations are still insufficient for Lovelock Lagrangians of higher orders. We present a paradox, whereby the choice of fields affects the superpotential for equivalent on-shell dynamics. We offer two solutions to this paradox: either th...
Free boundary conditions and the AdS{sub 3}/CFT{sub 2} correspondence
Apolo, Luis; Porrati, Massimo [Center for Cosmology and Particle Physics, Department of Physics, New York University,4 Washington Place, New York, NY 10003 (United States)
2014-03-26
We show that recently proposed free boundary conditions for AdS{sub 3} are dual to two-dimensional quantum gravity in certain fixed gauges. In particular, we note that an appropriate identification of the generator of Virasoro transformations leads to a vanishing total central charge in agreement with the theory at the boundary. We argue that this identification is necessary to match the bulk and boundary generators of Virasoro transformations and for consistency with the constraint equations.
Free boundary conditions and the AdS$_3$/CFT$_2$ correspondence
Apolo, Luis
2014-01-01
We show that the recently proposed free boundary conditions for AdS$_3$ are dual to two-dimensional quantum gravity in certain fixed gauges. In particular, we note that an appropriate identification of the generator of Virasoro transformations leads to a vanishing total central charge in agreement with the theory at the boundary. We argue that this identification is necessary to match the bulk and boundary generators of Virasoro transformations and for consistency with the constraint equations.
Araneda, Bernardo
2016-01-01
The static region outside the event horizon of an asymptotically anti de Sitter black hole has a conformal timelike boundary $\\mathscr{I}$, the evolution from initial data of linear fields satisfying hyperbolic equations is a well posed problem only after imposing boundary conditions at $\\mathscr{I}$. Boundary conditions preserving the action of the background isometry group on the solution space are limited to the homogeneous Dirichlet, Neumann or Robin types. We study, scalar and Maxwell fields and gravitational perturbations on asymptotically AdS black holes arising in Einstein and Lovelock theories. A decomposition in modes transforms the field equations into a set of wave equations with time independent potentials for auxiliary fields in the $x<0$ half of 1+1 Minkowski spacetime. We study systematically these equations for the case of potentials not diverging at the boundary and prove that there is always an instability if Robin boundary conditions with large $\\gamma$ (the quotient between the derivat...
DIFFERENT ROOF BEHAVIOUR UNDER DIFFERENT UPPER MINING BOUNDARY CONDITION IN DATONG
康立勋
1997-01-01
Understanding roof behaviour and immediate roof failure patterns of Iongwall face is a prerequisite for establishing correct roof control theory and appplying effective roof control measures. Roof behaviour and immediate roof failure pattern have a close relationship with upper mining boundary conditions of Iongwall face. According to actual situation of Datong Mining Area, upper mining boundary conditions of Iongwall face have been classified into 5 types in this paper. Roof behaviour and immediate roof failure pattern under each upper mining boundary condition are discussed in details.
Ze－NingWang; Qiang－TaiZhou
1994-01-01
Numerical solutions for fully developed laminar flow in internally finned tubes with trapezoidal and triangular fin profiles were given with Finite Elemant Method(FEM):The heat transfer charactieristics were obtained and compared under the boundary conditions of uniform heat flux,univform wall tepmerature,and the third boundary condition with finite wall thermal conductivity considered.The numerical results show that boundary conditions have pronounced effects on the temperature field.Furthermore,a new mechanism on the heat transfer augmentation of internally finned tubes is proposed.
R-matrix theory with Dirichlet boundary conditions for integrable electron waveguides
Lee, Hoshik [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States); Reichl, L E, E-mail: hoshik.lee@wm.ed, E-mail: reichl@physics.utexas.ed [Center for Complex Quantum Systems, University of Texas at Austin, Austin, TX 78712 (United States)
2010-10-08
R-matrix theory is used to compute transmission properties of a T-shaped electron waveguide and an electron waveguide-based rotation gate by using Dirichlet boundary conditions for reaction region basis states, even at interfaces with external leads. Such boundary conditions have been known to cause R-matrix convergence problems. We show that an R-matrix obtained using Dirichlet boundary conditions can be convergent for some cases. We also show that R-matrix theory can efficiently reproduce results that were obtained using far more computationally demanding methods such as mode matching techniques, tight-binding Green's function methods or the finite element methods.
Kolomenskiy, Dmitry; Schneider, Kai
2014-01-01
We study the properties of an approximation of the Laplace operator with Neumann boundary conditions using volume penalization. For the one-dimensional Poisson equation we compute explicitly the exact solution of the penalized equation and quantify the penalization error. Numerical simulations using finite differences allow then to assess the discretisation and penalization errors. The eigenvalue problem of the penalized Laplace operator with Neumann boundary conditions is also studied. As examples in two space dimensions, we consider a Poisson equation with Neumann boundary conditions in rectangular and circular domains.
Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals
Kuroda, Mitsutoshi; Tvergaard, Viggo
2009-01-01
The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...... effect of higher-order boundary conditions on the overall deformation mode of the block is observed. The bent foil has free surfaces through which dislocations can go out of the material, and we observe a strong size-dependent mechanical response resulting from the surface condition assumed....
Ramos, I C
2015-01-01
We present the adaptation to non--free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck--Boussinesq equations in a Rayleigh--B\\'enard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number ($R\\sim10^9$). These results are the basis for the later study, by the same method, of wet convection in a solar still.
Boundary conditions for General Relativity on AdS3 and the KdV hierarchy
Pérez, Alfredo; Tempo, David; Troncoso, Ricardo
2016-06-01
It is shown that General Relativity with negative cosmological constant in three spacetime dimensions admits a new family of boundary conditions being labeled by a nonnegative integer k. Gravitational excitations are then described by "boundary gravitons" that fulfill the equations of the k-th element of the KdV hierarchy. In particular, k = 0 corresponds to the Brown-Henneaux boundary conditions so that excitations are described by chiral movers. In the case of k = 1, the boundary gravitons fulfill the KdV equation and the asymptotic symmetry algebra turns out to be infinite-dimensional, abelian and devoid of central extensions. The latter feature also holds for the remaining cases that describe the hierarchy ( k > 1). Our boundary conditions then provide a gravitational dual of two noninteracting left and right KdV movers, and hence, boundary gravitons possess anisotropic Lifshitz scaling with dynamical exponent z = 2 k + 1. Remarkably, despite spacetimes solving the field equations are locally AdS, they possess anisotropic scaling being induced by the choice of boundary conditions. As an application, the entropy of a rotating BTZ black hole is precisely recovered from a suitable generalization of the Cardy formula that is compatible with the anisotropic scaling of the chiral KdV movers at the boundary, in which the energy of AdS spacetime with our boundary conditions depends on z and plays the role of the central charge. The extension of our boundary conditions to the case of higher spin gravity and its link with different classes of integrable systems is also briefly addressed.
REGULARITY THEORY FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS
无
2002-01-01
The objective of this paper is to consider the theory of regularity of systems of partial differential equations with Neumann boundary conditions. It complements previous works of the authors for the Dirichlet case. This type of problem is motivated by stochastic differential games. The Neumann case corresponds to stochastic differential equations with reflection on boundary of the domain.
Sun Hye PARK
2014-01-01
In this paper, we investigate the influence of boundary dissipation on the de-cay property of solutions for a transmission problem of Kirchhoff type wave equation with boundary memory condition. By introducing suitable energy and Lyapunov functionals, we establish a general decay estimate for the energy, which depends on the behavior of relaxation function.
Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.
2012-01-01
We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod
Lie and Conditional Symmetries of a Class of Nonlinear (1 + 2-Dimensional Boundary Value Problems
Roman Cherniha
2015-08-01
Full Text Available A new definition of conditional invariance for boundary value problems involving a wide range of boundary conditions (including initial value problems as a special case is proposed. It is shown that other definitions worked out in order to find Lie symmetries of boundary value problems with standard boundary conditions, followed as particular cases from our definition. Simple examples of direct applicability to the nonlinear problems arising in applications are demonstrated. Moreover, the successful application of the definition for the Lie and conditional symmetry classification of a class of (1 + 2-dimensional nonlinear boundary value problems governed by the nonlinear diffusion equation in a semi-infinite domain is realised. In particular, it is proven that there is a special exponent, k ≠ —2, for the power diffusivity uk when the problem in question with non-vanishing flux on the boundary admits additional Lie symmetry operators compared to the case k ≠ —2. In order to demonstrate the applicability of the symmetries derived, they are used for reducing the nonlinear problems with power diffusivity uk and a constant non-zero flux on the boundary (such problems are common in applications and describing a wide range of phenomena to (1 + 1-dimensional problems. The structure and properties of the problems obtained are briefly analysed. Finally, some results demonstrating how Lie invariance of the boundary value problem in question depends on the geometry of the domain are presented.
Barzagli, Francesco; Lai, Sarah; Mani, Fabrizio
2015-01-01
Some inexpensive and commercially available secondary amines reversibly react with CO2 at room temperature and ambient pressure to yield carbonated species in the liquid phase in the absence of any additional solvent. These solvent-free absorbents have a high CO2 capture capacity (0.63-0.65 mol CO2 /mol amine) at 1.0 bar (=100 kPa), combined with low-temperature reversibility at ambient pressure. (13) C NMR spectroscopy analysis identified the carbonated species as the carbamate salts and unexpected carbamic acids. These absorbents were used for CO2 (15 and 40 % in air) capture in continuous cycles of absorption-desorption carried out in packed columns, yielding an absorption efficiency of up to 98.5 % at absorption temperatures of 40-45 °C and desorption temperatures of 70-85 °C at ambient pressure. The absence of any parasitic solvent that requires to be heated and stability towards moisture and heating could result in some of these solvent-free absorbents being a viable alternative to aqueous amines for CO2 chemical capture.
Towards an effective non-reflective boundary condition for computational aeroacoustics
Gill, James; Fattah, Ryu; Zhang, Xin
2017-03-01
A generic, non-reflective zonal transverse characteristic boundary condition is described for computational aeroacoustics, which shows superior performance to existing non-reflective boundary conditions for two-dimensional linearized Euler simulations. The new condition is based on a characteristic non-reflective method, and also contains optimised use of transverse characteristic terms and a zonal forcing region. The performance of the new method and several existing non-reflective acoustic boundary conditions is quantitatively compared using a plane wave test case. The performance of buffer zone, perfectly matched layer, far-field, and characteristic non-reflective methods is compared, following an optimisation of the tuneable parameters in each method to give best performance. The study uses a high-order linearised Euler equation solver to assess non-reflective boundary conditions with a variety of cases. The performance is compared for downstream travelling acoustic waves with varying frequency and incident angle, and at various Mach numbers. The current study includes a more comprehensive evaluation than previous studies which used constant values of tuneable parameters or qualitative assessment methods. The new zonal transverse characteristic boundary condition is shown to give improved performance in comparison to the other tested outflow boundary conditions for two-dimensional linearized Euler simulations, and is also shown to give good performance when used as an inflow condition.
Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions
Kuang, Weijia; Tangborn, Andrew; Jiang, Weiyuan
2011-01-01
It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.
Benincasa, T.; Donado Escobar, L. D.; Moroşanu, C.
2016-08-01
This paper is concerned with an optimal control problem (P) (both distributed control as well as boundary control) for the nonlinear phase-field (Allen-Cahn) equation, involving a regular potential and dynamic boundary condition. A family of approximate optimal control problems (Pɛ) is introduced and results for the existence of an optimal control for problems (P) and (Pɛ) are proven. Furthermore, the convergence result of the optimal solution of problem (Pɛ) to the optimal solution of problem (P) is proved. Besides the existence of an optimal control in problem (Pɛ), necessary optimality conditions (Pontryagin's principle) as well as a conceptual gradient-type algorithm to approximate the optimal control, were established in the end.
Basu, S.; Holtslag, A.A.M.; Wiel, van de B.J.H.; Moene, A.F.; Steeneveld, G.J.
2008-01-01
In single column and large-eddy simulation studies of the atmospheric boundary layer, surface sensible heat flux is often used as a boundary condition. In this paper, we delineate the fundamental shortcomings of such a boundary condition in the context of stable boundary layer modelling and simulati
Lee, Man
2012-02-22
A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.
Generalized adjoint consistent treatment of wall boundary conditions for compressible flows
Hartmann, Ralf; Leicht, Tobias
2015-11-01
In this article, we revisit the adjoint consistency analysis of Discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations with application to the Reynolds-averaged Navier-Stokes and k- ω turbulence equations. Here, particular emphasis is laid on the discretization of wall boundary conditions. While previously only one specific combination of discretizations of wall boundary conditions and of aerodynamic force coefficients has been shown to give an adjoint consistent discretization, in this article we generalize this analysis and provide a discretization of the force coefficients for any consistent discretization of wall boundary conditions. Furthermore, we demonstrate that a related evaluation of the cp- and cf-distributions is required. The freedom gained in choosing the discretization of boundary conditions without loosing adjoint consistency is used to devise a new adjoint consistent discretization including numerical fluxes on the wall boundary which is more robust than the adjoint consistent discretization known up to now. While this work is presented in the framework of Discontinuous Galerkin discretizations, the insight gained is also applicable to (and thus valuable for) other discretization schemes. In particular, the discretization of integral quantities, like the drag, lift and moment coefficients, as well as the discretization of local quantities at the wall like surface pressure and skin friction should follow as closely as possible the discretization of the flow equations and boundary conditions at the wall boundary.
New boundary conditions from January; Vieles neu ab Januar
Wiedemann, Karsten
2011-12-15
The biogas industry now has to cope with changed public funding conditions. Manufacturers of biogas plant are trying out microsize plants and direct marketing models in an attempt to invite customers. But it is to be expected that few new customers will be acquired.
Abdelfatah Bouziani
2010-01-01
the weak solvability of parabolic integrodifferential equations with a nonclassical boundary conditions. The investigation is made by means of approximation by the Rothes method which is based on a semidiscretization of the given problem with respect to the time variable.
An analysis of boundary condition effects on the thermomechanical modeling of the FSW process
Guedoiri, A.; Moufki, A.; Favier, V.; Zahrouni, H.
2011-01-01
The aim of the present work is to study the influence of thermal boundary conditions on the simulation of friction stir welding process "FSW". Generally, dimensions of the workpieces to be welded are very large and a very small zone surrounding the welding tool is modeled for the thermomechanical study of the process. This area, named box, should be small enough to reduce the computation time and large enough to minimize effects of boundary conditions. It is well known that during welding, the mixing zone is closed arround the tool; it is easily identified by analyzing the velocity field which is complex in contact interface with the tool and which tends rapidly to the tool traverse speed far from the tool. In the thermal analysis, the boundary conditions are not obvious since they depend on the welding parameters, on the workpiece dimensions and on its vicinity. We propose in this study a numerical strategy for determining the thermal boundary conditions on the box.
Li Ming
2013-03-01
Full Text Available In this study, a single beam model has been developed to analyze the thermal vibration of Single-Walled Carbon Nanotubes (SWCNT. The nonlocal elasticity takes into account the effect of small size into the formulation and the boundary condition. With exact solution of the dynamic governing equations, the thermal-vibrational characteristics of a cantilever SWCNT are obtained. Influence of nonlocal small scale effects, temperature change and vibration modes of the CNT on the frequency are investigated. The present study shows that the additional boundary conditions from small scale do not change natural frequencies at different temperature change. Thus for simplicity, one can apply the local boundary condition to replace the small scale boundary condition.
Ling DING; Chunlei TANG
2013-01-01
The existence and multiplicity of positive solutions are studied for a class of quasilinear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.
Simulating thermal boundary conditions of spin-lattice models with weighted averages
Wang, Wenlong
2016-07-01
Thermal boundary conditions have played an increasingly important role in revealing the nature of short-range spin glasses and is likely to be relevant also for other disordered systems. Diffusion method initializing each replica with a random boundary condition at the infinite temperature using population annealing has been used in recent large-scale simulations. However, the efficiency of this method can be greatly suppressed because of temperature chaos. For example, most samples have some boundary conditions that are completely eliminated from the population in the process of annealing at low temperatures. In this work, I study a weighted average method to solve this problem by simulating each boundary conditions separately and collect data using weighted averages. The efficiency of the two methods is studied using both population annealing and parallel tempering, showing that the weighted average method is more efficient and accurate.
Asymptotic behavior of solutions to nonlinear parabolic equation with nonlinear boundary conditions
Diabate Nabongo
2008-01-01
Full Text Available We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as t approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.
Blow-up estimates for semilinear parabolic systems coupled in an equation and a boundary condition
王明新
2001-01-01
This paper deals with the blow-up rate estimates of solutions for semilinear parabolic systems coupled in an equation and a boundary condition. The upper and lower bounds of blow-up rates have been obtained.
Corrected second-order slip boundary condition for fluid flows in nanochannels.
Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang; Ye, Hongfei
2010-06-01
A corrected second-order slip boundary condition is proposed to solve the Navier-Stokes equations for fluid flows confined in parallel-plate nanochannels. Compared with the classical second-order slip boundary condition proposed by Beskok and Karniadakis, the corrected slip boundary condition is not only dependent on the Knudsen number and the tangential momentum accommodation coefficient, but also dependent on the relative position of the slip surface in the Knudsen layer. For the fluid flows in slip-flow regime with the Knudsen number less than 0.3, Couette cell is investigated using molecular-dynamics simulations to verify Newtonian flow behaviors by examining the constitutive relationship between shear stress and strain rate. By comparing the velocity profiles of Poiseuille flows predicted from the Navier-Stokes equations with the corrected slip boundary condition with that from molecular-dynamics simulations, it is found that the flow behaviors in our models can be effectively captured.
A Kind of Discrete Non-Reflecting Boundary Conditions for Varieties of Wave Equations
Xiu-min Shao; Zhi-ling Lan
2002-01-01
In this paper, a new kind of discrete non-reflecting boundary conditions is developed. It can be used for a variety of wave equations such as the acoustic wave equation, the isotropic and anisotropic elastic wave equations and the equations for wave propagation in multi-phase media and so on. In this kind of boundary conditions, the composition of all artificial reflected waves, but not the individual reflected ones, is considered and eliminated. Thus, it has a uniform formula for different wave equations. The velocity CA of the composed reflected wave is determined in the way to make the reflection coefficients minimal, the value of which depends on equations. In this paper, the construction of the boundary conditions is illustrated and CA is found, numerical results are presented to illustrate the effectiveness of the boundary conditions.
THE DYNAMICS OF SINE-GORDON SYSTEM WITH DIRICHLET BOUNDARY CONDITION
Liu Yingdong; Li Zhengyuan
2000-01-01
We prove the existence of the global attractor of Sine-Gordon system with Dirichlet boundary condition and show the attractor is the unique steady state when the damping constant and the diffusion constant are sufficiently large.
Regular and Irregular Boundary Conditions in the AdS/CFT Correspondence
Mück, W
1999-01-01
We expand on Klebanov and Witten's recent proposal for formulating the AdS/CFT correspondence using irregular boundary conditions. The proposal is shown to be correct to any order in perturbation theory.
Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations
Li, Tingwen [URS Corporation; Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Benyahia, Sofiane [National Energy Technology Lab. (NETL), Morgantown, WV (United States)
2013-10-01
Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.
Structure and vibrational spectra of a model of a-Si:H with periodic boundary conditions
Winer, K.; Wooten, F.
1983-08-01
A ball-and -stick model of a-Si:H with periodic boundary conditions has been constructed. A computer replica of the structure has been relaxed and the density, radial distribution function and vibrational spectra calculated.
Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems
Alves, M. S.; Jorge Silva, M. A.; Ma, T. F.; Muñoz Rivera, J. E.
2016-06-01
This paper is mainly concerned with the polynomial stability of a thermoelastic Timoshenko system recently introduced by Almeida Júnior et al. (Z Angew Math Phys 65(6):1233-1249, 2014) that proved, in the general case when equal wave speeds are not assumed, different polynomial decay rates depending on the boundary conditions, namely, optimal rate {t^{-1/2}} for mixed Dirichlet-Neumann boundary condition and rate {t^{-1/4}} for full Dirichlet boundary condition. Here, our main achievement is to prove the same polynomial decay rate {t^{-1/2}} (corresponding to the optimal one) independently of the boundary conditions, which improves the existing literature on the subject. As a complementary result, we also prove that the system is exponentially stable under equal wave speeds assumption. The technique employed here can probably be applied to other kind of thermoelastic systems.
PRESBC: pressure boundary conditions for the K-FIX code. Supplement III
Travis, J.R.; Rivard, W.C.
1980-07-01
Recommended pressure boundary condition modifications are described for the computer code K-FIX, which has been published in the report LA-NUREG-6623 and released to the National Energy Software Center in April 1977.
Brahim Tellab; Kamel Haouam
2016-01-01
In this paper, we investigate the existence and uniqueness of solutions for second order nonlinear fractional differential equation with integral boundary conditions. Our result is an application of the Banach contraction principle and the Krasnoselskii fixed point theorem.
Shayma Adil Murad; Hussein Jebrail Zekri; Samir Hadid
2011-01-01
We study the existence and uniqueness of the solutions of mixed Volterra-Fredholm type integral equations with integral boundary condition in Banach space. Our analysis is based on an application of the Krasnosel'skii fixed-point theorem.
M.Yakit ONGUN
2007-01-01
In this paper we consider the nonselfadjoint (dissipative) Schr(o)dinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator,and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schr(o)dinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schr(o)dinger boundary value problem are given.
M.Yakit; ONGUN
2007-01-01
In this paper we consider the nonselfadjoint (dissipative) Schrodinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schrodinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schrodinger boundary value problem are given.
Gerbi, Stéphane
2011-12-01
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.
Gasymov, E. A.; Guseinova, A. O.; Gasanova, U. N.
2016-07-01
One of the methods for solving mixed problems is the classical separation of variables (the Fourier method). If the boundary conditions of the mixed problem are irregular, this method, generally speaking, is not applicable. In the present paper, a generalized separation of variables and a way of application of this method to solving some mixed problems with irregular boundary conditions are proposed. Analytical representation of the solution to this irregular mixed problem is obtained.
BAI Yingchen; WU Fengchang; WAN Guojiang; LIU Congqiang; FU Pingqing; LI Wen
2008-01-01
Strong interaction between natural dissolved organic matter (DOM) and Hg(II) may influence the transport, conversion, toxicity and bio-validity of mercury in the environment. In this paper ultraviolet (UV) absorbance titration was employed for the first time for the determination of the conditional stability constants of Hg(II) and (DOM). With increasing Hg(II) concentrations, the UV absorbance of fulvic acid, humic acid, and DOM in river increases progressively. By linear and non-linear model fitting, the conditional stability constants (lgK) of Hg(II) and DOM were worked out to be 3.54-4.93 and 3.64-4.85, respectively. The results are consistent with those acquired by the typical fluorescence quenching titration method, with the maximum relative error of lgK being 2.6% and the average relative error being 0.2%. The UV absorbance titration method has the advantages of rapid determination, simple performance, and it will probably become a new approach to studying interactions between DOM and trace metallic ions.
Continuous matrix product states with periodic boundary conditions and an application to atomtronics
Draxler, Damian; Haegeman, Jutho; Verstraete, Frank; Rizzi, Matteo
2017-01-01
We introduce a time evolution algorithm for one-dimensional quantum field theories with periodic boundary conditions. This is done by applying the Dirac-Frenkel time-dependent variational principle to the set of translational invariant continuous matrix product states with periodic boundary conditions. Moreover, the ansatz is accompanied with additional boundary degrees of freedom to study quantum impurity problems. The algorithm allows for a cutoff in the spectrum of the transfer matrix and thus has an efficient computational scaling. In particular we study the prototypical example of an atomtronic system—an interacting Bose gas rotating in a ring shaped trap in the presence of a localized barrier potential.
A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions
Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.
2014-01-01
We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.
Factor analysis of small business conditions of boundary region
Леся Михайлівна Газуда
2015-05-01
Full Text Available In terms of border-zone and capabilities of direct implementation of foreign economic cooperation with the Member States of the European Union is necessary to intensify the development of priority economic activities in Zakarpattia region. Background and specific characteristics of small business development in the region are considered in the article. It is conducted the multivariate correlation and regression analysis of conditions of regional small business development for the main indicators, including the volume of sales, the gross regional product, the economically active population, capital investment, exports and imports
Jin, Guoyong; Su, Zhu
2015-01-01
This book develops a uniform accurate method which is capable of dealing with vibrations of laminated beams, plates and shells with arbitrary boundary conditions including classical boundaries, elastic supports and their combinations. It also provides numerous solutions for various configurations including various boundary conditions, laminated schemes, geometry and material parameters, which fill certain gaps in this area of reach and may serve as benchmark solutions for the readers. For each case, corresponding fundamental equations in the framework of classical and shear deformation theory are developed. Following the fundamental equations, numerous free vibration results are presented for various configurations including different boundary conditions, laminated sequences and geometry and material properties. The proposed method and corresponding formulations can be readily extended to static analysis.
Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions
Ahmet Batal
2016-08-01
Full Text Available In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t+\\lambda|u(0,t|^ru(0,t=0,\\quad \\lambda\\in\\mathbb{R}-\\{0\\},\\; r> 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\\mathbb{R}_+$ with $s\\in (\\frac{1}{2},\\frac{7}{2}-\\{\\frac{3}{2}\\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t=h(t$ where $h\\in H^{\\frac{2s-1}{4}}(0,T$.
Bouncing Dirac particles: compatibility between MIT boundary conditions and Thomas precession
Nicolaevici, Nistor
2016-01-01
We consider the reflection of a Dirac plane wave on a perfectly reflecting plane described by chiral MIT boundary conditions and determine the rotation of the spin in the reflected component of the wave. We solve the analogous problem for a classical particle using the evolution of the spin defined by the Thomas precession and make a comparison with the quantum result. We find that the rotation axes of the spin in the two problems coincide only for a vanishing chiral angle, in which case the rotation angles coincide in the nonrelativistic limit, and also remain remarkably close in the relativistic regime. The result shows that in the nonrelativistic limit the interaction between the spin and a reflecting surface with nonchiral boundary conditions is completely contained in the Thomas precession effect, in conformity with the fact that these boundary conditions are equivalent to an infinite repulsive scalar potential outside the boundary. By contrast, in the ultrarelativistic limit the rotation angle in the qu...
Syahira Mansur
2016-10-01
Full Text Available The unsteady boundary layer flow of a nanofluid past a stretching/shrinking sheet with a convective surface boundary condition is studied. The effects of the unsteadiness parameter, stretching/shrinking parameter, convective parameter, Brownian motion parameter and thermophoresis parameter on the local Nusselt number are investigated. Numerical solutions to the governing equations are obtained using a shooting method. The results for the local Nusselt number are presented for different values of the governing parameters. The local Nusselt number decreases as the stretching/shrinking parameter increases. The local Nusselt number is consistently higher for higher values of the convective parameter but lower for higher values of the unsteadiness parameter, Brownian motion parameter and thermophoresis parameter.
On the Nature of Boundary Conditions for Flows with Moving Free Surfaces
Renardy, Michael; Renardy, Yuriko
1991-04-01
We consider small perturbations of plane parallel flow between a wall and a moving free surface. The problem is posed on a rectangle with inflow and outflow boundaries. The usual boundary conditions are posed at the wall and the free surface, and the fluid satisfies the Navier-Stokes equations. We examine the nature of boundary conditions which can be imposed at the inflow and outflow boundaries in order to yield a well-posed problem. This question turns out to be more delicate than is generally appreciated. Depending on the precise situation and on the regularity required of the solution, boundary conditions at just one or both endpoints of the free surface need to be imposed. For example, we show that if the velocities at te inflow and outflow boundaries are prescribed, then the position of the free surface at the inflow boundary can be prescribed, but not at the outflow if an H1-solution is desired. Numerical simulations with the FIDAP package are used to illustrate our analytical results.
于艳梅; 杨根仓; 赵达文; 吕衣礼
2002-01-01
By the phase-field approach, the dendritic growth in binary alloy melt was simulated respectively using two types of temperature boundary conditions, i.e., the constant temperature boundary by which the boundary temperature was fixed at the initial temperature, and Zero-Neumann temperature boundary. The influences of the temperature boundary conditions on numerical results are investigated. How to choose appropriate temperature boundary conditions is proposed. The results show that: 1) when the computation region is limited to a changeless size, the Zero-Neumann and constant temperature boundary conditions lead to the different dendritic growth behaviors, and the Zero-Neumann condition is preferable to the constant temperature condition; 2) when the computation region is enlarged continually with the computational time according to the increasing thermal diffusion scale, the two types of temperature boundary conditions achieve the consistent tip velocities and tip radii, and they both are appropriate choices.
Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions
Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.
1995-01-01
The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.
On the formulation of open boundary conditions at the mouth of a bay
Greatbatch, Richard J.; Otterson, Timm
1991-10-01
We describe our experience in formulating open boundary conditions to apply at the mouth of a reduced-gravity model of a bay. Our objective is to find a way to calculate the response of the bay to wind forcing over the bay itself, without being concerned about the influence of regions beyond. We show that open boundaries from which Kelvin waves can propagate along the coast into the model domain ("upstream" boundaries) must be treated with care. We begin by considering an "upstream" boundary which runs perpendicular to the coast. We find that if a radiation condition is applied on such a boundary, then spurious Kelvin waves of near-inertial period can propagate in from the boundary and contaminate the solution in the interior of the model domain. Also, if there is Ekman transport at the "upstream" boundary away from (toward) the coast, then upwelling (downwelling) will occur indefinitely and completely swamp the model solution in the bay. This is similar to the solution we expect when the coastline is straight and extends to infinity in the "upstream" direction. However, it is not the same, since the rate of upwelling (downwelling) is roughly half the theoretical value for that case. For the problem of a bay we suggest that the way to deal with this is to extend the coastline out to sea on the "upstream" side of the mouth and apply a condition on the artificial stretch of the boundary which suppresses Kelvin wave propagation but is also not prohibitively reflective to outgoing Poincaré waves. For our problem a condition of zero normal gradient in interface displacement seems to be sufficient. This condition also captures reasonably well the near-inertial Kelvin waves that are generated by the northwest corner of the bay (which are a genuine part of the solution) as long as the other boundaries are sufficiently far from the bay. We have also experimented with using sponge layers rather than radiation conditions on the other boundaries. We find that sponging only
Existence and Asymptotic Behavior of the Wave Equation with Dynamic Boundary Conditions
Graber, Philip Jameson, E-mail: pjg9g@virginia.edu [University of Virginia, Department of Mathematics (United States); Said-Houari, Belkacem, E-mail: belkacem.saidhouari@kaust.edu.sa [King Abdullah University of Science and Technology (KAUST), Division of Mathematical and Computer Sciences and Engineering (Saudi Arabia)
2012-08-15
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time.
Effects of Boundary Condition and Helix Angle On Meshing Performance of TI Worm Gearing
SUN Yue-hai; DUAN Lu-qian; WANG Shu-ren; ZHANG Ce
2006-01-01
To exactly describe the contact state and contact area oftooth surface oftoroidalinvolute(TI) worm gearing.the authors introduced boundary condition into contact line analysis.With helix angle chosen as parameter,the criterion for the existence of meshing boundary line on the surface of TI worm gearing is derived.Results show that there can be four situations for meshing boundary line on the tooth surface of gear.namely,inexistence of meshing boundary line.a unique line,two lines,and two coincident lines.If the helix angle is equal to or slightly smaller than the bigger angle,which makes two meshing boundary lines superpose,a preferable meshing performance is obtained.Computer simulation proves the validity Of the above conclusion.
Existence and asymptotic behavior of the wave equation with dynamic boundary conditions
Graber, Philip Jameson
2012-03-07
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.
Realistic boundary conditions for stochastic simulations of reaction-diffusion processes
Erban, R; Erban, Radek
2006-01-01
Many cellular and subcellular biological processes can be described in terms of diffusing and chemically reacting species (e.g. enzymes). Such reaction-diffusion processes can be mathematically modelled using either deterministic partial-differential equations or stochastic simulation algorithms. The latter provide a more detailed and precise picture, and several stochastic simulation algorithms have been proposed in recent years. Such models typically give the same description of the reaction-diffusion processes far from the boundary of the simulated domain, but the behaviour close to a reactive boundary (e.g. a membrane with receptors) is unfortunately model-dependent. In this paper, we study four different approaches to stochastic modelling of reaction-diffusion problems and show the correct choice of the boundary condition for each model. The reactive boundary is treated as partially reflective, which means that some molecules hitting the boundary are adsorbed (e.g. bound to the receptor) and some molecul...
Pan, Qing; Wang, Ruofan; Reglin, Bettina; Fang, Luping; Pries, Axel R; Ning, Gangmin
2014-01-01
Estimation of the boundary condition is a critical problem in simulating hemodynamics in microvascular networks. This paper proposed a boundary estimation strategy based on a particle swarm optimization (PSO) algorithm, which aims to minimize the number of vessels with inverted flow direction in comparison to the experimental observation. The algorithm took boundary values as the particle swarm and updated the position of the particles iteratively to approach the optimization target. The method was tested in a real rat mesenteric network. With random initial boundary values, the method achieved a minimized 9 segments with an inverted flow direction in the network with 546 vessels. Compared with reported literature, the current work has the advantage of a better fit with experimental observations and is more suitable for the boundary estimation problem in pulsatile hemodynamic models due to the experiment-based optimization target selection.
Follin, S. [Golder Grundteknik, Uppsala (Sweden)
1999-06-01
The SR 97 project presents a performance assessment (PA) of the overall safety of a hypothetical deep repository at three sites in Sweden arbitrarily named Aberg, Beberg and Ceberg. One component of this PA assesses the uncertainties in the hydrogeological modelling. This study focuses on uncertainties in boundary settings (size of model domain and boundary conditions) in the regional and site-scale hydrogeological modelling of the three sites used to simulating the possible transport of radionuclides from the emplacement waste packages through the host rock to the accessible environment. Model uncertainties associated with, for instance, parameter heterogeneity and structural interpretations are addressed in other studies. This study concludes that the regional modelling of the SR 97 project addresses uncertainties in the choice of boundary conditions and size of model domain differently at each site, although the overall handling is acceptable and in accordance with common modelling practice. For example, the treatment of uncertainties with regard to the ongoing post-glacial flushing of the Baltic Shield is creditably addressed although not exhaustive from a modelling point of view. A significant contribution of the performed modelling is the study of nested numerical models, i.e., the numerical interplay between regional and site-scale numerical models. In the site-scale modelling great efforts are made to address problems associated with (i) the telescopic mesh refinement (TMR) technique with regard to the stochastic continuum approach, and (ii) the transfer of boundary conditions between variable-density flow systems and flow systems that are constrained to treat uniform density flow. This study concludes that the efforts made to handle these problems are acceptable with regards to the objectives of the SR 97 project.
Tam, Christopher K. W.; Webb, Jay C.
1994-01-01
In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The
Green's function of the heat equation with periodic and antiperiodic boundary conditions
Imanbaev, Nurlan; Erzhanov, Nurzhan
2016-12-01
In this work a non-local initial-boundary value problem for a non-homogeneous one-dimensional heat equation is con-sidered. The domain under consideration is a rectangle. The classical initial condition with respect to t is put. A non-local periodic boundary condition with respect to a spatial variable x is put. It is well-known that a solution of problem can be constructed in the form of convergent orthonormal series according to eigenfunctions of a spectral problem for an operator of multiple differentiation with periodic boundary conditions. Therefore Green's function can be also written in the form of an infinite series with respect to trigonometric functions (Fourier series). For classical first and second initial-boundary value problems there also exists a second representation of the Green's function by Jacobi function. In this paper we find the representation of the Green's function of the non-local initial-boundary value problem with periodic boundary conditions in the form of series according to exponents.
Cheng-Qi Sun; Kai-Xin Liu; You-Shi Hong
2012-01-01
The paper studies the axisymmetric compressive buckling behavior of multi-walled carbon nanotubes (MWNTs) under different boundary conditions based on continuum mechanics model.A buckling condition is derived for determining the critical buckling load and associated buckling mode of MWNTs,and numerical results are worked out for MWNTs with different aspect ratios under fixed and simply supported boundary conditions.It is shown that the critical buckling load of MWNTs is insensitive to boundary conditions,except for nanotubes with smaller radii and very small aspect ratio.The associated buckling modes for different layers of MWNTs are in-phase,and the buckling displacement ratios for different layers are independent of the boundary conditions and the length of MWNTs.Moreover,for simply supported boundary conditions,the critical buckling load is compared with the corresponding one for axial compressive buckling,which indicates that the critical buckling load for axial compressive buckling can be well approximated by the corresponding one for axisymmetric compressive buckling.In particular,for axial compressive buckling of double-walled carbon nanotubes,an analytical expression is given for approximating the critical buckling load.The present investigation may be of some help in further understanding the mechanical properties of MWNTs.
Bashir Ahmad
2012-06-01
Full Text Available We study boundary value problems of nonlinear fractional differential equations and inclusions of order $q in (m-1, m]$, $m ge 2$ with multi-strip boundary conditions. Multi-strip boundary conditions may be regarded as the generalization of multi-point boundary conditions. Our problem is new in the sense that we consider a nonlocal strip condition of the form: $$ x(1=sum_{i=1}^{n-2}alpha_i int^{eta_i}_{zeta_i} x(sds, $$ which can be viewed as an extension of a multi-point nonlocal boundary condition: $$ x(1=sum_{i=1}^{n-2}alpha_i x(eta_i. $$ In fact, the strip condition corresponds to a continuous distribution of the values of the unknown function on arbitrary finite segments $(zeta_i,eta_i$ of the interval $[0,1]$ and the effect of these strips is accumulated at $x=1$. Such problems occur in the applied fields such as wave propagation and geophysics. Some new existence and uniqueness results are obtained by using a variety of fixed point theorems. Some illustrative examples are also discussed.
Poisson-Nernst-Planck model with Chang-Jaffe, diffusion, and ohmic boundary conditions
Lelidis, I.; Macdonald, J. Ross; Barbero, G.
2016-01-01
Using the linear Poisson-Nernst-Planck impedance-response continuum model, we investigate the possible equivalences of three different types of boundary conditions previously proposed to model the electrode behavior of an electrolytic cell in the shape of a slab. We show analytically that the boundary conditions proposed long ago by Chang-Jaffe are fully equivalent to the ohmic boundary conditions only if the positive and negative ions have the same mobility, or when only ions of a single polarity are mobile. In the case where the ions have different and non-zero mobilities, we fit exact impedance spectra created for ohmic boundary conditions by using the Chang-Jaffe Poisson-Nernst-Planck response model, one that is dominated by diffusion effects. These fits yield conditions for essentially exact or approximate numerical correspondence for the complex impedance between the two models even in the unequal mobility case. Finally, diffusion type boundary conditions are shown to be fully equivalent to the ohmic one. Some limiting cases of the model parameters are investigated.
Bessaih, Hakima
2015-04-01
The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the obstacles. We represent the solid obstacles by holes in the fluid domain. The macroscopic (homogenized) equation is derived as another stochastic partial differential equation, defined in the whole non perforated domain. Here, the initial stochastic perturbation on the boundary becomes part of the homogenized equation as another stochastic force. We use the twoscale convergence method after extending the solution with 0 in the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. In order to pass to the limit on the boundary integrals, we rewrite them in terms of integrals in the whole domain. In particular, for the stochastic integral on the boundary, we combine the previous idea of rewriting it on the whole domain with the assumption that the Brownian motion is of trace class. Due to the particular boundary condition dealt with, we get that the solution of the stochastic homogenized equation is not divergence free. However, it is coupled with the cell problem that has a divergence free solution. This paper represents an extension of the results of Duan and Wang (Comm. Math. Phys. 275:1508-1527, 2007), where a reaction diffusion equation with a dynamical boundary condition with a noise source term on both the interior of the domain and on the boundary was studied, and through a tightness argument and a pointwise two scale convergence method the homogenized equation was derived. © American Institute of Mathematical Sciences.
Ling Huang; Chi-Wang Shu; Mengping Zhang
2008-01-01
High order fast sweeping methods have been developed recently in the literature to solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast sweeping methods, the high order fast sweeping methods are more accurate, but they often require additional numerical boundary treatment for several grid points near the boundary because of the wider numerical stencil. It is particularly important to treat the points near the inflow boundary accurately, as the information would flow into the computational domain and would affect global accuracy. In the literature, the numerical solution at these boundary points are either fixed with the exact solution, which is not always feasible, or computed with a first order discretization, which could reduce the global accuracy. In this paper, we discuss two strategies to handle the inflow boundary conditions. One is based on the numerical solutions of a first order fast sweeping method with several different mesh sizes near the boundary and a Richardson extrapolation, the other is based on a Lax-Wendroff type procedure to repeatedly utilizing the PDE to write the normal spatial derivatives to the inflow boundary in terms of the tangential derivatives, thereby obtaining high order solution values at the grid points near the inflow boundary. We explore these two approaches using the fast sweeping high order WENO scheme in [18] for solving the static Eikonal equation as a representative example. Numerical examples are given to demonstrate the performance of these two approaches.
Guo Zhenhua; He Wen
2011-01-01
In this paper, we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-dimensional isentropic Navier-Stokes equations, and the free boundaries are the interfaces separating the gas from vacuum, across which the density changes discontinuosly. Smoothness of the solutions and the uniqueness of the weak solutions are also discussed. The present paper extends results in Luo-Xin-Yang [12] to the jump boundary conditions case.
Boundary conditions for multistep finite-difference methods for time-dependent equations
Gottlieb, D.; Turkel, E.
1978-01-01
The stability and accuracy of various boundary treatments are analyzed for the two-step Richtmyer and MacCormack methods. Special attention is paid to ways of imposing the extra boundary conditions after the first step of the two-step process. The theory of Kreiss is used to study stability properties for both scalar and vector equations. The theory of Skollermo is used to compare accuracies of the various methods. Computations were also performed on both wavelike equations and on systems that approach a steady state. Several suggestions are given for more reliable boundary treatments.
NON-STATIONARY STOKES FLOWS UNDER LEAK BOUNDARY CONDITIONS OF FRICTION TYPE
Hiroshi Fujita
2001-01-01
This paper is concerned with the initial value problem for non-stationary Stokes flows,under a certain non-linear boundary condition which can be called the leak boundarycondition of friction type. Theoretically, our main purpose is to show the strong solvability(i.e.,the unique existence of the L2-strong solution) of this initial value problem by meansof the non-linear semi-group theory originated with Y. Komura. The method of analysiscan be applied to other boundary or interface conditions of friction type. It should benoted that the result yields a sound basis of simulation methods for evolution problemsinvolving these conditions.
Sliding fluids: Dewetting experiments reveal the solid/liquid boundary condition
Baeumchen, Oliver; Lessel, Matthias; Fetzer, Renate; Seemann, Ralf; Jacobs, Karin, E-mail: k.jacobs@physik.uni-saarland.d [Department of Experimental Physics, Saarland University, D-66041 Saarbruecken (Germany)
2010-03-01
Nanoscale liquid polymer films are ideal candidates to probe the solid/liquid boundary condition: Prepared on hydrophobized Si wafer, the films are not stable, they dewet. The dewetting induces a flow without applying an external force. Probing the dynamics of the dewetting film and the morphology of the liquid front, we can deduce the slip length. A variation of the type of hydrophobic coating (silane or Teflon (registered)) of the Si wafer enables us to tune the boundary condition from a no-slip to a nearly full-slip condition. For a short introduction to the topic, we offer a phenomenological approach and supply multimedia files.
Influence of Boundary Conditions on Yielding in a Soft Glassy Material
Gibaud, Thomas; Barentin, Catherine; Manneville, Sébastien
2008-12-01
The yielding behavior of a sheared Laponite suspension is investigated within a 1 mm gap under two different boundary conditions. No-slip conditions, ensured by using rough walls, lead to shear localization as already reported in various soft glassy materials. When apparent wall slip is allowed using a smooth geometry, the sample breaks up into macroscopic solid pieces that get slowly eroded by the surrounding fluidized material up to the point where the whole sample is fluid. Such a drastic effect of boundary conditions on yielding suggests the existence of some macroscopic characteristic length that could be connected to cooperativity effects in jammed materials under shear.
Tairone Paiva Leão
2011-02-01
Full Text Available An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range.
Li Xicheng; Xu Mingyu [Institute of Applied Mathematics, School of Mathematics and System Science, Shandong University, Jinan 250100 (China); Wang Shaowei [Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)], E-mail: xichengli@yahoo.com.cn
2008-04-18
In this paper, we give similarity solutions of partial differential equations of fractional order with a moving boundary condition. The solutions are given in terms of a generalized Wright function. The time-fractional Caputo derivative and two types of space-fractional derivatives are considered. The scale-invariant variable and the form of the solution of the moving boundary are obtained by the Lie group analysis. A comparison between the solutions corresponding to two types of fractional derivative is also given.
Alexander M. Alekseenko
2008-01-01
the existence of the solution is proved using the properties of the reduced system. A treatment is proposed for the full nonlinear BSSN system to construct constraint-preserving boundary conditions without invoking the second order in time reduction. Energy estimates on the principal part of the BSSN system (which is first order in temporal and second order in spatial derivatives are obtained. Generalizations to the case of nonhomogeneous boundary data are proposed.
I=2 $\\pi\\pi$ scattering using G-parity boundary condition
Kim, Changhoan
2003-01-01
To make the $\\pi\\pi$ state with non-zero relative momentum as the leading exponential, we impose anti-periodic boundary condition on the pion, which is implemented by imposing G-parity or H-parity on the quark fields at the boundary. With this, we calculate the I=2 $\\pi\\pi$ phase shift from lattice simulation by using L\\"uscher's formula.
Stress and mixed boundary conditions for two-dimensional dodecagonal quasi-crystal plates
Yan Gao; Si-Peng Xu; Bao-Sheng Zhao
2007-05-01
For plate bending and stretching problems in two-dimensional (2D) dodecagonal quasi-crystal (QC) media, the reciprocal theorem and the general solution for QCs are applied in a novel way to obtain the appropriate stress and mixed boundary conditions accurate to all order. The method developed by Gregory and Wan is used to generate necessary conditions which the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate; these decaying state conditions are obtained explicitly for axisymmetric bending and stretching of a circular plate when stress or mixed conditions are imposed on the plate edge. They are then used for the correct formulation of boundary conditions for the interior solution. For the stress data, our boundary conditions coincide with those obtained in conventional forms of plate theories. More importantly, appropriate boundary conditions with a set of mixed edge-data are obtained for the ﬁrst time. Furthermore, the corresponding necessary conditions for transversely isotropic elastic plate are obtained directly, and their isotropic elastic counterparts are also obtained.
Disk emission and absorption lines in LMXB. Note on the physical conditions of an absorbing material
Rozanska, Agata
2014-01-01
We show that the continuum X-ray spectrum of 4U 1630-472 with iron absorption lines can be satisfactorily modeled by the spectrum from an accretion disk atmosphere. We performed full radiative transfer calculations using our code ATM21 to model the emission from an accretion disk surface that is seen at different viewing angles. Computed models are then fitted to the high-resolution X-ray spectra of 4U 1630-472 obtained by {\\it Suzaku} satellite. Absorption lines of highly ionized iron originating in a hot accretion-disk atmospheres are important part of the observed line profile, and can be an alternative or complementary explanation to the wind model usually favored for this type of sources. Next, assuming that absorption lines originate from the wind illuminated by X-ray central source in LMXBs, we can put constrains on the wind location only if we know the volume density number of the absorbing material. There are a few derivations of the distance to the wind in X-ray binaries. We show here, that the dens...
The Physical Conditions of Intermediate Redshift MgII Absorbing Clouds from Voigt Profile Analysis
Churchill, C W; Charlton, J; Churchill, Chris; Vogt, Steven; Charlton, Jane
2003-01-01
[Slightly Abridged] We present a detailed statistical analysis of the column densities, N, and Doppler parameters, b, of MgII absorbing clouds at redshifts 0.4~5 km/s for MgII and FeII and ~7 km/s for MgI. The clouds are consistent with being thermally broadened, with temperatures in the 30-40,000K range. (4) A two-component Gaussian model to the velocity two-point correlation function yielded velocity dispersions of 54 km/s and 166 km/s. The narrow component has roughly twice the amplitude of the broader component. The width and amplitude of the broader component decreases as equivalent width increases. (5) From photoionization models we find that the column density ratios are most consistent with photoionization by the extragalactic background, as opposed to stars. Based upon N(MgI)/N(MgII), it appears that at least two-phase ionization models are required to explain the data.
Blow-up estimates for semilinear parabolic systems coupled in an equation and a boundary condition
WANG; Mingxin(
2001-01-01
［1］Wang, S., Wang, M. X., Xie, C. H., Reaction-diffusion systems with nonlinear boundary conditions, Z. angew. Math.Phys., 1997, 48(6): 994－1001.［2］Fila, M., Quittner, P., The blow-up rate for a semilinear parabolic system, J. Math. Anal. Appl., 1999, 238: 468－476.［3］Hu, B., Remarks on the blow-up estimate for solutions of the heat equation with a nonlinear boundary condition, Differential Integral Equations, 1996, 9(5): 891－901.［4］Hu, B. , Yin, H. M., The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition,Trans. of Amer. Math. Soc., 1994, 346: 117－135.［5］Amann, H., Parabolic equations and nonlinear boundary conditions, J. of Diff. Eqns., 1988, 72: 201－269.［6］Deng, K., Blow-up rates for parabolic systems, Z. angew. Math. Phys. ,1996, 47: 132－143.［7］Fila, M., Levine, H. A., On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition, J. Math. Anal. Appl., 1996, 204: 494－521.
Boundary conditions for General Relativity on AdS$_{3}$ and the KdV hierarchy
Pérez, Alfredo; Troncoso, Ricardo
2016-01-01
It is shown that General Relativity with negative cosmological constant in three spacetime dimensions admits a new family of boundary conditions being labeled by a nonnegative integer $k$. Gravitational excitations are then described by "boundary gravitons" that fulfill the equations of the $k$-th element of the KdV hierarchy. In particular, $k=0$ corresponds to the Brown-Henneaux boundary conditions so that excitations are described by chiral movers. In the case of $k=1$, the boundary gravitons fulfill the KdV equation and the asymptotic symmetry algebra turns out to be infinite-dimensional, abelian and devoid of central extensions. The latter feature also holds for the remaining cases that describe the hierarchy ($k>1$). Our boundary conditions then provide a gravitational dual of two noninteracting left and right KdV movers, and hence, boundary gravitons possess anisotropic Lifshitz scaling with dynamical exponent $z=2k+1$. Remarkably, despite spacetimes solving the field equations are locally AdS, they po...
Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.
2008-01-01
The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...
GaN-based heterostructures: electric-static equilibrium and boundary conditions
Zhang Jin-Feng; Hao Yue
2006-01-01
In the GaN-based heterostructures, this paper reports that the strong electric fields induced by polarization effects at the structure boundaries complicate the electric-static equilibrium and the boundary conditions. The basic requirements of electric-static equilibrium for the heterostructure systems are discussed first, and it is deduced that in the application of the coupled Schr(o)dinger-Poisson model to the heterostructures of electric-static equilibrium state,zero external electric field guarantees the overall electric neutrality, and there is no need to introduce the charge balance equation. Then the relation between the screening of the polar charges in GaN-based heterostructures and the possible boundary conditions of the Poisson equation is analysed, it is shown that the various boundary conditions are equivalent to each other, and the surface charge, which can be used in studying the screening of the polar charges, can be precisely solved even if only the conduction band energy is correctly known at the surface. Finally, through the calculations on an AlGaN/GaN heterostructure with typical structure parameters by the coupled Schr(o)dinger-Poisson model under the various boundary conditions, the correctness of the above analyses are validated.
YAN Jing-hua(闫敬华); Detlev Majewski
2003-01-01
Based on the real case of a frontal precipitation process affecting South China, 27 controlled numerical experiments was made for the effects of hydrostatic and non-hydrostatic effects, different driving models, combinations of initial/boundary conditions, updates of lateral values and initial time levels of forecast, on model predictions. Features about the impact of initial/boundary conditions on mesoscale numerical weather prediction (NWP) model are analyzed and discussed in detail. Some theoretically and practically valuable conclusions aredrawn. It is found that the overall tendency of mesoscale NWP models is governed by its driving model, with the initial conditions showing remarkable impacts on mesoscale models for the first 10 hours of the predictions while leaving lateral boundary conditions to take care the period beyond; the latter affect the inner area of mesoscale predictions mainly through the propagation and movement of weather signals (waves) of different time scales; initial values of external model parameters such as soil moisture content may affect predictions of more longer time validity, while fast signals may be filtered away and only information with time scale 4 times as large as or more than the updated period of boundary values may be introduced, through lateral boundary, to mesoscale models, etc. Someresults may be taken as important guidance on mesoscale model and its data assimilation developments of the future.
I. C. Ramos
2015-10-01
Full Text Available We present the adaptation to non-free boundary conditions of a pseudospectral method based on the (complex Fourier transform. The method is applied to the numerical integration of the Oberbeck-Boussinesq equations in a Rayleigh-Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (. These results are the basis for the later study, by the same method, of wet convection in a solar still. Received: 20 Novembre 2014, Accepted: 15 September 2015; Edited by: C. A. Condat, G. J. Sibona; DOI:http://dx.doi.org/10.4279/PIP.070015 Cite as: I C Ramos, C B Briozzo, Papers in Physics 7, 070015 (2015
Fang, Angbo
2008-12-08
Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable π -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.
Pseudoscalar mesons in a finite cubic volume with twisted boundary conditions
Colangelo, Gilberto
2016-01-01
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We first apply chiral perturbation theory in the p-regime and calculate the corrections for masses, decay constants, pseudoscalar coupling constants and form factors at next-to-leading order. We show that the Feynman-Hellmann theorem and the relevant Ward-Takahashi identity are satisfied. We then derive asymptotic formulae a la Luscher for twisted boundary conditions. We show that chiral Ward identities for masses and decay constants are satisfied by the asymptotic formulae in finite volume as a consequence of infinite-volume Ward identities. Applying asymptotic formulae in combination with chiral perturbation theory we estimate corrections beyond next-to-leading order for twisted boundary conditions.
Damping solitary wave under the second and third boundary condition of a viscous plasma
Li, G.; Ren, Y.-Q.
2016-08-01
In this paper, the solitary waves of a viscous plasma confined in a cylindrical pipe is investigated under two types of boundary condition. By using the reductive perturbation theory, a quasi-KdV equation is derived and a damping solitary wave is obtained. It is found that the damping rate increases with the viscosity coefficient of the plasma ν ' increasing and the radius of the cylindrical pipe R decreasing for second and third boundary condition. The magnitude of the damping rate is also dominated by boundary condition type. From the fact that the amplitude reduces rapidly when R approaches zero or ν ' approaches infinite, we confirm the existence of a damping solitary wave.
Non-diagonal boundary conditions for gl(1|1) super spin chains
Grabinski, Andre M; Frahm, Holger, E-mail: frahm@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany)
2010-01-29
We study a one-dimensional model of free fermions with gl(1|1) supersymmetry and demonstrate how non-diagonal boundary conditions can be incorporated into the framework of the graded quantum inverse scattering method (gQISM) by means of super matrices with entries from a superalgebra. For super Hermitian twists and open boundary conditions subject to a certain constraint, we solve the eigenvalue problem for the super transfermatrix by means of the graded algebraic Bethe ansatz technique (gABA) starting from a fermionic coherent state. For generic boundary conditions the algebraic Bethe ansatz cannot be applied. In this case the spectrum of the super transfermatrix is obtained from a functional relation.
Effects of various thermal boundary conditions on natural convection in porous cavities
Cheong, H. T.; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Z.
2015-10-01
The present work analyzes numerically the effects of various thermal boundary conditions and the geometry of the cavity on natural convection in cavities with fluid-saturated porous medium. Cavity of square, right-angled trapezium and right-angled triangle shapes are considered. The different temperature profiles are imposed on the left wall of the cavity and the right wall is maintained at a lower constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for the porous medium. The finite difference method is used to solve the governing equations and boundary conditions over a range of Darcy-Rayleigh numbers. Streamlines, isotherms and Nusselt numbers are used for presenting the results. The heat transfer of the square cavity is more enhanced at high Darcy-Rayleigh number for all the thermal boundary conditions considered.
Boundary condition handling approaches for the model reduction of a vehicle frame
Xie, Qingxi; Zhang, Nong; Zhang, Bangji; Ji, Jinchen
2016-06-01
In order to apply model reduction technique to improve the computational efficiency for the large-scale FEM model of a vehicle, this paper presents the handling approaches for three widely-used boundary conditions, namely fixed boundary condition (FBC), prescribed motion (PSM) and coupling (COUP), respectively. It is found that iterated improved reduction system (IIRS) reduction method tends to generate better reduction approximation. Guyan method is not sensitive to the sequence of reduction and constraint under FBC, and can thus provide flexibility in handling different boundary conditions for the same system. As for PSM, 'constraint first' is recommended no matter which reduction method is used, and then separate reduction models can be coupled to form a new model with relative small dofs. By selecting appropriate master dofs for model reduction, the coupled model based on reduced models could produce same results as the original full one.
Mayrhofer, Arno; Violeau, Damien; Ferrand, Martin
2013-01-01
The semi-analytical wall boundary conditions present a mathematically rigorous framework to prescribe the influence of solid walls in SPH for fluid flows. In this paper they are investigated with respect to the skew-adjoint property which implies exact energy conservation. It will be shown that this property holds only in the limit of the continuous SPH approximation, whereas in the discrete SPH formulation it is only approximately true, leading to numerical noise. This noise, interpreted as form of "turbulence", is treated using an additional volume diffusion term in the continuity equation which we show is equivalent to an approximate Riemann solver. Subsequently two extensions to the boundary conditions are presented. The first dealing with a variable driving force when imposing a volume flux in a periodic flow and the second showing a generalization of the wall boundary condition to Robin type and arbitrary-order interpolation. Two modifications for free-surface flows are presented for the volume diffusio...
Feshchenko, R M
2016-01-01
In this paper exact 1D transparent boundary conditions (TBC) for the 2D parabolic wave equation with a linear or a quadratic dependence of the dielectric permittivity on the transversal coordinate are reported. Unlike the previously derived TBCs they contain only elementary functions. The obtained boundary conditions can be used to numerically solve the 2D parabolic equation describing the propagation of light in weakly bent optical waveguides and fibers including waveguides with variable curvature. They also are useful when solving the equivalent 1D Schr\\"odinger equation with a potential depending linearly or quadratically on the coordinate. The prospects and problems of discretization of the derived transparent boundary conditions are discussed.
On Inaudible Properties of Broken Drums - Isospectral Domains with Mixed Boundary Conditions
Herbrich, Peter
2011-01-01
Since Kac raised the question "Can one hear the shape of a drum?", various families of non-smooth counterexamples have been constructed using the transplantation method, which is based on a group-theoretic technique by Sunada. We apply the transplantation method to domains with mixed boundary conditions, which can be interpreted as broken drums. The method is translated into graph theory which allows for a computer-aided search for transplantable pairs, and a classification in terms of induced representations. Several tools are developed with which new pairs can be generated from given ones. In the end, we discuss inaudible properties and present the first example of a connected drum that sounds disconnected, and of a broken drum that sounds unbroken, that is, a planar domain with mixed boundary conditions that is isospectral to a domain with Dirichlet boundary conditions. Above all, the latter example shows that an orbifold can be Dirichlet isospectral to a manifold. The appendix contains several transplanta...
Su, Zhu; Jin, Guoyong; Ye, Tiangui
2016-06-01
The paper presents a unified solution for free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary conditions within the framework of Timoshenko beam theory. The formulation is derived by means of the variational principle in conjunction with a modified Fourier series which consists of standard Fourier cosine series and supplemented functions. The mechanical and electrical properties of functionally graded piezoelectric materials (FGPMs) are assumed to vary continuously in the thickness direction and are estimated by Voigt’s rule of mixture. The convergence, accuracy and reliability of the present formulation are demonstrated by comparing the present solutions with those from the literature and finite element analysis. Numerous results for FGPM beams with different boundary conditions, geometrical parameters as well as material distributions are given. Moreover, forced vibration of the FGPM beams subjected to dynamic loads and general boundary conditions are also investigated.
Pseudoscalar mesons in a finite cubic volume with twisted boundary conditions
Colangelo, Gilberto; Vaghi, Alessio
2016-07-01
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We first apply chiral perturbation theory in the p-regime and calculate the corrections for masses, decay constants, pseudoscalar coupling constants and form factors at next-to-leading order. We show that the Feynman-Hellmann theorem and the relevant Ward-Takahashi identity are satisfied. We then derive asymptotic formulae à la Lüscher for twisted boundary conditions. We show that chiral Ward identities for masses and decay constants are satisfied by the asymptotic formulae in finite volume as a consequence of infinite-volume Ward identities. Applying asymptotic formulae in combination with chiral perturbation theory we estimate corrections beyond next-to-leading order for twisted boundary conditions.
Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations
Schuetrumpf, B
2015-01-01
Background: Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at sub-saturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100 m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite 3D boxes assuming periodic boundary conditions (PBC). The resulting solutions are affected by spurious finite-size effects. Purpose: In order to remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice QCD applications. In this work, we study the effectiveness of TABC in the context of pasta phases simulations within nuclear density functional theory. Methods: We perform Skyrme-Hartree-Fock calculations in three dimensions by implementing Bloch boundary conditions. The TABC averages are obtained by means of Gauss-Legendre integratio...
Hobrecht, Hendrik
2016-01-01
We present a systematic method to calculate the scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function $Z$ on an $L\\times M$ square lattice, wrapped around a torus with aspect ratio $\\rho=L/M$. By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a $2\\times2$ transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films $\\rho\\to 0$. Additionally, for the cylinder at criticality our result confirms the predictions...
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya
2008-11-01
A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.
A Formulation of Asymptotic and Exact Boundary Conditions Using Local Operators
Hagstrom, T.; Hariharan, S. I.
1998-01-01
In this paper we describe a systematic approach for constructing asymptotic boundary conditions for isotropic wave-like equations using local operators. The conditions take a recursive form with increasing order of accuracy. In three dimensions the recursion terminates and the resulting conditions are exact for solutions which are described by finite combinations of angular spherical harmonics. First, we develop the expansion for the two-dimensional wave equation and construct a sequence of easily implementable boundary conditions. We show that in three dimensions and analogous conditions are again easily implementable in addition to being exact. Also, we provide extensions of these ideas to hyperbolic systems. Namely, Maxwell's equations for TM waves are used to demonstrate the construction. Finally, we provide numerical examples to demonstrate the effectiveness of these conditions for a model problem governed by the wave equation.
Sirenko, Kostyantyn
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.
(2,2) and (0,4) Supersymmetric Boundary Conditions in 3d N = 4 Theories and Type IIB Branes
Chung, Hee-Joong
2016-01-01
The half-BPS boundary conditions preserving N = (2,2) and N = (0,4) supersymmetry in 3d N = 4 supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Bogomolony-like equations and Nahm-like equations arise in the vector multiplet BPS boundary conditions and Robin-type boundary conditions appear for the hypermultiplet coupled to vector multiplet. The half-BPS boundary conditions are realized in the brane configurations of Type IIB string theory.
Svec, Oldrich; Skoček, Jan
2013-01-01
The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary conditi...... is proposed. The proposed relation is validated both for the case of Newtonian and non-Newtonian fluids. The importance of employing the Navier’s slip boundary condition is highlighted by a practical industrial problem.......The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...
M. Ouanan
2005-01-01
Full Text Available We study the existence of nontrivial solutions for the problem Δu=u, in a bounded smooth domain Ω⊂ℝℕ, with a semilinear boundary condition given by ∂u/∂ν=λu−W(xg(u, on the boundary of the domain, where W is a potential changing sign, g has a superlinear growth condition, and the parameter λ∈]0,λ1];λ1 is the first eigenvalue of the Steklov problem. The proofs are based on the variational and min-max methods.
Bedaque, Paulo F
2008-01-01
The exponentially decreasing signal to noise ratio in multibaryon correlators is the main obstacle to a first principles, QCD-based calculation of the nuclear force. Recently, we have proposed an orbifold boundary condition ("restless pions") that can dramatically improve this matter. Here we develop the idea further by proposing an explicit algorithm that can be used with purely periodic, "off the shelf" gauge configurations. We also discuss finite volume corrections with the new boundary conditions and the use of the "Luscher formula'' for the phase shifts.
Mathematical analysis of the Navier-Stokes equations with non standard boundary conditions
Tidriri, M. D.
1995-01-01
One of the major applications of the domain decomposition time marching algorithm is the coupling of the Navier-Stokes systems with Boltzmann equations in order to compute transitional flows. Another important application is the coupling of a global Navier-Stokes problem with a local one in order to use different modelizations and/or discretizations. Both of these applications involve a global Navier-Stokes system with nonstandard boundary conditions. The purpose of this work is to prove, using the classical Leray-Schauder theory, that these boundary conditions are admissible and lead to a well posed problem.
ICBC Version 3. 1: TMI-2 (Three Mile Island) Initial and Boundary Conditions data base
Brower, R W; Fackrell, L J; Golden, D W; Harris, M L; Olaveson, C L
1988-01-01
The TMI-2 initial and boundary conditions data base is a micro computer data base which provides the required initial and boundary conditions to simulate the TMI-2 accident. Additionally, other time series plant measurements related to the accident are included in the data base. Major features of the data base are the ability to plot, manipulate and list data as well as to enter user supplied data (e.g. results of simulations). The user guide provides the instructions for installation and operation of the data base. 10 refs., 21 figs.
Singularities, boundary conditions and gauge link in the light cone gauge
Gao, Jian-Hua
2013-01-01
In this work, we first review the issues on the singularities and the boundary conditions in light cone gauge and how to regularize them properly. Then we will further review how these singularities and the boundary conditions can result in the gauge link at the infinity in the light cone direction in the Drell-Yan process. Except for reviewing, we also have verified that the gauge link at the light cone infinity has no dependence on the path not only for the Abelian field but also for non-Abelian gauge field.
Slip, immiscibility, and boundary conditions at the liquid-liquid interface.
Koplik, Joel; Banavar, Jayanth R
2006-02-03
The conventional boundary conditions at the interface between two flowing liquids include continuity of the tangential velocity. We have tested this assumption with molecular dynamics simulations of Couette and Poiseuille flows of two-layered liquid systems, with various molecular structures and interactions. When the total liquid density near the interface drops significantly compared to the bulk values, the tangential velocity varies very rapidly there, and would appear discontinuous at continuum resolution. The value of this apparent slip is given by a Navier boundary condition.
Boundary conditions at closed edge of bilayer graphene and energy bands of collapsed nanotubes
Nakanishi, Takeshi; Ando, Tsuneya
2016-10-01
Band structure is systematically studied in an effective-mass scheme in collapsed armchair and zigzag nanotubes based on the model in which collapsed tubes are regarded as bilayer ribbons with closed edges. Boundary conditions at closed edges, describing the connection of the envelope wave functions between the bottom and top layers, are derived. Among electronic states in bilayers, which change sensitively depending on the relative displacement of two layers, those having wave functions matching well with the obtained boundary conditions, i.e., unaffected by the presence of closed edges, constitute important states near the Fermi level in collapsed nanotubes.
ON APPROXIMATION OF LAPLACIAN EIGENPROBLEM OVER A REGULAR HEXAGON WITH ZERO BOUNDARY CONDITIONS
Jia-chang Sun
2004-01-01
In my earlier paper [4], an eigen-decompositions of the Laplacian operator is given on a unit regular hexagon with periodic boundary conditions. Since an exact decomposition with Dirichlet boundary conditions has not been explored in terms of any elementary form.In this paper, we investigate an approximate eigen-decomposition. The function space,corresponding all eigenfunction, have been decomposed into four orthogonal subspaces.Estimations of the first eight smallest eigenvalues and related orthogonal functions are given. In particulary we obtain an approximate value of the smallest eigenvalue λ1 ～29/40 π2 = 7.1555, the absolute error is less than 0.0001.
The sky is the limit: free boundary conditions in AdS$_3$ Chern-Simons theory
Apolo, Luis
2016-01-01
We test the effects of new diffeomorphism invariant boundary terms in SL(2,R)$\\times$SL(2,R) Chern-Simons theory. The gravitational interpretation corresponds to free AdS$_3$ boundary conditions, without restrictions on the boundary geometry. The boundary theory is the theory of a string in a target AdS$_3$. Its Virasoro conditions can eliminate ghosts. Generalisations to SL(N,R)$\\times$SL(N,R) higher spin theories and many other questions are still unexplored.
Effects of boundary conditions on thermomechanical calculations: Spent fuel test - climax
Butkovich, T.R.
1982-10-01
The effects of varying certain boundary conditions on the results of finite-element calculations were studied in relation to the Spent Fuel Test - Climax. The study employed a thermomechanical model with the ADINA structural analysis. Nodal temperature histories were generated with the compatible ADINAT heat flow codes. The boundary conditions studied included: (1) The effect of boundary loading on three progressively larger meshes. (2) Plane strain vs plane stress conditions. (3) The effect of isothermal boundaries on a small mesh and on a significantly larger mesh. The results showed that different mesh sizes had an insignificant effect on isothermal boundaries up to 5 y, while on the smallest and largest mesh, the maximum temperature difference in the mesh was <1{sup 0}C. In the corresponding ADINA calculation, these different mesh sizes produce insignificant changes in the stress field and displacements in the region of interest near the heat sources and excavations. On the other hand, plane stress produces horizontal and vertical stress differences approx. 9% higher than does plane strain.
A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics
Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina
2010-12-01
We present a novel smoothed particle hydrodynamics (SPH) method for diffusion equations subject to Neumann and Robin boundary conditions. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to implement in numerical methods when the boundary geometry is complex. The new method presented here is based on the approximation of the sharp boundary with a diffuse interface and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method. The paper discusses the details of the method and the criteria for the width of the diffuse interface. The method is used to simulate diffusion and reactions in a domain bounded by two concentric circles and reactive flow between two parallel plates and its accuracy is demonstrated through comparison with analytical and finite difference solutions. To further illustrate the capabilities of the model, a reactive flow in a porous medium was simulated and good convergence properties of the model are demonstrated.
Villafruela, J.M.; Olmedo, Inés; Ruiz de Adana, M.;
2013-01-01
This paper analyses the dispersion of the exhaled contaminants by humans in indoor environments, with special attention to the exhalation jet and its interaction with the indoor airflow pattern in both mixing and displacement ventilation conditions. The way in which three different numerical boun...... with respect to Test a. These differences are evaluated by comparing the penetration length and vertical ascendance values for the different tests....... boundary conditions for the exhalation flow (one timedependent and two steady conditions) predict that contaminant dispersion is also analyzed. The first boundary condition is a time-dependent sinusoidal function, which is the most realistic condition (Test a), and it is used to validate the numerical...... model with experimental data obtained from a previous study. The second one (Test b) maintains the momentum of the exhalation flow and the third (Test c) uses the maximum exhalation velocity. The objectives of this study are to increase knowledge regarding the exhaled contaminant distribution under...
Syahira Mansur
2014-01-01
Full Text Available The magnetohydrodynamic (MHD boundary layer flow of a nanofluid past a stretching/shrinking sheet with velocity, thermal, and solutal slip boundary conditions is studied. Numerical solutions to the governing equations were obtained using a shooting method. The skin friction coefficient and the local Sherwood number increase as the stretching/shrinking parameter increases. However, the local Nusselt number decreases with increasing the stretching/shrinking parameter. The range of the stretching/shrinking parameter for which the solution exists increases as the velocity slip parameter and the magnetic parameter increase. For the shrinking sheet, the skin friction coefficient increases as the velocity slip parameter and the magnetic parameter increase. For the stretching sheet, it decreases when the velocity slip parameter and the magnetic parameter increase. The local Nusselt number diminishes as the thermal slip parameter increases while the local Sherwood number decreases with increasing the solutal slip parameter. The local Nusselt number is lower for higher values of Lewis number, Brownian motion parameter, and thermophoresis parameter.
Modeling Charge-Sign Asymmetric Solvation Free Energies With Nonlinear Boundary Conditions
Bardhan, Jaydeep P
2014-01-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory but replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [J. Phys. Chem. B, v. 112:2408, 2008]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)
2016-10-15
The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.
Generalized second-order slip boundary condition for nonequilibrium gas flows
Guo, Zhaoli; Qin, Jishun; Zheng, Chuguang
2014-01-01
It is a challenging task to model nonequilibrium gas flows within a continuum-fluid framework. Recently some extended hydrodynamic models in the Navier-Stokes formulation have been developed for such flows. A key problem in the application of such models is that suitable boundary conditions must be specified. In the present work, a generalized second-order slip boundary condition is developed in which an effective mean-free path considering the wall effect is used. By combining this slip scheme with certain extended Navier-Stokes constitutive relation models, we obtained a method for nonequilibrium gas flows with solid boundaries. The method is applied to several rarefied gas flows involving planar or curved walls, including the Kramers' problem, the planar Poiseuille flow, the cylindrical Couette flow, and the low speed flow over a sphere. The results show that the proposed method is able to give satisfied predictions, indicating the good potential of the method for nonequilibrium flows.
Hadamard states for a scalar field in anti-de Sitter spacetime with arbitrary boundary conditions
Dappiaggi, Claudio
2016-01-01
We consider a real, massive scalar field on ${\\rm PAdS}_{d+1}$, the Poincar\\'e domain of the $(d+1)$-dimensional AdS spacetime. We first determine all admissible boundary conditions that can be applied on the conformal boundary, noting that there exist instances where "bound states" solutions are present. Then, we address the problem of constructing the two-point function for the ground state satisfying those boundary conditions, finding ultimately an explicit closed form. In addition, we investigate the singularities of the resulting two-point functions, showing that they are consistent with the requirement of being of Hadamard form in every globally hyperbolic subregion of ${\\rm PAdS}_{d+1}$ and proposing a new definition of Hadamard states which applies to ${\\rm PAdS}_{d+1}$.
Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition
Qiansheng Tang
2016-01-01
Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.
On the Navier-Stokes system with the Coulomb friction law boundary condition
Bălilescu, Loredana; San Martín, Jorge; Takahashi, Takéo
2017-02-01
We propose a new model for the motion of a viscous incompressible fluid. More precisely, we consider the Navier-Stokes system with a boundary condition governed by the Coulomb friction law. With this boundary condition, the fluid can slip on the boundary if the tangential component of the stress tensor is too large. We prove the existence and uniqueness of weak solution in the two-dimensional problem and the existence of at least one solution in the three-dimensional case, together with regularity properties and an energy estimate. We also propose a fully discrete scheme of our problem using the characteristic method, and we present numerical simulations in two physical examples.
Olabi A.G.
2010-06-01
Full Text Available Tubular systems are proposed to be used as energy absorber because they are cheap and easy to manufacture; recently some researchers use the elliptical tube as energy absorber. In this work, the influence of elliptical ratio (r =D1/D2 on energy absorption capability and load carrying capacity and stress of mild steel elliptical tubes has been investigated both experimentally and numerically, the experimental analyses conducted by using Zwick Type BT1-FB050TN testing instrument. This machine is universal instrument for performing tensile test and compression test, Fig (1 and bending test and it is consider as an important machine for measuring the mechanical properties of materials and structures. The loading frame consist of two vertical lead screws, a moving crosshead and an upper and lower bearing plate which bears the load of the lead screws. The maximum capacity of the loading frame attached to the table mounted unit is 50KN In this study a velocity between 310mm/min was applied to the moving component to ensure the quasistatic conditions whereas velocities between 0.5mm/min and 15 mm/min have been used by many researchers to simulate the quasi-static lateral compression of tubes between various indenters [1-2]. In addition to the experimental work, computational method using ANSYS is used to predict the loading and response of such tubes where series of models was performed with elliptical ratios ranging from 0.5 to 1.5. Comparison of numerical and experimental forcedeflection response is presented. It has been found that with changing the elliptical ratio of the tube the loaddeflection curve change and this leads to change the energy absorbed by tube, the changing of the geometrical shape of the tube leads to change the volume of this tube and hence the mass. By reducing the elliptical ratio to 0.5 the tube will absorb 43.3% more energy and the system will gain 102% more in terms of specific energy, fig (2.
Demchenko, N N; Doskoch, I Y; Gus' kov, S Y; Rozanov, V B; Stepanov, R V; Yakhin, R A [P. N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Garanin, S G; Suslov, N A; Zhidkov, N V [Russian Federation Nuclear Center - VNIIEF, Sarov (Russian Federation); Gatin, A A; Tishkin, V F; Zmitrenko, N V [Institute of Mathematical Modelling of RAS, Moscow (Russian Federation)], E-mail: rozanov@sci.lebedev.ru
2008-05-15
The compression conditions are analyzed and the capsules are discussed for the energy of {approx}2 kJ and pulse duration of {approx}0.5 ns at the second harmonic of an iodine laser ({lambda} = 0.66 {mu}m) under irradiation by a small number of beams at Iskra V facility (the facility has 12 beams, which are focused in a certain way onto the capsule). The authors consider different capsules filled with DT gas: the glass capsules (the inner radius is 260 {mu}m; the thickness, 1.2-1.3 {mu}m; the aspect ratio A = 200) experimentally examined with Iskra V; the capsules made of polystyrene (R = 140-170 {mu}m; {delta} = 5-10 {mu}m; A = 14-34), and the capsules made of polystyrene and covered by a foam absorber (R = 140-170 {mu}m; {delta} = 5-10 {mu}m; A = 14-34, foam absorber {delta} = 150 {mu}m) - 'Laser Greenhouse'.
Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin
2013-05-01
aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm-2AOD-1 to 65.1Wm-2AOD-1 when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.
Strings from 3D gravity: asymptotic dynamics of AdS$_3$ gravity with free boundary conditions
Apolo, Luis
2015-01-01
Pure three-dimensional gravity in anti-de Sitter space can be formulated as an SL(2,R) $\\times$ SL(2,R) Chern-Simons theory, and the latter can be reduced to a WZW theory at the boundary. In this paper we show that AdS$_3$ gravity with free boundary conditions is described by a string theory at the boundary whose target spacetime is also AdS$_3$. While boundary conditions in the standard construction of Coussaert, Henneaux, and van Driel are enforced through constraints on the WZW currents, we find that free boundary conditions are partially enforced through the string Virasoro constraints.
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
Wu, Weiliang, E-mail: wwl@whu.edu.cn; Qu, Wenzhong, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com; Xiao, Li, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com [Department of Engineering Mechanics, Wuhan University, Wuhan, Hubei (China); Shen, Yanfeng, E-mail: shen5@email.sc.edu; Giurgiutiu, Victor, E-mail: victorg@sc.edu [Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina (United States)
2015-03-31
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from
Meierbachtol, Toby W.; Harper, Joel T.; Johnson, Jesse V.; Humphrey, Neil F.; Brinkerhoff, Douglas J.
2015-03-01
The surface and basal boundary conditions exert an important control on the thermodynamic state of the Greenland Ice Sheet, but their representation in numerical ice sheet models is poorly constrained due to the lack of observations. Here we investigate a land-terminating sector of western Greenland and (1) quantify differences between new observations and commonly used boundary condition data sets and (2) demonstrate the impact of improved boundary conditions on simulated thermodynamics in a higher-order numerical flow model. We constrain near-surface temperature with measurements from two 20 m boreholes in the ablation zone and 10 m firn temperature from the percolation zone. We constrain basal heat flux using in situ measurement in a deep bedrock hole at the study area margin and other existing assessments. To assess boundary condition influences on simulated thermal-mechanical processes, we compare model output to multiple full-thickness temperature profiles collected in the ablation zone. Our observation-constrained basal heat flux is 30 mW m-2 less than commonly used representations. In contrast, measured near-surface temperatures are warmer than common surface temperature data sets by up to 15°C. Application of lower basal heat flux increases a model cold bias compared to the measured temperature profiles and causes frozen basal conditions across the ablation zone. Temperate basal conditions are reestablished by our warmer surface boundary. Warmer surface ice and firn can introduce several times more energy to the modeled ice mass than what is lost at the bed from reduced basal heat flux, indicating that the thermomechanical state of the ice sheet is highly sensitive to near-surface effects.
Effective coastal boundary conditions for tsunami wave run-up over sloping bathymetry
Kristina, W.; Bokhove, O.; Groesen, van E.W.C.
2014-01-01
An effective boundary condition (EBC) is introduced as a novel technique for predicting tsunami wave run-up along the coast, and offshore wave reflections. Numerical modeling of tsunami propagation in the coastal zone has been a daunting task, since high accuracy is needed to capture aspects of wave
Construction of the Nuclear Effective Interaction from Energy Eigenstates and Boundary Conditions
McElvain, Kenneth; Haxton, Wick
2017-01-01
The original Harmonic Oscillator Based Effective Theory (HOBET) work by Haxton and Luu reduced H = T +VNN , with VNN a realistic potential, to Heff in a small basis defined by projection operator P while correctly including all scattering by H through an excluded space Q. Scattering by T is analytically included to all orders, leaving the ET expansion focused on the short range VNN. Results do not depend on the size P as the effect of scattering through Q is fully included, also distinguishing HOBET from other methods. In this talk we abandon VNN and determine the LECs of the ET expansion from energy levels and boundary conditions. In the infinite volume continuum case every energy is an eigenvalue of H with an associated scattering state. In the LQCD context boundary conditions are periodic. In either case the ET LECs can be determined from energy, boundary condition pairs. We show that the Cartesian HO ET LECs can be expressed in terms of the spherical ones, giving a spherical, infinite volume ET, bypassing the use of Luscher's method. The approach cleanly isolates operator mixing induced by the finite box, sequestering effects that vanish in the continuum limit in a Green's function constrained to match the boundary conditions. Supported by the DOE under contracts DE-SC00046548 and DE-AC02-98CH10886.
On the strongly damped wave equation and the heat equation with mixed boundary conditions
Aloisio F. Neves
2000-01-01
Full Text Available We study two one-dimensional equations: the strongly damped wave equation and the heat equation, both with mixed boundary conditions. We prove the existence of global strong solutions and the existence of compact global attractors for these equations in two different spaces.
Semilinear Evolution Problems with Ventcel-Type Conditions on Fractal Boundaries
Maria Rosaria Lancia
2014-01-01
Full Text Available A semilinear parabolic transmission problem with Ventcel's boundary conditions on a fractal interface S or the corresponding prefractal interface Sh is studied. Regularity results for the solution in both cases are proved. The asymptotic behaviour of the solutions of the approximating problems to the solution of limit fractal problem is analyzed.
SQUEEZE-E: The optimal solution for molecular simulations with periodic boundary conditions
Wassenaar, T.A.; de Vries, S.J.; Bonvin, A.M.J.J.; Bekker, H.
2012-01-01
In molecular simulations of macromolecules, it is desirable to limit the amount of solvent in the system to avoid spending computational resources on uninteresting solvent−solvent interactions. As a consequence, periodic boundary conditions are commonly used, with a simulation box chosen as small as
SQUEEZE-E : The Optimal Solution for Molecular Simulations with Periodic Boundary Conditions
Wassenaar, Tsjerk A.; de Vries, Sjoerd; Bonvin, Alexandre M. J. J.; Bekker, Henk
2012-01-01
In molecular simulations of macromolecules, it is desirable to limit the amount of solvent in the system to avoid spending computational resources on uninteresting solvent−solvent interactions. As a consequence, periodic boundary conditions are commonly used, with a simulation box chosen as small as
Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions
M. U. Malakeeva
2012-01-01
Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.
The femur as a musculo-skeletal construct: a free boundary condition modelling approach.
Phillips, A T M
2009-07-01
Previous finite element studies of the femur have made simplifications to varying extents with regard to the boundary conditions used during analysis. Fixed boundary conditions are generally applied to the distal femur when examining the proximal behaviour at the hip joint, while the same can be said for the proximal femur when examining the distal behaviour at the knee joint. While fixed boundary condition analyses have been validated against in vitro experiments it remains a matter of debate as to whether the numerical and experimental models are indicative of the in vivo situation. This study presents a finite element model in which the femur is treated as a complete musculo-skeletal construct, spanning between the hip and knee joints. Linear and non-linear implementations of a free boundary condition modelling approach are applied to the bone through the explicit inclusion of muscles and ligaments spanning both the hip joint and the knee joint. A non-linear force regulated, muscle strain based activation strategy was found to result in lower observed principal strains in the cortex of the femur, compared to a linear activation strategy. The non-linear implementation of the model in particular, was found to produce hip and knee joint reaction forces consistent with in vivo data from instrumented implants.
Menges, J.; Walter, F.; Vogel, B.; Bruch, H.
2011-01-01
Transformational leadership (TFL) climate describes the degree to which leaders throughout an organization engage in TFL behaviors. In this study, we investigate performance linkages, mechanisms, and boundary conditions of TFL climate at the organizational level of analysis. In a sample of 158 indep
Evidence for Cretaceous-Paleogene boundary bolide “impact winter” conditions from New Jersey, USA
Vellekoop, J.; Esmeray-Senlet, S.; Miller, K.G.; Browning, J.V.; Sluijs, A.; van de Schootbrugge, B.; Sinninghe Damsté, J.S.; Brinkhuis, H.
2016-01-01
Abrupt and short-lived “impact winter” conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been availa
Evidence for Cretaceous-Paleogene boundary bolide "impact winter" conditions from New Jersey, USA
Vellekoop, J.; Esmeray-Senlet, S.; Miller, K.G.; Browning, J.V.; Sluijs, A.; van de Schootbrugge, B.; Sinninghe Damsté, J.S.; Brinkhuis, H.
2016-01-01
Abrupt and short-lived “impact winter” conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been availa
熊岳山; 韦永康
2001-01-01
The sediment reaction and diffusion equation with generalized initial and boundary condition is studied. By using Laplace transform and Jordan lemma , an analytical solution is got, which is an extension of analytical solution provided by Cheng Kwokming James ( only diffusion was considered in analytical solution of Cheng ). Some problems arisen in the computation of analytical solution formula are also analysed.
H theorem, regularization, and boundary conditions for linearized 13 moment equations.
Struchtrup, Henning; Torrilhon, Manuel
2007-07-06
An H theorem for the linearized Grad 13 moment equations leads to regularizing constitutive equations for higher fluxes and to a complete set of boundary conditions. Solutions for Couette and Poiseuille flows show good agreement with direct simulation Monte Carlo calculations. The Knudsen minimum for the relative mass flow rate is reproduced.
Traditionally, it is considered that, under boundary lubrication conditions, the reduction in friction and wear is mostly dependent on Extreme Pressure (EP) additives, rather than the basestock. However, several studies indicate that vegetable oils also contribute to the lubricity under this regime...
Burgers equation with no-flux boundary conditions and its application for complete fluid separation
Watanabe, Shinya; Matsumoto, Sohei; Higurashi, Tomohiro; Ono, Naoki
2016-09-01
Burgers equation in a one-dimensional bounded domain with no-flux boundary conditions at both ends is proven to be exactly solvable. Cole-Hopf transformation converts not only the governing equation to the heat equation with an extra damping but also the nonlinear mixed boundary conditions to Dirichlet boundary conditions. The average of the solution v bar is conserved. Consequently, from an arbitrary initial condition, solutions converge to the equilibrium solution which is unique for the given v bar. The problem arises naturally as a continuum limit of a network of certain micro-devices. Each micro-device imperfectly separates a target fluid component from a mixture of more than one component, and its input-output concentration relationships are modeled by a pair of quadratic maps. The solvability of the initial boundary value problem is used to demonstrate that such a network acts as an ideal macro-separator, separating out the target component almost completely. Another network is also proposed which leads to a modified Burgers equation with a nonlinear diffusion coefficient.
Zhao Caidi; Zhou Shengfan; Li Yongsheng
2008-01-01
This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet bound-ary condition. The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.
The integral form of APS boundary conditions in the Bag Model
Abrikosov, A A; Wipf, Andreas
2006-01-01
We propose an integral form of Atiah-Patodi-Singer spectral boundary conditions (SBC) and find explicitly the integral projector onto SBC for the 3-dimensional spherical cavity. After discussion of a simple example we argue that the relation between the projector and fermion propagator is universal and stays valid independently of the bag form and space dimension.
Null exact controllability of the parabolic equations with equivalued surface boundary condition
2006-01-01
Full Text Available This paper is devoted to showing the null exact controllability for a class of parabolic equations with equivalued surface boundary condition. Our method is based on the duality argument and global Carleman-type estimate for a parabolic operator.
Fengyan Yang
2016-09-01
Full Text Available This article studies the exact controllability of an Euler-Bernoulli plate equation with variable coefficients, subject to the simply supported boundary condition. By the Riemannian geometry approach, the duality method, the multiplier technique, and the compactness-uniqueness argument, we establish the corresponding observability inequality and obtain the exact controllability results.
Ioan Bejenaru
2001-07-01
Full Text Available In this paper we prove an approximate controllability result for an abstract semilinear evolution equation in a Hilbert space and we obtain as consequences the approximate controllability for some classes of elliptic and parabolic problems subjected to nonlinear, possible non monotone, dynamic boundary conditions.
Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation
Veeregowda, Deepak H; van der Mei, Henderina; de Vries, Jacob; Rutland, Mark W; Valle-Delgado, Juan J; Sharma, Prashant K; Busscher, Hendrik
2012-01-01
Toothbrushing, though aimed at biofilm removal, also affects the lubricative function of adsorbed salivary conditioning films (SCFs). Different modes of brushing (manual, powered, rotary-oscillatory or sonically driven) influence the SCF in different ways. Our objectives were to compare boundary lub
Algebraic Bethe Ansatz Solution to CN Vertex Model with Open Boundary Conditions
LI Guang-Liang; SHI Kang-Jie; YUE Rui-Hong
2005-01-01
We present three diagonal reflecting matrices for the CN vertex model with open boundary conditions and exactly solve the model by using the algebraic Bethe ansatz. The eigenvector is constructed and the eigenvalue and the associated Bethe equations are achieved. All the unwanted terms are cancelled out by three kinds of identities.
Shayma Adil Murad
2011-01-01
Full Text Available We study the existence and uniqueness of the solutions of mixed Volterra-Fredholm type integral equations with integral boundary condition in Banach space. Our analysis is based on an application of the Krasnosel'skii fixed-point theorem.
The effect of boundary conditions on VIV of a fully submerged flexible cylinder
Edraki, Mahdiar; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya
2016-11-01
A series of experiments was conducted in a re-circulating water tunnel, in which Vortex-Induced Vibration (VIV) of a fully submerged, tension-dominated cylinder with different boundary conditions was studied. While in most previous studies, either the cylinder was not fully submerged in flow or the boundary conditions for the cylinder were different at the two ends, in the current study the cylinder is fully submerged and the boundary conditions are carefully controlled. The cylinder was held fixed at both ends and was placed perpendicular to the uniform incoming flow direction. Different symmetric and asymmetric boundary conditions for the cylinder, i.e., clamped-clamped, simply supported, and clamped-hinged were tested. Continuous response of the cylinder in both the crossflow and inline directions were reconstructed from limited number of measurement points based on modal expansion theorem modified using Modal Assurance Criterion (MAC). Amplitudes and frequencies of oscillations were studied in the reduced velocity range of U* = 5.5-32.5 and the Reynolds number range of Re = 200-1220. Modes up to four were excited in the crossflow direction for a cylinder with a length of L =0.3 m and an aspect ratio of 73.
Effects of physical boundary conditions on the transverse vibration of single-layer graphene sheets
Sadeghzadeh, S.; Khatibi, M. M.
2016-09-01
The effects of various approaches for a comprehensive application of boundary conditions on the molecular dynamics of graphene nanosheets were studied in this paper. Fixing more than two rows of carbon atoms was tested for satisfaction of clamped boundary condition in dynamics problems, and it was demonstrated that a completely different view should be taken for clamped boundary conditions. To do this, through the frequency domain decomposition approach, operational modal analysis has been developed to carry out the Laboratory of Nanometric Operational Modal Analysis on a molecular dynamics platform. The theory of the mentioned approach was introduced, and some comparisons were made with experimental works. The modeling results have shown that for graphene sheets with simply supported edges, fixing two or more rows leads to the same response as fixing one row. For clamped edges, the use of a flexible base as a substrate satisfies the boundary condition with the best possible. At the end, as an example, it has been demonstrated that the second and third natural vibration frequencies increase with the increase in aspect ratio, while the first frequency remains unchanged.
SHOCK-ABSORBING EFFECTS OF VARIOUS PADDING CONDITIONS IN IMPROVING EFFICACY OF WRIST GUARDS
Kyu-Jung Kim
2004-03-01
Full Text Available The use of wrist guards has limited efficacy in preventing wrist injuries during falling in many sports activities. The objectives of this study were to measure the ground reaction force of the hand under simulated impact of the forearm and hand complex with different padding conditions of wrist guards and to analyze their impact force attenuation and maximum energy absorption for improved functional efficiency. A total of 15 subjects, wearing a commercial wrist guard, participated in a cable-released hand impact experiment to test four different conditions on the volar aspect of the hand, which include a wrist guard without a volar splint (bare hand, with a volar splint (normal use, with a volar splint and additional viscoelastic polymeric padding, and a volar splint and additional air cell padding. The ground reaction force and acceleration of the hand were measured using a force platform mounted on an anti-vibration table and a miniature accelerometer, respectively. Additional padding on the bare hand could substantially improve the maximum energy absorption by more than 39%, with no differences with each other. However, only the air cell padding could simultaneously improve the impact force attenuation by 32% compared with the bare hand impact without compromising the maximum energy absorption. It is recommended that common wrist guard design should provide more compliant padding in the volar aspect to improve the impact force attenuation through optimal material selection and design
6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum
Fujimoto, Yukihiro; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro
2016-01-01
We classify possible boundary conditions of a 6d Dirac fermion $\\Psi$ on a rectangle under the requirement that the 4d Lorentz structure is maintained, and derive the profiles and spectrum of the zero modes and nonzero KK modes under the two specific boundary conditions, (i) 4d-chirality positive components being zero at the boundaries and (ii) 2d-chirality positive components being zero at the boundaries. In the case of (i), twofold degenerated chiral zero modes appear which are localized towards specific directions of the rectangle pointed by an angle parameter $\\theta$. This leads to an implication for a new direction of pursuing the origin of three generations in the matter fields of the standard model, even though triple-degenerated zero modes are not realized in the six dimensions. The emergence of the angle parameter $\\theta$ originates from a rotational symmetry in the degenerated chiral zero modes on the rectangle extra dimensions since they do not feel the boundaries. In the case of (ii), this rotat...
Quasilocal conservation laws in XXZ spin-1/2 chains: Open, periodic and twisted boundary conditions
Tomaž Prosen
2014-09-01
Full Text Available A continuous family of quasilocal exact conservation laws is constructed in the anisotropic Heisenberg (XXZ spin-1/2 chain for periodic (or twisted boundary conditions and for a set of commensurate anisotropies densely covering the entire easy plane interaction regime. All local conserved operators follow from the standard (Hermitian transfer operator in fundamental representation (with auxiliary spin s=1/2, and are all even with respect to a spin flip operation. However, the quasilocal family is generated by differentiation of a non-Hermitian highest weight transfer operator with respect to a complex auxiliary spin representation parameter s and includes also operators of odd parity. For a finite chain with open boundaries the time derivatives of quasilocal operators are not strictly vanishing but result in operators localized near the boundaries of the chain. We show that a simple modification of the non-Hermitian transfer operator results in exactly conserved, but still quasilocal operators for periodic or generally twisted boundary conditions. As an application, we demonstrate that implementing the new exactly conserved operator family for estimating the high-temperature spin Drude weight results, in the thermodynamic limit, in exactly the same lower bound as for almost conserved family and open boundaries. Under the assumption that the bound is saturating (suggested by agreement with previous thermodynamic Bethe ansatz calculations we propose a simple explicit construction of infinite time averages of local operators such as the spin current.
Yanmei Sun
2012-01-01
Full Text Available By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.
Volino, Ralph John
1995-01-01
Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale
Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition
谭臻; 齐海涛; 蒋晓芸
2014-01-01
In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier’s slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.
1985-02-01
UniversitA di Roma-Tor Vergata, 00173 Roma, Italy. ** Dipartimento di Matematica , UniversitA di Pisa, 56100 Pisa, Italy. ***Dipartimento di...Roma-Tor Vergata, 00173 Roma, Italy. ** Dipartimento di Matematica , Universith di Pisa, 56100 Pisa, Italy. ***Dipartimento di Ingegneria Aerospaziale...and boundary operator; ( ii ) to determine a set of conditions sufficient for self-adjointness; (iii) to state compatibility conditions on the data
On a third order parabolic equation with a nonlocal boundary condition
Abdelfatah Bouziani
2000-01-01
Full Text Available In this paper we demonstrate the existence, uniqueness and continuous dependence of a strong solution upon the data, for a mixed problem which combine classical boundary conditions and an integral condition, such as the total mass, flux or energy, for a third order parabolic equation. We present a functional analysis method based on an a priori estimate and on the density of the range of the operator generated by the studied problem.
Chong LI; Chungen LIU
2008-01-01
In this paper, the authors study the existence of nontrivial solutions for the Hamiltonian systems z(t) = J▽H(t, z(t)) with Lagrangian boundary conditions, where (H)(t,z) = 1/2((B)(t)z,z) + (H)(t,z), (B)(t) is a semipositive symmetric continuous matrix and (H) satisfies a superquadratic condition at infinity. We also obtain a result about the L-index.
The heat equation source determination for the case of non-smooth boundary and initial conditions
Solovi’ev, V. V.; Tkachenko, D. S.
2017-01-01
An inverse problem of reconstructing the source of a special kind for parabolic equations in a bounded region with smooth boundary is considered. Solutions are sought in the Holder classes. We prove an uniqueness criterion for the solution and sufficient conditions of Fredholm property of the task at hand. As a consequence of the sufficient conditions for existence and uniqueness of solution of the inhomogeneous inverse problems are found.
Haber, S; Filipovic, N; Kojic, M; Tsuda, A
2006-10-01
The dissipative particle dynamics (DPD) method was used to simulate the flow in a system comprised of a fluid occupying the space between two cylinders rotating with equal angular velocities. The fluid, initially at rest, ultimately reaches a steady, linear velocity distribution (a rigid-body rotation). Since the induced flow field is solely associated with the no-slip boundary condition at the walls, we employed this system as a benchmark to examine the effect of bounce-back reflections, specular reflections, and Pivkin-Karniadakis no-slip boundary conditions, upon the steady-state velocity, density, and temperature distributions. An additional advantage of the foregoing system is that the fluid occupies inherently a finite bounded domain so that the results are affected by the prescribed no-slip boundary conditions only. Past benchmark systems such as Couette flow between two infinite parallel plates or Poiseuille flow in an infinitely long cylinder must employ artificial periodic boundary conditions at arbitrary upstream and downstream locations, a possible source of spurious effects. In addition, the effect of the foregoing boundary conditions on the time evolution of the simulated velocity profile was compared with that of the known, time-dependent analytical solution. It was shown that bounce-back reflection yields the best results for the velocity distributions with small fluctuations in density and temperature at the inner fluid domain and larger deviations near the walls. For the unsteady solutions a good fit is obtained if the DPD friction coefficient is proportional to the kinematic viscosity. Based on dimensional analysis and the numerical results a universal correlation is suggested between the friction coefficient and the kinematic viscosity.
Evaluation of Wall Boundary Conditions for Impedance Eduction Using a Dual-Source Method
Watson, W. R.; Jones, M. G.
2012-01-01
The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.
Gerbi, Stéphane
2013-01-15
The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
A forced fractional Schrödinger equation with a Neumann boundary condition
Esquivel, L.; Kaikina, Elena I.
2016-07-01
We study the initial-boundary value problem for the nonlinear fractional Schrödinger equation {ut+i(uxx+12π∫0∞sign(x-y)|x-y|12uy( y)dy)+i|u|2u=0, t>0, x>0u(x,0)=u0(x), x>0,ux(0,t)=h(t), t>0. We prove the global-in-time existence of solutions for a nonlinear fractional Schrödinger equation with inhomogeneous Neumann boundary conditions. We are also interested in the study of the asymptotic behaviour of the solutions.
S MANSUR; A ISHAK; I POP
2014-01-01
The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the skin friction coeﬃcient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and concentration profiles for some values of the velocity slip parameter, thermal slip parameter, stretching/shrinking parameter, thermophoresis parameter, and Brownian motion parameter. The results show that the local Nusselt number, which represents the heat transfer rate, is lower for higher values of thermal slip parameter, thermophoresis parameter, and Brownian motion parameter.
Xiao-jing LIU; Ji-zeng WANG; Xiao-min WANG; You-he ZHOU
2014-01-01
General exact solutions in terms of wavelet expansion are obtained for multi-term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ-ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.
OBLIQUE WATER WAVES IMPACTING ON A THIN POROUS WALL WITH A PARTIAL-SLIPPING BOUNDARY CONDITION
HSU Hao-Jen; HUANG Liang-Hsiung
2011-01-01
When an incoming water wave is parallel to a porous breakwater, a paradoxical phenomenon exists in that by strictly following the potential flow boundary condition of normal flux continuity on the interfaces, the water wave permeates the wall completely, regardless of breakwater porosity. To account for this paradoxical phenomenon when solving the problem of water waves obliquely impacting on a thin porous wall, a new partial-slipping boundary condition on the thin porous wall for potential flow is proposed. Analytical results show that when the water wave is parallel to a thin porous wall (i.e., the incident angle equals to 90°),the transmitted wave side remains quiescent, i.e., the transmitted wave side does not capture any wave energy when no viscous effect exists. This reveals that the above-mentioned paradoxical phenomenon disappears. The viscous boundary layer effect is also investigated in this study, which provides proper boundary conditions on a thin porous wall for viscous flows and detailed flow information.
Rezaei, M. P.; Zamanian, M.
2017-01-01
In this paper, the influences of nonideal boundary conditions (due to flexibility) on the primary resonant behavior of a piezoelectrically actuated microbeam have been studied, for the first time. The structure has been assumed to treat as an Euler-Bernoulli beam, considering the effects of geometric nonlinearity. In this work, the general nonideal supports have been modeled as a the combination of horizontal, vertical and rotational springs, simultaneously. Allocating particular values to the stiffness of these springs provides the mathematical models for the majority of boundary conditions. This consideration leads to use a two-dimensional analysis of the multiple scales method instead of previous works' method (one-dimensional analysis). If one neglects the nonideal effects, then this paper would be an effort to solve the two-dimensional equations of motion without a need of a combination of these equations using the shortening or stretching effect. Letting the nonideal effects equal to zero and comparing their results with the results of previous approaches have been demonstrated the accuracy of the two-dimensional solutions. The results have been identified the unique effects of constraining and stiffening of boundaries in horizontal, vertical and rotational directions. This means that it is inaccurate to suppose the nonideality of supports only in one or two of these directions like as previous works. The findings are of vital importance as a better prediction of the frequency response for the nonideal supports. Furthermore, the main findings of this effort can help to choose appropriate boundary conditions for desired systems.
Hill, Peter; Dudson, Ben
2016-01-01
We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for $\
Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira
2015-01-01
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to
Florencio Rusty Punzalan
Full Text Available Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs. Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code
Shirokoff, David
2010-01-01
Common efficient schemes for the incompressible Navier-Stokes equations, such as projection or fractional step methods, have limited temporal accuracy as a result of matrix splitting errors, or introduce errors near the domain boundaries (which destroy uniform convergence to the solution). In this paper we recast the incompressible (constant density) Navier-Stokes equations (with the velocity prescribed at the boundary) as an equivalent system, for the primary variables velocity and pressure. We do this in the usual way away from the boundaries, by replacing the incompressibility condition on the velocity by a Poisson equation for the pressure. The key difference from the usual approaches occurs at the boundaries, where we use boundary conditions that unequivocally allow the pressure to be recovered from knowledge of the velocity at any fixed time. This avoids the common difficulty of an, apparently, over-determined Poisson problem. Since in this alternative formulation the pressure can be accurately and effi...
Transient Hydroelastic Response of VLFS by FEM with Impedance Boundary Conditions in Time Domain
QIU Liu-chao; LIU Hua
2005-01-01
A time-dependent finite element method (FEM) is developed to analyze the transient hydroelastic responses of very large floating structures (VLFS) subjected to dynamic loads. The hydrodynamic problem is formulated based on the linear theory of fluid and the structural response is analyzed based on the thin plate theory. The FEM truncates the unbounded fluid domain by introducing an artificial boundary surface, thus defining a finite computational domain. At this boundary surface an impedance boundary conditions are applied so that no wave reflections occur. In the proposed scheme, all of the procedures are processed directly in time domain, which is efficient for nonlinear analyses of structure floating on unbounded fluid. Numerical results indicate acceptable accuracy of the proposed method.
Curiac, Daniel-Ioan; Volosencu, Constantin
2014-10-01
The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.
Heppe, Jonas; McGraw, Joshua D.; Bennewitz, Roland; Jacobs, Karin
2015-03-01
In fluid dynamics, the solid/liquid boundary condition can play a major role in the flow behavior of a liquid. For example, in the dewetting of identical polymer films on weak slip or strong slip substrates, large qualitative and quantitative differences are observed. Therefore, when applying an external load to a liquid resting on such substrates, the measured reaction forces and the ensuing flow should also depend on the boundary condition. We present atomic force microscopy measurements in which the reaction force of a cantilever is measured as the tip pierces liquid polymer micron sized droplets and films. These indentations are done on substrates with tuned slip. Accessing the size, depth and rate dependence of the resulting force distance curves, we show an influence of the slip condition on the dissipated energy and adhesion.
Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities
Allen, Rebecca
2016-06-29
We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.
Grant, Adam M
2008-01-01
Does task significance increase job performance? Correlational designs and confounded manipulations have prevented researchers from assessing the causal impact of task significance on job performance. To address this gap, 3 field experiments examined the performance effects, relational mechanisms, and boundary conditions of task significance. In Experiment 1, fundraising callers who received a task significance intervention increased their levels of job performance relative to callers in 2 other conditions and to their own prior performance. In Experiment 2, task significance increased the job dedication and helping behavior of lifeguards, and these effects were mediated by increases in perceptions of social impact and social worth. In Experiment 3, conscientiousness and prosocial values moderated the effects of task significance on the performance of new fundraising callers. The results provide fresh insights into the effects, relational mechanisms, and boundary conditions of task significance, offering noteworthy implications for theory, research, and practice on job design, social information processing, and work motivation and performance.
Pfeiffer, M.; Munz, C.-D.; Fasoulas, S.
2015-08-01
In a numerical solution of the Maxwell-Vlasov system, the consistency with the charge conservation and divergence conditions has to be kept solving the hyperbolic evolution equations of the Maxwell system, since the vector identity ∇ ṡ (∇ × u →) = 0 and/or the charge conservation of moving particles may be not satisfied completely due to discretization errors. One possible method to force the consistency is the hyperbolic divergence cleaning. This hyperbolic constraint formulation of Maxwell's equations has been proposed previously, coupling the divergence conditions to the hyperbolic evolution equations, which can then be treated with the same numerical method. We pick up this method again and show that electrostatic limit may be obtained by accentuating the divergence cleaning sub-system and converging to steady state. Hence, the electrostatic case can be treated by the electrodynamic code with reduced computational effort. In addition, potential boundary conditions as often given in practical applications can be coupled in a similar way to get appropriate boundary conditions for the field equations. Numerical results are shown for an electric dipole, a parallel-plate capacitor, and a Langmuir wave. The use of potential boundary conditions is demonstrated in an Einzel lens simulation.
Steskens, Paul Wilhelmus Maria Hermanus; Rode, Carsten; Janssen, Hans
2008-01-01
Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the surface transfer coefficients. Such models cannot accurately predict the HAM...... conditions in the component and on the surface of the component with non-uniform air temperature or relative humidity distributions in an indoor space. Moreover, the heat and moisture surface transfer coefficients strongly depend on the local air velocity, local temperature, water-material interactions...... and water content at the material surface and surface texture of the material. The objective of the present paper is to analyze the influence of the non-uniform local air velocity near the surface of a building component on the HAM conditions in the component. A case study and sensitivity study have been...
Inner boundary conditions for black hole Initial Data derived from Isolated Horizons
Jaramillo, J L; Mena-Marugán, G A
2004-01-01
We present a set of boundary conditions for solving the elliptic equations in the Initial Data problem for space-times containing a black hole, together with a number of constraints to be satisfied by the freely specifiable standard parameters of the Conformal Thin Sandwich formulation. These conditions altogether are sufficient for the construction of a horizon that is instantaneously in equilibrium in the sense of the Isolated Horizons formalism. We then investigate the application of these conditions to the Initial Data problem of binary black holes and discuss the relation of our analysis with other proposals that exist in the literature.
Inner boundary conditions for black hole initial data derived from isolated horizons
Jaramillo, José Luis; Gourgoulhon, Eric; Marugán, Guillermo A.
2004-12-01
We present a set of boundary conditions for solving the elliptic equations in the initial data problem for space-times containing a black hole, together with a number of constraints to be satisfied by the otherwise freely specifiable standard parameters of the conformal thin sandwich formulation. These conditions altogether are sufficient for the construction of a horizon that is instantaneously in equilibrium in the sense of the isolated horizons formalism. We then investigate the application of these conditions to the initial data problem of binary black holes and discuss the relation of our analysis with other proposals that exist in the literature.
Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign
Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.
2004-12-01
A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.
Dias, Nelson L.; Chor, Tomás. L.; de Zárate, Ailín. Ruiz
2014-08-01
The Boussinesq groundwater equation is widely used in hydrology to predict streamflow from an unconfined aquifer and derive the aquifer's saturated hydraulic conductivity and drainable porosity, and to predict water table height in drainage engineering. In this work, we solve this equation in an unconfined horizontal aquifer for nonhomogeneous boundary conditions for the water table height. The solution is found in the form of a Taylor series that has a finite radius of convergence, which is different for each initial condition. We also present an expression for the flux boundary condition at the origin as a function of the depth of the adjoining stream that automatically satisfies the boundary condition at infinity, and thus eliminates the need for a trial-and-error approach for the solution, which is accurate to 10-7. In order to obtain an approximation for the water table height in the region where the series solution diverges, first we computed a diagonal Padé approximation from the series coefficients, which converges in a larger interval than the series, and then we matched it with a new asymptotic approximation for large values of the independent variable. We found that the proposed matched solution is better suited to cases where the water head at the origin is close to the initial water head in the aquifer.
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; Shi, Qingyu
2016-09-01
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements.
Ibort, A
2012-01-01
In these three lectures we will discuss some fundamental aspects of the theory of self-adjoint extensions of the covariant Laplace-Beltrami and Dirac operators on compact Riemannian manifolds with smooth boundary emphasizing the relation with the theory of global boundary conditions. Self-adjoint extensions of symmetric operators, specially of the Laplace-Beltrami and Dirac operators, are fundamental in Quantum Physics as they determine either the energy of quantum systems and/or their unitary evolution. The well-known von Neumann's theory of self-adjoint extensions of symmetric operators is not always easily applicable to differential operators, while the description of extensions in terms of boundary conditions constitutes a more natural approach. Thus an effort is done in offering a description of self-adjoint extensions in terms of global boundary conditions showing how an important family of self-adjoint extensions for the Laplace-Beltrami and Dirac operators are easily describable in this way. Moreover ...
Tristan A Bekinschtein
2011-12-01
Full Text Available Classical (trace conditioning is a specific variant of associative learning in which a neutral stimulus leads to the subsequent prediction of an emotionally charged or noxious stimulus after a temporal gap. When conditioning is concurrent with a distraction task, only participants who can report the relationship (the contingency between stimuli explicitly show associative learning. This suggests that consciousness is a prerequisite for trace conditioning. We review and question three main controversies concerning this view. Firstly, virtually all animals, even invertebrate sea slugs, show this type of learning; secondly, unconsciously perceived stimuli may elicit trace conditioning; and thirdly, some vegetative state patients show trace learning. We discuss and analyze these seemingly contradictory arguments to find the theoretical boundaries of consciousness in classical conditioning. We conclude that trace conditioning remains one of the best measures to test conscious processing in the absence of explicit reports.
Cai, Jian; Roy, Somesh; Modest, Michael F.
2016-10-01
In simulations of periodic or symmetric geometries, computational domains are reduced by imaginary boundaries that exploit the symmetry conditions. Two boundary conditions are proposed for Discrete Ordinate Methods to solve axisymmetric radiation problems. Firstly, a specularly reflective boundary condition similar to that is used in Photon Monte Carlo methods is developed for Discrete Ordinate Methods. Secondly, the rotational invariant formulation is revisited for axisymmetric wedge geometries. Correspondingly, a new rotationally invariant boundary condition specially designed for axisymmetric problems on wedge shape is proposed to enforce the rotational invariance properties possessed by the radiative transfer equation (RTE) but violated by three-dimensional conventional Discrete Ordinate Methods. Both boundary conditions have the advantage that the discretization and linear equation solution procedures of conventional three-dimensional DOM are not affected by changing to a reduced geometry. Consistency, accuracy and efficiency of the new boundary conditions are demonstrated by multiple numerical examples involving periodic symmetry and axisymmetry. A comparison between specularly reflective boundary conditions and the rotationally invariant formulation shows that the latter offers several advantages for wedge geometries. In other symmetry conditions, when the rotational invariant formulation is not applicable, specular reflective boundary conditions are still effective.
Zhou Zhi-Dong; Zhang Chun-Zu; Jiang Quan
2011-01-01
The effects of internal stresses and depolarization fields on the properties of epitaxial ferroelectric perovskite thin films are discussed by employing the dynamic Ginzburg-Landau equation (DGLE).The numerical solution for BaTiO3 film shows that internal stress and the depolarization field have the most effects on ferroelectric properties such as polarization,Curie temperature and susceptibility.With the increase of the thickness of the film,the polarization of epitaxial ferroelectric thin film is enhanced rapidly under high internal compressively stress.With the thickness exceeding the critical thickness for dislocation formation,the polarization increases slowly and even weakens due to relaxed internal stresses and a weak electrical boundary condition.This indicates that the effects of mechanical and electrical boundary conditions both diminish for ferroelectric thick films.Consequently,our thermodynamic method is a full scale model that can predict the properties of ferroelectric perovskite films in a wide range of film thickness.
New method for solving the bending problem of rectangular plates with mixed boundary conditions
Liu Xin Min
2016-01-01
Full Text Available A new method is used to solve the rectangular plate bending problem with mixed boundary conditions. The method overcomes the complicated derivation of the classical solution by Fourth-order differential problem into integrating question. Under uniform loading rectangular plate bending problem with one side fixed the opposite side half simply supported half fixed the other two sides free rectangular plate, one side simply supported the opposite side half simply supported half fixed the other two sides free rectangular plate is systematically solved. According to the actual boundary conditions of the rectangular plate, the corresponding characteristic equation can easily be set up. It is presented deflection curve equation and the numerical calculation. By compared the results of the equation to the finite element program, we are able to demonstrate the correctness of the method. So the method not only has certain theoretical value, but also can be directly applied to engineering practice.
A numerical method for the elliptic Monge-Amp\\`ere equation with transport boundary conditions
Froese, Brittany D
2011-01-01
The problem of optimal mass transport arises in numerous applications including image registration, mesh generation, reflector design, and astrophysics. One approach to solving this problem is via the Monge-Amp\\`ere equation. While recent years have seen much work in the development of numerical methods for solving this equation, very little has been done on the implementation of the transport boundary conditions. In this paper, we propose a method for solving the transport problem by iteratively solving a Monge-Amp\\`ere equation with Neumann boundary conditions. We present a new discretization for the equation, which converges to the viscosity solution. The resulting system is solved efficiently with Newton's method. We provide several challenging computational examples that demonstrate the effectiveness and efficiency ($O(M)-O(M^{1.3})$ time) of the proposed method.
Ansari, R., E-mail: r_ansari@guilan.ac.i [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Sahmani, S.; Rouhi, H. [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of)
2011-02-28
Eringen's nonlocality is incorporated into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions. To this end, the Rayleigh-Ritz solution technique is implemented in conjunction with the set of beam functions as modal displacement functions. Then, molecular dynamics simulations are employed to obtain the critical buckling loads of armchair and zigzag SWCNTs, the results of which are matched with those of nonlocal shell model to extract the appropriate values of nonlocal parameter. It is found that in contrast to the chirality, boundary conditions have a considerable influence on the proper values of nonlocal parameter.
Effects of thermal boundary conditions on the joule heating of electrolyte in a microchannel
M Y ABDOLLAHZADEH JAMALABADI; J H PARK; M M RASHIDI; J M CHEN
2016-01-01
Joule heating effects on a slit microchannel filled with electrolytes are comprehensively investigated with emphasis on the thermal boundary conditions. An accurate analytical expression is proposed for the electrical field and the temperature distributions due to Joule heating are numerically obtained from the energy balance equation. The results show that a thermal design based on the average electric potential difference between electrodes can cause severe underestimation of Joule heating. In addition, the parame- tric study of thermal boundary conditions gives us an insight into the best cooling scenario for microfluidic devices. Other significant thermal characteristics, including Nusselt number, thermophoretic force, and entropy generation, are discussed as well. This study will provide useful information for the optimization of a bioMEMS device in relation to the thermal aspect.
Effects of boundary conditions on vibrating mode of acoustic logging dipole transducer
2008-01-01
Acoustic transducer is an important part of acoustic well logging tool. In this paper,ANSYS software package is used to design acoustic dipole transducer and simulate vibrating mode of the dipole transducer in different mechanical boundary conditions. The results show that boundary conditions influence the number of vibrating mode in the same frequency band and the frequency value of the same vibrating mode. Several acoustic dipole transducers are designed according to the results of numerical simulation and laboratory measurements. The basic frequency of vibrating mode of experi-ment has good agreement with that of simulation. The numerical simulation plays a good guidance role in designing,producing and correctly installing the acoustic dipole transducer.
MALIK Pravin; KADOLI Ravikiran; GANESAN N.
2007-01-01
Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer equation.