WorldWideScience

Sample records for absorbents

  1. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  2. The ALICE absorbers

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m.

  3. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  4. Absorbing Outflows in AGN

    Science.gov (United States)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  5. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  6. Multiband terahertz metamaterial absorber

    Institute of Scientific and Technical Information of China (English)

    Gu Chao; Qu Shao-Bo; Pei Zhi-Bin; Xu Zhuo; Liu Jia; Gu Wei

    2011-01-01

    This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.

  7. Metasurface Broadband Solar Absorber

    OpenAIRE

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Milan Sykora; Nina R. Weisse-Bernstein; Luk, Ting S.; Antoinette J. Taylor; Dalvit, Diego A. R.; Hou-Tong Chen

    2016-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experiment...

  8. Unidirectional perfect absorber

    Science.gov (United States)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  9. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  10. Unidirectional perfect absorber.

    Science.gov (United States)

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  11. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  12. Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation

    International Nuclear Information System (INIS)

    The traditional tuned mass absorber is widely employed to control the vibration of a primary structure by transferring the vibrating energy to the absorber. However, the working band of the absorber is very narrow, which limits the application of broadband vibration control. This study presents a novel broadband electromagnetic absorber by first introducing two negative impedance shunts to improve broadband damping of the absorber. The electromagnetic absorber is modeled, and the corresponding electromagnetic coupling coefficient is tested. A cantilever beam is employed to verify the broadband vibration absorption of the negative resistance (NR) shunted electromagnetic absorber (NR absorber) and the negative inductance NR shunted electromagnetic absorber (NINR absorber). The governing equations of the beam with two absorbers are derived, and the experiments are set up. The results point out that the NR and NINR absorbers can attenuate the broadband vibration. The proposed absorbers do not need the feedback system and the real-time controller compared to the active absorber; hence, they have great application potential in aerospace and in submarine applications, as well as in civil and mechanical engineering. (paper)

  13. Metasurface Broadband Solar Absorber

    Science.gov (United States)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  14. Optimal Sound Absorbing Structures

    CERN Document Server

    Yang, Min; Fu, Caixing; Sheng, Ping

    2016-01-01

    Causal nature of the acoustic response, for any materials or structures, dictates an inequality that relates the absorption spectrum of the sample to its thickness. We present a general recipe for constructing sound-absorbing structures that can attain near-equality for the causal relation with very high absorption performance; such structures are denoted optimal. Our strategy involves using carefully designed acoustic metamaterials as backing to a thin layer of conventional sound absorbing material, e.g., acoustic sponge. By using this design approach, we have realized a 12 cm-thick structure that exhibits broadband, near-perfect flat absorption spectrum starting at around 400 Hz. From the causal relation, the calculated minimum sample thickness is 11.5 cm for the observed absorption spectrum. We present the theory that underlies such absorption performance, involving the evanescent waves and their interaction with a dissipative medium, and show the excellent agreement with the experiment.

  15. Universal metamaterial absorbe

    CERN Document Server

    Smaali, Rafik; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of $\\lambda/100$ thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  16. Metasurface Broadband Solar Absorber.

    Science.gov (United States)

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  17. Ionized Absorbers in AGN

    Science.gov (United States)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  18. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  19. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al2O3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B4C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  20. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  1. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  2. Sensing with THz metamaterial absorbers

    CERN Document Server

    Cong, Longqing

    2014-01-01

    Metamaterial perfect absorbers from microwaves to optical part of the electromagnetic spectrum has been intensely studied for its ability to absorb electromagnetic radiation. Perfect absorption of light by metamaterials have opened up new opportunities for application oriented functionalities such as efficient sensors and emitters. We present an absorber based sensing scheme at the terahertz frequencies and discuss optimized designs to achieve high frequency and amplitude sensitivities. The major advantage of a perfect metamaterial absorber as a sensor is the sensitive shift in the absorber resonance frequency along with the sharp change in the amplitude of the resonance due to strong interaction of the analyte with the electric and the magnetic fields at resonant perfect absorption frequency. We compare the sensing performance of the perfect metamaterial absorber with its complementary structural design and planar metasurface with identical structure. The best FoM values obtained for the absorber sensor here...

  3. Liquid Hydrogen Absorber for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  4. Energy-absorbing effectiveness factor

    OpenAIRE

    Jones, Norman

    2010-01-01

    Abstract A study is reported on the energy-absorbing effectiveness factor which was introduced recently. The factor is defined as the quotient of the total energy, which can be absorbed in a system, to the maximum energy up to failure in a normal tensile specimen, which is made from the same volume of material. This dimensionless parameter allows comparisons to be made of the effectiveness of various geometrical shapes and of energy-absorbers made from different materials. The infl...

  5. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  6. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  7. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-05-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  8. Absorbers: Definitions, properties and applications

    Directory of Open Access Journals (Sweden)

    G. Belitskii

    1998-01-01

    Full Text Available Roughly speaking, the absorber is a set, which includes, after finite number of initial states, each trajectory of a transformation of space into itself. This paper deals with the exact definition of absorbers for linear operators, the study of the properties, the applications to “classical” dynamics and to solvability of operator equations. It is expected that the description of the structure of absorbers will add new insights to the recent discussion of nature and content of notion of attractiveness for nonlinear dynamics.

  9. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    This paper reports that the selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth, compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts

  10. The absorber hypothesis of electrodynamics

    OpenAIRE

    De Luca, Jayme

    2008-01-01

    We test the absorber hypothesis of the action-at-a-distance electrodynamics for globally-bounded solutions of a finite-particle universe. We find that the absorber hypothesis forbids globally-bounded motions for a universe containing only two charged particles, otherwise the condition alone does not forbid globally-bounded motions. We discuss the implication of our results for the various forms of electrodynamics of point charges.

  11. Absorber materials in CANDU PHWRs

    International Nuclear Information System (INIS)

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in the relatively benign environment of low pressure, low temperature heavy water between neighbouring rows or columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a redesigned back-fit resolved the problem. (author). 3 refs, 8

  12. Mushroom plasmonic metamaterial infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  13. Carbon Absorber Retrofit Equipment (CARE)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Eric [Neumann Systems Group, Incorporated, Colorado Springs, CO (United States)

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  14. Waveform-dependent absorbing metasurfaces

    CERN Document Server

    Wakatsuchi, Hiroki; Rushton, Jeremiah J; Sievenpiper, Daniel F

    2014-01-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high power pulses but not for high power continuous waves (CWs), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e. CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  15. Anomalous Diffusion with Absorbing Boundary

    OpenAIRE

    Kantor, Yacov; Kardar, Mehran

    2007-01-01

    In a very long Gaussian polymer on time scales shorter that the maximal relaxation time, the mean squared distance travelled by a tagged monomer grows as ~t^{1/2}. We analyze such sub-diffusive behavior in the presence of one or two absorbing boundaries and demonstrate the differences between this process and the sub-diffusion described by the fractional Fokker-Planck equation. In particular, we show that the mean absorption time of diffuser between two absorbing boundaries is finite. Our res...

  16. Perfectly Reflectionless Omnidirectional Electromagnetic Absorber

    CERN Document Server

    Sainath, Kamalesh

    2014-01-01

    We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

  17. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  18. Optical trapping of absorbing particles

    CERN Document Server

    Rubinsztein-Dunlop, H; Friese, M E J; Heckenberg, N R

    1998-01-01

    Radiation pressure forces in a focussed laser beam can be used to trap microscopic absorbing particles against a substrate. Calculations based on momentum transfer considerations show that stable trapping occurs before the beam waist, and that trapping is more effective with doughnut beams. Such doughnut beams can transfer angular momentum leading to rotation of the trapped particles. Energy is also transferred, which can result in heating of the particles to temperatures above the boiling point of the surrounding medium.

  19. Optimum thickness of Mossbauer absorber

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    If recoilless fraction fa is available, the optimum absorber thickness dopt can be calculated by maximizing the signal to noise ratio or Q factor. In this work,an approach presented is to get experimental Qexp as a function of the thickness, and then fitting Qexp by its theoretical expression gives fa value. At last the dopt value is deduced from a maximum on the fitted curve. In such a way, thicknesses of six specimens with quadrupole or magnetic hyperfine splitting were optimized.

  20. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel;

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  1. Glueing of solar absorbers; Solarabsorber kleben

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-04-20

    Bonding technologies in absorber fabrication are evolving. After soldering, ultrasonic welding and laser welding, glueing is the latest development. The Go Innovate AG company developed a process for glueing the most varied absorber materials.

  2. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  3. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  4. KINIK, Absorber Rod Calibration Kinetics

    International Nuclear Information System (INIS)

    1 - Description of program or function: KINIK is an inverse kinetic code that solves the inverse form of the point kinetic equations using the Runge-Kutta method. An optimization procedure is involved to control the time step and to reduce the running time. Up to 24 delayed neutron groups of different types (in case of heavy water as moderator or beryllium as reflector) are considered. KINIK is commonly applied to determine reactivity worths and to calibrate absorber rods. Following a rod drop, neutron flux or power is recorded as a function of time and used as input. 2 - Method of solution: The inverse point kinetic equations are numerically solved for each time step using the Runge-Kutta method. The input data resulting from measurements are first approximated by polynomials of maximum degree 10 using a least-squares approach

  5. Planar Metamaterial Absorber Based on Lumped Elements

    Institute of Scientific and Technical Information of China (English)

    GU Chao; QU Shao-Bo; PEI Zhi-Bin; ZHOU Hang; XU Zhuo; BAI Peng; PENG Wei-Dong; LIN Bao-Qin

    2010-01-01

    @@ We present the design of a planar metamaterial absorber based on lumped elements,which shows a wide-band polarization-insensitive and wide-angle strong absorption.This absorber consists of metal electric resonators,the dielectric substrate,the metal film and lumped elements.The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances.The simulated absorbances under three different load conditions indicate that the local resonance circuit(lumped resistance and capacitance)could boost up the resonance of the whole RLC circuit.The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high,and electric energy is subsequently consumed by lumped resistances.This absorber may have potential applications in many military fields.

  6. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  7. A Six-Fold Symmetric Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Humberto Fernández Álvarez

    2015-04-01

    Full Text Available A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  8. Comments on liquid hydrogen absorbers for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  9. 21 CFR 872.6050 - Saliva absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  10. Structured Metal Film as Perfect Absorber

    Science.gov (United States)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  11. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop AL 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce RF impedance and to provide pumping access for the high local gas load

  12. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    A method is described for recovering UF6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  13. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  14. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  15. CO2 Absorbing Capacity of MEA

    OpenAIRE

    José I Huertas; Gomez, Martin D.; Nicolas Giraldo; Jessica Garzón

    2015-01-01

    We describe the use of a gas bubbler apparatus in which the gas phase is bubbled into a fixed amount of absorbent under standard conditions as a uniform procedure for determining the absorption capacity of solvents. The method was systematically applied to determine the CO2 absorbing capacity of MEA (Ac) at several aqueous MEA (β) and gas-phase CO2 concentrations. Ac approached the nominal CO2 absorbing capacity of MEA (720 g CO2/kg MEA) at very low β levels, increasing from 447.9±18.1 to 581...

  16. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  17. Design and application of functional absorbers

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2004-01-01

    This paper gives an overview of the research at Institute of Acoustics, Tongji University, on functional absorbers and experience acquired in practical applications over the past three decades. Experiments and analysis of the absorption characteristics of three different geometrical forms of functional absorbers, i.e., panels, cubes and tubes, were conducted with different arrangements. The resulting esthetical effects are illustrated with pictures. Several non-fiber materials are used to compose functional absorbers with advantages both in acoustic properties and in architectural features. Cost effectiveness analysis is also given in order to provide design guidelines.

  18. Design of a magnetorheological automotive shock absorber

    Science.gov (United States)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  19. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue;

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...

  20. Space Compatible Radar Absorbing Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...

  1. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  2. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping...... of a specific mode. The motion of the point of attachment of the tuned mass absorber to the structure has not only a contribution from the targeted mode, but also a background contribution from other non-resonant modes. Similarly, the force provided by the tuned mass absorber is distributed between the targeted...... with the desired maximum amplification, from which the device damper, mass and stiffness are determined, accounting for the background flexibility. Examples demonstrate the influence of the flexibility effect and the efficiency of the proposed procedure....

  3. Study on buffering characteristics of hydraulic absorber

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism (CRHDM) is a new type of in-vessel control rod drive technology. Hydraulic absorber is one of the key parts of control rod hydraulic drive line. It is used to buffer control rod when the rod scrams to prevent the cross-blades of control rod from deformation and damage. Based on the working process of the hydraulic absorber, a theoretical model of the buffering process was established. Calculation results of the theoretical model agree well with the experiment results. The trend of pressure change in absorber cylinder, the displacement and velocity of the piston and buffering force during the buffering process were obtained from the calculation results of the theoretical model. Then influence parameters about cushioning characteristics were analyzed, which laid foundation for optimal design of the hydraulic absorber. (authors)

  4. Directed percolation with an absorbing boundary

    OpenAIRE

    Lauritsen, K. B.; K. Sneppen; Markosova, M.; Jensen, M. H.

    1997-01-01

    We consider directed percolation with an absorbing boundary in 1+1 and 2+1 dimensions. The distribution of cluster lifetimes and sizes depend on the boundary. The new scaling exponents can be related to the exponents characterizing standard directed percolation in 1+1 dimension. In addition, we investigate the backbone cluster and red bonds, and calculate the distribution of living sites along the absorbing boundary.

  5. Taming electromagnetic metamaterials for isotropic perfect absorbers

    Directory of Open Access Journals (Sweden)

    Doan Tung Anh

    2015-07-01

    Full Text Available Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  6. Absorbing Boundary Conditions for Hyperbolic Systems

    Institute of Scientific and Technical Information of China (English)

    Matthias Ehrhardt

    2010-01-01

    This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.

  7. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  8. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  9. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  10. On the definition of absorbed dose

    Science.gov (United States)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  11. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  12. Ultrathin flexible dual band terahertz absorber

    Science.gov (United States)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  13. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop Al 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce rf impedance and to provide pumping access for the high local gas load. 3 refs., 4 figs., 2 tabs

  14. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  15. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  16. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  17. Broadband plasmonic absorber for photonic integrated circuits

    CERN Document Server

    Xiong, Xiao; Ren, Xi-Feng; Guo, Guang-Can

    2013-01-01

    The loss of surface plasmon polaritons has long been considered as a fatal shortcoming in information transport. Here we propose a plasmonic absorber utilizing this "shortcoming" to absorb the stray light in photonic integrated circuits (PICs). Based on adiabatic mode evolution, its performance is insensitive to incident wavelength with bandwidth larger than 300nm, and robust against surrounding environment and temperature. Besides, the use of metal enables it to be very compact and beneficial to thermal dissipation. With this 40um-long absorber, the absorption efficiency can be over 99.8% at 1550nm, with both the reflectivity and transmittance of incident light reduced to less than 0.1%. Such device may find various applications in PICs, to eliminate the residual strong pump laser or stray light.

  18. A Novel Burnable Absorber Concept for PWR: BigT (Burnable Absorber-Integrated Guide Thimble)

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohdsyukri; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chung, Chang Kyu [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    This paper presents the essential BigT design concepts and its lattice neutronic characteristics. Neutronic performance of a newly-proposed BA concept for PWR named BigT is investigated in this study. Preliminary lattice analyses of the BigT absorber-loaded WH 17x17 fuel assembly show a high potential of the concept as it performs relatively well in comparison with commercial burnable absorber technologies, especially in managing reactivity depletion and peaking factor. A sufficiently high control rod worth can still be obtained with the BigT absorbers in place. It is expected that with such performance and design flexibilities, any loading pattern and core management objective, including a soluble boron-free PWR, can potentially be fulfilled with the BigT absorbers. Future study involving full 3D reactor core simulations with the BigT absorbers shall hopefully verify this hypothesis. A new burnable absorber design for Pressurized Water Reactor (PWR) named 'Burnable absorber-Integrated control rod Guide Thimble' (BigT) was recently proposed. Unlike conventional burnable absorber (BA) technologies, the BigT integrates BA materials directly into the guide thimble but still allows insertion of control rod (CR). In addition, the BigT offers a variety of design flexibilities such that any loading pattern and core management objective can potentially be fulfilled.

  19. The MIRD method of estimating absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  20. PT-symmetric laser-absorber

    OpenAIRE

    Longhi, Stefano

    2010-01-01

    In a recent work, Y.D. Chong et al. [Phys. Rev. Lett. {\\bf 105}, 053901 (2010)] proposed the idea of a coherent perfect absorber (CPA) as the time-reversed counterpart of a laser, in which a purely incoming radiation pattern is completely absorbed by a lossy medium. The optical medium that realizes CPA is obtained by reversing the gain with absorption, and thus it generally differs from the lasing medium. Here it is shown that a laser with an optical medium that satisfies the parity-time $(\\m...

  1. Spin Particle in an Absorbing Environment

    Science.gov (United States)

    Amooshahi, M.

    2015-10-01

    The quantum dynamics of a localized spin Particle interacting with an absorbing environment is investigated. The quantum Langevin-Schrödinger equation for spin is obtained. The susceptibility function of the environment is calculated in terms of the coupling function of the spin and the environment. it is shown that the susceptibility function satisfies the Kramers-Kronig relations. Spontaneous emission and the shift frequency of the spin is obtained in terms of the imaginary part of the susceptibility function in frequency domain. Some transition probabilities between the spin states are calculated when the absorbing environment is in the thermal state.

  2. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  3. Technology and assessment of neutron absorbing materials

    International Nuclear Information System (INIS)

    The present review assesses more recent developments in the technology and application of those absorber materials which are considered to be established or to have shown potential in reactor control. Emphasis is placed on physical, chemical and metallurgical properties and upon irradiation behaviour. (author)

  4. Timing the warm absorber in NGC 4051

    CERN Document Server

    Silva, Catia; Costantini, Elisa

    2016-01-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ~ 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051, whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas due to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed ...

  5. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  6. On Delayed Choice and Contingent Absorber Experiments

    OpenAIRE

    Kastner, R. E.

    2012-01-01

    It is pointed out that a slight variation on the Wheeler Delayed Choice Experiment presents the same challenge to orthodox quantum mechanics as Maudlin-type contingent absorber experiments present to the Transactional Interpretation (TI). Therefore, the latter cannot be used as a basis for refutation of TI.

  7. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  8. Absorbed fractions for electrons in ellipsoidal volumes

    Science.gov (United States)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  9. A sound absorbing metasurface with coupled resonators

    Science.gov (United States)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  10. Absorbing Software Testing into the Scrum Method

    Science.gov (United States)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  11. Ultra-broadband terahertz metamaterial absorber

    Science.gov (United States)

    Zhu, Jianfei; Ma, Zhaofeng; Sun, Wujiong; Ding, Fei; He, Qiong; Zhou, Lei; Ma, Yungui

    2014-07-01

    We demonstrated an ultra-broadband, polarization-insensitive, and wide-angle metamaterial absorber for terahertz (THz) frequencies using arrays of truncated pyramid unit structure made of metal-dielectric multilayer composite. In our design, each sub-layer behaving as an effective waveguide is gradually modified in their lateral width to realize a wideband response by effectively stitching together the resonance bands of different waveguide modes. Experimentally, our five layer sample with a total thickness 21 μm is capable of producing a large absorptivity above 80% from 0.7 to 2.3 THz up to the maximum measurement angle 40°. The full absorption width at half maximum of our device is around 127%, greater than those previously reported for THz frequencies. Our absorber design has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

  12. High-performance THz metamaterial absorber

    CERN Document Server

    Zhu, Jianfei; Sun, Wujiong; Ding, Fei; He, Qiong; Zhou, Lei; Ma, Yungui

    2014-01-01

    We demonstrated an ultra-broadband, polarization-insensitive and wide-angle metamaterial absorber for terahertz (THz) frequencies using arrays of truncated pyramid unit structure made of metal-dielectric multilayer composite. In our design each sub-layer behaving as an effective waveguide is gradually modified in their lateral width to realize a wideband response by effectively stitching together the resonance bands of different waveguide modes. Experimentally, our five layer sample with a total thickness 21um is capable of producing a large absorptivity above 80% from 0.7 to 2.3 THz up to the maximum measurement angle 40{\\deg}. The full absorption width at half maximum (FWHM) of our device is around 127%, greater than those previously reported for THz frequencies. Our absorber design has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

  13. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    The invention concerns an absorber rod drive for Boiling Water Reactors, in which a mechanical drive is combined with a hydraulic drive working separately from it, so that both drives are situated concentric within an overall length. The driving torque of a motor is transmitted to a threaded spindle, which moves a free adjacent hollow piston vertically via a fixed nut. The same means are used for the hydraulic liquid which is used as coolant or moderator and there are nozzles, annular gaps and/or bores between the hydraulic system and the reactor pressure vessel for the purpose of pressure compensation. All the components of the absorber rod drive except the sealing housing and the setting drive are situated in one casing tube taking the differential pressure. (orig./HP)

  14. Imaging highly absorbing nanoparticles using photothermal microscopy

    Science.gov (United States)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  15. Phase separation in systems with absorbing states

    OpenAIRE

    Munoz, M. A.; Marconi, U. Marini Bettolo; Cafiero, R.

    1998-01-01

    We study the problem of phase separation in systems with a positive definite order parameter, and in particular, in systems with absorbing states. Owing to the presence of a single minimum in the free energy driving the relaxation kinetics, there are some basic properties differing from standard phase separation. We study analytically and numerically this class of systems; in particular we determine the phase diagram, the growth laws in one and two dimensions and the presence of scale invaria...

  16. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  17. Cylinder light concentrator and absorber: theoretical description

    OpenAIRE

    Kildishev, Alexander V.; Prokopeva, Ludmila J.; Narimanov, Evgenii

    2010-01-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the d...

  18. Broadband metasurface absorber for solar thermal applications

    Science.gov (United States)

    Wan, C.; Chen, L.; Cryan, M. J.

    2015-12-01

    In this paper we propose a broadband polarization-independent selective absorber for solar thermal applications. It is based on a metal-dielectric-metal metasurface structure, but with an interlayer of absorbing amorphous carbon rather than a low loss dielectric. Optical absorbance results derived from finite difference time domain modelling are shown for ultra-thin carbon layers in air and on 200 nm of gold for a range of carbon thicknesses. A gold-amorphous carbon-gold trilayer with a top layer consisting of a 1D grating is then optimised in 2D to give a sharp transition from strong absorption up to 2 μm to strong reflection above 2 μm resulting in good solar selective performance. The gold was replaced by the high-melting-point metal tungsten, which is shown to have very similar performance to the gold case. 3D simulations then show that the gold-based structure performs well as a square periodic array of squares, however there is low absorption around 400 nm. A cross-based structure is found to increase this absorption without significantly reducing the performance at longer wavelengths.

  19. Microscopic modeling of nitride intersubband absorbance

    Science.gov (United States)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  20. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  1. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador;

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  2. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    Science.gov (United States)

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  3. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  4. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a...

  5. A MICROGAP SURGE ABSORBER FABRICATED USING CONVENTIONAL SEMICONDUCTOR TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    李宏; 阮航宇

    2001-01-01

    A new type microgap surge absorber fabricated by only semiconductor technique has in it a special structure silicon chip which forms microgaps for gas discharge with electrodes, and has advantages such as small size, low cost, suitability for mass production besides the desirable characteristics that common microgap surge absorbers have. Applications of this absorber in communication facilities are discussed.

  6. 21 CFR 868.5310 - Carbon dioxide absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  7. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers....

  8. Piston-rotaxanes as molecular shock absorbers.

    Science.gov (United States)

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response. PMID:20158174

  9. Optical momentum transfer to absorbing mie particles.

    Science.gov (United States)

    Kemp, Brandon A; Grzegorczyk, Tomasz M; Kong, Jin Au

    2006-09-29

    The momentum transfer to absorbing particles is derived from the Lorentz force density without prior assumption of the momentum of light in media. We develop a view of momentum conservation rooted in the stress tensor formalism that is based on the separation of momentum contributions to bound and free currents and charges consistent with the Lorentz force density. This is in contrast with the usual separation of material and field contributions. The theory is applied to predict a decrease in optical momentum transfer to Mie particles due to absorption, which contrasts the common intuition based on the scattering and absorption by Rayleigh particles. PMID:17026034

  10. A novel broadband waterborne acoustic absorber

    Science.gov (United States)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  11. Cylinder light concentrator and absorber: theoretical description.

    Science.gov (United States)

    Kildishev, Alexander V; Prokopeva, Ludmila J; Narimanov, Evgenii E

    2010-08-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications--from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the desired ray-optical performance, can provide absorption efficiencies comparable to those of ideal devices with a smooth gradient in index. PMID:20721056

  12. Acoustical model of a Shoddy fibre absorber

    Science.gov (United States)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  13. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  14. Single-mode cavity with HOMs absorber

    International Nuclear Information System (INIS)

    We present a new 500 MHz cavity which has a simple damped structure for the 1.5 GeV high-brilliant VUV ring. The feature of the cavity design is that higher-order modes (HOMs) propagate out from the cavity through the beam duct with a large diameter and are absorbed in resistive parts in the duct. A low power measurement on a prototype model of the cavity was carried out and the Q-values of HOMs were confirmed to strongly reduce. Thus the coupled-bunch instabilities due to HOMs are expected to be sufficiently suppressed. (author)

  15. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  16. Warm absorbers in active galactic nuclei

    CERN Document Server

    Reynolds, C S; Reynolds, C S; Fabian, A C

    1995-01-01

    Recent {\\it ASCA} observations confirm the presence of X-ray absorption due to partially ionized gas in many Seyfert 1 galaxies; the so-called warm absorber. Constraints on the location of the warm material are presented with the conclusion that this material lies at radii coincident with, or just outside, the broad-line region. The stability of this warm material to isobaric perturbations under the assumptions of thermal and photoionization equilibrium is also studied. It is shown that there is a remarkably small range of ionization parameter, \\xi, for which the warm absorber state is stable. The robustness of this result to changes in the shape of the primary continuum, the assumed density and optical depth is investigated. Given the constraints on the location and the stability properties of the material, several models for the environments of Seyfert nuclei are discussed. These attempt to explain the presence of significant amounts of partially ionized material. In particular, various models of the broad-...

  17. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  18. An Energy Absorber with Force Modificator

    Institute of Scientific and Technical Information of China (English)

    SU Hao; ZHANG Xiaowei; YU Tongxi

    2006-01-01

    Thin-walled tubes are extensively applied in engineering,especially in vehicle structures to resist axial or traversal impact loads,for their excellent energy absorbing capacity.However,in the axial deformation mode,the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures,cargo and environment.Aiming to develop energy absorbers with impact-force modificator,square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube.A small device is designed to serve as an impact-force modificator,which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube,so as to reduce the peak force.Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption.The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube.With future improvements,it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.

  19. Tracking Performances of Several Front-Absorber Designs

    CERN Document Server

    Lautridou, P; CERN. Geneva; Métivier, V; Rahmani, A; Ramillien, V; Reposeur, T; Morsch, Andreas; Cussonneau, J P

    1998-01-01

    The tracking performances of the ALICE forward muon spectrometer are investigated for several front-absorbers designs. The obtained mass resolution is compared to the one of the absorber proposed in the LOI. Out of punchthrough considerations, two absorbers compositions, including a Carbon+Concrete sandwich design, allow to reach the requested mass resolution for the Y's. Almost identical behaviours are observed versus rapidity and transverse momentum of resonances for both new candidates. These proposed designs improve the mass resolution performances and could stand as suitable absorber options for the forward muon spectrometer of ALICE. The Carbon+Concrete absorber has been retained for the Technical Proposal [1].

  20. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  1. Nano-Composite Superfine Nickel Powder Double Absorbent Coating Designing

    Institute of Scientific and Technical Information of China (English)

    LU Yan-hong; WANG Zhi-hui; HUANG Dong-zhen; HU Chuan-xin; ZHANG Chen-jia; LI Wan-zhi; LIANG Wen-ting

    2004-01-01

    We adopt a definite procedure to compound traditional absorbing material-superfine powder nickel and nano -SiC powder to obtain the nano-composite nickel powder, then testing the absorbing speciality of the composite powder. In virtue of computer assistant designing, we apply double-deck absorbent structure to improve absorbent effect and widen wave band. The experiment indicated that it is possible to achieve the anticipative object to improve the absorbing capability by adopting nano-composite absorbing material, but each component of the composite material must have matched electromagnetic parameter with another. For matching double-coating structure, it ought to modulate the correlativity of each factor to achieve the most matching in order to optimise the absorbent speciality.

  2. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    International Nuclear Information System (INIS)

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al27, C12, B11, B10 and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B10 content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B10 content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B10 content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B10 content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 1010 order, however, usual neutron flux from spent fuel is 108 order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B10 content is little decreased, so, initial neutron absorbing ability could be kept continuously

  3. Perfect plasmonic absorbers for photovoltaic applications

    International Nuclear Information System (INIS)

    A novel regime of perfect absorption in a thin plasmonic layer corresponds to a collective mode of an array of plasmonic nanospheres. In our theoretical study we show that the absorption of the incident light occurs mainly in the semiconductor material hosting plasmonic nanospheres, whereas the absorption in the metal is very small. The regime survives when the uniform host layer is replaced by a practical photovoltaic cell. Trapping the light allows the thickness of the doped semiconductor to be reduced to values for which the degradation under light exposure should be insufficient. The light-trapping regime is compatible with both the metal-backed variant of the photovoltaic cell and its semitransparent variant when both electrodes are preformed of a conductive oxide. Negligible parasitic losses, a variety of design solutions and a reasonable operational band make our perfect plasmonic absorbers promising for photovoltaic applications. (paper)

  4. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  5. A variable passive low-frequency absorber

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders

    2005-01-01

    Multi-purpose concert halls face a dilemma. They can host classical music concerts, rock concerts and spoken word performances in a matter of a short period. These different performance types require significantly different acoustic conditions in order to provide the best sound quality to both...... the performers and the audience. A recommended reverberation time for classical music may be in the range of 1.5–2 s for empty halls, where rock music sounds best with a reverberation time around 0.8-1 s. Modern rhythmic music often contains high levels of sound energy in the low frequency bands but still...... typically been too expensive or requires too much space to be practical for multi-purpose halls. Measurements were made on a variable low-frequency absorber to develop a practical solution to the dilemma. The paper will present the results of the measurements as well as a possible design....

  6. Corundum-based transparent infrared absorbers

    KAUST Repository

    Schwingenschlögl, Udo

    2009-10-01

    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  7. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  8. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  9. Absorbing layers for the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Olivier, E-mail: pinaud@math.colostate.edu

    2015-05-15

    This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.

  10. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  11. Light Absorbing Aerosols in Mexico City

    Science.gov (United States)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  12. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  13. Heat and mass transfer characteristics of a small helical absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung-In [College of Engineering, School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of); Kwon, Oh-Kyung [KITECH, 35-3 Hongchon-ri, Ipjang-meon, Chonan, Chungnam 330-825 (Korea, Republic of); Bansal, P.K. [Department of Mechanical Engineering, The University of Auckland, Private bag 92019, Auckland (New Zealand); Moon, Choon-Geun; Lee, Ho-Saeng [Department of Refrigeration and Air-conditioning Engineering, Graduate School, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of)

    2006-02-01

    This paper presents experimental results of heat and mass transfer investigation of the falling film absorber (with strong lithium bromide solution) for a small household absorption chiller/heater. Various components (e.g. low temperature generator, absorber and evaporator) were arranged concentrically in cylindrical form such that the helical-arrangement of the heat exchangers allowed the system to be more compact than the conventional system. Measurements from the helical absorber were compared with data from the literature. The comparison revealed that the heat and mass transfer performance of the helical absorber tube is similar to the existing tube bundle absorber. As a result, the proposed helical absorber shows a good potential due its reduced size and weight for the future designs of small capacity absorption chillers/heaters. (author)

  14. Large area bismuth absorbers for X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, J.E. E-mail: vaillancourt@wisp.physics.wisc.edu; Allen, C.A.; Brekosky, R.; Dosaj, A.; Galeazzi, M.; Kelley, R.; Liu, D.; McCammon, D.; Porter, F.S.; Rocks, L.E.; Sanders, W.T.; Stahle, C.K

    2004-03-11

    Two challenges facing the use of large area (2 mmx2 mm) bismuth absorbers for microcalorimetry are uncertainties in the heat capacity of bismuth and the effects of lateral heat conduction and position dependence due to the absorber's large size. We have measured the heat capacity of three Bi samples to be 0.3-0.6 J K{sup -1} m{sup -3} at 100 mK. These absorbers also exhibit response variations as phonons created by an X-ray event at an absorber edge will take longer to propagate to the thermometer attachment point than those at the absorber center. This effect may degrade the detector's energy resolution if the propagation time is not very short compared to the thermometer time constant. We show that the response of the largest absorber varies by {approx}4% across its area.

  15. Specific absorbed fractions and S-factors for calculating absorbed dose to embryo and fetus

    International Nuclear Information System (INIS)

    The variation of specific absorbed fractions from maternal tissues to embryo/fetus is investigated for four different target masses and geometries. S-factors are calculated for selected radionuclides assumed to be distributed uniformly in fetal tissues represented by spheres from 1 mg to 4 kg. As an example, the dose to fetal tissues for iodine-131 and iron-59 is estimated based on human biokinetic data for various stages of pregnancy. 24 references, 4 tables

  16. Experimental investigation of damping force of twin tube shock absorber

    OpenAIRE

    Sandip K. Kadu; Milind S. Mhaske

    2014-01-01

    A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A), number of holes(B) and suspension velocity(C) were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by t...

  17. Absorbency properties of nonwoven hygenic peds in Turkish markets

    OpenAIRE

    Ağırgan, Mehtap

    2005-01-01

    ABSTRACT The absorbation features (degrees) of the most used hygenic pads in Turkish market have been studied. The baby diapers, hygienic pads and adult incontienents pads used in this project have been choosen as the one whichare most sold on the base of the sale amounts in Turkey. Besides the production analysis, width/thickness analysis liquid absorbation and several absorbency tests have been carried out and the final results have been shown in the form of graphics. The pads exami...

  18. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  19. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Science.gov (United States)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  20. Two-phase control absorber development program: out-reactor measurements with hoorizontal absorber elements

    International Nuclear Information System (INIS)

    The two-phase control absorber works on the principle that the neutron flux in a nuclear reactor can be regulated by changing the density of a two-phase fluid flowing through U-tubes in the reactor core. The concept is considered to be a strong candidate for use in future CANDU nuclear reactors with either vertical or horizontal pressure tubes. In addition to the experiments carried out previously on vertically oriented U-tubes and reported separately, a series of tests with horizontal U-tubes was performed. The results confirmed that U-tube orientation has no measurable effect on the performance of the two-phase control absorber concept. In particular, the measured pressure drops, mixture densities, fluid velocities and void propagation velocities, at given operating conditions, were identical in the two orientations, within experimental error. The results of the experiments and analyses were incorporated in a steady-state design code that was used in the conceptual design of a Two-Phase Absorber Control System for a CANDU-PHW-1250 power reactor. The experimental data are available separately as AECL-6532 Supplement. (auth)

  1. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    Science.gov (United States)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  2. Simulated mixed absorbers and effective atomic numbers for attenuation

    Indian Academy of Sciences (India)

    K Karunakaran Nair; N Ramachandran; K K Abdullah; K M Varier

    2006-09-01

    The total -ray interaction crosss-sections on mixed absorbers were determined at 662 keV with a view to study the effective atomic numbers for -ray absorption under narrow beam good geometry set-up. The measurements were taken for the combination of metallic absorbers like aluminium, copper, lead and mercury and also for the simulated absorbers by rotating the targets. ORTEC HPGe and NaI(Tl) detectors were used for detection of -rays.The experimental results compare favourably with theoretical values derived from XCOM package and suggest the usefulness of the concept of effective atomic numbers and the utility of the rotating absorbers technique.

  3. CMOS absorbance detection system for capillary electrophoresis

    International Nuclear Information System (INIS)

    This paper presents a cost-effective portable photodetection system for capillary electrophoresis absorptiometry. By using a CMOS BDJ (buried double p-n junction) detector, a dual-wavelength method for absorbance measurement is implemented. This system includes associated electronics for low-noise pre-amplification and A/D conversion, followed by digital signal acquisition and processing. Two signal processing approaches are adopted to enhance the signal to noise ratio. One is variable time synchronous detection, which optimizes the sensitivity and measuring rate compared to a conventional synchronous detection technique. The other is a statistical approach based on principal component analysis, which allows optimal estimation of detected signal. This system has been designed and tested in capillary electrophoresis conditions. Its operation has been verified with performances comparable to those of a commercialized spectrophotometric system (HP-3D CE). With potential on-chip integration of associated electronics, it may be operated as an integrable detection module for microchip electrophoresis and other microanalysis systems

  4. Design of a multiband terahertz perfect absorber

    Science.gov (United States)

    Dan, Hu; Hong-yan, Wang; Zhen-jie, Tang; Xi-wei, Zhang; Lin, Ju; Hua-ying, Wang

    2016-03-01

    A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region. Project supported by the National Natural Science Foundation of China (Grant No. 11504006), the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 15A140002), and the Science and Technology Planning Project of Henan Province, China (Grant No. 142300410366).

  5. Liquid effluent treatment using inorganic absorbers

    International Nuclear Information System (INIS)

    The use of inorganic absorbers for the removal of a number of specified elements from aqueous waste streams has been studied. A worldwide review of the literature on the subject has been carried out and a number of processes identified at various stages of development, from the experimental to the fully developed industrial scale. The processes have been reduced to two major types; precipitation techniques, both seeded and unseeded and ion exchange. The chemical aspects of the use of such materials have been examined with regard to the processes and the nuclides in question. A comparative costing exercise has been carried out on typical processes examining plant, process and disposal costs, and has shown that one of the over-riding factors in deciding the economics of precipitation processes is the subsequent dewatering stage; because of the relatively low amounts of waste produced ion-exchange processes involving the use of columns have been found to have the lowest overall costs. Finally, a number of gaps in the present state of knowledge in this field have been identified and a number of recommendations are made. (author)

  6. On the Optimization of Point Absorber Buoys

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2014-05-01

    Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.

  7. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  8. A blast absorber test: measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den; Hof, J. van 't; Arkel, E. van

    2006-01-01

    A blast absorber test was conducted at the Aberdeen Test Centre from 13 to 17 June 2005. The test was set up to determine the absorbing and shielding effect of a gravel pile, of 1.5 meters high and 15 by 15 meters wide, on blasts from large weapons: e.g. armor, artillery or demolition. The blast was

  9. Performance of Closely Spaced Point Absorbers with Constrained Floater Motion

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.;

    2009-01-01

    The performance of a wave energy converter array of twelve heaving point absorbers has been assessed numerically in a frequency domain model. Each point absorber is assumed to have its own linear power take-off. The impact of slamming, stroke and force restrictions on the power absorption...

  10. Photochromic And Thermochromic Pigments For Solar Absorbing-Reflecting Coatings

    Science.gov (United States)

    Novinson, Thomas

    1987-11-01

    Both photochromic and thermochromic compounds were synthesized and physical measurements were made to determine coefficients of relectance, absorbance and emission. The most interesting group of thermochromic compounds are related to silver tctraiodomercurate and the most interesting photochromic compounds are substituted benzoindolinopyrospirans. The synthesis and optical reflectance and absorbance properties of other classes of compounds are also reported.

  11. Absorbed fraction of electrons in human respiratory tract

    International Nuclear Information System (INIS)

    Absorbed fractions of electrons, defined as part of electron energy deposited in the target, were calculated for various combinations of source and targets in HRTM. In that propose source code for PENELOPE was developed while respirator tract was modeled according to ICRP66. Absorbed fractions were fitted with the function presented in the paper

  12. Review of LMFBR absorber development in DeBeNe

    International Nuclear Information System (INIS)

    The control rods design methods for LMFBRs, design criteria and choice of absorber materials are reviewed in presented paper. The results of the absorber rods material testing and its in-pile behaviour investigation as well as the programme of the future R and D work are also given

  13. Comparison of piezoelectronic networks acting as distributed vibration absorbers

    OpenAIRE

    Maurini, Corrado; Dell'Isola, Francesco; Del Vescovo, Dionisio

    2004-01-01

    International audience Electric vibration absorbers made of distributed piezoelectric devices for the control of beam vibrations are studied. The absorbers are obtained by interconnecting an array of piezoelectric transducers uniformly distributed on a beam with different modular electric networks. Five different topologies are considered and their damping performance is analysed and compared.

  14. Nylon shock absorber prevents injury to parachute jumpers

    Science.gov (United States)

    Mandel, J. A.

    1966-01-01

    Nylon shock absorbers reduce the canopy-opening shock of a parachute to a level that protects the wearer from injury. A shock absorber is mounted on each of the four risers between the shroud lines and the harness. Because of their size and location, they pose no problem in repacking the chute and harness after a jump.

  15. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  16. Desulfurizing absorbent for flue gas and its absorption mechanism

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new desulfurizing absorbent for flue gas, i.e., anorganic physical solvent of DMSO(dimethyl sulfoxide) mixed with arelatively small amount of chemical solvent(Mn2+) was studied.Compared with pure physical solvent of DMSO, the purificationefficiency of the new absorbent has been much improved. And itsabsorption and reaction mechanism are discussed.

  17. Effects of Root-Growing Space on Its Absorbing Characteristics

    Institute of Scientific and Technical Information of China (English)

    SONG Hai-xing; LI Sheng-xiu

    2003-01-01

    Influences of root-growing space of maize upon root physiological characteristics, nutrient uptake and crop yields were studied under conditions with and without supply of water and N. Results showed that limitation of the root-growing space greatly affected root growth, decreased total root-absorbing area and TTC-reductive amounts. However, it obviously increased the root active-absorbing area, specific absorbing area (absorbing area per gram root weight) and specific active-absorbing area (actively absorbing area per gram root weight) in addition to promoting the TTC-reductive intensity. This clearly showed that plants were not passively tolerant to stress, but actively regulated their physiological metabolic processes, and strengthened their absorbing ability to increase water and nutrient uptake so that root injury by the environmental stress could be reduced. Supply of water and N stimulated root growth, increased root-absorbing area and activity, promoted nutrient uptake, and therefore increased crop yield and decreased the detrimental effects resulting from the limitation of roots-growing space.

  18. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  19. Absorber-evaporator unit for an absorption-refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Hallatt, R.J.; Rorschach, R.L.

    1965-01-26

    This low temperature absorption-refrigeration system uses an absorber-evaporator. A conduit is connected between the upper portion of the absorber and the lower portion of the evaporator to conduct inert gas from the absorber to the evaporator. A second conduit connects the upper portion of the evaporator to the lower portion of the absorber and a blower in this conduit circulates the inert gas through the closed system. By placing the blower between the evaporator ad the absorber, the pressure in the evaporator is maintained at a minimum so that the working temperature is as low as possible. The medium to be cooled by the refrigerant is circulated through a heat exchanger located within the evaporator, whereby the latent heat of vaporization of the liquid refrigerant is employed to cool the outside medium. (2 claims)

  20. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m2, and occurred 2 to 3 hours after the end of the pool fire. (author)

  1. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  2. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yangyang; Jiang; Chen; Guo; Huizhou; Liu

    2007-01-01

    A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were carried by N2 into the MRR and were absorbed by the magnetic ionic liquid. The rotation of the permanent magnet core provided impetus for the agitation of the magnetic ionic liquid, enhancing mass transfer and making benzene better dispersed in the absorbent. 0.68 g benzene emissions could be absorbed by a gram of [bmim]FeCl4, 0.27 and 0.40 g/ghigher than that by [bmim]PF6 and [bmim]BF4, respectively. The absorption rate increased with increasing rotation rate of the permanent magnet.

  3. Structure and Performance Analysis of Regenerative Electromagnetic Shock Absorber

    Directory of Open Access Journals (Sweden)

    Longxin Zhen

    2010-12-01

    Full Text Available This paper analyzed the structure and principle of a regenerative electromagnetic shock absorber in detail. The innovative shock absorber resembles linear generator in principle and can generate electric power through the relative reciprocating motion between coil assembly and permanent magnet assembly. At the same time, the damping can remove discomfort caused by road roughness. The regenerated electric power can be recovered through battery. Analysis of magnetic flux density of the permanent magnet array of the innovative shock absorber was performed using ANSYS software based on the structure parameters given in the paper,then the performance parameters of the shock absorber was determined . Analysis and calculation results prove the viability of this shock absorber.

  4. Theory of patch-antenna metamaterial perfect absorbers

    Science.gov (United States)

    Bowen, Patrick T.; Baron, Alexandre; Smith, David R.

    2016-06-01

    A metasurface that absorbs waves from all directions of incidence can be achieved if the surface impedance is made to vary as a function of incidence angle in a specific manner. Here we show that a periodic array of planar nanoparticles coupled to a metal film can act as an absorbing metasurface with an angle-dependent impedance. Through a semi-analytical calculation based on coupled-mode theory, we find the perfect absorbing condition is equivalent to balancing the Ohmic and radiative losses of the nanoparticles at normal incidence. Absorption over a wide range of incidence angles can then be obtained by tailoring the scattered far-field pattern of the individual planar nanoparticles such that their radiative losses remain constant. The theory provides a means of understanding the behavior of perfect absorbing structures that have been observed experimentally or numerically, reconciling previously published theories and enabling the optimization of absorbing surfaces.

  5. Multilayer metamaterial absorbers inspired by perfectly matched layers

    CERN Document Server

    Pastuszczak, Anna; Antosiewicz, Tomasz J; Kotynski, Rafal

    2014-01-01

    We derive periodic multilayer absorbers with effective uniaxial properties similar to perfectly matched layers (PML). This approximate representation of PML is based on the effective medium theory and we call it an effective medium PML (EM-PML). We compare the spatial reflection spectrum of the layered absorbers to that of a PML material and demonstrate that after neglecting gain and magnetic properties, the absorber remains functional. This opens a route to create electromagnetic absorbers for real and not only numerical applications and as an example we introduce a layered absorber for the wavelength of $8$~$\\mu$m made of SiO$_2$ and NaCl. We also show that similar cylindrical core-shell nanostructures derived from flat multilayers also exhibit very good absorptive and reflective properties despite the different geometry.

  6. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  7. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Kishwar, E-mail: kknano@hotmail.com; Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  8. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    Science.gov (United States)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  9. Thin-film absorber for a solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  10. Ultrathin planar broadband absorber through effective medium design

    Institute of Scientific and Technical Information of China (English)

    Dong Liu; Haitong Yu; Zhen Yang; Yuanyuan Duan

    2016-01-01

    Ultrathin planar absorbers hold promise in solar energy systems because they can reduce the material,fabrication,and system cost.Here,we present a general strategy of effective medium design to realize ultrathin planar broadband absorbers.The absorber consists of two ultrathin absorbing dielectrics to designan effective absorbing medium,a transparent layer,and metallic substrate.Compared with previous studies,this strategy provides another dimension of freedom to enhance optical absorption;therefore,destructive interference can be realized over a broad spectrum.To demonstrate the power and simplicity of this strategy,we both experimentally and theoretically characterized an absorber with 5-nm-thick Ge,10-nm-thick Ti,and 50-nm-thick SiO2 films coated on an Ag substrate fabricated using simple deposition methods.Absorptivity higher than 80% was achieved in 15-nm-thick (1/50 of the center wavelength) Ge and Ti films from 400 nm to near 1 μm.As an application example,we experimentally demonstrated that the absorber exhibited a normal solar absorptivity of 0.8 with a normal emittance of 0.1 at 500 ℃,thus demonstrating its potential in solar thermal systems.The effective medium design strategy is general and allows material versatility,suggesting possible applications in real-time optical manipulation using dynamic materials.

  11. Interaction of inhalational anaesthetics with CO2 absorbents.

    Science.gov (United States)

    Baum, Jan A; Woehlck, Harvey J

    2003-03-01

    We review the currently available carbon dioxide absorbents: sodium hydroxide lime (=soda lime), barium hydroxide lime, potassium-hydroxide-free soda lime, calcium hydroxide lime and non-caustic lime. In general, all of these carbon dioxide absorbents are liable to react with inhalational anaesthetics. However, there is a decreasing reactivity of the different absorbents with inhalational anaesthetics: barium hydroxide lime > soda lime > potassium-hydroxide-free soda lime > calcium hydroxide lime and non-caustic lime. Gaseous compounds generated by the reaction of the anaesthetics with desiccated absorbents are those that threaten patients. All measures are comprehensively described to--as far as possible--prevent any accidental drying out of the absorbent. Whether or not compound A, a gaseous compound formed by the reaction of sevoflurane with normally hydrated absorbents, is still a matter of concern is discussed. Even after very high loading with this compound, during long-lasting low-flow sevoflurane anaesthesias, no clinical or laboratory signs of renal impairment were observed in any of the surgical patients. Finally, guidelines for the judicious use of different absorbents are given. PMID:12751549

  12. The rat bowel of β-asaron absorbs the research

    Institute of Scientific and Technical Information of China (English)

    QI Yue; JIA Dong; YOU Xian-min; ZOU Gui-xin; JIANG Hong

    2008-01-01

    Objective Study the β-asaron under the condition that the bowel each segment of rat and be worth in the diffent medicine density and pH of the absorption dynamics characteristic, as to it's the rat absorbs the part in the body and it absorbs the mechanism to carry on the study, for the further design β-asaron settle release the product to provide the living creature medicine learn the basis. Methods Apply the rat to the body to infuse to flow the bowel absorption experiment investigation and absorption dynamics characteristic;adopt the HPLC method measurement β-asaron is in rat body the bowel absorbs the medicine density within the reflux liquid. Results It absorb the quantity and β-asaron of the medicine in the reflux liquid, the density of β-asaron becomes the direct proption, the absorption speed constant of the medicine is basic and constant within the scope of the 19 μg·mL-1- 57 μg·mL-1; In the pH is 5.6; 6.9; 8.0 three kinds of dissimilarities lie the absorption velocity constant of the quality and absorb the of percentage and also did not show the difference of salience;β-asaron is in the small intestines the lower part absorb better, absorbthe velocity to press to return to bowel, ileum, jejunum, duodenum, colon to descend one by one in order, absorb the velocity constant one by one in order is 0.402, 0.396, 0.385, 0.325 h-1. Conclusions β-asaron absorbs to present a class absorption dynamics characteristic in the bowel way, absorbing the mechanism as passive absorption; in order to return to ileum and jejunums, main absorption part there is certain absorption in the colon, too.

  13. Metamaterial perfect absorber based on artificial dielectric "atoms".

    Science.gov (United States)

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-09-01

    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence. PMID:27607650

  14. Flexible subterahertz metamaterial absorber fabrication using inkjet printing technology

    Science.gov (United States)

    Lee, Dongju; Sung, Hyuk-Kee; Lim, Sungjoon

    2016-07-01

    In this study, a flexible metamaterial (MM) absorber was designed at 0.1 THz and fabricated using inkjet printing technology. The unit cell of the MM absorber was designed using a finite element method-based full-wave simulation. The unit cell comprised square rings, and it was printed with silver nanoparticle ink on flexible Kapton polyimide film. The fabrication processes were performed using a material printer. The absorber's reflection coefficient was measured using a vector network analyzer and a WR-10 waveguide. The absorption ratio was 93.5 % at 0.102 THz. Therefore, we demonstrated the possibility of inkjet printing at a subterahertz band.

  15. The optimisation of absorber thickness for neutron Soller slit collimators

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D. [Victoria Univ. of Technol., Melbourne (Australia). Sch. of Commun. and Inf.

    1998-08-11

    When constructing neutron Soller slit collimators an absorbing layer is applied to the blades. Choice of an optimum absorber thickness becomes more important as the collimator is made shorter or the neutron absorption becomes poorer as occurs for short wavelength neutrons. A quality factor for the performance of Soller slit collimators is proposed and used to determine the optimum thickness of the absorbing layer. The solution to this problem is non analytic but easily coded as a computer program. Sample calculations of optimum thickness are described. A simple formula for the approximate optimum thickness is given. (orig.) 3 refs.

  16. Solar absorber material stability under high solar flux

    Science.gov (United States)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  17. Radio-absorbing properties of nickel-containing schungite powder

    Science.gov (United States)

    Lyn'kov, L. M.; Borbot'ko, T. V.; Krishtopova, E. A.

    2009-05-01

    A nickel-containing shungite powder has been synthesized by means of chemical reduction from aqueous solutions. The chemical composition and radio-absorbing properties of this powder have been studied.

  18. Evaluation of electromagnetic absorbing capacity of materials in foundry industry

    Directory of Open Access Journals (Sweden)

    D. Nowak

    2010-01-01

    Full Text Available In the paper, a research on determining the standing wave ratio as a measure of electromagnetic absorbing capacity of moulding materials is presented. Preliminary tests performed using a microwave strip line showed that high-silica, chromite and magnesite moulding sands are characterised by low absorbing capacity of microwaves. It was demonstrated that microwave absorbing capacity is significantly affected by chemical compounds included in the examined substrates. It was found that use of a microwave strip line permits precise determining characteristic microwave absorbing capacities of various moulding materials and thus their suitability for microwave drying/hardening of moulds and cores or for other foundry processes. Such a microwave drier can be applied for identifying mass components and for determining e.g. base granularity by means of precisely determined reflection ratios |Γ| and positions of minimum signal values.

  19. Angular solar absorptance of absorbers used in solar thermal collectors.

    Science.gov (United States)

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  20. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene...

  1. New HI 21-cm absorbers at low and intermediate redshifts

    CERN Document Server

    Zwaan, M A; Péroux, C; Murphy, M T; Bouché, N; Curran, S J; Biggs, A D

    2015-01-01

    We present the results of a survey for intervening HI 21-cm absorbers at intermediate and low redshift (0180 K. A subset of our systems were also searched for OH absorption, but no detections were made.

  2. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  3. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  4. Integrated microcalorimeters using Ir TES and Sn mushroom absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, M. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States)]. E-mail: Galeazzi@physics.miami.edu; Bogorin, D. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States); Chen, C. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States)

    2006-04-15

    University of Miami has recently started a program to fabricate fully integrated microcalorimeter arrays using iridium thin films as Transition Edge Sensors (TES) and tin mushroom absorbers. We present our preliminary results in both areas.

  5. Experimental investigation of damping force of twin tube shock absorber

    Directory of Open Access Journals (Sweden)

    Sandip K. Kadu

    2014-09-01

    Full Text Available A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A, number of holes(B and suspension velocity(C were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by taguchi method. Experiment conducted on servo hydraulic testing machine and after conducting experiments damping force was measured and with the help of S/N ratio, ANOVA, Regression analysis optimum parameter values can be obtained and confirmation experiments was carried out. Twin tube shock absorber was used to carry out experimentation.

  6. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  7. Distribution of Doppler Redshifts of Associated Absorbers of SDSS Quasars

    Indian Academy of Sciences (India)

    Cai-Juan Pan; Zhi-Fu Chen

    2013-12-01

    Doppler redshifts of a sample of Mg II associated absorbers of SDSS DR7 quasars are analysed. We find that there might be three Gaussian components in the distribution of the Doppler redshift. The first Gaussian component, with the peak being located at Dopp = -0.0074, probably arises from absorbers with outflow histories observed in the direction close to jets of quasars. The second Gaussian component, with the peak being located at Dopp = -0.0017, possibly arises from absorbers with outflow histories observed in the direction far away from jets of quasars. Whereas, the third Gaussian component, with the peak being located at Dopp = -0.0004, might arise from the random motion of absorbers with respect to quasars.

  8. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying. PMID:25850263

  9. Calculations in the Wheeler-Feynman absorber theory of radiation

    International Nuclear Information System (INIS)

    One dimensional computer aided calculations were done to find the self consistent solutions for various absorber configurations in the context of the Wheeler-Feynman absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called outerface solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations, the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations

  10. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  11. Perfect absorbers on curved surfaces and their potential applications.

    Science.gov (United States)

    Alaee, Rasoul; Menzel, Christoph; Rockstuhl, Carsten; Lederer, Falk

    2012-07-30

    Recently perfect metamaterial absorbers triggered some fascination since they permit the observation of an extreme interaction of light with a nanostructured thin film. For the first time we evaluate here the functionality of such perfect absorbers if they are applied on curved surfaces. We probe their optical response and discuss potential novel applications. Examples are the complete suppression of back-scattered light from the covered objects, rendering it cloaked in reflection, and their action as optical black holes. PMID:23038388

  12. Determination of neutron absorbed doses in lithium aluminates.

    Science.gov (United States)

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  13. Calirimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.H.; Murtagh, M.J.; Starks, M. [Brookhaven National Lab., Upton, NY (United States); Liu, X.T.; Petitt, G.A.; Zhang, Z. [Georgia State Univ., Atlanta (United States); Ewell, L.A.; Hill, J.C.; Wohn, F.K. [Iowa State Univ., Ames (United States); Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H. [Lawrence Livermore National Lab., CA (United States); Gavron, A.; Waters, L. [Los Alamos National Lab., NM (United States); Kehoe, W.L.; Steadman, S.G. [Massachusetts Institute of Technology, Cambridge (United States); Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R. [Oak Ridge National Lab., TN (United States); Chang, J.; Fung, S.Y.; Kang, J.H. [Univ. of California, Riverside, CA (United States); Kreke, J.; He, Xiaochun, Sorensen, S.P. [Univ. of Tennessee, Knoxville (United States); Cornell, E.C.; Maguire, C.F. [Vanderbilt Univ., Nashville, TN (United States)

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  14. The Nature of Weak MgII Absorbing Structures

    OpenAIRE

    Milutinovic, Nikola; Rigby, Jane R.; Masiero, Joseph R.; Lynch, Ryan S.; Palma, Chris; Charlton, Jane C.

    2005-01-01

    We consider geometries and possible physical models for weak low ionization absorbers based on the relative incidence of low and high ionization absorption systems. We found a total of 16 metal-line systems, with low and/or high ionization absorption detected in our survey of weak low ionization absorption systems from the archive of HST/STIS data. The weak low ionization absorbers trace an abundant population of metal-enriched regions (close to solar metallicity). Generally, models show that...

  15. Research On Solar Energy Collector With Cell Polycarbonate Absorber

    OpenAIRE

    Putāns, Henriks; Zagorska, Viktorija; Ziemelis, Imants; Jesko, Zanis

    2015-01-01

    A flat plate solar collector with cell polycarbonate absorber and transparent cover has been made and its experimental investigation carried out. The collector consists of a wooden box, into which, a layer of heat insulation with a mirror film and 4 mm thick cell polycarbonate sheet, as the absorber, are placed. The coherence between collector’s efficiency, heat carrier and ambient air temperature, as well as intensity of the solar radiation and heat power in the experimental investigation ha...

  16. Design of integration-ready metasurface-based infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogando, Karim, E-mail: karim@cab.cnea.gov.ar; Pastoriza, Hernán [Laboratorio de Bajas Temperaturas, Instituto Balseiro and Centro Atómico Bariloche, Bariloche 8400 (Argentina)

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  17. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  18. Effectiveness of using burnable absorbers in a VVER-1000

    International Nuclear Information System (INIS)

    The operational efficiency and safety of a nuclear reactor depends on the method used to compensate its excess reactivity. In a VVER-1000, along with the boron dissolved in the water in the primary coolant loop, the excess reactivity is compensated with a burnable absorber. The main purpose of using burnable absorber rods as a method to compensate for part of the excess reactivity instead of a liquid absorber is to provide the reactor negative feedback with respect to the coolant temperature and consequently to make it self-regulating. There are disadvantages associated with burnable poisons that can be partially corrected by using another type of absorber - an integral absorber. Examples of such an absorber are gadolinium, integrated in the form of an oxide (Gd2O3) with the fuel, and boron, which is incorporated in the form of zirconium diboride (ZrB2) on the surface of the fuel pellets. Successful experience has been accumulated abroad in using both uranium - gadolinium fuel and fuel coated with a thin film containing ZrB2 in PWRs. The effectiveness of using different types of burnable absorbers in a VVER-1000 was investigated, using a stationary three-year fuel cycle as an example. The neutron physics characteristics of the reactor were calculated using the KASSETA-OKA-BIPR-KR program package. The results of the comparative calculations of the fuel loading characteristics of a VVER-1000 show that replacing lumped absorbers with integral ones demonstrates a real possibility of improving the economic indices and safety of nuclear power plants with VVER's

  19. Ceramic material which absorbs neutrons and its uses

    International Nuclear Information System (INIS)

    A ceramic material, which absorbs thermal and epithermal neutrons even at high temperatures, consists of a basic material absorbing neutrons and 5 to 50% by weight relative to the total weight of the material of at least one of the hydrides of zirconium, yttrium and/or at least one of the rare earth elements, and possibly a binder, and the usual fillers and auxiliaries. (orig.)

  20. Simulation of terahertz metamaterial absorbers with microbolometer structure

    Science.gov (United States)

    Ding, Jie; Wang, Jun; Guo, Xiaopei; Jiang, Yadong; Fan, Lin

    2014-09-01

    The metamaterial absorber in terahertz (THz) region, with the metal pattern layer/dielectric spacer/metal reflective layer sandwich structure, is characterized in this paper. The principle of metamaterial absorber absorbing terahertz wave was introduced firstly. The top layer of metamaterial absorber is a periodically patterned with metallic subwavelength structure, which also serves as an electric resonator. The bottom layer is a thick metal plane, which is used to reduce THz wave transmittance. The dielectric layer between two metallic layers results in magnetic resonance and the resonance depends on the thickness and dielectric constant of the dielectric layer. The absorption of metamaterial absorber to terahertz wave was simulated with CST software. The relationship between the size of the metamaterial structure and absorption frequency was analyzed with the simulation results. The results indicate that the absorption frequency is affected by the cell constant and geometric structure of top metal pattern, and absorption rate is related to both the thickness of dielectric layer and the size of resonator. In the end, the possibility of integrating the metamaterial absorber with micro-bridge structure to design room temperature terahertz detector was discussed, and the manufacturing process was introduced about room temperature terahertz detector with high THz wave absorption rate.

  1. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  2. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  3. Investigations on laser transmission welding of absorber-free thermoplastics

    Science.gov (United States)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  4. Ammonia-water absorption in vertical tubular absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Sieres, Jaime; Rodriguez, Cristobal; Vazquez, Manuel [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Campus Lagoas-Marcosende, No 9, 36200 Vigo (Spain)

    2005-03-01

    This paper presents a detailed analysis of the heat and mass transfer processes during the absorption of ammonia into water in a co-current vertical tubular absorber. The absorber configuration is of the shell and tubes type. The absorption process progresses as the vapour and liquid contact inside the tubes. Water is used as the absorber cooling medium. A differential mathematical model has been developed on the basis of mass and energy balances and heat and mass transfer equations, in order to provide further understanding of the absorber behaviour. The model takes into account separately for the churn, slug and bubbly flow patterns experimentally forecasted in this type of absorption processes inside vertical tubes and considers the simultaneous heat and mass transfer processes in both liquid and vapour phases, as well as heat transfer to the cooling medium. The model equations have been solved using the finite-difference method. Results obtained for specific data are depicted to show local values of the most important variables all along the absorber length. Parametric analyses have been performed to show the influence of design parameters and operating conditions on the absorber performance. The effect of the heat and mass transfer coefficients has also been evaluated. (authors)

  5. Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation.

    Science.gov (United States)

    Lye, J E; Butler, D J; Franich, R D; Harty, P D; Oliver, C P; Ramanathan, G; Webb, D V; Wright, T

    2013-06-01

    The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53). PMID:23152147

  6. Determining factors for high performance silicone rubber microwave absorbing materials

    International Nuclear Information System (INIS)

    Silicone rubber microwave absorbing materials (RMAMs) based on ferrite as the major absorbent were prepared by the mechanical blending method. The determining factors for the complex permittivity, complex permeability, and reflectivity of RMAM were thoroughly investigated with various samples including different crystal structures of Ba-ferrite (M-type, W-type, and Y-type), the ferrite with doped elements (Ba, Sr), the materials' thickness, the combination ratio of ferrite and carbonyl iron. The effects of surface modification and loading amount of ferrite on the mechanical properties, processing performance, and absorbing property of RMAM were also assessed. The results show that W-type Ba-ferrite based RMAM exhibits better absorbing property at high frequencies (8-18 GHz) than the other two barium ferrites (M-type and Y-type) based ones, and the absorbing property of RMAM based on Sr-ferrite is best. As the thickness of RMAM and the amount of absorbents increase, the absorption peak moves toward low frequency, the absorption frequency bandwidth is narrowed, and the reflectivity first decreases and later increases. The optimum thickness is 1.5-1.7 mm, and the amount of ferrite is 450 parts per hundreds of rubber (phr). Surface modification of the absorbent with silane coupling agent could improve the mechanical properties and processing performance of RMAM. It is concluded that there will be a synergistic effect when carbonyl iron (CI) is used in combination with Sr-ferrite (Sr-W) in an appropriate proportion. When the total volume fraction of absorbents is 51%, the optimum ratio of Cl to Sr-W is 17:34, the absorption frequency bandwidth (<-10 dB) is about 8 GHz, and the absorption area is -99 dB. - Highlights: → W-type ferrite exhibits better absorbing property than M-type and Y-type at 8-18 GHz. → Sr-W based RMAM has best absorbing property of Ba- and Sr-ferrite. → The optimum thickness of RMAM is 1.5-1.7 mm, and the amount of ferrite is 450 phr.

  7. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  8. Systematic review of absorbable vs non-absorbable sutures used for the closure of surgical incisions

    Institute of Scientific and Technical Information of China (English)

    Muhammad; S; Sajid; Malcolm; R; Mc; Fall; Pauline; A; Whitehouse; Parv; S; Sains

    2014-01-01

    AIM: To report a systematic review of published randomized controlled trials(RCTs) investigating the role of absorbable suture(AS) against non-AS(NAS) used for the closure of surgical incisions.METHODS: RCTs investigating the use of AS vs NAS for the closure of surgical incisions were statistically analysed based upon the principles of meta-analysis and the summated outcomes were represented as OR.RESULTS: The systematic search of medical literature yielded 10 RCTs on 1354 patients. Prevalence of wound infection(OR = 0.97; 95%CI: 0.56, 1.69; Z = 0.11; P = 0.92) and operative morbidity(P = 0.45) was comparable in both groups. Nonetheless, the use of AS lead to lower risk of wound break-down(OR = 0.12; 95%CI: 0.04, 0.39; Z = 3.52; P < 0.0004).CONCLUSION: This meta-analysis of 10 RCTs demonstrates that the use of AS is similar to NAS for skin closure for surgical site infection and other operative morbidities. AS do not increase the risk of skin wound dehiscence,rather lead to a reduced risk of wound dehiscence compared to NAS.

  9. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  10. Absorber performance of a water/lithium-bromide absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guozhen [Beijing University of Civil Engineering and Architecture, Beijing 100044 (China)], E-mail: xieguozhen@bucea.edu.cn; Sheng Guogang [Beijing University of Civil Engineering and Architecture, Beijing 100044 (China); Bansal, Pradeep Kumar [Department of Mechanical Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Li, Guang [Beijing University of Civil Engineering and Architecture, Beijing 100044 (China)

    2008-09-15

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure.

  11. Absorber performance of a water/lithium-bromide absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Guozhen; Sheng, Guogang; Li, Guang [Beijing University of Civil Engineering and Architecture, Beijing 100044 (China); Bansal, Pradeep Kumar [Department of Mechanical Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2008-09-15

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure. (author)

  12. Advanced UV Absorbers for the Protection of Human Skin.

    Science.gov (United States)

    Hüglin, Dietmar

    2016-01-01

    The increasing awareness of the damaging effects of UV radiation to human skin triggered the market introduction of new cosmetic UV absorbers. This article summarizes the outcome of a multi-year research program, in which the author contributed to the development of different new UV filters. First of all, the molecular design and the basic properties of bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT) will be presented. This oil-soluble filter, which today is widely used in both beach products and skin care products, exhibits inherent photostability and strong broad-spectrum UV-A+B absorbance. Based on the concept of micronized organic UV absorbers, the UV-B filter tris biphenyl triazine (TBPT) will be introduced. At present TBPT exhibits the highest efficacy of all cosmetic UV absorbers in the market (measured by area under the UV spectrum). Finally, the concept of liposomogenic UV absorbers will be featured. This approach was developed to create water-resistant UV filters, as liposomogenic structures are thought to integrate into the lipids of the horny layer. Due to prohibitively high costs, this technology did not result in a commercial product so far. PMID:27561611

  13. Inferring Absorbing Organic Carbon Content from AERONET Data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  14. Optimally tuned vibration absorbers to control sound transmission

    Science.gov (United States)

    Grissom, Michael; Belegundu, Ashok; Koopmann, Gary

    2002-05-01

    A design optimization method is proposed for controlling broadband vibration of a structure and it concomitant acoustic radiation using multiple-tuned absorbers. A computationally efficient model of a structure is developed and coupled with a nonlinear optimization search algorithm. The eigenvectors of the original structure are used as repeated basis functions in the analysis of the structural dynamic re-analysis problem. The re-analysis time for acoustic power computations is reduced by calculating and storing modal radiation resistance matrices at discrete frequencies. The matrices are then interpolated within the optimization loop for eigenvalues that fall between stored frequencies. The method is demonstrated by applying multiple-tuned vibration absorbers to an acoustically-excited composite panel. The absorber parameters are optimized with an objective of maximizing the panel's sound power transmission loss. It is shown that in some cases the optimal solution includes vibration absorbers that are tuned very closely in frequency, thus acting effectively as a broadband vibration absorber (BBVA). The numerical model and design optimization method are validated experimentally, and the BBVA is found to be an effective noise abatement tool.

  15. Neutronics Design Flexibilities of the BigT Gadolinium Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohd-Syukri; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of); Kim, HyeongHeon [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2015-05-15

    A new BA design named 'Burnable absorber-Integrated Guide Thimble' (BigT) was recently proposed for PWR. The BigT offers flexibility in BA self-shielding adjustment per design specifications. It is upon this assertion that this paper was prepared; i.e. this research aims to demonstrate the neutronics design flexibilities of BigT gadolinium absorbers. Specifically, three studies were completed to investigate sensitivities of the BigT gadolinium absorbers: (1) at a constant BA mass, (2) with a similar initial reactivity hold-down, and (3) for an optimal burnup reactivity swing. The paper clearly demonstrates neutronics flexibilities of the BigT gadolinium absorbers. Ascertained design variables are: (1) gadolinium effective shape, (2) BigT loading per lattice, and (3) BigT location in the lattice. Hybrid combination of the BigT designs may also alter the lattice depletion pattern, as well as density of gadolinium installed in the BigT absorbers. It is concluded that self-shielding of Gd can easily be adjusted in the BigT applications.

  16. Colorful solar selective absorber integrated with different colored units.

    Science.gov (United States)

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage. PMID:26832602

  17. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    Science.gov (United States)

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  18. Evaluation of absorber worth measurements in SNEAK 12C2

    International Nuclear Information System (INIS)

    Due to the difficulties encountered in former evaluations of the absorber experiments in SNEAK 12C, a re-evaluation had been performed. It was found that the difficulties were caused by the use of erroneous number densities for the absorbers on one side and by an incorrect modelling of the buffer and driver zones, surrounding the test zone, on the other. After correction of the absorber number densities and by application of three-dimensional calculational methods, consistent results could be obtained. The calculation-to-experiment values (C/E) are now in the range of 0.85 to 0.90 and are sufficiently close to the values for the uranium core SNEAK 12A (0.89 to 0.93)

  19. A checkerboard selective absorber with excellent spectral selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: optyang@zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); School of Electrical, Computer, and Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Mo, Lei; Chen, Tuo [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Forsberg, Erik [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Electromagnetic Engineering, JORCEP, Roy Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2015-11-14

    A selective absorber with excellent spectral selectivity is proposed and analyzed. The absorber is based on a germanium (Ge) checkerboard on top of a tantalum (Ta) substrate. At wavelengths shorter than the 1.2 μm cutoff, a very high absorption is achieved due to strong cavity resonances in the Ge nanosquares, and their interactions with adjacent nanocavities and the bottom Ta substrate. At longer wavelengths, absorption is greatly suppressed due to destructive interference between the transparent checkerboard layer and the highly reflective Ta substrate. To better describe the superior selectivity of our configuration, a new figure of merit (FOM) is introduced. We observe a FOM value of 0.88 compared to 0.69 for its planar counterpart. We also conduct a thermal analysis to verify the excellent selectivity of our absorber. A high temperature can be achieved and maintained, promising good potential for applications in solar thermophotovoltaic systems.

  20. Preview control of vehicle suspension system featuring MR shock absorber

    International Nuclear Information System (INIS)

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  1. An effective absorbing boundary algorithm for acoustical wave propagator

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, Berenger's perfectly matched layer (PML) absorbing boundary condition for electromagnetic waves is introduced as the truncation area of the computational domain to absorb one-dimensional acoustic wave for the scheme of acoustical wave propagator (AWP). To guarantee the efficiency of the AWP algorithm, a regulated propagator matrix is derived in the PML medium.Numerical simulations of a Gaussian wave packet propagating in one-dimensional duct are carried out to illustraze the efficiency of the combination of PML and AWP. Compared with the traditional smoothing truncation windows technique of AWP, this scheme shows high computational accuracy in absorbing acoustic wave when the acoustical wave arrives at the computational edges. Optimal coefficients of the PML configurations are also discussed.

  2. Design of electromagnetic shock absorbers for automotive suspensions

    Science.gov (United States)

    Amati, Nicola; Festini, Andrea; Tonoli, Andrea

    2011-12-01

    Electromechanical dampers seem to be a valid alternative to conventional shock absorbers for automotive suspensions. They are based on linear or rotative electric motors. If they are of the DC-brushless type, the shock absorber can be devised by shunting its electric terminals with a resistive load. The damping force can be modified by acting on the added resistance. To supply the required damping force without exceeding in size and weight, a mechanical or hydraulic system that amplifies the speed is required. This paper illustrates the modelling and design of such electromechanical shock absorbers. This paper is devoted to describe an integrated design procedure of the electrical and mechanical parameters with the objective of optimising the device performance. The application to a C class front suspension car has shown promising results in terms of size, weight and performance.

  3. Characteristics of New-type Energy Absorber for Vehicle Collision

    Institute of Scientific and Technical Information of China (English)

    XU Qing-xin; SHEN Rong-ying; ZHOU Hai-ting

    2008-01-01

    A new type energy absorber was introduced, which is composed of thousands of thin ring plates with different diameters. Because it can switch the impact to thousands of shearing actions among thin ring plates inside the absorber, the impact energy is decentralized and dissipated gradually, the impact acting time is extended and the peak of acceleration is reduced obviously. Numerical simulations by finite element method (FEM) coupled with smoothed particle hydrodynamics (SPH) method were preformed to predict the energy absorption characteristics. Energy absorption ability with different impact velocities was studied and the effects of thickness and material of ring plates were discussed. The sled crash test was carried out to validate the result of simulations. The new type absorber is effective for collision that impact velocity is lower than 40 km/h.

  4. Scattering properties of heterogeneous mineral particles with absorbing inclusions

    International Nuclear Information System (INIS)

    We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented polydisperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz–Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures. - Highlights: • Scattering and absorption characteristics of heterogeneous particles are studied. • Computations are performed using the superposition T-matrix method. • Internal aggregation modifies optical properties of heterogeneous mixtures

  5. An Elastic Absorber Theory for a Thin Fabric Sheet

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-nan

    2007-01-01

    The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model is only useful for a quanlitative understanding of effects in a porous material but not for calculation of the acoustical properties of real absorbent. In this paper, a new vibration sound absorption theory which is totally different from classical theory was put forward. The specific acoustic impedance of fiber layers have been derived from the membrane vibration equation and the sound absorption coefficient calculated agree with test results. The new theory can explain the phenomenon that thin fiber layers exhibit less sound absorption coefficient when it was as the cover fabric of sound absorber, but it is mare efficient to sound absorption when it was hang as the curtains or have back cavity behind it.

  6. Constraining MHD Disk-Winds with X-ray Absorbers

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  7. A principle of similarity for nonlinear vibration absorbers

    CERN Document Server

    Habib, Giuseppe

    2016-01-01

    This paper develops a principle of similarity for the design of a nonlinear absorber, the nonlinear tuned vibration absorber (NLTVA), attached to a nonlinear primary system. Specifically, for effective vibration mitigation, we show that the NLTVA should feature a nonlinearity possessing the same mathematical form as that of the primary system. A compact analytical formula for the nonlinear coefficient of the absorber is then derived. The formula, valid for any polynomial nonlinearity in the primary system, is found to depend only on the mass ratio and on the nonlinear coefficient of the primary system. When the primary system comprises several polynomial nonlinearities, we demonstrate that the NLTVA obeys a principle of additivity, i.e., each nonlinear coefficient can be calculated independently of the other nonlinear coefficients using the proposed formula.

  8. MAGIICAT I. The MgII Absorber-Galaxy Catalog

    CERN Document Server

    Nielsen, Nikole M; Kacprzak, Glenn G; Murphy, Michael T

    2013-01-01

    We describe the MgII Absorber-Galaxy Catalog, MAGIICAT, a compilation of 182 spectroscopically identified intermediate redshift (0.07 0.3 Angstroms], low redshift (z zmed), where zmed = 0.359 is the median galaxy redshift. We find no differences between the luminosity function subsamples, except for a ~0.5 magnitude dimming with decreasing redshift in the B-band for weak absorbing M_B < -18 galaxies. Rest-frame color B-K correlates with M_K at the 8 sigma level for the whole sample but is driven by the strong absorbing, high redshift subsample (6 sigma). We find possible faint-end "roll offs" in both the B- and K-band luminosity functions. Using M_K as a proxy for stellar mass, we infer that in low stellar mass galaxies, MgII absorption is preferentially detected in blue galaxies and the absorption is more likely to be weak.

  9. Infrared imaging video bolometer with a double layer absorbing foil

    International Nuclear Information System (INIS)

    The object of the present paper is an infrared video bolometer with a bolometer foil consisting of two layers: the first layer is constructed of radiation absorbing blocks and the second layer is a thermal isolating base. The absorbing blocks made of a material with a high photon attenuation coefficient (gold) were spatially separated from each other while the base should be made of a material having high tensile strength and low thermal conductance (stainless steel). Such a foil has been manufactured in St. Petersburg and calibrated in NIFS using a vacuum test chamber and a laser beam as an incident power source. A finite element method (FEM) code was applied to simulate the thermal response of the foil. Simulation results are in good agreement with the experimental calibration data. The temperature response of the double layer foil is a factor of two higher than that of a single foil IR video bolometer using the same absorber material and thickness. (author)

  10. Terahertz metamaterials perfect absorbers for sensing and imaging

    Science.gov (United States)

    Wilbert, David S.; Hokmabadi, Mohammad P.; Martinez, Joshua; Kung, Patrick; Kim, Seongsin M.

    2013-02-01

    Devices operating at THz frequencies have been continuously expanded in many areas of application and major research field, which requires materials with suitable electromagnetic responses at THz frequency ranges. Unlike most naturally occurring materials, novel THz metamaterials have proven to be well suited for use in various devices due to narrow and tunable operating ranges. In this work, we present the results of two THz metamaterial absorber structures aiming two important device aspects; polarization sensitivity and broad band absorption. The absorbers were simulated by finite element method and fabricated through the combination of standard lift-off photolithography and electron beam metal deposition. The fabricated devices were characterized by reflection mode THz time domain spectroscopy. The narrow band absorber structures exhibit up to 95% absorption with a bandwidth of 0.1 THz to 0.15 THz.

  11. A recyclable and regenerable magnetic chitosan absorbent for dye uptake.

    Science.gov (United States)

    Zhao, Weifeng; Huang, Xuelian; Wang, Yilin; Sun, Shudong; Zhao, Changsheng

    2016-10-01

    A recyclable and regenerable magnetic polysaccharide absorbent for methylene blue (MB) removal was prepared by coating magnetic polyethyleneimine nanoparticles (PEI@MNPs) with sulfonated chitosan (SCS) and further cross-linked with glutaraldehyde. The driving force for coating is the electrostactic interaction between positively charged PEI and negatively charged SCS. Infrared spectra, zeta potential, thermal gravimetric analysis and X-ray diffraction demonstrated the successful synthesis of magnetic polysaccharide absorbent. The self-assembly of polysaccharide with magnetic nanopartices did not alter the saturation magnetization value of the absorbent confirmed by vibrating sample magnetometer. The nanoparticles showed fast removal (about 30min reached equilibrium) of MB. In particular, the removal ability of MB after desorption did not reduce, demonstrating an excellent regeneration ability. Our study provides new insights into utilizing polysaccharides for environmental remediation and creating advanced magnetic materials for various promising applications. PMID:27312630

  12. Neutron absorbed dose determination by calculations of recoil energy.

    Science.gov (United States)

    Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D

    2004-01-01

    The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750

  13. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2010-01-01

    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine a......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement.......The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine...

  14. Preparation and Characterization of Super Absorbent Resin from Natural Cellulose

    Institute of Scientific and Technical Information of China (English)

    李杰; 马凤国; 谭惠民

    2003-01-01

    The grafting polyacrylamide onto wood pulp cellulose (cell-g-PAM) was performed with cerous ammonium nitrate as the initiator and hydrolyzed to produce the super absorbent resin. The FTIR shows that the polyacrylamide is grafted on the cellulose. After hydrolyzation, part of acrylamino groups are transformed into carboxyl groups. The XRD analysis shows that the graft polymerization occurred at the amorphous section and the surface of the crystal section of cellulose. The SEM graph reveals that there is a layer of polymer on the surface of cellulose fiber and the fibril structure of the cellulose surface is covered. After hydrolyzation, the surface of the product is different from that of cell-g-PAM's and the surface is scraggy. The technical conditions to prepare high water absorbent resin were confirmed. Through the radical graft copolymerization, the high water absorbent resin can be produced from wood pulp cellulose.

  15. Energy Deposition and Radiological Studies for the LBNF Hadron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Tropin, I. S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Eidelman, Y. I. [Euclid Techlabs LLC., Cleveland, OH (United States)

    2015-06-25

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  16. Energy deposition and radiological studies for the LBNF Hadron Absorber

    CERN Document Server

    Rakhno, I L; Tropin, I S; Eidelman, Y I

    2015-01-01

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  17. The dynamics analysis of a ferrofluid shock absorber

    Science.gov (United States)

    Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong

    2016-03-01

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology.

  18. Preparation of A New Type of Stress-absorbed Material

    Institute of Scientific and Technical Information of China (English)

    WU Shao-peng; YANG Tao; YUAN Hai-qing

    2004-01-01

    Neoprene latex modified emulsified bitumen and fine aggregate are used to prepare a new type of stress-absorbed material, which has strong ability of anti-reflective cracking on asphalt concrete over layer-constructed upon a semi-rigid type base course or cement concrete pavement block. Experimental results demonstrate the stress-absorbed material have excellent mechanical properties including a low modulus of elasticity, high ultimate tensile stress and strain, and a strong distortion ability. Stress concentration in asphalt over layer originated by temperature changes and traffic loads can be alleviated.

  19. Bistability By Self-Reflection In A Saturable Absorber

    Science.gov (United States)

    Roso-Franco, Luis

    1987-01-01

    Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.

  20. Photophoretic trampoline - Interaction of single airborne absorbing droplets with light

    CERN Document Server

    Esseling, Michael; Alpmann, Christina; Denz, Cornelia

    2012-01-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids - just like their solid counterparts - can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  1. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    Science.gov (United States)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  2. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  3. Integrity of neutron-absorbing components of LWR fuel systems

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs.

  4. ANALYSIS OF THE DEFLECTION OF REEDS INAUTOMOTIVE HYDRAULIC SHOCK ABSORBERS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The deformation of reeds in automotive hydraulic shock absorbers is analyzed with the finite element method Combination of different thick reeds mounted on different supports is studied The computational results show that deformation of the overlapped reeds is not always equal to the sum of deflection of single reed under any conditions Experimental results prove computational results to be correct and computational method effective The method of analysis and view of point can provide reference to the design and manuf acture of hydraulic shock absorbers using reeds

  5. Design of Absorbing Wave Maker based on Digital Filters

    DEFF Research Database (Denmark)

    Christensen, Morten; Frigaard, Peter

    An absorbing wave maker operated by means of on-line signals from digital FIR filters is presented. Surface elevations are measured in two positions in front of the wave maker. The reflected wave train is seperated by the sum of the incident and reflected wave trains by means of digital filtering...... and subsequent superposition of the measured surface elevations. The motion of the wave paddle required to absorb reflected waves is determined and added to the original wave paddle control signal. Irregular wave tests involving test structures with different degrees of reflection show that excellent absorption...

  6. Brown carbon: a significant atmospheric absorber of solar radiation?

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2013-09-01

    Full Text Available Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as "brown" carbon (BrC. Using a global chemical transport model and a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to BrC in a global model. The simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE, increases from 0.9 for non-absorbing organic carbon to 1.2 (1.0 for strongly (moderately absorbing BrC. The calculated AAE for the strongly absorbing BrC agrees with AERONET spectral observations at 440–870 nm over most regions but overpredicts for the biomass burning-dominated South America and southern Africa, in which the inclusion of moderately absorbing BrC has better agreement. The resulting aerosol absorption optical depth increases by 18% (3% at 550 nm and 56% (38% at 380 nm for strongly (moderately absorbing BrC. The global simulations suggest that the strongly absorbing BrC contributes up to +0.25 W m−2 or 19% of the absorption by anthropogenic aerosols, while 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the absorption of BrC (moderately to strongly inserts a warming effect at the top of the atmosphere (TOA (0.04 to 0.11 W m−2, while the effect at the surface is a reduction (−0.06 to −0.14 W m−2. Inclusion of the strongly absorption of BrC in our model causes the direct radiative forcing (global mean of organic carbon aerosols at the TOA to change from cooling (−0.08 W m−2 to warming (+0.025 W m−2. Over source regions and above clouds, the absorption of BrC is higher and thus can play an important role in photochemistry and the hydrologic cycle.

  7. Extending the Bandwidth of Electric Ring Resonator Metamaterial Absorber

    Institute of Scientific and Technical Information of China (English)

    LUO Hao; WANG Tao; GONG Rong-Zhou; NIE Yan; WANG Xian

    2011-01-01

    An efficient method is proposed to extend the bandwidth of a metamaterial absorber with multi-resonance structure. The basic unit cell of a metamaterial absorber consists of the electric ring resonator, dielectric substrate (FR-4)and split-wire. By assembling five sandwiched structures with different geometric dimensions into a unit cell, we obtain the superposition of five different absorption peaks.Finally the bandwidth of metamaterial absorption is extended and the full width at half maximum is up to 1.3 GHz. The simulated and experimental results are consistent.

  8. Highly effective metal vapor absorbents based on carbon nanotubes

    Science.gov (United States)

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  9. A randomised controlled trial of absorbable versus non-absorbable sutures for skin closure after open carpal tunnel release.

    LENUS (Irish Health Repository)

    Theopold, C

    2012-05-01

    We compared the aesthetic outcome of scars after closure of open carpal tunnel incisions with either absorbable 4-0 Vicryl Rapide or non-absorbable 4-0 Novafil. Patients were recruited in a randomized controlled trial and scars were scored at 6 weeks using a modified Patient and Observer Scar Assessment Scale. Scores demonstrated differences only for pain, vascularity and cross-hatching between both groups, though none of these were statistically significant. The dissolving and falling out of Vicryl Rapide was significantly more comfortable than removal of 4-0 Novafil sutures, assessed on a numerical analogue scale. There was no difference in infection rate between both study groups, supporting overall the use of Vicryl Rapide for the closure of palmar hand incisions, in light of the convenience and cost savings associated with absorbable sutures.

  10. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  11. Development of the FracTherm absorber - simulations and experiments; Entwicklung des FracTherm-Absorbers - Simulationen und Experimente

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, M. [Fraunhofer Inst. fuer Solare Energiesysteme, Freiburg (Germany)

    2005-07-01

    The energy efficiency of a solar absorber is strongly influenced by the flow of the heat transfer fluid. In order to obtain a high thermal efficiency (expressed by a high collector efficiency factor F'), the volume flow distribution should be uniform all over the absorber. Moreover, the pressure drop should be low in order to reduce the primary energy which is needed to drive the pump. Conventional absorber designs often show disadvantages (e.g. high pressure drop for serial connection, non-uniform flow distribution for parallel connection). This paper describes an alternative, ''bionic'' approach with a multiple branched, ''fractal'' channel design for solar absorbers. The aim of a current research work, which is sponsored by the Scholarship Programme of the German Federal Environmental Foundation (DBU), is to compare these structures with conventional ones concerning the pressure drop and the thermal efficiency. In order to achieve a fractal channel design on a given area, an algorithm (patent pending) and a simulation programme called FracTherm were developed. FracTherm allows to calculate the volume flow distribution, the pressure drop as well as the distribution of the collector efficiency factor F' and the fluid temperature. The simulations show that rather high F' values (about 0.97) can be expected (water; about 50 l/(m{sup 2}h)). Flow experiments with ink and thermography with an absorber model also revealed a uniform flow distribution and indicate a high thermal efficiency. Three aluminium test absorbers (590 mm x 1000 mm) were built by the Pechiney Rhenalu Chambery Company using the rollbond process. (orig.)

  12. Fission life-time calculation using a complex absorbing potential

    Directory of Open Access Journals (Sweden)

    Scamps Guillaume

    2016-01-01

    Full Text Available A comparison between the semi-classical approximation and the full quantum calculation with a complex absorbing potential is made with a model of the fission of 258Fm. The potential barrier is obtained with the constrained Skyrme HF+BCS theory. The life-time obtained by the two calculations agree with each other the difference being only by 25%.

  13. UV-absorbing compounds in subarctic herbarium bryophytes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)]. E-mail: satu.huttunen@oulu.fi; Lappalainen, N.M. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland); Turunen, J. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A{sub 280-320nm}) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time.

  14. ABSORBING BOUNDARY TECHNIQUE FOR OPEN CHANNEL FLOWS. (R825200)

    Science.gov (United States)

    An absorbing boundary condition is formulated and applied to the one-dimensional open channel flow equations in conjunction with an explicit MacCormack scheme. The physical flow domain has been truncated by introducing an artificial pseudo-boundary. By using an appropriate bounda...

  15. Highly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2016-09-01

    Full Text Available To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel®/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base by measuring the vertical wicking height and water absorption ratio. Moreover, blood agglutination and hemostatic second tests were conducted to evaluate the hemostatic performance of the resultant wound dressing. The blending ratio of fibers, areal weight, punching density, and fiber orientation, all significantly influenced the vertical moisture wicking property. However, only the first two parameters markedly affected the water absorption ratio. After the nonwoven base absorbed blood, scanning electron microscope (SEM observation showed that erythrocytes were trapped between the fibrin/clot network and nonwoven fibers when coagulation pathways were activated. Prothrombin time (PT and activated partial thromboplastin time (APTT blood agglutination of the resultant dressing decreased to 14.34 and 50.94 s, respectively. In the femoral artery of the rate bleeding model, hemostatic time was saved by 87.2% compared with that of cotton cloth. Therefore, the resultant antibacterial wound dressing demonstrated greater water and blood absorption, as well as hemostatic performance, than the commercially available cotton cloth, especially for healing severe hemorrhagic wounds.

  16. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  17. DESIGN METHOD OF MAGNETORHEOLOGICAL FLUID SHOCK ABSORBER FOR CAR SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    LIAO Changrong; ZHANG Honghui; YU Miao; CHEN Weimin

    2008-01-01

    The Bingham constitutive model, which is previously used in depiction of magnetorheological (MR) fluids rheological behaviors for design devices, exhibits discontinuous characteristics in representation of pre-yield behaviors and post-yield behaviors. A Biviscous constitutive model is presented to depict rheological behaviors of MR fluids and design automotive shock absorber. Quasi-static flow equations of MR fluids in annular channels are set theoretically up based on Navier-Stokes equations and several rational simplifications are made. And both flow boundary conditions and flow compatibilities conditions are established. Meantime, analytical velocity profiles of MR fluids though annular channels are obtained via solution of the quasi-static flow equations using Biviscous constitutive model. The prediction methodology of damping force offered by MR fluid shock absorber is formulated and damping performances are predicated in order to determine design parameters. MR fluid shock absorber for Mazda 323 car suspension is designed and fabricated in Chongqing University, China. Measurements from sinusoidal displacement cycle by Shanchuan Shock Absorber Ltd. of China North Industry Corporation reveal that the analytical methodology and design theory are reasonable.

  18. Ultra-broad band absorber made by tungsten and aluminium

    Science.gov (United States)

    Wang, Wei; Zhao, Ding; Li, Qiang; Qiu, Min

    2016-01-01

    A broadband absorber comprising tungsten cubic arrays, a alumina layer and a tungsten film, is numerically and experimentally investigated, which exhibits near-unity absorption of visible and near-infrared light from 400 nm to 1150 nm. Benefiting from high melting points of tungsten and alumina, this device has great application potential in solar cells and thermal emission.

  19. Role of the Absorbing Area in Chaotic Synchronization

    DEFF Research Database (Denmark)

    Maistrenko, Yu.L.; Maistrenko, V.L.; Popovich, A.;

    1998-01-01

    When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area...... for the emergence of local vs global riddling and for controlling the dynamics, once synchronization breaks down....

  20. The warm absorber in NGC 5548 : the lean years

    NARCIS (Netherlands)

    Detmers, R.G.; Kaastra, J.S.; Costantini, E.; McHardy, I.M.; Verbunt, F.W.M.

    2008-01-01

    We study the variability of the warm absorber and the gas responsible for the emission lines in the Seyfert 1 galaxy NGC 5548 to constrain the location and physical properties of these components. Using X-ray spectra acquired using the Chandra-LETGS in 2002 and 2005, we study the variability of the

  1. The Kinematic Evolution of Strong MgII Absorbers

    CERN Document Server

    Mshar, Andrew C; Lynch, Ryan S; Churchill, Chris; Kim, Tae-Sun

    2007-01-01

    We consider the evolution of strong (W_r(2796) > 0.3A) MgII absorbers, most of which are closely related to luminous galaxies. Using 20 high resolution quasar spectra from the VLT/UVES public archive, we examine 33 strong MgII absorbers in the redshift range 0.3 < z < 2.5. We compare and supplement this sample with 23 strong MgII absorbers at 0.4 < z < 1.4 observed previously with HIRES/Keck. We find that neither equivalent width nor kinematic spread (the optical depth weighted second moment of velocity) of MgII2796 evolve. However, the kinematic spread is sensitive to the highest velocity component, and therefore not as sensitive to additional weak components at intermediate velocities relative to the profile center. The fraction of absorbing pixels within the full velocity range of the system does show a trend of decreasing with decreasing redshift. Most high redshift systems (14/20) exhibit absorption over the entire system velocity range, which differs from the result for low redshift systems ...

  2. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  3. Correlations between O VI Absorbers and Galaxies at Low Redshift

    CERN Document Server

    Ganguly, Rajib; Fang, Taotao; Sembach, Kenneth

    2008-01-01

    We investigate the relationship between galaxies and metal-line absorption systems in a large-scale cosmological simulation with galaxy formation. Our detailed treatment of metal enrichment and non-equilibrium calculation of oxygen species allow us, for the first time, to carry out quantitative calculations of the cross-correlations between galaxies and O VI absorbers. We find the following: (1) The cross-correlation strength depends weakly on the absorption strength but strongly on the luminosity of the galaxy. (2) The correlation distance increases monotonically with luminosity from ~0.5-1h^-1 Mpc for 0.1L* galaxies to ~3-5h^-1 Mpc for L* galaxies. (3) The correlation distance has a complicated dependence on absorber strength, with a luminosity-dependent peak. (4) Only 15% of O VI absorbers lie near >=Lz* galaxies. The remaining 85%, then, must arise ``near'' lower-luminosity galaxies, though, the positions of those galaxies is not well-correlated with the absorbers. This may point to pollution of intergala...

  4. A compact analytic solution describing optoacoustic phenomenon in absorbing fluid

    CERN Document Server

    Cundin, Luisiana; Barsalou, Norman; Voss, Shannon

    2012-01-01

    Derivation of an analytic, closed-form solution for Q-switched laser induced optoacoustic phenomenon in absorbing fluid media is presented. The solution assumes spherical symmetry as well for the forcing function, which represents heat deposition from Q-switched lasers. The Greens solution provided is a suitable kernel to generate more complex solutions arising in optoacoustics, optoacoustic spectroscopy, photoacoustic and photothermal problems.

  5. Gravitational lensing by damped Ly-alpha absorbers

    NARCIS (Netherlands)

    Smette, A; Claeskens, JF; Surdej, J

    1997-01-01

    Assuming that (i) damped Ly-alpha absorbers (DLAs) arise in present-day-like spiral galaxies which are immersed in isothermal dark matter halos, (ii) that these galaxies obey the Tully-Fisher sigma/sigma* = (L/L*)(1/alpha TF) and the Holmberg R-L/R* = (L/L*)(alpha H) relations, and (iii) that they f

  6. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.;

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...

  7. Warm absorber in Seyfert-1 galaxies observed with ASCA.

    Science.gov (United States)

    Otani, C.; Kii, T.; Fabian, A. C.; Reynolds, C. S.; Iwasawa, K.; Inoue, H.; Tanaka, Y.; Matsuoka, M.

    1996-02-01

    The authors present the results of ASCA observations of the warm absorber in five Seyfert-1 galaxies and one quasar. The most important result is the detection of the continuous increase in O VIII absorption depth in MCG -6-30-15 within half a day with the continuum decrease. If this change is due to the recombination of O IX ions, the density and radius for increased O VIII ions should be n ⪆ 106cm-3 and R ⪉ 1017cm, respectively. It is also shown that the filling factor of the matter should be very small, implying that the warm absorber is probably clumpy. These results suggest this warm absorber as some link to the broad line region (BLR). On the other hand, no significant change in O VII was observed in MCG -6-30-15. These results are explained by two distinct warm absorbers in the line-of-sight unless some unknown reason causes the stability of O VII near the BLR; one of them corresponding to O VIII is located near the BLR, and another corresponding to O VII is located far outside from the BLR.

  8. Oxygen Radical Absorbance Capacity (ORAC) of Selected Food – 2007

    Science.gov (United States)

    Interest of the scientific community in the Oxygen Radical Absorbance Capacity (ORAC) of foods continues because reactive oxygen species (ROS) are important in the aging process and also because of growing evidence regarding beneficial effects of dietary antioxidants in reducing oxidative-stress-ind...

  9. On the diversity of O vi absorbers at high redshift

    CERN Document Server

    Draganova, Nadya

    2015-01-01

    In this thesis, we systematically analyze the properties of intergalactic \\Ovi absorbing gas structures at high redshift using optical spectra with intermediate ($\\sim 6.6$ \\kms FWHM) and high ($\\sim 4.0$ \\kms FWHM) resolution, obtained with UVES/VLT. We complement our analysis with synthetic spectra obtained from extensive cosmological simulations that are part of the OWLS project (Schaye et al. 2010). Our main conclusions are: 1) Both the observations and simulations imply that \\Ovi absorbers at high redshift arise in structures spanning a broad range of scales and different physical conditions. When the \\Ovi components are characterized by small Doppler parameters, the ionizing mechanism is most likely photoionization; otherwise, collisional ionization is the dominant mechanism. 2) The baryon- and metal-content of the \\Ovi absorbers at $z\\approx2$ is less than one per cent of the total mass-density of baryons and metals at that redshift. Therefore, \\Ovi absorbers do not trace the bulk of baryons and metals...

  10. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  11. Sensors of absorbed dose of ionizing radiation based on mosfet

    OpenAIRE

    Perevertaylo V. L.

    2010-01-01

    The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  12. New urea-absorbing polymers for artificial kidney machines

    Science.gov (United States)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr.

    1975-01-01

    Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia.

  13. Tests of absorbents and solidification techniques for oil wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.; MacKenzie, D. R.

    1983-11-01

    A representative of each of six classes of commonly used adsorbents was chosen for a series of tests. After reviewing ASTM and other related standard tests, uncomplicated procedures were developed for carrying out specific tests to determine absorbency for simulated oil waste and for water, under static and simulated transportation (repetitive shock) conditions. The tests were then applied to the six representative absorbents. Solidification tests were performed using these absorbents saturated with oil and loaded to 50% of saturation. The binders used were Portland I cement and Delaware Custom Material (DCM) cement shale silicate. Samples were checked for proper set, and the amounts of free liquid were measured. Another series of tests was performed on samples of simulated oil waste without absorbent, using Portland cement and DCM cement shale silicate. Samples were checked for proper set, free liquid was measured, and compressive strengths were determined. The state-of-the-art parameters were identified which satisfy NRC disposal criteria for solidified radioactive waste. The literature was reviewed for alternative methods of managing oil wastes. Conclusions are drawn on the relative utility of the various methods. 17 references, 3 tables.

  14. Tests of absorbents and solidification techniques for oil wastes

    International Nuclear Information System (INIS)

    A representative of each of six classes of commonly used adsorbents was chosen for a series of tests. After reviewing ASTM and other related standard tests, uncomplicated procedures were developed for carrying out specific tests to determine absorbency for simulated oil waste and for water, under static and simulated transportation (repetitive shock) conditions. The tests were then applied to the six representative absorbents. Solidification tests were performed using these absorbents saturated with oil and loaded to 50% of saturation. The binders used were Portland I cement and Delaware Custom Material (DCM) cement shale silicate. Samples were checked for proper set, and the amounts of free liquid were measured. Another series of tests was performed on samples of simulated oil waste without absorbent, using Portland cement and DCM cement shale silicate. Samples were checked for proper set, free liquid was measured, and compressive strengths were determined. The state-of-the-art parameters were identified which satisfy NRC disposal criteria for solidified radioactive waste. The literature was reviewed for alternative methods of managing oil wastes. Conclusions are drawn on the relative utility of the various methods. 17 references, 3 tables

  15. Super absorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch

    International Nuclear Information System (INIS)

    Full text: Super absorbent was synthesized by radiation-induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage and germination energy were determined in order to evaluate the possibility of super absorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by FTIR. Results indicated that the sand mixed with 0.1%wt super absorbent can absorb more water than the sand without super absorbent. The germination energy of corn seeds mixed with 0.5% super absorbent was obviously higher than those without super absorbent. These experimental results showed that the super absorbent has considerable effect on seed germination and the growth of young plants. Keywords: Super absorbent, Radiation, Acrylic acid, Cassava starch

  16. Four-year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: The ABSORB trial

    NARCIS (Netherlands)

    D. Dudek (Dariusz); Y. Onuma (Yoshinobu); J.A. Ormiston (John); L. Thuesen (Leif); K. Miquel-Hébert (Karine); P.W.J.C. Serruys (Patrick)

    2012-01-01

    textabstractAims: The first-in-man ABSORB Cohort A trial demonstrated the bioresorption of the ABSORB BVS (Abbott Vascular, Santa Clara, CA, USA) at two years. This report describes the 4-year clinical outcomes. Methods and results: The ABSORB Cohort A trial enrolled 30 patients with a single de nov

  17. Characterization and Modeling of Microwave Absorbers in the RF and Antenna Projects

    Directory of Open Access Journals (Sweden)

    B. R. Nikolov

    2009-11-01

    Full Text Available Some practical problems concerning the characterization and modeling of microwave absorbers are discussed in this paper. First, a number of measurement methods are considered for determination of the relative and absolute absorbing ability of the most popular absorbing materials – foams, rubber sheets, coatings and thin films. Next, several more complicated methods for characterization of the complex dielectric parameters of the absorbers are presented and discussed. Finally, examples for modeling of microwave absorbers by 3D simulators are given.

  18. Reactor column and neutron absorber and method of manufacturing the same

    International Nuclear Information System (INIS)

    The present invention concerns a neutron absorbing member of a pulse column for use in purification of highly level radioactive solutions generated in a spent fuel reprocessing plant. The neutron absorbing member comprises a cylindrical member supported by a large-diameter cylindrical portion and a core comprising a neutron moderator contained in the inside. The cylindrical member consists of a neutron absorber, and a neutron absorbing layer having a highly neutron absorbing performance is disposed between the neutron absorber. Since the cylindrical member is constituted by disposing neutron absorbing layer between the neutron absorbers, neutrons generated from the liquid in the inside are absorbed by the absorbing layer, and since neutrons not absorbed are absorbed by the neutron absorbing member after being moderated by the core, the neutron absorbing performance can be improved. The neutron moderating performance can be improved by constituting the core with polyethylene, and since it is light in weight, the cost for the construction of the fixed structural members can be reduced. In addition, if cadmium is used, the performance can be further improved. (N.H.)

  19. Acoustic metasurface-based perfect absorber with deep subwavelength thickness

    Science.gov (United States)

    Li, Yong; Assouar, Badreddine M.

    2016-02-01

    Conventional acoustic absorbers are used to have a structure with a thickness comparable to the working wavelength, resulting in major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in an extremely low frequency region. The metasurface possessing a deep subwavelength thickness down to a feature size of ˜ λ / 223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have an high impact on amount of applications due to the extremely thin thickness, easy fabrication, and high efficiency of the proposed structure.

  20. ABSORBENT MATERIALS BASED ON KRAFT PULP: PREPARATION AND MATERIAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Fredrik Wernersson Brodin,

    2012-02-01

    Full Text Available Today, petroleum-based superabsorbents are widely used, but interest in renewable alternatives is on the rise. This study presents two wood-based absorbent materials suitable for various absorption applications as an alternative to petroleum-based products. Never-dried bleached kraft pulp was treated with TEMPO-oxidation, and new carboxylate and aldehyde groups were introduced. It was found that the aldehyde groups contributed to the wet integrity of the absorbent materials, possibly by the formation of hemiacetal bonds. After oxidation, the pulp fibers were gradually disintegrated, and size analysis showed that the disintegration rate was enhanced by an increase in the charge of the oxidant. Freeze drying produced a porous foam with a large surface area that enabled a rapid absorption rate as well as a reasonably high absorption capacity even for absorption under load. Air drying formed a compact film with a slow absorption rate but with a high final capacity for absorption.

  1. Simulasi Peredaman Getaran Mesin Rotasi Menggunakan Dynamic Vibration Absorber (DVA

    Directory of Open Access Journals (Sweden)

    Yudhkarisma Fitri

    2013-09-01

    Full Text Available Suatu mesin jika mendapatkan gangguan maka akan menghasilkan getaran. Pada mesin rotasi gangguan tersebut ditimbulkan dari rotornya. Untuk meredam getaran ini digunakan peredam dynamic vibration absorber (DVA. Dynamic vibration absorber (DVA adalah sebuah peredam getaran dinamik yang bergerak secara bersama-sama dengan sistem utama guna membantu meredam getaran yang terjadi pada sistem utama tersebut. Dalam tugas akhir ini penggunaan DVA dipasang dengan posisi tergantung dibawah sistem utama kemudian dibuat pemodelan matematisnya. Mensimulasikan sistem ini yaitu dengan memvariasikan nilai pegas, damper dan massa pada DVA. Sementara nilai pegas dan damper pada sistem utama sudah ditentukan berturut-turut yaitu 35000 N/m dan 2700 Ns/m. Dari hasil simulasi didapatkan nilai parameter DVA terbaik yang mampu meredam getaran mesin rotasi ini yaitu pegas 10000 N/m, damper 2000 Ns/m dan massa 783,845 kg. DVA ini mampu meredam getaran sebesar 16,6% untuk max overshoot dan 65,5% untuk min overshoot.

  2. Seeking new growth hotspots in absorbing foreign direct investment

    Institute of Scientific and Technical Information of China (English)

    裴长洪

    2009-01-01

    In recent years, China’s service industries have absorbed an increasing amount of foreign direct investment (FDI); foreign investors have taken wholly foreign-owned enterprise (WFOE) as the most preferred vehicle of making investment in China; free ports have become a major source of FDI inflows to China; China’s FDI inflows as a percentage of global FDI inflows have been in decline. In the export-oriented or import-substitution manufacturing industries, China still needs to vigorously absorb FDI in the future. In addition, China should continue opening its infrastructure and social service industries. It is therefore imperative to further improve the institutional and policy environment for foreign investment utilization.

  3. Can absorbable stabilizers be used routinely in the Nuss procedure?

    DEFF Research Database (Denmark)

    Pilegaard, Hans K; Licht, Peter B

    2009-01-01

    OBJECTIVE: During minimal invasive surgical correction of pectus excavatum the metal bar is rotated 180 degrees and fixed by one or two stabilisers. Previously, all stabilisers were made from metal, but they often caused chronic pain and had to be removed. Recently, a slowly absorbable stabiliser...... made from Lactosorb has been introduced. METHODS: From 2001 to 2008 a total of 507 patients underwent minimally invasive repair of pectus excavatum at Aarhus University Hospital. Since February 2007 we routinely used absorbable stabilisers made by Lactosorb. We always used shorter pectus bars than...... metal stabiliser while 85 patients received a Lactosorb stabilizer. Seven patients received two stabilisers. During the follow-up period one metal stabiliser broke after 2(1/2) years (0.2%), but within 6 weeks after surgery three Lactosorb stabilizers broke (3.5%) and another three dislocated laterally...

  4. Microwave absorbing properties and magnetic properties of different carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The microwave absorbing properties and magnetic properties of as-grown Fe-filled carbon nanotubes (CNTs), annealed Fe-filled CNTs, and multi-walled CNTs were studied. Vibrating sample magnetometer results showed that the annealed Fe-filled CNTs have the weakest coercivity and strongest saturation magnetization among the three types CNTs, due to the presence of more ferromagnetic α-Fe nanowires. After annealing, the values increased to 291.0 Oe and 28.0 emu/g and the samples showed excellent microwave absorbing properties. The reflection loss was over 5 dB between 11.6 GHz and 18 GHz with a maximum value of 10.8 dB for annealed Fe-filled CNTs (1.1 wt%)/epoxy composite.

  5. PARAMETRIC MATCHING SELECTION OF MULTI-MEDIUM COUPLING SHOCK ABSORBER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theoretical mathematical model of multi-medium coupling shock absorber is presented. The coupling of quadratic damping, linear damping, Coulomb damping and nonlinear spring are considered in the model. The approximate theoretical calculating formulae are deduced by introducing transformation-tactics. The contrasts between the analytical results and numerical integration results are developed. The resisting impact characteristics of the model are also analyzed in progress. In the meantime,the optimum model of the parameters matching selection for design of the shock absorber is built.The example design is illustrated to confirm the validity of the modeling method and the theoretical solution.

  6. Some comments on the concept of absorbed dose

    International Nuclear Information System (INIS)

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity dε divided by dm, where dε is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted ε. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  7. Hysteresis of transient populations in absorbing-state systems

    Science.gov (United States)

    Kapitanchuk, Oleksiy L.; Marchenko, Oleksij M.; Teslenko, Victor I.

    2016-06-01

    A nonequilibrium density matrix theory is used in order to explicitly describe the hysteresis interrelation between populations of nonstationary states in an absorbing multi-stage chain system in the one-particle approximation. As an illustrative example, we restrict ourselves to consideration of the 3-stage absorbing case for which we identify three types of the hysteresis; that is, the causal time dependent hysteresis with leaf-like and triangle-like closed loops, the hidden hysteresis with broken-line loops and the true hysteresis with open loops. Furthermore, we observe a common critical threshold for the hysteresis types and ascertain a reciprocal correspondence of this threshold as between the types as well with the experiment.

  8. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Low size, weight, power and price split Stirling linear cryocooler usually comprises electro-dynamically driven compressor and pneumatically driven expander which are side-by-side fixedly mounted upon the common frame and interconnected by the configurable transfer line. Vibration export produced by such a cryocooler comprises of a pair of tonal forces, the frequency of which essentially equals fixed driving frequency. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber, having one translational and two tilting modes essentially tuned to the driving frequency. Dynamic analysis shows that the dynamic reactions (force and moment) produced by such a dynamic absorber are capable of simultaneous attenuation of translational and tilting components of cryocooler induced vibration. The authors reveal the preferable design, the method of fine tuning and outcomes of numerical simulation on attainable performance.

  9. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  10. Analysis of heat and mass transfer on helical absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, O.K.; Kim, S.C.; Yun, J.H. [Korea Institute of Industrial Technology, Chonan (Korea); Lim, J.K.; Yoon, J.I. [Pukyong National University, Pusan (Korea)

    2000-11-01

    The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LiBr-H{sub 2}O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature, the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux. (author). 10 refs., 14 figs., 2 tabs.

  11. A Pair of Light Emitting Diodes for Absorbance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongyong; Eom, Inyong [Catholic Univ. of Daegu, Gyeongsan (Korea, Republic of)

    2013-10-15

    Two same wavelength LEDs (i. e. an emitter LED and a detector LED, respectively) were successfully used to measure absorbance of BTB solution. A linear calibration with r-squared value of 0.9945 was achieved. 0.03 μM of LOD was observed with a noise level of 2 Χ 10{sup -4} absorbance unit. We are now examining relative sensitivities of different LEDs with distinct wavelength. In the future, building a spectrophotometer equipped with LEDs is quite interesting both in scientifically and pedagogically (i. e. undergraduate lab course). Light emitting diodes (LEDs) have a semiconductor chip (∼1 mm{sup 2} area) mounted on a concave mirror and emit narrow band of wavelengths when forward biased. LEDs have been widely used in many fields. Conventional light bulbs are being replaced by LED bulbs.

  12. Saturable absorber theory with a modulated pump beam

    Science.gov (United States)

    Blaya, S.; Acebal, P.; Carretero, L.

    2016-08-01

    Recently, it has been shown that the time delay of a signal in a saturable absorber can be equally analysed by a temporal variation of the absorption or the phase (group velocity reduction). In this work, we perform the study of time advancement and delay of transmitted pulses in bacteriorhodopsin films by using a time modulated pump beam at the same frequency of modulation as the reference beam. Thus, based on a saturable absorber theory, analytical expressions of the time delay/advancement and the transmitted pulse have been obtained. As a result, it is theoretically and experimentally demonstrated, that by means of the phase difference between the pump and reference beams a temporal advancement or delay of the sinusoidal transmitted pulses can be obtained.

  13. Research on the Relationship Between Absorbed Slack and Technology Innovation

    Institute of Scientific and Technical Information of China (English)

    刘益; 方润生

    2003-01-01

    This paper divides the absorbed slack into dispersed slack and combined slack from the point of view of control right and analyzes the affection these two kinds of slacks have on the innovation. This research build a model of structural equation reflecting the relationship among the slack, absorbed capacity and innovation and proved this model with the data get from 607 enterprises by questionnaire. The result indicates that the dispersed slack and combined slack have positive relationship respectively with product innovation and process innovation and different slacks have some matching relationship with different absorptive capacities, which can result in different innovative output. This shows that the slack in Chinese enterprises can also promote the innovative output just like the western enterprises; so reducing the staff according to simple principles perhaps cannot be the most efficient way to improve the effectiveness in Chinese enterprises.

  14. Microwave absorbing properties and magnetic properties of different carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    GUI XuChun; WANG KunLin; WEI JinQuan; L(U) RuiTao; SHU QinKe; JIA Yi; WANG Chen; ZHU HongWei; WU DeHai

    2009-01-01

    The microwave absorbing properties and magnetic properties of as-grown Fe-filled carbon nanotubes (CNTs), annealed Fe-filled CNTs, and multi-walled CNTs were studied. Vibrating sample magnetometer results showed that the annealed Fe-filled CNTs have the weakest coercivity and strongest saturation magnetization among the three types CNTs, due to the presence of more ferromagnetic α-Fe nanowires.After annealing, the values increased to 291.00e and 28.0 emu/g and the samples showed excellent microwave absorbing properties. The reflection loss was over 5 dB between 11.6 GHz and 18 GHz with a maximum value of 10.8 dB for annealed Fe-filled CNTs (1.1 wt%)/epoxy composite.

  15. [Shaping of electron radiation fields using homogeneous absorbent materials].

    Science.gov (United States)

    Eichhorn, M; Reis, A; Kraft, M

    1990-01-01

    Proof of shielding and forming by absorbers was done in water phantom dosimetrically. Alterations of isodose course were measured in dependence of primary energy, as well as of thickness and density of the absorber materials. Piacryl or aluminium are not suitable for forming of irregular electron fields. They only effect a reduction of therapeutic range. For primary energies of 10.0 less than or equal to MeV less than or equal to E0- less than or equal to 20.0 MeV lead rubber and wood metal are to recommended in a thickness of less than or equal to 10 mm or less than or equal to 8 mm respectively.

  16. Application Of Shape Memory Alloy In Harvesto-Absorber System

    Directory of Open Access Journals (Sweden)

    Kęcik Krzysztof

    2015-09-01

    Full Text Available This paper presents a conception of the harvester-absorber system consisting of two parts. The first is the pendulum attached to the main system (oscillator, which is suspended on the linear damper and the nonlinear spring made of shape memory alloy. The spring is modelled as a polynomial function based on Landau–Ginzburg theory of phase transitions (similar as ferroelectric and ferromagnets. The obtained results show, that SMA element can increase harvesting energy level, while the absorber effect can be impaired (but not loss. Additionally, introducing SMA element causes changes in dynamics, introduces a new unstable solutions and bifurcations. The analysis was done by classical integration and continuation solution methods.

  17. Resonance scattering of canonical elastic shells in absorbing fluid medium

    Institute of Scientific and Technical Information of China (English)

    ZHUO Linkai; FAN Jun; TANG Weilin

    2008-01-01

    Resonance scattering of elastic spherical shell and cylindrical shell while the sur-rounding fluid medium has absorption is studied. The normal mode solution derived using exact elastic theory and the separation of variables is still applicable. However, the scattering form function has to be modified for the absorbing medium, otherwise the unreasonable resul twould be obtained. The backscattering form function in the absorbing medium is redefined, and the form function of elastic spherical and cylindrical shell with vacuum or solid matter filled is calculated in various absorption conditions. The results show that the absorption of surround-ing fluid leads to notable attenuation of the coincidence resonances in the mid-frequency, but it has a little in fluence on the low-frequency resonance scattering induced by the filler inside the shell.

  18. Preparation and Property of the Water Absorbent Hybrid Resin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Water absorption material has been attracted much more attention for its wide use in soil and water conservation, agriculture, etc. But this material will actually apply in agriculture, soil and water conservation only when it is cheap enough. Pulp fiber and starch to prepare high absorbing-water resin is a good method for decreasing the cost [1,2]. However, it still has a long way to turn it into reality. Now the montmorillonite is widely used in preparing nanocomposites [3]. But used it in preparing absorbing-water resin has little report. In this article the water absorption hybrid resin has been prepared by one step intercalation polymerization method. In the process of intercalation the partly neutralization acrylic acid and urea have been used as intercalating reagent. Beside that, the urea also has been used as cross-linking agent.

  19. Preparation and Property of the Water Absorbent Hybrid Resin

    Institute of Scientific and Technical Information of China (English)

    WANG; YunPu

    2001-01-01

    Water absorption material has been attracted much more attention for its wide use in soil and water conservation, agriculture, etc. But this material will actually apply in agriculture, soil and water conservation only when it is cheap enough. Pulp fiber and starch to prepare high absorbing-water resin is a good method for decreasing the cost [1,2]. However, it still has a long way to turn it into reality.  Now the montmorillonite is widely used in preparing nanocomposites [3]. But used it in preparing absorbing-water resin has little report. In this article the water absorption hybrid resin has been prepared by one step intercalation polymerization method. In the process of intercalation the partly neutralization acrylic acid and urea have been used as intercalating reagent. Beside that, the urea also has been used as cross-linking agent.   ……

  20. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  1. Single-photon absorber based on strongly interacting Rydberg atoms

    CERN Document Server

    Tresp, Christoph; Mirgorodskiy, Ivan; Gorniaczyk, Hannes; Paris-Mandoki, Asaf; Hofferberth, Sebastian

    2016-01-01

    Removing exactly one photon from an arbitrary input pulse is an elementary operation in quantum optics and enables applications in quantum information processing and quantum simulation. Here we demonstrate a deterministic single-photon absorber based on the saturation of an optically thick free-space medium by a single photon due to Rydberg blockade. Single-photon subtraction adds a new component to the Rydberg quantum optics toolbox, which already contains photonic logic building-blocks such as single-photon sources, switches, transistors, and conditional $\\pi$-phase shifts. Our approach is scalable to multiple cascaded absorbers, essential for preparation of non-classical light states for quantum information and metrology applications, and, in combination with the single-photon transistor, high-fidelity number-resolved photon detection.

  2. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  3. Improved Single-Source Precursors for Solar-Cell Absorbers

    Science.gov (United States)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  4. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles

    OpenAIRE

    Pitsillides, Costas M; Joe, Edwin K.; Wei, Xunbin; Anderson, R. Rox; Lin, Charles P.

    2003-01-01

    We describe a new method for selective cell targeting based on the use of light-absorbing microparticles and nanoparticles that are heated by short laser pulses to create highly localized cell damage. The method is closely related to chromophore-assisted laser inactivation and photodynamic therapy, but is driven solely by light absorption, without the need for photochemical intermediates (particularly singlet oxygen). The mechanism of light-particle interaction was investigated by nanosecond ...

  5. Vibroacoustics of thin micro-perforated sound absorbers

    OpenAIRE

    Maury, Cédric; Bravo, Teresa; Pinhède, Cédric

    2012-01-01

    ISBN 978-2-919340-01-9 International audience Lightweight Micro-Perforated Panels (MPP) backed by an air cavity constitute compact sound absorbing resonators, mostly efficient in the mid-frequency range, and that may be constructed using transparent, fibreless and recyclable materials. These soundproof devices have been intensively studied due to their important applications in building acoustics and the aeronautic, astronautic and automotive industries. However, MPPs have been often co...

  6. Theoretical Research of Magnetorheological Shock Absorber Damping Force

    Directory of Open Access Journals (Sweden)

    Andrius Klevinskis

    2014-02-01

    Full Text Available In the article an overview of magnetorheological shock absorbertypes is presented, theoretical calculations of heat dispersion,magnetic field strength produced by shock absorber as well asmaximum power of electromagnet are provided. The article alsoprovides device damping force in line with a change of devicetemperature. In the end of the research the results of experimentare presented in the graph format as well as the conclusions.

  7. Quantum-state input-output relations for absorbing cavities

    International Nuclear Information System (INIS)

    The quantized electromagnetic field inside and outside an absorbing high-Q cavity is studied, with special emphasis on the absorption losses in the coupling mirror and their influence on the outgoing field. Generalized operator input-output relations are derived, which are used to calculate the Wigner function of the outgoing field. To illustrate the theory, the preparation of the outgoing field in a Schroedinger cat-like state is discussed

  8. On the dual symmetry between absorbing and amplifying random media

    Indian Academy of Sciences (India)

    S Anantha Ramakrishna

    2004-06-01

    We re-examine the dual symmetry between absorbing and amplifying random media. By analysing the physically allowed choice of the sign of the square root to determine the complex wave vector in a medium, we draw a broad set of conclusions that enables us to resolve the apparent paradox of the dual symmetry and also to anticipate the large local electromagnetic field enhancements in amplifying random media.

  9. Absorbed radiation by various tissues during simulated endodontic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.

  10. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  11. Shock Absorbers Save Structures and Lives during Earthquakes

    Science.gov (United States)

    2015-01-01

    With NASA funding, North Tonawanda, New York-based Taylor Devices Inc. developed fluidic shock absorbers to safely remove the fuel and electrical connectors from the space shuttles during launch. The company is now employing the technology as seismic dampers to protect structures from earthquakes. To date, 550 buildings and bridges have the dampers, and not a single one has suffered damage in the wake of an earthquake.

  12. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  13. Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber

    Directory of Open Access Journals (Sweden)

    V.C. Ho

    2003-01-01

    Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.

  14. Flexible metamaterial absorbers for stealth applications at terahertz frequencies

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew; Fan, K.;

    2012-01-01

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small...... frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial. (C)2011 Optical Society of America...

  15. Absorbed radiation by various tissues during simulated endodontic radiography

    International Nuclear Information System (INIS)

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures

  16. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  17. Perfect Impedance-Matched Isolators and Unidirectional Absorbers

    CERN Document Server

    Lee, M J; Ramezani, H; Ellis, F M; Kovanis, V; Vitebskiy, I; Kottos, T

    2013-01-01

    A broad-band reflectionless channel which supports unidirectional wave propagation originating from the interplay between gyrotropic elements and symmetrically placed gain and loss constituents is proposed. Interchange of the active elements together with a gyrotropic inversion turns the same structure to a unidirectional absorber where incoming waves from a specific direction are annihilated. When disorder is introduced asymmetric Anderson localization is found. Realizations of such multi-functional architectures in the frame of electronic and photonic circuitry are discussed.

  18. Microwave absorbing properties of activated carbon fibre polymer composites

    Indian Academy of Sciences (India)

    Tianchun Zou; Naiqin Zhao; Chunsheng Shi; Jiajun Li

    2011-02-01

    Microwave absorption of composites containing activated carbon fibres (ACFs) was investigated. The results show that the absorptivity greatly depends on increasing ACF content in the absorbing layer, first increasing and then decreasing. When the content is 0.76 wt.%, the bandwidth below −10dB is 12.2 GHz. Comparing the absorption characteristics of the ACF composite with one containing unactivated fibres, it is found that carbon fibre activation increases the absorption of the composite.

  19. Characterization of diethylenetriamine (DETA) as absorbent for CO2

    OpenAIRE

    Hartono, Ardi

    2009-01-01

    Absorption of CO2 with amine-based absorbents is an established and proven technology. Unfortunately, it is still very energy intensive and has high capital costs. The overall challenge when aiming at using this technology for world wide CO2 capture, is to bring these two factors down with new and environmentally acceptable solvents. The search forward can be carried out by process design improvements or by finding new and better solvents. An ideal solvent should have a high capacity, high ab...

  20. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm3). 15 references, 7 figures, 6 tables

  1. Application of Absorbable Hemostatic Materials Observed in Thyroid Operation

    Science.gov (United States)

    Li, Yan-Ming; Liang, Zhen-Zhen; Song, Yan

    2016-05-01

    To observe the application effects of the absorbable hemostatic materials in thyroid operation. Methods: From May 2014 to January 2015, 100 patients with thyroid surgery in our university affiliated hospital were selected as the research object. Randomly divided into experimental group and control group, 50 cases in each group. Application of absorbable hemostatic hemostatic materials in the experimental group during the operation, the control group using the traditional mechanical methods of hemostasis hemostasis to observe the operation time, bleeding volume, postoperative drainage volume, complications and hospital stay of the two groups. Results: The operation time, bleeding volume, postoperative drainage and hospital stay in the experimental group were significantly lower in the study group than in the control group, and the difference between the two groups was statistically significant (P 0.05). Conclusion: Absorbable hemostatic materials can effectively shorten the operation time, reduce intraoperative blood loss and postoperative drainage, reduce the length of hospital stay and improve the success rate of surgery and patient satisfaction, which is worthy to be popularized in clinical thyroid surgery.

  2. Fabrication and microwave absorbing properties of NixPy nanotubes

    International Nuclear Information System (INIS)

    Materials possessing microwave absorbing properties have been a researching hotspot for their important applications amid a high frequency electromagnetic waves environment. This paper focuses on the preparation of a series of NixPy(x:y = 2.65–2.73) nanotubes (NTs) and their corresponding microwave absorbing properties. After being heat-treated, different NixPy phases would appear, without damaging their initial hollow morphologies. These processes were accompanied with the alteration of related physical properties. Low enough minimum reflection loss (RL) has been achieved in all of these samples, with −48.63 dB as the lowest one being obtained at the non-heat-treated sample. Besides, a large proportion of the microwave frequency band could be covered on the 450 °C heat-treated sample (over a 4.5 GHz bandwidth). These are indicative of the superior microwave absorbing nature of NixPy NTs. (paper)

  3. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  4. Metamaterial absorbers realized in an X-band rectangular waveguide

    Institute of Scientific and Technical Information of China (English)

    Huang Yong-Jun; Wen Guang-Jun; Li Jian; Zhong Jing-Ping; Wang Ping; Sun Yuan-Hua; O.Gordon; Zhu Wei-Ren

    2012-01-01

    In this paper,we demonstrate six types of metamaterial absorbers (MMAs) by measuring their absorptivities in an X-band (8-12 GHz) rectangular waveguide.Some of the MMAs have been demonstrated previously by using the free space measurement method,and the others are proposed firstly in this paper.The measured results show that all of the six MMAs exhibit high absorptivities above 98%,which have similar absorbing characteristics to those measured in the free space.The numerically obtained surface current densities for each MMA show that the absorbing mechanism is the same as that under the free space conditions.Such a demonstration method is superior to the conventional free space measurement method due to the small-scale test samples required,the simple measure device,and its low cost.Most importantly,the proposed method opens a way to enable MMAs to be used in microwave applications such as matched terminations.

  5. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis.

  6. Fast ionized X-ray absorbers in AGNs

    Science.gov (United States)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  7. Sound absorption characteristics of microperforated absorbers for random incidence

    Institute of Scientific and Technical Information of China (English)

    MAA Dah-You; LIU Ke

    2000-01-01

    Based on previous work on "Statistical absorption coefficient of microperforated absorbers", in which it was shown that theoretical results agree well with experiments on the absorption characteristics of microperforated absorbers (MPA) for random incidence. Further work was carried out in this investigation of the statistical absorption coefficients of MPA in random fields by computation, in order to find the best structure of MPA. It is established that ordinarily the absorption curves of MPA for random incidence and that for normal incidence are quite alike, only that the absorption coefficients are more or less reduced and the whole curve is shifted to higher frequencies without any change of shape. But when the perforate constant k = d/ωρο/4η where d is the diameters of perforations in mm and fo, the absorbers resonance frequency is reduced below 2, say, secondary absorption bands start to play more important role. Pretty soon, they merge with the main absorption band and form a long tail of the latter,extending the absorption far into high frequencies, raising the resulting absorption band to three, four or more octaves. The behavior of the secondary absorption bands is discussed.

  8. Thermal radiation absorbed by dairy cows in pasture

    Science.gov (United States)

    da Silva, Roberto Gomes; Guilhermino, Magda Maria; de Morais, Débora Andréia E. Façanha

    2010-01-01

    The goal of the present paper was to assess a method for estimating the thermal radiation absorbed by dairy cows (0.875 Holstein-0.125 Guzerath) on pasture. A field test was conducted with 472 crossbred dairy cows in three locations of a tropical region. The following environmental data were collected: air temperature, partial vapour pressure, wind speed, black globe temperature, ground surface temperature and solar radiation. Average total radiation absorbed by animals was calculated as {R_{abs}} = 640.0 ± 3.1 W.{m^{ - 2}} . Absorbed short-wave radiation (solar direct, diffuse and reflected) averaged 297.9 ± 2.7 W m-2; long wave (from the sky and from terrestrial surfaces) averaged 342.1 ± 1.5 W m-2. It was suggested that a new environmental measurement, the effective radiant heat load (ERHL), could be used to assess the effective mean radiant temperature ( {T_{mr}^* } ) . Average T_{mr}^* was 101.4 ± 1.2°C, in contrast to the usual mean radiant temperature, {T_{mr}} = 65.1 ± 0.5° C . Estimates of T_{mr}^* were considered as more reliable than those of T mr in evaluating the thermal environment in the open field, because T mr is almost totally associated only with long wave radiation.

  9. Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

    Directory of Open Access Journals (Sweden)

    Grzegorz Mikułowski

    2016-01-01

    Full Text Available Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA, which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.

  10. Method of manufacturing neutron shielding and absorbing material

    International Nuclear Information System (INIS)

    Purpose: To manufacture neutron shielding and absorbing material uniformly dispersed with boron carbide. Method: Boron carbide particles are coated with copper, nickel or alloys thereof. Coating is preferably carried out by vacuum deposition or electroless plating. While the powder coated with a predetermined amount is molded and sintered, if the sintering density is low, reduction in the strength and the lowering in the heat conductivity are generally resulted to reduce the neutron shielding and absorbing performance. Therefore, a hot pressing is employed so as to obtain a composite product which is high in the density and uniformly dispersed. Hot isostatic pressing may also be used instead of hot pressing. For the mass production at an reduced cost, rolling of the composite product at a temperature higher than 300 0C is preferred since it can increase the density with preferred results. In this way, neutron shielding and absorbing material having a density of higher than 98 % of the theoretical level and uniformly dispersed can be manufactured. (Kamimura, M.)

  11. Parametric design of an electrorheological shock absorber with the mixed-mode

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ling; DENG Zhaoxiang; LI Yinong

    2003-01-01

    A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calculation performed by program MATLAB demonstrates that the model can predict the behavior of ER shock absorbers satisfactorily, shorten the design period of an electrorheological shock absorber, and reduce the cost in the prototype manufacturing. The strength analysis based on a three-dimensional finite element model for the electrorheological shock absorber confirm that the structure design of the ER shock absorber is reasonable, and the stress distribution is uniform.

  12. The thermal instability of the warm absorber in NGC 3783

    Science.gov (United States)

    Goosmann, R. W.; Holczer, T.; Mouchet, M.; Dumont, A.-M.; Behar, E.; Godet, O.; Gonçalves, A. C.; Kaspi, S.

    2016-05-01

    Context. The X-ray absorption spectra of active galactic nuclei frequently show evidence of winds with velocities in the order of 103 km s-1 extending up to 104 km s-1 in the case of ultra-fast outflows. At moderate velocities, these winds are often spectroscopically explained by assuming a number of absorbing clouds along the line of sight. In some cases it was shown that the absorbing clouds are in pressure equilibrium with each other. Aims: We assume a photo-ionized medium with a uniform total (gas+radiation) pressure. The irradiation causes the wind to be radiation pressure compressed (RPC). We attempt to reproduce the observed spectral continuum shape, ionic column densities, and X-ray absorption measure distribution (AMD) of the extensively observed warm absorber in the Seyfert galaxy NGC 3783. Methods: We compare the observational characteristics derived from the 900 ks Chandra observation to radiative transfer computations in pressure equilibrium using the radiative transfer code titan. We explore different values of the ionization parameter ξ of the incident flux and adjust the hydrogen-equivalent column density, NH0, of the warm absorber to match the observed soft X-ray continuum. From the resulting models we derive the column densities for a broad range of ionic species of iron and neon and a theoretical AMD that we compare to the observations. Results: We find an extension of the degeneracy between ξ and NH0 for the constant pressure models previously discussed for NGC 3783. Including the ionic column densities of iron and neon in the comparison between observations and data we conclude that a range of ionization parameters between 4000 and 8000 erg cm s-1 is preferred. For the first time, we present theoretical AMDs for a constant pressure wind in NGC 3783 that correctly reproduces the observed level and is in approximate agreement with the observational appearance of an instability region. Conclusions: Using a variety of observational indicators, we

  13. Radiative signature of absorbing aerosol over the Eastern Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    A. K. Mishra

    2014-01-01

    Full Text Available The effects of absorbing aerosols on the atmospheric radiation budget and dynamics over the Eastern Mediterranean region are studied using satellites and ground-based observations, and model calculations, under summer conditions. Climatology of aerosol optical depth (AOD, single scattering albedo (SSA and size parameters were analyzed using multi-year (1999–2012 observations from MODIS, MISR and AERONET. CALIOP-derived aerosol vertical distributions and their classifications are used to calculate the AOD of 4 dominant aerosol types: dust, polluted dust, polluted continental and marine aerosol over the region. The seasonal mean (June–August 2010 AODs are 0.22 ± 0.02, 0.11 ± 0.04, 0.10 ± 0.04 and 0.06 ± 0.01 for polluted dust, polluted continental, dust and marine aerosol, respectively. Changes in the atmospheric temperature profile as a function of absorbing aerosol loading were derived for the same period using observations from the AIRS satellite. We inferred heating rates in the aerosol layer of ~1.7 ± 0.8 K day−1 between 925 and 850 hPa, which is attributed to aerosol absorption of incoming solar radiation. Radiative transfer model (RTM calculations show significant atmospheric warming for dominant absorbing aerosol over the region. A maximum atmospheric forcing of +16.5 ± 7.5 W m−2 is calculated in the case of polluted dust, followed by polluted continental (+7.6 ± 4.4 W m−2 and dust (+7.1 ± 4.3 W m−2. RTM-derived heating rate profiles for dominant absorbing aerosol show warming of 0.1–0.9 K day−1 in the aerosol layer (< 3.0 km altitudes, which primarily depend on AODs of the different aerosol types. Diabatic heating due to absorbing aerosol stabilizes the lower atmosphere, which could significantly reduce the atmospheric ventilation. These conditions can enhance the "pollution pool" over the Eastern Mediterranean.

  14. ABSORBABLE IRON IN BREAD: PROCEDURES OF ITS AUGMENTATION

    Directory of Open Access Journals (Sweden)

    M SABZEVARY

    2001-12-01

    Full Text Available Introduction: As many as 35 percent of the world population suffer from some degree of iron deficiency anemia. According to recent reports published by WHO and ICN (International Congress of Nutrition 20-40 percent of women are suffering from iron deficiency. Iron deficiency anemia is caused by lack of intake of the necessary doses of Fe+2 called Heme. The recommended intake dose is 10-17 mg Fe + 2/day. In Iran, bread is the main source of daily iron intake. However, the iron content of bread is Fe+3 which is not absorbable. The objectives of this study is to determine the levels of absorbable iron (Fe + 2 in two common types of Iranian bread and identify the means of raising these to an adequate levels.
    Methods: Random sampling method together with the normal distribution curve was employed in testing 120 samples of flour and bread. Quantification was carried out on each sample in duplicate using spectrophotometer at 510 mu, micrometer wave length. The effect of three organic acids (lactic ascorbic and acetic acid converting of Fe+3 to Fe + 2 was investigated. Two groups of bread was tested. One group was baked in tratitional oven (Noon-e-Tanoori and the second group through the common Iranian hot rotating iron plate baking machine (Noon-e-Machini.
    Results: Our results showed that the amount of absorbable Fe+2 in breads baked in rotatory oven (Noon-e-Tanoori is 0.8 ± 0.32 mg and the amount of unabsorbable Fe+3 in dried bread is 2.34 ± 0.25 mg/100 gm while the amount of absorbable Fe + 2 baked in traditional ovens is only 0.3±0.11 mg versus of unabsorbable Fe  + 3 1.9±0.13 mg/100 gm of dried bread. Meanwhile it was found that lactic and ascorbic acids can convert Fe+3 to Fe+2. Therefore, addition of one of these two acids to bread can catalyze conversion of unabsorbable Fe+3 to absorbable Fe + 2.
    Discussion: On the average an Iranian consumes 370 gm of

  15. Sound-absorbing slabs and structures based on granular materials (bound and unbound). [energy absorbing efficiency of porous material

    Science.gov (United States)

    Petre-Lazar, S.; Popeea, G.

    1974-01-01

    Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.

  16. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  17. The Dry-filling System for the Shock Absorber of Car Engine

    Directory of Open Access Journals (Sweden)

    Du Rong

    2016-01-01

    Full Text Available The shock absorber is considered as an important component of the suspension system. In its production process, the liquid filling for the shock absorber is a very important part. This paper introduced one kind of shock absorber stem–filling system, which achieved liquid dry-filling in the shock absorber for the car engine. The results showed that this system is stable and reliable.

  18. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  19. The impact of absorbed photons on antimicrobial photodynamic efficacy.

    Science.gov (United States)

    Cieplik, Fabian; Pummer, Andreas; Regensburger, Johannes; Hiller, Karl-Anton; Späth, Andreas; Tabenski, Laura; Buchalla, Wolfgang; Maisch, Tim

    2015-01-01

    Due to increasing resistance of pathogens toward standard antimicrobial procedures, alternative approaches that are capable of inactivating pathogens are necessary in support of regular modalities. In this instance, the photodynamic inactivation of bacteria (PIB) may be a promising alternative. For clinical application of PIB it is essential to ensure appropriate comparison of given photosensitizer (PS)-light source systems, which is complicated by distinct absorption and emission characteristics of given PS and their corresponding light sources, respectively. Consequently, in the present study two strategies for adjustment of irradiation parameters were evaluated: (i) matching energy doses applied by respective light sources (common practice) and (ii) by development and application of a formula for adjusting the numbers of photons absorbed by PS upon irradiation by their corresponding light sources. Since according to the photodynamic principle one PS molecule is excited by the absorption of one photon, this formula allows comparison of photodynamic efficacy of distinct PS per excited molecule. In light of this, the antimicrobial photodynamic efficacy of recently developed PS SAPYR was compared to that of clinical standard PS Methylene Blue (MB) regarding inactivation of monospecies biofilms formed by Enterococcus faecalis and Actinomyces naeslundii whereby evaluating both adjustment strategies. PIB with SAPYR exhibited CFU-reductions of 5.1 log10 and 6.5 log10 against E. faecalis and A. naeslundii, respectively, which is declared as a disinfectant efficacy. In contrast, the effect of PIB with MB was smaller when the applied energy dose was adjusted compared to SAPYR (CFU-reductions of 3.4 log10 and 4.2 log10 against E. faecalis and A. naeslundii), or there was even no effect at all when the number of absorbed photons was adjusted compared to SAPYR. Since adjusting the numbers of absorbed photons is the more precise and adequate method from a photophysical point

  20. The impact of absorbed photons on antimicrobial photodynamic efficacy

    Directory of Open Access Journals (Sweden)

    Fabian eCieplik

    2015-07-01

    Full Text Available Due to increasing resistance of pathogens towards standard antimicrobial procedures, alternative approaches that are capable of inactivating pathogens are necessary in support of regular modalities. In this instance, the photodynamic inactivation of bacteria (PIB may be a promising alternative. For clinical application of PIB it is essential to ensure appropriate comparison of given photosensitizer (PS-light source systems, which is complicated by distinct absorption and emission characteristics of given PS and their corresponding light sources, respectively.Consequently, in the present study two strategies for adjustment of irradiation parameters are evaluated: (i matching energy doses applied by respective light sources (common practice and (ii by development and application of a formula for adjusting the numbers of photons absorbed by PS upon irradiation by their corresponding light sources. Since according to the photodynamic principle one PS molecule is excited by the absorption of one photon, this formula allows comparison of photodynamic efficacy of distinct PS per excited molecule.In light of this, the antimicrobial photodynamic efficacy of recently developed PS SAPYR was compared to that of clinical standard PS Methylene Blue (MB regarding inactivation of monospecies biofilms formed by Enterococcus faecalis and Actinomyces naeslundii whereby evaluating both adjustment strategies.PIB with SAPYR exhibited CFU-reductions of 5.1 log10 and 6.5 log10 against E. faecalis and A. naeslundii, respectively, which is declared as a disinfectant efficacy. In contrast, the effect of PIB with MB was smaller when the applied energy dose was adjusted compared to SAPYR (CFU-reductions of 3.4 log10 and 4.2 log10 against E. faecalis and A. naeslundii, or there was even no effect at all when the number of absorbed photons was adjusted compared to SAPYR. Since adjusting the numbers of absorbed photons is the more precise and adequate method from a

  1. Emitter/absorber interface of CdTe solar cells

    Science.gov (United States)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.

  2. Recurrence rate after absorbable tack fixation of mesh in laparoscopic incisional hernia repair

    DEFF Research Database (Denmark)

    Christoffersen, Mette W; Brandt, E; Helgstrand, F;

    2015-01-01

    absorbable or non-absorbable tacks for mesh fixation. METHODS: This was a nationwide consecutive cohort study based on data collected prospectively concerning perioperative information and clinical follow-up. Patients undergoing primary, elective, laparoscopic incisional hernia repair with absorbable or non...

  3. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    Science.gov (United States)

    Chevalier, Paul; Bouchon, Patrick; Jaeck, Julien; Lauwick, Diane; Bardou, Nathalie; Kattnig, Alain; Pardo, Fabrice; Haïdar, Riad

    2015-12-01

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3-5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material.

  4. Spray CVD for Making Solar-Cell Absorber Layers

    Science.gov (United States)

    Banger, Kulbinder K.; Harris, Jerry; Jin, Michael H.; Hepp, Aloysius

    2007-01-01

    Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds: [(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2]. The CuInS2 films produced in the experiments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and four-point-probe electrical tests.

  5. An Electrochromatography Chip with Integrated Waveguides for UV Absorbance Detection

    DEFF Research Database (Denmark)

    Gustafsson, Omar; Mogensen, Klaus Bo; Ohlsson, Pelle Daniel;

    2008-01-01

    A silicon-based microchip for electrochromatographic separations is presented. Apart from a microfluidic network, the microchip has integrated UV-transparent waveguides for detection and integrated couplers for optical fibers on the chip, yielding the most complete chromatography microchip to date...... to the waveguides. The entire oxidized silicon microchip structure is sealed with a glass lid. Reversed phase electrochromatographic separation of three neutral compounds is demonstrated using UV absorbance detection at 254 nm. Baseline separation of the analytes is achieved in less than two minutes....

  6. Turbulent particle flux to a perfectly absorbing surface

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pecseli, H.L.;

    2005-01-01

    The feasibility of an experimental method for investigations of the particle flux to an absorbing surface in turbulent flows is demonstrated in a Lagrangian as well as an Eulerian representation. A laboratory experiment is carried out, where an approximately homogeneous and isotropic turbulent flow...... is generated by two moving grids. The simultaneous trajectories of many small approximately neutrally buoyant polystyrene particles are followed in time. In a Lagrangian analysis, we select one of these as the centre of a ‘sphere of interception’, and obtain estimates for the time variation of the...

  7. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    A neutron absorbing article is described which comprises boron carbide particles and an irreversibly-cured phenol aldehyde condensation polymer cured to a continuous matrix about the boron carbide particles. Such an article may be used in spent fuel storage racks. It can be manufactured by mixing together a curable phenolic resin with boron carbide particles, compacting the mixture to an article of desired shape, curing the resin at an elevated temperature, impregnating the cured article with curable phenolic resin in liquid state, and curing the article again

  8. Thin Film Absorbers Based on Plasmonic Phase Resonances

    CERN Document Server

    Cui, Yanxia; Xu, Jun; He, Sailing; Fang, Nicholas X

    2010-01-01

    We demonstrate an efficient double-layer light absorber by exciting plasmonic phase resonances. We show that the addition of grooves can cause mode splitting of the plasmonic waveguide cavity modes and all the new resonant modes exhibit large absorptivity greater than 90%. Some of the generated absorption peaks have wide-angle characteristics. Furthermore, we find that the proposed structure is fairly insensitive to the alignment error between different layers. The proposed plasmonic nano-structure designs may have exciting potential applications in thin film solar cells, thermal emitters, novel infrared detectors, and highly sensitive bio-sensors.

  9. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA; Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA

    2016-06-17

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (..delta..EC >/= 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted

  10. Electromagnetic and microwave absorbing properties of hollow carbon nanospheres

    Indian Academy of Sciences (India)

    Tianchun Zou; Haipeng Li; Naiqin Zhao; Chunsheng Shi

    2013-04-01

    A mass of hollow carbon nanospheres (HCNSs) was fabricated by chemical vapour deposition of methane over Ni/Al2O3 catalyst at 600 °C. The products were characterized with high-resolution transmission electron microscope images, and the results showed that the external diameter of the HCNSs was 5–90nm and the thickness of wall was about 10 nm. Microwave absorption of HCNSs/paraffin composites was mainly attributed to dielectric loss. The microwave-absorbing peaks of composites containing HCNSs shifts to low frequencies, and the bandwidth below −10 dB and minimum RL decrease with increasing thickness of HCNSs/paraffin composites.

  11. Redesign of a Shock Absorber Piston Using Sintering

    OpenAIRE

    Kus, Ömer; Mojtabavi, Hamed

    2012-01-01

    The main objective of this report is to re-design of a product by substituting for another manufacturing process in order to get a cheaper product with the same function and quality. The current shock absorber piston is manufactured by the machining process at Öhlins Racing AB Company. Power Metallurgy (P/M) method could be a good substitute process to meet the technical requirements of the current piston with total lower cost. In this case, the whole process of product development gets invol...

  12. Effect of absorbing grounds on acoustic radiation of tyres

    OpenAIRE

    Duhamel, D.; HAMET,JF; Klein, P; ANFOSSO,F; YIN, HP; GAUTIER,JL; MAUNIER,Y

    2006-01-01

    Tyre noise is generated by surface vibrations or by air pumping and can be amplified by the horn effect which is the increase in radiation by the geometric horn between the tyre and the ground. The global efficiency of this radiation depends on the absorbing properties of the ground and an accurate model of tyre noise radiation must take this effect into account. Here the results of a detailed boundary element model including three dimensional real geometries and the impedance of the ground a...

  13. Effect of absorbing grounds on acoustic radiation of tyres

    OpenAIRE

    Duhamel, D.; HAMET,JF; Klein, P; ANFOSSO LEDEE, F; Yin , H.; GAUTIER,JL; Meunier, Y.

    2006-01-01

    Tyre noise is generated by surface vibrations or by air pumping and can be amplified by the horn effect which is the increase in radiation by the geometric horn between the tyre and the ground. The global efficiency of this radiation depends on the absorbing properties of the ground and an accurate model of tyre noise radiation must take this effect into account. Here the results of a detailed element model including three dimensional real geometries and the impedance of the ground are presen...

  14. The absorbed dose to blood from blood-borne activity

    Science.gov (United States)

    Hänscheid, H.; Fernández, M.; Lassmann, M.

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10-11 Gy·s-1·Bq-1·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1-1.2·10-11 Gy·s-1·Bq-1·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m.

  15. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...

  16. Propagation of squeezed radiation through amplifying or absorbing random media

    CERN Document Server

    Patra, M

    2000-01-01

    We analyse how nonclassical features of squeezed radiation (in particular the sub-Poissonian noise) are degraded when it is transmitted through an amplifying or absorbing medium with randomly located scattering centra. Both the cases of direct photodetection and of homodyne detection are considered. Explicit results are obtained for the dependence of the Fano factor (the ratio of the noise power and the mean current) on the degree of squeezing of the incident state, on the length and the mean free path of the medium, the temperature, and on the absorption or amplification rate.

  17. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Paul [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Minao, Laboratoire de Photonique et Nanostructures (LPN), CNRS, Université Paris-Saclay, Route de Nozay, 91460 Marcoussis (France); Bouchon, Patrick, E-mail: patrick.bouchon@onera.fr; Jaeck, Julien; Lauwick, Diane; Kattnig, Alain [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Bardou, Nathalie; Pardo, Fabrice [Minao, Laboratoire de Photonique et Nanostructures (LPN), CNRS, Université Paris-Saclay, Route de Nozay, 91460 Marcoussis (France); Haïdar, Riad [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); École Polytechnique, Département de Physique, 91128 Palaiseau (France)

    2015-12-21

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3–5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material.

  18. A broadband micro-machined far-infrared absorber

    Science.gov (United States)

    Wollack, E. J.; Datesman, A. M.; Jhabvala, C. A.; Miller, K. H.; Quijada, M. A.

    2016-05-01

    The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is >0.95 from 1 to 20 THz (300-15 μm) over a temperature range spanning 5-300 K. The meta-material, realized from an array of tapers ≈100 μm in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model.

  19. MAGIICAT I. THE Mg II ABSORBER-GALAXY CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Nikole M.; Churchill, Christopher W. [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G.; Murphy, Michael T., E-mail: nnielsen@nmsu.edu [Swinburne University of Technology, Victoria 3122 (Australia)

    2013-10-20

    We describe the Mg II Absorber-Galaxy Catalog, MAGIICAT, a compilation of 182 spectroscopically identified intermediate redshift (0.07 ≤ z ≤ 1.1) galaxies with measurements of Mg II λλ2796, 2803 absorption from their circumgalactic medium within projected distances of 200 kpc from background quasars. In this work, we present 'isolated' galaxies, which are defined as having no spectroscopically identified galaxy within a projected distance of 100 kpc and a line of sight velocity separation of 500 km s{sup –1}. We standardized all galaxy properties to the ΛCDM cosmology and galaxy luminosities, absolute magnitudes, and rest-frame colors to the B- and K-band on the AB system. We present galaxy properties and rest-frame Mg II equivalent width, W{sub r} (2796), versus galaxy redshift. The well-known anti-correlation between W{sub r} (2796) and quasar-galaxy impact parameter, D, is significant to the 8σ level. The mean color of MAGIICAT galaxies is consistent with an Sbc galaxy for all redshifts. We also present B- and K-band luminosity functions for different W{sub r} (2796) and redshift subsamples: 'weak absorbing' [W{sub r} (2796) < 0.3 Å], 'strong absorbing' [W{sub r} (2796) ≥ 0.3 Å], low redshift (z < (z)), and high redshift (z ≥ (z)), where (z) = 0.359 is the median galaxy redshift. Rest-frame color B – K correlates with M{sub K} at the 8σ level for the whole sample but is driven by the strong absorbing, high-redshift subsample (6σ). Using M{sub K} as a proxy for stellar mass and examining the luminosity functions, we infer that in lower stellar mass galaxies, Mg II absorption is preferentially detected in blue galaxies and the absorption is more likely to be weak.

  20. Identifying universality classes of absorbing phase transitions by block renormalization

    International Nuclear Information System (INIS)

    We propose a renormalization scheme that can be used as a reliable method to identify universality classes of absorbing phase transitions. Following the spirit of Wilson's block-spin renormalization group, the lattice is divided into blocks, assigning to them an effective state by a suitable Boolean function of the interior degrees of freedom. The effective states of adjacent blocks form certain patterns which are shown to occur with universal probability ratios if the underlying process is critical. Measuring these probability ratios in the limit of large block sizes, one obtains a set of universal numbers as an individual fingerprint for each universality class

  1. Deep-groove nickel gratings for solar thermal absorbers

    Science.gov (United States)

    Ahmad, N.; Núñez-Sánchez, S.; Pugh, J. R.; Cryan, M. J.

    2016-10-01

    This paper presents measured and modelled optical absorptance and reflectance for deep-groove nickel nano-gratings in the 450-950 nm wavelength range. The structures have been fabricated using focused ion beam etching and characterised using Fourier spectroscopy and the field distributions on the gratings have been studied using finite difference time domain modelling. Realistic grating structures have been modelled based on focused ion beam cross sections and these results are in good agreement between measured and modelled results. The roles of surface plasmon polaritons and slot modes are highlighted in the strong broadband absorbance that can be achieved with these structures.

  2. A Broadband Micro-machined Far-Infrared Absorber

    CERN Document Server

    Wollack, Edward J; Jhabvala, Christine A; Miller, Kevin H; Quijada, Manuel A

    2016-01-01

    The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is $>\\,0.95$ from ${\\rm 1-20\\,THz}$ (${\\rm 300-15\\,\\mu m}$) over a temperature range spanning ${\\rm 5-300\\,K}$. The meta-material, realized from an array of tapers ${\\rm \\approx 100\\,\\mu m}$ in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model.

  3. Discovery of dense absorbing clouds in Cygnus X-2

    Science.gov (United States)

    Balucinska-Church, Monika; Schulz, Norbert S.; Church, Michael; Wilms, Joern; Hanke, Manfred

    We report results of several day-long observation of Cygnus X-2 using Chandra and XMM-Newton. The source displayed extensive dipping events in the lightcurve often seen before in the source and causing an additional track in the hardness-intensity Z-track diagram. For the first time we are able to investigate these events using both high efficiency CCD continuum spectra and highly-resolved grating data. In the XMM PN instrument, the dips are 30% deep and resemble those in the low mass X-ray binary dip sources. However, remarkably, in the Chandra HEG and MEG no absorption or edge features can be seen corresponding to expected increases of column density in excess of the interstellar column. Non-dip and dip PN spectra are fitted well with a model containing point-like blackbody emission which we associate with the neutron star plus Comptonized emission of the ADC which must be extended. Dipping can be explained without absorption of the blackbody emission, but by covering 40% of the extended ADC emission by dense absorber. In the covered fraction almost no flux remains and so no significant additional optical depths appear in the neutral K edges in the grating spectra. The dipping appears not to be explicable by absorption in the outer disk, but requires large, dense blobs of absorber that do not overlap the neutron star in the line-of-sight. The nature of these blobs is unknown.

  4. The thermal instability of the warm absorber in NGC 3783

    CERN Document Server

    Goosmann, R W; Mouchet, M; Dumont, A -M; Behar, E; Godet, O; Goncalves, A C; Kaspi, S

    2016-01-01

    We model the observed X-ray spectral continuum shape, ionic column densities, and absorption measure distribution (AMD) of the warm absorber in the Seyfert galaxy NGC 3783. We assume a photo-ionized medium with a uniform total (gas+radiation) pressure. The irradiation causes the wind to be radiation pressure compressed (RPC). We compare the observational characteristics derived from the 900 ksec Chandra observation to radiative transfer computations in pressure equilibrium using the radiative transfer code TITAN. We explore different values of the ionization parameter xi of the incident flux and adjust the hydrogen-equivalent column density, N_H0 of the warm absorber to match the observed soft X-ray continuum. We derive theoretical column densities for a broad range of ionic species of iron and neon and an AMD that we compare to the observations. We find an extension of the degeneracy between xi and N_H0 for the constant pressure models previously discussed for NGC 3783. Including the ionic column densities o...

  5. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders;

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include plan...... of the dye Bromothymol Blue. The influence of three different bonding procedures on the spectrally resolved propagation loss of the integrated waveguides between 500 nm and 900 nm was furthermore determined.......A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar...... waveguides and fiber-to-waveguide coupler structures, are defined in the same processing step. This results in self-alignment of all components and enables a fabrication and packaging time of only one day. The fabrication scheme has recently been presented elsewhere for fluorescence excitation of beads...

  6. Selection and characterization of new absorbents for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Ma' mun, Sholeh

    2005-09-01

    Removal of acidic gases, in particular CO2, is an important industrial operation. Carbon dioxide is produced in large quantities by fossil-fuel-fired power plants, steel production, the production of petrochemicals, cement production, and natural gas purification. The global climate change, where CO2 is found to be a major contributor, is one of the most important and challenging environmental issues facing the world community. This has motivated intensive research on CO2 capture and storage. Carbon dioxide capture by an absorption process is one of the most common industrial technologies today. Recent economic studies indicate that the process will also remain competitive in the future. One of the key improvements under development is new, faster and more energy-efficient absorbents. A chemical to be used as a commercial absorbent must have high net cyclic capacity, high absorption rate for CO2 and good chemical stability. Alkanolamines are the most commonly used chemical absorbents for the removal of acidic gases today. In the first part of this thesis, an experimental screening of new absorbents for CO2 capture was performed by absorption of CO2 into both single absorbents and absorbent mixtures for amine-based and non-amine-based systems at 40 deg. Celsius From testing of approx. 30 systems, it was found that an aqueous 30 mass % AEEA (2-(2-aminoethyl-amino)ethanol) solution seems to be a potentially good absorbent for capturing CO2 from atmospheric flue gases. It offers high absorption rate combined with high absorption capacity. In addition toAEEA, MMEA (2-(methylamino)ethanol) also needs to be considered. It could have a good potential when used in contactors where the two phases are separated, like in membrane contactors, whereas indications from the study showed foaming tendencies that will make it difficult to use in ordinary towers. AEEA as the selected absorbent obtained from the screening tests was further investigated to determine its vapor

  7. Water Absorbing Plantation Clay for Vertical Greenery System

    Directory of Open Access Journals (Sweden)

    Yu Lih-Jiun

    2016-01-01

    Full Text Available With the arises of environmental conscious, the usage of vertical garden system has become more popular in urban cities. Citizens can enjoys the benefits of energy and cost saving besides ornamental effect. More investigations have been conducted on green facades led to the cities ecological enhancement.However, limited plants species can be planted for green facades systems as this system does not provide sufficient soil and nutrients for common plants. Alternative plantation methods such as planted box and felt system required additional maintenance attention. The idea of using clay composite which consists of nutritious soil, water absorbing polymer and flexible cement clay potentially become alternative vertical greenery systems that offers economic and sustainable plantation platform for more variety of plants.The fabricating of clay composite involved three processes, they are: mixing, moulding and drying. Physical properties characterisation (density, pH, compression test, aging test and water immersion test were tested on the dried fabricated clay composite to ensure their sustainability in tropical climate. The results showed that clay composite with 1.5 wt% of cement and 0.3 wt% superabsorbent polymer shows optimum water absorbing properties. This system are expected to enable more agriculture activities in urban living.

  8. PREPARATION AND SWELLING PROPERTIES OF SUPER-ABSORBENT POLYMER

    Institute of Scientific and Technical Information of China (English)

    LIU Mingzhu; CHENG Rongshi; WU Jingjia

    1996-01-01

    A super-absorbent polymer is prepared by graft polymerizing acrylamide (AM) onto potato starch using ceric ammonium nitrate (CAN) and N, N'-methylene-bis-acrylamide (bisAM) as an initiator and cross-linking agent respectively, and then subjecting the potato starch- poly(acrylamide)(PAM) graft copolymer (SPAM) to alkaline saponification. The water absorbency (WA) of the sample is nearly 5000 g H2O/g for dry sample in 24 h at room temperature and is far larger than that of reported in the literature[1]. The variables affecting the WA were investigated and optimized, they were: concentrations of potato starch, AM, CAN and bisAM were 26.3 g/L, 1.14 mol/L, 10.3 mmol/L and 0.53 mmol/L, respectively. The amount of sodium hydroxide was 15 g and the temperatures of graft copolymerization and saponification reactions were 60℃ and 95℃. The time of graft copolymerization and saponification reactions was 2 h, respectively.

  9. Solar biogas digester with built-in reverse absorber heater

    International Nuclear Information System (INIS)

    In this work the design, fabrication and investigation of a solar biogas digester with built-in RAH (Reverse Absorber Heater) is presented. The maximum temperature (50 deg. C) inside of the methane tank was taken as a main parameter at the design of the digester. Using energy balance equation for the case of a static mass of fluid being heated; the parameters of thermal insulation of the methane tank were counted. The biogas digester is consisting of methane tank with built-in solar RAH to utilize solar energy for the heating of the slurry prepared from the different organic wastes (dung, sewage, food wastes etc). The methane tank was filled up to 70% of volume by organic wastes of the GIK Institute sewage, firstly, and secondly, by sewage and cow dung as well. During three months (October-December, 2009) and two months (February-March, 2010) the digester was investigated. The solar irradiance incident to the absorber, slurry's temperature and ambient temperature were measured. It was found that using sewage only and sewage with cow dung the retention times was 4 weeks and two weeks respectively and biogas quantity produced was 0.4 and 8.0 m 3 respectively. In addition, biogas upgradation scheme for removal of carbon dioxide, hydrogen sulphide and water vapor from biogas and conversion of biogas energy conversion into electric power is also discussed. (author)

  10. Evaluation of Sternal Closure with Absorbable Polydioxanone Sutures in Children

    Directory of Open Access Journals (Sweden)

    Hamid Bigdelian

    2014-03-01

    Full Text Available Introduction: Sternal dehiscence, sternal wound infection and mediastinitis are troublesome complications following median sternotomy which are major causes of morbidity and mortality of patients. Synthetic polydioxanone absorbable suture seems effective in prevention of these complications in children undergoing open heart surgery.Methods: During 2 years period, 620 patients who underwent median sternotomy were studied. The efficacy of absorbable polydioxanone suture was tested on patients using figure-of-eight suture technique. The patients’ age ranged from newborn to 15 years old. All surgical interventions were performed according to a standard protocol.Results: No sternal sutures were broken during the sternal closure and no case of mediastinitis was seen. Two patients experienced sternal dehiscence (0.32%. Follow-up period of patients were established between 1 to 132 months after open heart surgery.Conclusion: Sternal closure with the polydioxanone suture in combination with figure-of-eight technique is a safe and suitable method in children with good clinical results.

  11. Absorbed dose determination in photon fields using the tandem method

    International Nuclear Information System (INIS)

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF2: Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with 90Sr-90Y, calibrated with the energy of 60Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than 5%. The reason of the answers of the CaF2: Dy and LiF: Mg, Ti, according to the energy of the radiation, allows us to establish the effective energy of photons and the absorbed dose, with a margin of error of less than 10% and 20% respectively

  12. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  13. The optical properties of using graphene as a saturable absorber

    Science.gov (United States)

    Keschl, Nathan; Schibli, Thomas; Lee, Chien-Chung; Xie, Wanyan

    2012-10-01

    Graphene, a single-atom layer of carbon atoms in a honeycomb lattice, has been on the forefront of research since it's discovery in 2005 [1]. Although it has many applications, my research is specialized in the field of utilizing the graphene as a saturable absorber for mode-locking lasers. Currently, the most common method to mode-lock a laser is by using a Semi-conductor Saturable Absorber Mirror (SESAM). Graphene is a substitute for SESAMs with pulse generation as low as 260 fs [2]. However, graphene will begin to ``burn'' as the laser approaches the intensity it needs to mode-lock. We have experimented with various methods of protecting the graphene from burning so it can be used at higher intensity domains.[4pt] [1] A. K. Geim, K. S. Novoselov, ``The rise of graphene.'' Nat Mater. 2007/03//print[0pt] [2] G. Acosta, J.S. Bunch, C.C. Lee, T.R. Schibli, ``Ultra-Short Optical Pulse Generation with Single-Layer Graphene.'' Journal of Nonlinear Optical Physics and Materials, Volume 19, Issue 04, pp. 767-771. 00/2010.

  14. Radiolysis of hexane absorbing on borosilicate surface research

    International Nuclear Information System (INIS)

    The radiolysis process of hexane absorbing on borosilicate with various hydration degree is being investigated. Samples of borosilicate were treated by thermal vacuum at and T=493 K and P=1.33·10-4 Pa. The absorption of water and hexane was carried out on manometric equipment at 77 K temperature. An irradiation was conducted by γ-rays from 60Co source in the sealed in ampoules at 77 K with 10 kGy dose. In the irradiated samples the ESR spectrum with wide range that is characteristic for irradiated alkanes in the absorbing condition was observed. With increase of temperature of registration narrowing lines and improved sanction connected to recombination processes of radicals was observed. With increase of a hydration of a surface the redistribution and reduction of intensity separate component of a spectrum was observed. It specifies formation and stabilization bonding of radicals at smaller filling of a surface borosilicate. To reveal structure of radiolysis products IR spectra of desorbed from a borosilicate surface gas products were received at 333 K. In the field of low-frequency deformation of fluctuations CH2-groups the doublet strip with maxima was observed at 790 cm-1 and 770 cm-1 which is referred to low-molecular of radiolysis products

  15. Neutron absorber plate and radioactive material transportation cask

    International Nuclear Information System (INIS)

    Aluminum alloy flame-coating layers are formed at the outer surface of a neutron absorber plate in order to prevent corrosion due to potential difference. However, pin holes of micron order are sometimes formed on the flame-coating membranes, which are hard to be found by usual inspection. Then, ferrous flame-coating membranes are formed at the outer surface of boron carbide and aluminum alloy flame-coating membranes are formed at the outer surface thereof. The outer surface of a boron carbide plate is coated with the ferrous flame-coating membranes instead of being coated with an external plate made of neutron cells, and an aluminum alloy flame-coating membranes or mixed flame-coating layers of aluminum oxide and titania are coated thereover in order to prevent rusts. Whether the pin holes are present or not can be confirmed easily by a ferroxyl test. If there are pin holes, flame-coating is applied again to form complete membranes. Then, since it is no more necessary to fix a neutron absorbing cell at the outer surface of a fuel cell by means of welding, production cost can be reduced. (N.H.)

  16. Preparation of nanosize polyaniline and its utilization for microwave absorber.

    Science.gov (United States)

    Abbas, S M; Dixit, A K; Chatterjee, R; Goel, T C

    2007-06-01

    Polyaniline powder in nanosize has been synthesized by chemical oxidative route. XRD, FTIR, and TEM were used to characterize the polyaniline powder. Crytallite size was estimated from XRD profile and also ascertained by TEM in the range of 15 to 20 nm. The composite absorbers have been prepared by mixing different ratios of polyaniline into procured polyurethane (PU) binder. The complex permittivity (epsilon' - jepsilon") and complex permeability (mu' - jmu") were measured in X-band (8.2-12.4 GHz) using Agilent network analyzer (model PNA E8364B) and its software module 85071 (version 'E'). Measured values of these parameters were used to determine the reflection loss at different frequencies and sample thicknesses, based on a model of a single layered plane wave absorber backed by a perfect conductor. An optimized polyaniline/PU ratio of 3:1 has given a minimum reflection loss of -30 dB (99.9% power absorption) at the central frequency 10 GHz and the bandwidth (full width at half minimum) of 4.2 GHz over whole X-band (8.2 to 12.4 GHz) in a sample thickness of 3.0 mm. The prepared composites can be fruitfully utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology). PMID:17655005

  17. Selection and characterization of new absorbents for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Ma' mun, Sholeh

    2005-09-01

    Removal of acidic gases, in particular CO2, is an important industrial operation. Carbon dioxide is produced in large quantities by fossil-fuel-fired power plants, steel production, the production of petrochemicals, cement production, and natural gas purification. The global climate change, where CO2 is found to be a major contributor, is one of the most important and challenging environmental issues facing the world community. This has motivated intensive research on CO2 capture and storage. Carbon dioxide capture by an absorption process is one of the most common industrial technologies today. Recent economic studies indicate that the process will also remain competitive in the future. One of the key improvements under development is new, faster and more energy-efficient absorbents. A chemical to be used as a commercial absorbent must have high net cyclic capacity, high absorption rate for CO2 and good chemical stability. Alkanolamines are the most commonly used chemical absorbents for the removal of acidic gases today. In the first part of this thesis, an experimental screening of new absorbents for CO2 capture was performed by absorption of CO2 into both single absorbents and absorbent mixtures for amine-based and non-amine-based systems at 40 deg. Celsius From testing of approx. 30 systems, it was found that an aqueous 30 mass % AEEA (2-(2-aminoethyl-amino)ethanol) solution seems to be a potentially good absorbent for capturing CO2 from atmospheric flue gases. It offers high absorption rate combined with high absorption capacity. In addition toAEEA, MMEA (2-(methylamino)ethanol) also needs to be considered. It could have a good potential when used in contactors where the two phases are separated, like in membrane contactors, whereas indications from the study showed foaming tendencies that will make it difficult to use in ordinary towers. AEEA as the selected absorbent obtained from the screening tests was further investigated to determine its vapor

  18. Solar Biogas Digester with Built-In Reverse Absorber Heater

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-01-01

    Full Text Available In this work the design, fabrication and investigation of a solar biogas digester with built-in RAH (Reverse Absorber Heater is presented. The maximum temperature (50 o C inside of the methane tank was taken as a main parameter at the design of the digester. Using energy balance equation for the case of a static mass of fluid being heated; the parameters of thermal insulation of the methane tank were counted. The biogas digester is consisting of methane tank with built-in solar RAH to utilize solar energy for the heating of the slurry prepared from the different organic wastes (dung, sewage, food wastes etc. The methane tank was filled up to 70% of volume by organic wastes of the GIK Institute sewage, firstly, and secondly, by sewage and cow dung as well. During three months (October-December, 2009 and two months (February-March, 2010 the digester was investigated. The solar irradiance incident to the absorber, slurry's temperature and ambient temperature were measured. It was found that using sewage only and sewage with cow dung the retention times was 4 weeks and two weeks respectively and biogas quantity produced was 0.4 and 8.0 m 3 respectively. In addition, biogas upgradation scheme for removal of carbon dioxide, hydrogen sulphide and water vapor from biogas and conversion of biogas energy conversion into electric power is also discussed.

  19. Beam Pipe HOM Absorber for 750 MHz RF Cavity Systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Neubauer, Michael

    2014-10-29

    This joint project of Muons, Inc., Cornell University and SLAC was supported by a Phase I and Phase II grant monitored by the SBIR Office of Science of the DOE. Beam line HOM absorbers are a critical part of future linear colliders. The use of lossy materials at cryogenic temperatures has been incorporated in several systems. The design in beam pipes requires cylinders of lossy material mechanically confined in such a way as to absorb the microwave energy from the higher-order modes and remove the heat generated in the lossy material. Furthermore, the potential for charge build-up on the surface of the lossy material requires the conductivity of the material to remain consistent from room temperature to cryogenic temperatures. In this program a mechanical design was developed that solved several design constraints: a) fitting into the existing Cornell load vacuum component, b) allowing the use of different material compositions, c) a thermal design that relied upon the compression of the lossy ceramic material without adding stress. Coating experiments were performed that indicated the design constraints needed to fully implement this approach for solving the charge build-up problem inherent in using lossy ceramics. In addition, the ACE3P program, used to calculate the performance of lossy cylinders in beam pipes in general, was supported by this project. Code development and documentation to allow for the more wide spread use of the program was a direct result of this project was well.

  20. Evaluation of lens absorbed dose with Cone Beam IGRT procedures.

    Science.gov (United States)

    Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J

    2015-12-01

    The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71  ±  0.07 mGy/CBCT and 0.70  ±  0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account. PMID:26457404

  1. Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Ibarra-Bahena

    2014-02-01

    Full Text Available The absorber is a major component of absorption cycle systems, and its performance directly impacts the overall size and energy supplies of these devices. Absorption cooling and heating cycles have different absorber design requirements: in absorption cooling systems, the absorber works close to ambient temperature, therefore, the mass transfer is the most important phenomenon in order to reduce the generator size; on the other hand, in heat transformer absorption systems, is important to recover the heat delivered by exothermic reactions produced in the absorber. In this paper a review of the main experimental results of different absorber designs reported in absorption heat pump cycles is presented.

  2. Study of Microwave Absorbing Performances of Nanometer Fe-Al Solid solution

    Institute of Scientific and Technical Information of China (English)

    Xiaohui Wang; Xiaoping Liang; Shaobo Xin

    2006-01-01

    In this paper, Fe-Al solid solution was prepared by mechanical alloying technology, and Fe-Al powder was dispersed into unsaturated polyester (UP) with different contents as absorber to form mixture Fe-Al-UP. The results indicate that the alloying process is almost accomplished and most of the particles are nanometer. Meanwhile, the microwave absorbability of Fe-Al-UP samples in frequency from 0.3 MHz to 1.5 GHz was studied. The results indicate that the more the absorber, the better the absorbing property. The absorbing property of Fe-50Al-UP was slightly higher than Fe-28Al-UP.

  3. Space radiation absorbed dose distribution in a human phantom.

    Science.gov (United States)

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  4. Do laser interferometers absorb energy from gravitational waves ?

    CERN Document Server

    Ma, Yiqiu; Zhao, Chunnong; Kells, William

    2014-01-01

    In this paper we discuss the energy interaction between gravitational waves and laser interferom- eter gravitational wave detectors. We show that the widely held view that the laser interferometer gravitational wave detector absorbs no energy from gravitational waves is only valid under the approximation of a frequency-independent optomechanical coupling strength and a pump laser without detuning with respect to the resonance of the interferometer. For a strongly detuned interferometer, the optical-damping dynamics dissipates gravitational wave energy through the interaction between the test masses and the optical ?eld. For a non-detuned interferometer, the frequency-dependence of the optomechanical coupling strength causes a tiny energy dissipation, which is proved to be equivalent to the Doppler friction raised by Braginsky et.al.

  5. Flexible metamaterial absorbers with multi-band infrared response

    Science.gov (United States)

    Dayal, Govind; Ramakrishna, S. Anantha

    2015-01-01

    A flexible metamaterial with a tri-layer metal-dielectric-metal structure is fabricated by combining Excimer laser micromachining of a polyimide sheet and oblique angle physical vapour deposition methods. Excimer laser micromachining is used to generate an array of micro-disks on the flexible polymer sheet followed by physical vapour deposition at normal incidence to produce continuous metal and dielectric layers while oblique angle deposition of metal vapour is used to finally form discrete oblate ellipsoids on top of the micro-disks. The fabricated metamaterial shows multi-band metamaterial absorption exceeding 90% simultaneously over infrared bands centred at 3 µm, 5 µm, and 13.85 µm. The multi-band absorption arises due to multipole resonances of the disk structure and is accurately modelled by electromagnetic simulation as well. A theoretical model of a perfect absorber as an array of optimally impedance matched antennas is also presented.

  6. Calculations of a wideband metamaterial absorber using equivalent medium theory

    Science.gov (United States)

    Huang, Xiaojun; Yang, Helin; Wang, Danqi; Yu, Shengqing; Lou, Yanchao; Guo, Ling

    2016-08-01

    Metamaterial absorbers (MMAs) have drawn increasing attention in many areas due to the fact that they can achieve electromagnetic (EM) waves with unity absorptivity. We demonstrate the design, simulation, experiment and calculation of a wideband MMA based on a loaded double-square-loop (DSL) array of chip resisters. For a normal incidence EM wave, the simulated results show that the absorption of the full width at half maximum is about 9.1 GHz, and the relative bandwidth is 87.1%. Experimental results are in agreement with the simulations. More importantly, equivalent medium theory (EMT) is utilized to calculate the absorptions of the DSL MMA, and the calculated absorptions based on EMT agree with the simulated and measured results. The method based on EMT provides a new way to analysis the mechanism of MMAs.

  7. Bottom Slamming on Heaving Point Absorber Wave Energy Devices

    DEFF Research Database (Denmark)

    De Backer, Griet; Vantorre, Marc; Frigaard, Peter;

    2010-01-01

    Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy...... occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45 cone is approximately 2, whereas the power absorption is only 4......-8% higher for the 45 degrees cone. This work illustrates the need to include slamming considerations aside from power absorption criteria in the buoy shape design process and the control strategy....

  8. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    KAUST Repository

    Chen, Pai-Yen

    2015-03-31

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  9. Influence of radioactive contaminants on absorbed dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Several popular radiopharmaceutical products contain low levels of radioactive contaminants. These contaminants increase the radiation absorbed dose to the patient without any increased benefit and, in some cases, with a decrease in image quality. The importance of a contaminant to the radiation dosimetry picture is a function of 1) the contaminant level, 2) the physical half-life of the contaminant, 3) the organ uptake and the biological half-time of the contaminant in the various body systems, and 4) the decay mode, energy, etc. of the contaminant. The general influence of these parameters is discussed in this paper; families of curves are included that reflect the changing importance of contaminant dosimetry with respect to the primary radionuclide as a function of these variables. Several specific examples are also given of currently used radiopharmaceutical products which can contain radioactive contaminants (I-123, In-111, Tl-201, Ir-191m, Rb-82, Au-195m). 7 references, 8 figures, 4 tables

  10. Ca II Absorbers in the Sloan Digital Sky Survey: Statistics

    CERN Document Server

    Sardane, Gendith M; Rao, Sandhya M

    2014-01-01

    We present the results of a survey for CaII 3934,3969 absorption-line systems culled from ~ 95,000 Sloan Digital Sky Survey (SDSS) Data Release 7 and Data Release 9 quasar spectra. With 435 doublets identified in the catalog, this list is the largest CaII catalog compiled to date, spanning redshifts z = 0.3 A, is n_0=0.017 +/- 0.001. In comparison to MgII surveys, we found that only 3% of MgII systems in the SDSS have CaII, confirming that it is rare to identify CaII in quasar absorption-line surveys. We also report on some preliminary investigations of the nature of the two populations of CaII absorbers, and show that they can likely be distinguished using their MgII properties.

  11. First results on study of gadolinium as burnable absorber

    International Nuclear Information System (INIS)

    Following on with the work included in the 'Burnable absorbers research plan' several experiments were carried out oriented to determine Ga2O3 burn up. Cold tests were performed and samples were irradiated in the RA-3 reactor. In this paper, some calculated values are presented together with their comparisons with experimental ones. The parameters foreseen for performing the experiments were verified and also the predictions on burn up of uranium and gadolinium isotopes concentrations. These results imply that the nuclear data of these isotopes included in the library are satisfactory. Next steps will be to measure other isotopes concentrations, gamma spectrum, and the irradiation of one pellet to determine self shielding effects in order to obtain effective cross sections i.e. for CAREM geometry. (author)

  12. Chock refraction of electromagnetic waves in absorbing crystals

    International Nuclear Information System (INIS)

    The topological peculiarities of the wave surfaces self-intersection near the singular optical axes of the absorbing crystal are studied. The complex polarization fields distributions in the vicinity of the degenerated directions are identified. It is shown that the polarization ellipses rotation during the m wave normal passing round the optical axis is characterized by the Poincare index n = 1/4. The chock refraction of the electromagnetic waves on the line of the hollows intersection of the refraction indexes surface is forecasted and theoretically studied (by the rhombic crystal example). It is shown that the P-bar± energy average fluxes only in the central chock area are close by direction to the n± normals to the refraction surface, i.e. only there, where polarization is almost linear and the waves group velocity is well determined. The possibilities of the chock refraction observation are analyzed

  13. Dysprosium hafnate as absorbing material for control rods

    International Nuclear Information System (INIS)

    Dysprosium hafnate is proposed as a promising absorbing material for control rods of thermal nuclear reactors. The properties of dysprosium hafnate pellets with different Dy and Hf contents are presented in this article. The fluorite phase is characterized by the density range 6.8-7.8 g/cm3 and; the thermal diffusivity achieves 0.58-0.83 mm2/s at 20 deg. C, thermal conductivity of 1.5-2.0 W/(K m) and TLEC of (8.4-8.6) x 10-6 K-1 at 20 deg. C. The temperature dependence of the thermophysical properties of dysprosium hafnate are presented. The neutron absorption efficiency of dysprosium hafnate was estimated in comparison with boron carbide. The radiation resistance of pellets after irradiation in the BOR-60 reactor is presented as well

  14. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.

    Science.gov (United States)

    Mulyadi, Arie; Zhang, Zhe; Deng, Yulin

    2016-02-01

    Aerogels based on cellulose nanofibrils (CNFs) have been of great interest as absorbents due to their high absorption capacity, low density, biodegradability, and large surface area. Hydrophobic aerogels have been designed to give excellent oil absorption tendency from water. Herein, we present an in situ method for CNF surface modification and hydrophobic aerogel preparation. Neither solvent exchange nor fluorine chemical is used in aerogel preparations. The as-prepared hydrophobic aerogels exhibit low density (23.2 mg/cm(-3)), high porosity (98.5%), good flexibility, and solvent-induced shape recovery property. Successful surface modification was confirmed through field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and water contact angle measurements. The hydrophobic aerogels show high absorption capacities for various oils, depending on liquid density, up to 47× their original weight but with low water uptake (aerogel). PMID:26761377

  15. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Jepsen, Peter Uhd

    2012-01-01

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial. PMID:22274387

  16. Energy absorbing efficiency of various aluminum foam filled tube

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Man; Lee, Won Sik; Ko, Se Hyun [Korea Institute of Industrial Technology, Chonan (Korea, Republic of)

    2005-04-15

    In this study various types of A1 foam filled tubes were fabricated using foam of A1-12wt.%Si by powder metallurgical process. Their energy absorbing efficiencies were investigated with compression test, focusing on the structure and bonding effects between tube and foam. The results show that the energy absorption is affected by structure of A1 foam filled tube. Among fully foam filled tube, partially foam filled tube and A1 hollow tube with the same weight, fully foam filled tube seems to have superior potential for industrial application to energy absorption parts. Also energy absorption efficiency is increased by interaction between tube and foam and especially, bonding between tube and metallic foam gives rise to increase the energy absorption efficiency up to above 1.2 times. This results from the arrest of folding of tube by metallic foam and the change of stress mode from uni-axial to multi-axial during compression.

  17. Detecting Damped Lyman-$\\alpha$ Absorbers with Gaussian Processes

    CERN Document Server

    Garnett, Roman; Bird, Simeon; Schneider, Jeff

    2016-01-01

    We develop an automated technique for detecting damped Lyman-$\\alpha$ absorbers (DLAs) along spectroscopic sightlines to quasi-stellar objects (QSOs or quasars). The detection of DLAs in large-scale spectroscopic surveys such as SDSS-III sheds light on galaxy formation at high redshift, showing the nucleation of galaxies from diffuse gas. We use nearly 50 000 QSO spectra to learn a novel tailored Gaussian process model for quasar emission spectra, which we apply to the DLA detection problem via Bayesian model selection. We propose models for identifying an arbitrary number of DLAs along a given line of sight. We demonstrate our method's effectiveness using a large-scale validation experiment, with excellent performance. We also provide a catalog of our results applied to 162 861 spectra from SDSS-III data release 12.

  18. Physicochemical properties of calcium polycarbophil, a water-absorbing polymer.

    Science.gov (United States)

    Yamada, T; Kitayama, M; Yamazaki, M; Nagata, O; Tamaj, I; Tsuji, A

    1996-07-01

    The physicochemical properties of calcium polycarbophil were examined. Calcium polycarbophil was decalcified rapidly under acidic conditions, affording polycarbophil. Polycarbophil absorbed about 10 times its own weight of water under acidic conditions, but the swelling ratio markedly increased at above pH 4.0 and reached 70 times the initial weight under neutral conditions. The swelling of polycarbophil was not affected by non-ionic osmolarity, but was affected by ionic strength, showing a decrease with increase of ionic strength. Monovalent metal ions such as sodium and potassium ions in gastrointestinal fluid did not reduce the equilibrium swelling of polycarbophil, but divalent ions such as calcium and magnesium ions did. However, calcium ion only slightly reduced the equilibrium swelling under sodium-rich conditions. The viscosity (as an indicator of fluidity) of polycarbophil was larger than that of CMC-Na at every shear rate and polymer content examined.

  19. Absorbance and fluorometric sensing with capillary wells microplates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Han Yen; Cheong, Brandon Huey-Ping; Neild, Adrian; Wah Ng, Tuck [Laboratory for Optics, Acoustics, and Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800 (Australia); Liew, Oi Wah [Cardiovascular Biomarkers Laboratory, Cardiovascular Research Institute, 30 Medical Drive, Singapore 117609 (Singapore)

    2010-12-15

    Detection and readout from small volume assays in microplates are a challenge. The capillary wells microplate approach [Ng et al., Appl. Phys. Lett. 93, 174105 (2008)] offers strong advantages in small liquid volume management. An adapted design is described and shown here to be able to detect, in a nonimaging manner, fluorescence and absorbance assays minus the error often associated with meniscus forming at the air-liquid interface. The presence of bubbles in liquid samples residing in microplate wells can cause inaccuracies. Pipetting errors, if not adequately managed, can result in misleading data and wrong interpretations of assay results; particularly in the context of high throughput screening. We show that the adapted design is also able to detect for bubbles and pipetting errors during actual assay runs to ensure accuracy in screening.

  20. Humidity buffering of interior spaces by porous, absorbent insulation

    DEFF Research Database (Denmark)

    Padfield, Tim

    1999-01-01

    to practical insignificance.Absorbent insulation will only have a useful influence on the indoor climate if the entire wall isredesigned to give a much more porous structure. This development would conflict with thecustom of putting a vapour barrier or vapour retarder close to the inside surface of a wall...... of indoor humidity ofwool, vapour barrier and plasterboard, separately and in combination. Paint is not included in thetests. The response of a wall to a sudden injection of water vapour, as would happen in a kitchenor bathroom, is also studied. In this event the main moderator of the RH is the plaster......Thermal insulation made from wool will have a detectable, but small, moderating influence onvariation in the indoor relative humidity in a house with less than half an air change per hour andwith porous wall surfaces, such as paper, limewash or silicate paint.Water vapour distributes itself fairly...

  1. Modal formulation for diffraction by absorbing photonic crystal slabs

    CERN Document Server

    Dossou, Kokou B; Asatryan, Ara A; Sturmberg, Björn C P; Byrne, Michael A; Poulton, Christopher G; McPhedran, Ross C; de Sterke, C Martijn

    2016-01-01

    A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semi-analytic approach allows efficient and accurate calculation of the absorption of an array with a complex unit cell. This approach gives direct physical insight into the absorption mechanism in such structures, which can be used to enhance the absorption. The verification and validation of this approach is applied to a silicon nanowire array and the efficiency and accuracy of the method is demonstrated. The method is ideally suited to studying the manner in which spectral properties (e.g., absorption) vary with the thickness of the array, and we demonstrate this with efficient calculations which can identify an optimal geometry.

  2. Investigation of HAP Nanoparticles Absorbed by Hepatoma Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Shipu; HU Sheng; YAN Yuhua; WANG Youfa

    2007-01-01

    Many particles are found in the cytoplasm area after the mixture of hydroxyapatite (HAP) nanoparticles and cultured cancer cells. The purpose of this study was to confirm whether these particles in cytoplasm are HAP nanoparticles exactly. BEL 7402 cells were incubated in HAP sol for 8 hours. Then, the cells were collected for specimen preparation. Transmission electron microscope (TEM), energy dispersing spectrum (EDS) and electronic diffraction (ED) attached to TEM were used to detect the properties of the particles. It is found that many particles similar to HAP in shape are in the cytoplasm under TEM. By EDS analysis, they are the particles containing calcium (Ca) and phosphorus (P). The classic rings of HAP crystal appear in the ED pictures of these particles. So the particles are confirmed as HAP nanoparticles. Thus, it is concluded that HAP nanoparticles as the crystal particles can be absorbed by hepatoma cells.

  3. Shielding of absorbing objects in collisionless flowing plasma

    CERN Document Server

    Tyshetskiy, Yuriy

    2010-01-01

    The electrostatic shielding of a charged absorbing object (dust grain) in a flowing collisionless plasma is investigated by using the linearized kinetic equation for plasma ions with a point-sink term accounting for ion absorption on the object. The effect of absorption on the attractive part of the grain potential is investigated. For subthermal ion flows, the attractive part of the grain potential in the direction perpendicular to the ion flow can be significantly reduced or completely destroyed, depending on the absorption rate. For superthermal ion flows, however, the effect of absorption on the grain attraction in the direction perpendicular to the ion flow is shown to be exponentially weak. It is thus argued that, in the limit of superthermal ion flow, the effect of absorption on the grain shielding potential can be safely ignored for typical grain sizes relevant to complex plasmas.

  4. Titanium Dioxide Nanoparticle Absorbed by Hepatoma Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; YAN Yuhua; WANG Youfa; CAO Xianying; LI Shipu

    2005-01-01

    It is reported that nanoparticles can be applied as carriers and anti-cancer medicines. But the interaction of nanoparticles and cells is unclear. The purpose of this study was to discuss whether inorganic crystal nanoparticles can get through cells with intact crystal. BEL7402 hepatoma cells and titanium dioxide ( TiO2 )nanoparticles were selected and incubated together in vitro. All specimens were prepared and observed under a transmission electron microscope (TEM). TiO2 nanoparticles were found not in the nuclear area but in the cytoplasma. TiO2 nanoparticles maintained the plate-like shape during absorbing. The result shows that hepatoma cells can endocytose the intact TiO2 crystal nanoparticles. It implies that novel nano-effect plays an important role in the biomedicinal application of inorganic crystal nanoparticles.

  5. Non-Hermitian engineering of synthetic saturable absorbers

    CERN Document Server

    Teimourpour, M H; Srinivasan, K; El-Ganainy, R

    2016-01-01

    We introduce a new type of synthetic saturable absorbers based on quantum inspired photonic arrays whose linear light transport characteristics can be derived via bosonic algebra. We demonstrate that the interplay between optical Kerr nonlinearity, interference effects and non-Hermiticity through radiation loss leads to a nonlinear optical filtering response with two distinct regimes of small and large optical transmissions. More interestingly, we show that the boundary between these two regimes can be very sharp. The threshold optical intensity that marks this abrupt "phase transition" and its steepness can be engineered by varying the number of the guiding elements. The practical feasibility of these structures as well as their potential applications in laser systems and optical signal processing are also discussed.

  6. A multiband perfect absorber based on hyperbolic metamaterials.

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; ElKabbash, Mohamed; Alapan, Yunus; Rashed, Alireza R; Gurkan, Umut A; Strangi, Giuseppe

    2016-05-18

    In recent years, considerable research efforts have been focused on near-perfect and perfect light absorption using metamaterials spanning frequency ranges from microwaves to visible frequencies. This relatively young field is currently facing many challenges that hampers its possible practical applications. In this paper, we present grating coupled-hyperbolic metamaterials (GC-HMM) as multiband perfect absorber that can offer extremely high flexibility in engineering the properties of electromagnetic absorption. The fabricated GC-HMMs exhibit several highly desirable features for technological applications such as polarization independence, wide angle range, broad- and narrow- band modes, multiband perfect and near perfect absorption in the visible to near-IR and mid-IR spectral range. In addition, we report a direct application of the presented system as an absorption based plasmonic sensor with a record figure of merit for this class of sensors.

  7. Nanoscale TiO2 dielectric resonator absorbers.

    Science.gov (United States)

    Zou, Chengjun; Gutruf, Philipp; Withayachumnankul, Withawat; Zou, Longfang; Bhaskaran, Madhu; Sriram, Sharath; Fumeaux, Christophe

    2016-08-01

    We demonstrate a narrow-band plasmonic absorber based on a uniform array of nanoscale cylindrical dielectric resonators (DRs) on a metallic substrate at visible frequencies. Under a normally incident plane-wave excitation, the DRs resonate in their horizontal magnetic dipolar mode, which can be seen as localized plasmonic hot spots. Such a localized resonance also couples incident waves into surface plasmon polaritons (SPPs) bidirectionally, and perfect absorption is achieved by creating SPP standing waves. The simulation shows perfect absorption at 633 nm and 1.8% relative bandwidth with >90% absorption, while the measurement demonstrates maximum absorption of 90% at 636 nm. Both simulation and measurement results are analyzed with coupled mode theory. An additional numerical study elaborates on the dependence of absorption on the resonator size, period, and incidence angle. PMID:27472576

  8. The Variable Warm Absorber in Circinus X-1

    Science.gov (United States)

    Schulz, N. S.; Kallman, T. E.; Galloway, D. K.; Brandt, W. N.

    2008-01-01

    We observed Circinus X-1 twice during a newly reached low-flux phase near zero orbital phase using the High-Energy Transmission Grating Spectrometer (HETGS) onboard Chandra. In both observations the source did not show the P Cygni lines we observed during the high-flux phases of the source in 2000 and 2001. During the prezero phase the source did not exhibit significant variability but did exhibit an emission-line spectrum rich in H- and He-like lines from high-Z elements such as Si, S, Ar, and Ca. The light curve in the postdip observation showed quiescent and flaring episodes. Only in these flaring episodes was the source luminosity significantly higher than observed during the prezero phase. We analyzed all high-resolution X-ray spectra by fitting photoionization and absorption models from the most recent version of the XSTAR code. The prezero-phase spectrum could be fully modeled with a very hot photoionized plasma with an ionization parameter of log ξ = 3.0, down from log ξ = 4.0 in the high-flux state. The ionization balances we measure from the spectra during the postzero-phase episodes are significantly different. Both episodes feature absorbers with variable high columns, ionization parameters, and luminosity. While cold absorption remains at levels quite similar to that observed in previous years, the new observations show unprecedented levels of variable warm absorption. The line emissivities also indicate that the observed low source luminosity is inconsistent with a static hot accretion disk corona (ADC), an effect that seems common to other near-edge-on ADC sources as well. We conclude that unless there exists some means of coronal heating other than X-rays, the true source luminosity is likely much higher, and we observe obscuration in analogy to the extragalactic Seyfert 2 sources. We discuss possible consequences and relate cold, lukewarm, warm, and hot absorbers to dynamic accretion scenarios.

  9. Impacts of Snow Darkening by Absorbing Aerosols on Eurasian Climate

    Science.gov (United States)

    Kim, Kyu-Myong; Lau, William K M.; Yasunari, Teppei J.; Kim, Maeng-Ki; Koster, Randal D.

    2016-01-01

    The deposition of absorbing aerosols on snow surfaces reduces snow-albedo and allows snowpack to absorb more sunlight. This so-called snow darkening effect (SDE) accelerates snow melting and leads to surface warming in spring. To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating is particularly pronounced in Eurasian regions where significant depositions of dust transported from the North African deserts, and black carbon from biomass burning from Asia and Europe occur. In these regions, the surface heating due to SDE increases surface skin temperature by 3-6 degrees Kelvin near the snowline in spring. Surface energy budget analysis indicates that SDE-induced excess heating is associated with a large increase in surface evaporation, subsequently leading to a significant reduction in soil moisture, and increased risks of drought and heat waves in late spring to early summer. Overall, we find that rainfall deficit combined with SDE-induced dry soil in spring provide favorable condition for summertime heat waves over large regions of Eurasia. Increased frequency of summer heat waves with SDE and the region of maximum increase in heat-wave frequency are found along the snow line, providing evidence that early snowmelt by SDE may increase the risks of extreme summer heat wave. Our results suggest that climate models that do not include SDE may significantly underestimate the effect of global warming over extra-tropical continental regions.

  10. Conformal radiotherapy made easy through gravity oriented absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    In the 50`s and the 60`s simple techniques modulating the beam intensity in synchronism with the rotation, either of the vertical patient or of the machine around the horizontal patient were developed. An absorber, which is similar in shape to a vital organ, intercepts the beam, casting its protective `shade` over the organ, for all positions of rotation. In this way, the organ is protected during the irradiation time. On any transverse cross, any point outside of the organ`s cross-section is protected for only a fraction of T, which is decreasing with the distance of that point from the organ. Consequently, the dose to the protected organ is smaller than (a) the dose it would absorb without protection (b) the dose to the surrounding (less vital) healthy tissue and (c), the dose to the neighbouring tumour. Consider a plane perpendicular to the principal plane and passing through the source. It cuts the organ and its protector in two cross-sections, which remain always homiotheta, with centre of homiothesis the source. In this way, the protector`s cross-section is projected by the beam on the organ`s cross-section for all positions of rotation. The larger the cross-section of the organ and the smaller the required protection, the smaller must be the attenuation coefficient of the material the protector is made of. The dose distributions in a series of actual cases, such as head tumours with eyes protection, neck or chest tumours with spinal cord protection, cervix tumours with rectum and bladder protection, are discussed. In most cases, if the vital organs are not overprotected, the 90% or 80% isodose surface fits to or conforms with the surface of the Planning Target Volume (PTV) no matter how irregular (convex and concave) it is.

  11. Variations in absorbed doses from 59Fe in different diseases

    International Nuclear Information System (INIS)

    The biokinetics of radiopharmaceuticals administered in vivo may vary considerably with changes in organ functions. They studied the variations in absorbed doses from 59Fe in 207 patients with different diseases, in whom ferrokinetic investigations were performed for diagnostic purposes. Radiation doses to the bone marrow were highest in patients with deserythropoietic anemias (mean 38 nSv/Bq, range 19 - 57 nSv/Bq) and in hemolytic anemias (mean 21 nSv/Bq, range 7 - 35 nSv/Bq), whereas lower and rather constant values were found in other diseases (mean values between 9 and 13 nSv/Bq). The highest organ doses, the greatest differences with respect to diagnosis and also the largest variations within each group of patients were found for liver and spleen (e. g. in aplastic anemia; liver: 66 nSv/Bq, range 29 - 104 nSv/Bq; spleen: 57 nSv/Bq, range 34 - 98 nSv/Bq. In iron deficiency; liver: 13 nSv/Bq range 12 - 14 nSv/q; spleen: 19 nSv/Bq, range 18 - 20 nSv/Bq). Lower organ doses and smaller variations within and between the groups of patients were found for the gonads (means 3 - 7 nSv/Bq), the kidneys (means 10 - 13 nSv/Bq), the bone (means 4 - 7 nSv/Bq), the lung (means 8 - 12 nSv/Bq), and the total body (means 6 - 8 nSv/Bq). In patients with chronic bleeding absorbed doses decrease concomitantly to the extent of blood loss. The D/sub E/ is not markedly affected by the variations in organ doses but is fairly constant for different diseases. 16 references, 1 figure, 3 tables

  12. Optimal design of MR shock absorber and application to vehicle suspension

    International Nuclear Information System (INIS)

    This paper presents an optimal design of a magnetorheological (MR) shock absorber based on finite element analysis. The MR shock absorber is constrained in a specific volume and the optimization problem identifies geometric dimensions of the shock absorber that minimize a multi-objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the shock absorber. After describing the configuration of the MR shock absorber, a quasi-static modeling of the shock absorber is performed based on the Bingham model of an MR fluid. The initial geometric dimensions of the shock absorber are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit. The objective function of the optimization problem is derived based on the solution of the initial shock absorber. An optimization procedure using a golden-section algorithm and a local quadratic fitting technique is constructed via a commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR shock absorber, which is constrained in a specific cylindrical volume defined by its radius and height, are determined. Subsequently, a quarter-car suspension model with the optimized MR shock absorber is formulated and the vibration control performance of the suspension is evaluated under bump and sinusoidal road conditions

  13. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra

    Science.gov (United States)

    Park, Myung-Jun; Kim, Sung-Soo

    2016-09-01

    Wide bandwidth microwave absorbers with a pyramidal shape and a significantly reduced thickness can be designed using high lossy ferrite materials with broad magnetic loss spectra. The microwave absorbing properties of pyramidal cone absorbers are analyzed using the transmission line approximation, which provides the reflection loss as a function of the material parameters and absorber geometry. Three types of ferrite materials (NiZn spinel ferrite, Co2Z hexaferrite, and RuCoM hexaferrite) are used as the absorbent fillers in a rubber matrix. Among these, Co2Z ferrite is the most suitable material for wide bandwidth pyramidal absorbers, due to its broad magnetic loss spectrum in the GHz frequency range. The optimal geometry of the pyramidal absorber is also determined using the transmission line theory. With the reduced total height of the pyramidal absorber (approximately 60 mm), a wide bandwidth (1.5-18 GHz with respect to the -20 dB reflection loss) can be realized. The proposed absorbers have a thickness advantage over the classical pyramidal ohmic absorbers; thus, they are suitable for small and semi-anechoic chambers.

  14. Mechanism of flue gas simultaneous desulfurization and denitrification using the highly reactive absorbent

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yi; SUN; Xiaojun; XU; Peiyao; MA; Shuangchen; WANG; L

    2005-01-01

    Fly ash, industry-grade lime and a few oxidizing manganese compound additive were used to prepare the "Oxygen-riched" highly reactive absorbent for simultaneous desulfurization and denitrification. Experiments of simultaneous desulfurization and denitrification were carried out using the highly reactive absorbent in the flue gas circulating fluidized bed (CFB) system. Removal efficiencies of 94.5% for SO2 and 64.2% for NO were obtained respectively. The scanning electron microscope (SEM) and accessory X-ray energy spectrometer were used to observe micro-properties of the samples, including fly ash, common highly reactive absorbent, "Oxygen-riched" highly reactive absorbent and spent absorbent. The white flake layers were observed in the SEM images about surfaces of the common highly reactive absorbent and "Oxygen- riched" one, and the particle surfaces of the spent absorbent were porous. The content of calcium on surface was higher than that of the average in the highly reactive absorbent. The manganese compound additive dispersed uniformly on the surfaces of the "Oxygen- riched" highly reactive absorbent. There was a sulfur peak in the energy spectra pictures of the spent absorbent. The component of the spent absorbent was analyzed with chemical analysis methods, and the results indicated that more nitrogen species appeared in the absorbent except sulfur species, and SO2 and NO were removed by chemical absorption according to the experimental results of X-ray energy spectrometer and the chemical analysis. Sulfate being the main desulfurization products, nitrite was the main denitrification ones during the process, in which NO was oxidized rapidly to NO2 and absorbed by the chemical reaction.

  15. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs) and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS) material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol. PMID:27509498

  16. Combined Effect of Honey and O2 Absorber Packaging on Storage Quality of Chocolate Sponge Cake

    Directory of Open Access Journals (Sweden)

    Usamas Jariyawaranugoon

    2013-03-01

    Full Text Available This study was aimed to investigate the combined effect of honey and O2 absorber on physicochemical and sensory properties of chocolate sponge cakes stored at room temperature (30±2°C for 12 days. Four sponge cake treatments included sucrose cake packed without O2 absorber (T1, sucrose cake packed with O2 absorber (T2, honey cake packed without O2 absorber (T3 and honey cake packed with O2 absorber (T4 were examined. The pH values of sucrose and honey cakes packed without O2 absorber were significantly decreased (p0.05. All cake treatments showed significant decrease (p0.05 in all attributes scores. After the 3rd day of storage, the cake containing honey significantly showed (p>0.05 no alteration in all sensory attributes while the decrease in flavor was evident (p<0.05 in the sucrose cake.

  17. Decreased UV absorbance as an indicator of micropollutant removal efficiency in wastewater treated with ozone.

    Science.gov (United States)

    Wittmer, A; Heisele, A; McArdell, C S; Böhler, M; Longree, P; Siegrist, H

    2015-01-01

    Ozone transforms various organic compounds that absorb light within the UV and visible spectra. UV absorbance can therefore be used to detect the transformation of chemicals during ozonation. In wastewater, decolourisation can be observed after ozonation. This study investigates the correlation of the UV absorbance difference between the ozonation inlet and outlet and the removal efficiency of micropollutants in wastewater. The absorbance at 254 and 366 nm was measured at the ozonation inlet and outlet, as was the concentration of 24 representative micropollutants and the dissolved organic carbon (DOC). The results clearly showed that the relative decrease of absorbance (ΔAbs) is positively correlated with the relative removal efficiency of micropollutants. We therefore suggest that UV absorbance can be used as a feedback control parameter to achieve optimal ozone dosage in wastewater treatment plants and to gain a fast insight into the process efficiency and stability of the ozonation. PMID:25860699

  18. A Wide-Band Metamaterial Absorber Based on Loaded Magnetic Resonators

    Institute of Scientific and Technical Information of China (English)

    GU Chao; QU Shao-Bo; PEI Zhi-Bin; MA Hua; XU Zhuo; BAI Peng; PENG Wei-Dong; LIN Bao-Qin

    2011-01-01

    @@ A wide-band polarization-insensitive and wide-angle metamaterial absorber based on loaded magnetic resonators is presented.The unit cell of this absorber consists of a magnetic resonator loaded with lumped resistances, a dielectric substrate and a back metal film.Theoretical and simulated results show that this absorber has a wide- band strong absorption for the incident wave from 3.87 GHz to 21.09 GHz.Simulated absorbance values under loading and unloading conditions indicate that electrocircuit's resonances are more stable than electromagnetic resonances and thus can be used to realize wide-band absorption.Simulated absorbance values under different polarization angles and different angles of incidence indicate that this absorber is polarization-insensitive and wide-angle.It may have potential applications in military fields.

  19. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors

    Science.gov (United States)

    Luo, Zhangjie; Long, Jiang; Chen, Xing; Sievenpiper, Daniel

    2016-08-01

    An electrically tunable metasurface that absorbs continuous electromagnetic (EM) surface waves is proposed by taking advantage of varactor diodes embedded in the surface. On the one hand, the varactors perform as the main dissipating components due to their parasitic series resistance; on the other hand, they function as the tuning elements because the dissipation is highly dependent on their capacitance. Therefore, the absorption of the surface can be tuned by the direct current biasing voltage across the varactors, which is validated numerically and experimentally in this letter. This absorbing mechanism of the surface differs from prior surface-wave absorbers and can lead to greater flexibility for absorbing metasurfaces. In this work, a power-dependent absorbing performance is achieved by loading microwave power sensors. If incorporated with other types of sensors, the absorption could potentially be controlled by corresponding physical variables such as light, pressure, or temperature, thus giving rise to various absorbing applications in a complex EM environment.

  20. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications

    Directory of Open Access Journals (Sweden)

    Hyung Ki Kim

    2016-08-01

    Full Text Available In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol.

  1. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications.

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs) and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS) material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol. PMID:27509498

  2. Decreased UV absorbance as an indicator of micropollutant removal efficiency in wastewater treated with ozone.

    Science.gov (United States)

    Wittmer, A; Heisele, A; McArdell, C S; Böhler, M; Longree, P; Siegrist, H

    2015-01-01

    Ozone transforms various organic compounds that absorb light within the UV and visible spectra. UV absorbance can therefore be used to detect the transformation of chemicals during ozonation. In wastewater, decolourisation can be observed after ozonation. This study investigates the correlation of the UV absorbance difference between the ozonation inlet and outlet and the removal efficiency of micropollutants in wastewater. The absorbance at 254 and 366 nm was measured at the ozonation inlet and outlet, as was the concentration of 24 representative micropollutants and the dissolved organic carbon (DOC). The results clearly showed that the relative decrease of absorbance (ΔAbs) is positively correlated with the relative removal efficiency of micropollutants. We therefore suggest that UV absorbance can be used as a feedback control parameter to achieve optimal ozone dosage in wastewater treatment plants and to gain a fast insight into the process efficiency and stability of the ozonation.

  3. Investigation on forces in frictional kinematic pairs to assess their influence on shock absorber characteristics

    OpenAIRE

    Janusz GARDULSKI; Jan WARCZEK

    2008-01-01

    In telescopic shock absorbers there are two kinematic pairs where dry,semi-dry or fluid friction is most likely to occur. Higher values of friction forces are noted in piston rod-slideway pair due to its sealing function and consequently worse lubricating conditions. The aim of the tests was to assess the influence of forces occurring in frictional kinematic pairs on damping characteristics of shock absorbers. The tests were performed on new and fluid-free shock absorbers for various working ...

  4. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    OpenAIRE

    R. B. Yang; W. F. Liang; Wu, C.H.; Chen, C. C.

    2016-01-01

    Radar absorbing materials (RAMs) also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI) reduction and human health protection. In this study, the synthesis of functionally graded material (FGM) (CI/Polyurethane composites), which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA) to o...

  5. Comparison of silicon oxide and silicon carbide absorber materials in silicon thin-film solar cells

    OpenAIRE

    Walder Cordula; Kellermann Martin; Wendler Elke; Rensberg Jura; von Maydell Karsten; Agert Carsten

    2015-01-01

    Since solar energy conversion by photovoltaics is most efficient for photon energies at the bandgap of the absorbing material the idea of combining absorber layers with different bandgaps in a multijunction cell has become popular. In silicon thin-film photovoltaics a multijunction stack with more than two subcells requires a high bandgap amorphous silicon alloy top cell absorber to achieve an optimal bandgap combination. We address the question whether amorphous silicon carbide (a-SiC:H) or ...

  6. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  7. An innovative MRE absorber with double natural frequencies for wide frequency bandwidth vibration absorption

    Science.gov (United States)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Deng, Huaxia; Du, Haiping; Alici, Gursel; Yan, Tianhong

    2016-05-01

    A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy.

  8. CAD/CAE OF THE WORKING CHARACTERISTICS OF A NEW TYPE OF FLUID COUPLING SHOCK ABSORBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For purpose of simulation of the working characteristics of a new type of fluid coupling shock absorber for vibration protection of sensitive equipment, a physical model is presented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shock absorber and implemented in MATLAB software package. Using the model it is possible to evaluate the importance of different factors for design of the shock absorber. In the meantime, the key-model machine is designed for coupling dynamic test. Comparisons with experimental results confirm the validity of the model. So the CAD/CAE software has been developed in MATLAB for design and experimental test of the new coupling shock absorber.

  9. Low-frequency tunable acoustic absorber based on split tube resonators

    Science.gov (United States)

    Wu, Xiaoxiao; Fu, Caixing; Li, Xin; Meng, Yan; Gao, Yibo; Tian, Jingxuan; Wang, Li; Huang, Yingzhou; Yang, Zhiyu; Wen, Weijia

    2016-07-01

    We demonstrate a high-efficiency tunable acoustic absorber for low frequencies (acoustic absorber is based on split tube resonators and could reach high-efficiency absorption at tunable resonance frequency with wavelength in air at least 30 times larger than its total thickness in simulations and experiments. The resonance frequency and high-efficiency absorption of the absorber are robust under oblique incidence even at large angles. The absorber could have potential applications for acoustic engineering due to its high structural stability, ease of fabrication, subwavelength thickness, and robust high-efficiency.

  10. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies

    Science.gov (United States)

    Idris, Fadzidah Mohd.; Hashim, Mansor; Abbas, Zulkifly; Ismail, Ismayadi; Nazlan, Rodziah; Ibrahim, Idza Riati

    2016-05-01

    The rapid increase in electromagnetic interference has received a serious attention from researchers who responded by producing a variety of radar absorbing materials especially at high gigahertz frequencies. Ongoing investigation is being carried out in order to find the best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. Thus, to improve the absorbing capability, several important parameters need to be taken into consideration such as filler type, loading level, type of polymer matrix, physical thickness, grain sizes, layers and bandwidth. Therefore, this article introduces the electromagnetic wave absorption mechanisms and then reveals and reviews those parameters that enhance the absorption performance.

  11. Absorber rod for nuclear reactors in a pebble bed of spherical operating elements

    International Nuclear Information System (INIS)

    The claim refers to the constructional configuration of an absorber rod, whose and penetrating into the pebble bed has an opening to reduce the fracture rate, so that the operating elements can escape into a channel within the absorber rod. To suit this to the direction of movement of the elements a part of the end of the rod is flexibly connected to the hollow absorber rod via a joint. In this way the mechanical load of the element particles is reduced and simultaneously one achieves that much lower force is required to insert the absorber rod into the pebble bed. (UA)

  12. Development of optical tool for the characterization of selective solar absorber tubes

    Science.gov (United States)

    Braillon, Julien; Stollo, Alessio; Delord, Christine; Raccurt, Olivier

    2016-05-01

    In the Concentrated Solar Power (CSP) technologies, selective solar absorbers, which have a cylindrical geometry, are submitted to strong environmental constraints. The degradation of their optical properties (total solar absorbance and total emittance) has a direct impact on the performances. In order to know optical properties of absorber tubes, we present in this article a new optical tool developed by our laboratory which fit onto commercial spectrometers. Total solar absorbance and total emittance are calculated from total reflectance spectra measured by UV-Vis and IR spectrophotometry. To verify and validate the measurement method, we performed a comparative study between flat and cylindrical samples with same surface properties.

  13. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  14. BIONICOL. Development of a bionic solar collector with an aluminium roll-bond absorber; BIONICOL. Entwicklung eines bionischen Solarkollektors mit Aluminium-Rollbond-Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Michael; Lunz, Karin [Fraunhofer-Institut fuer Solare Energiesysteme, Freiburg (Germany); Hillerns, Frank [TYFOROP Chemie GmbH, Hamburg (Germany)

    2010-07-01

    The authors of the contribution under consideration report on the development of a bionic solar collector with an aluminum roll-bond absorber. As part of the EU research project BIONICOL experiments and simulations are performed with respect to fluid mechanics, internal pressure stability and corrosion. First absorbers with a size of 1,060 mm x 1,820 mm are manufactured. The measured pressure loss is lower than the pressure loss of the hydraulically optimized volumetric absorber according to TREIKAUSKAS. Several studies suggest that adequate corrosion protection is achieved under conditions of stagnation, if TYFOCOR {sup registered} L in an aluminum roll bond-absorbers is used. Measurements at collectors (efficiency curve and stagnation behaviour) as well as the further development of the collector to prototypes for demonstration plants are planned as next steps.

  15. An electrochromatography chip with integrated waveguides for UV absorbance detection

    International Nuclear Information System (INIS)

    A silicon-based microchip for electrochromatographic separations is presented. Apart from a microfluidic network, the microchip has integrated UV-transparent waveguides for detection and integrated couplers for optical fibers on the chip, yielding the most complete chromatography microchip to date in terms of the integration of optical components. The microfluidic network and the optical components are fabricated in a single etching step in silicon and subsequently thermally oxidized. The separation column consists of a regular array of microfabricated solid support structures with a monolayer of an octylsilane covalently bonded to the surfaces to provide chromatographic interaction. The chip features a 1 mm long U-shaped detection cell and planar silicon dioxide waveguides that couple light to and from the detection cell. Microfabricated on-chip fiber couplers assure perfect alignment of optical fibers to the waveguides. The entire oxidized silicon microchip structure is sealed with a glass lid. Reversed phase electrochromatographic separation of three neutral compounds is demonstrated using UV absorbance detection at 254 nm. Baseline separation of the analytes is achieved in less than two minutes

  16. The Variable Warm Absorber in Circinus X-1

    CERN Document Server

    Schulz, N S; Galloway, D K; Brandt, W N

    2007-01-01

    We observed Circinus X-1 twice during a newly reached low-flux phase near zero orbital phase using the High-Energy Transmission Grating Spectrometer (HETGS) onboard Chandra. In both observations the source did not show the P Cygni lines we observed during the high-flux phases of the source in 2000 and 2001. During pre-zero phase the source did not exhibit significant variability and exhibited an emission-line spectrum rich in H- and He-like lines from high Z elements such as Si, S, Ar, and Ca. We analyzed all high resolution X-ray spectra by fitting photoionization and absorption models from the most recent version of the XSTAR code. The pre-zero phase spectrum could be fully modeled with a very hot photoionized plasma with an ionization parameter of log xi = 3.0. Post-zero phase episodes feature absorbers with variable high columns, ionization parameter, and luminosity. While cold absorption remains at levels quite similar to the one observed in previous years, the new observations show unprecedented levels ...

  17. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  18. Absorbance characterization of microsphere-based ion-selective optodes

    Energy Technology Data Exchange (ETDEWEB)

    Ye Nan [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Wygladacz, Katarzyna [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Bakker, Eric [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: bakkere@purdue.edu

    2007-07-23

    Ionophore-based microsphere sensors are characterized here in transmission mode. These sensors contain a lipophilic ionophore for the analyte cation, a chromoionophore for recognizing H{sup +}, and a lipophilic cation-exchanger. They function on the basis of an ion-exchange equilibration step where an increased concentration of analyte ion leads to increased level of extraction into the bulk of the microsphere, expelling protons in return and deprotonating the chromoionophore. Since the path length is variable across the microsphere, such bead-based sensors are normally characterized in fluorescence mode. In this paper, the response of the sensing microspheres is calculated from the ratio of transmitted light intensities at the absorbance peak maxima of the protonated and unprotonated forms of the chromoionophore. At a fixed position of the particle, the resulting responses are found to be independent of light scattering, incident light intensity and the shape or size of the microsphere. The responses of potassium-selective microspheres obtained by this method agree quantitatively with corresponding fluorescence-based data.

  19. Photoacoustic tomography in absorbing acoustic media using time reversal

    International Nuclear Information System (INIS)

    The reconstruction of photoacoustic images typically neglects the effect of acoustic absorption on the measured time domain signals. Here, a method to compensate for acoustic absorption in photoacoustic tomography is described. The approach is based on time-reversal image reconstruction and an absorbing equation of state which separately accounts for acoustic absorption and dispersion following a frequency power law. Absorption compensation in the inverse problem is achieved by reversing the absorption proportionality coefficient in sign but leaving the equivalent dispersion parameter unchanged. The reconstruction is regularized by filtering the absorption and dispersion terms in the spatial frequency domain using a Tukey window. This maintains the correct frequency dependence of these parameters within the filter pass band. The method is valid in one, two and three dimensions, and for arbitrary power law absorption parameters. The approach is verified through several numerical experiments. The reconstruction of a carbon fibre phantom and the vasculature in the abdomen of a mouse are also presented. When absorption compensation is included, a general improvement in the image magnitude and resolution is seen, particularly for deeper features

  20. High performance absorber structure using subwavelength multi-branch dimers

    Science.gov (United States)

    He, Kebo; Su, Guangyao; Liu, Chuanhong; Gou, Fangwang; Zhang, Zhaoyu

    2012-11-01

    As the desire growing of the thin film absorption structure for various sub-wavelength applications such as photo detector, thin-film thermal emitters, thermo photovoltaic cells, and multi-color filters, we proposed a type of subwavelength multi-branch dimers which exhibit several tunable dipole-dipole-like plasmonic resonances and integrated it into metal-insulator-metal structure as the top layer. The structures are studied through numerical calculation by finite element method. When normal incident is considered, the novel structure shows three absorption peaks in the considered wavelength range. One peak has near-perfect absorption and the other two also show excellent absorption.. When different angle oblique incident is considered, the absorption only has slight change, which is useful to an ultrathin absorber structure. In addition, we find that the thickness of the dielectric layer can tune the absorption rates for each absorption peak. In general, the multi-branch dimers can easily tune its absorption rates and spectrum via the change of their geometric parameters such as branch lengths, branch angles, and dielectric layer thickness.

  1. Active packaging using ethylene absorber to extend shelf-life

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, Patricia; Carbonari, Guilherme L.R.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: patponce@iq.usp.br, e-mail: guilacaz@uol.com.br, e-mail: ablugao@ipen.br

    2009-07-01

    Ethylene gas is a plant hormone which is produced by fruits and vegetables during ripening and it is also found in the environment. It plays an essential role in normal ripening, but excessive exposure can radically reduce the shelf-life of the product, in some cases inducing undesirable reactions such as development of bitter flavors and loss of chlorophyll (yellowing of greens). The objectives of our work were: to test an active packaging of polyvinyl alcohol (PVA) for apple stored; to test the effect of ethylene absorber agent, impregnated in plastic film, to reduce decay of fresh apple; to study the influence of radiation on the barrier properties, mechanical properties and biodegradability of PVA films. This study evaluated the effect of coating produced from PVA and polyol (glycerol and sorbitol) as plasticizer on apple conservation (75 deg F (24 deg C); 70%RH). The coated product was analyzed for mass loss, color alterations and fungi. The PVA films were produced by casting process (dehydration of a filmogenic solution on Petriplastic dishes) and were irradiated at low doses of 2, 5 and 10 kGy, commonly used in food irradiation. The resulting films were transparent and homogeneous. The active packaged fruits presented higher acceptance, lower microbiological growth, less alterations in acidity, lower weight loss rate during the storage time and an extended shelf-life as compared to the control fruits (without plastic films). (author)

  2. Absorbed dose determination in photon fields using the tandem method

    CERN Document Server

    Marques-Pachas, J F

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF sub 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with sup 9 sup 0 Sr- sup 9 sup 0 Y, calibrated with the energy of sup 6 sup 0 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than ...

  3. Dynamic behavior and applicability of lead alloy absorber

    Institute of Scientific and Technical Information of China (English)

    李亚琦; 李小军; 刘锡荟

    2005-01-01

    The paper describes the damping effect of lead alloy absorber (LAA) by shake table test and finite element method of a kind of high-voltage electrical equipment, LW11-252/Q SF6 Circuit Breaker (LSCB). The strain reduction of the porcelain bushing of LSCB is defined as the damping effect of LAA in the paper based on the damage pattern of test equipment under earthquake. The test results show that LAA has reduced the acceleration response and strain response of the LSCB, at the same time, it does not increase the displacement response of the LSCB. There is a reduction of 30% in the strain of porcelain pipe. Moreover, the stronger the input ground motion is, the larger the reduction will be. The finite element method also indicates the damping effect of LAA, especially under ground motions with significant long period contents and ground motions with velocity pulse. Combined with the test results and calculation results, the paper gives the applicability of LAA finally.

  4. Damped Lyman α absorbers as a probe of stellar feedback

    Science.gov (United States)

    Bird, Simeon; Vogelsberger, Mark; Haehnelt, Martin; Sijacki, Debora; Genel, Shy; Torrey, Paul; Springel, Volker; Hernquist, Lars

    2014-12-01

    We examine the abundance, clustering and metallicity of Damped Lyman α Absorbers (DLAs) in a suite of hydrodynamic cosmological simulations using the moving mesh code AREPO. We incorporate models of supernova and AGN feedback, as well as molecular hydrogen formation. We compare our simulations to the column density distribution function at z = 3, the total DLA abundance at z = 2-4, the measured DLA bias at z = 2.3 and the DLA metallicity distribution at z = 2-4. Our preferred models produce populations of DLAs in good agreement with most of these observations. The exception is the DLA abundance at z DLA population probes a wide range of halo masses, we find the cross-section is dominated by haloes of mass 1010-1011 h-1 M⊙ and virial velocities 50-100 km s-1. The simulated DLA population has a linear theory bias of 1.7, whereas the observations require 2.17 ± 0.2. We show, however, that non-linear growth increases the bias in our simulations to 2.3 at k = 1 h Mpc-1, the smallest scale observed. The scale-dependence of the bias is, however, very different in the simulations compared against the observations. We show that, of the observations we consider, the DLA abundance and column density function provide the strongest constraints on the feedback model.

  5. Flat Absorber Phosphorous Black Nickel Coatings for Space Applications

    Institute of Scientific and Technical Information of China (English)

    V. Maria Shalini; P. Arockiasamy; R. Urna Rani; A.K. Sharma

    2012-01-01

    A new process of flat absorber black nickel alloy coating tion from a bath containing nickel, zinc and ammonium was developed on stainless steel by electrodeposi- sulphates; thiocyanate and sodium hypophosphite for space applications. Coating process was optimized by investigating the effects of plating parameters, viz concentration of bath constituents, current density, temperature, pH and plating time on the optical properties of the black deposits. Energy dispersive X-ray spectroscopy showed the inclusion of about 6% phosphorous in the coating. The scanning electron microscopy studies revealed the amorphous nature of the coating. The corrosion resistance of the coatings was evaluated by the electrochemical impedance spectroscopy (EIS) and linear polarization (LP) techniques. The results revealed that, phosphorous addition confers better corro- sion resistance in comparison to conventional black nickel coatings. The black nickel coating obtained from hypophosphite bath provides high solar absorptance (αs) and infrared emittance (εIR) of the order of 0.93. Environmental stability to space applications was established by the humidity and thermal cycling tests.

  6. Shock Absorbing Characteristics and Vibration Transmissibility of Honeycomb Paperboard

    Directory of Open Access Journals (Sweden)

    Yanfeng Guo

    2004-01-01

    Full Text Available Honeycomb paperboard is a kind of environmental-friendly package cushioning material with honeycomb sandwich structure, and may be employed to protect products from shock or vibration damage during distribution. This paper deals with the characterization of properties of honeycomb paperboard relevant to its application for protective packaging in transportation, such as dynamic cushion curves and vibration transmissibility. The main feature of the paper is the evaluation on the shock absorbing characteristics and vibration transmissibility of honeycomb paperboards with different thickness by a series of experimental studies on the drop shock machine and vibration table. By using the fitting polynomial of the curve, the experiential formulas and characteristic coefficients of dynamic cushion curves of honeycomb paperboards with different thickness have been obtained. From the vibration tests with slow sine sweep, the peak frequencies and vibration transmissibility are measured and used to estimate the damping ratios. All the works provide basic data and curves relevant to its application for protective packaging in transportation.

  7. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    Science.gov (United States)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy

    2013-11-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.

  8. Three-dimensional Casimir force between absorbing multilayer dielectrics

    CERN Document Server

    Raabe, C; Welsch, D G; Raabe, Christian; Kn\\"{o}ll, Ludwig; Welsch, Dirk-Gunnar

    2003-01-01

    Recently the influence of dielectric and geometrical properties on the Casimir force between dispersing and absorbing multilayered plates in the zero-temperature limit has been studied within a 1D quantization scheme for the electromagnetic field in the presence of causal media [R. Esquivel-Sirvent, C. Villarreal, and G.H. Cocoletzi, Phys. Rev. Lett. 64, 052108 (2001)]. In the present paper a rigorous 3D analysis is given, which shows that for complex heterostructures the 1D theory only roughly reflects the dependence of the Casimir force on the plate separation in general. Further, an extension of the very recently derived formula for the Casimir force at zero temperature [M.S. Toma\\v{s}, Phys. Rev. A 66, 052103 (2002)] to finite temperatures is given, and analytical expressions for specific distance laws in the zero-temperature limit are derived. In particular, it is shown that the Casimir force between two single-slab plates behaves asymptotically like $d^{-6}$ in place of $d^{-4}$ ($d$, plate separation).

  9. Application of Tuned Vibration Absorbers in Fluid Mounts

    Directory of Open Access Journals (Sweden)

    Mohammad Jalali Mashayekhi

    2009-01-01

    Full Text Available The need to reduce the fuel consumption of vehicles leads to having lighter chassis’ with lighter engines yet maintaining engine power. These new design requirements are in contrast with the vibration isolation requirements. To keep the vehicles light yet provide good cabin noise and vibration isolation, requires a new vibration isolation technology. Fluid mounts have been used in the aerospace and the automotive industry to provide cabin noise and vibration reduction for years. With the use of passive fluid mounts, the highest cabin noise and vibration reduction is achieved at a frequency called “Notch Frequency”. But typical passive fluid mounts have only one notch frequency. So the best cabin noise and vibration reduction is only achievable at one frequency. In this paper, a new fluid mount design in combination with a tuned vibration absorber is proposed. Bond graph modelling technique is used to model the new fluid mount design. The physical model and simulation results are presented. The effect of the natural frequency of the TVA on the dynamic stiffness of the fluid mount is studied.

  10. Anti-terrorist vehicle crash impact energy absorbing barrier

    Science.gov (United States)

    Swahlan, David J.

    1989-01-01

    An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.

  11. Black phosphorus saturable absorber for ultrashort pulse generation

    International Nuclear Information System (INIS)

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics

  12. Hydrogen-absorbing characteristics of 15 rare earth elements

    International Nuclear Information System (INIS)

    The amounts of absorbed hydrogen and the rates of hydrogen-absorption reaction were measured for 15 rare earth elements. The cohesive energy and energy fluctuation of metal clusters were also calculated by using the extended-Hueckel method. The characteristics of each rare earth element in the capacity of hydrogen absorption and the reaction rate were discussed by comparing the experimental results with the calculated ones. The major results are as follows. (i) Hydrogen/metal ratios (H/M) of rare-earth metals are nearly constant, ∼3, except for Eu and Yb; (ii) the rate of hydrogen-absorption reaction may be determined by the product of (magnitude of energy fluctuation) and (density of states); (iii) the 15 rare-earth elements would be classified into four groups: Group 1 (Ce, Pr, Nd), Group 2 (Sm, Gd, Tb, Dy, Ho, Er), Group 3 (Tm, Yb, Lu) and Group 4 (Y, La, Eu) and (iv) the rate of hydrogen-absorption reaction is remarkably promoted by pre-heating the metals before the reaction

  13. Scaling neutron absorbed dose distributions from one medium to another

    International Nuclear Information System (INIS)

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  14. Absorbing and Shattered Fragmentation Transitions in Multilayer Coevolution

    CERN Document Server

    Diakonova, Marina; Eguiluz, Victor M

    2014-01-01

    We introduce a coevolution voter model in a multilayer, by coupling a fraction of nodes across two network layers and allowing each layer to evolve according to its own topological temporal scale. When these time scales are the same the dynamics preserve the absorbing-fragmentation transition observed in a monolayer network at a critical value of the temporal scale that depends on interlayer connectivity. The time evolution equations obtained by pair approximation can be mapped to a coevolution voter model in a single layer with an effective average degree. When the two layers have different topological time scales we find an anomalous transition, named shattered fragmentation, in which the network in one layer splits into two large components in opposite states and a multiplicity of isolated nodes. We identify the growth of the number of components as a signature of this anomalous transition. We also find a critical level of interlayer coupling needed to prevent the fragmentation in a layer connected to a la...

  15. Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber

    Science.gov (United States)

    Akman, O.; Kavas, H.; Baykal, A.; Toprak, M. S.; Çoruh, Ali; Aktaş, B.

    2013-02-01

    Polyacrylonitrile (PAN) textiles with 2 mm thickness are coated with magnetic nanoparticles in coating baths with Ni, Co and their alloys via an electroless metal deposition method. The crystal structure, morphology and magnetic nature of composites are investigated by X-ray Powder diffraction, Scanning Electron Microscopy, and dc magnetization measurement techniques. The frequency dependent microwave absorption measurements have been carried out in the frequency range of 12.4-18 GHz (X and P bands). Diamagnetic and ferromagnetic properties are also investigated. Finally, the microwave absorption of composites is found strongly dependent on the coating time. One absorption peak is observed between 14.3 and 15.8 GHz with an efficient absorption bandwidth of 3.3-4.1 GHz (under -20 dB reflection loss limit). The Reflection loss (RL) can be achieved between -30 and -50 dB. It was found that the RL is decreasing and absorption bandwidth is decreasing with increasing coating time. While absorption peak moves to lower frequencies in Ni coated PAN textile, it goes higher frequencies in Co coated ones. The Ni-Co alloy coated composites have fluctuating curve of absorption frequency with respect to coating time. These results encourage further development of magnetic nanoparticle coated textile absorbers for broadband applications.

  16. Dysprosium titanate as an absorber material for control rods

    Energy Technology Data Exchange (ETDEWEB)

    Risovany, V.D. E-mail: fae@niiar.ru; Varlashova, E.E.; Suslov, D.N

    2000-09-02

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point ({approx}1870 deg. C), non-interaction with the cladding at temperatures above 1000 deg. C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4x10{sup 22} cm{sup -2} (E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  17. Dysprosium titanate as an absorber material for control rods

    Science.gov (United States)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  18. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    International Nuclear Information System (INIS)

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s−1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R and D Center for nominal drop speeds of up to 6 m s−1. (paper)

  19. Tungsten based Anisotropic Metamaterial as an Ultra-broadband Absorber

    CERN Document Server

    Lin, Yinyue; Ding, Fei; Fung, Kin Hung; Ji, Ting; Li, Dongdong; Hao, Yuying

    2016-01-01

    The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can also support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we ca...

  20. Black phosphorus saturable absorber for ultrashort pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370 (Poland); Macherzynski, W.; Paletko, P. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wroclaw 50-372 (Poland)

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  1. Nanographene-Based Saturable Absorbers for Ultrafast Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Kuo

    2014-01-01

    Full Text Available The generation of femtosecond pulse laser in the erbium-doped fiber laser system is presented by integrating of the nanographene-based saturable absorbers (SAs. A simplified method of dispersed nanographene-based SAs side-polished fiber device with controllable polished length and depth was also developed. The dependence of geometry of a graphene-deposited side-polished fiber device on optical nonlinear characteristics and on the performance of the MLFL was screened. We found that the 10 mm polished length with 1.68 dB insertion loss had the highest modulation depth (MD of 1.2%. A stable MLFL with graphene-based SAs employing the optimized side-polished fiber device showed a pulse width, a 3 dB bandwidth, a time-bandwidth product (TBP, a repetition rate, and pulse energy of 523 fs, 5.4 nm, 0.347, 16.7 MHz, and 0.18 nJ, respectively, at fundamental soliton-like operation. The femtosecond pulse laser is achieved by evanescent field coupling through graphene-deposited side-polished fiber devices in the laser cavity. This study demonstrates that the polished depth is the key fabrication geometric parameter affecting the overall optical performance and better results exist within the certain polished range.

  2. Super absorbent hydrogel composites as water retentive in soil

    International Nuclear Information System (INIS)

    Super absorbent hydrogels (SAP) were synthesized at room temperature, by the use of potassium persulfate as initiator, N,N'-methylene bis acrylamide (MBA) as crosslinking agent, and N,N,N',N'- tetramethylethylenediamine. Gels at the same conditions were prepared with 10% of minerals (bentonite or dolomite). The materials of bentonite series were obtained from acrylamide followed by hydrolysis with NaOH. The gels of dolomite series were prepared from the two co-monomers (acrylamide and acrylate). All SAPs were characterized by elemental microanalysis, FTIR, x-ray diffraction, SEM, and by swelling measurements in water. An intercalated composite was obtained with bentonite hydrogel. After hydrolysis an exfoliated nanocomposite was formed. The dolomite mineral was dispersed in the polymeric matrix. The swelling degrees of the SAPs with mineral were higher than those gels without it. This degree was 1,000 times the dry gel weight. Taking into account the amount of water needed to the process, the gel with dolomite is the most promising as soil conditioner. (author)

  3. Active packaging using ethylene absorber to extend shelf-life

    International Nuclear Information System (INIS)

    Ethylene gas is a plant hormone which is produced by fruits and vegetables during ripening and it is also found in the environment. It plays an essential role in normal ripening, but excessive exposure can radically reduce the shelf-life of the product, in some cases inducing undesirable reactions such as development of bitter flavors and loss of chlorophyll (yellowing of greens). The objectives of our work were: to test an active packaging of polyvinyl alcohol (PVA) for apple stored; to test the effect of ethylene absorber agent, impregnated in plastic film, to reduce decay of fresh apple; to study the influence of radiation on the barrier properties, mechanical properties and biodegradability of PVA films. This study evaluated the effect of coating produced from PVA and polyol (glycerol and sorbitol) as plasticizer on apple conservation (75 deg F (24 deg C); 70%RH). The coated product was analyzed for mass loss, color alterations and fungi. The PVA films were produced by casting process (dehydration of a filmogenic solution on Petriplastic dishes) and were irradiated at low doses of 2, 5 and 10 kGy, commonly used in food irradiation. The resulting films were transparent and homogeneous. The active packaged fruits presented higher acceptance, lower microbiological growth, less alterations in acidity, lower weight loss rate during the storage time and an extended shelf-life as compared to the control fruits (without plastic films). (author)

  4. Tuned dynamic absorber for split Stirling cryogenic cooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Tuned dynamic absorbers (TDA) find use, in particular, for attenuating tonal vibration export produced by the moving components of cryogenic cooler. For the best performance, the resonant frequency of TDA needs to be essentially equal the driving frequency; accurate frequency match is favorably achieved by minimizing the cooler induced vibration by adjusting the driving frequency. For the best performance, the design of TDA needs to ensure minimum damping ratio; this is achievable by using planar flexural bearings having zero friction anchoring features. Accurate evaluation of effective mass, damping ratio and frequency is needed for TDA characterization during development and manufacturing. This data may be also important for the dynamic modelling. The authors are exploring the express method requiring no physical access to the proof mass of TDA. In this approach, the TDA is mounted upon the low frequency vibration mounted rod, the dynamic properties of TDA are then evaluated using the frequency response function - local accelerance - captured on the above rod using accelerometer, instrumented modal hammer and dual-channel signal analyzer. The authors are presenting the TDA design, outcomes of full-scale experimentation on dynamic properties evaluation and attained performance.

  5. Scan-Free Absorbance Spectral Imaging A(x, y, λ) of Single Live Algal Cells for Quantifying Absorbance of Cell Suspensions.

    Science.gov (United States)

    Isono, Takumi; Yamashita, Kyohei; Momose, Daisuke; Kobayashi, Hiroki; Kitamura, Masashi; Nishiyama, Yusuke; Hosoya, Takahiro; Kanda, Hiroaki; Kudo, Ayane; Okada, Norihide; Yagi, Takafumi; Nakata, Kazuaki; Mineki, Shigeru; Tokunaga, Eiji

    2015-01-01

    Label-free, non-invasive, rapid absorbance spectral imaging A(x,y,λ) microscopy of single live cells at 1.2 μm × 1.2 μm resolution with an NA = 0.85 objective was developed and applied to unicellular green algae Chlamydomonas reinhardtii. By introducing the fiber assembly to rearrange a two-dimensional image to the one-dimensional array to fit the slit of an imaging spectrograph equipped with a CCD detector, scan-free acquisition of three-dimensional information of A(x,y,λ) was realized. The space-resolved absorbance spectra of the eyespot, an orange organelle about 1 μm, were extracted from the green-color background in a chlorophyll-rich single live cell absorbance image. Characteristic absorbance change in the cell suspension after hydrogen photoproduction in C. reinhardtii was investigated to find a single 715-nm absorption peak was locally distributed within single cells. The formula to calculate the absorbance of cell suspensions from that of single cells was presented to obtain a quantitative, parameter-free agreement with the experiment. It is quantitatively shown that the average number of chlorophylls per cell is significantly underestimated when it is evaluated from the absorbance of the cell suspensions due to the package effect. PMID:26061268

  6. Scan-Free Absorbance Spectral Imaging A(x, y, λ of Single Live Algal Cells for Quantifying Absorbance of Cell Suspensions.

    Directory of Open Access Journals (Sweden)

    Takumi Isono

    Full Text Available Label-free, non-invasive, rapid absorbance spectral imaging A(x,y,λ microscopy of single live cells at 1.2 μm × 1.2 μm resolution with an NA = 0.85 objective was developed and applied to unicellular green algae Chlamydomonas reinhardtii. By introducing the fiber assembly to rearrange a two-dimensional image to the one-dimensional array to fit the slit of an imaging spectrograph equipped with a CCD detector, scan-free acquisition of three-dimensional information of A(x,y,λ was realized. The space-resolved absorbance spectra of the eyespot, an orange organelle about 1 μm, were extracted from the green-color background in a chlorophyll-rich single live cell absorbance image. Characteristic absorbance change in the cell suspension after hydrogen photoproduction in C. reinhardtii was investigated to find a single 715-nm absorption peak was locally distributed within single cells. The formula to calculate the absorbance of cell suspensions from that of single cells was presented to obtain a quantitative, parameter-free agreement with the experiment. It is quantitatively shown that the average number of chlorophylls per cell is significantly underestimated when it is evaluated from the absorbance of the cell suspensions due to the package effect.

  7. Experimental and Theoretical Study for Performance Enhancement of Air Solar Collectors by Using Different Absorbers

    Directory of Open Access Journals (Sweden)

    Ahmed A. Mohammad Saleh

    2016-09-01

    Full Text Available An experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm , was tested under climate condition of Baghdad city with a (43° tilt angel by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width, which was manufactured from iron painted with a black matt. The experimental test deals with five types of absorber:- Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber . The hourly and average efficiency of the collectors were investigated for three values of mass flow rates (0.016 kg/s to 0.027 kg/s for each type of collector and then the porosity for the last collector type was tested by changing the porosity of porous media. A typical air solar collector has been studied Theoretically to build a standard software for testing any type of air solar collectors with local weather data . From the experimental study it can be seen by using some obstacle material to the air flow (fins, corrugated absorber plate, iron wire mesh porous media on the absorber could be enhanced the efficiencies not less than 4 % for finned type and 8 % for corrugated and 25 % for mesh and 30 % for porous media comparing with flat plate (smooth collector . Theoretically, the results showed that the collector with high convention heat transfer coefficient porous media has high hourly efficiency about (η = 56 % and iron wire mesh on absorber ( η = 52 % , on the other side the minimum performance occurred in the flat plate absorber (η = 28 %. Comparison of results reveals that the theoretical predictions agree reasonably well with experimental results. And the difference between the theoretical and experimental efficiency in general was between (1─ 15 %.

  8. Dysprosium and hafnium base absorbers for advanced WWER control rods

    International Nuclear Information System (INIS)

    Dysprosium titanate is an attractive control rod material for thermal neutron nuclear reactors such as WWER and RBMK. Its main advantages are almost non-swelling, no out-gassing under neutron irradiation, quit high neutron efficiency, a high melting point (∼ 1870 deg. C), non-interaction with the cladding at temperatures above 1000 deg. C, simple fabrication. nonradioactive waste and easy to reprocess. The dysprosium titanate control rods have worked without operating problems in the reactor MIR during 17 years and in WWER-1000 4 years. After post-irradiation examinations, this long-life control rod type was recommended for using in the nuclear reactors. Dysprosium hafnate is a promising absorber ceramic material. The research results confirmed that it has a large radiation damage resistance. The examination results of hafnium dummies (GFE-1) irradiated in BOR-60 are presented. The maximum accumulated neutron fluence was 3.4 x 1022cm-2 (E>0.1 MeV) and the temperature range was 340 to 360 deg. C. Due to high radiation growth (3-4 %) and the absence of an axial gap between the dummy and the upper capsule tip the dummies were bent. The irradiated dummies have high mechanical properties. Other aspects of the expected hafnium irradiation behaviour and the use of hafnium in control rods are discussed. This report presents some experimental data on Dy2O3·TiO2, Hf, Dy2O3·HfO2 and possibilities of their use in WWER control rods. (author)

  9. Thermoelectricity without absorbing energy from the heat sources

    Science.gov (United States)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-01-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  10. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber

    Science.gov (United States)

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-01-01

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic “I” shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process. PMID:27455280

  11. New absorbent acoustic materials from plastic bottle remnants

    Directory of Open Access Journals (Sweden)

    del Rey, R.

    2011-12-01

    Full Text Available In the building acoustics field usually fibrous materials are used as sound absorbing materials. Nowadays polyester fiber is one of the most used but the pure chip of polyester has a problem. Polyester is obtained of petroleum and its price was increasing last years. This paper, presents an alternative polyester wool which obtained by PET treatment (recycle of plastic bottle’s. Absorption coefficient values at normal incidence measured in reverberation chamber were compared (new wool obtained by PET method and materials obtained from pure chip of polyester.Furthermore, this paper propound a empiric model that describe the acoustic performance of this new wool. The results have been good. The pure fiber has been replaced by recycle fiber in its manufacture process.

    En el ámbito de acústica de la edificación es común el uso de materiales fibrosos como materiales absorbentes acústicos. Uno de estos materiales cada vez más utilizado es la lana de poliéster. Un problema que presenta el chip virgen de poliéster es que se obtiene del petróleo, cuyo precio no hace más que incrementarse en los últimos años. En este trabajo se presenta una lana de poliéster alternativa, obtenida mediante el tratamiento del PET, a través del conveniente ciclo de reciclado de botellas de plástico. Se comparan valores del coeficiente de absorción; en incidencia normal y en cámara reverberante de los materiales elaborados a partir de chip virgen y de las nuevas lanas obtenidas del PET. Además, se propone un modelo empírico de comportamiento acústico de estas nuevas lanas. Los resultados obtenidos han sido favorables, la fibra virgen ya ha sido sustituida por fibra reciclada en su proceso de fabricación.

  12. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber.

    Science.gov (United States)

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-01-01

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic "I" shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process. PMID:27455280

  13. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Binzhen Zhang

    2016-07-01

    Full Text Available The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic “I” shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process.

  14. Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber

    Energy Technology Data Exchange (ETDEWEB)

    Akman, O. [Physics Department, Gebze Institute of Technology (GYTE), 41400 Gebze-Kocaeli (Turkey); Department of Physics, Sakarya University, 54100, Sakarya (Turkey); Kavas, H. [Department of Physics Engineering, Faculty of Sciences, Istanbul Medeniyet University, 34720 Istanbul (Turkey); Baykal, A., E-mail: hbaykal@fatih.edu.tr [Department of Chemistry, Fatih University, 34500, B. Cekmece-Istanbul (Turkey); Toprak, M.S. [Functional Materials Division, KTH Royal Institute of Technology, SE-16440 Stockholm (Sweden); Yildirim Beyazit University, Department of Materials Science and Engineering, Ulus-Ankara (Turkey); Coruh, Ali [Department of Physics, Sakarya University, 54100, Sakarya (Turkey); Aktas, B., E-mail: aktas@gyte.edu.tr [Physics Department, Gebze Institute of Technology (GYTE), 41400 Gebze-Kocaeli (Turkey)

    2013-02-15

    Polyacrylonitrile (PAN) textiles with 2 mm thickness are coated with magnetic nanoparticles in coating baths with Ni, Co and their alloys via an electroless metal deposition method. The crystal structure, morphology and magnetic nature of composites are investigated by X-ray Powder diffraction, Scanning Electron Microscopy, and dc magnetization measurement techniques. The frequency dependent microwave absorption measurements have been carried out in the frequency range of 12.4-18 GHz (X and P bands). Diamagnetic and ferromagnetic properties are also investigated. Finally, the microwave absorption of composites is found strongly dependent on the coating time. One absorption peak is observed between 14.3 and 15.8 GHz with an efficient absorption bandwidth of 3.3-4.1 GHz (under -20 dB reflection loss limit). The Reflection loss (RL) can be achieved between -30 and -50 dB. It was found that the RL is decreasing and absorption bandwidth is decreasing with increasing coating time. While absorption peak moves to lower frequencies in Ni coated PAN textile, it goes higher frequencies in Co coated ones. The Ni-Co alloy coated composites have fluctuating curve of absorption frequency with respect to coating time. These results encourage further development of magnetic nanoparticle coated textile absorbers for broadband applications. - Highlights: Black-Right-Pointing-Pointer Ni, Co and Ni-Co alloyed coatings on PAN were successfully prepared. Black-Right-Pointing-Pointer The incorporation of magnetic nanoparticles leads to interfacial polarization. Black-Right-Pointing-Pointer The composite prepared in Ni bath at 0.5 min leads to a wider absorption bandwidth and minimum coefficient of reflection. Black-Right-Pointing-Pointer About of -42 dB, more than 99.99% of the microwave absorption.

  15. Reprint of : Thermoelectricity without absorbing energy from the heat sources

    Science.gov (United States)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-08-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  16. PREPARATION AND PROPERTIES OF ABSORBABLE FIBERS FROM L-LACTIDE COPOLYMERS

    NARCIS (Netherlands)

    PENNING, JP; PENNINGS, AJ

    1993-01-01

    Absorbable fibres have been prepared from various copolymers Of L-lactide with either D-lactide or epsilon-caprolactone. The lower crystallinity of these copolymers, compared with the homopolymer, is desirable in the light of their potential use as an absorbable suture material and has a pronounced

  17. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ralph E. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX); Bourn, Gary D. (Laramie, WY)

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  18. CaII Absorbers in the Sloan Digital Sky Survey: Element Abundances and Dust

    CERN Document Server

    Sardane, Gendith M; Rao, Sandhya M

    2015-01-01

    We present measurements of element abundance ratios and dust in CaII~absorbers identified in SDSS DR7+DR9. In an earlier paper we formed a statistical sample of 435 CaII absorbers and postulated that their statistical properties might be representative of at least two populations of absorbers. Here we show that if the absorbers are roughly divided into two subsamples with CaII rest equivalent widths larger and smaller than $W_0^{\\lambda 3934} = 0.7$ \\AA, they are then representative of two physically different populations. Comparisons of abundance ratios between the two CaII absorber populations indicate that the weaker $W_0^{\\lambda 3934}$ absorbers have properties consistent with halo-type gas, while the stronger absorbers have properties intermediate between halo- and disk-type gas. We also show that, on average, the dust extinction properties of the overall sample is consistent with a LMC or SMC dust law, and the stronger absorbers are nearly 6 times more reddened than their weaker counterparts. The absor...

  19. Impact of burnable absorber Gd on nuclide composition for VVER-440 fuel (Gd-2)

    International Nuclear Information System (INIS)

    The latest version of Russian fuel VVER-440 includes burnable absorber in 6 pins. In this article is impact of burnable absorber on nuclide composition and criticality analyzed. In part 1 was analyzed whole burnup interval 0-50 MWd/kgU. In present part 2 are detailed analysis only for first cycle (burnup 0-10 MWd/kgU). (Authors)

  20. Thermal Characterization of Absorbing Coatings for Thermal Detectors of Radiation by Photopyroelectric Method

    OpenAIRE

    Bravina, Svetlana L.; Morozovsky, Nicholas V.; Dovbeshko, Galina I.; Obraztsova, Elena D.

    2006-01-01

    By photothermomodulatoin method the comparative study of thermal diffusivity of absorbing coating for sensitive elements of pyroelectric detectors of radiation formed from metal dispersion layer blacks, dielectric paint blacks and carbon nanotubes paint blacks has been performed. Prospects of using carbon nanotubes based black absorbing coatings for pyroelectric and other thermal detector application are shown.

  1. Study of thermal neutron currents near cylindrical absorbers located in heavy water

    International Nuclear Information System (INIS)

    The experiments reported involved determining the angular response of detectors to neutrons exterior to the surface of long cylindrical absorbers immersed in a scattering medium. The absorbers consisted of solid cylinders of copper, cadmium, or natural uranium in a fuel lattice, and combinations of copper and cadmium, as well as voided cylinders. The scattering (moderating) medium consisted of heavy water. (author)

  2. Fabrication of tunnel junctions on thick X-ray absorbing substrates of Nb and Ta

    NARCIS (Netherlands)

    Hamster, A.W.; Ferrari, E.; Adelerhof, D.J.; Brons, G.C.S.; Schoofs, I.J.E.; Flokstra, J.; Rogalla, H.; Bruijn, M.P.; Kiewiet, F.; Luiten, O.J.; Korte, de P.A.J.

    1996-01-01

    X-ray detectors based on absorber-junction combinations can combine a large detector area with position resolution and good energy resolution. We plan to use a thick, single crystal Nb or Ta absorber with readout tunnel junctions integrated on top as our next generation X-ray detector. The thickness

  3. Self-absorption effects on electron absorbed fraction in the anterior nose

    International Nuclear Information System (INIS)

    The electron absorbed fraction in the anterior nose is estimated in the International Commission on Radiological Protection Publication 66 using EGS4 Code and a cylinder model. The electrons are assumed to come from point sources lining the inner surface of the nose. Although the radioactive source particles are carried in dust, self-absorption in the dust is ignored. Consequently, the absorbed fractions published in ICRP 66 cannot represent the correct energy deposition in the basal cell region. In this work we estimate the energy lost by the emitted electrons inside spherical dust particles, which vary in diameter from 1 μm to 100 μm. The absorbed fractions in the basal cell layer are then estimated using the modified electron energy spectrum. To illustrate these effects, modified absorbed fractions for a dust particle radius of 20 μm are compared to the absorbed fractions presented in ICRP 66. Significant differences are noted. (author)

  4. Effects of body and organ size on absorbed dose: there is no standard patient

    International Nuclear Information System (INIS)

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patient does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient

  5. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  6. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    Science.gov (United States)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  7. Research on Simulation and Test of the Nonlinear Responses for the Hydraulic Shock Absorber

    Institute of Scientific and Technical Information of China (English)

    张建武; 刘延庆

    2003-01-01

    Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.

  8. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  9. Optical absorbers based on strong interference in ultra-thin films

    CERN Document Server

    Kats, Mikhail A

    2016-01-01

    Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using the emerging concepts of plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induc...

  10. Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2015-01-01

    Full Text Available A theoretical analytical method for optical properties of cavity absorber was proposed in this paper and the optical design software TracePro was used to analyze the optical properties of triangular cavity absorber. It was found that the optimal optical properties could be achieved with appropriate aperture width, depth-to-width ratio, and offset distance from focus of triangular cavity absorber. Based on the results of orthogonal experiment, the optimized triangular cavity absorber was designed. Results showed that the standard deviation of irradiance and optical efficiency of optimized designed cavity absorber were 30528 W/m2 and 89.23%, respectively. Therefore, this study could offer some valuable references for designing the parabolic trough solar concentrator in the future.

  11. High-Redshift Superwinds as the Source of the Strongest Mg II Absorbers A Feasibility Analysis

    CERN Document Server

    Bond, N A; Charlton, J C; Vogt, S S

    2001-01-01

    We present HIRES/Keck profiles of four extremely strong (W_r > 1.8 A) Mg II absorbers at 1 1.8 A evolve away from z = 2 to the present. We propose that a substantial fraction of these very strong absorbers are due to superwinds and that their evolution is related to the redshift evolution of star-forming galaxies. Based on the observed redshift number density of W_r > 1.8 A Mg II absorbers at 1 < z < 2, we explore whether it is realistic that superwinds from starbursting galaxies could give rise to these absorbers. Finally, we do an analysis of the superwind connection to damped Lya absorbers (DLAs). DLAs and superwinds evolve differently and usually have different kinematic structure, indicating that superwinds probably do not give rise to the majority of DLAs.

  12. Solar Multi-stage Refrigeration Systems on the Basis of Absorber with the Internal Evaporative Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-08-01

    Full Text Available In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included after the absorber of the proper stage, is developed. Heat-mass-transfer apparatus of film-type, entering in the complement of drying and cool contours compatible and executed on the basis of multichannel compositions from polymeric materials. The preliminary comparative analysis of possibilities of the solar refrigeration systems and air-conditioning systems is executed.

  13. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    CERN Document Server

    Kalozoumis, P A; Kodaxis, G; Diakonos, F K; Schmelcher, P

    2016-01-01

    A recursive scheme for the design of scatterers acting simultaneously as emitters and absorbers, such as lasers and coherent perfect absorbers in optics, at multiple prescribed frequencies is proposed. The approach is based on the assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility in the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  14. Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers

    Science.gov (United States)

    Issa, Jimmy S.; Shaw, Steven W.

    2015-07-01

    In this work we investigate the nonlinear dynamic response of systems composed of a primary inertia to which multiple identical vibration absorbers are attached. This problem is motivated by observations of systems of centrifugal pendulum vibration absorbers that are designed to reduce engine order torsional vibrations in rotating systems, but the results are relevant to translational systems as well. In these systems the total absorber mass is split into multiple equal masses for purposes of distribution and/or balance, and it is generally expected that the absorbers will act in unison, corresponding to a synchronous response. In order to capture nonlinear effects of the responses of the absorbers, specifically, their amplitude-dependent frequency, we consider them to possess nonlinear stiffness. The equations of motion for the system are derived and it is shown how one can uncouple the equations for the absorbers from that for the primary inertia, resulting in a system of identical resonators that are globally coupled. These symmetric equations are scaled for weak nonlinear effects, near resonant forcing, and small damping. The method of averaging is applied, from which steady-state responses and their stability are investigated. The response of systems with two, three, and four absorbers are considered in detail, demonstrating a rich variety of bifurcations of the synchronous response, resulting in responses with various levels of symmetry in which sub-groups of absorbers are mutually synchronous. It is also shown that undamped models with more than two absorbers possess a degenerate response, which is made robust by the addition of damping to the model. Design guidelines are proposed based on the nature of the system response, with the aim of minimizing the acceleration of the primary system. It is shown that the desired absorber parameters are selected so that the system achieves a stable synchronous response which does not undergo jumps via saddle

  15. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Aydogan, B.; Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.; Sparks, R.B. [Oak Ridge Inst. for Science and Education, TN (United States); Stubbs, J.B. [Radiation Dosimetry Systems of Oak Ridge, Inc., Knoxville, TN (United States)

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  16. Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol

    Science.gov (United States)

    Wilcox, E. M.

    2010-12-01

    Marine stratocumulus cloud properties, and the free-tropospheric environment above them, are examined in NASA A-Train satellite data for cases where smoke from seasonal burning of the West African savannah overlay the persistent southeast Atlantic stratocumulus cloud deck. CALIPSO space-borne lidar observations show that features identified as layers of aerosol occur predominantly between 2 km and 4 km. Layers identified as cloud features occur predominantly below 1.5 km altitude and beneath the layer of elevated smoke aerosol. The diurnal mean shortwave heating rates attributable to the absorption of solar energy in the aerosol layer is nearly 1.5 K d-1 for an aerosol optical thickness value of 1, and increases to 1.8 K d-1 when the smoke resides above clouds owing to the additional component of upward solar radiation reflected by the cloud. As a consequence of this heating, the 700 hPa air temperature above the cloud deck is warmer by approximately 1 K on average for cases where smoke is present above the cloud compared to cases without smoke above cloud. The warmer conditions in the free-troposphere above the cloud during smoke events coincide with cloud liquid water path values that are greater by 20 g m-2 and cloud tops that are lower for overcast conditions compared to periods with low amounts of smoke. The observed thickening and subsidence of the cloud layer are consistent with published results of large-eddy simulations showing that solar absorption by smoke above stratocumulus clouds increases the buoyancy of free-tropospheric air above the temperature inversion capping the boundary layer. Increased buoyancy inhibits the entrainment of dry air through the cloud-top, thereby helping to preserve humidity and cloud cover in the boundary layer. The direct radiative effect of absorbing aerosols residing over a bright cloud deck is a positive radiative forcing (warming) at the top of the atmosphere. However, the greater liquid water path for cases of smoke

  17. Specific absorbed fraction of X-ray in tissues from human organs

    International Nuclear Information System (INIS)

    Full text: X- rays are widely used in medical imaging and radiation therapy. The user of radioisotopes must have knowledge about how radiation interacts with matter, especially with the human body, because when photons enter the medium/body, they degrade their energy and build up in the medium, giving rise to secondary radiation. Calculations of the energy absorbed in a medium include not only the contribution of the uncollided photons from the source, but must also include the contributions from collided and secondary photons. In practice, this is done by multiplying the contribution of the uncollided photons by the energy absorption buildup factor. An accurate absorbed dose calculation needs specific absorbed fraction of energy. Geometric progression (GP) fitting method has been used to compute energy absorption build-up factor of Human organs such as brain, breast, eye lens, GI track, heart, kidney, liver, lung, lymph, ovary, pancreas, testis and skeleton-femur. The computed absorption build-up factor is used to estimate specific absorbed fraction of energy. The thickness of the medium up to 10mm and with penetration depth up to 40 mean free paths considered. The dependence of specific absorbed fraction of energy on incident photon energy, penetration and the thickness of the medium have also been studied. The specific absorbed fraction of energy increases up to the Epe and then decreases. Here Epe is the energy value at which the photo electric interaction coefficients matches with Compton interaction coefficients for a given value of effective atomic number (Zeff). The variation of specific absorbed fractions with energy is due to dominance of photoelectric absorption in the lower end and dominance of pair production in the higher photon energy region. In the lower energy end photoelectric absorption is dominant photon interaction process; hence specific absorbed fractions values minimum. As the energy of incident photon increases, Compton scattering overtakes

  18. A review on the performance of conventional and energy-absorbing rockbolts

    Institute of Scientific and Technical Information of China (English)

    Charlie C.Li; Gisle Stjern; Arne Myrvang

    2014-01-01

    This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to loadedisplacement graphs for every type of rockbolt. Conven-tional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate;a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement;and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.

  19. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    Science.gov (United States)

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  20. Development of a carbonaceous selective absorber for solar thermal energy collection and process for its formation

    Science.gov (United States)

    Garrison, John D.

    1989-02-01

    The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.