WorldWideScience

Sample records for absolute photometric calibration

  1. Empirical photometric calibration of the Gaia red clump: Colours, effective temperature, and absolute magnitude

    Science.gov (United States)

    Ruiz-Dern, L.; Babusiaux, C.; Arenou, F.; Turon, C.; Lallement, R.

    2018-01-01

    Context. Gaia Data Release 1 allows the recalibration of standard candles such as the red clump stars. To use those stars, they first need to be accurately characterised. In particular, colours are needed to derive interstellar extinction. As no filter is available for the first Gaia data release and to avoid the atmosphere model mismatch, an empirical calibration is unavoidable. Aims: The purpose of this work is to provide the first complete and robust photometric empirical calibration of the Gaia red clump stars of the solar neighbourhood through colour-colour, effective temperature-colour, and absolute magnitude-colour relations from the Gaia, Johnson, 2MASS, HIPPARCOS, Tycho-2, APASS-SLOAN, and WISE photometric systems, and the APOGEE DR13 spectroscopic temperatures. Methods: We used a 3D extinction map to select low reddening red giants. To calibrate the colour-colour and the effective temperature-colour relations, we developed a MCMC method that accounts for all variable uncertainties and selects the best model for each photometric relation. We estimated the red clump absolute magnitude through the mode of a kernel-based distribution function. Results: We provide 20 colour versus G-Ks relations and the first Teff versus G-Ks calibration. We obtained the red clump absolute magnitudes for 15 photometric bands with, in particular, MKs = (-1.606 ± 0.009) and MG = (0.495 ± 0.009) + (1.121 ± 0.128)(G-Ks-2.1). We present a dereddened Gaia-TGAS HR diagram and use the calibrations to compare its red clump and its red giant branch bump with Padova isochrones. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A116

  2. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  3. Sloan Digital Sky Survey Photometric Calibration Revisited

    International Nuclear Information System (INIS)

    Marriner, John

    2012-01-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  4. Sloan Digital Sky Survey Photometric Calibration Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  5. Calibrating photometric redshifts of luminous red galaxies

    International Nuclear Information System (INIS)

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; Bridges, Terry; Brinkmann, Jonathan

    2005-01-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.

  6. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    NARCIS (Netherlands)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno II, Jim

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we

  7. Planck 2013 results. VIII. HFI photometric calibration and mapmaking

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    This paper describes the processing applied to the HFI cleaned time-ordered data to produce photometrically calibrated maps. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration on such a large range, two different photometric ca...

  8. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  9. Photometric Calibration of Consumer Video Cameras

    Science.gov (United States)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to

  10. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    Zucker, M.S.; Karpf, E.

    1984-01-01

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  11. Planck 2013 results. VIII. HFI photometric calibration and mapmaking

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bertincourt, B; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Filliard, C; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Jeune, M Le; Lellouch, E; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Maurin, L; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Moreno, R; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Techene, S; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper describes the processing applied to the HFI cleaned time-ordered data to produce photometrically calibrated maps. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration on such a large range, two different photometric calibration schemes have to be used. The 545 and 857 \\GHz\\ data are calibrated using Uranus and Neptune flux density measurements, compared with models of their atmospheric emissions to calibrate the data. The lower frequencies (below 353 GHz) are calibrated using the cosmological microwave background dipole.One of the components of this anisotropy results from the orbital motion of the satellite in the Solar System, and is therefore time-variable. Photometric calibration is thus tightly linked to mapmaking, which also addresses low frequency noise removal. The 2013 released HFI data show some evidence for apparent gain variations of the HFI bolometers' detection chain. These variations were identified by comparing obse...

  12. LED-based Photometric Stereo: Modeling, Calibration and Numerical Solutions

    DEFF Research Database (Denmark)

    Quéau, Yvain; Durix, Bastien; Wu, Tao

    2018-01-01

    We conduct a thorough study of photometric stereo under nearby point light source illumination, from modeling to numerical solution, through calibration. In the classical formulation of photometric stereo, the luminous fluxes are assumed to be directional, which is very difficult to achieve in pr...

  13. PLEIADES ABSOLUTE CALIBRATION : INFLIGHT CALIBRATION SITES AND METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. Lachérade

    2012-07-01

    Full Text Available In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station and Oceans (Calibration over molecular scattering or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  14. Photometric Calibration of the SPRED at the FTU Tokamak

    International Nuclear Information System (INIS)

    May, M J

    1999-01-01

    The SPRED spectrometer was photometrically calibrated by using the FTU tokamak plasma and the Grazing Incidence Time Resolving Spectrometer (GRITS) from the Johns Hopkins University [Stratton, Nucl. Fusion, Vol. 24, No. 6, pp. 767-777, 1984]. The photometric calibration of the GRITS spectrometer was transferred to the SPRED [Fonck, R.J., Applied Optics, Vol. 21, No. 12, p. 2115 (1982)] by directly comparing the intensity of bright lines emitted from the FTU tokamak plasma that were simultaneously measured by both spectrometers. The GRITS spectrometer (λ = 10 - 360 (angstrom); Δλ ∼ 0.7 (angstrom)) was photometrically calibrated in the 50 - 360 (angstrom) spectral range at the SURF II synchrotron light source at NIST in Gaithersburg MD in August 1997. The calibration of each SPRED grating was performed separately. These gratings covered the short wavelengths: 100 - 300 (angstrom)(Δλ - 1.4 (angstrom)) and the long wavelengths: 200 - 1800 (angstrom) (Δλ ∼ 7 (angstrom)). This calibration should be accurate until the microchannel plate of the SPRED is exposed to atmospheric pressure. This calibration is similar to the one obtained by Stratton [Stratton, Rev. Sci. Instrum. 57 (8), pp. 204,3 August 1986

  15. The Absolute Reflectance and New Calibration Site of the Moon

    Science.gov (United States)

    Wu, Yunzhao; Wang, Zhenchao; Cai, Wei; Lu, Yu

    2018-05-01

    How bright the Moon is forms a simple but fundamental and important question. Although numerous efforts have been made to answer this question such as use of sophisticated electro-optical measurements and suggestions for calibration sites, the answer is still debated. An in situ measurement with a calibration panel on the surface of the Moon is crucial for obtaining the accurate absolute reflectance and resolving the debate. China’s Chang’E-3 (CE-3) “Yutu” rover accomplished this type of measurement using the Visible-Near Infrared Spectrometer (VNIS). The measurements of the VNIS, which were at large emission and phase angles, complement existing measurements for the range of photometric geometry. The in situ reflectance shows that the CE-3 landing site is very dark with an average reflectance of 3.86% in the visible bands. The results are compared with recent mission instruments: the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC), the Spectral Profiler (SP) on board the SELENE, the Moon Mineralogy Mapper (M3) on board the Chandrayaan-1, and the Chang’E-1 Interference Imaging Spectrometer (IIM). The differences in the measurements of these instruments are very large and indicate inherent differences in their absolute calibration. The M3 and IIM measurements are smaller than LROC WAC and SP, and the VNIS measurement falls between these two pairs. When using the Moon as a radiance source for the on-orbit calibration of spacecraft instruments, one should be cautious about the data. We propose that the CE-3 landing site, a young and homogeneous surface, should serve as the new calibration site.

  16. CALIBRATING PHOTOMETRIC REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS

    International Nuclear Information System (INIS)

    Schulz, A. E.

    2010-01-01

    The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshift identifications by two orders of magnitude, drastically expanding both the redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair subsample of these new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys to illuminate the processes of galaxy evolution and to constrain the underlying cosmology and growth of structure. We examine here an alternative to direct spectroscopic follow-up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline to implement the method, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is generally effective, but the estimator is weakened by two main factors. One is that the correlation function of the spectroscopic sample must be measured in many bins along the line of sight, which renders the measurement noisy and interferes with high-quality reconstruction of the photometric redshift distribution. Also, the method is not able to disentangle the photometric redshift distribution from redshift dependence in the bias of the photometric sample. We establish the impact of these factors using our mock catalogs. We conclude that it may still be necessary to spectroscopically follow up a fair subsample of the photometric survey data. Nonetheless, it is significant that the method has been successfully implemented on mock data, and with further refinement it may appreciably decrease the number of spectra that will be needed to calibrate future surveys.

  17. Absolute calibration of TFTR helium proportional counters

    International Nuclear Information System (INIS)

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Loughlin, M.

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments

  18. An Improved Photometric Calibration of the Sloan Digital SkySurvey Imaging Data

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Nikhil; Schlegel, David J.; Finkbeiner, Douglas P.; Barentine, J.C.; Blanton, Michael R.; Brewington, Howard J.; Gunn, JamesE.; Harvanek, Michael; Hogg, David W.; Ivezic, Zeljko; Johnston, David; Kent, Stephen M.; Kleinman, S.J.; Knapp, Gillian R.; Krzesinski, Jurek; Long, Dan; Neilsen Jr., Eric H.; Nitta, Atsuko; Loomis, Craig; Lupton,Robert H.; Roweis, Sam; Snedden, Stephanie A.; Strauss, Michael A.; Tucker, Douglas L.

    2007-09-30

    We present an algorithm to photometrically calibrate widefield optical imaging surveys, that simultaneously solves for thecalibration parameters and relative stellar fluxes using overlappingobservations. The algorithm decouples the problem of "relative"calibrations from that of "absolute" calibrations; the absolutecalibration is reduced to determining a few numbers for the entiresurvey. We pay special attention to the spatial structure of thecalibration errors, allowing one to isolate particular error modes indownstream analyses. Applying this to the SloanDigital Sky Survey imagingdata, we achieve ~;1 percent relative calibration errors across 8500sq.deg/ in griz; the errors are ~;2 percent for the u band. These errorsare dominated by unmodelled atmospheric variations at Apache PointObservatory. These calibrations, dubbed ubercalibration, are now publicwith SDSS Data Release 6, and will be a part of subsequent SDSS datareleases.

  19. Low-Cost Photometric Calibration for Interactive Relighting

    OpenAIRE

    Loscos , Céline; Drettakis , George

    2000-01-01

    International audience; Computer augmented reality is a rapidly emerging field allowing users to mix virtual and real worlds. Our interest is to allow relighting and remodelling of real scenes, using a reflectance estimation method. Most previous work focused on the quality of the results without considering the expense in computation and the price of acquisition equipment. In this paper, we present a low–cost photometric calibration method which improves the reflectance estimate of real scen...

  20. The VISTA ZYJHKs photometric system: calibration from 2MASS

    Science.gov (United States)

    González-Fernández, C.; Hodgkin, S. T.; Irwin, M. J.; González-Solares, E.; Koposov, S. E.; Lewis, J. R.; Emerson, J. P.; Hewett, P. C.; Yoldaş, A. K.; Riello, M.

    2018-03-01

    In this paper, we describe the routine photometric calibration of data taken with the VISTA infrared camera (VIRCAM) instrument on the ESO Visible and Infrared Survey Telescope for Astronomy (VISTA) telescope. The broad-band ZYJHKs data are directly calibrated from Two Micron all Sky Survey (2MASS) point sources visible in every VISTA image. We present the empirical transformations between the 2MASS and VISTA, and Wide-Field Camera and VISTA, photometric systems for regions of low reddening. We investigate the long-term performance of VISTA+VIRCAM. An investigation of the dependence of the photometric calibration on interstellar reddening leads to these conclusions: (1) For all broad-band filters, a linear colour-dependent correction compensates the gross effects of reddening where E(B - V) < 5.0. (2) For Z and Y, there is a significantly larger scatter above E(B - V) = 5.0, and insufficient measurements to adequately constrain the relation beyond this value. (3) The JHKs filters can be corrected to a few per cent up to E(B - V) = 10.0. We analyse spatial systematics over month-long time-scales, both inter- and intradetector and show that these are present only at very low levels in VISTA. We monitor and remove residual detector-to-detector offsets. We compare the calibration of the main pipeline products: pawprints and tiles. We show how variable seeing and transparency affect the final calibration accuracy of VISTA tiles, and discuss a technique, grouting, for mitigating these effects. Comparison between repeated reference fields is used to demonstrate that the VISTA photometry is precise to better than ≃ 2 per cent for the YJHKs bands and 3 per cent for the Z bands. Finally, we present empirically determined offsets to transform VISTA magnitudes into a true Vega system.

  1. Forward Global Photometric Calibration of the Dark Energy Survey

    Science.gov (United States)

    Burke, D. L.; Rykoff, E. S.; Allam, S.; Annis, J.; Bechtol, K.; Bernstein, G. M.; Drlica-Wagner, A.; Finley, D. A.; Gruendl, R. A.; James, D. J.; Kent, S.; Kessler, R.; Kuhlmann, S.; Lasker, J.; Li, T. S.; Scolnic, D.; Smith, J.; Tucker, D. L.; Wester, W.; Yanny, B.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; García-Bellido, J.; Gruen, D.; Gutierrez, G.; Honscheid, K.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.; DES Collaboration

    2018-01-01

    Many scientific goals for the Dark Energy Survey (DES) require the calibration of optical/NIR broadband b = grizY photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a “Forward Global Calibration Method (FGCM)” for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broadband survey imaging itself and models of the instrument and atmosphere to estimate the spatial and time dependences of the passbands of individual DES survey exposures. “Standard” passbands that are typical of the passbands encountered during the survey are chosen. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude {m}b{std} in the standard system. This “chromatic correction” to the standard system is necessary to achieve subpercent calibrations and in particular, to resolve ambiguity between the broadband brightness of a source and the shape of its SED. The FGCM achieves a reproducible and stable photometric calibration of standard magnitudes {m}b{std} of stellar sources over the multiyear Y3A1 data sample with residual random calibration errors of σ =6{--}7 {mmag} per exposure. The accuracy of the calibration is uniform across the 5000 {\\deg }2 DES footprint to within σ =7 {mmag}. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than 5 {mmag} for main-sequence stars with 0.5< g-i< 3.0.

  2. Forward Global Photometric Calibration of the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D. L.; Rykoff, E. S.; Allam, S.; Annis, J.; Bechtol, K.; Bernstein, G. M.; Drlica-Wagner, A.; Finley, D. A.; Gruendl, R. A.; James, D. J.; Kent, S.; Kessler, R.; Kuhlmann, S.; Lasker, J.; Li, T. S.; Scolnic, D.; Smith, J.; Tucker, D. L.; Wester, W.; Yanny, B.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; García-Bellido, J.; Gruen, D.; Gutierrez, G.; Honscheid, K.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.

    2017-12-28

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadband $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $m_b^{\\mathrm{std}}$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $m_b^{\\mathrm{std}}$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $\\sigma=5-6\\,\\mathrm{mmag}$ per exposure. The accuracy of the calibration is uniform across the $5000\\,\\mathrm{deg}^2$ DES footprint to within $\\sigma=7\\,\\mathrm{mmag}$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $5\\,\\mathrm{mmag}$ for main sequence stars with $0.5

  3. Absolute calibration of sniffer probes on Wendelstein 7-X

    NARCIS (Netherlands)

    Moseev, D.; Laqua, H.P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.J.; Oosterbeek, J.W.

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of

  4. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.

    2011-01-01

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.

  5. Advancing Absolute Calibration for JWST and Other Applications

    Science.gov (United States)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  6. Absolute calibration of sniffer probes on Wendelstein 7-X

    International Nuclear Information System (INIS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-01-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m 2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m 2 per MW injected beam power is measured.

  7. Absolute calibration of sniffer probes on Wendelstein 7-X

    Science.gov (United States)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  8. Absolute calibration of sniffer probes on Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Gellert, F. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Ernst-Moritz-Arndt-Universität Greifswald, Greifswald (Germany); Oosterbeek, J. W. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-08-15

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.

  9. Photometric Calibration of the Gemini South Adaptive Optics Imager

    Science.gov (United States)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  10. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  11. Absolute intensity calibration for ECE measurements on EAST

    International Nuclear Information System (INIS)

    Liu Yong; Liu Xiang; Zhao Hailin

    2014-01-01

    In this proceeding, the results of the in-situ absolute intensity calibration for ECE measurements on EAST are presented. A 32-channel heterodyne radiometer system and a Michelson interferometer on EAST have been calibrated independently, and preliminary results from plasma operation indicate a good agreement between the electron temperature profiles obtained with different systems. (author)

  12. SATELLITE-MOUNTED LIGHT SOURCES AS PHOTOMETRIC CALIBRATION STANDARDS FOR GROUND-BASED TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Albert, J., E-mail: jalbert@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada)

    2012-01-15

    A significant and growing portion of systematic error on a number of fundamental parameters in astrophysics and cosmology is due to uncertainties from absolute photometric and flux standards. A path toward achieving major reduction in such uncertainties may be provided by satellite-mounted light sources, resulting in improvement in the ability to precisely characterize atmospheric extinction, and thus helping to usher in the coming generation of precision results in astronomy. Using a campaign of observations of the 532 nm pulsed laser aboard the CALIPSO satellite, collected using a portable network of cameras and photodiodes, we obtain initial measurements of atmospheric extinction, which can apparently be greatly improved by further data of this type. For a future satellite-mounted precision light source, a high-altitude balloon platform under development (together with colleagues) can provide testing as well as observational data for calibration of atmospheric uncertainties.

  13. SATELLITE-MOUNTED LIGHT SOURCES AS PHOTOMETRIC CALIBRATION STANDARDS FOR GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Albert, J.

    2012-01-01

    A significant and growing portion of systematic error on a number of fundamental parameters in astrophysics and cosmology is due to uncertainties from absolute photometric and flux standards. A path toward achieving major reduction in such uncertainties may be provided by satellite-mounted light sources, resulting in improvement in the ability to precisely characterize atmospheric extinction, and thus helping to usher in the coming generation of precision results in astronomy. Using a campaign of observations of the 532 nm pulsed laser aboard the CALIPSO satellite, collected using a portable network of cameras and photodiodes, we obtain initial measurements of atmospheric extinction, which can apparently be greatly improved by further data of this type. For a future satellite-mounted precision light source, a high-altitude balloon platform under development (together with colleagues) can provide testing as well as observational data for calibration of atmospheric uncertainties.

  14. Absolute calibration and beam background of the Squid Polarimeter

    International Nuclear Information System (INIS)

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-01-01

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment

  15. Calibration of the photometric method of heavy ion charge measurements in emulsion using a CCD camera

    International Nuclear Information System (INIS)

    Kudzia, D.; Wilczynska, B.; Wilczynski, H.

    2002-01-01

    A previously developed method of heavy ion charge measurements in emulsion has been significantly improved. The charge measurements are based on analysis of photometric profiles of the particle tracks in emulsion. These profiles are obtained using a CCD camera mounted on an optical microscope. So far, the manual charge determination by delta ray counting had to be used for calibration of the photometric method. In this paper a complete procedure for calibration of the photometric method is shown, without resorting to the manual method

  16. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    Science.gov (United States)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  17. On the Photometric Error Calibration for the Differential Light Curves ...

    Indian Academy of Sciences (India)

    a value of 1.75 was estimated using the DLCs derived for pairs of steady stars ... apparently steady comparison stars present on the same CCD frame. ...... (2)) on the 262 steady star–star DLCs after accounting for the photometric error.

  18. Absolute efficiency calibration of HPGe detector by simulation method

    International Nuclear Information System (INIS)

    Narayani, K.; Pant, Amar D.; Verma, Amit K.; Bhosale, N.A.; Anilkumar, S.

    2018-01-01

    High resolution gamma ray spectrometry by HPGe detectors is a powerful radio analytical technique for estimation of activity of various radionuclides. In the present work absolute efficiency calibration of the HPGe detector was carried out using Monte Carlo simulation technique and results are compared with those obtained by experiment using standard radionuclides of 152 Eu and 133 Ba. The coincidence summing correction factors for the measurement of these nuclides were also calculated

  19. CALIBRATION OF THE MEARTH PHOTOMETRIC SYSTEM: OPTICAL MAGNITUDES AND PHOTOMETRIC METALLICITY ESTIMATES FOR 1802 NEARBY M-DWARFS

    International Nuclear Information System (INIS)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Newton, Elisabeth R.

    2016-01-01

    The MEarth Project is a photometric survey systematically searching the smallest stars near the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the MEarth system, identify photometric nights, and obtain an optical magnitude with 1.5% precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color–magnitude–metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which did not have an accurate determination of either prior to this work. For an additional 277 stars without a trigonometric parallax, we provide an estimate of the distance, assuming solar neighborhood metallicity. We find that the median metallicity for a volume-limited sample of stars within 20 pc of the Sun is [Fe/H] = −0.03 ± 0.008, and that 29/565 of these stars have a metallicity of [Fe/H] = −0.5 or lower, similar to the low-metallicity distribution of nearby G dwarfs. When combined with the results of ongoing and future planet surveys targeting these objects, the metallicity estimates presented here will be important for assessing the significance of any putative planet–metallicity correlation

  20. CALIBRATION OF THE MEARTH PHOTOMETRIC SYSTEM: OPTICAL MAGNITUDES AND PHOTOMETRIC METALLICITY ESTIMATES FOR 1802 NEARBY M-DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Newton, Elisabeth R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2016-02-20

    The MEarth Project is a photometric survey systematically searching the smallest stars near the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the MEarth system, identify photometric nights, and obtain an optical magnitude with 1.5% precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color–magnitude–metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which did not have an accurate determination of either prior to this work. For an additional 277 stars without a trigonometric parallax, we provide an estimate of the distance, assuming solar neighborhood metallicity. We find that the median metallicity for a volume-limited sample of stars within 20 pc of the Sun is [Fe/H] = −0.03 ± 0.008, and that 29/565 of these stars have a metallicity of [Fe/H] = −0.5 or lower, similar to the low-metallicity distribution of nearby G dwarfs. When combined with the results of ongoing and future planet surveys targeting these objects, the metallicity estimates presented here will be important for assessing the significance of any putative planet–metallicity correlation.

  1. Ensuring long-term stability of infrared camera absolute calibration.

    Science.gov (United States)

    Kattnig, Alain; Thetas, Sophie; Primot, Jérôme

    2015-07-13

    Absolute calibration of cryogenic 3-5 µm and 8-10 µm infrared cameras is notoriously instable and thus has to be repeated before actual measurements. Moreover, the signal to noise ratio of the imagery is lowered, decreasing its quality. These performances degradations strongly lessen the suitability of Infrared Imaging. These defaults are often blamed on detectors reaching a different "response state" after each return to cryogenic conditions, while accounting for the detrimental effects of imperfect stray light management. We show here that detectors are not to be blamed and that the culprit can also dwell in proximity electronics. We identify an unexpected source of instability in the initial voltage of the integrating capacity of detectors. Then we show that this parameter can be easily measured and taken into account. This way we demonstrate that a one month old calibration of a 3-5 µm camera has retained its validity.

  2. Absolute calibration of SARAL/AltiKa in Kavaratti during its initial calibration-validation phase

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, K.N.; Shukla, A.K.; Suchandra, A.B.; ArunKumar, S.V.V.; Bonnefond, P.; Testut, L.; Mehra, P.; Laurain, O.

    globally distributed region will offer assessment of the altimetry system, and allow us to check in specific conditions leading to different estimation of absolute bias of the instrument (Shum et al. 2003). In collaboration with National Institute... of Oceanography (NIO), Goa, Space Applica- tions Centre–Indian Space Research Organisation (SAC-ISRO) established a calibration- verification site in Kavaratti. This site offers a number of advantages as a calibration site for altimeters. Having very small land...

  3. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    Science.gov (United States)

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  4. Photometric calibration of the COMBO-17 survey with the Softassign Procrustes Matching method

    Science.gov (United States)

    Sheikhbahaee, Z.; Nakajima, R.; Erben, T.; Schneider, P.; Hildebrandt, H.; Becker, A. C.

    2017-11-01

    Accurate photometric calibration of optical data is crucial for photometric redshift estimation. We present the Softassign Procrustes Matching (SPM) method to improve the colour calibration upon the commonly used Stellar Locus Regression (SLR) method for the COMBO-17 survey. Our colour calibration approach can be categorised as a point-set matching method, which is frequently used in medical imaging and pattern recognition. We attain a photometric redshift precision Δz/(1 + zs) of better than 2 per cent. Our method is based on aligning the stellar locus of the uncalibrated stars to that of a spectroscopic sample of the Sloan Digital Sky Survey standard stars. We achieve our goal by finding a correspondence matrix between the two point-sets and applying the matrix to estimate the appropriate translations in multidimensional colour space. The SPM method is able to find the translation between two point-sets, despite the existence of noise and incompleteness of the common structures in the sets, as long as there is a distinct structure in at least one of the colour-colour pairs. We demonstrate the precision of our colour calibration method with a mock catalogue. The SPM colour calibration code is publicly available at https://neuronphysics@bitbucket.org/neuronphysics/spm.git.

  5. Optical - Near Infrared Photometric Calibration of M-dwarf Metallicity and Its Application

    OpenAIRE

    Hejazi, Neda; De Robertis, Michael M.; Dawson, Peter C.

    2015-01-01

    Based on a carefully constructed sample of dwarf stars, a new optical-near infrared photometric calibration to estimate the metallicity of late-type K and early-to-mid-type M dwarfs is presented. The calibration sample has two parts; the first part includes 18 M dwarfs with metallicities determined by high-resolution spectroscopy and the second part contains 49 dwarfs with metallicities obtained through moderate-resolution spectra. By applying this calibration to a large sample of around 1.3 ...

  6. VizieR Online Data Catalog: Photometric Calibration of SNLS (Regnault+, 2009)

    Science.gov (United States)

    Regnault, N.; Conley, A.; Guy, J.; Sullivan, M.; Cuillandre, J.-C.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Perrett, K.; Pritchet, C. J.

    2009-08-01

    MegaCam band (see below). The SNLS 3 year calibration relies on the (Landolt, 1992AJ....104..340) standard star catalog. Landolt fields are observed during each photometric night along with the SNLS fields. Zero-points are derived from these observations. Stable and isolated stars are detected on the SNLS fields and selected as "tertiary standards". The calibrated magnitudes of each tertiary standard obtained under photometric conditions are combined to produce a calibration catalog for each SNLS field. To interpret the tertiary standard magnitudes as physical fluxes, we need a primary standard, i.e. a star with known MegaCam magnitudes and whose spectral energy distribution has been measured absolutely. The SNLS uses BD+17 4708 whose SED has been measured in Bohlin & Gilliland, 2004, Cat. using the HST STIS and NICMOS spectrographs. BD+17 4708 has not been directly observed by SNLS, however, its MegaCam magnitudes were inferred from its known Landolt magnitudes (this paper, table 7). The tertiary star Local Natural Magnitudes are defined so that the associated physical broadband flux f|x is given by: f|x = 10{-0.4*(m|x-mref)}*{int}[Sref(l)*T(l;x)]dl where m|x is the tertiary star magnitudes at location x on the focal plane, mref is the MegaCam magnitude of BD+17 4708 (at the center of the focal plane, see table 7 of this paper), Sref(l) is the SED of BD+17 4708 measured in 2004AJ....128.3053B, and T(l;x) is the effective passband of MegaCam at location x. Attached is all the necessary information to tie MegaCam observations to this system. We provide (a) the griz magnitudes of the SNLS tertiary standards for all four SNLS fields (b) the MegaCam open transmission and the ugriz MegaCam filter scans at various position along a diagonal (c) the final uncertainty budget in the form of 3 covariance matrices. The u-band observations of the SNLS DEEP fields are not formally part of the SNLS. Nevetheless we give u-band magnitudes for a subset of the SNLS tertiary stars. (22

  7. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Capak, Peter [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel; Rhodes, Jason [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ilbert, Olivier [Aix Marseille Universite, CNRS, LAM (Laboratoire dAstrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Salvato, Mara [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Schmidt, Samuel [Department of Physics, University of California, Davis, CA 95616 (United States); Longo, Giuseppe [Department of Physics, University Federico II, via Cinthia 6, I-80126 Napoli (Italy); Paltani, Stephane; Coupon, Jean [Department of Astronomy, University of Geneva ch. dcogia 16, CH-1290 Versoix (Switzerland); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Universität Bonn, Auf dem H’´ugel 71, D-53121 Bonn (Germany); Speagle, Josh [Department of Astronomy, Harvard University, 60 Garden Street, MS 46, Cambridge, MA 02138 (United States); Kalinich, Adam [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Brescia, Massimo; Cavuoti, Stefano [Astronomical Observatory of Capodimonte—INAF, via Moiariello 16, I-80131, Napoli (Italy)

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  8. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Carlos E. [KIPAC, Menlo Park; Huterer, Dragan [Michigan U.; Lin, Huan [Fermilab; Busha, Michael T. [Zurich U.; Wechsler, Risa H. [SLAC

    2014-10-11

    We use N-body-spectro-photometric simulations to investigate the impact of incompleteness and incorrect redshifts in spectroscopic surveys to photometric redshift training and calibration and the resulting effects on cosmological parameter estimation from weak lensing shear-shear correlations. The photometry of the simulations is modeled after the upcoming Dark Energy Survey and the spectroscopy is based on a low/intermediate resolution spectrograph with wavelength coverage of 5500{\\AA} < {\\lambda} < 9500{\\AA}. The principal systematic errors that such a spectroscopic follow-up encounters are incompleteness (inability to obtain spectroscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a neural network-based approach can effectively describe the spectroscopic incompleteness in terms of the galaxies' colors, so that the spectroscopic selection can be applied to the photometric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases to cosmology, although the statistical constraints degrade somewhat because the photometric survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts have a more severe impact: the cosmological biases are intolerable if more than a percent of the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can also substantially degrade the accuracy of training set based photo-z estimators. The main problem is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects at z > 1.3. We discuss several approaches for reducing the cosmological biases, in particular finding that photo-z error estimators can reduce biases appreciably.

  9. An absolute calibration system for millimeter-accuracy APOLLO measurements

    Science.gov (United States)

    Adelberger, E. G.; Battat, J. B. R.; Birkmeier, K. J.; Colmenares, N. R.; Davis, R.; Hoyle, C. D.; Huang, L. R.; McMillan, R. J.; Murphy, T. W., Jr.; Schlerman, E.; Skrobol, C.; Stubbs, C. W.; Zach, A.

    2017-12-01

    Lunar laser ranging provides a number of leading experimental tests of gravitation—important in our quest to unify general relativity and the standard model of physics. The apache point observatory lunar laser-ranging operation (APOLLO) has for years achieved median range precision at the  ∼2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.

  10. OPTICAL–NEAR-INFRARED PHOTOMETRIC CALIBRATION OF M DWARF METALLICITY AND ITS APPLICATION

    International Nuclear Information System (INIS)

    Hejazi, N.; Robertis, M. M. De; Dawson, P. C.

    2015-01-01

    Based on a carefully constructed sample of dwarf stars, a new optical–near-infrared photometric calibration to estimate the metallicity of late-type K and early-to-mid-type M dwarfs is presented. The calibration sample has two parts; the first part includes 18 M dwarfs with metallicities determined by high-resolution spectroscopy and the second part contains 49 dwarfs with metallicities obtained through moderate-resolution spectra. By applying this calibration to a large sample of around 1.3 million M dwarfs from the Sloan Digital Sky Survey and 2MASS, the metallicity distribution of this sample is determined and compared with those of previous studies. Using photometric parallaxes, the Galactic heights of M dwarfs in the large sample are also estimated. Our results show that stars farther from the Galactic plane, on average, have lower metallicity, which can be attributed to the age–metallicity relation. A scarcity of metal-poor dwarf stars in the metallicity distribution relative to the Simple Closed Box Model indicates the existence of the “M dwarf problem,” similar to the previously known G and K dwarf problems. Several more complicated Galactic chemical evolution models which have been proposed to resolve the G and K dwarf problems are tested and it is shown that these models could, to some extent, mitigate the M dwarf problem as well

  11. OPTICAL–NEAR-INFRARED PHOTOMETRIC CALIBRATION OF M DWARF METALLICITY AND ITS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, N.; Robertis, M. M. De [Physics and Astronomy Department, York University, Toronto, ON M3J 1P3 (Canada); Dawson, P. C., E-mail: nedahej@yorku.ca, E-mail: mmdr@yorku.ca, E-mail: pdawson@trentu.ca [Physics Department, Trent University, Peterborough, K9J 7B8 (Canada)

    2015-04-15

    Based on a carefully constructed sample of dwarf stars, a new optical–near-infrared photometric calibration to estimate the metallicity of late-type K and early-to-mid-type M dwarfs is presented. The calibration sample has two parts; the first part includes 18 M dwarfs with metallicities determined by high-resolution spectroscopy and the second part contains 49 dwarfs with metallicities obtained through moderate-resolution spectra. By applying this calibration to a large sample of around 1.3 million M dwarfs from the Sloan Digital Sky Survey and 2MASS, the metallicity distribution of this sample is determined and compared with those of previous studies. Using photometric parallaxes, the Galactic heights of M dwarfs in the large sample are also estimated. Our results show that stars farther from the Galactic plane, on average, have lower metallicity, which can be attributed to the age–metallicity relation. A scarcity of metal-poor dwarf stars in the metallicity distribution relative to the Simple Closed Box Model indicates the existence of the “M dwarf problem,” similar to the previously known G and K dwarf problems. Several more complicated Galactic chemical evolution models which have been proposed to resolve the G and K dwarf problems are tested and it is shown that these models could, to some extent, mitigate the M dwarf problem as well.

  12. A new photometric metal abundance and luminosity calibration for field G and K giants

    International Nuclear Information System (INIS)

    Jennens, P.A.; Helfer, H.L.

    1975-01-01

    Photometry of 260 G and K giants, using a fast broad-intermediate band photometric system (UBViyz system) is used to calibrate chemical composition, Fe/H], luminosity, Mv and colour excess, E(B-V). A single S-20 surface photomultiplier is used. The UBVi photometry is transformed to be on the Johnson UBVRI system. Calibrations applicable to the ranges 0.40< R-I<0.65 (G2-K3), 0.65< R-I<0.90 (K3-K5) are given. A photometric luminosity index, Mv(yz), is derived for which rms errors are +-1 mag. Several indices are calibrated for chemical composition, [Fe/H], and typical rms errors of +-0.15 in [Fe/H] are obtained for stars of known colour excess, E(B-V). For stars of unknown colour excess, E(B-V) is determined with an rms error of +-0.06 and [Fe/H] with an rms error of approximately +-0.4. For stars with Mv-1, the errors are larger. (author)

  13. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    Directory of Open Access Journals (Sweden)

    Mingjun Deng

    2017-12-01

    Full Text Available The Chinese Gaofen-3 (GF-3 mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method.

  14. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    Science.gov (United States)

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  15. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  16. Distance of the Pleiades cluster and the calibration of photometric luminosities for early-type stars

    International Nuclear Information System (INIS)

    Eggen, O.J.

    1986-01-01

    An examination of the lower main-sequence (mode-A) stars in the Pleiades cluster suggests an Fe/H abundance ratio between 0.0 and 0.1 dex with a resulting modulus of 5.65 + or - 0.1 mag, and fundamental defects in the calculation of Balona and Shobbrook (1984), with an adopted modulus of 5.50 mag, are discussed. It is suggested that the ZAMS of Balona and Shobbrook, and of Mermilliod (1981), are too bright due to their assumption that the color-luminosity arrays of such clusters as the Pleiades represent isochrones, leading to uncertainties in the ZAMS, particularly with respect to slope. Several recently published photometric luminosity calibrations for early-type stars may be incorrect due to their failing to recognize the probable presence of at least two evolutionary modes and the apparent absence of ZAMS stars near the sun. 34 references

  17. The Preflight Photometric Calibration of the Extreme-Ultraviolet Imaging Telescope EIT

    Science.gov (United States)

    Dere, K. P.; Moses, J. D.; Delaboudiniere, J. -P.; Brunaud, J.; Carabetian, C.; Hochedez, J. -F.; Song, X. Y.; Catura, R. C.; Clette, F.; Defise, J. -M.

    2000-01-01

    This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey-Chretien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 . Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.

  18. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    Science.gov (United States)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  19. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    International Nuclear Information System (INIS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Buitink, S.; Erdmann, M.; Krause, R.; Haungs, A.; Hiller, R.; Huege, T.; Link, K.; Schröder, F. G.; Norden, M. J.; Scholten, O.

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  20. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    Science.gov (United States)

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  1. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    Science.gov (United States)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  2. A novel approach for absolute radar calibration: formulation and theoretical validation

    Directory of Open Access Journals (Sweden)

    C. Merker

    2015-06-01

    Full Text Available The theoretical framework of a novel approach for absolute radar calibration is presented and its potential analysed by means of synthetic data to lay out a solid basis for future practical application. The method presents the advantage of an absolute calibration with respect to the directly measured reflectivity, without needing a previously calibrated reference device. It requires a setup comprising three radars: two devices oriented towards each other, measuring reflectivity along the same horizontal beam and operating within a strongly attenuated frequency range (e.g. K or X band, and one vertical reflectivity and drop size distribution (DSD profiler below this connecting line, which is to be calibrated. The absolute determination of the calibration factor is based on attenuation estimates. Using synthetic, smooth and geometrically idealised data, calibration is found to perform best using homogeneous precipitation events with rain rates high enough to ensure a distinct attenuation signal (reflectivity above ca. 30 dBZ. Furthermore, the choice of the interval width (in measuring range gates around the vertically pointing radar, needed for attenuation estimation, is found to have an impact on the calibration results. Further analysis is done by means of synthetic data with realistic, inhomogeneous precipitation fields taken from measurements. A calibration factor is calculated for each considered case using the presented method. Based on the distribution of the calculated calibration factors, the most probable value is determined by estimating the mode of a fitted shifted logarithmic normal distribution function. After filtering the data set with respect to rain rate and inhomogeneity and choosing an appropriate length of the considered attenuation path, the estimated uncertainty of the calibration factor is of the order of 1 to 11 %, depending on the chosen interval width. Considering stability and accuracy of the method, an interval of

  3. Initial absolute calibration factors for some neutron sensitive self-powered detectors

    International Nuclear Information System (INIS)

    Kroon, J.

    1975-01-01

    Self-powered flux detectors have found extensive use as monitoring devices in PWR (Pressurized Water Reactor) cores and CANDU (Canada Deuterium Uranium) type power reactors. The detectors measure fuel power distributions and indicate trip parameters for reactor control and safety requirements. Both applications demand accurate absolute initial calibration factors. Experimental results obtained in calibrating some neutron sensitive self-powered detectors is presented. (author)

  4. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  5. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    Science.gov (United States)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  6. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    Science.gov (United States)

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  7. Spectral Irradiance Calibration in the Infrared. XIV: the Absolute Calibration of 2MASS

    OpenAIRE

    Cohen, Martin; Wheaton, Wm. A.; Megeath, S. T.

    2003-01-01

    Element-by-element we have combined the optical components in the three 2MASS cameras, and incorporated detector quantum efficiency curves and site-specific atmospheric transmissions, to create three relative spectral response curves (RSRs). We provide absolute 2MASS attributes associated with "zero magnitude" in the JHKs bands so that these RSRs may be used for synthetic photometry. The RSRs tie 2MASS to the Cohen-Walker-Witteborn framework of absolute photometry and spectra for the purpose ...

  8. The main sequence of NGC 6231 and the calibration of absolute magnitudes

    International Nuclear Information System (INIS)

    Garrison, R.F.

    1978-01-01

    The author presents a discussion of a new approach to the calibration of absolute magnitudes for MK spectral types. With the addition of the NGC 6231 main sequence down to A0, the material for the cluster fitting method using very carefully determined MK types is complete. (Auth.)

  9. Exact theory of optical tweezers and its application to absolute calibration

    DEFF Research Database (Denmark)

    Dutra, Rafael de Sousa; Viana, Nathan B.; Maia Neto, Paulo A.

    2017-01-01

    Optical tweezers have become a powerful tool for basic and applied research in cell biology. Here, we describe an experimentally verified theory for the trapping forces generated by optical tweezers based on first principles that allows absolute calibration. For pedagogical reasons, the steps tha...

  10. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron

  11. Absolute calibration of the neutron yield measurement on JT-60 Upgrade

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Takeuchi, Hiroshi; Barnes, C.W.

    1991-10-01

    Absolutely calibrated measurements of the neutron yield are important for the evaluation of the plasma performance such as the fusion gain Q in DD operating tokamaks. Total neutron yield is measured with 235 U and 238 U fission chambers and 3 He proportional counters in JT-60 Upgrade. The in situ calibration was performed by moving the 252 Cf neutron source toroidally through the JT-60 vacuum vessel. Detection efficiencies of three 235 U and two 3 He detectors were measured for 92 locations of the neutron point source in toroidal scans at two different major radii. The total detection efficiency for the torus neutron source was obtained by averaging the point efficiencies over the whole toroidal angle. The uncertainty of the resulting absolute plasma neutron source calibration is estimated to be ± 10%. (author)

  12. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  13. Absolute calibration of the mass scale in the inverse problem of the physical theory of fireballs

    Science.gov (United States)

    Kalenichenko, V. V.

    1992-08-01

    A method of the absolute calibration of the mass scale is proposed for solving the inverse problem of the physical theory of fireballs. The method is based on data on the masses of fallen meteorites whose fireballs have been photographed in flight. The method can be applied to fireballs whose bodies have not experienced significant fragmentation during their flight in the atmosphere and have kept their shape relatively well. Data on the Lost City and Innisfree meteorites are used to calculate the calibration coefficients.

  14. Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.

    Science.gov (United States)

    Kalenichenko, V. V.

    A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.

  15. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  16. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-10-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  17. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    Science.gov (United States)

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  18. Absolute in situ energy calibration of luminosity calorimeters in the DELPHI experiment at LEP

    International Nuclear Information System (INIS)

    Bugge, L.; Dam, M.; Read, A.L.; Myrheim, J.; Skjevling, G.

    1993-01-01

    Methods to perform the absolute energy calibration of DELPHI's Small Angle Tagger luminosity calorimeters at LEP are presented and compared. The input was small angle Bhabha scattering events. A significant nonlinearity in the response of the calorimeters was observed. The conjugate gradient method was applied to solve the least squares problem. This method is particularly useful for least squares problems which are large, ill-behaved or even singular, and for cases with a sparse coefficient matrix. (orig.)

  19. On the precision of absolute sensitivity calibration and specifics of spectroscopic quantities interpretation in tokamaks

    Czech Academy of Sciences Publication Activity Database

    Naydenkova, Diana; Weinzettl, Vladimír; Stöckel, Jan; Matějíček, Jiří

    2014-01-01

    Roč. 53, č. 34 (2014), s. 8123-8130 ISSN 1559-128X R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : Spectroscopy * emission * spectrometers * absolute calibration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.784, year: 2014 http://dx.doi.org/10.1364/AO.53.008123

  20. Absolute calibration of the Rh-103(n,n')Rh-103m reaction rate

    International Nuclear Information System (INIS)

    Taylor, W.H.; Murphy, M.F.; March, M.R.

    1979-05-01

    The uncertainties in determining the absolute values of the Rh-103(n, n') Rh-103m reaction rate (which is widely used as a neutron damage flux monitor) have been reduced to approximately +-5%. This has been achieved with the use of a calibrated source of Pd-103-Rh-103m activity supplied by the IAEA. Agreement to within 3% between measured and calculated values of the reaction rate (normalised to the U-238 fission rate) has been achieved. (author)

  1. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    Science.gov (United States)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  2. Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.

    Science.gov (United States)

    Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2017-05-06

    The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.

  3. Absolute calibration of in vivo measurement systems using magnetic resonance imaging and Monte Carlo computations

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1991-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. This method uses magnetic resonance imaging (MRI) to determine the anatomical makeup of an individual. A new MRI technique is also employed that is capable of resolving the fat and water content of the human tissue. This anatomical and biochemical information is used to model a mathematical phantom. Monte Carlo methods are then used to simulate the transport of radiation throughout the phantom. By modeling the detection equipment of the in vivo measurement system into the code, calibration factors are generated that are specific to the individual. Furthermore, this method eliminates the need for surrogate human structures in the calibration process. A demonstration of the proposed method is being performed using a fat/water matrix

  4. Absolute gain calibration system for the 349-pixel imaging element of the tactic telescope array

    International Nuclear Information System (INIS)

    Tickoo, A.K.; Dhar, V.K.; Venugopal, K.; Kaul, S.K.; Koul, R.; Bhatt, N.; Goyal, H.C.; Bhat, C.L.

    2001-01-01

    The imaging Element of the 4-element TACTIC telescope array has been in operation at Mt. Abu since 1997, for carrying detailed investigations of gamma-ray sources in the TeV energy range. In order to characterize the progenitor particle (Gamma-ray/cosmic-ray), a relative gain calibration system, based on a high intensity LED, has been in operation. However, for calorimetric purposes, an absolute gain calibration system is necessary and has been developed for an on-line calibration of 4 out of 349-pixels of its imaging camera, using 241 Am based light pulsers. The details of the experimental set-up and the results obtained so far are presented in this paper. (author)

  5. Simple method for absolute calibration of geophones, seismometers, and other inertial vibration sensors

    International Nuclear Information System (INIS)

    Kann, Frank van; Winterflood, John

    2005-01-01

    A simple but powerful method is presented for calibrating geophones, seismometers, and other inertial vibration sensors, including passive accelerometers. The method requires no cumbersome or expensive fixtures such as shaker platforms and can be performed using a standard instrument commonly available in the field. An absolute calibration is obtained using the reciprocity property of the device, based on the standard mathematical model for such inertial sensors. It requires only simple electrical measurement of the impedance of the sensor as a function of frequency to determine the parameters of the model and hence the sensitivity function. The method is particularly convenient if one of these parameters, namely the suspended mass is known. In this case, no additional mechanical apparatus is required and only a single set of impedance measurements yields the desired calibration function. Moreover, this measurement can be made with the device in situ. However, the novel and most powerful aspect of the method is its ability to accurately determine the effective suspended mass. For this, the impedance measurement is made with the device hanging from a simple spring or flexible cord (depending on the orientation of its sensitive axis). To complete the calibration, the device is weighed to determine its total mass. All the required calibration parameters, including the suspended mass, are then determined from a least-squares fit to the impedance as a function of frequency. A demonstration using both a 4.5 Hz geophone and a 1 Hz seismometer shows that the method can yield accurate absolute calibrations with an error of 0.1% or better, assuming no a priori knowledge of any parameters

  6. Spectro-photometric calibration of the SuperNova Integral Field Spectrograph in the Nearby Supernova Factory collaboration framework

    International Nuclear Information System (INIS)

    Buton, Clement

    2009-01-01

    Ten years ago, type Ia supernovae used as distances indicators led to the discovery of the accelerating expansion of the universe. Today, a second generation of surveys has significantly increased the high-redshift type Ia supernovae sample. The low-redshift sample was however still limiting the cosmological analysis using SNe. In this framework, the Nearby Supernova Factory has followed 200 nearby type Ia supernovae using the dedicated Supernovae Integral Field Spectrograph with spectro-photometric capacities. My PhD thesis has been carried out at the Institut de Physique Nucleaire de Lyon and at the Lawrence Berkeley National Laboratory in the framework of the international cosmological project SNfactory. In order to reach the design spectrophotometric accuracy, attention has been focused on several key aspects of the calibration procedure, including: determination of a dedicated point spread function for 3D point source extraction, estimating the nightly photometric quality, derivation of the nightly sky extinction over the extended optical domain, its modeling in terms of physical components and its variability within a given night. A full multi-standards calibration pipeline has been implemented using approximately 4000 observations of spectrophotometric standard stars taken throughout the night over nearly 500 individual nights. Preliminary scientific results of the whole SNfactory collaboration will be presented at the end of this thesis. (author)

  7. Analysis of full disc Ca II K spectroheliograms. I. Photometric calibration and centre-to-limb variation compensation

    Science.gov (United States)

    Chatzistergos, Theodosios; Ermolli, Ilaria; Solanki, Sami K.; Krivova, Natalie A.

    2018-01-01

    Context. Historical Ca II K spectroheliograms (SHG) are unique in representing long-term variations of the solar chromospheric magnetic field. They usually suffer from numerous problems and lack photometric calibration. Thus accurate processing of these data is required to get meaningful results from their analysis. Aims: In this paper we aim at developing an automatic processing and photometric calibration method that provides precise and consistent results when applied to historical SHG. Methods: The proposed method is based on the assumption that the centre-to-limb variation of the intensity in quiet Sun regions does not vary with time. We tested the accuracy of the proposed method on various sets of synthetic images that mimic problems encountered in historical observations. We also tested our approach on a large sample of images randomly extracted from seven different SHG archives. Results: The tests carried out on the synthetic data show that the maximum relative errors of the method are generally returns images that differ from the ideal ones by returns consistent results for images from different SHG archives. Conclusions: Our tests show that the proposed method is more accurate than other methods presented in the literature. Our method can also be applied to process images from photographic archives of solar observations at other wavelengths than Ca II K.

  8. STAR barrel electromagnetic calorimeter absolute calibration using 'minimum ionizing particles' from collisions at RHIC

    International Nuclear Information System (INIS)

    Cormier, T.M.; Pavlinov, A.I.; Rykov, M.V.; Rykov, V.L.; Shestermanov, K.E.

    2002-01-01

    The procedure for the STAR Barrel Electromagnetic Calorimeter (BEMC) absolute calibrations, using penetrating charged particle hits (MIP-hits) from physics events at RHIC, is presented. Its systematic and statistical errors are evaluated. It is shown that, using this technique, the equalization and transfer of the absolute scale from the test beam can be done to a percent level accuracy in a reasonable amount of time for the entire STAR BEMC. MIP-hits would also be an effective tool for continuously monitoring the variations of the BEMC tower's gains, virtually without interference to STAR's main physics program. The method does not rely on simulations for anything other than geometric and some other small corrections, and also for estimations of the systematic errors. It directly transfers measured test beam responses to operations at RHIC

  9. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    International Nuclear Information System (INIS)

    Islam, N; Podgorsak, M

    2016-01-01

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  10. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N [State University of New York at Buffalo, Buffalo, NY (United States); Podgorsak, M [State University of New York at Buffalo, Buffalo, NY (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2016-06-15

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  11. Performance of Different Light Sources for the Absolute Calibration of Radiation Thermometers

    Science.gov (United States)

    Martín, M. J.; Mantilla, J. M.; del Campo, D.; Hernanz, M. L.; Pons, A.; Campos, J.

    2017-09-01

    The evolving mise en pratique for the definition of the kelvin (MeP-K) [1, 2] will, in its forthcoming edition, encourage the realization and dissemination of the thermodynamic temperature either directly (primary thermometry) or indirectly (relative primary thermometry) via fixed points with assigned reference thermodynamic temperatures. In the last years, the Centro Español de Metrología (CEM), in collaboration with the Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC), has developed several setups for absolute calibration of standard radiation thermometers using the radiance method to allow CEM the direct dissemination of the thermodynamic temperature and the assignment of the thermodynamic temperatures to several fixed points. Different calibration facilities based on a monochromator and/or a laser and an integrating sphere have been developed to calibrate CEM's standard radiation thermometers (KE-LP2 and KE-LP4) and filter radiometer (FIRA2). This system is based on the one described in [3] placed in IO-CSIC. Different light sources have been tried and tested for measuring absolute spectral radiance responsivity: a Xe-Hg 500 W lamp, a supercontinuum laser NKT SuperK-EXR20 and a diode laser emitting at 6473 nm with a typical maximum power of 120 mW. Their advantages and disadvantages have been studied such as sensitivity to interferences generated by the laser inside the filter, flux stability generated by the radiant sources and so forth. This paper describes the setups used, the uncertainty budgets and the results obtained for the absolute temperatures of Cu, Co-C, Pt-C and Re-C fixed points, measured with the three thermometers with central wavelengths around 650 nm.

  12. Absolute calibration of the Rh-103 (n, n') Rh-103m reaction rate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.H.; Murphy, M.F.; March, M.R. [Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1979-05-15

    The uncertainties in determining the absolute values of the Rh-103 (n, n') Rh-103m reaction rate (which is widely used as a neutron damage flux monitor) have been reduced to {approx}{+-}5%. This has been achieved with the use of a calibrated source of Pd-103-Rh-103m activity supplied by the I.A.E.A. Agreement to within 3% between measured and calculated values of the reaction rate (normalised to the U-238 fission rate) has been achieved. (author)

  13. Absolute in situ energy calibration of luminosity calorimeters in the DELPHI experiment at LEP

    International Nuclear Information System (INIS)

    Bugge, L.; Dam, M.; Read, A.L.; Myrheim, J.; Skjevling, G.

    1992-07-01

    Methods to perform the absolute energy calibration of DELPHI's Small Angle Tagger luminosity calorimeters at LEP are presented and compared. The input was small angle Bhabha scattering events. A significant non-linearity in the response of the calorimeters was observed. The conjugate gradient method was applied to solve the least square problem. This method is particularly useful for least squares problems which are large, ill-behaved or even singular, and for cases with a sparse coefficient matrix. 8 refs., 14 figs., 2 tabs

  14. Absolute calibration of the Rh-103 (n, n') Rh-103m reaction rate

    International Nuclear Information System (INIS)

    Taylor, W.H.; Murphy, M.F.; March, M.R.

    1979-05-01

    The uncertainties in determining the absolute values of the Rh-103 (n, n') Rh-103m reaction rate (which is widely used as a neutron damage flux monitor) have been reduced to ∼±5%. This has been achieved with the use of a calibrated source of Pd-103-Rh-103m activity supplied by the I.A.E.A. Agreement to within 3% between measured and calculated values of the reaction rate (normalised to the U-238 fission rate) has been achieved. (author)

  15. ACCESS, Absolute Color Calibration Experiment for Standard Stars: Integration, Test, and Ground Performance

    Science.gov (United States)

    Kaiser, Mary Elizabeth; Morris, Matthew; Aldoroty, Lauren; Kurucz, Robert; McCandliss, Stephan; Rauscher, Bernard; Kimble, Randy; Kruk, Jeffrey; Wright, Edward L.; Feldman, Paul; Riess, Adam; Gardner, Jonathon; Bohlin, Ralph; Deustua, Susana; Dixon, Van; Sahnow, David J.; Perlmutter, Saul

    2018-01-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, now exceed the statistical errors associated with merged databases of these measurements. ACCESS, “Absolute Color Calibration Experiment for Standard Stars”, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35‑1.7μm bandpass. To achieve this goal ACCESS (1) observes HST/ Calspec stars (2) above the atmosphere to eliminate telluric spectral contaminants (e.g. OH) (3) using a single optical path and (HgCdTe) detector (4) that is calibrated to NIST laboratory standards and (5) monitored on the ground and in-flight using a on-board calibration monitor. The observations are (6) cross-checked and extended through the generation of stellar atmosphere models for the targets. The ACCESS telescope and spectrograph have been designed, fabricated, and integrated. Subsystems have been tested. Performance results for subsystems, operations testing, and the integrated spectrograph will be presented. NASA sounding rocket grant NNX17AC83G supports this work.

  16. Absolute calibration of TFTR neutron detectors for D-T plasma operation

    International Nuclear Information System (INIS)

    Jassby, D.L.; Johnson, L.C.; Roquemore, A.L.; Strachan, J.D.; Johnson, D.W.; Medley, S.S.; Young, K.M.

    1995-03-01

    The two most sensitive TFTR fission-chamber detectors were absolutely calibrated in situ by a D-T neutron generator (∼5 x 10 7 n/s) rotated once around the torus in each direction, with data taken at about 45 positions. The combined uncertainty for determining fusion neutron rates, including the uncertainty in the total neutron generator output (±9%), counting statistics, the effect of coil coolant, detector stability, cross-calibration to the current mode or log Campbell mode and to other fission chambers, and plasma position variation, is about ±13%. The NE-451 (ZnS) scintillators and 4 He proportional counters that view the plasma in up to 10 collimated sightlines were calibrated by scanning. the neutron generator radially and toroidally in the horizontal midplane across the flight tubes of 7 cm diameter. Spatial integration of the detector responses using the calibrated signal per unit chord-integrated neutron emission gives the global neutron source strength with an overall uncertainty of ±14% for the scintillators and ±15% for the 4 He counters

  17. Pantomime-grasping: Advance knowledge of haptic feedback availability supports an absolute visuo-haptic calibration

    Directory of Open Access Journals (Sweden)

    Shirin eDavarpanah Jazi

    2016-05-01

    Full Text Available An emerging issue in movement neurosciences is whether haptic feedback influences the nature of the information supporting a simulated grasping response (i.e., pantomime-grasping. In particular, recent work by our group contrasted pantomime-grasping responses performed with (i.e., PH+ trials and without (i.e., PH- trials terminal haptic feedback in separate blocks of trials. Results showed that PH- trials were mediated via relative visual information. In contrast, PH+ trials showed evidence of an absolute visuo-haptic calibration – a finding attributed to an error signal derived from a comparison between expected and actual haptic feedback (i.e., an internal forward model. The present study examined whether advanced knowledge of haptic feedback availability influences the aforementioned calibration process. To that end, PH- and PH+ trials were completed in separate blocks (i.e., the feedback schedule used in our group’s previous study and a block wherein PH- and PH+ trials were randomly interleaved on a trial-by-trial basis (i.e., random feedback schedule. In other words, the random feedback schedule precluded participants from predicting whether haptic feedback would be available at the movement goal location. We computed just-noticeable-difference (JND values to determine whether responses adhered to, or violated, the relative psychophysical principles of Weber’s law. Results for the blocked feedback schedule replicated our group’s previous work, whereas in the random feedback schedule PH- and PH+ trials were supported via relative visual information. Accordingly, we propose that a priori knowledge of haptic feedback is necessary to support an absolute visuo-haptic calibration. Moreover, our results demonstrate that the presence and expectancy of haptic feedback is an important consideration in contrasting the behavioral and neural properties of natural and stimulated (i.e., pantomime-grasping grasping.

  18. Description and performance of the OGSE for VNIR absolute spectroradiometric calibration of MTG-I satellites

    Science.gov (United States)

    Glastre, W.; Marque, J.; Compain, E.; Deep, A.; Durand, Y.; Aminou, D. M. A.

    2017-09-01

    The Meteosat Third Generation (MTG) Programme is being realised through the well-established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit. This will be achieved through a series of 6 satellites named MTG-I and MTG-S to bring to the meteorological community continuous high spatial, spectral and temporal resolution observations and geophysical parameters of the Earth based on sensors from the geo-stationary orbit. In particular, the imagery mission MTG-I will bring an improved continuation of the MSG satellites series with the Flexible Combined Imager (FCI) a broad spectral range (from UV to LWIR) with better spatial and spectral resolutions. The FCI will be able to take high spatial resolution pictures of the Earth within 8 VNIR and 8 IR channels. As one of the mission of this instrument is to provide a quantitative analysis of atmosphere compounds, the absolute observed radiance needs to be known with a specified accuracy for VNIR as low as to 5% at k=3 over its full dynamic. While the FCI is regularly recalibrated every 6 month at equinoxes, it is however requiring initial ground calibration for the beginning of its mission. The Multi Optical Test Assembly (MOTA) is one of the Optical Ground Support Equipment (OGSE) dedicated to various missions necessary for the integration of the FCI . This equipment, provided by Bertin Technologies, will be delivered to TAS-F by the end of 2016. One of its mission, is the on-ground absolute calibration of VNIR channels. In order to handle this, the MOTA will be placed in front of the FCI under representative vacuum conditions and will be able to project a perfectly known, calibrated radiance level within the full dynamic of FCI instrument. The main difficulty is the very demanding calibration level with

  19. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    Science.gov (United States)

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  20. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    Science.gov (United States)

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  1. A Photometric Observing Program at the VATT: Setting Up a Calibration Field

    Science.gov (United States)

    Davis Philip, A. G.; Boyle, R. P.; Janusz, R.

    2009-05-01

    Philip and Boyle have been making Strömgren and then Strömvil photometric observations of open and globular clusters at the Vatican Advanced Technology Telescope located on Mt. Graham in Arizona. Our aim is to obtain CCD photometric indices good to 0.01 magnitude. Indices of this quality can later be analyzed to yield estimates of temperature, luminosity and metallicity. But we have found that the CCD chip does not yield photometry of this quality without further corrections. Our most observed cluster is the open cluster, M 67. This cluster is also very well observed in the literature. We took the best published values and created a set of "standard" stars for our field. Taking our CCD results we could calculate deltas, as a function of position on the chip, which we then applied to all the CCD frames that we obtained. With this procedure we were able to obtain the precision of 0.01 magnitudes in all the fields that we observed. When we started we were able to use the "A" two-inch square Strömgren four-color set from KPNO. Later the Vatican Observatory bought a set of 3.48 inch square Strömgren filters, The Vatican Observatory had a set of circular Vilnius filters There was also an X filter. These eight filters made our Strömvil set.

  2. The stars: an absolute radiometric reference for the on-orbit calibration of PLEIADES-HR satellites

    Science.gov (United States)

    Meygret, Aimé; Blanchet, Gwendoline; Mounier, Flore; Buil, Christian

    2017-09-01

    The accurate on-orbit radiometric calibration of optical sensors has become a challenge for space agencies who gather their effort through international working groups such as CEOS/WGCV or GSICS with the objective to insure the consistency of space measurements and to reach an absolute accuracy compatible with more and more demanding scientific needs. Different targets are traditionally used for calibration depending on the sensor or spacecraft specificities: from on-board calibration systems to ground targets, they all take advantage of our capacity to characterize and model them. But achieving the in-flight stability of a diffuser panel is always a challenge while the calibration over ground targets is often limited by their BDRF characterization and the atmosphere variability. Thanks to their agility, some satellites have the capability to view extra-terrestrial targets such as the moon or stars. The moon is widely used for calibration and its albedo is known through ROLO (RObotic Lunar Observatory) USGS model but with a poor absolute accuracy limiting its use to sensor drift monitoring or cross-calibration. Although the spectral irradiance of some stars is known with a very high accuracy, it was not really shown that they could provide an absolute reference for remote sensors calibration. This paper shows that high resolution optical sensors can be calibrated with a high absolute accuracy using stars. The agile-body PLEIADES 1A satellite is used for this demonstration. The star based calibration principle is described and the results are provided for different stars, each one being acquired several times. These results are compared to the official calibration provided by ground targets and the main error contributors are discussed.

  3. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    Science.gov (United States)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection

  4. Digital PCR provides sensitive and absolute calibration for high throughput sequencing

    Directory of Open Access Journals (Sweden)

    Fan H Christina

    2009-03-01

    Full Text Available Abstract Background Next-generation DNA sequencing on the 454, Solexa, and SOLiD platforms requires absolute calibration of the number of molecules to be sequenced. This requirement has two unfavorable consequences. First, large amounts of sample-typically micrograms-are needed for library preparation, thereby limiting the scope of samples which can be sequenced. For many applications, including metagenomics and the sequencing of ancient, forensic, and clinical samples, the quantity of input DNA can be critically limiting. Second, each library requires a titration sequencing run, thereby increasing the cost and lowering the throughput of sequencing. Results We demonstrate the use of digital PCR to accurately quantify 454 and Solexa sequencing libraries, enabling the preparation of sequencing libraries from nanogram quantities of input material while eliminating costly and time-consuming titration runs of the sequencer. We successfully sequenced low-nanogram scale bacterial and mammalian DNA samples on the 454 FLX and Solexa DNA sequencing platforms. This study is the first to definitively demonstrate the successful sequencing of picogram quantities of input DNA on the 454 platform, reducing the sample requirement more than 1000-fold without pre-amplification and the associated bias and reduction in library depth. Conclusion The digital PCR assay allows absolute quantification of sequencing libraries, eliminates uncertainties associated with the construction and application of standard curves to PCR-based quantification, and with a coefficient of variation close to 10%, is sufficiently precise to enable direct sequencing without titration runs.

  5. Calibrated fMRI for mapping absolute CMRO2: Practicalities and prospects.

    Science.gov (United States)

    Germuska, M; Wise, R G

    2018-03-29

    Functional magnetic resonance imaging (fMRI) is an essential workhorse of modern neuroscience, providing valuable insight into the functional organisation of the brain. The physiological mechanisms underlying the blood oxygenation level dependent (BOLD) effect are complex and preclude a straightforward interpretation of the signal. However, by employing appropriate calibration of the BOLD signal, quantitative measurements can be made of important physiological parameters including the absolute rate of cerebral metabolic oxygen consumption or oxygen metabolism (CMRO 2 ) and oxygen extraction (OEF). The ability to map such fundamental parameters has the potential to greatly expand the utility of fMRI and to broaden its scope of application in clinical research and clinical practice. In this review article we discuss some of the practical issues related to the calibrated-fMRI approach to the measurement of CMRO 2 . We give an overview of the necessary precautions to ensure high quality data acquisition, and explore some of the pitfalls and challenges that must be considered as it is applied and interpreted in a widening array of diseases and research questions. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    Science.gov (United States)

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  7. Non-negative Matrix Factorization for Self-calibration of Photometric Redshift Scatter in Weak-lensing Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Yu, Yu; Zhang, Pengjie, E-mail: lezhang@sjtu.edu.cn [Department of Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 (China)

    2017-10-10

    Photo- z error is one of the major sources of systematics degrading the accuracy of weak-lensing cosmological inferences. Zhang et al. proposed a self-calibration method combining galaxy–galaxy correlations and galaxy–shear correlations between different photo- z bins. Fisher matrix analysis shows that it can determine the rate of photo- z outliers at a level of 0.01%–1% merely using photometric data and do not rely on any prior knowledge. In this paper, we develop a new algorithm to implement this method by solving a constrained nonlinear optimization problem arising in the self-calibration process. Based on the techniques of fixed-point iteration and non-negative matrix factorization, the proposed algorithm can efficiently and robustly reconstruct the scattering probabilities between the true- z and photo- z bins. The algorithm has been tested extensively by applying it to mock data from simulated stage IV weak-lensing projects. We find that the algorithm provides a successful recovery of the scatter rates at the level of 0.01%–1%, and the true mean redshifts of photo- z bins at the level of 0.001, which may satisfy the requirements in future lensing surveys.

  8. A first in-flight absolute calibration of the Chilean Earth Observation Satellite

    Science.gov (United States)

    Mattar, C.; Hernández, J.; Santamaría-Artigas, A.; Durán-Alarcón, C.; Olivera-Guerra, L.; Inzunza, M.; Tapia, D.; Escobar-lavín, E.

    2014-06-01

    This work describes the first in-flight absolute calibration of the "Sistema Satelital para la Observación de la Tierra" (SSOT or Fasat-C). It was performed on January 29th 2013 at Antumapu site located in the southern area of Santiago, Chile. A description of the procedure is presented which includes both ground measurement and atmospheric characterization. The Chilean satellite for Earth observation carries on board a "New AstroSat Optical Modular Instrument" (NAOMI) high-resolution pushbroom imager which provides a 1.45 m ground sampling distance in the panchromatic (0.455-0.744 μm) channel and a 5.8 m ground sampling distance for the green (0.455-0.52 μm), blue (0.528-0.588 μm), red (0.625-0.695 μm) and near-infrared (0.758-0.881 μm) channels from a 620 km orbit. Radiometric calibration was carried out in order to estimate the land leaving radiance and bidirectional reflectance at the top of the atmosphere. To correct the reflectance data for atmospheric effects, the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) code was used. Aerosol Optical Depth (AOD), water vapor and ozone content were obtained from MOD04, MOD05 and MOD07 products respectively, which are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Statistical results such as BIAS, SIGMA and RMSE were calculated for the comparison between surface reflectance values and in situ measurements. Results show that the overall accuracy of the atmospherically corrected surface reflectance calculated from Fasat-C imagery can be estimated to around ±5%, with a R2 coefficient of 0.939 between atmospherically corrected reflectance values and in situ measurements. The atmospheric correction applied in this work by combining MODIS data and the 6S radiative transfer code could be used for further calibration of the Fasat-C images, although in situ atmospheric irradiance measurements are necessary to estimate reliable values of surface reflectance. Future

  9. Photometric Calibration of the Barium Cloud Image in a Space Active Experiment: Determining the Release Efficiency

    International Nuclear Information System (INIS)

    Xie Liang-Hai; Li Lei; Wang Jing-Dong; Tao Ran; Cheng Bing-Jun; Zhang Yi-Teng

    2014-01-01

    The barium release experiment is an effective method to explore the near-earth environment and to study all kinds of space physics processes. The first space barium release experiment in China was successfully carried out by a sounding rocket on April 5, 2013. This work is devoted to calculating the release efficiency of the barium release by analyzing the optical image observed during the experiment. First, we present a method to calibrate the images grey value of barium cloud with the reference stars to obtain the radiant fluxes at different moments. Then the release efficiency is obtained by a curve fitting with the theoretical evolution model of barium cloud. The calculated result is basically consistent with the test value on ground

  10. Calibration of the Herschel SPIRE Fourier Transform Spectrometer

    OpenAIRE

    Swinyard, Bruce; Polehampton, E. T.; Hopwood, R.; Valtchanov, I.; Lu, N.; Fulton, T.; Benielli, D.; Imhof, P.; Marchili, N.; Baluteau, J.- P.; Bendo, G. J.; Ferlet, M.; Griffin, Matthew Jason; Lim, T. L.; Makiwa, G.

    2014-01-01

    The Herschel Spectral and Photometric REceiver (SPIRE) instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of ∼450–1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a sp...

  11. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    Energy Technology Data Exchange (ETDEWEB)

    Keawprasert, T. [National Institute of Metrology Thailand, Pathum thani (Thailand); Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S. [Physikalisch Technische Bundesanstalt, Braunschweig and Berlin (Germany)

    2013-09-11

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  12. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    International Nuclear Information System (INIS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-01-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody

  13. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    Science.gov (United States)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  14. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    Science.gov (United States)

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  15. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical

  16. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    Science.gov (United States)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  17. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    Science.gov (United States)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed

  18. STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    High, F. William; Stubbs, Christopher W.; Rest, Armin; Stalder, Brian; Challis, Peter

    2009-01-01

    We present stellar locus regression (SLR), a method of directly adjusting the instrumental broadband optical colors of stars to bring them into accord with a universal stellar color-color locus, producing accurately calibrated colors for both stars and galaxies. This is achieved without first establishing individual zero points for each passband, and can be performed in real-time at the telescope. We demonstrate how SLR naturally makes one wholesale correction for differences in instrumental response, for atmospheric transparency, for atmospheric extinction, and for Galactic extinction. We perform an example SLR treatment of Sloan Digital Sky Survey data over a wide range of Galactic dust values and independently recover the direction and magnitude of the canonical Galactic reddening vector with 14-18 mmag rms uncertainties. We then isolate the effect of atmospheric extinction, showing that SLR accounts for this and returns precise colors over a wide range of air mass, with 5-14 mmag rms residuals. We demonstrate that SLR-corrected colors are sufficiently accurate to allow photometric redshift estimates for galaxy clusters (using red sequence galaxies) with an uncertainty σ(z)/(1 + z) = 0.6% per cluster for redshifts 0.09 < z < 0.25. Finally, we identify our objects in the 2MASS all-sky catalog, and produce i-band zero points typically accurate to 18 mmag using only SLR. We offer open-source access to our IDL routines, validated and verified for the implementation of this technique, at http://stellar-locus-regression.googlecode.com.

  19. EMISAR: An Absolutely Calibrated Polarimetric L- and C-band SAR

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Skou, Niels; Dall, Jørgen

    1998-01-01

    calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key to most of the current applications. Recent interferometric enhancements are important for many scientific applications...

  20. Absolute calibration of a time-of-flight spectrometer and imaging plate for the characterization of laser-accelerated protons

    International Nuclear Information System (INIS)

    Choi, I W; Kim, C M; Sung, J H; Kim, I J; Yu, T J; Lee, S K; Jin, Y-Y; Pae, K H; Hafz, N; Lee, J

    2009-01-01

    A proton energy spectrometer system is composed of a time-of-flight spectrometer (TOFS) and a Thomson parabola spectrometer (TPS), and is used to characterize laser-accelerated protons. The TOFS detects protons with a plastic scintillator, and the TPS with a CR-39 or imaging plate (IP). The two spectrometers can operate simultaneously and give separate time-of-flight (TOF) and Thomson parabola (TP) data. We propose a method to calibrate the TOFS and IP by comparing the TOF data and the TP data taken with CR-39 and IP. The absolute response of the TOFS as a function of proton energy is calculated from the proton number distribution measured with CR-39. The sensitivity of IP to protons is obtained from the proton number distribution estimated with the calibrated TOFS. This method, based on the comparison of the simultaneously measured data, gives more reliable results when using laser-accelerated protons as a calibration source. The calibrated spectrometer system can be used to measure absolutely calibrated energy spectra for the optimization of laser-accelerated protons

  1. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  2. The Near-infrared Tip of the Red Giant Branch. II. An Absolute Calibration in the Large Magellanic Cloud

    Science.gov (United States)

    Hoyt, Taylor J.; Freedman, Wendy L.; Madore, Barry F.; Seibert, Mark; Beaton, Rachael L.; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.

    2018-05-01

    We present a new empirical JHK absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive Near-Infrared Synoptic Survey containing 3.5 million stars, 65,000 of which are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC 1613, as well as an LMC distance modulus of μ 0 = 18.49 mag from (geometric) detached eclipsing binaries, we derive absolute JHK zero points for the near-infrared TRGB. For a comparison with measurements in the bar alone, we apply the calibrated JHK TRGB to a 500 deg2 area of the 2MASS survey. The TRGB reveals the 3D structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, which is in agreement with previous studies.

  3. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  4. Absolutely calibrated, time-resolved measurements of soft x rays using transmission grating spectrometers at the Nike Laser Facility

    International Nuclear Information System (INIS)

    Weaver, J.L.; Feldman, U.; Seely, J.F.; Holland, G.; Serlin, V.; Klapisch, M.; Columbant, D.; Mostovych, A.

    2001-01-01

    Accurate simulation of pellet implosions for direct drive inertial confinement fusion requires benchmarking the codes with experimental data. The Naval Research Laboratory (NRL) has begun to measure the absolute intensity of radiation from laser irradiated targets to provide critical information for the radiatively preheated pellet designs developed by the Nike laser group. Two main diagnostics for this effort are two spectrometers incorporating three detection systems. While both spectrometers use 2500 lines/mm transmission gratings, one instrument is coupled to a soft x-ray streak camera and the other is coupled to both an absolutely calibrated Si photodiode array and a charge coupled device (CCD) camera. Absolute calibration of spectrometer components has been undertaken at the National Synchrotron Light Source at Brookhaven National Laboratories. Currently, the system has been used to measure the spatially integrated soft x-ray flux as a function of target material, laser power, and laser spot size. A comparison between measured and calculated flux for Au and CH targets shows reasonable agreement to one-dimensional modeling for two laser power densities

  5. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    International Nuclear Information System (INIS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-01-01

    This paper describes a convenient and accurate method to calibrate fast ( 2 /steradian/nm). Error analysis shows this method to be accurate to within +/– 20%, which represents a high level of accuracy for this type of measurement.

  6. Spectroscopic studies of xenon EUV emission in the 40-80 nm wavelength range using an absolutely calibrated monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Merabet, H [Mathematic and Sciences Unit, Dhofar University, Salalah 211, Sultanate of (Oman); Bista, R [Department of Physics, University of Nevada Reno, Reno, NV 89557 (United States); Bruch, R [Department of Physics, University of Nevada Reno, Reno, NV 89557 (United States); Fuelling, S [Department of Physics, University of Nevada Reno, Reno, NV 89557 (United States)

    2007-03-01

    We have measured and identified numerous Extreme UltraViolet (EUV) radiative line structures arising from xenon (Xe) ions in charge state q = 1 to 10 in the wavelength range 40-80 nm. To obtain reasonable intensities of different charged Xe ions, we have used a compact microwave plasma source which was designed and developed at the Lawrence Berkeley National Laboratory (LBNL). The EUV emission of the ECR plasma has been measured by a 1.5 m grazing incidence monochromator that was absolutely calibrated in the 10-80 nm wavelength range using well known and calibrated EUV light at the Advanced Light Source (ALS), LBNL. This calibration has enabled us to determine absolute intensities of previously measured EUV radiative lines in the wavelengths regions investigated for different ionization stages of Xe. In addition, emission spectra of xenon ions for corresponding measured lines have been calculated. The calculations have been carried out within the relativistic Hartree-Fock (HF) approximation. Results of calculations are found to be in good agreement with current and available experimental and theoretical data.

  7. The Pierre Auger fluorescence detector. Cross-checking the absolute calibration using a drone

    Energy Technology Data Exchange (ETDEWEB)

    Tomankova, Lenka [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The Pierre Auger Observatory combines the air shower fluorescence and surface array methods to study ultra-high energy cosmic rays. As the energy scale of the experiment is derived from calorimetric measurements by the fluorescence telescopes, their accurate calibration is of primary importance to all Auger data. We discuss a novel calibration method based on a remotely flown drone equipped with a specially designed light source that mimics a snapshot of an air shower traversing the atmosphere. Several drone measurement campaigns have been performed to study the properties of the Auger fluorescence telescopes and to derive an end-to-end calibration. We give an overview of the measurements and present the basic analysis chain as well as the first results of an independent cross-check of the Auger energy scale.

  8. Optical power calibrator based on a stabilized green He-Ne laser and a cryogenic absolute radiometer

    International Nuclear Information System (INIS)

    Varpula, T.; Seppa, H.; Saari, J.M.

    1989-01-01

    This paper describes an optical power calibrator whose overall calibration uncertainty is less than 10 -4 for an optical power of 0.13 mW. The laser light source of the system operates at a wavelength of 543.5 nm, being close to the wavelength at which the candela is defined, 555 nm. A stable optical power is achieved by stabilizing the intensity and the frequency of a green He-Ne laser. The optical power is detected by a cryogenic absolute radiometer based on the principle of electrical substitution radiometry. It can be employed to measure optical power up to 0.5 mW in the visible and near infrared region

  9. Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating.

    Science.gov (United States)

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2015-04-15

    The absolute refractive indices (RIs) of water and other liquids are determined with an uncertainty of ±0.001 at near-infrared wavelengths by using the tilted fiber Bragg grating (TFBG) cladding mode resonances of a standard single-mode fiber to measure the critical angle for total internal reflection at the interface between the fiber and its surroundings. The necessary condition to obtain absolute RIs (instead of measuring RI changes) is a thorough characterization of the dispersion of the core mode effective index of the TFBG across the full range of its cladding mode resonance spectrum. This technique is shown to be competitive with the best available measurements of the RIs of water and NaCl solutions at wavelengths in the vicinity of 1550 nm.

  10. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part I - an absolute traceable energy calibration for electron spectrometers

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.; Anthony, M.T.

    1991-01-01

    Experiments have been made to provide calibrated kinetic energy values for AES peaks in order to calibrate Auger electron spectrometers of various resolving powers. The kinetic energies are measured using a VG Scientific ESCALAB 2 which has power supplies appropriate for AES measurements in both the constant ΔE and constant ΔE/E modes. The absolute calibration of the energy scale is obtained by the development of a new measurement chain which, in turn, is calibrated in terms of the post-1990 representation of electron volts using XPS peaks with a traceable kinetic energy accuracy of 0.02 eV. The effects of instrumental and operating parameters, including the spectrometer dispersion and stray magnetic fields, are all assessed and contribute errors for three peaks not exceeding 0.06 eV and for two peaks not exceeding 0.03 eV. Calibrated positions in the direct spectrum are given for the Cu M 2,3 VV, Au N 6,7 VV, Ag M 4 NN, Cu L 3 VV and Au M 5 N 6,7 N 6,7 transitions at 0.2 eV resolution, referred to both the Standard Vacuum Level and the Fermi level. For the derivative spectrum the positions of the negative excursions are derived numerically by computer from this data and are established with the same accuracy. Data are tabulated for the above peaks in both the direct and differentiated modes for the popular resolutions of 0.15%, 0.3% and 0.6% produced by Gaussian broadening of the high resolution spectra. Differentiations are effected by both sinusoidal modulation and Savitzky-Golay functions of 2 eV and 5 eV peak-to-peak

  11. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    Science.gov (United States)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  12. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems

    International Nuclear Information System (INIS)

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-01-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  13. Absolute Sea Level Monitoring and Altimeter Calibration At Gavdos, Crete, Greece

    Science.gov (United States)

    Pavlis, E. C.; Gavdos Team

    We present the mean sea level (MSL) monitoring aspect of the altimeter calibration fa- cility under deployment on western Crete and the isle of Gavdos. The Eastern Mediter- ranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the im- portance of that area for the regional meteorological and climatological changes. Tide- gauge monitoring with GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long his- torical records can be used as satellite altimeter calibration sites for current and fu- ture missions (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA). Crete hosts two of the oldest tide-gauges in the regional network and our project will further ex- pand it to the south of the island with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the present T/P and JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. Our plans include the deployment of additional instrumentation at this site: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, etc., to ensure the best possible and most reliable results.

  14. Classification of Metal-Deficient Dwarfs in the Vilnius Photometric System

    Directory of Open Access Journals (Sweden)

    Lazauskaitė R.

    2003-12-01

    Full Text Available Methods used for the quantitative classification of metal-deficient stars in the Vilnius photometric system are reviewed. We present a new calibration of absolute magnitudes for dwarfs and subdwarfs, based on Hipparcos parallaxes. The new classification scheme is applied to a sample of Population II visual binaries.

  15. On the absolute calibration of a DT fusion neutron yield diagnostic

    Directory of Open Access Journals (Sweden)

    Ruiz C.L.

    2013-11-01

    Full Text Available Recent advances in Inertial Confinement Fusion (ICF experiments at Lawrence Livermore National Laboratory's National Ignition Facility (NIF have underscored the need for accurate total yield measurements of DT neutrons because yield measurements provide a measure of the predicted performance of the experiments. Future gas-puff DT experiments at Sandia National Laboratory's Z facility will also require similar measurements. For ICF DT experiments, the standard technique for measuring the neutron (14.1 MeV yield, counts the activity (counts/minute induced in irradiated copper samples. This activity occurs by the 63Cu(n,2n62Cu reaction where 62Cu decays by positrons (β+ with a half-life of 9.67 minutes. The calibrations discussed here employ the associated-particle method (APM, where the α (4He particles from the T(d,n4He reaction are measured to infer neutron fluxes on a copper sample. The flux induces 62Cu activity, measured in a coincidence counting system. The method leads to a relationship between a DT neutron yield and copper activity known as the F-factor. The goal in future experiments is to apply this calibration to measure the yield at NIF with a combined uncertainty approaching 5%.

  16. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    Science.gov (United States)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  17. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    International Nuclear Information System (INIS)

    Chu, A; Ahmad, M; Chen, Z; Nath, R; Feng, W

    2014-01-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions

  18. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Chu, A; Ahmad, M; Chen, Z; Nath, R [Yale New Haven Hospital/School of Medicine Yale University, New Haven, CT (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States)

    2014-06-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions

  19. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    Energy Technology Data Exchange (ETDEWEB)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan [Variable Energy Cyclotron Centre, Kolkata (India)

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  20. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    International Nuclear Information System (INIS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-01-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.2 0 , respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages (“Dee” voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  1. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    Science.gov (United States)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  2. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    Science.gov (United States)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  3. Absolute calibration system of neutron sources by the manganese sulphate bath

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Sachett, I.A.

    1990-01-01

    The calibration system consists of deep the neutron source, protected by plastic container, at the center of spherical polietilene tank, in a concentrated solution of manganese sulphate. The neutrons emitted by the source are moderated and when reach the termal energy are catched by manganese atoms activating the solution. After the saturation activity has been reached the source is removed and one scintilation detector (NaI(Tl) 3' x 3') is put in the same place to follow the decay activity. The gama couting rate (845 KeV 54 Mn photopeak), after the corrections is used to estimate the saturation activity, and calculate the neutron source emission rate. These calculations are executed by one computer program. The uncertainties in the final value of emission rate are about 2.5 - 3.0 % to AmBe sources in the 1.11 x 10 10 Bq (0,3 Ci) - 3.7 x 10 11 Bq (10 Ci) range. (author) [pt

  4. EDGES and the Development of Absolute Calibration for Wideband Radio Receivers for 21cm Cosmology

    Science.gov (United States)

    Bowman, Judd D.

    2018-06-01

    The ultra-violet light emitted by early stars, when the universe was less than 400 million years old, alters the excitation state of the 21cm hyperfine line of primordial neutral hydrogen gas that surrounds the stars. This causes the gas to absorb photons from the cosmic microwave background (CMB). Later, energy deposited into the gas by the ultra-violet and X-ray emission from these early stars and their remnants heats the gas and eventually ionizes it. These effects produce spectral features in the CMB observable today at frequencies redshifted to below 200 MHz. The 21cm signal is approximately 10,000 times fainter the foreground synchrotron emission from the Milky Way, leading to the requirement that any instrument designed to observe it must have a knowable response at the 0.01% level. Typical radio receivers used in astronomical measurements are accurate at the 1-10% level. Over the last decade, our team has investigated new radio receiver designs and accurate calibration strategies in the laboratory and in ground-based instruments to achieve the 0.01% performance goal. Building on these efforts, we recently reported evidence for detection of the redshifted 21cm signal as a decrease in the sky-averaged radio intensity observed by the Experiment to Detect the Global EoR Signature (EDGES). We found a flattened absorption profile in the measured radio spectrum centered at a frequency of 78 MHz with full width at half maximum of 19 MHz and an amplitude of 0.5 K. The frequency of the profile is roughly consistent with astrophysical models of early star formation. However, the amplitude of the observed profile is more than a factor of two greater than the largest standard predictions and suggests that the gas was either significantly colder than expected or the background radiation temperature was hotter than expected.

  5. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  6. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    Science.gov (United States)

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  7. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    International Nuclear Information System (INIS)

    Waugh, C. J.; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-01-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule

  8. THE ALHAMBRA PHOTOMETRIC SYSTEM

    International Nuclear Information System (INIS)

    Villegas, T. Aparicio; Alfaro, E. J.; Cabrera-Cano, J.

    2010-01-01

    This paper presents the characterization of the optical range of the ALHAMBRA photometric system, a 20 contiguous, equal-width, medium-band CCD system with wavelength coverage from 3500 A to 9700 A. The photometric description of the system is done by presenting the full response curve as a product of the filters, CCD, and atmospheric transmission curves, and using some first- and second-order moments of this response function. We also introduce the set of standard stars that defines the system, formed by 31 classic spectrophotometric standard stars which have been used in the calibration of other known photometric systems, and 288 stars, flux calibrated homogeneously, from the Next Generation Spectral Library (NGSL). Based on the NGSL, we determine the transformation equations between Sloan Digital Sky Survey ugriz photometry and the ALHAMBRA photometric system, in order to establish some relations between both systems. Finally, we develop and discuss a strategy to calculate the photometric zero points of the different pointings in the ALHAMBRA project.

  9. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, Eric Lewis [Univ. of Tennessee, Knoxville, TN (United States)

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  10. A non-invasive diffuse reflectance calibration-free method for absolute determination of exogenous biochemicals concentration in biological tissues

    Science.gov (United States)

    Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.

    2014-03-01

    The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.

  11. Absolute calibration of a SPRED [Spectrometer Recording Extended Domain] EUV [extreme ultraviolet] spectrograph for use on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Wood, R.D.; Allen, S.L.

    1988-01-01

    We have performed an absolute intensity calibration of a SPRED multichannel EUV spectrograph using synchrotron radiation from the NBS SURF-II electron storage ring. The calibration procedure and results for both a survey grating (450 g/mm) and a high-resolution (2100 g/mm) grating are presented. The spectrograph is currently in use on the DIII-D tokamak with a tangential line-of-sight at the plasma midplane. Data is first acquired and processed by a microcomputer; the absolute line intensities are then sent to the DIII-D database for comparison with data from other diagnostics. Representative data from DIII-D plasma operations will be presented. 6 refs., 3 figs., 1 tab

  12. Absolute sensitivity calibration from 20 A to 430 A of a grazing incidence spectrometer with a multi-element spectral detector

    International Nuclear Information System (INIS)

    Terry, J.L.; Manning, H.L.; Marmar, E.S.

    1986-07-01

    Two methods which together allow sensitivity calibration from 20 A to 430 A are described in detail. The first method, useful up to 120 A, uses a low power source to generate Kα x-rays which are alternately viewed by an absolute detector (a proportional counter) and the spectrometer. The second method extends that calibration to 430 A. It relies on the 2:1 brightness ratio of bright doublet lines from impurity ions which have a single outer shell electron and which are present in hot, magnetically confined plasmas. It requires that the absolute sensitivity of the spectrometer be known at one wavelength point, and in practice requires a multi-element spectral detector

  13. Accuracy of calibrated data from the SDSS moving object catalog, absolute magnitudes, and probable lightcurves for several asteroids

    Czech Academy of Sciences Publication Activity Database

    Galád, Adrián

    2010-01-01

    Roč. 514, May (2010), A55/1-A55/10 ISSN 0004-6361 R&D Projects: GA ČR GA205/09/1107 Grant - others:Vega(SK) 2/0016/09 Institutional research plan: CEZ:AV0Z10030501 Keywords : minor planets * asteroids * photometric Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  14. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    Science.gov (United States)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  15. ABSOLUTE RADIOMETRIC CALIBRATION OF THE GÖKTÜRK-2 SATELLITE SENSOR USING TUZ GÖLÜ (LANDNET SITE FROM NDVI PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    U. Sakarya

    2016-06-01

    Full Text Available TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP Project and AKTAR (Smart Agriculture Feasibility Project. The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for

  16. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Energy Technology Data Exchange (ETDEWEB)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  17. Photometric properties of type II supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Barbon, R [Osservatorio Astrofisico, Asiago (Italy); Trieste Univ. (Italy). Instituto di Matematica); Ciatti, F; Rosino, L [Osservatorio Astrofisico, Asiago (Italy); Pavia Univ. (Italy))

    1979-02-01

    An analysis of the available photometric observations for type II supernovae is presented. The possibility of drawing average curves by the fitting method, as previously done for type I supernovae, is indicated. Two basic shapes have been put into evidence, the first one (2/3 of the objects) is characterized by the presence of a plateau at intermediate phase, the second one by an almost linear decline. Average curves have been also built for the intrinsic color indices. Peculiar cases are discussed, including the unusual objects of types III-IV. The mean absolute magnitude at maximum for type II supernovae has been determined about Msub(B) = -16.45 (sigma=0.78), as a calibration for their use as distance indicators. The distribution in different morphological types and luminosity classes of the parent galaxies is briefly discussed.

  18. SYSTEMATIC UNCERTAINTIES IN THE SPECTROSCOPIC MEASUREMENTS OF NEUTRON STAR MASSES AND RADII FROM THERMONUCLEAR X-RAY BURSTS. III. ABSOLUTE FLUX CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Güver, Tolga [Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, Istanbul (Turkey); Özel, Feryal; Psaltis, Dimitrios [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Marshall, Herman [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Guainazzi, Matteo [European Space Astronomy Centre of ESA, P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Díaz-Trigo, Maria [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-09-20

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826–238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE /PCA as well as by XMM-Newton EPIC-pn and RXTE /PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE /PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE /PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.

  19. Environmental dosimetry of radon-222 and daughters: measurement of absolute calibration factors of CR-39 considering the plate-out effects and environmental factors

    International Nuclear Information System (INIS)

    Paulo, S.R. de.

    1991-08-01

    The subject of this work concerns with the measurement of absolute calibration factors for the use of CR-39 as an absolute detector in indoor and daughters monitoring. Up to now the usefulness of calibration factors was restricted to environmental conditions equal (or very close) to those worthing during their determinations. This fact is consequence of the difficulties related to the understanding of the plate-out properties of radon daughters activity in the air. The plate-out effects on radon daughters monitoring performed by SSNTDs are studied. Our experimental results are in agreement with those of other authors about the great sensitivity of CR-39 to the plate-out effects, fact that recommended its use in this work. Being succeeded in the employment of CR-39 as an alpha-spectrometer we concluded that some important information (like the radon daughters deposition rates on the walls of an environment) can be achieved. The knowledge about the behavior of plate-out made possible the determination of the ranges in zenithal angle and energy where CR-39 can detect alpha-particles with efficiency of 100%, at our conditions of track observation. In this way, we obtained calibration factors for CR-39 that are weakly dependent on environmental conditions. We think that these results can contribute to the improvement of RD (Radiation Detector) detection techniques. (author). 159 refs, 106 figs, 05 tabs

  20. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keV.

    Science.gov (United States)

    Lanier, N E; Cowan, J S

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  1. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keVa)

    Science.gov (United States)

    Lanier, N. E.; Cowan, J. S.

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  2. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  3. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques

    CERN Document Server

    Carpentieri, C; Ludwig, J; Ashfaq, A; Fiederle, M

    2002-01-01

    High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within +-1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.

  4. NICOLAU: compact unit for photometric characterization of automotive lighting from near-field measurements

    Science.gov (United States)

    Royo, Santiago; Arranz, Maria J.; Arasa, Josep; Cattoen, Michel; Bosch, Thierry

    2005-02-01

    The present works depicts a measurement technique intended to enhance the characterization procedures of the photometric emissions of automotive headlamps, with potential applications to any light source emission, either automotive or non-automotive. A CCD array with a precisely characterized optical system is used for sampling the luminance field of the headlamp just a few centimetres in front of it, by combining deflectometric techniques (yielding the direction of the light beams) and photometric techniques (yielding the energy travelling in each direction). The CCD array scans the measurement plane using a self-developed mechanical unit and electronics, and then image-processing techniques are used for obtaining the photometric behaviour of the headlamp in any given plane, in particular in the plane and positions required by current normative, but also on the road, on traffic signs, etc. An overview of the construction of the system, of the considered principle of measurement, and of the main calibrations performed on the unit is presented. First results concerning relative measurements are presented compared both to reference data from a photometric tunnel and from a plane placed 5m away from the source. Preliminary results for the absolute photometric calibration of the system are also presented for different illumination beams of different headlamps (driving and passing beam).

  5. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    Science.gov (United States)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  6. Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology

    Science.gov (United States)

    Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, E. S.; Gruendl, R. A.; Yanny, B.; Tucker, D. L.; Hoyle, B.; Carnero Rosell, A.; Bernstein, G. M.; Bechtol, K.; Becker, M. R.; Benoit-Lévy, A.; Bertin, E.; Carrasco Kind, M.; Davis, C.; de Vicente, J.; Diehl, H. T.; Gruen, D.; Hartley, W. G.; Leistedt, B.; Li, T. S.; Marshall, J. L.; Neilsen, E.; Rau, M. M.; Sheldon, E.; Smith, J.; Troxel, M. A.; Wyatt, S.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Martini, P.; McMahon, R. G.; Melchior, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zuntz, J.; DES Collaboration

    2018-04-01

    We describe the creation, content, and validation of the Dark Energy Survey (DES) internal year-one cosmology data set, Y1A1 GOLD, in support of upcoming cosmological analyses. The Y1A1 GOLD data set is assembled from multiple epochs of DES imaging and consists of calibrated photometric zero-points, object catalogs, and ancillary data products—e.g., maps of survey depth and observing conditions, star–galaxy classification, and photometric redshift estimates—that are necessary for accurate cosmological analyses. The Y1A1 GOLD wide-area object catalog consists of ∼ 137 million objects detected in co-added images covering ∼ 1800 {\\deg }2 in the DES grizY filters. The 10σ limiting magnitude for galaxies is g=23.4, r=23.2, i=22.5, z=21.8, and Y=20.1. Photometric calibration of Y1A1 GOLD was performed by combining nightly zero-point solutions with stellar locus regression, and the absolute calibration accuracy is better than 2% over the survey area. DES Y1A1 GOLD is the largest photometric data set at the achieved depth to date, enabling precise measurements of cosmic acceleration at z ≲ 1.

  7. Absolutely calibrated vacuum ultraviolet spectra in the 150-250-nm range from plasmas generated by the NIKE KrF laser

    International Nuclear Information System (INIS)

    Seely, J.F.; Feldman, Uri; Holland, G.E.; Weaver, J.L.; Mostovych, A.N.; Obenschain, S.P.; Schmitt, A.J.; Lehmberg, R.; Kjornarattanawanich, Benjawan; Back, C.A.

    2005-01-01

    High-resolution vacuum ultraviolet (VUV) spectra were recorded from plasmas generated by the NIKE KrF laser for the purpose of observing emission from the two-plasmon decay instability (TPDI) at 2/3 the NIKE wavelength (165 nm). The targets were irradiated by up to 43 overlapping beams with intensity up to ≅10 14 W/cm 2 and with beam smoothing by induced spatial incoherence (ISI). The targets consisted of planar foils of CH, BN, Al, Si, S, Ti, Pd, and Au. Titanium-doped silica aerogels in Pyrex cylinders were also irradiated. The spectra of the target elements were observed from charge states ranging from the neutral atoms to five times ionized. The spectrometer was absolutely calibrated using synchrotron radiation, and absolute VUV plasma emission intensities were determined. Emission from the TPDI at 165-nm wavelength was not observed from any of the irradiated targets. An upper bound on the possible TPDI emission was less than 4x10 -8 the incident NIKE laser energy. The NIKE laser radiation backscattered from the silica aerogel targets at 248 nm was typically 6x10 -6 the incident NIKE laser energy, and the spectral broadening corresponded to the 1-THz bandwidth of the ISI smoothing. The spectra from the moderately charged plasma ions (up to five times ionized), spectral linewidths, absolute continuum emission level, and slope of the continuum were consistent with plasma temperatures in the 100-300-eV range

  8. Photometric Uncertainties

    Science.gov (United States)

    Zou, Xiao-Duan; Li, Jian-Yang; Clark, Beth Ellen; Golish, Dathon

    2018-01-01

    The OSIRIS-REx spacecraft, launched in September, 2016, will study the asteroid Bennu and return a sample from its surface to Earth in 2023. Bennu is a near-Earth carbonaceous asteroid which will provide insight into the formation and evolution of the solar system. OSIRIS-REx will first approach Bennu in August 2018 and will study the asteroid for approximately two years before sampling. OSIRIS-REx will develop its photometric model (including Lommel-Seelinger, ROLO, McEwen, Minnaert and Akimov) of Bennu with OCAM and OVIRS during the Detailed Survey mission phase. The model developed during this phase will be used to photometrically correct the OCAM and OVIRS data.Here we present the analysis of the error for the photometric corrections. Based on our testing data sets, we find:1. The model uncertainties is only correct when we use the covariance matrix to calculate, because the parameters are highly correlated.2. No evidence of domination of any parameter in each model.3. And both model error and the data error contribute to the final correction error comparably.4. We tested the uncertainty module on fake and real data sets, and find that model performance depends on the data coverage and data quality. These tests gave us a better understanding of how different model behave in different case.5. L-S model is more reliable than others. Maybe because the simulated data are based on L-S model. However, the test on real data (SPDIF) does show slight advantage of L-S, too. ROLO is not reliable to use when calculating bond albedo. The uncertainty of McEwen model is big in most cases. Akimov performs unphysical on SOPIE 1 data.6. Better use L-S as our default choice, this conclusion is based mainly on our test on SOPIE data and IPDIF.

  9. The absolute calibration of KOMPSAT-3 and 3A high spatial resolution satellites using radiometric tarps and MFRSR measurments

    Science.gov (United States)

    Yeom, J. M.

    2017-12-01

    Recently developed Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which is a continuation of the KOMPSAT-1, 2 and 3 earth observation satellite (EOS) programs from the Korea Aerospace Research Institute (KARI) was launched on March, 25 2015 on a Dnepr-1 launch vehicle from the Jasny Dombarovsky site in Russia. After launched, KARI performed in-orbit-test (IOT) including radiometric calibration for 6 months from 14 Apr. to 4 Sep. 2015. KOMPSAT-3A is equipped with two distinctive sensors; one is a high resolution multispectral optical sensor, namely the Advances Earth Image Sensor System-A (AEISS-A) and the other is the Scanner Infrared Imaging System (SIIS). In this study, we focused on the radiometric calibration of AEISS-A. The multispectral wavelengths of AEISS-A are covering three visible regions: blue (450 - 520 nm), green (520 - 600 nm), red (630 - 690 nm), one near infrared (760 - 900 nm) with a 2.0 m spatial resolution at nadir, whereas the panchromatic imagery (450 - 900 nm) has a 0.5 m resolution. Those are the same spectral response functions were same with KOMPSAT-3 multispectral and panchromatic bands but the spatial resolutions are improved. The main mission of KOMPSAT-3A is to develop for Geographical Information System (GIS) applications in environmental, agriculture, and oceanographic sciences, as well as natural hazard monitoring.

  10. Tissue-specific Calibration of Real-time PCR Facilitates Absolute Quantification of Plasmid DNA in Biodistribution Studies

    Directory of Open Access Journals (Sweden)

    Joan K Ho

    2016-01-01

    Full Text Available Analysis of the tissue distribution of plasmid DNA after administration of nonviral gene delivery systems is best accomplished using quantitative real-time polymerase chain reaction (qPCR, although published strategies do not allow determination of the absolute mass of plasmid delivered to different tissues. Generally, data is expressed as the mass of plasmid relative to the mass of genomic DNA (gDNA in the sample. This strategy is adequate for comparisons of efficiency of delivery to a single site but it does not allow direct comparison of delivery to multiple tissues, as the mass of gDNA extracted per unit mass of each tissue is different. We show here that by constructing qPCR standard curves for each tissue it is possible to determine the dose of intact plasmid remaining in each tissue, which is a more useful parameter when comparing the fates of different formulations of DNA. We exemplify the use of this tissue-specific qPCR method by comparing the delivery of naked DNA, cationic DNA complexes, and neutral PEGylated DNA complexes after intramuscular injection. Generally, larger masses of intact plasmid were present 24 hours after injection of DNA complexes, and neutral complexes resulted in delivery of a larger mass of intact plasmid to the spleen.

  11. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    Science.gov (United States)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  12. T2K off-axis near detector νμ flux measurement and absolute momentum scale calibration of the off-axis near detector tracker

    International Nuclear Information System (INIS)

    Blaszczyk, F.

    2011-09-01

    In this thesis we present the results from the ν μ energy spectrum measurement at T2K's near detector and T2K's near detector tracker absolute momentum scale calibration. First we review the main historical steps and the current state of the art of neutrino physics as well as the theoretical framework required to understand the thesis physics analyses presented later on. In particular we focus on the neutrino oscillation parametrization and the neutrino-matter interaction models. We then describe T2K, an off-axis long baseline neutrino oscillation experiment in Japan which consists of a muon neutrino beam sent from J-PARC to Super- Kamiokande, with a magnetized near detector located at 280 m from the neutrino production site. T2K's main goals are measuring the last unknown angle of the PMNS matrix θ 13 through the search of ν e appearance in the ν μ beam and measuring precisely the atmospheric parameters through muon neutrino disappearance. We briefly describe the detectors, in particular the near detector tracker and its performance. We then present the analyses tools, such as the reconstruction techniques used and how the neutrino charged current interaction events needed for the energy spectrum measurement are selected. The main goal of the thesis, the muon neutrino energy spectrum measurement done with the first T2K data is explained next. We give the motivations for such measurement, the results obtained with the first T2K data sample, and the different systematic errors studied. Finally, the absolute momentum scale calibration of T2K's near detector tractor, done through the reconstruction of the neutral kaon invariant mass, is explained. (author)

  13. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    Science.gov (United States)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  14. RELATIVE AND ABSOLUTE CALIBRATION OF A MULTIHEAD CAMERA SYSTEM WITH OBLIQUE AND NADIR LOOKING CAMERAS FOR A UAS

    Directory of Open Access Journals (Sweden)

    F. Niemeyer

    2013-08-01

    Full Text Available Numerous unmanned aerial systems (UAS are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis“ software and will give an overview of the results and experiences of test flights.

  15. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Science.gov (United States)

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  16. Measurement of the photometric characteristics of LEDs

    International Nuclear Information System (INIS)

    Nazarenko, L.A.; Zubkov, D.P.

    2015-01-01

    Proposed and implemented a method for measuring LEDs, which is based on self-calibration of the LED goniophotometer facility by using a trap-detector. Designed and manufactured automated goniophotometer, which provides a measurement of high power LEDs at a specified junction temperature. Designed and experimentally researched the photometer with a photometric sphere based diffuser, which meets all requirements of CIE for photometric measurements of LEDs

  17. ACS Photometric Zero Point Verification

    Science.gov (United States)

    Dolphin, Andrew

    2003-07-01

    The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes in the Johnson filters. The reason for this is that ACS observations of excellent ground-based standard fields, such as the omega Cen field used for WFPC2 calibrations, have not been obtained. Instead, the ACS photometric calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS broadband images of the omega Cen standard field with both the WFC and HRC. This will permit the direct determination of the ACS transformations, and is expected to double the accuracy to which the ACS zero points are known. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager.

  18. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  19. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  20. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    Science.gov (United States)

    Didkovsky, Leonid; Wieman, Seth; Woods, Thomas

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  1. Determination of Delta m(d) and absolute calibration of flavor taggers for the Delta m(s) analysis, in fully reconstructed decays at the CDF experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jonatan Piedra [University of Cantabria, (Spain). Inst. of Physics

    2005-04-21

    The new trigger processor, the Silicon Vertex Tracking (SVT), has dramatically improved the B physics capabilities of the upgraded CDF II Detector; for the first time in a hadron collider, the SVT has enabled the access to non-lepton-triggered B meson decays. Within the new available range of decay modes, the B$0\\atop{s}$ → D$-\\atop{s}$π+ signature is of paramount importance in the measurement of the Δms mixing frequency. The analysis reported here is a step towards the measurement of this frequency; two where our goals: carrying out the absolute calibration of the opposite side flavor taggers, used in the Δms measurement; and measuring the B$0\\atop{d}$ mixing frequency in a B → Dπ sample, establishing the feasibility of the mixing measurement in this sample whose decay-length is strongly biased by the selective SVT trigger. We analyze a total integrated luminosity of 355 pb-1 collected with the CDF II Detector. By triggering on muons, using the conventional di-muon trigger; or displaced tracks, using the SVT trigger, we gather a sample rich in bottom and charm mesons.

  2. Photometric Orbit of TX UMa

    Directory of Open Access Journals (Sweden)

    Kyu-Dong Oh

    1986-06-01

    Full Text Available Two-color photometric light curves (Oh and Chan 1984 of the eclipsing binary TX UMa have been analyzed by the method of differential corrections of the model of Wilson and Devinney(1971. The system found to be simi-detached with cooler and less massive component filling its Roche lobe. The absolute dimensions have been derived from the results of the photometric solutions with spectroscopic elements of Hiltner(1945. It is assumed that the B8V primary component is on the zero age main sequence stage of the core hydrogen burning and the secondary os at the core contraction stage after the shell hydrogen burning stage according to the Iben's (1967 evolutional tracks for 3.0m_solar and 1.0m_solar.

  3. Photometric correction for an optical CCD-based system based on the sparsity of an eight-neighborhood gray gradient.

    Science.gov (United States)

    Zhang, Yuzhong; Zhang, Yan

    2016-07-01

    In an optical measurement and analysis system based on a CCD, due to the existence of optical vignetting and natural vignetting, photometric distortion, in which the intensity falls off away from the image center, affects the subsequent processing and measuring precision severely. To deal with this problem, an easy and straightforward method used for photometric distortion correction is presented in this paper. This method introduces a simple polynomial fitting model of the photometric distortion function and employs a particle swarm optimization algorithm to get these model parameters by means of a minimizing eight-neighborhood gray gradient. Compared with conventional calibration methods, this method can obtain the profile information of photometric distortion from only a single common image captured by the optical CCD-based system, with no need for a uniform luminance area source used as a standard reference source and relevant optical and geometric parameters in advance. To illustrate the applicability of this method, numerical simulations and photometric distortions with different lens parameters are evaluated using this method in this paper. Moreover, the application example of temperature field correction for casting billets also demonstrates the effectiveness of this method. The experimental results show that the proposed method is able to achieve the maximum absolute error for vignetting estimation of 0.0765 and the relative error for vignetting estimation from different background images of 3.86%.

  4. C3R2 - Complete Calibration of the Color-Redshift Relation: Keck spectroscopy to train photometric redshifts for Euclid and WFIRST

    Science.gov (United States)

    Stern, Daniel; C3R2 Team

    2017-01-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field, but to do so requires robust distances to billions of galaxies. I will report on a multi-semester program, expected to total approximately 40 nights with Keck over the next two years. This program, supporting both the NASA PCOS and COR science goals, will obtain the necessary galaxy spectroscopy to calibrate the color-redshift relation for the Euclid mission, and make significant progress towards the WFIRST requirements. The program, called C3R2 or Complete Calibration of the Color-Redshift Relation, already encompasses 10 allocated nights of NASA Keck Key Strategic Mission Support (PI D. Stern), 12 allocated nights from Caltech (PI J. Cohen), 3 allocated nights from the University of Hawaii (PI D. Sanders), and 1.5 allocated nights from UC-Riverside (PI B. Mobasher). We are also pursuing opportunities at additional 8- to 10-meter class telescopes, including Magellan, VLT and GCT. I will present the motivation for this program, the plans, and current results.

  5. Measuring the color and brightness of artificial sky glow from cities using an all-sky imaging system calibrated with astronomical methods in the Johnson-Cousins B and V photometric systems

    Science.gov (United States)

    Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian

    2017-01-01

    Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.

  6. SkyProbe, monitoring the absolute atmospheric transmission in the optical

    Science.gov (United States)

    Cuillandre, Jean-charles; Magnier, Eugene; Mahoney, William

    2011-03-01

    Mauna Kea is known for its pristine seeing conditions, but sky transparency can be an issue for science operations since 25% of the night are not photometric, mostly due to high-altitude cirrus. Since 2001, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 80% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. The new dual color system (simultaneous B&V bands) will allow a better characterization of the sky properties atop Mauna Kea and will enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools used for handling the CFHT CCD mosaics (CFH12K and MegaCam), from data pre-processing to astrometric and photometric calibration.

  7. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can

  8. Three-dimensional stereo by photometric ratios

    International Nuclear Information System (INIS)

    Wolff, L.B.; Angelopoulou, E.

    1994-01-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy

  9. A new method for the precise absolute calibration of polarization effects in spin-1/2-spin-0 scattering applied to p-. alpha. scattering at 25. 68 MeV and. theta. sub lab =117. 5 sup 0

    Energy Technology Data Exchange (ETDEWEB)

    Clajus, M.; Egun, P.; Grueebler, W.; Hautle, P.; Weber, A. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Schmelzbach, P.A. (Paul Scherrer Inst., Villigen (Switzerland)); Kretschmer, W.; Haller, M.; Prenzel, C.J.; Rauscher, A.; Schuster, W.; Weidmann, R. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.)

    1989-08-20

    A new general method for the precise calibration of beam polarization or analyzing power in spin-1/2-spin-0 elastic scattering has been developed. This absolute calibration method uses the double scattering technique in connection with modern polarized ion source technology. It is based on an incident beam with at least two different polarization states and its independent of beam energy and scattering angle. The application to p-{alpha} elastic scattering at 25.68 MeV and a lab. angle of 117.5{sup 0} is described. The result is a new determination of the analyzing power to an accuracy of better than 1%, i.e. A{sub y}=0.8119+-0.0076. Systematic errors are extensively discussed. (orig.).

  10. Photometric Characterization of the Dark Energy Camera

    Science.gov (United States)

    Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.; Burke, D. L.; Diehl, H. T.; Gruendl, R. A.; Johnson, M. D.; Li, T. S.; Rykoff, E. S.; Walker, A. R.; Wester, W.; Yanny, B.

    2018-05-01

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >107 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.

  11. Intensity measurement of automotive headlamps using a photometric vision system

    Science.gov (United States)

    Patel, Balvant; Cruz, Jose; Perry, David L.; Himebaugh, Frederic G.

    1996-01-01

    Requirements for automotive head lamp luminous intensity tests are introduced. The rationale for developing a non-goniometric photometric test system is discussed. The design of the Ford photometric vision system (FPVS) is presented, including hardware, software, calibration, and system use. Directional intensity plots and regulatory test results obtained from the system are compared to corresponding results obtained from a Ford goniometric test system. Sources of error for the vision system and goniometer are discussed. Directions for new work are identified.

  12. Absolute calibration of imaging plate detectors for electron kinetic energies between 150 keV and 1.75 MeV

    Czech Academy of Sciences Publication Activity Database

    Singh, Sushil K.; Slavíček, T.; Hodak, R.; Versaci, Roberto; Pridal, P.; Kumar, D.

    2017-01-01

    Roč. 88, č. 7 (2017), 1-4, č. článku 075105. ISSN 0034-6748 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : calibration * elektron Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.515, year: 2016

  13. Self consistently calibrated photopyroelectric calorimeter for the high resolution simultaneous absolute measurement of the specific heat and of the thermal conductivity

    Directory of Open Access Journals (Sweden)

    U. Zammit

    2012-03-01

    Full Text Available High temperature resolution study of the specific heat and of the thermal conductivity over the smecticA-nematic and nematic-isotropic phase transitions in octylcynobephenyl liquid crystal using a new photopyroelectric calorimetry configuration are reported, where, unlike previously adopted ones, no calibration is required other than the procedure used during the actual measurement. This makes photopyroelectric calorimetry suitable for “absolute” measurements of the thermal parameters like most other existing conventional calorimetric techniques where, however, the thermal conductivity cannot be measured.

  14. The CHEOPS calibration bench

    Science.gov (United States)

    Wildi, F.; Chazelas, B.; Deline, A.; Sarajlic, M.; Sordet, M.

    2017-09-01

    CHEOPS is an ESA Class S Mission aiming at the characterization of exoplanets through the precise measurement of their radius, using the transit method [1]. To achieve this goal, the payload is designed to be a high precision "absolute" photometer, looking at one star at a time. It will be able to cover la large fraction of the sky by repointing. Its launch is expected at the end of 2017 [2, this conference]. CHEOPS' main science is the measure of the transit of exoplanets of radius ranging from 1 to 6 Earth radii orbiting bright stars. The required photometric stability to reach this goal is of 20 ppm in 6 hours for a 9th magnitude star. The CHEOPS' only instrument is a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star on a single frame-transfer backside illuminated CCD detector cooled to -40°C and stabilized within 10 mK [2]. CHEOPS being in a LEO, it is equipped with a high performance baffle. The spacecraft platform provides a pointing stability of < 2 arcsec rms. This relatively modest pointing performance makes high quality flat-fielding necessary In the rest of this article we will refer to the only CHEOPS instrument simply as "CHEOP" Its behavior will be calibrated thoroughly on the ground and only a small subset of the calibrations can be redone in flight. The main focuses of the calibrations are the photonic gain stability and sensibility to the environment variations and the Flat field that has to be known at a precision better than 0.1%.

  15. Photometric Lunar Surface Reconstruction

    Science.gov (United States)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  16. Astrometric vs. photometric microlensing

    NARCIS (Netherlands)

    Dominik, M; Brainerd, TG; Kochanek, CS

    2001-01-01

    I discuss the differences between the properties of astrometric and photometric microlensing and between the arising prospects for survey and follow-up experiments based on these two different signatures. In particular, the prospects for binary stars and extra-solar planets are considered.

  17. A non-convex variational approach to photometric stereo under inaccurate lighting

    DEFF Research Database (Denmark)

    Quéau, Yvain; Wu, Tao; Lauze, Francois Bernard

    2017-01-01

    This paper tackles the photometric stereo problem in the presence of inaccurate lighting, obtained either by calibration or by an uncalibrated photometric stereo method. Based on a precise modeling of noise and outliers, a robust variational approach is introduced. It explicitly accounts for self...

  18. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  19. Photometric microdetermination of malathion

    Science.gov (United States)

    Kallman, B.J.

    1962-01-01

    Carboxylic esters and lactones react with alkaline hydroxylamine to yield hydroxamates; these in acidic solution form colored iron(III) complexes. A photometric determination of such esters and lactones is thus permitted and has been extensively applied ( I-6). Hestrin ( 3) utilized this method for the microdetermination of acetylcholine and his procedure is much used for the in vitro study of cholinesterase activity and inhibition (4-6).

  20. Multiview photometric stereo.

    Science.gov (United States)

    Hernández Esteban, Carlos; Vogiatzis, George; Cipolla, Roberto

    2008-03-01

    This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects. We present an algorithm which uses silhouettes of the object, as well as images obtained under changing illumination conditions. In contrast with previous photometric stereo techniques, ours is not limited to a single viewpoint but produces accurate reconstructions in full 3D. A number of images of the object are obtained from multiple viewpoints, under varying lighting conditions. Starting from the silhouettes, the algorithm recovers camera motion and constructs the object's visual hull. This is then used to recover the illumination and initialise a multi-view photometric stereo scheme to obtain a closed surface reconstruction. There are two main contributions in this paper: Firstly we describe a robust technique to estimate light directions and intensities and secondly, we introduce a novel formulation of photometric stereo which combines multiple viewpoints and hence allows closed surface reconstructions. The algorithm has been implemented as a practical model acquisition system. Here, a quantitative evaluation of the algorithm on synthetic data is presented together with complete reconstructions of challenging real objects. Finally, we show experimentally how even in the case of highly textured objects, this technique can greatly improve on correspondence-based multi-view stereo results.

  1. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    Science.gov (United States)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  2. The walraven VBLUW photometric system : 32 years of 5-channel photometry

    NARCIS (Netherlands)

    Pel, Jan Willem; Lub, Jan; Sterken, C

    2007-01-01

    An overview is given of the Walraven V BLUW photometric system. We concentrate on the aspects of stability, internal and external precison of the standard system, flux calibration and theoretical model grids.

  3. Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II from 5 to 1200 ppmv using a metrological humidity generator

    Directory of Open Access Journals (Sweden)

    B. Buchholz

    2018-01-01

    Full Text Available Highly accurate water vapor measurements are indispensable for understanding a variety of scientific questions as well as industrial processes. While in metrology water vapor concentrations can be defined, generated, and measured with relative uncertainties in the single percentage range, field-deployable airborne instruments deviate even under quasistatic laboratory conditions up to 10–20 %. The novel SEALDH-II hygrometer, a calibration-free, tuneable diode laser spectrometer, bridges this gap by implementing a new holistic concept to achieve higher accuracy levels in the field. We present in this paper the absolute validation of SEALDH-II at a traceable humidity generator during 23 days of permanent operation at 15 different H2O mole fraction levels between 5 and 1200 ppmv. At each mole fraction level, we studied the pressure dependence at six different gas pressures between 65 and 950 hPa. Further, we describe the setup for this metrological validation, the challenges to overcome when assessing water vapor measurements on a high accuracy level, and the comparison results. With this validation, SEALDH-II is the first airborne, metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.

  4. Photometric Studies of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  5. Supernova Photometric Lightcurve Classification

    Science.gov (United States)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  6. SkyProbeBV: dual-color absolute sky transparency monitor to optimize science operations

    Science.gov (United States)

    Cuillandre, Jean-Charles; Magnier, Eugene; Sabin, Dan; Mahoney, Billy

    2008-07-01

    Mauna Kea (4200 m elevation, Hawaii) is known for its pristine seeing conditions, but sky transparency can be an issue for science operations: 25% of the nights are not photometric, a cloud coverage mostly due to high-altitude thin cirrus. The Canada-France-Hawaii Telescope (CFHT) is upgrading its real-time sky transparency monitor in the optical domain (V-band) into a dual-color system by adding a B-band channel and redesigning the entire optical and mechanical assembly. Since 2000, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (30 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 95% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. If the absorption is too high, exposures can be repeated, or the observing can be done for a lower ranked science program. The new dual color system (simultaneous B & V bands) will allow a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools

  7. Morphological and photometric studies of galaxies by electronography

    International Nuclear Information System (INIS)

    Youll, D.P.

    1978-10-01

    Astronomical sources of low surface brightness, or sources with high luminosity gradients can be difficult to observe with photographic techniques. However, developments in electronographic techniques over recent years have made them suitable for precise observations of such objects. The use of these techniques for morphological and photometric studies of galaxies is discussed. Where appropriate, improvements in the methods for recovering information from electronographs, and analysing the data with computers are suggested. These techniques were used to study eight galaxy systems which have compact parts where the luminosity gradients are relatively high. Morphological studies of these systems are presented, together with measurements of some of their photometric parameters. The galaxy NGC 4881 was also studied so that the photometric calibration could be checked against previous studies, and so that the parameters of compact galaxies could be compared against this elliptical galaxy. (author)

  8. Photometric Analysis in the Kepler Science Operations Center Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  9. DES Science Portal: Computing Photometric Redshifts

    Energy Technology Data Exchange (ETDEWEB)

    Gschwend, Julia [LIneA, Rio de Janeiro

    2016-01-01

    An important challenge facing photometric surveys for cosmological purposes, such as the Dark Energy Survey (DES), is the need to produce reliable photometric redshifts (photo-z). The choice of adequate algorithms and configurations and the maintenance of an up-to-date spectroscopic database to build training sets, for example, are challenging tasks when dealing with large amounts of data that are regularly updated and constantly growing. In this paper, we present the first of a series of tools developed by DES, provided as part of the DES Science Portal, an integrated web-based data portal developed to facilitate the scientific analysis of the data, while ensuring the reproducibility of the analysis. We present the DES Science Portal photometric redshift tools, starting from the creation of a spectroscopic sample to training the neural network photo-z codes, to the final estimation of photo-zs for a large photometric catalog. We illustrate this operation by calculating well calibrated photo-zs for a galaxy sample extracted from the DES first year (Y1A1) data. The series of processes mentioned above is run entirely within the Portal environment, which automatically produces validation metrics, and maintains the provenance between the different steps. This system allows us to fine tune the many steps involved in the process of calculating photo-zs, making sure that we do not lose the information on the configurations and inputs of the previous processes. By matching the DES Y1A1 photometry to a spectroscopic sample, we define different training sets that we use to feed the photo-z algorithms already installed at the Portal. Finally, we validate the results under several conditions, including the case of a sample limited to i<22.5 with the color properties close to the full DES Y1A1 photometric data. This way we compare the performance of multiple methods and training configurations. The infrastructure presented here is an effcient way to test several methods of

  10. Absolute magnitudes by statistical parallaxes

    International Nuclear Information System (INIS)

    Heck, A.

    1978-01-01

    The author describes an algorithm for stellar luminosity calibrations (based on the principle of maximum likelihood) which allows the calibration of relations of the type: Msub(i)=sup(N)sub(j=1)Σqsub(j)Csub(ij), i=1,...,n, where n is the size of the sample at hand, Msub(i) are the individual absolute magnitudes, Csub(ij) are observational quantities (j=1,...,N), and qsub(j) are the coefficients to be determined. If one puts N=1 and Csub(iN)=1, one has q 1 =M(mean), the mean absolute magnitude of the sample. As additional output, the algorithm provides one also with the dispersion in magnitude of the sample sigmasub(M), the mean solar motion (U,V,W) and the corresponding velocity ellipsoid (sigmasub(u), sigmasub(v), sigmasub(w). The use of this algorithm is illustrated. (Auth.)

  11. Photometric stereo endoscopy.

    Science.gov (United States)

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S; Vakoc, Benjamin J; Durr, Nicholas J

    2013-07-01

    While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging.

  12. Astronomical Research Institute Photometric Results

    Science.gov (United States)

    Linder, Tyler R.; Sampson, Ryan; Holmes, Robert

    2013-01-01

    The Astronomical Research Institute (ARI) conducts astrometric and photometric studies of asteroids with a concentration on near-Earth objects (NEOs). A 0.76-m autoscope was used for photometric studies of seven asteroids of which two were main-belt targets and five were NEOs, including one potentially hazardous asteroid (PHA). These objects are: 3122 Florence, 3960 Chaliubieju, 5143 Heracles, (6455) 1992 HE, (36284) 2000 DM8, (62128) 2000 SO1, and 2010 LF86.

  13. Gamma counter calibration system

    International Nuclear Information System (INIS)

    1977-01-01

    A method and apparatus are described for the calibration of a gamma radiation measurement instrument to be used over any of a number of different absolute energy ranges. The method includes the steps of adjusting the overall signal gain associated with pulses which are derived from detected gamma rays, until the instrument is calibrated for a particular absolute energy range; then storing parameter settings corresponding to the adjusted overall signal gain, and repeating the process for other desired absolute energy ranges. The stored settings can be subsequently retrieved and reapplied so that test measurements can be made using a selected one of the absolute energy ranges. Means are provided for adjusting the overall signal gain and a specific technique is disclosed for making coarse, then fine adjustments to the signal gain, for rapid convergence of the required calibration settings. (C.F.)

  14. Sloan Digital Sky Survey photometric telescope automation and observing software

    International Nuclear Information System (INIS)

    Eric H. Neilsen, Jr.; email = neilsen@fnal.gov

    2002-01-01

    The photometric telescope (PT) provides observations necessary for the photometric calibration of the Sloan Digital Sky Survey (SDSS). Because the attention of the observing staff is occupied by the operation of the 2.5 meter telescope which takes the survey data proper, the PT must reliably take data with little supervision. In this paper we describe the PT's observing program, MOP, which automates most tasks necessary for observing. MOP's automated target selection is closely modeled on the actions a human observer might take, and is built upon a user interface that can be (and has been) used for manual operation. This results in an interface that makes it easy for an observer to track the activities of the automating procedures and intervene with minimum disturbance when necessary. MOP selects targets from the same list of standard star and calibration fields presented to the user, and chooses standard star fields covering ranges of airmass, color, and time necessary to monitor atmospheric extinction and produce a photometric solution. The software determines when additional standard star fields are unnecessary, and selects survey calibration fields according to availability and priority. Other automated features of MOP, such as maintaining the focus and keeping a night log, are also built around still functional manual interfaces, allowing the observer to be as active in observing as desired; MOP's automated features may be used as tools for manual observing, ignored entirely, or allowed to run the telescope with minimal supervision when taking routine data

  15. PHASES: Opto-mechanical solutions to perform absolute spectrophotometry from space

    Directory of Open Access Journals (Sweden)

    Vather Dinesh

    2013-04-01

    Full Text Available This work provides an update of the current status of PHASES, which is a project aimed at developing a space-borne telescope to perform absolute flux calibrated spectroscopy of bright stars. PHASES will make it possible to measure micromagnitude photometric variations due to, e.g., exo-planet/moon transits. It is designed to obtain 1% RMS flux calibrated low resolution spectra in the wavelength range 370–960 nm with signal-to-noise ratios >100 for stars with V<10 in short integration times of ∼1 minute. The strategy to calibrate the system using A-type stars is outlined. PHASES will make possible a complete characterization of stars, some of them hosting planets. From the comparison of observed spectra with accurate model atmospheres stellar angular diameters will be determined with precisions of ∼0.5%. The light curves of transiting systems will be then used to extract the radius of the planet with similar precision. The demanding scientific requirements to be achieved under extreme observing conditions have shaped the optomechanical design. A computational model and a high-precision interferometric system have been developed to test the performance of the instrument.

  16. Planck 2013 results. V. LFI calibration

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2014-01-01

    We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on the Solar Dipole, caused by motion of the Solar System with respect to the CMB rest frame, which provides a signal of a few mK with the same spectr...

  17. Photometric Study of Fourteen Low-mass Binaries

    International Nuclear Information System (INIS)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J.; Hoňková, K.

    2017-01-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  18. Photometric Study of Fourteen Low-mass Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J. [Astronomical Institute, Charles University, Faculty of Mathematics and Physics, CZ-180 00, Praha 8, V Holešovičkách 2 (Czech Republic); Hoňková, K., E-mail: korda@sirrah.troja.mff.cuni.cz [Variable Star and Exoplanet Section of Czech Astronomical Society, Vsetínská 941/78, CZ-757 01, Valašské Meziříčí (Czech Republic)

    2017-07-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  19. Photometric requirements for portable changeable message signs.

    Science.gov (United States)

    2001-09-01

    This project reviewed the performance of pchangeable message signs (PCMSs) and developed photometric standards to establish performance requirements. In addition, researchers developed photometric test methods and recommended them for use in evaluati...

  20. Environmental dosimetry of radon-222 and daughters: measurement of absolute calibration factors of CR-39 considering the plate-out effects and environmental factors; Dosimetria ambiental de Rn-222 e filhos: medida da eficiencia absoluta do CR-39 levando-se em conta os efeitos do plate-out e fatores ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Paulo, S.R. de

    1991-08-01

    The subject of this work concerns with the measurement of absolute calibration factors for the use of CR-39 as an absolute detector in indoor and daughters monitoring. Up to now the usefulness of calibration factors was restricted to environmental conditions equal (or very close) to those worthing during their determinations. This fact is consequence of the difficulties related to the understanding of the plate-out properties of radon daughters activity in the air. The plate-out effects on radon daughters monitoring performed by SSNTDs are studied. Our experimental results are in agreement with those of other authors about the great sensitivity of CR-39 to the plate-out effects, fact that recommended its use in this work. Being succeeded in the employment of CR-39 as an alpha-spectrometer we concluded that some important information (like the radon daughters deposition rates on the walls of an environment) can be achieved. The knowledge about the behavior of plate-out made possible the determination of the ranges in zenithal angle and energy where CR-39 can detect alpha-particles with efficiency of 100%, at our conditions of track observation. In this way, we obtained calibration factors for CR-39 that are weakly dependent on environmental conditions. We think that these results can contribute to the improvement of RD (Radiation Detector) detection techniques. (author). 159 refs, 106 figs, 05 tabs.

  1. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    International Nuclear Information System (INIS)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-01-01

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 ∼> z ∼> 0.3) and luminosities, finding an average accuracy in (1 + z phot )/(1 + z spec ) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 μm flux ∼> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L IR ∼> 10 12 L ☉ ), and 3% of the total SFRD at z ∼ 2

  2. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    Science.gov (United States)

    Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.

    2018-06-01

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.

  3. Creation of a Unified Set of Core-Collapse Supernovae for Training of Photometric Classifiers

    Science.gov (United States)

    D'Arcy Kenworthy, William; Scolnic, Daniel; Kessler, Richard

    2017-01-01

    One of the key tasks for future supernova cosmology analyses is to photometrically distinguish type Ia supernovae (SNe) from their core collapse (CC) counterparts. In order to train programs for this purpose, it is necessary to train on a large number of core-collapse SNe. However, there are only a handful used for current programs. We plan to use the large amount of CC lightcurves available on the Open Supernova Catalog (OSC). Since this data is scraped from many different surveys, it is given in a number of photometric systems with different calibration and filters. We therefore created a program to fit smooth lightcurves (as a function of time) to photometric observations of arbitrary SNe. The Supercal method is then used to translate the smoothed lightcurves to a single photometric system. We can thus compile a training set of 782 supernovae, of which 127 are not type Ia. These smoothed lightcurves are also being contributed upstream to the OSC as derived data.

  4. Absolute dimensions and masses of eclipsing binaries. V. IQ Persei

    International Nuclear Information System (INIS)

    Lacy, C.H.; Frueh, M.L.; McDonald Observatory, Austin)

    1985-01-01

    New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, and apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references

  5. Evolution of the clustering of photometrically selected SDSS galaxies

    OpenAIRE

    Ross, Ashley; Percival, Will; Brunner, R.

    2010-01-01

    We measure the angular auto-correlation functions, ω(θ), of Sloan Digital Sky Survey (SDSS) galaxies selected to have photometric redshifts 0.1 < z < 0.4 and absolute r-band magnitudes Mr < −21.2. We split these galaxies into five overlapping redshift shells of width 0.1 and measure ω(θ) in each subsample in order to investigate the evolution of SDSS galaxies. We find that the bias increases substantially with redshift – much more so than one would expect for a passively evolving sample. We u...

  6. Photometric variability in earthshine observations.

    Science.gov (United States)

    Langford, Sally V; Wyithe, J Stuart B; Turner, Edwin L

    2009-04-01

    The identification of an extrasolar planet as Earth-like will depend on the detection of atmospheric signatures or surface non-uniformities. In this paper we present spatially unresolved flux light curves of Earth for the purpose of studying a prototype extrasolar terrestrial planet. Our monitoring of the photometric variability of earthshine revealed changes of up to 23% per hour in the brightness of Earth's scattered light at around 600 nm, due to the removal of specular reflection from the view of the Moon. This variability is accompanied by reddening of the spectrum and results from a change in surface properties across the continental boundary between the Indian Ocean and Africa's east coast. Our results based on earthshine monitoring indicate that specular reflection should provide a useful tool in determining the presence of liquid water on extrasolar planets via photometric observations.

  7. Photometric device using optical fibers

    International Nuclear Information System (INIS)

    Boisde, Gilbert; Perez, J.-J.

    1981-02-01

    Remote measurements in radioactive environment are now possible with optical fibers. Measurement instruments developed by CEA are constitued of: - an optical probe (5 mm to 1 meter optical path length), - a photometric measurement device, - optical fiber links. 'TELEPHOT' is a photometric device for industrial installations. It is uses interferentiel filters for 2 to 5 simultaneous wave lengths. 'CRUDMETER' measures the muddiness of water. It can be equipped with a high sensitivity cell of 50 cm optical path length tested up to 250 bars. Coupling a double beam spectrophotometer to a remote optical probe, up to 1 meter optical path length, is carried out by means of an optical device using optical fibers links, eventually several hundred meter long. For these equipments special step index large core fibers, 1 to 1.5 mm in diameter, have been developed as well connectors. For industrial control and research these instruments offer new prospect thanks to optical fibers use [fr

  8. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    Energy Technology Data Exchange (ETDEWEB)

    Leistedt, Boris; Hogg, David W., E-mail: boris.leistedt@nyu.edu, E-mail: david.hogg@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2017-03-20

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux–redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the i -magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST ) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  9. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    International Nuclear Information System (INIS)

    Leistedt, Boris; Hogg, David W.

    2017-01-01

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux–redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the i -magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST ) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  10. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Infrared and CCD photometric study of spiral galaxies

    International Nuclear Information System (INIS)

    Manousoyannaki, I.

    1986-01-01

    Infrared J (1.2 μm), H (1.6 μm), and K (2.2 μm) photometry is presented for a subsample of galaxies with morphological types of Sc and Sb of the sample types Sc and Sb of the sample by Rubin et al. and one edge-on spiral galaxy. After an overview of the science of infrared photometry, accurate photometric magnitudes are derived via curves of growth that have been computed using a compiled catalogue of galaxies observed in the infrared. The catalogue is presented in Appendix I. The photometric data are used to derive mass to light ratio distribution and the colors for each galaxy. Several correlations of photometric and dynamical quantities are examined and discussed as integral properties of the two morphological types. The main result of this analysis is that the mass to H-light ratio is independent of radius and of H-luminosity and is a good measure of the stellar component of the galaxy. Emphasis is placed on the Tully-Fisher, absolute magnitude vs log (rotational velocity), relation and its application to derive distances of galaxies. The data are used to derive surface brightness distribution profiles and decompose the profiles to spheroidal and disk components. The radial distribution of color in these galaxies is also discussed

  12. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    Science.gov (United States)

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  13. Danish Towns during Absolutism

    DEFF Research Database (Denmark)

    This anthology, No. 4 in the Danish Urban Studies Series, presents in English recent significant research on Denmark's urban development during the Age of Absolutism, 1660-1848, and features 13 articles written by leading Danish urban historians. The years of Absolutism were marked by a general...

  14. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  15. Revised photometric elements of XZ And

    International Nuclear Information System (INIS)

    Giuricin, G.; Mardirossian, F.; Predolin, F.

    1980-01-01

    With the aid of Wood's (1972) computer program we have reanalyzed the photoelectric lightcurves of XZ And, made by Blitzstein (1954) and by Reinhardt (1967), from which appreciably different sets of photometric elements have previously been deduced. The photometric elements that we have derived separately from different lightcurves turned out to be in good agreement. Thus XZ And, whose seondary - somewhat larger than its hotter companion - appears to be roughly a G5-type star, has well-determined photometric elements. (author)

  16. A photometric study of Enceladus

    Science.gov (United States)

    Verbiscer, Anne J.; Veverka, Joseph

    1994-01-01

    We have supplemented Voyager imaging data from Enceladus (limited to phase angles of 13 deg-43 deg) with recent Earth-based CCD observations to obtain an improved determination of the Bond albedo, to construct an albedo map of the satellite, and to constrain parameters in Hapke's (1986) photometric equation. A major result is evidence of regional variations in the physical properties of Enceladus' surface. The average global photometric properties are described by single scattering albedo omega(sub 0) average = 0.998 +/- 0.001, macroscopic roughness parameter theta average = 6 +/- 1 deg, and Henyey-Greenstein asymmetry parameter g = -0.399 +/- 0.005. The value of theta average is smaller than the 14 deg found by fitting whole-disk data, which include all terrains on Enceladus. The opposition surge amplitude B(sub 0) = 0.21 +/- 0.07 and regolith compaction parameter h = 0.014 +/- 0.02 are loosely constrained by the scarcity of and uncertainty in near-opposition observations. From the solar phase curve we determine the geometric albedo of Enceladus p(sub v) = 0.99 +/- 0.06 and phase integral q = 0.92 +/- 0.05, which corresponds to a spherical albedo A = p(sub v)q = 0.91 +/- 0.1. Since the spectrum of Enceladus is fairly flat, we can approximate the Bond albedo A(sub B) with the spherical albedo. Our photometric analysis is summarized in terms of an albedo map which generally reproduces the satellite's observed lightcurve and indicates that normal reflectances range from 0.9 on the leading hemisphere to 1.4 on the trailing one. The albedo map also revels an albedo variation of 15% from longitudes 170 deg to 200 deg, corresponding to the boundary between the leading and trailing hemispheres.

  17. High-precision reflectivity measurements: improvements in the calibration procedure

    Science.gov (United States)

    Jupe, Marco; Grossmann, Florian; Starke, Kai; Ristau, Detlev

    2003-05-01

    The development of high quality optical components is heavily depending on precise characterization procedures. The reflectance and transmittance of laser components are the most important parameters for advanced laser applications. In the industrial fabrication of optical coatings, quality management is generally insured by spectral photometric methods according to ISO/DIS 15386 on a medium level of accuracy. Especially for high reflecting mirrors, a severe discrepancy in the determination of the absolute reflectivity can be found for spectral photometric procedures. In the first part of the CHOCLAB project, a method for measuring reflectance and transmittance with an enhanced precision was developed, which is described in ISO/WD 13697. In the second part of the CHOCLAB project, the evaluation and optimization for the presented method is scheduled. Within this framework international Round-Robin experiment is currently in progress. During this Round-Robin experiment, distinct deviations could be observed between the results of high precision measurement facilities of different partners. Based on the extended experiments, the inhomogeneity of the sample reflectivity was identified as one important origin for the deviation. Consequently, this inhomogeneity is also influencing the calibration procedure. Therefore, a method was developed that allows the calibration of the chopper blade using always the same position on the reference mirror. During the investigations, the homogeneity of several samples was characterized by a surface mapping procedure for 1064 nm. The measurement facility was extended to the additional wavelength 532 nm and a similar set-up was assembled at 10.6 μm. The high precision reflectivity procedure at the mentioned wavelengths is demonstrated for exemplary measurements.

  18. PHOTOMETRY AND PHOTOMETRIC REDSHIFT CATALOGS FOR THE LOCKMAN HOLE DEEP FIELD

    International Nuclear Information System (INIS)

    Fotopoulou, S.; Salvato, M.; Hasinger, G.; Rovilos, E.; Brusa, M.; Lutz, D.; Burwitz, V.; Egami, E.; Henry, J. P.; Huang, J. H.; Rigopoulou, D.; Vaccari, M.

    2012-01-01

    We present broadband photometry and photometric redshifts for 187,611 sources located in ∼0.5 deg 2 in the Lockman Hole area. The catalog includes 388 X-ray-detected sources identified with the very deep XMM-Newton observations available for an area of 0.2 deg 2 . The source detection was performed on the R c -, z'-, and B-band images and the available photometry is spanning from the far-ultraviolet to the mid-infrared, reaching in the best-case scenario 21 bands. Astrometry corrections and photometric cross-calibrations over the entire data set allowed the computation of accurate photometric redshifts. Special treatment is undertaken for the X-ray sources, the majority of which are active galactic nuclei (AGNs). For normal galaxies, comparing the photometric redshifts to the 253 available spectroscopic redshifts, we achieve an accuracy of σ Δz/(1+z) = 0.036, with 12.6% outliers. For the X-ray-detected sources, compared to 115 spectroscopic redshifts, the accuracy is σ Δz/(1+z) = 0.069, with 18.3% outliers, where the outliers are defined as sources with |z phot – z spec | > 0.15 × (1 + z spec ). These results are a significant improvement over the previously available photometric redshifts for normal galaxies in the Lockman Hole, while it is the first time that photometric redshifts are computed and made public for AGNs for this field.

  19. Positioning, alignment and absolute pointing of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Fehr, F; Distefano, C

    2010-01-01

    A precise detector alignment and absolute pointing is crucial for point-source searches. The ANTARES neutrino telescope utilises an array of hydrophones, tiltmeters and compasses for the relative positioning of the optical sensors. The absolute calibration is accomplished by long-baseline low-frequency triangulation of the acoustic reference devices in the deep-sea with a differential GPS system at the sea surface. The absolute pointing can be independently verified by detecting the shadow of the Moon in cosmic rays.

  20. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  1. Approach To Absolute Zero

    Indian Academy of Sciences (India)

    more and more difficult to remove heat as one approaches absolute zero. This is the ... A new and active branch of engineering ... This temperature is called the critical temperature, Te' For sulfur dioxide the critical ..... adsorbent charcoal.

  2. Microgeometry capture and RGB albedo estimation by photometric stereo without demosaicing

    Science.gov (United States)

    Quéau, Yvain; Pizenberg, Mathieu; Durou, Jean-Denis; Cremers, Daniel

    2017-03-01

    We present a photometric stereo-based system for retrieving the RGB albedo and the fine-scale details of an opaque surface. In order to limit specularities, the system uses a controllable diffuse illumination, which is calibrated using a dedicated procedure. In addition, we rather handle RAW, non-demosaiced RGB images, which both avoids uncontrolled operations on the sensor data and simplifies the estimation of the albedo in each color channel and of the normals. We finally show on real-world examples the potential of photometric stereo for the 3D-reconstruction of very thin structures from a wide variety of surfaces.

  3. Photometric Metallicities of the Small and Large Magellanic Clouds

    Science.gov (United States)

    Miller, Amy Elizabeth

    2018-06-01

    In the field of astronomy, the study of galaxies is vitally important to understanding the structure and evolution of the universe. Within the study of galaxies, of particular interest are the Small and Large Magellanic Clouds (SMC and LMC, respectively), two of the Milky Way’s closest and most massive satellite galaxies. Their close proximity make them ideal candidates for understanding astrophysical processes such as galaxy interactions. In order to fully understand the Magellanic Clouds, it is imperative that the metallicity of the clouds be mapped in detail. In order to accomplish this task, I will use data from the Survey of Magellanic Stellar History (SMASH) which is a deep, multi-band (ugriz) photometric survey of the Magellanic Clouds that contains approximately 400 million objects in 197 fully-calibrated fields. SMASH is an extensive and deep photometric data set that enables the full-scale study of the galactic structure in the Clouds. The SMASH u-band is sensitive to metallicity for main-sequence turn-off stars which we calibrate using SDSS spectroscopy in overlapping regions (mainly standard star fields). The final steps will be to make metallicity maps of the main bodies and peripheries of the LMC and SMC. Ultimately, these metallicity maps will help us trace out population gradients in the Clouds and uncover the origin of their very extended stellar peripheries.

  4. Encasing the Absolutes

    Directory of Open Access Journals (Sweden)

    Uroš Martinčič

    2014-05-01

    Full Text Available The paper explores the issue of structure and case in English absolute constructions, whose subjects are deduced by several descriptive grammars as being in the nominative case due to its supposed neutrality in terms of register. This deduction is countered by systematic accounts presented within the framework of the Minimalist Program which relate the case of absolute constructions to specific grammatical factors. Each proposal is shown as an attempt of analysing absolute constructions as basic predication structures, either full clauses or small clauses. I argue in favour of the small clause approach due to its minimal reliance on transformations and unique stipulations. Furthermore, I propose that small clauses project a singular category, and show that the use of two cases in English absolute constructions can be accounted for if they are analysed as depictive phrases, possibly selected by prepositions. The case of the subject in absolutes is shown to be a result of syntactic and non-syntactic factors. I thus argue in accordance with Minimalist goals that syntactic case does not exist, attributing its role in absolutes to other mechanisms.

  5. Photometric normalization of LROC WAC images

    Science.gov (United States)

    Sato, H.; Denevi, B.; Robinson, M. S.; Hapke, B. W.; McEwen, A. S.; LROC Science Team

    2010-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) acquires near global coverage on a monthly basis. The WAC is a push frame sensor with a 90° field of view (FOV) in BW mode and 60° FOV in 7-color mode (320 nm to 689 nm). WAC images are acquired during each orbit in 10° latitude segments with cross track coverage of ~50 km. Before mosaicking, WAC images are radiometrically calibrated to remove instrumental artifacts and to convert at sensor radiance to I/F. Images are also photometrically normalized to common viewing and illumination angles (30° phase), a challenge due to the wide angle nature of the WAC where large differences in phase angle are observed in a single image line (±30°). During a single month the equatorial incidence angle drifts about 28° and over the course of ~1 year the lighting completes a 360° cycle. The light scattering properties of the lunar surface depend on incidence(i), emission(e), and phase(p) angles as well as soil properties such as single-scattering albedo and roughness that vary with terrain type and state of maturity [1]. We first tested a Lommel-Seeliger Correction (LSC) [cos(i)/(cos(i) + cos(e))] [2] with a phase function defined by an exponential decay plus 4th order polynomial term [3] which did not provide an adequate solution. Next we employed a LSC with an exponential 2nd order decay phase correction that was an improvement, but still exhibited unacceptable frame-to-frame residuals. In both cases we fitted the LSC I/F vs. phase angle to derive the phase corrections. To date, the best results are with a lunar-lambert function [4] with exponential 2nd order decay phase correction (LLEXP2) [(A1exp(B1p)+A2exp(B2p)+A3) * cos(i)/(cos(e) + cos(i)) + B3cos(i)]. We derived the parameters for the LLEXP2 from repeat imaging of a small region and then corrected that region with excellent results. When this correction was applied to the whole Moon the results were less than optimal - no surprise given the

  6. EVOLUTION OF GALAXY LUMINOSITY FUNCTION USING PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    Ramos, B. H. F.; Pellegrini, P. S.; Da Costa, L. N.; Maia, M. A. G.; Ogando, R. L. C.; De Simoni, F.; Benoist, C.; Makler, M.; Mesquita, A. A.

    2011-01-01

    We examine the impact of using photometric redshifts for studying the evolution of both the global galaxy luminosity function (LF) and that for different galaxy types. To this end, we compare the LFs obtained using photometric redshifts from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) D1 field with those from the spectroscopic survey VIMOS VLT Deep Survey (VVDS) comprising ∼4800 galaxies. We find that for z ≤ 2.0, in the interval of magnitudes considered by this survey, the LFs obtained using photometric and spectroscopic redshifts show a remarkable agreement. This good agreement led us to use all four Deep fields of the CFHTLS comprising ∼386,000 galaxies to compute the LF of the combined fields and directly estimate the error in the parameters based on the field-to-field variation. We find that the characteristic absolute magnitude M* of Schechter fits fades by ∼0.7 mag from z ∼ 1.8 to z ∼ 0.3, while the characteristic density φ* increases by a factor of ∼4 in the same redshift interval. We use the galaxy classification provided by the template fitting program used to compute photometric redshifts and split the sample into galaxy types. We find that these Schechter parameters evolve differently for each galaxy type, an indication that their evolution is a combination of several effects: galaxy merging, star formation quenching, and mass assembly. All these results are compatible with those obtained by different spectroscopic surveys such as VVDS, DEEP2, and zCosmos, which reinforces the fact that photometric redshifts can be used to study galaxy evolution, at least for the redshift bins adopted so far. This is of great interest since future very large imaging surveys containing hundreds of millions of galaxies will allow us to obtain important precise measurements to constrain the evolution of the LF and to explore the dependence of this evolution on morphology and/or color helping constrain the mechanisms of galaxy evolution.

  7. A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    KAUST Repository

    Zhao, Huaying

    2015-05-21

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.

  8. A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Directory of Open Access Journals (Sweden)

    Huaying Zhao

    Full Text Available Analytical ultracentrifugation (AUC is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188 S (4.4%. After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%. In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.

  9. A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    KAUST Repository

    Zhao, Huaying; Ghirlando, Rodolfo; Alfonso, Carlos; Arisaka, Fumio; Attali, Ilan; Bain, David L.; Bakhtina, Marina M.; Becker, Donald F.; Bedwell, Gregory J.; Bekdemir, Ahmet; Besong, Tabot M.D.; Birck, Catherine; Brautigam, Chad A.; Brennerman, William; Byron, Olwyn; Bzowska, Agnieszka; Chaires, Jonathan B.; Chaton, Catherine T.; Cö lfen, Helmut; Connaghan, Keith D.; Crowley, Kimberly A.; Curth, Ute; Daviter, Tina; Dean, William L.; Dí ez, Ana I.; Ebel, Christine; Eckert, Debra M.; Eisele, Leslie E.; Eisenstein, Edward; England, Patrick; Escalante, Carlos; Fagan, Jeffrey A.; Fairman, Robert; Finn, Ron M.; Fischle, Wolfgang; de la Torre, José Garcí a; Gor, Jayesh; Gustafsson, Henning; Hall, Damien; Harding, Stephen E.; Cifre, José G. Herná ndez; Herr, Andrew B.; Howell, Elizabeth E.; Isaac, Richard S.; Jao, Shu-Chuan; Jose, Davis; Kim, Soon-Jong; Kokona, Bashkim; Kornblatt, Jack A.; Kosek, Dalibor; Krayukhina, Elena; Krzizike, Daniel; Kusznir, Eric A.; Kwon, Hyewon; Larson, Adam; Laue, Thomas M.; Le Roy, Aline; Leech, Andrew P.; Lilie, Hauke; Luger, Karolin; Luque-Ortega, Juan R.; Ma, Jia; May, Carrie A.; Maynard, Ernest L.; Modrak-Wojcik, Anna; Mok, Yee-Foong; Mü cke, Norbert; Nagel-Steger, Luitgard; Narlikar, Geeta J.; Noda, Masanori; Piszczek, Grzegorz; Nourse, Amanda; Obsil, Tomas; Park, Chad K.; Park, Jin-Ku; Pawelek, Peter D.; Perdue, Erby E.; Perkins, Stephen J.; Perugini, Matthew A.; Peterson, Craig L.; Peverelli, Martin G.; Prag, Gali; Prevelige, Peter E.; Raynal, Bertrand D. E.; Rezabkova, Lenka; Richter, Klaus; Ringel, Alison E.; Rosenberg, Rose; Rowe, Arthur J.; Rufer, Arne C.; Swygert, Sarah G.; Scott, David J.; Seravalli, Javier G.; Solovyova, Alexandra S.; Song, Renjie; Staunton, David; Stoddard, Caitlin; Stott, Katherine; Strauss, Holger M.; Streicher, Werner W.; Sumida, John P.; Szczepanowski, Roman H.; Tessmer, Ingrid; Toth, Ronald T.; Tripathy, Ashutosh; Uchiyama, Susumu; Uebel, Stephan F. W.; Unzai, Satoru; Gruber, Anna Vitlin; von Hippel, Peter H.; null; Wandrey, Christine; Wang, Szu-Huan; Weitzel, Steven E.; Wielgus-Kutrowska, Beata; Wolberger, Cynthia; Wolff, Martin; Wright, Edward; Wu, Yu-Sung; Wubben, Jacinta M.; Schuck, Peter

    2015-01-01

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.

  10. Titrimetric and photometric methods for determination of hypochlorite in commercial bleaches.

    Science.gov (United States)

    Jonnalagadda, Sreekanth B; Gengan, Prabhashini

    2010-01-01

    Two methods, simple titration and photometric methods for determination of hypochlorite are developed, based its reaction with hydrogen peroxide and titration of the residual peroxide by acidic permanganate. In the titration method, the residual hydrogen peroxide is estimated by titration with standard permanganate solution to estimate the hypochlorite concentration. The photometric method is devised to measure the concentration of remaining permanganate, after the reaction with residual hydrogen peroxide. It employs 4 ranges of calibration curves to enable the determination of hypochlorite accurately. The new photometric method measures hypochlorite in the range 1.90 x 10(-3) to 1.90 x 10(-2) M, with high accuracy and with low variance. The concentrations of hypochlorite in diverse commercial bleach samples and in seawater which is enriched with hypochlorite were estimated using the proposed method and compared with the arsenite method. The statistical analysis validates the superiority of the proposed method.

  11. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    Science.gov (United States)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.; hide

    2012-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.

  12. Photometric Assessment of Night Sky Quality over Chaco Culture National Historical Park

    Science.gov (United States)

    Hung, Li-Wei; Duriscoe, Dan M.; White, Jeremy M.; Meadows, Bob; Anderson, Sharolyn J.

    2018-06-01

    The US National Park Service (NPS) characterizes night sky conditions over Chaco Culture National Historical Park using measurements in the park and satellite data. The park is located near the geographic center of the San Juan Basin of northwestern New Mexico and the adjacent Four Corners state. In the park, we capture a series of night sky images in V-band using our mobile camera system on nine nights from 2001 to 2016 at four sites. We perform absolute photometric calibration and determine the image placement to obtain multiple 45-million-pixel mosaic images of the entire night sky. We also model the regional night sky conditions in and around the park based on 2016 VIIRS satellite data. The average zenith brightness is 21.5 mag/arcsec2, and the whole sky is only ~16% brighter than the natural conditions. The faintest stars visible to naked eyes have magnitude of approximately 7.0, reaching the sensitivity limit of human eyes. The main impacts to Chaco’s night sky quality are the light domes from Albuquerque, Rio Rancho, Farmington, Bloomfield, Gallup, Santa Fe, Grants, and Crown Point. A few of these light domes exceed the natural brightness of the Milky Way. Additionally, glare sources from oil and gas development sites are visible along the north and east horizons. Overall, the night sky quality at Chaco Culture National Historical Park is very good. The park preserves to a large extent the natural illumination cycles, providing a refuge for crepuscular and nocturnal species. During clear and dark nights, visitors have an opportunity to see the Milky Way from nearly horizon to horizon, complete constellations, and faint astronomical objects and natural sources of light such as the Andromeda Galaxy, zodiacal light, and airglow.

  13. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  14. Approach to Absolute Zero

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Approach to Absolute Zero Below 10 milli-Kelvin. R Srinivasan. Series Article Volume 2 Issue 10 October 1997 pp 8-16. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/10/0008-0016 ...

  15. RSO Characterization with Photometric Data Using Machine Learning

    Science.gov (United States)

    2015-10-18

    RSO Characterization with Photometric Data Using Machine Learning Michael Howard Charles River Analytics, Inc. Bernie Klem SASSO, Inc. Joe...and its behavior. This paper explores object characterization methods using photometric data. An important property of RSO photometric signatures is... photometric signature include geometry, orientation, material characteristics and stability. For this reason, it should be possible to recover these

  16. ASTEROID PHOTOMETRIC CATALOG V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Photometric Catalog (3rd update), Lagerkvist, et.al., 1993 [LAGERKVISTETAL1993], is a compilation of all asteroid lightcurve photometry published up to...

  17. Photometric Study of Uranian Satellites

    Science.gov (United States)

    Kesten, Philip R.

    1998-01-01

    The best summary of my work at NASA is expressed in the following abstract, submitted the Division for Planetary Science of the American Astronomical Society and to be presented at the annual meeting in Madison in October. We report photometric measurements of Uranian satellites Miranda, Ariel, Umbriel and Titania (10.4 Aug. 1995), and Neptune's satellite Triton (21.2 Sept. 1995) with the infrared camera (IRCAM) and standard J (1.13 - 1.42 microns), H (1.53 - 1.81 microns), and K (2.00 - 2.41 microns) filters at the 3.8-m UKIRT telescope on Mauna Kea. The individual images frames are 256 x 256 pixels with a platescale of .286 arcsec/pixel, resulting in a 1.22 arc min field of view. This summer brought the IR photometry measurements nearly to a close. As indicated by the abstract above, I will present this work at the annual DPS meeting in October. In anticipation of the opening of the new Carl Sagan Laboratory for Cosmochemisty, of which I will be a participating member, I also devoted a considerable fraction of the summer to learning the biochemistry which underlies the experiments to be conducted. To put the end of the summary close to the beginning, it was a most productive summer.

  18. Photometric properties of Triton hazes

    Science.gov (United States)

    Hillier, J.; Veverka, J.

    1994-01-01

    Voyager imaging observations of Triton have been used to investigate the characteristics of the atmospheric hazes on Triton at three wavelengths: violet (0.41 micrometers), blue (0.48 micrometers), and green (0.56 micrometers). The globally averaged optical depth is wavelength dependent, varying from 0.034 in green to 0.063 in violet. These photometric results are dominated by the properties of localized discrete clouds rather than by those of the thinner, more widespread haze known to occur on Triton. The cloud particles are bright, with single-scattering albedos near unity at all three wavelengths, suggestive of a transparent icy condensate. The asymmetry parameter (+0.6) and the wavelength dependence of the optical depth both indicate cloud particles 0.2-0.4 micrometers in radius. The clouds are concentrated at 50-60 deg S latitude, where opacities up to three times the global average are observed. This is the same latitude region where most of the evidence for current surface activity is found, suggesting that the clouds may be related to the plumes or at least to some process connected with the sublimation of the south polar cap. The effects of possible temporal variations in the haze opacity are examined. Increases in the haze opacity tend to redden Triton. However, the degree of reddening is not sufficient to explain the full range of observed changed in Triton over the past decade; variations in the surface properties appear to be necessary.

  19. Photometrical Observations "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P.; Karpenko, G. F.; Sukhov, K. P.; Kudak, V. I.

    2015-08-01

    Photometrical observations GSS "SBIRS GEO 2" in B,V,R filters were carried near the equinoxes 2014-2015. Used velocity electrophotometer based on the FEU-79 in the pulse-counting mode. Received more than 25 light curves. From the known dimensions are defined; effective reflecting area - Sγλ, the spectral reflectance index - γλ, periods of light variation. Color-indices showed that in the reflected light flux from the GSS prevails "red" component. In the light curves are periodically dips and specular flash. This shows that GSS orbit is not in a static position specified triaxial orientation as in dynamic motion. Assumed following dynamics of the satellite "SBIRS GEO 2" in orbit. Helical scanning the Earth's surface visible infrared sensors satellite occurs with a period P1 = 15.66 sec. and swinging of the GSS about the direction of the motion vector of the satellite in an orbit with P2 = 62.64 sec., from the northern to the southern pole. Thus, during the period of swinging GSS going on 2 scan the visible part of the northern and southern hemispheres. In some dates observations dynamics work satellite in orbit changed.

  20. The many flavours of photometric redshifts

    Science.gov (United States)

    Salvato, Mara; Ilbert, Olivier; Hoyle, Ben

    2018-06-01

    Since more than 70 years ago, the colours of galaxies derived from flux measurements at different wavelengths have been used to estimate their cosmological distances. Such distance measurements, called photometric redshifts, are necessary for many scientific projects, ranging from investigations of the formation and evolution of galaxies and active galactic nuclei to precision cosmology. The primary benefit of photometric redshifts is that distance estimates can be obtained relatively cheaply for all sources detected in photometric images. The drawback is that these cheap estimates have low precision compared with resource-expensive spectroscopic ones. The methodology for estimating redshifts has been through several revolutions in recent decades, triggered by increasingly stringent requirements on the photometric redshift accuracy. Here, we review the various techniques for obtaining photometric redshifts, from template-fitting to machine learning and hybrid schemes. We also describe state-of-the-art results on current extragalactic samples and explain how survey strategy choices affect redshift accuracy. We close with a description of the photometric redshift efforts planned for upcoming wide-field surveys, which will collect data on billions of galaxies, aiming to investigate, among other matters, the stellar mass assembly and the nature of dark energy.

  1. Effekten af absolut kumulation

    DEFF Research Database (Denmark)

    Kyvsgaard, Britta; Klement, Christian

    2012-01-01

    Som led i finansloven for 2011 blev regeringen og forligspartierne enige om at undersøge reglerne om strafudmåling ved samtidig pådømmelse af flere kriminelle forhold og i forbindelse hermed vurdere konsekvenserne af at ændre de gældende regler i forhold til kapacitetsbehovet i Kriminalforsorgens...... samlet bødesum ved en absolut kumulation i forhold til en modereret kumulation, som nu er gældende....

  2. A PHOTOMETRIC METALLICITY ESTIMATE OF THE VIRGO STELLAR OVERDENSITY

    International Nuclear Information System (INIS)

    An, Deokkeun; Johnson, Jennifer A.; Pinsonneault, Marc H.; Terndrup, Donald M.; Masseron, Thomas; Beers, Timothy C.; Lee, Young Sun; Delahaye, Franck; Yanny, Brian

    2009-01-01

    We determine photometric metal abundance estimates for individual main-sequence stars in the Virgo Overdensity (VOD), which covers almost 1000 deg 2 on the sky, based on a calibration of the metallicity sensitivity of stellar isochrones in the gri filter passbands using field stars with well-determined spectroscopic metal abundances. Despite the low precision of the method for individual stars, we derive [Fe/H] = -2.0 ± 0.1(internal) ± 0.5(systematic) for the metal abundance of the VOD from photometric measurements of 0.7 million stars in the northern Galactic hemisphere with heliocentric distances from ∼10 kpc to ∼20 kpc. The metallicity of the VOD is indistinguishable, within Δ[Fe/H] ≤ 0.2, from that of field halo stars covering the same distance range. This initial application suggests that the Sloan Digital Sky Survey gri passbands can be used to probe the properties of main-sequence stars beyond ∼10 kpc, complementing studies of nearby stars from more metallicity-sensitive color indices that involve the u passband.

  3. Measuring Cosmological Parameters with Photometrically Classified Pan-STARRS Supernovae

    Science.gov (United States)

    Jones, David; Scolnic, Daniel; Riess, Adam; Rest, Armin; Kirshner, Robert; Berger, Edo; Kessler, Rick; Pan, Yen-Chen; Foley, Ryan; Chornock, Ryan; Ortega, Carolyn; Challis, Peter; Burgett, William; Chambers, Kenneth; Draper, Peter; Flewelling, Heather; Huber, Mark; Kaiser, Nick; Kudritzki, Rolf; Metcalfe, Nigel; Tonry, John; Wainscoat, Richard J.; Waters, Chris; Gall, E. E. E.; Kotak, Rubina; McCrum, Matt; Smartt, Stephen; Smith, Ken

    2018-01-01

    We use nearly 1,200 supernovae (SNe) from Pan-STARRS and ~200 low-z (z energy equation of state parameter w to be -0.986±0.058 (stat+sys). If we allow w to evolve with redshift as w(a) = w0 + wa(1-a), we find w0 = -0.923±0.148 and wa = -0.404±0.797. These results are consistent with measurements of cosmological parameters from the JLA and from a new analysis of 1049 spectroscopically confirmed SNe Ia (Scolnic et al. 2017). We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling the CC SN contamination, finding that none of these variants gives a w that differs by more than 1% from the baseline measurement. The systematic uncertainty on w due to marginalizing over the CC SN contamination, σwCC = 0.019, is approximately equal to the photometric calibration uncertainty and is lower than the systematic uncertainty in the SN\\,Ia dispersion model (σwdisp = 0.024). Our data provide one of the best current constraints on w, demonstrating that samples with ~5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework.

  4. Photometric metallicity map of the Small Magellanic Cloud

    Science.gov (United States)

    Choudhury, S.; Subramaniam, A.; Cole, A. A.; Sohn, Y.-J.

    2018-04-01

    We have created an estimated metallicity map of the Small Magellanic Cloud (SMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind map of metallicity up to a radius of ˜2.5°. We identify the Red Giant Branch (RGB) in the V, (V - I) colour-magnitude diagrams of small sub-regions of varying sizes in both data sets. We use the slope of the RGB as an indicator of the average metallicity of a sub-region and calibrate the RGB slope to metallicity using available spectroscopic data for selected sub-regions. The average metallicity of the SMC is found to be [Fe/H] = -0.94 dex (σ[Fe/H] = 0.09) from OGLE III and [Fe/H] = -0.95 dex (σ[Fe/H] = 0.08) from MCPS. We confirm a shallow but significant metallicity gradient within the inner SMC up to a radius of 2.5° (-0.045 ± 0.004 to -0.067 ± 0.006 dex deg-1).

  5. Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors.

    Science.gov (United States)

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-10-16

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient.

  6. Optical Photometric Observations of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  7. Photometric Studies of Orbital Debris at GEO

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  8. Photometric Studies of GEO Orbital Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  9. The effect of photometric and geometric context on photometric and geometric lightness effects.

    Science.gov (United States)

    Lee, Thomas Y; Brainard, David H

    2014-01-24

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.

  10. Towards absolute neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory 106-38, Caltech, Pasadena, CA 91125 (United States)

    2007-06-15

    Various ways of determining the absolute neutrino masses are briefly reviewed and their sensitivities compared. The apparent tension between the announced but unconfirmed observation of the 0{nu}{beta}{beta} decay and the neutrino mass upper limit based on observational cosmology is used as an example of what could happen eventually. The possibility of a 'nonstandard' mechanism of the 0{nu}{beta}{beta} decay is stressed and the ways of deciding which of the possible mechanisms is actually operational are described. The importance of the 0{nu}{beta}{beta} nuclear matrix elements is discussed and their uncertainty estimated.

  11. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  12. Optimization of procedure for calibration with radiometer/photometer

    International Nuclear Information System (INIS)

    Detilly, Isabelle

    2009-01-01

    A test procedure for the radiometer/photometer calibrations mark International Light at the Laboratorio de Fotometria y Tecnologia Laser (LAFTA) de la Escuela de Ingenieria Electrica de la Universidad de Costa Rica is established. Two photometric banks are used as experimental set and two calibrations were performed of the International Light. A basic procedure established in the laboratory, is used for calibration from measurements of illuminance and luminous intensity. Some dependent variations of photometric banks used in the calibration process, the programming of the radiometer/photometer and the applied methodology showed the results. The procedure for calibration with radiometer/photometer can be improved by optimizing the programming process of the measurement instrument and possible errors can be minimized by using the recommended procedure. (author) [es

  13. THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01

    International Nuclear Information System (INIS)

    Magnier, E. A.; Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Flewelling, H. A.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Sweeney, W. E.; Schlafly, E.; Finkbeiner, D.; Juric, M.; Stubbs, C. W.; Price, P. A.

    2013-01-01

    As of 2012 January 21, the Pan-STARRS 1 3π Survey has observed the 3/4 of the sky visible from Hawaii with a minimum of 2 and mean of 7.6 observations in five filters, g P1 , r P1 , i P1 , z P1 , y P1 . Now at the end of the second year of the mission, we are in a position to make an initial public release of a portion of this unprecedented data set. This article describes the PS1 Photometric Ladder, Release 12.01. This is the first of a series of data releases to be generated as the survey coverage increases and the data analysis improves. The Photometric Ladder has rungs every hour in right ascension and at four intervals in declination. We will release updates with increased area coverage (more rungs) from the latest data set until the PS1 survey and the final re-reduction are completed. The currently released catalog presents photometry of ∼1000 objects per square degree in the rungs of the ladder. Saturation occurs at g P1 , r P1 , i P1 ∼ 13.5; z P1 ∼ 13.0; and y P1 ∼ 12.0. Photometry is provided for stars down to g P1 , r P1 , i P1 ∼ 19.1 in the AB system. This data release depends on the rigid 'Ubercal' photometric calibration using only the photometric nights, with systematic uncertainties of (8.0, 7.0, 9.0, 10.7, 12.4) mmag in (g P1 , r P1 , i P1 , z P1 , y P1 ). Areas covered only with lower quality nights are also included, and have been tied to the Ubercal solution via relative photometry; photometric accuracy of the non-photometric regions is lower and should be used with caution.

  14. A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY

    International Nuclear Information System (INIS)

    Hearin, Andrew P.; Zentner, Andrew R.; Ma Zhaoming; Huterer, Dragan

    2010-01-01

    A goal of forthcoming imaging surveys is to use weak gravitational lensing shear measurements to constrain dark energy. A challenge to this program is that redshifts to the lensed, source galaxies must be determined using photometric, rather than spectroscopic, information. We quantify the importance of uncalibrated photometric redshift outliers to the dark energy goals of forthcoming imaging surveys in a manner that does not assume any particular photometric redshift technique or template. In so doing, we provide an approximate blueprint for computing the influence of specific outlier populations on dark energy constraints. We find that outlier populations whose photo-z distributions are tightly localized about a significantly biased redshift must be controlled to a per-galaxy rate of (1-3) x 10 -3 to insure that systematic errors on dark energy parameters are rendered negligible. In the complementary limit, a subset of imaged galaxies with uncalibrated photometric redshifts distributed over a broad range must be limited to fewer than a per-galaxy error rate of F cat ∼ -4 . Additionally, we explore the relative importance of calibrating the photo-z's of a core set of relatively well-understood galaxies as compared to the need to identify potential catastrophic photo-z outliers. We discuss the degradation of the statistical constraints on dark energy parameters induced by excising source galaxies at high- and low-photometric redshifts, concluding that removing galaxies with photometric redshifts z ph ∼> 2.4 and z ph ∼< 0.3 may mitigate damaging catastrophic redshift outliers at a relatively small (∼<20%) cost in statistical error. In an Appendix, we show that forecasts for the degradation in dark energy parameter constraints due to uncertain photometric redshifts depend sensitively on the treatment of the nonlinear matter power spectrum. In particular, previous work using Peacock and Dodds may have overestimated the photo-z calibration requirements of

  15. Photometric study of the eclipsing binary U Sagittae

    International Nuclear Information System (INIS)

    McNamara, D.H.; Feltz, K.A. Jr.

    1976-01-01

    The geometric and photometric elements of the eclipsing star U Sge have been derived from uvby observations secured in 1973-74. The ''best'' elements are r 1 = 0.296, r 2 = 0.225, i = 90 0 ; and L 1 = 0.130, L 2 = 0.870 in yellow light where the subscript 1 refers to the G2 IV-III component and the subscript 2 refers to the B8 V component. Radii and masses of the two stars can be derived by assuming that the larger star fills its Roche lobe. This assumption yields r 1 = 3.32 R/sub solar mass/, r 2 = 2.52 R/sub solar mass/, M 1 = 1.4 solar mass, and M 2 = 3.5 solar mass. The absolute magnitudes are found by two different methods and yield M/sub v/ = -0/sup m/4 for the B star and M/sub v/ = + 1.8/sup m/ for the G star. If corrections for radiative interactions are made, the absolute magnitude of the G star is M/sub v/ is approximately equal + 2.2/sup m/. Observational data secured in the u filter suggest that Balmer continuum emission can be detected from an emitting gas stream or disk. The gas must be concentrated near the following hemisphere of the B Star. The m 1 measurements of the secondary component suggest a metal deficiency of [Fe/H] = -0.6

  16. Defining photometric peculiar type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T. [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hsiao, E. Y.; Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Folatelli, G. [Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa 277-8583 (Kavli IPMU, WPI) (Japan); Anderson, J. P., E-mail: sgonzale@das.uchile.cl [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile)

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  17. Absolute beam current monitoring in endstation c

    International Nuclear Information System (INIS)

    Bochna, C.

    1995-01-01

    The first few experiments at CEBAF require approximately 1% absolute measurements of beam currents expected to range from 10-25μA. This represents errors of 100-250 nA. The initial complement of beam current monitors are of the non intercepting type. CEBAF accelerator division has provided a stripline monitor and a cavity monitor, and the authors have installed an Unser monitor (parametric current transformer or PCT). After calibrating the Unser monitor with a precision current reference, the authors plan to transfer this calibration using CW beam to the stripline monitors and cavity monitors. It is important that this be done fairly rapidly because while the gain of the Unser monitor is quite stable, the offset may drift on the order of .5μA per hour. A summary of what the authors have learned about the linearity, zero drift, and gain drift of each type of current monitor will be presented

  18. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  19. Photometric diversity of terrains on Triton

    Science.gov (United States)

    Hillier, J.; Veverka, J.; Helfenstein, P.; Lee, P.

    1994-01-01

    Voyager disk-resolved images of Triton in the violet (0.41 micrometers) and green (0.56 micrometer wavelengths have been analyzed to derive the photometric characteristics of terrains on Triton. Similar conclusions are found using two distinct but related definitions of photometric units, one based on color ratio and albedo properties (A. S. McEwen, 1990), the other on albedo and brightness ratios at different phase angles (P. Lee et al., 1992). A significant diversity of photometric behavior, much broader than that discovered so far on any other icy satellite, occurs among Triton's terrains. Remarkably, differences in photometric behavior do not correlate well with geologic terrain boundaries defined on the basis of surface morphology. This suggests that in most cases photometric properties on Triton are controlled by thin deposits superposed on underlying geologic units. Single scattering albedos are 0.98 or higher and asymmetry factors range from -0.35 to -0.45 for most units. The most distinct scattering behavior is exhibited by the reddish northern units already identified as the Anomalously Scattering Region (ASR), which scatters light almost isotropically with g = -0.04. In part due to the effects of Triton's clouds and haze, it is difficult to constrain the value of bar-theta, Hapke's macroscopic roughness parameter, precisely for Triton or to map differences in bar-theta among the different photometric terrains. However, our study shows that Triton must be relatively smooth, with bar-theta less than 15-20 degs and suggests that a value of 14 degs is appropriate. The differences in photometric characteristics lead to significantly different phase angle behavior for the various terrains. For example, a terrain (e.g., the ASR) that appears dark relative to another at low phase angles will reverse its contrast (become relatively brighter) at larger phase angles. The photometric parameters have been used to calculate hemispherical albedos for the units and to

  20. V 463 Cyg: revised photometric elements

    International Nuclear Information System (INIS)

    Giuricin, G.; Mardirossian, F.; Ferluga, S.

    1982-01-01

    Using Wood's (1972) model we have re-analyzed Vetesnik's (1968) two-colour photoelectric light curves of eclipsing binary V 463 Cyg. Our photometric solutions which confirm the presence of a large amount of third light do not greatly differ from previous results. The eclipsing pair appears to be composed of an A 0 primary attended by a somewhat smaller (around G 5) companion. In view of the large ratio of the radii this component cannot be in the main sequence. It seems to be more advanced in the evolution than the primary, like common secondaries of Algols, and it appears to fill its Roche lobe for our photometric mass ratio. (author)

  1. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  2. Absolute Gravimetry in Fennoscandia

    DEFF Research Database (Denmark)

    Pettersen, B. R; TImmen, L.; Gitlein, O.

    The Fennoscandian postglacial uplift has been mapped geometrically using precise levelling, tide gauges, and networks of permanent GPS stations. The results identify major uplift rates at sites located around the northern part of the Gulf of Bothnia. The vertical motions decay in all directions...... motions) has its major axis in the direction of southwest to northeast and covers a distance of about 2000 km. Absolute gravimetry was made in Finland and Norway in 1976 with a rise-and fall instrument. A decade later the number of gravity stations was expanded by JILAg-5, in Finland from 1988, in Norway...... time series of several years are now available. Along the coast there are nearby tide gauge stations, many of which have time series of several decades. We describe the observing network, procedures, auxiliary observations, and discuss results obtained for selected sites. We compare the gravity results...

  3. Characterization of Inactive Rocket Bodies Via Non-Resolved Photometric Data

    Science.gov (United States)

    Linares, R.; Palmer, D.; Thompson, D.; Klimenko, A.

    2014-09-01

    impact assessment via improved physics-based modeling. As part of this effort calibration satellite observations are used to dynamically calibrate the physics-based model and to improve its forecasting capability. The observations are collected from a variety of sources, including from LANLs own Raven-class optical telescope. This system collects both astrometric and photometric data on space objects. The photometric data will be used to estimate the space objects attitude and shape. Non-resolved photometric data have been studied by many as a mechanism for space object characterization. Photometry is the measurement of an objects flux or apparent brightness measured over a wavelength band. The temporal variation of photometric measurements is referred to as photometric signature. The photometric optical signature of an object contains information about shape, attitude, size and material composition. This work focuses on the processing of the data collected with LANLs telescope in an effort to use photometric data to expand the number of space objects that can be used as calibration satellites. A nonlinear least squares is used to estimate the attitude and angular velocity of the space object; a number of real data examples are shown. Inactive space objects are used for the real data examples and good estimation results are shown.

  4. Calibrating the Near-Infrared Tip of the Red Giant Branch with Multiwavelength Photometry

    Science.gov (United States)

    Durbin, Meredith

    2017-08-01

    The near-infrared (NIR) tip of the red giant branch (TRGB) shows outstanding promise as a distance indicator. In the JWST era, the NIR-TRGB will bridge the gap from local geometric parallax (with Gaia) out to the low-velocity Hubble flow in a single step, in all types of galaxies. However, there currently exist several impediments to JWST's using the TRGB to full advantage. Dalcanton et al. (2012) presented the most comprehensive dataset available for calibrating the TRGB absolute magnitude, with optical and NIR coverage of 23 nearby dwarf and spiral galaxies spanning a wide range of ages and metallicities. However, subtle offsets between this dataset, theoretical models, and globular clusters raise concerns about the calibration.We propose to perform a complete re-reduction and re-analysis of this dataset. We have developed a pipeline that leverages simultaneous fitting of optical and NIR data to produce NIR photometry of higher quality and completeness, with up to 1.5 mag greater depth than can be achieved with the NIR alone. With this added depth, improvements in photometric precision, and updated WFC3/IR PSFs and flux calibration, we will derive uniform, precise, and accurate NIR TRGB measurements, with which we will be able to resolve standing issues with the TRGB color-absolute magnitude relation and its behavior with changing star-formation histories. This work will lay the groundwork for extending the TRGB distance scale out to at least 37 Mpc with JWST. We will release the resulting 4-filter optical-NIR photometry as HLSPs for use by the community before the launch of JWST, to serve as a resource for proposing for stellar population observations in the NIR.

  5. On the realistic validation of photometric redshifts

    DEFF Research Database (Denmark)

    Beck, R.; Lin, C. A.; Ishida, E. E.O.

    2017-01-01

    test of photo-z methods. Using photometry from the Sloan Digital Sky Survey and spectroscopy from a collection of sources, we constructed data sets that mimic the biases between the underlying probability distribution of the real spectroscopic and photometric sample. We demonstrate the potential...

  6. Photometric properties of Mars soils analogs

    Science.gov (United States)

    Pommerol, A.; Thomas, N.; Jost, B.; Beck, P.; Okubo, C.; McEwen, A.S.

    2013-01-01

    We have measured the bidirectional reflectance of analogs of dry, wet, and frozen Martian soils over a wide range of phase angles in the visible spectral range. All samples were produced from two geologic samples: the standard JSC Mars-1 soil simulant and Hawaiian basaltic sand. In a first step, experiments were conducted with the dry samples to investigate the effects of surface texture. Comparisons with results independently obtained by different teams with similar samples showed a satisfying reproducibility of the photometric measurements as well as a noticeable influence of surface textures resulting from different sample preparation procedures. In a second step, water was introduced to produce wet and frozen samples and their photometry investigated. Optical microscope images of the samples provided information about their microtexture. Liquid water, even in relatively low amount, resulted in the disappearance of the backscattering peak and the appearance of a forward-scattering peak whose intensity increases with the amount of water. Specular reflections only appeared when water was present in an amount large enough to allow water to form a film at the surface of the sample. Icy samples showed a wide variability of photometric properties depending on the physical properties of the water ice. We discuss the implications of these measurements in terms of the expected photometric behavior of the Martian surface, from equatorial to circum-polar regions. In particular, we propose some simple photometric criteria to improve the identification of wet and/or icy soils from multiple observations under different geometries.

  7. Interstellar Extinction in the Gaia Photometric Systems

    Directory of Open Access Journals (Sweden)

    Bridžius A.

    2003-12-01

    Full Text Available Three medium-band photometric systems proposed for the Gaia space mission are intercompared in determining color excesses for stars of spectral classes from O to M at V = 18 mag. A possibility of obtaining a three-dimensional map of the interstellar extinction is discussed.

  8. Photometric study of uranyl-terramycin complex

    Energy Technology Data Exchange (ETDEWEB)

    Sankara Reddy, P B [Government Coll., Cuddapah, Andhra Pradesh (India). Dept. of Chemistry; Reddy, A V.R.; Brahmaji Rao, S [SVU Autonomous Post-Graduate Centre, Anantapur (India). Dept. of Chemistry

    1980-04-01

    The spectrophotometric investigation of uranylterramycin complex in solution has been studied photometrically at pH 1.3. The composition of the complex is established by Job's and Slope ratio methods as 1:1. The stability constant calculated from the data obtained in Job's method is 1.9 x 10/sup 3/. Beer's law is obeyed.

  9. Calibration of the MACHO Photometry Database

    International Nuclear Information System (INIS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.

    1999-01-01

    The MACHO Project is a microlensing survey that monitors the brightnesses of ∼60 million stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud, and Galactic bulge. Our database presently contains about 80 billion photometric measurements, a significant fraction of all astronomical photometry. We describe the calibration of MACHO two-color photometry and transformation to the standard Kron-Cousins V and R system. Calibrated MACHO photometry may be properly compared with all other observations on the Kron-Cousins standard system, enhancing the astrophysical value of these data. For ∼9 million stars in the LMC bar, independent photometric measurements of ∼20,000 stars with V(less-or-similar sign)18 mag in field-overlap regions demonstrate an internal precision σ V =0.021, σ R =0.019, σ V-R =0.028 mag. The accuracy of the zero point in this calibration is estimated to be ±0.035 mag for stars with colors in the range -0.1 mag< V-R<1.2 mag. A comparison of calibrated MACHO photometry with published photometric sequences and new Hubble Space Telescope observations shows agreement. The current calibration zero-point uncertainty for the remainder of the MACHO photometry database is estimated to be ±0.10 mag in V or R and ±0.04 mag in V-R. We describe the first application of calibrated MACHO data: the construction of a color-magnitude diagram used to calculate our experimental sensitivity for detecting microlensing in the LMC. (c) (c) 1999. The Astronomical Society of the Pacific

  10. Calibration of the MACHO Photometry Database

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M. (and others)

    1999-12-01

    The MACHO Project is a microlensing survey that monitors the brightnesses of {approx}60 million stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud, and Galactic bulge. Our database presently contains about 80 billion photometric measurements, a significant fraction of all astronomical photometry. We describe the calibration of MACHO two-color photometry and transformation to the standard Kron-Cousins V and R system. Calibrated MACHO photometry may be properly compared with all other observations on the Kron-Cousins standard system, enhancing the astrophysical value of these data. For {approx}9 million stars in the LMC bar, independent photometric measurements of {approx}20,000 stars with V(less-or-similar sign)18 mag in field-overlap regions demonstrate an internal precision {sigma}{sub V} =0.021, {sigma}{sub R} =0.019, {sigma}{sub V-R} =0.028 mag. The accuracy of the zero point in this calibration is estimated to be {+-}0.035 mag for stars with colors in the range -0.1 magcalibrated MACHO photometry with published photometric sequences and new Hubble Space Telescope observations shows agreement. The current calibration zero-point uncertainty for the remainder of the MACHO photometry database is estimated to be {+-}0.10 mag in V or R and {+-}0.04 mag in V-R. We describe the first application of calibrated MACHO data: the construction of a color-magnitude diagram used to calculate our experimental sensitivity for detecting microlensing in the LMC. (c) (c) 1999. The Astronomical Society of the Pacific.

  11. 1987 calibration of the TFTR neutron spectrometers

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ

    1989-12-01

    The 3 He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs

  12. Photometric Variability of the Be Star Population

    Energy Technology Data Exchange (ETDEWEB)

    Labadie-Bartz, Jonathan; Pepper, Joshua; McSwain, M. Virginia [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Bjorkman, J. E.; Bjorkman, K. S. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft, Toledo, OH 43606-3390 (United States); Lund, Michael B.; Rodriguez, Joseph E.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Stevens, Daniel J. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); James, David J. [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Kuhn, Rudolf B. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Siverd, Robert J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2017-06-01

    Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, a baseline of up to 10 years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the northern and southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long-term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-types. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectra database allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.

  13. Photometric Variability of the Be Star Population

    International Nuclear Information System (INIS)

    Labadie-Bartz, Jonathan; Pepper, Joshua; McSwain, M. Virginia; Bjorkman, J. E.; Bjorkman, K. S.; Lund, Michael B.; Rodriguez, Joseph E.; Stassun, Keivan G.; Stevens, Daniel J.; James, David J.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.

    2017-01-01

    Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, a baseline of up to 10 years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the northern and southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long-term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-types. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectra database allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.

  14. An optical test bench for the precision characterization of absolute quantum efficiency for the TESS CCD detectors

    International Nuclear Information System (INIS)

    Krishnamurthy, A.; Villasenor, J.; Kissel, S.; Ricker, G.; Vanderspek, R.

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic ∼< 13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm–1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048×2048 imaging array and 2048×2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.

  15. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  16. Photometric redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1

    Science.gov (United States)

    Tanaka, Masayuki; Coupon, Jean; Hsieh, Bau-Ching; Mineo, Sogo; Nishizawa, Atsushi J.; Speagle, Joshua; Furusawa, Hisanori; Miyazaki, Satoshi; Murayama, Hitoshi

    2018-01-01

    Photometric redshifts are a key component of many science objectives in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). In this paper, we describe and compare the codes used to compute photometric redshifts for HSC-SSP, how we calibrate them, and the typical accuracy we achieve with the HSC five-band photometry (grizy). We introduce a new point estimator based on an improved loss function and demonstrate that it works better than other commonly used estimators. We find that our photo-z's are most accurate at 0.2 ≲ zphot ≲ 1.5, where we can straddle the 4000 Å break. We achieve σ[Δzphot/(1 + zphot)] ˜ 0.05 and an outlier rate of about 15% for galaxies down to i = 25 within this redshift range. If we limit ourselves to a brighter sample of i https://hsc-release.mtk.nao.ac.jp/".

  17. Electronographic calibration of UK 1.2-m Schmidt plates

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1979-01-01

    Two electronographic sequences are given in the South Galactic Pole region down to msub(B) = approximately 23 +- 0.3 mag. These sequences are used to obtain a calibration for COSMOS measures of UK 1.2-m Schmidt plates and evaluate their photometric transfer properties. (author)

  18. Absolute risk, absolute risk reduction and relative risk

    Directory of Open Access Journals (Sweden)

    Jose Andres Calvache

    2012-12-01

    Full Text Available This article illustrates the epidemiological concepts of absolute risk, absolute risk reduction and relative risk through a clinical example. In addition, it emphasizes the usefulness of these concepts in clinical practice, clinical research and health decision-making process.

  19. LANL MTI calibration team experience

    Science.gov (United States)

    Bender, Steven C.; Atkins, William H.; Clodius, William B.; Little, Cynthia K.; Christensen, R. Wynn

    2004-01-01

    The Multispectral Thermal Imager (MTI) was designed as an imaging radiometer with absolute calibration requirements established by Department of Energy (DOE) mission goals. Particular emphasis was given to water surface temperature retrieval using two mid wave and three long wave infrared spectral bands, the fundamental requirement was a surface temperature determination of 1K at the 68% confidence level. For the ten solar reflective bands a one-sigma radiometric performance goal of 3% was established. In order to address these technical challenges a calibration facility was constructed containing newly designed sources that were calibrated at NIST. Additionally, the design of the payload and its onboard calibration system supported post launch maintenance and update of the ground calibration. The on-orbit calibration philosophy also included vicarious techniques using ocean buoys, playas and other instrumented sites; these became increasingly important subsequent to an electrical failure which disabled the onboard calibration system. This paper offers various relevant lessons learned in the eight-year process of reducing to practice the calibration capability required by the scientific mission. The discussion presented will include observations pertinent to operational and procedural issues as well as hardware experiences; the validity of some of the initial assumptions will also be explored.

  20. Projective absoluteness for Sacks forcing

    NARCIS (Netherlands)

    Ikegami, D.

    2009-01-01

    We show that Sigma(1)(3)-absoluteness for Sacks forcing is equivalent to the nonexistence of a Delta(1)(2) Bernstein set. We also show that Sacks forcing is the weakest forcing notion among all of the preorders that add a new real with respect to Sigma(1)(3) forcing absoluteness.

  1. Application of photometric models to asteroids

    International Nuclear Information System (INIS)

    Bowell, E.; Dominque, D.; Hapke, B.

    1989-01-01

    The way an asteroid or other atmosphereless solar system body varies in brightness in response to changing illumination and viewing geometry depends in a very complicated way on the physical and optical properties of its surface and on its overall shape. The authors summarize the formulation and application of recent photometric models by Hapke and by Lumme and Bowell. In both models, the brightness of a rough and porous surface is parametrized in terms of the optical properties of individual particles, by shadowing between particles, and by the way in which light scattered among collections of particles. Both models succeed in their goal of fitting the observed photometric behavior of a wide variety of bodies, but neither has led to a very complete understanding of the properties of asteroid regoliths, primarily because in most cases the parameters in the present models cannot be adequately constrained by observations of integral brightness alone over a restricted range of phase angles

  2. Stellar physics with the ALHAMBRA photometric system

    International Nuclear Information System (INIS)

    Villegas, T Aparicio; Alfaro, E J; Moles, M; Benítez, N; Perea, J; Olmo, A del; Cristóbal-Hornillos, D; Cervio, M; Delgado, R M González; Márquez, I; Masegosa, J; Prada, F; Cabrera-Caño, J; Fernández-Soto, A; Aguerri, J A L; Cepa, J; Broadhurst, T; Castander, F J; Infante, L; Martínez, V J

    2011-01-01

    The ALHAMBRA photometric system was specifically designed to perform a tomography of the Universe in some selected areas. Although mainly designed for extragalactic purposes, its 20 contiguous, equal-width, medium-band photometric system in the optical wavelength range, shows a great capacity for stellar classification. In this contribution we propose a methodology for stellar classification and physical parameter estimation (T eff , log g, [Fe/H], and color excess E(B – V)) based on 18 independent reddening-free Q-values from the ALHAMBRA photometry. Based on the theoretical Spectral library BaSeL 2.2, and applied to 288 stars from the Next Generation spectral Library (NGSL), we discuss the reliability of the method and its dependence on the extinction law used.

  3. Uncertain Photometric Redshifts with Deep Learning Methods

    Science.gov (United States)

    D'Isanto, A.

    2017-06-01

    The need for accurate photometric redshifts estimation is a topic that has fundamental importance in Astronomy, due to the necessity of efficiently obtaining redshift information without the need of spectroscopic analysis. We propose a method for determining accurate multi-modal photo-z probability density functions (PDFs) using Mixture Density Networks (MDN) and Deep Convolutional Networks (DCN). A comparison with a Random Forest (RF) is performed.

  4. Photometric Defocus Observations of Transiting Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Tobias C. Hinse

    2015-03-01

    Full Text Available We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6 m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique, allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of sub-millimagnitude order over several hours for a V ~10 host star, typical for transiting planets detected from ground-based survey facilities. We compared our results with transit observations from a telescope operated in in-focus mode. High photometric precision was obtained due to the collection of a larger amount of photons, resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by exposing the same pixels on the CCD. Furthermore, a longer exposure time helps reduce the effect of scintillation noise which otherwise has a significant effect for small-aperture telescopes operated in in-focus mode. Finally we present the results of modelling four light-curves in which a root-mean-square scatter of 0.70 to 2.3 milli-magnitudes was achieved.

  5. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    Science.gov (United States)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  6. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  7. GASDRA: Galaxy Spectrum Dynamic Range Analysis for Photometric Redshift Filter Partition Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Sanchez, E.; Sevilla, I.; Castilla, J.; Ponce, R.; Sanchez, F. J.

    2012-04-11

    The photometric redshift is an active area of research. It is becoming the preferred method for redshift measurement above spectroscopy one for large surveys. In these surveys, the requirement in redshift precision is relaxed in benefit of obtaining the measurements of large number of galaxies. One of the more relevant decisions to be taken in the design of a photometric redshift experiment is the number of filters since it affects deeply to the precision and survey time. Currently, there is not a clear method for evaluating the impact in both precision and exposure time of a determined filter partition set and usually it is determined by detailed simulations on the behavior of photo-z algorithms. In this note we describe GASDRA, a new method for extracting the minimal signal to noise requirement, depending on the number of filters needed for preserving the filtered spectrum shape, and hence to make feasible the spectrum identification. The application of this requirement guaranties a determined precision in the spectrum measurement. Although it cannot be translated directly to absolute photometric redshift error, it does provide a method for comparing the relative precision achieved in the spectrum representation by different sets of filters. We foresee that this relative precision is close related to photo-z error. In addition, we can evaluate the impact in the exposure time of any filter partition set with respect to other. (Author) 11 refs.

  8. GASDRA: Galaxy Spectrum Dynamic Range Analysis for Photometric Redshift Filter Partition Optimization

    International Nuclear Information System (INIS)

    Vicente, J. de; Sanchez, E.; Sevilla, I.; Castilla, J.; Ponce, R.; Sanchez, F. J.

    2012-01-01

    The photometric redshift is an active area of research. It is becoming the preferred method for redshift measurement above spectroscopy one for large surveys. In these surveys, the requirement in redshift precision is relaxed in benefit of obtaining the measurements of large number of galaxies. One of the more relevant decisions to be taken in the design of a photometric redshift experiment is the number of filters since it affects deeply to the precision and survey time. Currently, there is not a clear method for evaluating the impact in both precision and exposure time of a determined filter partition set and usually it is determined by detailed simulations on the behavior of photo-z algorithms. In this note we describe GASDRA, a new method for extracting the minimal signal to noise requirement, depending on the number of filters needed for preserving the filtered spectrum shape, and hence to make feasible the spectrum identification. The application of this requirement guaranties a determined precision in the spectrum measurement. Although it cannot be translated directly to absolute photometric redshift error, it does provide a method for comparing the relative precision achieved in the spectrum representation by different sets of filters. We foresee that this relative precision is close related to photo-z error. In addition, we can evaluate the impact in the exposure time of any filter partition set with respect to other. (Author) 11 refs.

  9. Calibration of circular aperture area using vision probe at inmetro

    Directory of Open Access Journals (Sweden)

    Costa Pedro Bastos

    2016-01-01

    Full Text Available Circular aperture areas are standards of high importance for the realization of photometric and radiometric measurements, where the accuracy of these measures is related to the accuracy of the circular aperture area calibrations. In order to attend the requirement for traceability was developed in Brazilian metrology institute, a methodology for circular aperture area measurement as requirements from the radiometric and photometric measurements. In the developed methodology apertures are measured by non-contact measurement through images of the aperture edges captured by a camera. These images are processed using computer vision techniques and then the values of the circular aperture area are determined.

  10. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  11. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  12. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  13. Calibration of film radiochromic EBT2 for sources of I-125 encapsulated

    International Nuclear Information System (INIS)

    Huerga Cabrerizo, C.; Luquero Llopis, N.; Torre Hernandez, I. de la; Ferrer Garcia, C.; Corredoira silva, E.; Serrada Hierro, A.

    2013-01-01

    This paper determines the calibration curve in absolute dose for sources of I-125 encapsulated to estimate its uncertainty. In order to assess energy dependence is compared with the obtained for an accelerator of 6MV calibration curve. (Author)

  14. Absolute Dimensions of Contact Binary Stars in Baade Window

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1999-12-01

    Full Text Available The light curves of the representative 6 contact binary stars observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed by the method of the Wilson and Devinney Differential Correction to find photometric solutions. The orbital inclinations of these binaries are in the range of 52 deg - 69 deg which is lower than that of the solar neighborhood binaries. The Roche lobe filling factor of these binaries are distributed in large range of 0.12 - 0.90. Since absence of spectroscopic observations for these binaries we have found masses of the 6 binary systems based on the intersection between Kepler locus and locus derived from Vandenberg isochrones in the mass - luminosity plane. Then absolute dimensions and distances have been found by combining the masses and the photometric solutions. The distances of the 6 binary systems are distributed in the range of 1 kpc - 6 kpc. This distance range is the limiting range where the contact binaries which have period shorter than a day are visible. Most contact binaries discovered in the Baade window do not belong to the Galactic bulge.

  15. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  16. Calibration Against the Moon. I: A Disk-Resolved Lunar Model for Absolute Reflectance Calibration

    Science.gov (United States)

    2010-01-01

    cost .; - v) (15) (16) In practice, the modified direction cosines are determined by computing the surface normal at a given location and evaluating...Kieffer and Stone label as the "ALEX" projection) normalized in so- lar and geocentric distances and large enough to project the 59% of the lunar

  17. Instrumentation calibration

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-08-01

    Procedures for the calibration of different types of laboratory equipment are described. Provisions for maintaining the integrity of reference and working standards traceable back to a national standard are discussed. Methods of validation and certification methods are included. An appendix lists available publications and services of national standardizing agencies

  18. The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)

    Science.gov (United States)

    Cantiello, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; Raimondo, Gabriella; Peng, Eric W.; Gwyn, Stephen; Durrell, Patrick R.; Cuillandre, Jean-Charles

    2018-04-01

    We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude {\\overline{m}}i, and the calibration of the absolute Mibar as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the ({u}* -z) calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of (g-i) and (g-z) colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than B T ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.

  19. SIMULTANEOUS ESTIMATION OF PHOTOMETRIC REDSHIFTS AND SED PARAMETERS: IMPROVED TECHNIQUES AND A REALISTIC ERROR BUDGET

    International Nuclear Information System (INIS)

    Acquaviva, Viviana; Raichoor, Anand; Gawiser, Eric

    2015-01-01

    We seek to improve the accuracy of joint galaxy photometric redshift estimation and spectral energy distribution (SED) fitting. By simulating different sources of uncorrected systematic errors, we demonstrate that if the uncertainties in the photometric redshifts are estimated correctly, so are those on the other SED fitting parameters, such as stellar mass, stellar age, and dust reddening. Furthermore, we find that if the redshift uncertainties are over(under)-estimated, the uncertainties in SED parameters tend to be over(under)-estimated by similar amounts. These results hold even in the presence of severe systematics and provide, for the first time, a mechanism to validate the uncertainties on these parameters via comparison with spectroscopic redshifts. We propose a new technique (annealing) to re-calibrate the joint uncertainties in the photo-z and SED fitting parameters without compromising the performance of the SED fitting + photo-z estimation. This procedure provides a consistent estimation of the multi-dimensional probability distribution function in SED fitting + z parameter space, including all correlations. While the performance of joint SED fitting and photo-z estimation might be hindered by template incompleteness, we demonstrate that the latter is “flagged” by a large fraction of outliers in redshift, and that significant improvements can be achieved by using flexible stellar populations synthesis models and more realistic star formation histories. In all cases, we find that the median stellar age is better recovered than the time elapsed from the onset of star formation. Finally, we show that using a photometric redshift code such as EAZY to obtain redshift probability distributions that are then used as priors for SED fitting codes leads to only a modest bias in the SED fitting parameters and is thus a viable alternative to the simultaneous estimation of SED parameters and photometric redshifts

  20. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

    International Nuclear Information System (INIS)

    Dahlen, Tomas; Ferguson, Henry C.; Mobasher, Bahram; Faber, Sandra M.; Barro, Guillermo; Guo, Yicheng; Finkelstein, Steven L.; Finlator, Kristian; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Pforr, Janine; Dickinson, Mark E.; Salvato, Mara; Wuyts, Stijn; Wiklind, Tommy; Acquaviva, Viviana; Huang, Jiasheng; Huang, Kuang-Han; Newman, Jeffrey A.

    2013-01-01

    We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometric redshifts applied to deep fields with broadband multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find that codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting, or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter; the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates

  1. Absolute marine gravimetry with matter-wave interferometry.

    Science.gov (United States)

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  2. Absolute flux scale for radioastronomy

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Stankevich, K.S.

    1986-01-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized

  3. Mars Exploration Rover Pancam Photometric Data QUBs: Definition and Example Uses.

    Science.gov (United States)

    Soderblom, J. M.; Bell, J. F.; Arvidson, R. E.; Johnson, J. R.; Johnson, M. J.; Seelos, F. P.

    2004-12-01

    Pancam multi-spectral observations acquired at the Mars Exploration Rover Spirit and Opportunity landing sites are being assembled into a multi-layer format know as a QUB. For any given pixel in a Pancam image the QUB will contain values for the radiance factor, incidence (i), emission (e), and phase (g) angles, X, Y, and Z distance in a rover-based coordinate system, disparity in number of pixels between the left and right eye images and range data. Good range data is required for the generation of a Pancam QUB. The radiance factor (I/F, where I is the measured scene radiance on sensor and π F is the incident solar irradiance) is calculated using a combination of preflight calibration data and information obtained from near-simultaneous observations of an onboard reflectance calibration target. The range, X, Y, Z and disparity data, and i, e, and g are calculated using routines developed by JPL's MIPL and Cornell. When possible, these data have been interpolated to maximize parameter coverage; a map of non-interpolated data is also included in each QUB. QUBs should prove very useful in photometric studies (e.g., Johnson et al.; Seelos, et al., this conference), detailed spectral analyses (e.g., Bell et al., this conference), and detailed topographic/DTM studies. Here we present two examples of the utilization of the information contained in Pancam QUBs. In one example we remove the photometric variability from spectra collected from multiple facets of a rock using knowledge of i, e, g and derived photometric functions. This is necessary if one wishes to conduct comparative studies of observations acquired under varying geometries and lighting conditions. In another example we present an analysis using the discrete ordinate multiple scattering radiative transfer code DISORT where we separate the atmosphere and surface contributions of the surface reflectance.

  4. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  5. Photometric Variability in the Faint Sky Variability Survey

    NARCIS (Netherlands)

    Morales-Rueda, L.; Groot, P.J.; Augusteijn, T.; Nelemans, G.A.; Vreeswijk, P.M.; Besselaar, E.J.M. van den

    2005-01-01

    The Faint Sky Variability Survey (FSVS) is aimed at finding photometric and/or astrometric variable objects between 16th and 24th mag on time-scales between tens of minutes and years with photometric precisions ranging from 3 millimag to 0.2 mag. An area of ~23 deg2, located at mid and

  6. Photometric estimation of defect size in radiation direction

    International Nuclear Information System (INIS)

    Zuev, V.M.

    1993-01-01

    Factors, affecting accuracy of photometric estimation of defect size in radiation transmission direction, are analyzed. Experimentally obtained dependences of contrast of defect image on its size in radiation transmission direction are presented. Practical recommendations on improving accuracy of photometric estimation of defect size in radiation transmission direction, are developed

  7. PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Brescia, M.; Mercurio, A. [INAF-Astronomical Observatory of Capodimonte, via Moiariello 16, I-80131 Napoli (Italy); Cavuoti, S.; Longo, G. [Department of Physics, University Federico II, via Cinthia 6, I-80126 Napoli (Italy); D' Abrusco, R., E-mail: brescia@oacn.inaf.it [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-08-01

    The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) is a machine learning method that can be used to cope with regression and classification problems on complex and massive data sets. In this paper, we give a formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (Sloan Digital Sky Survey, GALEX, UKIDSS, and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able (1) to achieve a very high accuracy, (2) to drastically reduce the number of outliers and catastrophic objects, and (3) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from the four surveys, leads, in terms of {Delta}z{sub norm} (i.e., (z{sub spec} - z{sub phot})/(1 + z{sub spec})), to an average of {Delta}z{sub norm} = 0.004, a standard deviation of {sigma} = 0.069, and a median absolute deviation, MAD = 0.02, over the whole redshift range (i.e., z{sub spec} {<=} 3.6), defined by the four-survey cross-matched spectroscopic sample. The fraction of catastrophic outliers, i.e., of objects with photo-z deviating more than 2{sigma} from the spectroscopic value, is <3%, leading to {sigma} = 0.035 after their removal, over the same redshift range. The method is made available to the community through the DAMEWARE Web application.

  8. On the photometric parameters of comet Halley

    International Nuclear Information System (INIS)

    Toth, I.

    1984-12-01

    Halley's comet is one of the brightest comets in the absolute sense. The paper describes the expectations about its brightness parameters, and the main physical properties of the nucleus can be derived from photometry up to the last opposition. Results were obtained relating to the decrease of absolute magnitude and the possible period of brightness fluctuation according to data obtained at CFHT on 4 th Feb. 1984. The slope of decrease of absolute magnitude is about 0.17 magnitude per revolution. On 4th Feb. 1984, the brightness fluctuations had a period about 9.0+-0.5 hr but it seems that the general form of fluctuations on a large time-scale is not a clear sinosoidal shape, and the most probable periods are between 9 and 48 hrs. (author)

  9. Relativistic Absolutism in Moral Education.

    Science.gov (United States)

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  10. Forcing absoluteness and regularity properties

    NARCIS (Netherlands)

    Ikegami, D.

    2010-01-01

    For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over L and the core model K. We use our results to answer open questions from set theory of the reals.

  11. Some absolutely effective product methods

    Directory of Open Access Journals (Sweden)

    H. P. Dikshit

    1992-01-01

    Full Text Available It is proved that the product method A(C,1, where (C,1 is the Cesàro arithmetic mean matrix, is totally effective under certain conditions concerning the matrix A. This general result is applied to study absolute Nörlund summability of Fourier series and other related series.

  12. Photometrical research geostationary satellite "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  13. Robust photometric stereo using structural light sources

    Science.gov (United States)

    Han, Tian-Qi; Cheng, Yue; Shen, Hui-Liang; Du, Xin

    2014-05-01

    We propose a robust photometric stereo method by using structural arrangement of light sources. In the arrangement, light sources are positioned on a planar grid and form a set of collinear combinations. The shadow pixels are detected by adaptive thresholding. The specular highlight and diffuse pixels are distinguished according to their intensity deviations of the collinear combinations, thanks to the special arrangement of light sources. The highlight detection problem is cast as a pattern classification problem and is solved using support vector machine classifiers. Considering the possible misclassification of highlight pixels, the ℓ1 regularization is further employed in normal map estimation. Experimental results on both synthetic and real-world scenes verify that the proposed method can robustly recover the surface normal maps in the case of heavy specular reflection and outperforms the state-of-the-art techniques.

  14. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    International Nuclear Information System (INIS)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.; McEwen, Jason D.

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  15. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    Energy Technology Data Exchange (ETDEWEB)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); McEwen, Jason D., E-mail: dr.michelle.lochner@gmail.com [Mullard Space Science Laboratory, University College London, Surrey RH5 6NT (United Kingdom)

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  16. Estimating photometric redshifts for X-ray sources in the X-ATLAS field using machine-learning techniques

    Science.gov (United States)

    Mountrichas, G.; Corral, A.; Masoura, V. A.; Georgantopoulos, I.; Ruiz, A.; Georgakakis, A.; Carrera, F. J.; Fotopoulou, S.

    2017-12-01

    We present photometric redshifts for 1031 X-ray sources in the X-ATLAS field using the machine-learning technique TPZ. X-ATLAS covers 7.1 deg2 observed with XMM-Newton within the Science Demonstration Phase of the H-ATLAS field, making it one of the largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. All of the sources have available SDSS photometry, while 810 additionally have mid-IR and/or near-IR photometry. A spectroscopic sample of 5157 sources primarily in the XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, was used to train the algorithm. Our analysis reveals that the algorithm performs best when the sources are split, based on their optical morphology, into point-like and extended sources. Optical photometry alone is not enough to estimate accurate photometric redshifts, but the results greatly improve when at least mid-IR photometry is added in the training process. In particular, our measurements show that the estimated photometric redshifts for the X-ray sources of the training sample have a normalized absolute median deviation, nmad ≈ 0.06, and a percentage of outliers, η = 10-14%, depending upon whether the sources are extended or point like. Our final catalogue contains photometric redshifts for 933 out of the 1031 X-ray sources with a median redshift of 0.9. The table of the photometric redshifts is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A39

  17. Development of absolute radiometric response functions for HyPlant & G-LiHT using SIRCUS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to provide absolute radiometric and cross-calibrated spectral characterizations for G-LiHT and HyPlant.  The objectives are: (i) to...

  18. ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. S.; DePoy, D. L.; Marshall, J. L.; Boada, S.; Mondrik, N.; Nagasawa, D. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Tucker, D.; Annis, J.; Finley, D. A.; Kent, S.; Lin, H.; Marriner, J.; Wester, W. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Kessler, R.; Scolnic, D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Bernstein, G. M. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Burke, D. L.; Rykoff, E. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); James, D. J.; Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Collaboration: DES Collaboration; and others

    2016-06-01

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for

  19. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  20. Moral absolutism and ectopic pregnancy.

    Science.gov (United States)

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  1. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  2. Absolute gravity measurements in California

    Science.gov (United States)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  3. The Absolute Immanence in Deleuze

    OpenAIRE

    Park, Daeseung

    2013-01-01

    The absolute immanence in Deleuze Daeseung Park Abstract The plane of immanence is not unique. Deleuze and Guattari suppose a multiplicity of planes. Each great philosopher draws new planes on his own way, and these planes constitute the "time of philosophy". We can, therefore, "present the entire history of philosophy from the viewpoint of the institution of a plane of immanence" or present the time of philosophy from the viewpoint of the superposition and of the coexistence of planes. Howev...

  4. Rapid chromatographic determination of caseins in milk with photometric and fluorimetric detection using a hydrophobic monolithic column.

    Science.gov (United States)

    Ramírez-Palomino, P; Fernández-Romero, J M; Gómez-Hens, A

    2014-01-01

    Reverse-phase liquid chromatographic methods using a hydrophobic C18 monolithic column and on-line photometric and fluorimetric detection for the determination of the major casein (CN) proteins in milk are presented. The separation of αs1-CN, αs2-CN, β-CN and κ-CN was achieved in only five minutes. Fluorimetric detection enabled better analytical results than photometric detection. Thus, the dynamic ranges of the calibration graphs and detection limits obtained using fluorimetric detection were (mgmL(-)(1)): αs1-CN (0.74-10.0, 0.22), αs2-CN (0.15-10.0, 0.045), β-CN (0.68-10.0, 0.20) and κ-CN (0.21-10.0, 0.06). The analytical features of the photometric method, which does not allow the quantification of β-casein, were (mgmL(-)(1)): αs1-CN (1.5-9.0, 0.45), αs2-CN (1.4-10.0, 0.43) and κ-CN (0.4-9.0, 0.12). Precision data, expressed as relative standard deviation, ranged between 0.6% and 5.3% for the fluorimetric method and between 2.4% and 6.2% for the photometric method. Both methods were applied to the analysis of three different milk samples, obtaining recoveries in the ranges of 86.6-103.2% and 92.0-106.5% using fluorimetric and photometric detection, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The velocity field of the outer Galaxy in the southern hemisphere. III. Determination of distances to 0, B, and A type stars in the Walraven photometric system

    International Nuclear Information System (INIS)

    Brand, J.; Wouterloot, J.G.A.

    1988-01-01

    We have used the Walraven photometric system (V BLUW) to derive distances to stars of spectral type earlier than A7 (T eff > 8000 K). We discuss the method and its accuracy, using it on member stars of (open) clusters with spectral types between 06 and A7. To obtain the weighted average distance modulus of a cluster, a weighting scheme is derived, based on the propagation of measurement errors in the distance modulus of a star as a function of its magnitude, T eff , and colour. The average uncertainty in a cluster distance modulus is 0. m 13 (6% in distance). For a single, normal star (i.e. one without spectral peculiarities), the average deviation from the mean-cluster distance modulus is about 0. m 5 (25% in distance). A comparison with the literature shows that previous distance determinations, using different techniques, of the clusters studied here agree within 0. m 36 (18% in distance) with ours. For three clusters, Upper-Scorpius, NGC 3293, and IC 2944, a star-by-star comparison is made with published data. Although the average cluster distance moduli are equal within the uncertainties, the moduli of the individual stars can differ up to about 2 m . These differences are the consequence of the adopted absolute magnitude calibrations, and/or a slightly different spectral classification for the cluster stars between the VBLUW results and the literature. The latter are comparable to the variations in classification found in the literature, and are therefore within the resolution of the methods used to derive distances. A semi-empirical ZAMS relation for the Walraven system for spectral types from 0 to K is given

  6. Absolute Distances to Nearby Type Ia Supernovae via Light Curve Fitting Methods

    Science.gov (United States)

    Vinkó, J.; Ordasi, A.; Szalai, T.; Sárneczky, K.; Bányai, E.; Bíró, I. B.; Borkovits, T.; Hegedüs, T.; Hodosán, G.; Kelemen, J.; Klagyivik, P.; Kriskovics, L.; Kun, E.; Marion, G. H.; Marschalkó, G.; Molnár, L.; Nagy, A. P.; Pál, A.; Silverman, J. M.; Szakáts, R.; Szegedi-Elek, E.; Székely, P.; Szing, A.; Vida, K.; Wheeler, J. C.

    2018-06-01

    We present a comparative study of absolute distances to a sample of very nearby, bright Type Ia supernovae (SNe) derived from high cadence, high signal-to-noise, multi-band photometric data. Our sample consists of four SNe: 2012cg, 2012ht, 2013dy and 2014J. We present new homogeneous, high-cadence photometric data in Johnson–Cousins BVRI and Sloan g‧r‧i‧z‧ bands taken from two sites (Piszkesteto and Baja, Hungary), and the light curves are analyzed with publicly available light curve fitters (MLCS2k2, SNooPy2 and SALT2.4). When comparing the best-fit parameters provided by the different codes, it is found that the distance moduli of moderately reddened SNe Ia agree within ≲0.2 mag, and the agreement is even better (≲0.1 mag) for the highest signal-to-noise BVRI data. For the highly reddened SN 2014J the dispersion of the inferred distance moduli is slightly higher. These SN-based distances are in good agreement with the Cepheid distances to their host galaxies. We conclude that the current state-of-the-art light curve fitters for Type Ia SNe can provide consistent absolute distance moduli having less than ∼0.1–0.2 mag uncertainty for nearby SNe. Still, there is room for future improvements to reach the desired ∼0.05 mag accuracy in the absolute distance modulus.

  7. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    International Nuclear Information System (INIS)

    Cornic, Philippe; Le Besnerais, Guy; Champagnat, Frédéric; Illoul, Cédric; Cheminet, Adam; Le Sant, Yves; Leclaire, Benjamin

    2016-01-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data. (paper)

  8. A VOLUME-LIMITED PHOTOMETRIC SURVEY OF 114 γ DORADUS CANDIDATES

    International Nuclear Information System (INIS)

    Henry, Gregory W.; Fekel, Francis C.; Henry, Stephen M.

    2011-01-01

    We have carried out a photometric survey of a complete, volume-limited sample of γ Doradus candidates. The sample was extracted from the Hipparcos catalog and consists of 114 stars with colors and absolute magnitudes within the range of known γ Doradus stars and that also lie within a specified volume of 266,600 pc 3 . We devoted one year of observing time with our T12 0.8 m automatic photometric telescope to acquire nightly observations of the complete sample of stars. From these survey observations, we identify 37 stars with intrinsic variability of 0.002 mag or more. Of these 37 variables, 8 have already been confirmed as γ Doradus stars in our earlier papers; we scheduled the remaining 29 variables on our T3 0.4 m automatic telescope to acquire more intensive observations over the next two years. As promising new γ Doradus candidates were identified from the photometry, we obtained complementary spectroscopic observations of each candidate with the Kitt Peak coude feed telescope. Analysis of our new photometric and spectroscopic data reveals 15 new γ Doradus variables (and confirms two others), 8 new δ Scuti variables (and confirms one other), and 3 new variables with unresolved periodicity. Therefore, of the 114 γ Doradus candidates in our volume-limited sample, we find 25 stars that are new or previously known γ Doradus variables. This results in an incidence of 22% for γ Doradus variability among candidate field stars for this volume of the solar neighborhood. The corresponding space density of γ Doradus stars in this volume of space is 0.094 stars per 10 3 pc 3 or 94 stars per 10 6 pc 3 . We provide an updated list of 86 bright, confirmed, γ Doradus field stars.

  9. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    Science.gov (United States)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  10. Astrometric Calibration and Performance of the Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, G. M.; Armstrong, R.; Plazas, A. A.; Walker, A. R.; Abbott, T. M. C.; Allam, S.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; Costa, L. N. da; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Fernandez, E.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Ogando, R. L. C.; Reil, K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.

    2017-05-30

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520~Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of $>10^7$ stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the RMS variation in aperture magnitudes of bright stars on cloudless nights down to 2--3 mmag, with <1 mmag of correlated photometric errors for stars separated by $\\ge20$". On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding >1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6" and 8" diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2-degree field drifts over months by up to $\\pm7$ mmag, in a nearly-wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.

  11. Photometric Analysis and Period Investigation of the EW Type ...

    Indian Academy of Sciences (India)

    Photometric Analysis and Period Investigation of the EW Type. Eclipsing ... binary with the less massive secondary component filling the inner Roche lobe. ..... Cox 2000) assuming that the primary component is a normal main sequence star.

  12. Photometric study of an eclipsing binary in the field of M37

    International Nuclear Information System (INIS)

    Priya Devarapalli Shanti; Sriram Kandulapati; Rao Pasagada Vivekananda

    2014-01-01

    CCD photometric observations with B and V passbands were performed on the contact binary V3 in the field of open cluster M37. The solutions were obtained for data from both B and V passbands along with R passband given by Hartman et al. using the Wilson-Devinney code. The positive O'Connell effect was observed in all the three passbands and its associated cool spot parameters were derived. The results indicate that the spot parameters have not shown any significant variability during the last four years. The spot radius was found to be 40° and located close to the equator of the secondary component. The absolute parameters of the system were derived using the empirical relations given by Gazeas et al. (research papers)

  13. Photometric method for determination of acidity constants through integral spectra analysis.

    Science.gov (United States)

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-15

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Photometric method for determination of acidity constants through integral spectra analysis

    Science.gov (United States)

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-01

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature.

  15. Absolute photometry of the corona of July 10, 1972 total solar eclipse

    Energy Technology Data Exchange (ETDEWEB)

    Khetsuriani, Ts.S.; Tetruashvili, Eh.I.

    1985-01-01

    The observations were carried out by the Abastumani astrophysical observatory expedition at July 10.1972 total solar eclipse from a site of the Chukotka Peninsula. The photometry of the corona images is performed by the equidensity method having expressed the intensities in absolute units. The F and K components of the corona are separated on the basis of photometric and polarisation data. The variations of the electron concentration with the distance from the centre of the Sun and tempeatures at various distances are calculated.

  16. Photometric immersion refractometry of bacterial spores.

    Science.gov (United States)

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  17. Photometric stability of the lunar surface

    Science.gov (United States)

    Kieffer, H.H.

    1997-01-01

    The rate at which cratering events currently occur on the Moon is considered in light of their influence on the use of the Moon as a radiometric standard. The radiometric effect of small impact events is determined empirically from the study of Clementine images. Events that would change the integral brightness of the moon by 1% are expected once per 1.4 Gyr. Events that cause a 1% shift in one pixel for low Earth-orbiting instruments with a 1-km nadir field of view are expected approximately once each 43 Myr. Events discernible at 1% radiometric resolution with a 5 arc-sec telescope resolution correspond to crater diameters of approximately 210 m and are expected once every 200 years. These rates are uncertain by a factor of two. For a fixed illumination and observation geometry, the Moon can be considered photometrically stable to 1 ?? 10-8per annum for irradiance, and 1 ?? 10-7per annum for radiance at a resolution common for spacecraft imaging instruments, exceeding reasonable instrument goals by six orders of magnitude. ?? 1997 Academic Press.

  18. Photometric Detection of Extra-Solar Planets

    Science.gov (United States)

    Hatzes, Artie P.; Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported the TEMPEST Texas McDonald Photometric Extrasolar Search for Transits) program at McDonald Observatory, which searches for transits of extrasolar planets across the disks of their parent stars. The basic approach is to use a wide-field ground-based telescope (in our case the McDonald Observatory 0.76m telescope and it s Prime Focus Corrector) to search for transits of short period (1-15 day orbits) of close-in hot-Jupiter planets in orbit around a large sample of field stars. The next task is to search these data streams for possible transit events. We collected our first set of test data for this program using the 0.76 m PFC in the summer of 1998. From those data, we developed the optimal observing procedures, including tailoring the stellar density, exposure times, and filters to best-suit the instrument and project. In the summer of 1999, we obtained the first partial season of data on a dedicated field in the constellation Cygnus. These data were used to develop and refine the reduction and analysis procedures to produce high-precision photometry and search for transits in the resulting light curves. The TeMPEST project subsequently obtained three full seasons of data on six different fields using the McDonald Observatory 0.76m PFC.

  19. Photometric functions for photoclinometry and other applications

    Science.gov (United States)

    McEwen, A.S.

    1991-01-01

    Least-squared fits to the brightness profiles across a disk or "limb darkening" described by Hapke's photometric function are found for the simpler Minnaert and lunar-Lambert functions. The simpler functions are needed to reduce the number of unknown parameters in photoclinometry, especially to distinguish the brightness variations of the surface materials from that due to the resolved topography. The limb darkening varies with the Hapke parameters for macroscopic roughness (??), the single-scattering albedo (w), and the asymmetry factor of the particle phase function (g). Both of the simpler functions generally provide good matches to the limb darkening described by Hapke's function, but the lunar-Lambert function is superior when viewing angles are high and when (??) is less than 30??. Although a nonunique solution for the Minnaert function at high phase angles has been described for smooth surfaces, the discrepancy decreases with increasing (??) and virtually disappears when (??) reaches 30?? to 40??. The variation in limb darkening with w and g, pronounced for smooth surfaces, is reduced or eliminated when the Hapke parameters are in the range typical of most planetary surfaces; this result simplifies the problem of photoclinometry across terrains with variable surface materials. The Minnaert or lunar-Lambert fits to published Hapke models will give photoclinometric solutions that are very similar (>1?? slope discrepancy) to the Hapke-function solutions for nearly all of the bodies and terrains thus far modeled by Hapke's function. ?? 1991.

  20. Photometric determination of traces of metals

    International Nuclear Information System (INIS)

    Onishi, H.

    1986-01-01

    The first three editions of this widely used classic were published under the title Colorimetric Determination of Traces of Metals, with E.B. Sandell as author. Part I (General Aspects) of the fourth edition was co-authored by E.B. Sandell and H. Onishi and published in 1978. After Sandell's death in 1984, Onishi assumed the monumental task of revising Part II. This book (Part IIA) consists of 21 chapters in which the photometric determinations of the individual metals, aluminium to lithium (including the lanthanoids), are described. Each chapter is divided into three sections: Separations, Methods of Determination, and Applications. The sections on Separations are of general interest and include methods based on precipitation, ion-exchange, chromatography, and liquid-liquid extraction. Molecular absorption and fluorescence techniques are described in the sections on determinations, and the emphasis is on the use of well-established reagents. Several reagents that have been recently introduced for the determination of trace levels of metals are also critically reviewed at the end of each section on methods of determination. Important applications of these methods to the determination of trace metals in complex organic and inorganic materials are described in detail at the end of each chapter

  1. Metrological activity determination of {sup 133}Ba by sum-peak absolute method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.L. da; Delgado, J.U.; Poledna, R.; Santos, A.; Veras, E.V. de; Rangel, J.; Trindade, O.L. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Almeida, M.C.M. de, E-mail: marcandida@yahoo.com.br, E-mail: candida@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. {sup 133}Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods do not calibrate {sup 133}Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes {sup 133}Ba samples. Uncertainties lower than 1% to activity results were obtained.

  2. Laboratory panel and radiometer calibration

    CSIR Research Space (South Africa)

    Deadman, AJ

    2011-07-01

    Full Text Available stream_source_info Griffith1_2011.pdf.txt stream_content_type text/plain stream_size 16659 Content-Encoding ISO-8859-1 stream_name Griffith1_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 LABORATORY PANEL... of Land surface imaging through a ground reference standard test site?, on http://qa4eo.org/documentation.html, 2009. [2] K. J. Thome, D. L. Helder, D. Aaron, and J. D. Dewald, ?Landsat-5 TM and Landsat-7 ETM+ Absolute Radiometric Calibration Using...

  3. Long-term photometric behaviour of outbursting AM CVn systems

    OpenAIRE

    Levitan, David; Groot, Paul J.; Prince, Thomas A.; Kulkarni, Shrinivas R.; Laher, Russ; Ofek, Eran O.; Sesar, Branimir; Surace, Jason

    2015-01-01

    The AM CVn systems are a class of He-rich, post-period minimum, semidetached, ultracompact binaries. Their long-term light curves have been poorly understood due to the few systems known and the long (hundreds of days) recurrence times between outbursts. We present combined photometric light curves from the Lincoln Near Earth Asteroid Research, Catalina Real-Time Transient Survey, and Palomar Transient Factory synoptic surveys to study the photometric variability of these systems over an almo...

  4. Measuring redshift-space distortions using photometric surveys

    OpenAIRE

    Ross, Ashley; Percival, Will; Crocce, M.; Cabre, A.; Gaztanaga, E.

    2011-01-01

    We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({\\theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results from bins with top-hat galaxy selection in redshift, and bins based on the radial position of galaxy pair centres. This comparison can also be used to test the accuracy of the photometric redshifts. The presence of RSD will be clearly detectable ...

  5. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco Kind, Matias [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets by using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are crucial

  6. Android Apps for Absolute Beginners

    CERN Document Server

    Jackson, Wallace

    2011-01-01

    Anybody can start building simple apps for the Android platform, and this book will show you how! Android Apps for Absolute Beginners takes you through the process of getting your first Android applications up and running using plain English and practical examples. It cuts through the fog of jargon and mystery that surrounds Android application development, and gives you simple, step-by-step instructions to get you started.* Teaches Android application development in language anyone can understand, giving you the best possible start in Android development * Provides simple, step-by-step exampl

  7. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben

    1998-01-01

    The Swedish micro-satellite Astrid-2 contains a tri-axial fluxgate magnetometer with the sensor co-located with a Technical University of Denmark (DTU) star camera for absolute attitude, and extended about 0.9 m on a hinged boom. The magnetometer is part of the RIT EMMA electric and magnetic fields...... experiment built as a collaboration between the DTU, Department of Automation and the Department of Plasma Physics, The Alfvenlaboratory, Royal Institute of Technology (RIT), Stockholm. The final magnetic calibration of the Astrid-2 satellite was done at the Lovoe Magnetic Observatory under the Geological...... Survey of Sweden near Stockholm on the night of May 15.-16., 1997. The magnetic calibration and the intercalibration between the star camera and the magnetic sensor was performed by measuring the Earth's magnetic field and simultaneously observing the star sky with the camera. The rotation matrix between...

  8. Absolute dating of the Aegean Late Bronze Age

    International Nuclear Information System (INIS)

    Warren, P.M.

    1987-01-01

    A recent argument for raising the absolute date of the beginning of the Aegean Late Bronze (LB) Age to about 1700 B.C. is critically examined. It is argued here that: (1) the alabaster lid from Knossos did have the stratigraphical context assigned to it by Evans, in all probability Middle Minoan IIIA, c. 1650 B.C.; (2) the attempt to date the alabastron found in an early Eighteenth Dynasty context at Aniba to Late Minoan IIIA:1 is open to objections; (3) radiocarbon dates from Aegean LB I contexts are too wide in their calibrated ranges and too inconsistent both within and between site sets to offer any reliable grounds at present for raising Aegean LB I absolute chronology to 1700 B.C. Other evidence, however, suggests this period began about 1600 B.C., i.e. some fifty years earlier than the conventional date of 1550 B.C. (author)

  9. Limitations of absolute activity determination of I-125 sources

    Energy Technology Data Exchange (ETDEWEB)

    Pelled, O; German, U; Kol, R; Levinson, S; Weinstein, M; Laichter, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev; Alphasy, Z [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    A method for absolute determination of the activity of a I-125 source, based on the counting rate values of the 27 keV photons and the coincidence photon peak is given in the literature. It is based on the principle that if a radionuclide emits two photons in coincidence , a measurement of its disintegration rate in the photopeak and in the sum- peak can determinate it`s absolute activity. When using this method , the system calibration is simplified and parameters such as source geometry or source position relative to the detector have no significant influence. However, when the coincidence rate is very low, the application of this method is limited because of the statistics of the coincidence peak (authors).

  10. Absolute pitch: a case study.

    Science.gov (United States)

    Vernon, P E

    1977-11-01

    The auditory skill known as 'absolute pitch' is discussed, and it is shown that this differs greatly in accuracy of identification or reproduction of musical tones from ordinary discrimination of 'tonal height' which is to some extent trainable. The present writer possessed absolute pitch for almost any tone or chord over the normal musical range, from about the age of 17 to 52. He then started to hear all music one semitone too high, and now at the age of 71 it is heard a full tone above the true pitch. Tests were carried out under controlled conditions, in which 68 to 95 per cent of notes were identified as one semitone or one tone higher than they should be. Changes with ageing seem more likely to occur in the elasticity of the basilar membrane mechanisms than in the long-term memory which is used for aural analysis of complex sounds. Thus this experience supports the view that some resolution of complex sounds takes place at the peripheral sense organ, and this provides information which can be incorrect, for interpretation by the cortical centres.

  11. Absolute measurement of 152Eu

    International Nuclear Information System (INIS)

    Baba, Hiroshi; Baba, Sumiko; Ichikawa, Shinichi; Sekine, Toshiaki; Ishikawa, Isamu

    1981-08-01

    A new method of the absolute measurement for 152 Eu was established based on the 4πβ-γ spectroscopic anti-coincidence method. It is a coincidence counting method consisting of a 4πβ-counter and a Ge(Li) γ-ray detector, in which the effective counting efficiencies of the 4πβ-counter for β-rays, conversion electrons, and Auger electrons were obtained by taking the intensity ratios for certain γ-rays between the single spectrum and the spectrum coincident with the pulses from the 4πβ-counter. First, in order to verify the method, three different methods of the absolute measurement were performed with a prepared 60 Co source to find excellent agreement among the results deduced by them. Next, the 4πβ-γ spectroscopic coincidence measurement was applied to 152 Eu sources prepared by irradiating an enriched 151 Eu target in a reactor. The result was compared with that obtained by the γ-ray spectrometry using a 152 Eu standard source supplied by LMRI. They agreed with each other within the error of 2%. (author)

  12. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. S. [et al.

    2016-05-27

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.

  13. Determination of polyhexamethylene biguanide hydrochloride using photometric colloidal titration with crystal violet as a color indicator.

    Science.gov (United States)

    Masadome, Takashi; Miyanishi, Takaaki; Watanabe, Keita; Ueda, Hiroshi; Hattori, Toshiaki

    2011-01-01

    A solution of polyhexamethylene biguanide hydrochloride (PHMB-HCl) was titrated with a standard solution of potassium poly(vinyl sulfate) (PVSK) using crystal violet (CV) as an photometric indicator cation. The end point was detected by a sharp absorbance change due to an abrupt decrease in the concentration of CV. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant existed in the concentration range from 2 to 10 × 10(-6) eq mol L(-1). Back-titration was based on adding an excess amount of PVSK to a sample solution containing CV, which was titrated with a standard solution of poly(diallyldimethylammonium chloride) (PDADMAC). The calibration curve of the PHMB-HCl concentration to the end point volume of the titrant was also linear in the concentration range from 2 to 8 × 10(-6) eq mol L(-1). Both photometric titrations were applied to the determination of PHMB-HCl in a few contact-lens detergents. Back-titration showed a clear end point, but direct titration showed an unclear end point. The results of the back-titration of PHMB-HCl were compared with the content registered in its labels. 2011 © The Japan Society for Analytical Chemistry

  14. Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry

    Science.gov (United States)

    Abdalla, F. B.; Amara, A.; Capak, P.; Cypriano, E. S.; Lahav, O.; Rhodes, J.

    2008-07-01

    We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the dark energy equation of state. In particular, we examine how ground-based photometry (u, g, r, i, z, y) can be complemented by space-based near-infrared (near-IR) photometry (J, H), e.g. onboard the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo-z method we evaluate the figure of merit for the dark energy parameters (w0, wa). We consider a DUNE-like broad optical filter supplemented with ground-based multiband optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the dark energy figure of merit would be improved by a factor of 1.3-1.7 if IR filters are added onboard DUNE. Furthermore we show that with IR data catastrophic photo-z outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limits and the removal of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g. the galaxy reddening. For example, very deep u-band data could be as effective as the IR. We also find that about 105-106 spectroscopic redshifts are needed for calibration of the full survey.

  15. A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field

    Science.gov (United States)

    Castellano, M.; Salimbeni, S.; Trevese, D.; Grazian, A.; Pentericci, L.; Fiore, F.; Fontana, A.; Giallongo, E.; Santini, P.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2007-12-01

    We report the discovery of a localized overdensity at z~1.6 in the GOODS-South field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well-calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)-dimensional technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field, and we find that the two populations are significantly different, supporting the reality of the structure. The reddest galaxies, once evolved according to their best-fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M200 total mass of the cluster is in the range 1.3×1014-5.7×1014 Msolar, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1 Ms Chandra observations, is LX=0.5×1043 erg s-1, suggesting that the cluster has not yet reached the virial equilibrium.

  16. Application of the Trend Filtering Algorithm for Photometric Time Series Data

    Science.gov (United States)

    Gopalan, Giri; Plavchan, Peter; van Eyken, Julian; Ciardi, David; von Braun, Kaspar; Kane, Stephen R.

    2016-08-01

    Detecting transient light curves (e.g., transiting planets) requires high-precision data, and thus it is important to effectively filter systematic trends affecting ground-based wide-field surveys. We apply an implementation of the Trend Filtering Algorithm (TFA) to the 2MASS calibration catalog and select Palomar Transient Factory (PTF) photometric time series data. TFA is successful at reducing the overall dispersion of light curves, however, it may over-filter intrinsic variables and increase “instantaneous” dispersion when a template set is not judiciously chosen. In an attempt to rectify these issues we modify the original TFA from the literature by including measurement uncertainties in its computation, including ancillary data correlated with noise, and algorithmically selecting a template set using clustering algorithms as suggested by various authors. This approach may be particularly useful for appropriately accounting for variable photometric precision surveys and/or combined data sets. In summary, our contributions are to provide a MATLAB software implementation of TFA and a number of modifications tested on synthetics and real data, summarize the performance of TFA and various modifications on real ground-based data sets (2MASS and PTF), and assess the efficacy of TFA and modifications using synthetic light curve tests consisting of transiting and sinusoidal variables. While the transiting variables test indicates that these modifications confer no advantage to transit detection, the sinusoidal variables test indicates potential improvements in detection accuracy.

  17. CCD photometry in the Vilnius photometric system. I. region in Lyra

    International Nuclear Information System (INIS)

    Boyle, R.P.; Smriglio, F.; Straizys, V.

    1990-01-01

    Three-dimensional photometric classification can be made for stars measured in the Vilnius seven-color intermediate-band system, even if they are reddened by dust. Such classification is important for questions relating to the structure and evolution of our Galaxy. Presented here for general use is CCD photometry of 231 field stars in Lyra observed with the 0.9 meter telescope of Kitt Peak National Observatory. The measurements are of higher accuracy than those of a photographic study in the same direction in Lyra for which they can also be used for a deeper calibration of the photographic photometry. The data sets cover two small fields each about 31 arcmin 2 and are complete to 90% for all stars up to the faint limit of V = 17.5

  18. Frequency and mode identification of γ Doradus from photometric and spectroscopic observations*

    Science.gov (United States)

    Brunsden, E.; Pollard, K. R.; Wright, D. J.; De Cat, P.; Cottrell, P. L.

    2018-04-01

    The prototype star for the γ Doradus class of pulsating variables was studied employing photometric and spectroscopic observations to determine the frequencies and modes of pulsation. The four frequencies found are self-consistent between the observation types and almost identical to those found in previous studies (1.3641 d-1, 1.8783 d-1, 1.4742 d-1, and 1.3209 d-1). Three of the frequencies are classified as l, m = (1, 1) pulsations and the other is ambiguous between l, m = (2, 0) and (2, -2) modes. Two frequencies are shown to be stable over 20 yr since their first identification. The agreement in ground-based work makes this star an excellent calibrator between high-precision photometry and spectroscopy with the upcoming TESS observations and a potential standard for continued asteroseismic modelling.

  19. Absolute measurement of 85Sr

    International Nuclear Information System (INIS)

    Miyahara, Hiroshi; Watanabe, Tamaki

    1978-01-01

    An extension of 4πe.x-γ coincidence technique is described to measure the absolute disintegration rate of 85 Sr. This nuclide shows electron capture-gamma decay, and 514keV level of 85 Rb is a meta-stable state with half life of 0.958 μsec. Therefore, the conventional 4 πe.x-γ coincidence technique with about 1 μsec of resolution time can not be applied to this nuclide. To measure the absolute disintegration rate of this, the delayed 4 πe.x-γ coincidence technique with two different resolution time has been used. The disintegration rate was determined from four counting rates of electron-x ray, gamma ray and two coincidences, and the true disintegration rate could be obtained by extraporation of the electron-x ray detection efficiency to 1. Two resolution time appearing in the calculation formulas were determined from the chance coincidence between electron-x ray and delayed gamma ray signals. When the coincidence countings with three different resolution time were carried out by one coincidence circuit, the results calculated from all combinations did not agree each other. However, when the two coincidence circuits of the same type were used to fix the resolution time, a good coincidence absorption function was obtained and the disintegration rate was determined with accuracy of +- 0.5%. To evaluate the validity of the results the disintegration rates were measured by two NaI (Tl) scintillation detectors whose gamma-ray detection efficiency was previously determined and both results were agreed within accuracy of +- 0.5%. This method can be applied with nearly same accuracy for the beta-gamma decay nuclide possessing a meta-stable state of the half life below about 10 μsec. (auth.)

  20. SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES

    International Nuclear Information System (INIS)

    Pérez-González, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Víctor; Cardiel, Nicolás; Espino, Néstor; Gallego, Jesús; Ferreras, Ignacio; Rodríguez-Espinosa, José Miguel; Balcells, Marc; Cepa, Jordi; Alonso-Herrero, Almudena; Cenarro, Javier; Charlot, Stéphane; Cimatti, Andrea; Conselice, Christopher J.; Daddi, Emmanuele; Elbaz, David; Donley, Jennifer; Gobat, R.

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin 2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ∼ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z ∼< 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well

  1. SHARDS: An Optical Spectro-photometric Survey of Distant Galaxies

    Science.gov (United States)

    Pérez-González, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Víctor; Cardiel, Nicolás; Ferreras, Ignacio; Rodríguez-Espinosa, José Miguel; Alonso-Herrero, Almudena; Balcells, Marc; Cenarro, Javier; Cepa, Jordi; Charlot, Stéphane; Cimatti, Andrea; Conselice, Christopher J.; Daddi, Emmanuele; Donley, Jennifer; Elbaz, David; Espino, Néstor; Gallego, Jesús; Gobat, R.; González-Martín, Omaira; Guzmán, Rafael; Hernán-Caballero, Antonio; Muñoz-Tuñón, Casiana; Renzini, Alvio; Rodríguez-Zaurín, Javier; Tresse, Laurence; Trujillo, Ignacio; Zamorano, Jaime

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ~ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well described by an exponentially decaying star formation history with scale τ = 100-200 Myr, age around 1.5-2.0 Gyr, solar or slightly sub-solar metallicity, and moderate extinction, A(V) ~ 0.5 mag. We also find that galaxies with masses above M* are typically older than lighter galaxies, as expected in a downsizing scenario of galaxy formation. This

  2. SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gonzalez, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Victor; Cardiel, Nicolas; Espino, Nestor; Gallego, Jesus [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ferreras, Ignacio [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Rodriguez-Espinosa, Jose Miguel; Balcells, Marc; Cepa, Jordi [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Alonso-Herrero, Almudena [Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Cenarro, Javier [Centro de Estudios de Fisica del Cosmos de Aragon, Plaza San Juan 1, Planta 2, E-44001 Teruel (Spain); Charlot, Stephane [Institut d' Astrophysique de Paris, CNRS, Universite Pierre and Marie Curie, UMR 7095, 98bis bd Arago, F-75014 Paris (France); Cimatti, Andrea [Dipartimento di Astronomia, Universita degli Studi di Bologna, I-40127 Bologna (Italy); Conselice, Christopher J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Daddi, Emmanuele; Elbaz, David [CEA, Laboratoire AIM, Irfu/SAp, F-91191 Gif-sur-Yvette (France); Donley, Jennifer [Los Alamos National Laboratory, Los Alamos, NM (United States); Gobat, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); and others

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin{sup 2} at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R {approx} 50). The data reach an AB magnitude of 26.5 (at least at a 3{sigma} level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z {approx}< 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at

  3. Photometric Modeling of Simulated Surace-Resolved Bennu Images

    Science.gov (United States)

    Golish, D.; DellaGiustina, D. N.; Clark, B.; Li, J. Y.; Zou, X. D.; Bennett, C. A.; Lauretta, D. S.

    2017-12-01

    The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is a NASA mission to study and return a sample of asteroid (101955) Bennu. Imaging data from the mission will be used to develop empirical surface-resolved photometric models of Bennu at a series of wavelengths. These models will be used to photometrically correct panchromatic and color base maps of Bennu, compensating for variations due to shadows and photometric angle differences, thereby minimizing seams in mosaicked images. Well-corrected mosaics are critical to the generation of a global hazard map and a global 1064-nm reflectance map which predicts LIDAR response. These data products directly feed into the selection of a site from which to safely acquire a sample. We also require photometric correction for the creation of color ratio maps of Bennu. Color ratios maps provide insight into the composition and geological history of the surface and allow for comparison to other Solar System small bodies. In advance of OSIRIS-REx's arrival at Bennu, we use simulated images to judge the efficacy of both the photometric modeling software and the mission observation plan. Our simulation software is based on USGS's Integrated Software for Imagers and Spectrometers (ISIS) and uses a synthetic shape model, a camera model, and an empirical photometric model to generate simulated images. This approach gives us the flexibility to create simulated images of Bennu based on analog surfaces from other small Solar System bodies and to test our modeling software under those conditions. Our photometric modeling software fits image data to several conventional empirical photometric models and produces the best fit model parameters. The process is largely automated, which is crucial to the efficient production of data products during proximity operations. The software also produces several metrics on the quality of the observations themselves, such as surface coverage and the

  4. Long photometric cycles in hot algols

    Directory of Open Access Journals (Sweden)

    Mennickent R.E.

    2017-01-01

    Full Text Available We summarize the development of the field of Double Periodic Variables (DPVs, Mennickent et al. 2003 during the last fourteen years, placing these objects in the context of intermediate-mass close interacting binaries similar to β Persei (Algol and β Lyrae (Sheliak which are generally called Algols. DPVs show enigmatic long photometric cycles lasting on average about 33 times the orbital period, and have physical properties resembling, in some aspects, β Lyrae. About 200 of these objects have been found in the Galaxy and the Magellanic Clouds. Light curve models and orbitally resolved spectroscopy indicate that DPVs are semi-detached interacting binaries consisting of a near main-sequence B-type star accreting matter from a cooler giant and surrounded by an optically thick disc. This disc contributes a significant fraction of the system luminosity and its luminosity is larger than expected from the phenomenon of mass accretion alone. In some systems, an optically thin disc component is observed in well developed Balmer emission lines. The optically thick disc shows bright zones up to tens percent hotter than the disc, probably indicating shocks resulting from the gas and disc stream dynamics. We conjecture that a hotspot wind might be one of the channels for a mild systemic mass loss, since evidence for jets, winds or general mass loss has been found in β Lyrae, AUMon, HD170582, OGLE05155332-6925581 and V393 Sco. Also, theoretical work by Van Rensbergen et al. (2008 and Deschamps et al. (2013 suggests that hotspot could drive mass loss from Algols. We give special consideration to the recently published hypothesis for the long-cycle, consisting of variable mass transfer driven by a magnetic dynamo (Schleicher and Mennickent 2017. The Applegate (1992 mechanism should modify cyclically the equatorial radius of the chromospherically active donor producing cycles of enhanced mass loss through the inner Lagrangian point. Chromospheric emission in

  5. Photometric redshifts of galaxies from SDSS and 2MASS

    International Nuclear Information System (INIS)

    Wang Tao; Gu Qiusheng; Huang Jiasheng

    2009-01-01

    In order to find the physical parameters which determine the accuracy of photometric redshifts, we compare the spectroscopic and photometric redshifts (photo-z's) for a large sample of ∼ 80000 SDSS-2MASS galaxies. Photo-z's in this paper are estimated by using the artificial neural network photometric redshift method (ANNz). For a subset of ∼40000 randomly selected galaxies, we find that the photometric redshift recovers the spectroscopic redshift distribution very well with rms of 0.016. Our main results are as follows: (1) Using magnitudes directly as input parameters produces more accurate photo-z's than using colors; (2) The inclusion of 2MASS (J, H, K s ) bands does not improve photo-z's significantly, which indicates that near infrared data might not be important for the low-redshift sample; (3) Adding the concentration index (essentially the steepness of the galaxy brightness profile) as an extra input can improve the photo-z's estimation up to ∼ 10 percent; (4) Dividing the sample into early- and late-type galaxies by using the concentration index, normal and abnormal galaxies by using the emission line flux ratios, and red and blue galaxies by using color index (g - r), we can improve the accuracy of photo-z's significantly; (5) Our analysis shows that the outliers (where there is a big difference between the spectroscopic and photometric redshifts) are mainly correlated with galaxy types, e.g., most outliers are late-type (blue) galaxies.

  6. CFHTLenS: improving the quality of photometric redshifts with precision photometry

    Science.gov (United States)

    Hildebrandt, H.; Erben, T.; Kuijken, K.; van Waerbeke, L.; Heymans, C.; Coupon, J.; Benjamin, J.; Bonnett, C.; Fu, L.; Hoekstra, H.; Kitching, T. D.; Mellier, Y.; Miller, L.; Velander, M.; Hudson, M. J.; Rowe, B. T. P.; Schrabback, T.; Semboloni, E.; Benítez, N.

    2012-04-01

    Here we present the results of various approaches to measure accurate colours and photometric redshifts (photo-z) from wide-field imaging data. We use data from the Canada-France-Hawaii Telescope Legacy Survey which have been re-processed by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) team in order to carry out a number of weak gravitational lensing studies. An emphasis is put on the correction of systematic effects in the photo-z arising from the different point spread functions (PSFs) in the five optical bands. Different ways of correcting these effects are discussed and the resulting photo-z accuracies are quantified by comparing the photo-z to large spectroscopic redshift (spec-z) data sets. Careful homogenization of the PSF between bands leads to increased overall accuracy of photo-z. The gain is particularly pronounced at fainter magnitudes where galaxies are smaller and flux measurements are affected more by PSF effects. We discuss ways of defining more secure subsamples of galaxies as well as a shape- and colour-based star-galaxy separation method, and we present redshift distributions for different magnitude limits. We also study possible re-calibrations of the photometric zero-points (ZPs) with the help of galaxies with known spec-z. We find that if PSF effects are properly taken into account, a re-calibration of the ZPs becomes much less important suggesting that previous such re-calibrations described in the literature could in fact be mostly corrections for PSF effects rather than corrections for real inaccuracies in the ZPs. The implications of this finding for future surveys like the Kilo Degree Survey (KiDS), Dark Energy Survey (DES), Large Synoptic Survey Telescope or Euclid are mixed. On the one hand, ZP re-calibrations with spec-z values might not be as accurate as previously thought. On the other hand, careful PSF homogenization might provide a way out and yield accurate, homogeneous photometry without the need for full

  7. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  8. Cosmological forecasts from photometric measurements of the angular correlation function

    International Nuclear Information System (INIS)

    Sobreira, F.; Rosenfeld, R.; Simoni, F. de; Costa, L. A. N. da; Maia, M. A. G.; Makler, M.

    2011-01-01

    We study forecasts for the accuracy of the determination of cosmological parameters from future large-scale photometric surveys obtained using the full shape of the 2-point galaxy angular correlation function. The effects of linear redshift-space distortion, photometric redshift Gaussian errors, galaxy bias and nonlinearities in the power spectrum are included on our analysis. The Fisher information matrix is constructed with the full covariance matrix, including the correlation between nearby redshift shells arising from the photometric redshift error. We show that under some reasonable assumptions, a survey such as the imminent Dark Energy Survey should be able to constrain the dark energy equation of state parameter w and the cold dark matter density Ω cdm with a precision of the order of 20% and 13%, respectively, from the full shape of the angular correlation function alone. When combined with priors from other observations the precision in the determination of these parameters improve to 8% and 4%, respectively.

  9. Photometric behavior of SS 433 in 1979 and 1980

    International Nuclear Information System (INIS)

    Mazeh, T.; Tel Aviv University; Wise Observatory, Tel Aviv, Israel); Leibowitz, E.M.; Wise Observatory, Tel Aviv, Israel)

    1981-01-01

    Results and analysis of photometric measurements performed in the last two observing seasons of SS 433 are presented. The light of the star in the V and the B photometric bands varies with a period of either 6.55 or 6.43 days. The periodicity of approximately 164 days is also apparent in the photometric data, with its first and third harmonics. Fluctuations of the order of a half a magnitude within a few hours have also been recorded. The B-V color shows no dependence on the phase of the periodic variations, while it does change by up to 0.25 mag, in an apparent association with the short time scale fluctuations

  10. CHARACTERIZING AND PROPAGATING MODELING UNCERTAINTIES IN PHOTOMETRICALLY DERIVED REDSHIFT DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Abrahamse, Augusta; Knox, Lloyd; Schmidt, Samuel; Thorman, Paul; Anthony Tyson, J.; Zhan Hu

    2011-01-01

    The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from multi-band imaging surveys. The accuracy of the photometric redshifts measured in these surveys depends not only on the quality of the flux data, but also on a number of modeling assumptions that enter into both the training set and spectral energy distribution (SED) fitting methods of photometric redshift estimation. In this work we focus on the latter, considering two types of modeling uncertainties: uncertainties in the SED template set and uncertainties in the magnitude and type priors used in a Bayesian photometric redshift estimation method. We find that SED template selection effects dominate over magnitude prior errors. We introduce a method for parameterizing the resulting ignorance of the redshift distributions, and for propagating these uncertainties to uncertainties in cosmological parameters.

  11. Photometric imaging in particle size measurement and surface visualization.

    Science.gov (United States)

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. METAPHOR: Probability density estimation for machine learning based photometric redshifts

    Science.gov (United States)

    Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.

    2017-06-01

    We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).

  13. A rediscussion of the atmospheric extinction and the absolute spectral-energy distribution of Vega

    International Nuclear Information System (INIS)

    Hayes, D.S.; Latham, D.W.

    1975-01-01

    For both the Lick and the Palomar calibrations of the spectral-energy distribution of Vega, the atmospheric extinction was treated incorrectly. We present a model for extinction in the Earth's atmosphere and use this model to calculate corrections to the Lick and Palomar calibrations. We also describe a method that can be used to fabricate mean extinction coefficients for any mountain observatory. We combine selected portions of the corrected Lick and corrected Palomar calibrations with the new Mount Hopkins calibration to generate an absolute spectral-energy distibution of Vega over the wavelength range 3300--10,800 A. Until better measurements become available, we recommend the use of this calibration for all practical applications

  14. Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies

    Science.gov (United States)

    Graham, Melissa L.; Connolly, Andrew J.; Ivezić, Željko; Schmidt, Samuel J.; Jones, R. Lynne; Jurić, Mario; Daniel, Scott F.; Yoachim, Peter

    2018-01-01

    In this paper we present and characterize a nearest-neighbors color-matching photometric redshift estimator that features a direct relationship between the precision and accuracy of the input magnitudes and the output photometric redshifts. This aspect makes our estimator an ideal tool for evaluating the impact of changes to LSST survey parameters that affect the measurement errors of the photometry, which is the main motivation of our work (i.e., it is not intended to provide the “best” photometric redshifts for LSST data). We show how the photometric redshifts will improve with time over the 10 year LSST survey and confirm that the nominal distribution of visits per filter provides the most accurate photo-z results. The LSST survey strategy naturally produces observations over a range of airmass, which offers the opportunity of using an SED- and z-dependent atmospheric affect on the observed photometry as a color-independent redshift indicator. We show that measuring this airmass effect and including it as a prior has the potential to improve the photometric redshifts and can ameliorate extreme outliers, but that it will only be adequately measured for the brightest galaxies, which limits its overall impact on LSST photometric redshifts. We furthermore demonstrate how this airmass effect can induce a bias in the photo-z results, and caution against survey strategies that prioritize high-airmass observations for the purpose of improving this prior. Ultimately, we intend for this work to serve as a guide for the expectations and preparations of the LSST science community with regard to the minimum quality of photo-z as the survey progresses.

  15. Construction, calibration, and application of a compact spectrophotometer for EUV(300-2500 A) plasma diagnostics

    International Nuclear Information System (INIS)

    Moos, H.W.; Chen, K.I.; Terry, J.L.

    1979-01-01

    A 400-mm normal incidence concave grating spectrophotometer, specifically designed for plasma diagnostics, is described. The wavelength drive, in which the grating is translated as well as rotated, is discussed in detail; the wavelength linearity of the sine drive and methods of improving it are analyzed. The instrument can be used in any orientation, is portable under vacuum, and quite rugged. The construction techniques utilized produce a high quality vacuum making the instrument compatible with both high purity plasma devices and synchrotron radiation sources. The photometric sensitivity calibration was found to be very stable during extended use on high temperature plasma devices. The applications of the instrument to diagnose plasmas in two tokamaks and a mirror device are decribed. A facility used for photometric calibration of extreme ultraviolet (lambda>300-A) spectrophotometers against NBS standard diodes is described. The instrumental calibration obtained using this facility was checked by using synchrotron radiation from SURF II; very good agreement was observed

  16. Near-infrared Variability in the 2MASS Calibration Fields: A Search for Planetary Transit Candidates

    Science.gov (United States)

    Plavchan, Peter; Jura, M.; Kirkpatrick, J. Davy; Cutri, Roc M.; Gallagher, S. C.

    2008-01-01

    The Two Micron All Sky Survey (2MASS) photometric calibration observations cover approximately 6 square degrees on the sky in 35 'calibration fields,' each sampled in nominal photometric conditions between 562 and 3692 times during the 4 years of the 2MASS mission. We compile a catalog of variables from the calibration observations to search for M dwarfs transited by extrasolar planets. We present our methods for measuring periodic and nonperiodic flux variability. From 7554 sources with apparent K(sub s) magnitudes between 5.6 and 16.1, we identify 247 variables, including extragalactic variables and 23 periodic variables. We have discovered three M dwarf eclipsing systems, including two candidates for transiting extrasolar planets.

  17. Photometric measurements of solar irradiance variations due to sunspots

    International Nuclear Information System (INIS)

    Chapman, G.A.; Herzog, A.D.; Laico, D.E.; Lawrence, J.K.; Templer, M.S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage. 23 refs

  18. Galaxy Tagging: photometric redshift refinement and group richness enhancement

    Science.gov (United States)

    Kafle, P. R.; Robotham, A. S. G.; Driver, S. P.; Deeley, S.; Norberg, P.; Drinkwater, M. J.; Davies, L. J.

    2018-06-01

    We present a new scheme, galtag, for refining the photometric redshift measurements of faint galaxies by probabilistically tagging them to observed galaxy groups constructed from a brighter, magnitude-limited spectroscopy survey. First, this method is tested on the DESI light-cone data constructed on the GALFORM galaxy formation model to tests its validity. We then apply it to the photometric observations of galaxies in the Kilo-Degree Imaging Survey (KiDS) over a 1 deg2 region centred at 15h. This region contains Galaxy and Mass Assembly (GAMA) deep spectroscopic observations (i-bandhttps://github.com/pkaf/galtag.git.

  19. Photometric investigation of the magnetic star 53 Camelopardalis

    International Nuclear Information System (INIS)

    Muciek, M.; Gertner, J.; North, P.; Rufener, F.

    1985-01-01

    New photometric results obtained in the Geneva system are presented for the star 53 Cam. Earlier photometric results obtained in another system are used as well to show the existence of about four ''null-wavelength regions'' between 3400 and 7700 A and to draw the pseudocontinuum of this star. Assuming axisymmetry about the magnetic axis, a simple model of brightness and equivalent width distribution on the surface of the star are proposed. The distribution of the intensity of the γ 5200 depression is given and a slight inhomogeneity of the distribution of effective temperature is suggested. 28 refs., 7 figs., 4 tabs. (author)

  20. [Determination of aluminium in flour foods with photometric method].

    Science.gov (United States)

    Ma, Lan; Zhao, Xin; Zhou, Shuang; Yang, Dajin

    2012-05-01

    To establish a determination method for aluminium in flour foods with photometric method. After samples being treated with microwave digestion and wet digestion, aluminium in staple flour foods was determined by photometric method. There was a good linearity of the result in the range of 0.25 - 5.0 microg/ml aluminium, r = 0.9998; limit of detection (LOD) : 2.3 ng/ml; limit of quantitation (LOQ) : 7 ng/ml. This method of determining aluminium in flour foods is simple, rapid and reliable.

  1. Kinematics and age of 15 stars-photometric solar analogs

    Science.gov (United States)

    Galeev, A. I.; Shimansky, V. V.

    2008-03-01

    The radial and space velocities are inferred for 15 stars that are photometric analogs of the Sun. The space velocity components (U, V, W) of most of these stars lie within the 10-60 km/s interval. The star HD 225239, which in our previous papers we classified as a subgiant, has a space velocity exceeding 100 km/s, and belongs to the thick disk. The inferred fundamental parameters of the atmospheres of solar analogs are combined with published evolutionary tracks to estimate the masses and ages of the stars studied. The kinematics of photometric analogs is compared to the data for a large group of solar-type stars.

  2. Absolute surface reconstruction by slope metrology and photogrammetry

    Science.gov (United States)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  3. Photometric Exoplanet Characterization and Multimedia Astronomy Communication

    Science.gov (United States)

    Cartier, Kimberly M. S.

    The transit method of detecting exoplanets has dominated the search for distant worlds since the success of the Kepler space telescope and will continue to lead the field after the launch of the Transiting Exoplanet Survey Satellite in 2018. But detections are just the beginning. Transit light curves can only reveal a limited amount of information about a planet, and that information is almost entirely dependent on the properties of the host star or stars. This dissertation discusses follow-up techniques to more precisely characterize transiting planets using photometric observations. A high-resolution follow-up imaging program using the Hubble Space Telescope (HST) searched for previously unknown stars nearby the hosts of small and cool Kepler exoplanets and observed a higher-than-expected occurrence rate of stellar multiplicity. The rate of previously unknown stellar multiples has strong implications for the size and habitability of the orbiting planets. Three systems with newly discovered stellar multiplicity, Kepler-296 (2 stars, 5 planets), KOI-2626 (3 stars, 1 planet), and KOI-3049 (2 stars, 1 planet), were characterized in more detail. In the cases of Kepler-296 and KOI-2626, some of the planets lost their previous habitable zone status because of host star ambiguity. Next, the ultra-short period, ultra-hot Jupiter WASP-103b was used as a casestudy to test for the presence of a stratospheric temperature inversion through dayside emission spectroscopy using HST. WASP-103b's near-infrared emission spectrum is consistent with an isothermal or thermally-inverted atmosphere and shows no significant broadband water absorption feature. Detection of an anomalously strong "super- Rayleigh" slope in its optical transmission spectrum prompted follow-up transmission spectroscopy of WASP-103b's atmosphere using the MINiature Radial Velocity Array (MINERVA), which tentatively verified the unexplained "super-Rayleigh" spectral slope. The final follow-up technique for

  4. Results of Absolute Cavity Pyrgeometer and Infrared Integrating Sphere Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dooraghi, Michael R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grobner, Julian [Physikalisch-Meteorologisches Observatorium Davos (PMOD); Thomann, Christian [Physikalisch-Meteorologisches Observatorium Davos (PMOD); Long, Chuck [National Oceanic and Atmospheric Administration; McComiskey, Allison [National Oceanic and Atmospheric Administration; Hall, Emiel [National Oceanic and Atmospheric Administration; Wacker, Stefan [Deutscher Wetterdienst

    2018-03-05

    Accurate and traceable atmospheric longwave irradiance measurements are required for understanding radiative impacts on the Earth's energy budget. The standard to which pyrgeometers are traceable is the interim World Infrared Standard Group (WISG), maintained in the Physikalisch-Meteorologisches Observatorium Davos (PMOD). The WISG consists of four pyrgeometers that were calibrated using Rolf Philipona's Absolute Sky-scanning Radiometer [1]. The Atmospheric Radiation Measurement (ARM) facility has recently adopted the WISG to maintain the traceability of the calibrations of all Eppley precision infrared radiometer (PIR) pyrgeometers. Subsequently, Julian Grobner [2] developed the infrared interferometer spectrometer and radiometer (IRIS) radiometer, and Ibrahim Reda [3] developed the absolute cavity pyrgeometer (ACP). The ACP and IRIS were developed to establish a world reference for calibrating pyrgeometers with traceability to the International System of Units (SI). The two radiometers are unwindowed with negligible spectral dependence, and they are traceable to SI units through the temperature scale (ITS-90). The two instruments were compared directly to the WISG three times at PMOD and twice at the Southern Great Plains (SGP) facility to WISG-traceable pyrgeometers. The ACP and IRIS agreed within +/- 1 W/m2 to +/- 3 W/m2 in all comparisons, whereas the WISG references exhibit a 2-5 Wm2 low bias compared to the ACP/IRIS average, depending on the water vapor column, as noted in Grobner et al. [4]. Consequently, a case for changing the current WISG has been made by Grobner and Reda. However, during the five comparisons the column water vapor exceeded 8 mm. Therefore, it is recommended that more ACP and IRIS comparisons should be held under different environmental conditions and water vapor column content to better establish the traceability of these instruments to SI with established uncertainty.

  5. Absolute entropy of ions in methanol

    International Nuclear Information System (INIS)

    Abakshin, V.A.; Kobenin, V.A.; Krestov, G.A.

    1978-01-01

    By measuring the initial thermoelectromotive forces of chains with bromo-silver electrodes in tetraalkylammonium bromide solutions the absolute entropy of bromide-ion in methanol is determined in the 298.15-318.15 K range. The anti Ssub(Brsup(-))sup(0) = 9.8 entropy units value is used for calculation of the absolute partial molar entropy of alkali metal ions and halogenide ions. It has been found that, absolute entropy of Cs + =12.0 entropy units, I - =14.0 entropy units. The obtained ion absolute entropies in methanol at 298.15 K within 1-2 entropy units is in an agreement with published data

  6. Near threshold absolute TDCS: First results

    International Nuclear Information System (INIS)

    Roesel, T.; Schlemmer, P.; Roeder, J.; Frost, L.; Jung, K.; Ehrhardt, H.

    1992-01-01

    A new method, and first results for an impact energy 2 eV above the threshold of ionisation of helium, are presented for the measurement of absolute triple differential cross sections (TDCS) in a crossed beam experiment. The method is based upon measurement of beam/target overlap densities using known absolute total ionisation cross sections and of detection efficiencies using known absolute double differential cross sections (DDCS). For the present work the necessary absolute DDCS for 1 eV electrons had also to be measured. Results are presented for several different coplanar kinematics and are compared with recent DWBA calculations. (orig.)

  7. Calibration Lessons Learned from Hyperion Experience

    Science.gov (United States)

    Casement, S.; Ho, K.; Sandor-Leahy, S.; Biggar, S.; Czapla-Myers, J.; McCorkel, J.; Thome, K.

    2009-12-01

    The use of hyperspectral imagers to provide climate-quality data sets, such as those expected from the solar reflective sensor on the Climate Absolute Radiance and Refractivity Observatory (CLARREO), requires stringent radiometric calibration requirements. These stringent requirements have been nearly met with broadband radiometers such as CERES, but high resolution spectrometers pose additional challenges. A review of the calibration processes for past space-based HSIs provide guidance on the calibration processes that will be needed for future sensors. In November 2000, the Earth Observer-1 (EO-1) platform was launched onboard a Boeing Delta II launch vehicle. The primary purpose of the EO-1 mission was to provide a technological testbed for spaceborne components. The platform has three sensors onboard, of which, the hyperspectral imager (HSI) Hyperion, is discussed here. The Hyperion sensor at the time had no comparable sensor in earth orbit, being the first grating-based, hyperspectral, civilian sensor in earth orbit. Ground and on-orbit calibration procedures including all cross-calibration activities have achieved an estimated instrument absolute radiometric error of 2.9% in the Visible channel (0.4 - 1.0 microns) and 3.4% in the shortwave infrared (SWIR, 0.9 - 2.5 microns) channel (EO-1/Hyperion Early Orbit Checkout Report Part II On-Orbit Performance Verification and Calibration). This paper describes the key components of the Hyperion calibration process that are applicable to future HSI missions. The pre-launch methods relied on then newly-developed, detector-based methods. Subsequent vicarious methods including cross-calibration with other sensors and the reflectance-based method showed significant differences from the prelaunch calibration. Such a difference demonstrated the importance of the vicarious methods as well as pointing to areas for improvement in the prelaunch methods. We also identify areas where lessons learned from Hyperion regarding

  8. Basic calibrations of the photographic RGU system. III - Intermediate and extreme Population II dwarf stars

    Science.gov (United States)

    Buser, R.; Fenkart, R. P.

    1990-11-01

    This paper presents an extended calibration of the color-magnitude and two-color diagrams and the metal-abundance parameter for the intermediate Population II and the extreme halo dwarfs observed in the Basel Palomar-Schmidt RGU three-color photometric surveys of the galaxy. The calibration covers the metallicity range between values +0.50 and -3.00. It is shown that the calibrations presented are sufficiently accurate to be useful for the future analyses of photographic survey data.

  9. A Synthesis of VIIRS Solar and Lunar Calibrations

    Science.gov (United States)

    Eplee, Robert E.; Turpie, Kevin R.; Meister, Gerhard; Patt, Frederick S.; Fireman, Gwyn F.; Franz, Bryan A.; McClain, Charles R.

    2013-01-01

    The NASA VIIRS Ocean Science Team (VOST) has developed two independent calibrations of the SNPP VIIRS moderate resolution reflective solar bands using solar diffuser and lunar observations through June 2013. Fits to the solar calibration time series show mean residuals per band of 0.078-0.10%. There are apparent residual lunar libration correlations in the lunar calibration time series that are not accounted for by the ROLO photometric model of the Moon. Fits to the lunar time series that account for residual librations show mean residuals per band of 0.071-0.17%. Comparison of the solar and lunar time series shows that the relative differences in the two calibrations are 0.12-0.31%. Relative uncertainties in the VIIRS solar and lunar calibration time series are comparable to those achieved for SeaWiFS, Aqua MODIS, and Terra MODIS. Intercomparison of the VIIRS lunar time series with those from SeaWiFS, Aqua MODIS, and Terra MODIS shows that the scatter in the VIIRS lunar observations is consistent with that observed for the heritage instruments. Based on these analyses, the VOST has derived a calibration lookup table for VIIRS ocean color data based on fits to the solar calibration time series.

  10. NEAR-INFRARED PHOTOMETRIC PROPERTIES OF 130,000 QUASARS: AN SDSS-UKIDSS-MATCHED CATALOG

    International Nuclear Information System (INIS)

    Peth, Michael A.; Ross, Nicholas P.; Schneider, Donald P.

    2011-01-01

    We present a catalog of over 130,000 quasar candidates with near-infrared (NIR) photometric properties, with an areal coverage of approximately 1200 deg 2 . This is achieved by matching the Sloan Digital Sky Survey (SDSS) in the optical ugriz bands to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) in the NIR YJHK bands. We match the ∼1 million SDSS DR6 Photometric Quasar catalog to Data Release 3 of the UKIDSS LAS (ULAS) and produce a catalog with 130,827 objects with detections in one or more NIR bands, of which 74,351 objects have optical and K-band detections and 42,133 objects have the full nine-band photometry. The majority (∼85%) of the SDSS objects were not matched simply because these were not covered by the ULAS. The positional standard deviation of the SDSS Quasar to ULAS matches is δ R.A. = 0.''1370 and δ decl. = 0.''1314. We find an absolute systematic astrometric offset between the SDSS Quasar catalog and the UKIDSS LAS, of |R.A. offset | = 0.''025 and |decl. offset | = 0.''040; we suggest the nature of this offset to be due to the matching of catalog, rather than image, level data. Our matched catalog has a surface density of ∼53 deg -2 for K ≤ 18.27 objects; tests using our matched catalog, along with data from the UKIDSS Deep Extragalactic Survey, imply that our limiting magnitude is i ∼ 20.6. Color-redshift diagrams, for the optical and NIR, show a close agreement between our matched catalog and recent quasar color models at redshift z ∼ 4.6, and very high, z > 5.7, redshift previously discovered quasars.

  11. Photometric study of the M51 system

    International Nuclear Information System (INIS)

    Burkhead, M.S.

    1978-01-01

    Photoelectric and photographic data are presented for the two components of the M51 system, NGC 5194 and NGC 5195. The photoelectric observations (UBV and I) are presented as a series of drift scans with various diaphragm sizes covering the bright central and faint outer regions. These data indicate the complexity and the very large extent of the system. Colors and magnitudes of the spiral arms are presented. The I data in particular show the broad spiral features first shown photographically by Zwicky. Deep, integrated photographic plates (IIIa-J) also show the large, structured outer regions and the complex nature of the region between the two galaxies. Calibrated contour maps and integrated luminosities of the system are presented.The maximum detected extent of the system is 40 arcmin or 120kpc. If a M/L ratio of 10 is assumed, the mass in the outer envelope is equal to the mass obtained for the more familiar bright optical components.These data and their presentation in the form of photoelectric drift scans, composite photographs, contour maps, and three-dimensional plots show the marvelous complexity of the system. It would seem that the individual galaxies, NGC 5194 and NGC 5195, cannot be considered separately but must be studied in the context of their being members of the M51 system

  12. Planck 2013 results. V. LFI calibration

    CERN Document Server

    Aghanim, N; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cappellini, B; Cardoso, J -F; Catalano, A; Chamballu, A; Chen, X; Chiang, L -Y; Christensen, P R; Church, S; Colombi, S; Colombo, L P L; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Gaier, T C; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jewell, J; Jones, W C; Juvela, M; Kangaslahti, P; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leach, S; Leahy, J P; Leonardi, R; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Naselsky, P; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Paci, F; Pagano, L; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, D; Peel, M; Perdereau, O; Perotto, L; Perrotta, F; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Ricciardi, S; Riller, T; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Watson, R; Wilkinson, A; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on a combination of the Orbital Dipole plus the Solar Dipole, caused respectively by the motion of the Planck spacecraft with respect to the Sun and by motion of the Solar System with respect to the CMB rest frame. The latter provides a signal of a few mK with the same spectrum as the CMB anisotropies and is visible throughout the mission. In this data release we rely on the characterization of the Solar Dipole as measured by WMAP. We also present preliminary results (at 44GHz only) on the study of the Orbital Dipole, which agree with the WMAP value of the Solar System speed within our uncertainties. We compute the calibration constant for each radiometer roughly once per hour, in order to keep track of changes in the detectors' gain. Since non-idealities in the optical response of the beams proved to be important, we implemented a fast convolution algorithm which ...

  13. Morpho-z: improving photometric redshifts with galaxy morphology

    Science.gov (United States)

    Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic

    2018-04-01

    We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.

  14. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Photometric Observation and Light Curve Analysis of Binary System ER-Orionis ... February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. ... Articles are also visible in Web of Science immediately.

  15. Stereoscopic and photometric surface reconstruction in scanning electron microscopy

    International Nuclear Information System (INIS)

    Scherer, S.

    2000-01-01

    The scanning electron microscope (SEM) is one of the most important devices to examine microscopic structures as it offers images of a high contrast range with a large depth of focus. Nevertheless, three-dimensional measurements, as desired in fracture mechanics, have previously not been accomplished. This work presents a system for automatic, robust and dense surface reconstruction in scanning electron microscopy combining new approaches in shape from stereo and shape from photometric stereo. The basic theoretical assumption for a known adaptive window algorithm is shown not to hold in scanning electron microscopy. A constraint derived from this observation yields a new, simplified, hence faster calculation of the adaptive window. The correlation measure itself is obtained by a new ordinal measure coefficient. Shape from photometric stereo in the SEM is formulated by relating the image formation process with conventional photography. An iterative photometric ratio reconstruction is invented based on photometric ratios of backscatter electron images. The performance of the proposed system is evaluated using ground truth data obtained by three alternative shape recovery devices. Most experiments showed relative height accuracy within the tolerances of the alternative devices. (author)

  16. Classical variables in the era of space photometric missions

    Directory of Open Access Journals (Sweden)

    Molnár L.

    2015-01-01

    Full Text Available The space photometric missions like CoRoT and Kepler transformed our view of pulsating stars, including the well-known RR Lyrae and Cepheid classes. The K2, TESS and PLATO missions will expand these investigations to larger sample sizes and to specific stellar populations.

  17. Solving the uncalibrated photometric stereo problem using total variation

    DEFF Research Database (Denmark)

    Quéau, Yvain; Lauze, Francois Bernard; Durou, Jean-Denis

    2013-01-01

    In this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both...

  18. Photometric observations of Earth-impacting asteroid 2008 TC(3)

    Czech Academy of Sciences Publication Activity Database

    Kozubal, M.; Gasdia, F.W.; Dantowitz, R.; Scheirich, Peter; Harris, A. W.

    2011-01-01

    Roč. 46, č. 4 (2011), s. 534-542 ISSN 1086-9379 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroid * photometric observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.719, year: 2011

  19. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES

    Science.gov (United States)

    Tedeschi, Henry; James, Joseph M.; Anthony, William

    1963-01-01

    Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions. PMID:14064105

  20. ESO & NOT photometric monitoring of the Cloverleaf quasar

    NARCIS (Netherlands)

    Ostensen, R; Remy, M; Lindblad, PO; Refsdal, S; Stabell, R; Surdej, J; Barthel, PD; Emanuelsen, PI; Festin, L; Gosset, E; Hainaut, O; Hakala, P; Hjelm, M; Hjorth, J; Hutsemekers, D; Jablonski, M; Kaas, AA; Kristen, H; Larsson, S; Magain, P; Pettersson, B; Pospieszalska-Surdej, A; Smette, A; Teuber, J; Thomsen, B; Van Drom, E

    1997-01-01

    The Cloverleaf quasar, H1413+117, has been photometrically monitored at ESO (La Silla, Chile) and with the NOT (La Palma, Spain) during the period 1987-1994. All good quality CCD frames have been successfully analysed using two independent methods (i.e. an automatic image decomposition technique and

  1. The Young Solar Analogs Project: Initial Photometric Results

    Science.gov (United States)

    Saken, Jon M.; Gray, R. O.; Corbally, C. J.

    2013-06-01

    Since 2007 we have been conducting spectroscopic monitoring of the Ca II H & K lines and G-band for a sample of 31 YSAs in order to better understand their activity cycles and variations, as well as the effects of young stars on their solar systems. The targets cover the spectral range of stars most likely to contain Earth analogs, F8-K2, and a broad enough range of ages, 0.3 Gyr - 1.5 Gyr, to investigate how activity level changes with stellar age. These studies are already showing possible evidence for activity cycles, large variations in starspot activity, and flaring events. In order to obtain a more complete picture of the nature of the stars' activity and examine the correlations between stellar brightness and chromospheric activity, we have started a complimentary campaign of photometric monitoring of these targets in Johnson B, V, and R, Stromgren v and H-alpha, with the use of a small robotic telescope dedicated to this project. This poster will present some results from the first year of photometric monitoring, focusing on the correlations between the photometric bands, and between the photometric and spectroscopic data, as well as an investigation of short-term (1-2 minutes) spectroscopic variations using data obtained earlier this year on the 1.8 m Vatican Advanced Technology Telescope (VATT).

  2. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    Abstract. Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves ...

  3. Mechanics of log calibration

    International Nuclear Information System (INIS)

    Waller, W.C.; Cram, M.E.; Hall, J.E.

    1975-01-01

    For any measurement to have meaning, it must be related to generally accepted standard units by a valid and specified system of comparison. To calibrate well-logging tools, sensing systems are designed which produce consistent and repeatable indications over the range for which the tool was intended. The basics of calibration theory, procedures, and calibration record presentations are reviewed. Calibrations for induction, electrical, radioactivity, and sonic logging tools will be discussed. The authors' intent is to provide an understanding of the sources of errors, of the way errors are minimized in the calibration process, and of the significance of changes in recorded calibration data

  4. 21 CFR 862.2160 - Discrete photometric chemistry analyzer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Discrete photometric chemistry analyzer for... Clinical Laboratory Instruments § 862.2160 Discrete photometric chemistry analyzer for clinical use. (a) Identification. A discrete photometric chemistry analyzer for clinical use is a device intended to duplicate...

  5. LROC WAC 100 Meter Scale Photometrically Normalized Map of the Moon

    Science.gov (United States)

    Boyd, A. K.; Nuno, R. G.; Robinson, M. S.; Denevi, B. W.; Hapke, B. W.

    2013-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) monthly global observations allowed derivation of a robust empirical photometric solution over a broad range of incidence, emission and phase (i, e, g) angles. Combining the WAC stereo-based GLD100 [1] digital terrain model (DTM) and LOLA polar DTMs [2] enabled precise topographic corrections to photometric angles. Over 100,000 WAC observations at 643 nm were calibrated to reflectance (I/F). Photometric angles (i, e, g), latitude, and longitude were calculated and stored for each WAC pixel. The 6-dimensional data set was then reduced to 3 dimensions by photometrically normalizing I/F with a global solution similar to [3]. The global solution was calculated from three 2°x2° tiles centered on (1°N, 147°E), (45°N, 147°E), and (89°N, 147°E), and included over 40 million WAC pixels. A least squares fit to a multivariate polynomial of degree 4 (f(i,e,g)) was performed, and the result was the starting point for a minimum search solving the non-linear function min[{1-[ I/F / f(i,e,g)] }2]. The input pixels were filtered to incidence angles (calculated from topography) shadowed pixels, and the output normalized I/F values were gridded into an equal-area map projection at 100 meters/pixel. At each grid location the median, standard deviation, and count of valid pixels were recorded. The normalized reflectance map is the result of the median of all normalized WAC pixels overlapping that specific 100-m grid cell. There are an average of 86 WAC normalized I/F estimates at each cell [3]. The resulting photometrically normalized mosaic provides the means to accurately compare I/F values for different regions on the Moon (see Nuno et al. [4]). The subtle differences in normalized I/F can now be traced across the local topography at regions that are illuminated at any point during the LRO mission (while the WAC was imaging), including at polar latitudes. This continuous map of reflectance at 643 nm

  6. Introducing the Mean Absolute Deviation "Effect" Size

    Science.gov (United States)

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  7. Investigating Absolute Value: A Real World Application

    Science.gov (United States)

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  8. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, Renee [Oxford Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Kunz, Martin [Department de physique theorique, Universite de Geneve, 30, quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Bassett, Bruce; Smith, Mat; Newling, James [African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945 (South Africa); Varughese, Melvin [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7700 (South Africa); Kessler, Rick; Frieman, Joshua [The Kavli Institute for Cosmological Physics, The University of Chicago, 933 East 56th Street, Chicago, IL 60637 (United States); Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX (United Kingdom); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Falck, Bridget; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: rhlozek@astro.princeton.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-06-20

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  9. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    International Nuclear Information System (INIS)

    Hlozek, Renée; Kunz, Martin; Bassett, Bruce; Smith, Mat; Newling, James; Varughese, Melvin; Kessler, Rick; Frieman, Joshua; Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John; Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Dilday, Ben; Falck, Bridget; Riess, Adam G.; Sako, Masao; Schneider, Donald P.

    2012-01-01

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10 4 SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the Ω m , Ω Λ contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are Ω BEAMS m = 0.194 ± 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  10. In situ vector calibration of magnetic observatories

    Directory of Open Access Journals (Sweden)

    A. Gonsette

    2017-09-01

    Full Text Available The goal of magnetic observatories is to measure and provide a vector magnetic field in a geodetic coordinate system. For that purpose, instrument set-up and calibration are crucial. In particular, the scale factor and orientation of a vector magnetometer may affect the magnetic field measurement. Here, we highlight the baseline concept and demonstrate that it is essential for data quality control. We show how the baselines can highlight a possible calibration error. We also provide a calibration method based on high-frequency absolute measurements. This method determines a transformation matrix for correcting variometer data suffering from scale factor and orientation errors. We finally present a practical case where recovered data have been successfully compared to those coming from a reference magnetometer.

  11. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  12. MAGNETIC GRADIOMETRY: Instrumentation, Calibration and Applications

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia

    is to be used in the forthcoming satellites CHAMP and SAC-C. Linearity, thermal, radiation, dynamic and calibration tests are carried out to qualify the magnetometer in order to ensure state-of-the-art performance with subnanotesla precision. The overall calibration of the gradiometer yields an omnidirectional...... absolute accuracy of 93pT/m.The scalar calibration of a vector magnetometer is explained thoroughly. The novel method is simple and it represents the most robust and unique way to estimate the characterizing 9 parameters of a vector magnetometer. Its power relies on the linearization of the parametrization...... and offers the possibility of separating the geomagnetic field sources.By using tensor algebra the spherical harmonic expansion of the magnetic field in a curl free region and its associated gradient tensor are derived. This differential tensor quantity is then expressed by spherical coordinates...

  13. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  14. On the Absolute Age of the Globular Cluster M92

    Science.gov (United States)

    Di Cecco, A.; Becucci, R.; Bono, G.; Monelli, M.; Stetson, P. B.; Degl'Innocenti, S.; Prada Moroni, P. G.; Nonino, M.; Weiss, A.; Buonanno, R.; Calamida, A.; Caputo, F.; Corsi, C. E.; Ferraro, I.; Iannicola, G.; Pulone, L.; Romaniello, M.; Walker, A. R.

    2010-09-01

    We present precise and deep optical photometry of the globular M92. Data were collected in three different photometric systems: Sloan Digital Sky Survey (g‧, r‧, i‧, and z‧ MegaCam at CFHT), Johnson-Kron-Cousins (B, V, and I; various ground-based telescopes), and Advanced Camera for Surveys (ACS) Vegamag (F475W, F555W, and F814W; Hubble Space Telescope). Special attention was given to the photometric calibration, and the precision of the ground-based data is generally better than 0.01 mag. We computed a new set of α-enhanced evolutionary models accounting for the gravitational settling of heavy elements at fixed chemical composition ([α/Fe] = +0.3, [Fe/H] = -2.32 dex, and Y = 0.248). The isochrones—assuming the same true distance modulus (μ = 14.74 mag), the same reddening [E(B - V) = 0.025 ± 0.010 mag], and the same reddening law—account for the stellar distribution along the main sequence and the red giant branch in different color-magnitude diagrams (i‧, g‧ - i‧ i‧, and g‧ - r‧ i‧, g‧ - z‧ I, and B - I and F814W and F475W-F814W). The same outcome applies to the comparison between the predicted zero-age horizontal-branch (ZAHB) and the HB stars. We also found a cluster age of 11 ± 1.5 Gyr, in good agreement with previous estimates. The error budget accounts for uncertainties in the input physics and the photometry. To test the possible occurrence of CNO-enhanced stars, we also computed two sets of α- and CNO-enhanced (by a factor of 3) models, both at fixed total metallicity ([M/H] = -2.10 dex) and at fixed iron abundance. We found that the isochrones based on the former set give the same cluster age (11 ± 1.5 Gyr) as the canonical α-enhanced isochrones. The isochrones based on the latter set also give a similar cluster age (10 ± 1.5 Gyr). These findings support previous results concerning the weak sensitivity of cluster isochrones to CNO-enhanced chemical mixtures. This paper makes use of data obtained from the Isaac Newton

  15. Photometric Lambert Correction for Global Mosaicking of HRSC Data

    Science.gov (United States)

    Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas

    2015-04-01

    The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each

  16. Inertial Sensor Error Reduction through Calibration and Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Stefan Lambrecht

    2016-02-01

    Full Text Available This paper presents the comparison between cooperative and local Kalman Filters (KF for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.

  17. Synthesis Polarimetry Calibration

    Science.gov (United States)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  18. The Dark Energy Survey Data Processing and Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, Joseph J. [Munich U.; Armstrong, Robert [Penn State U.; Bertin, Emmanuel [Paris, Inst. Astrophys.; Daues, Gregory E. [NCSA, Urbana; Desai, Shantanu [Munich U.; Gower, Michelle [NCSA, Urbana; Gruendl, Robert [Illinois U., Urbana (main); Hanlon, William [Illinois U., Urbana (main); Kuropatkin, Nikolay [Fermilab; Lin, Huan [Fermilab; Marriner, John [Fermilab; Petravick, Don; Sevilla, Ignacio [Madrid, CIEMAT; Swanson, Molly [Harvard-Smithsonian Ctr. Astrophys.; Tomashek, Todd [NCSA, Urbana; Tucker, Douglas [Fermilab; Yanny, Brian [Fermilab

    2012-09-24

    The Dark Energy Survey (DES) is a 5000 deg2 grizY survey reaching characteristic photometric depths of 24th magnitude (10 sigma) and enabling accurate photometry and morphology of objects ten times fainter than in SDSS. Preparations for DES have included building a dedicated 3 deg2 CCD camera (DECam), upgrading the existing CTIO Blanco 4m telescope and developing a new high performance computing (HPC) enabled data management system (DESDM). The DESDM system will be used for processing, calibrating and serving the DES data. The total data volumes are high (~2PB), and so considerable effort has gone into designing an automated processing and quality control system. Special purpose image detrending and photometric calibration codes have been developed to meet the data quality requirements, while survey astrometric calibration, coaddition and cataloging rely on new extensions of the AstrOmatic codes which now include tools for PSF modeling, PSF homogenization, PSF corrected model fitting cataloging and joint model fitting across multiple input images. The DESDM system has been deployed on dedicated development clusters and HPC systems in the US and Germany. An extensive program of testing with small rapid turn-around and larger campaign simulated datasets has been carried out. The system has also been tested on large real datasets, including Blanco Cosmology Survey data from the Mosaic2 camera. In Fall 2012 the DESDM system will be used for DECam commissioning, and, thereafter, the system will go into full science operations.

  19. ORNL calibrations facility

    International Nuclear Information System (INIS)

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  20. Development of a photometric measuring method for soot analysis in flames. Final report; Entwicklung eines photometrischen Messverfahrens zur Russanalyse in Flammen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, R.; Niemann, J.

    1995-12-31

    The present photometric measuring method for soot analysis in flames meets the following specifications: determination of the volume concentration of soot particles from 2 x 10{sup -7} upwards by means of extinction measurement at three different wavelengths; determination of the particle size distribution of soot particles by means of nephelometry in the range betwenn 20 and 400 nm; contactless measurements on the particle collective in the flame; no need for calibration of the photometric measuring method on the basis of particles of known size and concentration. (orig./SR) [Deutsch] Es ergeben sich fuer das entwickelte photometrische Messverfahren zur Russanalyse in Flammen folgende Spezifikationen: - Bestimmung der Volumenkonzentration der Russpartikel ab 2 x 10{sup -7} mittels Extinktionsmessungen bei drei Lichtwellenlaengen, - Ermittlung der Partikelgroessenverteilung der Russpartikel aus Streulichtmessungen im Bereich von 20 bis 400 nm, - beruehrungsfreie Messung in der Flamme am Partikelkollektiv und, - keine Kalibrierung des photometrischen Messverfahrens mit Partikeln bekannter Groesse bzw. bekannter Konzentration erforderlich. (orig./SR)

  1. Radial velocity variations of photometrically quiet, chromospherically inactive Kepler stars: A link between RV jitter and photometric flicker

    Energy Technology Data Exchange (ETDEWEB)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16803 (United States); Aigrain, Suzanne [Sub-department of Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Basri, Gibor [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Walkowicz, Lucianne M. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States)

    2014-02-01

    We compare stellar photometric variability, as measured from Kepler light curves by Basri et al., with measurements of radial velocity (RV) rms variations of all California Planet Search overlap stars. We newly derive rotation periods from the Kepler light curves for all of the stars in our study sample. The RV variations reported herein range from less than 4 to 135 m s{sup –1}, yet the stars all have amplitudes of photometric variability less than 3 mmag, reflecting the preference of the RV program for chromospherically 'quiet' stars. Despite the small size of our sample, we find with high statistical significance that the RV rms manifests strongly in the Fourier power spectrum of the light curve: stars that are noisier in RV have a greater number of frequency components in the light curve. We also find that spot models of the observed light curves systematically underpredict the observed RV variations by factors of ∼2-1000, likely because the low-level photometric variations in our sample are driven by processes not included in simple spot models. The stars best fit by these models tend to have simpler light curves, dominated by a single relatively high-amplitude component of variability. Finally, we demonstrate that the RV rms behavior of our sample can be explained in the context of the photometric variability evolutionary diagram introduced by Bastien et al. We use this diagram to derive the surface gravities of the stars in our sample, revealing many of them to have moved off the main sequence. More generally, we find that the stars with the largest RV rms are those that have evolved onto the 'flicker floor' sequence in that diagram, characterized by relatively low amplitude but highly complex photometric variations which grow as the stars evolve to become subgiants.

  2. Application of x-ray fluorescence (XRF) absolute analysis method for silica refractories

    International Nuclear Information System (INIS)

    Asakura, Hideo; Yamada, Yasujiro; Kansai, Kouhei; Tomatsu, Ichirou; Murata, Mamoru

    2015-01-01

    X-ray fluorescence (XRF) analysis is a rapid and precise quantitative analytical method for the determination of major and trace elements in many industries and academics. XRF analytical values are relative due to the use of the calibration curves calculated from measuring the reference standard materials such as Japanese Refractory Reference Materials (JRRM) series with certified values determined by wet chemical analysis. The development of the XRF analytical method from relative to absolute analysis will help much to determine the absolute values of samples from the fields where reference standard samples have not been prepared, and thus can be applied widely in many industries. The implement of the absolute XRF analysis for silica refractories requires high purity reagents and/or reference standard solution for the binary basic calibration curve, and theoretical matrix correction coefficients for the multi-components silica refractories analysis. The reproducibility and repeatability of this method for Al 2 O 3 5 mass% sample were 0.009 and 0.006 mass% in Al 2 O 3 and showed better values that those of ICP-AES recognized as an absolute method in JIS R 2212-2, which yielded 0.028 and 0.031 mass%, respectively. The XRF absolute analysis for JRRM 200 series, 201a and 205a does not show a bias but coincides with their certified values. (author)

  3. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  4. THE PHOTOMETRIC CLASSIFICATION SERVER FOR Pan-STARRS1

    International Nuclear Information System (INIS)

    Saglia, R. P.; Bender, R.; Seitz, S.; Senger, R.; Snigula, J.; Phleps, S.; Wilman, D.; Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Heasley, J. N.; Kaiser, N.; Magnier, E. A.; Morgan, J. S.; Greisel, N.; Bailer-Jones, C. A. L.; Klement, R. J.; Rix, H.-W.; Smith, K.; Green, P. J.

    2012-01-01

    The Pan-STARRS1 survey is obtaining multi-epoch imaging in five bands (g P1 r P1 i P1 z P1 y P1 ) over the entire sky north of declination –30 deg. We describe here the implementation of the Photometric Classification Server (PCS) for Pan-STARRS1. PCS will allow the automatic classification of objects into star/galaxy/quasar classes based on colors and the measurement of photometric redshifts for extragalactic objects, and will constrain stellar parameters for stellar objects, working at the catalog level. We present tests of the system based on high signal-to-noise photometry derived from the Medium-Deep Fields of Pan-STARRS1, using available spectroscopic surveys as training and/or verification sets. We show that the Pan-STARRS1 photometry delivers classifications and photometric redshifts as good as the Sloan Digital Sky Survey (SDSS) photometry to the same magnitude limits. In particular, our preliminary results, based on this relatively limited data set down to the SDSS spectroscopic limits, and therefore potentially improvable, show that stars are correctly classified as such in 85% of cases, galaxies in 97%, and QSOs in 84%. False positives are less than 1% for galaxies, ≈19% for stars, and ≈28% for QSOs. Moreover, photometric redshifts for 1000 luminous red galaxies up to redshift 0.5 are determined to 2.4% precision (defined as 1.48 × Median|z phot – z spec |/(1 + z)) with just 0.4% catastrophic outliers and small (–0.5%) residual bias. For bluer galaxies up to the same redshift, the residual bias (on average –0.5%) trend, percentage of catastrophic failures (1.2%), and precision (4.2%) are higher, but still interestingly small for many science applications. Good photometric redshifts (to 5%) can be obtained for at most 60% of the QSOs of the sample. PCS will create a value-added catalog with classifications and photometric redshifts for eventually many millions of sources.

  5. Absolute dimensions of eclipsing binaries XXVII. V1130 tauri

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Olsen, E, H.; Helt, B. E.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: individual: V1130¿Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities Udgivelsesdato: 17 Feb.......stars: evolution / stars: fundamental parameters / stars: individual: V1130¿Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities Udgivelsesdato: 17 Feb....

  6. The design of a measuring system for soft X ray absolute intensity

    International Nuclear Information System (INIS)

    Cui Congwu; Cui Mingqi

    1997-01-01

    The design of a measuring system for soft X ray absolute intensity in detail is presented. The system consists of two parts: the ionization chamber, the silicon photodiode and its transferring system. The system can be used as the primary standard detector for the measurement of soft X ray absolute radiation flux in the energy range of 50 to 2000 eV after being calibrated. The whole system will be installed to the newly built beamline of 3W1B at Beijing Synchrotron Radiation Facility

  7. Absolute measurement of the critical scattering cross section in cobalt

    International Nuclear Information System (INIS)

    Glinka, C.J.; Minkiewicz, V.J.; Passell, L.

    1975-01-01

    Small-angle neutron scattering techniques have been used to study the angular distribution of the critical scattering from cobalt above T/sub c/. These measurements have been put on an absolute scale by calibrating the critical scattering directly against the nuclear incoherent scattering from cobalt. In this way the interaction range r 1 , which appears in the classical and modified Ornstein--Zernike expressions for the asymptotic form of the spin pair correlation function and is related to the strength of the spin correlations, has been determined. We obtain r 1 /a = 0.46 +- 0.03 for the ratio of the interaction range to the nearest-neighbor distance in cobalt. This result is in good agreement with theoretical predictions. Lack of agreement among previous determinations of the ratio r 1 /a made in iron failed to provide a definitive comparison with theory

  8. The absolute environmental performance of buildings

    DEFF Research Database (Denmark)

    Brejnrod, Kathrine Nykjær; Kalbar, Pradip; Petersen, Steffen

    2017-01-01

    Our paper presents a novel approach for absolute sustainability assessment of a building's environmental performance. It is demonstrated how the absolute sustainable share of the earth carrying capacity of a specific building type can be estimated using carrying capacity based normalization factors....... A building is considered absolute sustainable if its annual environmental burden is less than its share of the earth environmental carrying capacity. Two case buildings – a standard house and an upcycled single-family house located in Denmark – were assessed according to this approach and both were found...... to exceed the target values of three (almost four) of the eleven impact categories included in the study. The worst-case excess was for the case building, representing prevalent Danish building practices, which utilized 1563% of the Climate Change carrying capacity. Four paths to reach absolute...

  9. MEAN OF MEDIAN ABSOLUTE DERIVATION TECHNIQUE MEAN ...

    African Journals Online (AJOL)

    eobe

    development of mean of median absolute derivation technique based on the based on the based on .... of noise mean to estimate the speckle noise variance. Noise mean property ..... Foraging Optimization,” International Journal of. Advanced ...

  10. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  11. Selective extraction-photometric determination of cadmium by basic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Kish, P P; Balog, J S [Uzhgorodskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1979-12-01

    Two variants of selective extraction-photometric determination of cadmium with basic dyes have been developed. In the first one, cadmium is extracted as the iodide by a tributyl phosphate solution in benzene from aqueous solutions containing 0.1 M KI (pH 6-10). Then the cadmium is transformed into a coloured ion associate by treatment of the extracts with Malachite Green in the presence of iodide ions. In the second case, the extract is equilibrated with an equeous solutions of Rhodamine B in the presence of KBr. In this variant, the cadmium is transformed into an anionic iodide-bromide complex which reacts with Rhodamine B cations to form an ion associate. Procedures have been developed of selective extraction-photometric determination of cadmium in sulphur, indium-gallium and zinc concentrates, Zn-As-Cd-Se and Zn-As-Cd-Te films, Cd-S-In and Ga-Sb-Cd-Te alloys.

  12. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  13. Photometric study of the pulsating, eclipsing binary OO DRA

    International Nuclear Information System (INIS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-01-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  14. Physical characterization of asteroid surfaces from photometric analysis

    International Nuclear Information System (INIS)

    Helfenstein, P.; Veverka, J.

    1989-01-01

    Rigorous photometric models, like Hapke's equation, can be applied to the analysis of disk-integrated phase curves in order to estimate a variety of regolith physical properties (average particle single-scattering albedo, particle transparency, soil compaction and large-scale roughness). Unfortunately, unambiguous interpretation is difficult due to uncertainties introduced by the irregular shapes of many asteroids and because Earth-based observations are often restricted to small phase angles (<30 degrees). In this chapter, the authors explore in detail how incomplete phase-angle coverage and nonsphericity of asteroids limits the reliable determination of Hapke's photometric parameters from asteroid phase curves. From obtainable Earth-based observations, it is possible to derive useful relative comparisons of single-scattering albedos, opposition-surge amplitudes, and regolith compaction states for different asteroids

  15. An optrode for photometric detection of ammonia in air

    Science.gov (United States)

    Buzanovskii, V. A.

    2017-10-01

    A scheme of constructing an LED optrode for photometric detection of ammonia in air is considered. The components of the device are (1) a glass plate coated with a film of polydimethylsiloxane with an ion-coupled cation of brilliant-green dye, (2) an LED emitting at a wavelength of 655 nm, and (3) a metal housing. The nominal static conversion function, sensitivity, and relative measurement error of the device are analyzed on the basis of mathematical modeling. The obtained results allow one to design an LED optrode capable of carrying out control for automated technological processes, solving problems in the area of security, etc. The device provides the ability to create photometric gas analyzers of ammonia with small overall dimensions, power consumption, and cost.

  16. Absolute spectrophotometry of Nova Cygni 1975

    International Nuclear Information System (INIS)

    Kontizas, E.; Kontizas, M.; Smyth, M.J.

    1976-01-01

    Radiometric photoelectric spectrophotometry of Nova Cygni 1975 was carried out on 1975 August 31, September 2, 3. α Lyr was used as reference star and its absolute spectral energy distribution was used to reduce the spectrophotometry of the nova to absolute units. Emission strengths of Hα, Hβ, Hγ (in W cm -2 ) were derived. The Balmer decrement Hα:Hβ:Hγ was compared with theory, and found to deviate less than had been reported for an earlier nova. (author)

  17. MYRaf: A new Approach with IRAF for Astronomical Photometric Reduction

    Science.gov (United States)

    Kilic, Y.; Shameoni Niaei, M.; Özeren, F. F.; Yesilyaprak, C.

    2016-12-01

    In this study, the design and some developments of MYRaf software for astronomical photometric reduction are presented. MYRaf software is an easy to use, reliable, and has a fast IRAF aperture photometry GUI tools. MYRaf software is an important step for the automated software process of robotic telescopes, and uses IRAF, PyRAF, matplotlib, ginga, alipy, and Sextractor with the general-purpose and high-level programming language Python and uses the QT framework.

  18. Photometric classification and redshift estimation of LSST Supernovae

    Science.gov (United States)

    Dai, Mi; Kuhlmann, Steve; Wang, Yun; Kovacs, Eve

    2018-04-01

    Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopically following up all the SNe. We investigate the performance of a SN classifier that uses SN colors to classify LSST SNe with the Random Forest classification algorithm. Our classifier results in an AUC of 0.98 which represents excellent classification. We are able to obtain a photometric SN sample containing 99% SNe Ia by choosing a probability threshold. We estimate the photometric redshifts (photo-z) of SNe in our sample by fitting the SN light curves using the SALT2 model with nested sampling. We obtain a mean bias () of 0.012 with σ ( z_phot-z_spec/1+z_spec) = 0.0294 without using a host-galaxy photo-z prior, and a mean bias () of 0.0017 with σ ( z_phot-z_spec/1+z_spec) = 0.0116 using a host-galaxy photo-z prior. Assuming a flat ΛCDM model with Ωm = 0.3, we obtain Ωm of 0.305 ± 0.008 (statistical errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter σint = 0.11) derived using our methodology without using host-galaxy photo-z prior. Our method will help boost the power of SNe from the LSST as cosmological probes.

  19. Extractive photometric determination of zirconium in magnetic alloys

    International Nuclear Information System (INIS)

    Kutyrev, I.M.; Chernysheva, G.M.; Basargin, N.N.; Mikheev, N.I.

    1996-01-01

    A method for extractive photometric determination of Zr in magnetic alloys is presented. Extractive system - trioctylamine in toluene -H 2 SO 4 -Zr ensure selective and rapid (in single extraction) separation of Zr from Fe(3), Fe(2), Co, Ni, Cu, Al, Ti, Cr(3), Mn, Si, P, Nb, and Ta. The reliability of the method is confirmed in determination of Zr in the standerd sample SS 132c

  20. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  1. DI3 - A New Procedure for Absolute Directional Measurements

    Directory of Open Access Journals (Sweden)

    A Geese

    2011-06-01

    Full Text Available The standard observatory procedure for determining a geomagnetic field's declination and inclination absolutely is the DI-flux measurement. The instrument consists of a non-magnetic theodolite equipped with a single-axis fluxgate magnetometer. Additionally, a scalar magnetometer is needed to provide all three components of the field. Using only 12 measurement steps, all systematic errors can be accounted for, but if only one of the readings is wrong, the whole measurement has to be rejected. We use a three-component sensor on top of the theodolites telescope. By performing more measurement steps, we gain much better control of the whole procedure: As the magnetometer can be fully calibrated by rotating about two independent directions, every combined reading of magnetometer output and theodolite angles provides the absolute field vector. We predefined a set of angle positions that the observer has to try to achieve. To further simplify the measurement procedure, the observer is guided by a pocket pc, in which he has only to confirm the theodolite position. The magnetic field is then stored automatically, together with the horizontal and vertical angles. The DI3 measurement is periodically performed at the Niemegk Observatory, allowing for a direct comparison with the traditional measurements.

  2. Dynamical and photometric models of star formation in tidal tails

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1990-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broadband photometric evolutionary code. Test particles are initially placed in circular orbits around a softened point mass and then perturbed by a companion passing in a parabotic orbit. During the passage, the density evolution of the galaxy is examined both in regions within the disk and in selected comoving regions in the tidal features. Even without the inclusion of self-gravity and hydrodynamics, regions of compression form inside the disk, along the tidal tail, and in the tidal bridge causing local density increases of up to 500 percent. By assuming that the density changes relate to the star-formation rate via a Schmidt (1959) law, limits on the density changes needed to make detectable changes in the colors are calculated. A spiral galaxy population is synthesized and the effects of modest changes in the star-formation rate are explored using a broadband photometric evolutionary code. Density changes similar to those found in the dynamical models will cause detectable changes in the colors of a stellar population. From these models, it is determined that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. 52 refs

  3. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES

    International Nuclear Information System (INIS)

    Gerdes, David W.; Sypniewski, Adam J.; McKay, Timothy A.; Hao, Jiangang; Weis, Matthew R.; Wechsler, Risa H.; Busha, Michael T.

    2010-01-01

    Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single 'best estimate' and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.

  4. Multicolor photometric study of M31 globular clusters

    International Nuclear Information System (INIS)

    Fan Zhou; Ma Jun; Zhou Xu

    2009-01-01

    We present the photometry of 30 globular clusters (GCs) and GC candidates in 15 intermediate-band filters covering the wavelength region from ∼3000 to ∼10000 A using the archival CCD images of M31 observed as part of the Beijing - Arizona - Taiwan - Connecticut (BATC) Multicolor Sky Survey. We transform these intermediate-band photometric data into the photometry in the standard U BV RI broad-bands. These M31 GC candidates are selected from the Revised Bologna Catalog (RBC V.3.5), and most of these candidates do not have any photometric data. Therefore, the presented photometric data are a supplement to the RBC V.3.5. We find that 4 out of 61 GCs and GC candidates in RBC V.3.5 do not show any signal on the BATC images at their locations. By applying a linear fit of the distribution in the color-magnitude diagram of blue GCs and GC candidates using data from the RBC V.3.5, in this study, we find the 'blue-tilt' of blue M31 GCs with a high confidence at 99.95% or 3.47σ for the confirmed GCs, and > 99.99% or 4.87σ for GCs and GC candidates. (research papers)

  5. A simple micro-photometric method for urinary iodine determination.

    Science.gov (United States)

    Grimm, Gabriele; Lindorfer, Heidelinde; Kieweg, Heidi; Marculescu, Rodrig; Hoffmann, Martha; Gessl, Alois; Sager, Manfred; Bieglmayer, Christian

    2011-10-01

    Urinary iodide concentration (UIC) is useful to evaluate nutritional iodine status. In clinical settings UIC helps to exclude blocking of the thyroid gland by excessive endogenous iodine, if diagnostic or therapeutic administration of radio-iodine is indicated. Therefore, this study established a simple test for the measurement of UIC. UIC was analyzed in urine samples of 200 patients. Samples were pre-treated at 95°C for 45 min with ammonium persulfate in a thermal cycler, followed by a photometric Sandell-Kolthoff reaction (SK) carried out in microtiter plates. For method comparison, UIC was analyzed in 30 samples by inductivity coupled plasma mass spectro-metry (ICP-MS) as a reference method. Incubation conditions were optimized concerning recovery. The photometric test correlated well to the reference method (SK=0.91*ICP-MS+1, r=0.962) and presented with a functional sensitivity of 20 μg/L. UIC of patient samples ranged from photometric test provides satisfactory results and can be performed with the basic equipment of a clinical laboratory.

  6. A PHOTOMETRIC ANALYSIS OF SEVENTEEN BINARY STARS USING SPECKLE IMAGING

    International Nuclear Information System (INIS)

    Davidson, James W.; Baptista, Brian J.; Horch, Elliott P.; Franz, Otto; Van Altena, William F.

    2009-01-01

    Magnitude differences obtained from speckle imaging are used in combination with other data in the literature to place the components of binary star systems on the H-R diagram. Isochrones are compared with the positions obtained, and a best-fit isochrone is determined for each system, yielding both masses of the components as well as an age range consistent with the system parameters. Seventeen systems are studied, 12 of which were observed with the 0.6 m Lowell-Tololo Telescope at Cerro Tololo Inter-American Observatory and six of which were observed with the WIYN 3.5 m Telescope (The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories) at Kitt Peak. One system was observed from both sites. In comparing photometric masses to mass information from orbit determinations, we find that the photometric masses agree very well with the dynamical masses, and are generally more precise. For three systems, no dynamical masses exist at present, and therefore the photometrically determined values are the first mass estimates derived for these components.

  7. Derivation of photometric redshifts for the 3XMM catalogue

    Science.gov (United States)

    Georgantopoulos, I.; Corral, A.; Mountrichas, G.; Ruiz, A.; Masoura, V.; Fotopoulou, S.; Watson, M.

    2017-10-01

    We present the results from our ESA Prodex project that aims to derive photometric redshifts for the 3XMM catalogue. The 3XMM DR-6 offers the largest X-ray survey, containing 470,000 unique sources over 1000 sq. degrees. We cross-correlate the X-ray positions with optical and near-IR catalogues using Bayesian statistics. The optical catalogue used so far is the SDSS while currently we are employing the recently released PANSTARRS catalogue. In the near IR we use the Viking, VHS, UKIDS surveys and also the WISE W1 and W2 filters. The estimation of photometric redshifts is based on the TPZ software. The training sample is based on X-ray selected samples with available SDSS spectroscopy. We present here the results for the 40,000 3XMM sources with available SDSS counterparts. Our analysis provides very reliable photometric redshifts with sigma(mad)=0.05 and a fraction of outliers of 8% for the optically extended sources. We discuss the wide range of applications that are feasible using this unprecedented resource.

  8. Robust, 'blind', in-situ calibration of SODARs

    International Nuclear Information System (INIS)

    Bradley, S

    2008-01-01

    Doppler spectra for SODARs are an average weighted over a volume according to the generally unknown beam pattern. By tilting the SODAR at a number of known angles, the beam pattern 'kernel' can be obtained and hence an absolute (field) calibration. No assumptions are required and the method does not require any comparison against mast or other installations

  9. Evolution of Altimetry Calibration and Future Challenges

    Science.gov (United States)

    Fu, Lee-Lueng; Haines, Bruce J.

    2012-01-01

    Over the past 20 years, altimetry calibration has evolved from an engineering-oriented exercise to a multidisciplinary endeavor driving the state of the art. This evolution has been spurred by the developing promise of altimetry to capture the large-scale, but small-amplitude, changes of the ocean surface containing the expression of climate change. The scope of altimeter calibration/validation programs has expanded commensurately. Early efforts focused on determining a constant range bias and verifying basic compliance of the data products with mission requirements. Contemporary investigations capture, with increasing accuracies, the spatial and temporal characteristics of errors in all elements of the measurement system. Dedicated calibration sites still provide the fundamental service of estimating absolute bias, but also enable long-term monitoring of the sea-surface height and constituent measurements. The use of a network of island and coastal tide gauges has provided the best perspective on the measurement stability, and revealed temporal variations of altimeter measurement system drift. The cross-calibration between successive missions provided fundamentally new information on the performance of altimetry systems. Spatially and temporally correlated errors pose challenges for future missions, underscoring the importance of cross-calibration of new measurements against the established record.

  10. Aqueous-acetone extraction improves the drawbacks of using dimethylsulfoxide as solvent for photometric pigment quantification in Quercus ilex leaves

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Cascon, R.; Jiménez-Fenoy, L.; Verdú-Fillola, I.; Martín, M.P.

    2017-11-01

    Aim of study: We evaluated the use of dimethylsulfoxide (DMSO) for the photometric determination of chlorophyll (Chla and Chlb) and carotenoids in Quercus ilex L. leaves by comparative analysis using aqueous-acetone extraction. Area of study: a Q. ilex dehesa in Las Majadas del Tietar, Cáceres, Spain Material and methods: Q. ilex leaves were sampled during two vegetative periods. Field SPAD-502 Chlorophyll measurements and photometric chlorophyll determinations were performed. Two procedures were used: extraction of intact foliar discs at 65ºC with DMSO and fine foliar powder with cold aqueous-acetone. Main results: DMSO produced Chlb overestimation and different fitting performance for SPAD vs pigment calibrations (R2=0.64, RMSE=0.20, p<0.0001 for Chla (µg/cm2); R2=0.33, RMSE=0.23, p<0.0001 for Chlb (µg/cm2) and R2=0.50, RMSE=0.23, p<0.0001 for carotenoids (µg/cm2)). Aqueous-acetone provided more accurate predictions (R2=0.90, RMSE=0.16, p<0.0001 for Chla and R2=0.91, RMSE=0.16, p<0.0001 for Chlb, R2=0.90, RMSE=0.02, p<0.0001 for carotenoids) and mean ratio Chla/Chlb=3.6 inside the range for sun exposed leaves. Research highlights: Oxidizing conditions and polyphenol concentrations in Q. ilex leaves generated brown coloration in the DMSO extraction procedure, interfering with the photometric measurements in the red-orange region. Aqueous-acetone extraction was free from interference. DMSO should be avoided for pigment determination in Q. ilex leaves or when comparing different tree species.

  11. Aqueous-acetone extraction improves the drawbacks of using dimethylsulfoxide as solvent for photometric pigment quantification in Quercus ilex leaves

    International Nuclear Information System (INIS)

    Gonzalez-Cascon, R.; Jiménez-Fenoy, L.; Verdú-Fillola, I.; Martín, M.P.

    2017-01-01

    Aim of study: We evaluated the use of dimethylsulfoxide (DMSO) for the photometric determination of chlorophyll (Chla and Chlb) and carotenoids in Quercus ilex L. leaves by comparative analysis using aqueous-acetone extraction. Area of study: a Q. ilex dehesa in Las Majadas del Tietar, Cáceres, Spain Material and methods: Q. ilex leaves were sampled during two vegetative periods. Field SPAD-502 Chlorophyll measurements and photometric chlorophyll determinations were performed. Two procedures were used: extraction of intact foliar discs at 65ºC with DMSO and fine foliar powder with cold aqueous-acetone. Main results: DMSO produced Chlb overestimation and different fitting performance for SPAD vs pigment calibrations (R2=0.64, RMSE=0.20, p<0.0001 for Chla (µg/cm2); R2=0.33, RMSE=0.23, p<0.0001 for Chlb (µg/cm2) and R2=0.50, RMSE=0.23, p<0.0001 for carotenoids (µg/cm2)). Aqueous-acetone provided more accurate predictions (R2=0.90, RMSE=0.16, p<0.0001 for Chla and R2=0.91, RMSE=0.16, p<0.0001 for Chlb, R2=0.90, RMSE=0.02, p<0.0001 for carotenoids) and mean ratio Chla/Chlb=3.6 inside the range for sun exposed leaves. Research highlights: Oxidizing conditions and polyphenol concentrations in Q. ilex leaves generated brown coloration in the DMSO extraction procedure, interfering with the photometric measurements in the red-orange region. Aqueous-acetone extraction was free from interference. DMSO should be avoided for pigment determination in Q. ilex leaves or when comparing different tree species.

  12. Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps

    CERN Document Server

    Adam, R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bock, J.J.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leahy, J.P.; Lellouch, E.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Watson, R.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    This paper describes the processing applied to the Planck High Frequency Instrument (HFI) cleaned, time-ordered information to produce photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the 2.5 year full mission include almost five independent full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system and permits an independent measurement of the amplitude of the CMB solar dipole (3364.5 +/- 0.8 \\mu K) which is 1\\sigma\\ higher than the WMAP measurement wit...

  13. Calibrating page sized Gafchromic EBT3 films

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, W.; Maes, F.; Heide, U. A. van der; Van den Heuvel, F. [Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Department ESAT/PSI-Medical Image Computing, Medical Imaging Research Center, KU Leuven, Herestraat 49, 3000 Leuven (Belgium); Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium)

    2013-01-15

    balance between cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%-2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors Less-Than-Or-Slanted-Equal-To 2% or Less-Than-Or-Slanted-Equal-To 0.05 Gy.

  14. Calibrating page sized Gafchromic EBT3 films

    International Nuclear Information System (INIS)

    Crijns, W.; Maes, F.; Heide, U. A. van der; Van den Heuvel, F.

    2013-01-01

    cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%–2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors ⩽2% or ⩽0.05 Gy.

  15. Photometric studies of two solar type marginal contact binaries in the Small Magellanic Cloud

    Science.gov (United States)

    Shanti Priya, Devarapalli; Rukmini, Jagirdar

    2018-04-01

    Using the Optical Gravitational Lensing Experiment catalogue, two contact binaries were studied using data in the V and I bands. The photometric solutions for the V and I bands are presented for two contact binaries OGLE 003835.24-735413.2 (V1) and OGLE 004619.65-725056.2 (V2) in Small Maglellanic Cloud. The presented light curves are analyzed using the Wilson-Devinney code. The results show that the variables are in good thermal and marginal geometrical contact with features like the O’Connell effect in V1. The absolute dimensions are estimated and its dynamical evolution is inferred. They tend to be solar type marginal contact binaries. The 3.6-m Devasthal Optical Telescope and the 4.0-m International Liquid Mirror Telescope of the Aryabhatta Research Institute of Observational Sciences (ARIES, Nainithal) can facilitate the continuous monitoring of such kind of objects which will help in finding the reasons behind their period changes and their impact on the evolution of the clusters.

  16. A photometric analysis of the neglected EW-type binary V336 TrA

    Science.gov (United States)

    Kriwattanawong, W.; Sarotsakulchai, T.; Maungkorn, S.; Reichart, D. E.; Haislip, J. B.; Kouprianov, V. V.; LaCluyze, A. P.; Moore, J. P.

    2018-05-01

    This study presents an analysis of photometric light curves and absolute parameters for the EW-type binary V336 TrA. VRI imaging observations were taken in 2013 by using the robotic telescopes PROMPT 4 and PROMPT 5 at Cerro Tololo Inter-American Observatory (CTIO), Chile. The observed light curves were fitted by using the Wilson-Devinney method. The results showed that V336 TrA is a W-type contact binary with a mass ratio of q = 1.396. The binary is a weak contact system with a fill-out factor of f = 15.69%. The system contains components with masses of 0.653 M⊙ and 0.912 M⊙ for the hotter and the cooler, respectively. The location of the secondary (less massive) component on the log M - log L diagram was found to be near the TAMS. The component has evolved to be oversize and overluminous. The orbital angular momentum of the binary was found to be log Jo = 51.61 cgs, less than all detached systems for same mass. The system has undergone angular momentum and/or mass loss, during the binary evolution from the detached to contact system.

  17. Photometric studies of globular clusters in the Andromeda Nebula. Luminosity function for old globular clusters

    International Nuclear Information System (INIS)

    Sharov, A.S.; Lyutyj, V.M.

    1989-01-01

    The luminosity function for old globular clusters in M 31 is presented. The objects were selected according to their structural and photometric properties. At the usually accepted normal (Gaussian) distribution, the luminosity function is characterized by the following parameters: the mean magnitude, corrected for the extinction inside M 31, V-bar 0 =16 m ,38±0 m .08, and the absolute magnitude M-bar v =-8 m .29 assuming )m-M) v =23 m .67, standard deviation σ M v =1 m .16±0 m .08 and total object number N=300±17. Old globular clusters in M 31 are in the average about one magnitude more luminous then those in our Galaxy (M v ≅ -7 m .3). Intrinsic luminosity dispersions of globular clusters are nearly the same in both galaxies. Available data on globular clusters in the Local Group galaxies against the universality of globular luminosity function with identical parameters M v and σ M v

  18. AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey

    Science.gov (United States)

    Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John

    2017-11-01

    Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).

  19. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    Science.gov (United States)

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  20. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  1. Calibration of Flick standards

    International Nuclear Information System (INIS)

    Thalmann, Ruedi; Spiller, Jürg; Küng, Alain; Jusko, Otto

    2012-01-01

    Flick standards or magnification standards are widely used for an efficient and functional calibration of the sensitivity of form measuring instruments. The results of a recent measurement comparison have shown to be partially unsatisfactory and revealed problems related to the calibration of these standards. In this paper the influence factors for the calibration of Flick standards using roundness measurement instruments are discussed in detail, in particular the bandwidth of the measurement chain, residual form errors of the device under test, profile distortions due to the diameter of the probing element and questions related to the definition of the measurand. The different contributions are estimated using simulations and are experimentally verified. Also alternative methods to calibrate Flick standards are investigated. Finally the practical limitations of Flick standard calibration are shown and the usability of Flick standards both to calibrate the sensitivity of roundness instruments and to check the filter function of such instruments is analysed. (paper)

  2. A METHOD FOR THE SIMULTANEOUS ESTIMATION OF ATMOSPHERIC PARAMETERS USING THE PHOTOMETRIC INDICES IN THE uvby COLOR SYSTEM

    International Nuclear Information System (INIS)

    Kim, Chulhee; Moon, B.-K.

    2011-01-01

    A new method was developed to estimate the effective temperature, surface gravity, and metallicity of cool stars using only photometric indices in the uvby color system. In a graphical method, T eff and log g were determined for all of the different values of [Fe/H] using model atmosphere grids with respect to (b - y):c 1 and (b - y):m 1 pair indices. Then, a three-dimensional figure where X-, Y-, and Z-axes correspond to T eff , log g, and [Fe/H] was produced. By reading an intersection of two curves formed by a connection of three parameters obtained from the (b - y):c 1 and (b - y):m 1 pair indices on each of the three projected planes, T eff , log g, and [Fe/H] were determined simultaneously. In addition, an analytical method was devised based on the same algorithm developed for the graphical method. The new method was applied to a number of field dwarfs and giants, and the results were compared with those from a spectroscopic method and other photometric calibrations.

  3. The State-of-the-art HST Astro-photometric Analysis of the Core of ω Centauri. I. The Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, A.; Anderson, J.; Van der Marel, R. P. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Bedin, L. R.; Piotto, G. [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, v.co dell’Osservatorio 5, Padova I-35122 (Italy); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA (United States); Cool, A., E-mail: bellini@stsci.edu [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132 (United States)

    2017-06-10

    We have constructed the most comprehensive catalog of photometry and proper motions ever assembled for a globular cluster (GC). The core of ω Cen has been imaged over 650 times through WFC3's UVIS and IR channels for the purpose of detector calibration. There exist from 4 to over 60 exposures through each of 26 filters stretching continuously from F225W in the UV to F160W in the infrared. Furthermore, the 11 yr baseline between these data and a 2002 ACS survey has allowed us to more than double the proper-motion accuracy and triple the number of well-measured stars compared to our previous groundbreaking effort. This totally unprecedented complete spectral coverage of over 470,000 stars within the cluster’s core, from the tip of the red giant branch down to the white dwarfs, provides the best astro-photometric observational database yet to understand the multiple-population phenomenon in any GC. In this first paper of the series, we describe in detail the data-reduction processes and deliver the astro-photometric catalog to the astronomical community.

  4. Summary of KOMPSAT-5 Calibration and Validation

    Science.gov (United States)

    Yang, D.; Jeong, H.; Lee, S.; Kim, B.

    2013-12-01

    including pointing, relative and absolute calibration as well as geolocation accuracy determination. The absolute calibration will be accomplished by determining absolute radiometric accuracy using already deployed trihedral corner reflectors on calibration and validation sites located southeast from Ulaanbaatar, Mongolia. To establish a measure for the assess the final image products, geolocation accuracies of image products with different imaging modes will be determined by using deployed point targets and available Digital Terrain Model (DTM), and on different image processing levels. In summary, this paper will present calibration and validation activities performed during the LEOP and IOT of KOMPSAT-5. The methodology and procedure of calibration and validation will be explained as well as its results. Based on the results, the applications of SAR image products on geophysical processes will be also discussed.

  5. Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer

    Directory of Open Access Journals (Sweden)

    C. Monte

    2014-01-01

    Atmosphere is an airborne, imaging, infrared Fourier transform spectrometer that applies the limb-imaging technique to perform trace gas and temperature measurements in the Earth's atmosphere with three-dimensional resolution. To ensure the traceability of these measurements to the International Temperature Scale and thereby to an absolute radiance scale, GLORIA carries an on-board calibration system. Basically, it consists of two identical large-area and high-emissivity infrared radiators, which can be continuously and independently operated at two adjustable temperatures in a range from −50 °C to 0 °C during flight. Here we describe the radiometric and thermometric characterization and calibration of the in-flight calibration system at the Reduced Background Calibration Facility of the Physikalisch-Technische Bundesanstalt. This was performed with a standard uncertainty of less than 110 mK. Extensive investigations of the system concerning its absolute radiation temperature and spectral radiance, its temperature homogeneity and its short- and long-term stability are discussed. The traceability chain of these measurements is presented.

  6. Absolute nuclear energy measurements using the γ-γ coincidence method

    International Nuclear Information System (INIS)

    Benoit, P.; Philis, C.

    1967-01-01

    I n this report a summary is first given of the principle of the γ-γ calibration method, stress being laid on the corrections required. After a description of the equipment used, the choice of the experimental conditions required for various isotopes is discussed ( 22 Na, 46 Sc, 60 Co, 88 Y) and the agreement between these results and those obtained by other absolute measurement methods is considered. (authors) [fr

  7. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  8. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  9. Absolute isotopic abundances of Ti in meteorites

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.; Wasserburg, G.J.

    1985-01-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46 Ti/ 48 Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. We provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components. The absolute Ti and Ca isotopic compositions still support the correlation of 50 Ti and 48 Ca effects in the FUN inclusions and imply contributions from neutron-rich equilibrium or quasi-equilibrium nucleosynthesis. The present identification of endemic effects at 46 Ti, for the absolute composition, implies a shortfall of an explosive-oxygen component or reflects significant isotope fractionation. Additional nucleosynthetic components are required by 47 Ti and 49 Ti effects. Components are also defined in which 48 Ti is enhanced. Results are given and discussed. (author)

  10. All-weather calibration of wide-field optical and NIR surveys

    Energy Technology Data Exchange (ETDEWEB)

    Burke, David L. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Saha, Abhijit; Claver, Jenna; Claver, Chuck [National Optical Astronomy Observatory, Tucson, AZ 85718 (United States); Axelrod, T. [Steward Observatory, University of Arizona, Tucson, AZ 85718 (United States); DePoy, Darren [Texas A and M University, College Station, TX 77843 (United States); Ivezić, Željko; Jones, Lynne [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Smith, R. Chris [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Stubbs, Christopher W., E-mail: daveb@slac.stanford.edu [Harvard Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)

    2014-01-01

    The science goals for ground-based large-area surveys, such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a percent or better. This performance will need to be achieved with data taken over the course of many years, and often in less than ideal conditions. This paper describes a strategy to achieve precise internal calibration of imaging survey data taken in less than 'photometric' conditions, and reports results of an observational study of the techniques needed to implement this strategy. We find that images of celestial fields used in this case study with stellar densities ∼1 arcmin{sup –2} and taken through cloudless skies can be calibrated with relative precision ∼0.5% (reproducibility). We report measurements of spatial structure functions of cloud absorption observed over a range of atmospheric conditions, and find it possible to achieve photometric measurements that are reproducible to 1% in images that were taken through cloud layers that transmit as little as 25% of the incident optical flux (1.5 magnitudes of extinction). We find, however, that photometric precision below 1% is impeded by the thinnest detectable cloud layers. We comment on implications of these results for the observing strategies of future surveys.

  11. New tests of the common calibration context for ISO, IRTS, and MSX

    Science.gov (United States)

    Cohen, Martin

    1997-01-01

    The work carried out in order to test, verify and validate the accuracy of the calibration spectra provided to the Infrared Space Observatory (ISO), to the Infrared Telescope in Space (IRTS) and to the Midcourse Space Experiment (MSX) for external calibration support of instruments, is reviewed. The techniques, used to vindicate the accuracy of the absolute spectra, are discussed. The work planned for comparing far infrared spectra of Mars and some of the bright stellar calibrators with long wavelength spectrometer data are summarized.

  12. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    International Nuclear Information System (INIS)

    Evans, J.; Chapman, S.

    2014-01-01

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided

  13. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com [Radiant Technologies, Inc., 2835C Pan American Fwy NE, Albuquerque, New Mexico 87107 (United States)

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  14. Calibration of apparatus for short living radon daughters monitoring in air

    International Nuclear Information System (INIS)

    Chalupnik, S.; Lebecka, J.; Skubacz, K.

    1988-01-01

    A liquid scintillation method was developed for absolute measurement of radon daughters concentration in air. Calibration of site IRDM equipment appears as a significant problem. Usually it employs simultaneous measurements with the calibrated device and the reference one, of known detection efficiency. This yields systematic errors resulting from errors in evaluation of the detection efficiency. The presenting method is an absolute one. The efficiency for α and β particles is of about 100%. Thanks to this the developed method is excellent as a comparative one for calibration purposes. (author)

  15. Dust Absorption and the Ultraviolet Luminosity Density at z ~ 3 as Calibrated by Local Starburst Galaxies

    Science.gov (United States)

    Meurer, Gerhardt R.; Heckman, Timothy M.; Calzetti, Daniela

    1999-08-01

    We refine a technique to measure the absorption-corrected ultraviolet (UV) luminosity of starburst galaxies using rest-frame UV quantities alone and apply it to Lyman-limit U dropouts at z~3 found in the Hubble Deep Field (HDF). The method is based on an observed correlation between the ratio of far-infrared (FIR) to UV fluxes with spectral slope β (a UV color). A simple fit to this relation allows the UV flux absorbed by dust and reprocessed to the FIR to be calculated, and hence the dust-free UV luminosity to be determined. International Ultraviolet Explorer spectra and Infrared Astronomical Satellite fluxes of local starbursts are used to calibrate the FFIR/F1600 versus β relation in terms of A1600 (the dust absorption at 1600 Å) and the transformation from broadband photometric color to β. Both calibrations are almost completely independent of theoretical stellar-population models. We show that the recent marginal and nondetections of HDF U dropouts at radio and submillimeter wavelengths are consistent with their assumed starburst nature and our calculated A1600. This is also true of recent observations of the ratio of optical emission-line flux to UV flux density in the brightest U dropouts. This latter ratio turns out not to be a good indicator of dust extinction. In U dropouts, absolute magnitude M1600,0 correlates with β: brighter galaxies are redder, as is observed to be the case for local starburst galaxies. This suggests that a mass-metallicity relationship is already in place at z~3. The absorption-corrected UV luminosity function of U dropouts extends up to M1600,0~-24 AB mag, corresponding to a star formation rate ~200 \\Mscrsolar yr-1 (H0=50 km s-1 Mpc-3 and q0=0.5 are assumed throughout). The absorption-corrected UV luminosity density at z~3 is ρ1600,0>=1.4×1027 ergs-1 Hz-1 Mpc-1. It is still a lower limit since completeness corrections have not been done and because only galaxies with A1600dropouts. The luminosity-weighted mean dust

  16. Incipient fault diagnosis of power transformers using optical spectro-photometric technique

    Science.gov (United States)

    Hussain, K.; Karmakar, Subrata

    2015-06-01

    Power transformers are the vital equipment in the network of power generation, transmission and distribution. Mineral oil in oil-filled transformers plays very important role as far as electrical insulation for the winding and cooling of the transformer is concerned. As transformers are always under the influence of electrical and thermal stresses, incipient faults like partial discharge, sparking and arcing take place. As a result, mineral oil deteriorates there by premature failure of the transformer occurs causing huge losses in terms of revenue and assets. Therefore, the transformer health condition has to be monitored continuously. The Dissolved Gas Analysis (DGA) is being extensively used for this purpose, but it has some drawbacks like it needs carrier gas, regular instrument calibration, etc. To overcome these drawbacks, Ultraviolet (UV) -Visible and Fourier Transform Infrared (FTIR) Spectro-photometric techniques are used as diagnostic tools for investigating the degraded transformer oil affected by electrical, mechanical and thermal stresses. The technique has several advantages over the conventional DGA technique.

  17. Redetermination and absolute configuration of atalaphylline

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-02-01

    Full Text Available The title acridone alkaloid [systematic name: 1,3,5-trihydroxy-2,4-bis(3-methylbut-2-enylacridin-9(10H-one], C23H25NO4, has previously been reported as crystallizing in the chiral orthorhombic space group P212121 [Chantrapromma et al. (2010. Acta Cryst. E66, o81–o82] but the absolute configuration could not be determined from data collected with Mo radiation. The absolute configuration has now been determined by refinement of the Flack parameter with data collected using Cu radiation. All features of the molecule and its crystal packing are similar to those previously described.

  18. Photometric investigation of the Herbig Ae/Be star MWC 297. I. Quasisimultaneous UBVRIJHK observations

    International Nuclear Information System (INIS)

    Bergner, Yu.K.; Kozlov, V.P.; Krivtsov, A.A.; Miroshnichenko, A.S.; Yudin, R.V.; Yutanov, N.Yu.; Dzhakusheva, K.G.; Kuratov, K.S.; Mukanov, D.B.

    1988-01-01

    In order to make a statistical investigation of the photometric variability of the young star MWC 297 a number of quasisimultaneous observations in the photometric bands UBVRIJHK has been made. The coefficients of the correlation between the variations of the brightness in the different photometric bands have been determined by the proposed method. An anticorrelation between the variations in the bands U and K has been found. A possible mechanisms of the irregular variability of the star is proposed

  19. Calibration of moisture monitors

    International Nuclear Information System (INIS)

    Gutierrez, R.L.

    1979-02-01

    A method for calibrating an aluminum oxide hygrometer against an optical chilled mirror dew-point hygrometer has been established. A theoretical cross-point line of dew points from both hygrometers and a maximum moisture content of 10 ppM/sub v/ are used to define an area for calibrating the sensor probes of the aluminum oxide hygrometer

  20. Site Calibration report

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Vesth, Allan

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...