WorldWideScience

Sample records for abrasive wear behavior

  1. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel-- A Comparison

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mazar Atabaki; Sajjad Jafari; Hassan Abdollah-pour

    2012-01-01

    Wear properties of two different crushers used for grinding raw materials of cement industry are compared using pin-on-disk wear test.The wear test was carried out with different loads on a pin.Abrasive wear behavior of two alloys was evaluated by comparing mass loss,wear resistance,microhardness and friction coefficient.The microstructure of the specimens was detected using optical microscope.The results showed that abrasive wear of high chromium cast iron is lower than that of Hadfield steel.Due to the presence of M7C3 carbides on the high chromium cast iron matrix,impact crushers exhibited higher friction coefficient

  2. Coupling behavior between adhesive and abrasive wear mechanism of aero-hydraulic spool valves

    Institute of Scientific and Technical Information of China (English)

    Chen Yunxia; Gong Wenjun; Kang Rui

    2016-01-01

    Leakage due to wear is one of the main failure modes of aero-hydraulic spool valves. This paper established a practical coupling wear model for aero-hydraulic spool valves based on dynamic system modelling theory. Firstly, the experiment for wear mechanism verification proved that adhesive wear and abrasive wear did coexist during the working process of spool valves. Sec-ondly coupling behavior of each wear mechanism was characterized by analyzing actual time-variation of model parameters during wear evolution process. Meanwhile, Archard model and three-body abrasive wear model were utilized for adhesive wear and abrasive wear, respectively. Furthermore, their coupling wear model was established by calculating the actual wear volume. Finally, from the result of formal test, all the required parameters for our model were obtained. The relative error between model prediction and data of pre-test was also presented to verify the accuracy of model, which demonstrated that our model was useful for providing accurate prediction of spool valve’s wear life.

  3. Microstructure and abrasion wear behavior of Ni-based laser cladding alloy layer at high temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; LIU Su-qin; WANG Shun-xing

    2005-01-01

    Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.

  4. Abrasive wear behaviors of high velocity arc sprayed iron aluminum composite coatings

    Institute of Scientific and Technical Information of China (English)

    Weipu Xu; Binshi Xu; Wei Zhang; Zixin Zhu; Yixiong Wu

    2005-01-01

    The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-Al/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature.The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.

  5. Analysis of abrasive wear behavior of PTFE composite using Taguchi’s technique

    Directory of Open Access Journals (Sweden)

    Yusuf Şahin

    2015-12-01

    Full Text Available Polymeric composites are widely used for structural, aerospace, and automobile sectors due to their good combination of high specific strength and specific modulus. These two main characteristics make these materials attractive, compared to conventional materials like metal or alloy ones. Some of their typical benefits include easy processing, corrosion resistance, low friction, and damping of noise and vibrations. Wear behavior of Polytetrafluoroethylenes (PTFE and its composites including glass-filled composites and carbon-filled composites are investigated using a pin-on-disc configuration. A plan of experiments in terms of Taguchi technique is carried out to acquire data in controlled way. An orthogonal array (L9 and the analysis of variance are employed to investigate the influence of process parameters on the wear of these composites. Volume loss increased with abrasive size, load, and distance. Furthermore, specific wear rate decreased with increasing grit size, load, sliding distance, whereas, slightly with compressive strength. Optimal process parameters, which minimize the volume loss, were the factor combinations of L1, G3, D1, and C3. Confirmation experiments were conducted to verify the optimal testing parameters. It was found that in terms of volume loss, there was a good agreement between the estimated and the experimental value of S/N ratio with an error of 1.604%. Moreover, abrasive size, load, and sliding distance exerted a great effect on the specific wear rate, at 51.14, 27.77, and 14.70%, respectively.

  6. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  7. Comparative Investigation on Brazing Behavior, Compressive Strength, and Wear Properties of Multicrystalline CBN Abrasive Grains

    Directory of Open Access Journals (Sweden)

    Wen-Feng Ding

    2014-05-01

    Full Text Available In order to fabricate the abrasive wheels with good grain self-sharpening capacity, two types of multicrystalline CBN grains, that is, polycrystalline CBN (PCBN and binderless CBN (BCBN, were brazed using Cu-Sn-Ti alloy, respectively. Comparative investigation on the brazing interface, compressive strength, and wear properties of the different grains was carried out. Results obtained show that the PCBN grains have more intricate reaction, more complicated resultants, and thicker reaction layer than the BCBN counterparts under the identical brazing conditions. Though the average compressive strength of the PCBN grains is similar to that of BCBN ones, stronger self-sharpening action by virtue of the microfracture behavior takes place with BCBN grains during grinding. As a consequence, compared to the brazed PCBN wheels and the conventional monocrystalline CBN (MCBN ones, longer service life is obtained for the brazed BCBN wheels.

  8. Effect of Heat Treatment on the Abrasive Wear Behavior of High Chromium Iron under Dry Sliding Condition

    Directory of Open Access Journals (Sweden)

    A.A. Ayeni

    2012-06-01

    Full Text Available The effect of heat treatment on the abrasive wear behavior of high chromium cast iron (NF253AHT under dry sliding condition has been investigated. Rectangular cross sectioned samples of the alloy were produced by sand casting. After casting, the samples were machined to equal dimensions of 50 mm x 15 mm x 10 mm and heat treated by annealing, hardening and tempering. Abrasive wear tests were carried out on the samples using the pin-on-disc wear test. The tests were carried out under restricted values of speed, load and time. Within this limit, the hardened sample displayed a superior wear resistance, while the annealed sample displayed the weakest wear resistance. A graphical model (wear map displaying all the wear regimes of the alloy, which may serve as a wear predictive tool was subsequently developed from the results of the wear tests. With the exception of the as-cast and annealed specimen, all other specimens (hardened and tempered have functioned adequately in wear prone environment, but with different degree of effectiveness. Hence, the hardened and tempered samples can be used in shot blast equipments and in the grinding of minerals.

  9. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  10. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  11. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  12. Abrasive Wear Behavior of WC Reinforced Ni-BASED Composite Coating Sprayed and Fused by Oxy-Acetylene Flame

    Science.gov (United States)

    Wang, Qun; Chen, Zhenhua; Ding, Zhang Xiong; Chen, Ding

    Microstructure of WC reinforced Ni-based self-fluxing alloy composite coating sprayed and fused by oxy-acetylene flame was investigated by scanning electron microscopy and energy dispersive X-ray Spectrometry, X-ray diffraction, and transmission electron microscopy. The wear performance of the coating was studied by a MLS-225 wet sand rubber wheel abrasive wear tester at various loads and sizes of abrasive particles. Also, the wear resistance of the coating was compared with uncoated ASTM1020 steel. The results indicated that the coating is bonded metallurgically to the substrate and has a homogeneous microstructure composed of both coarse WC and fine carbide and boride grains such as Cr7C3, Cr23C6, and Ni2B which disperse uniformly in the matrix of γ-Ni solid solution and Ni3B. The worn mass loss of the coating and ASTM1020 steel both increased with the load and size of abrasive particles, also, the coating has exhibited excellent abrasive wear resistance compared with ASTM1020 steel.

  13. Abrasive Wear Behaviors of Light-weight Austenitic Fe-24Mn-7Al-1C Steel and Mn13Cr2 Steel

    Institute of Scientific and Technical Information of China (English)

    Shi-guang PENG; Ren-bo SONG; Zhi-dong TAN; Chang-hong CAI; Ke GUO; Zhong-hong WANG

    2016-01-01

    The impact abrasive wear behaviors of light-weight austenitic Fe-24Mn-7Al-1C steel with increasing impact wear conditions were studied by comparing with the modified Hadfield (Mn13Cr2)steel.Wear tests were performed with the MLD-10 abrasive wear testing machine.Main parameters such as impact energy,impacting frequency and wear time were evaluated.To explore the abrasive wear behaviors under different impact energies,the parameters in-cluding mass loss,wear resistance and hardness were evaluated in detail.The microstructures of the steels were fur-ther analyzed using optical microscopy (OM),scanning electron microscopy (SEM),transmission electron micros-copy (TEM)and X-ray diffraction (XRD).Results showed that the light-weight austenitic Fe-24Mn-7Al-1C steel had a better wear resistance than Mn13Cr2 steel under the impact energy tested.The wear resistance of light-weight austenitic Fe-24Mn-7Al-1C steel was about 1.09-1.17 times as high as that of Mn13Cr2 steel under low and medi-um impact energy (0.5-2.0 J)conditions,and 1.41 times under high impact energy (4.0 J)condition.In Mn13Cr2 steel,the evolution of dislocation substructure with increasing impact energy showed typical stacking fault,interac-tion of twins and dislocations,as well as mechanical twins.The high work-hardening rate in Fe-24Mn-7Al-1C steel was caused by Taylor lattice and high density of dislocation tangles.

  14. Mechanical Properties and Corrosion-Abrasion Wear Behavior of Low-Alloy MnSiCrB Cast Steels Containing Cu

    Science.gov (United States)

    Luo, Kaishuang; Bai, Bingzhe

    2011-01-01

    Two medium carbon low-alloy MnSiCrB cast steels containing different Cu contents (0.01 wt pct and 0.62 wt pct) were designed, and the effect of Cu on the mechanical properties and corrosion-abrasion wear behavior of the cast steels was studied. The results showed that the low-alloy MnSiCrB cast steels obtained excellent hardenability by a cheap alloying scheme. The microstructure of the MnSiCrB cast steels after water quenching from 1123 K (850 °C) consists of lath martensite and retained austenite. After tempering at 503 K (230 °C), carbides precipitated, and the hardness of the cast steels reached 51 to 52 HRC. The addition of Cu was detrimental to the ductility and impact toughness but was beneficial to the wear resistance in a corrosion-abrasion wear test. The MnSiCrB cast steel with Cu by the simple alloying scheme and heat treatment has the advantages of being high performance, low cost, and environmentally friendly. It is a potential, advanced wear-resistant cast steel for corrosion-abrasion wear conditions.

  15. The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels

    Science.gov (United States)

    Narayanaswamy, Balaji; Hodgson, Peter; Timokhina, Ilana; Beladi, Hossein

    2016-10-01

    In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics ( i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on

  16. Abrasive Wear Study of NiCrFeSiB Flame Sprayed Coating

    Science.gov (United States)

    Sharma, Satpal

    2013-10-01

    In the present study, abrasive wear behavior of NiCrFeSiB alloy coating on carbon steel was investigated. The NiCrFeSiB coating powder was deposited by flame spraying process. The microstructure, porosity and hardness of the coatings were evaluated. Elemental mapping was carried out in order to study the distribution of various elements in the coating. The abrasive wear behavior of these coatings was investigated under three normal loads (5, 10 and 15 N) and two abrasive grit sizes (120 and 320 grit). The abrasive wear rate was found to increase with the increase of load and abrasive size. The abrasive wear resistance of coating was found to be 2-3 times as compared to the substrate. Analysis of the scanning electron microscope images revealed cutting and plowing as the material removal mechanisms in these coatings under abrasive wear conditions used in this investigation.

  17. An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW

    Directory of Open Access Journals (Sweden)

    Alireza Sadeghi

    2017-01-01

    Full Text Available In this work, improving the abrasion–corrosion behavior of gray cast iron used in centrifugal pumps was studied. These pumps are usually made of gray cast iron (BS:1452Gr220 and are repaired by Shielded Metal Arc Welding (SMAW. Three different typical welding electrodes including Ni electrode (DIN8563, Carbon Steel electrode (DIN1913, and Hardening electrode (DIN8555 were used to compare the weldability of the base metal. Microstructural differences for three types of electrodes were studied and forming of different phases was analyzed. Corrosion and abrasion tests were conducted and related to welding conditions. Experimental results showed that using Ni substrate electrode reduce the unwanted phases (martensitic and carbides. Furthermore, in comparison with the base metal, the abrasion behavior of all weldments was improved. It was also determined that the carbon steel electrode has a higher corrosion resistance in zero-resistance ammeter (ZRA test compared to other electrodes.

  18. The abrasion and impact-abrasion behavior of austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Lerner, Y.S. (University of Northern Iowa)

    1998-01-01

    Austempering of ductile irons has led to a new class of irons, Austempered Ductile Irons (ADIs), with improved mechanical strength and fracture toughness lacking in gray cast irons. Laboratory wear tests have been used to evaluate the abrasive and impact-abrasive wear behavior of a suite of ADIs. The use of high-stress, two-body abrasion, low-stress, three-body abrasion, and impact-abrasion tests provides a clear picture of the abrasive wear behavior of the ADIs and the mechanisms of material removal. When combined with hardness measurements, fracture toughness and a knowledge of the microstructure of the ADIs, the overall performance can be assessed relative to more wear resistant materials such as martensitic steels and high-chromium white cast irons

  19. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    Science.gov (United States)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  20. A Finite Element Approach to Modeling Abrasive Wear Modes

    NARCIS (Netherlands)

    Woldman, M.; Heide, van der E.; Tinga, T.; Masen, M.A.

    2016-01-01

    Machine components operating in sandy environments will wear because of the abrasive interaction with sand particles. In this work, a method is derived to predict the amount of wear caused by such abrasive action, in order to improve the maintenance concept of the components. A finite element model

  1. Abrasive Wear Map of Polymer Tapes in Sand Dust Environment

    Institute of Scientific and Technical Information of China (English)

    WU Tong-hai; DIAO Dong-feng

    2006-01-01

    To make clear the wear conditions of ATM (Automatic Teller Machine) tribosystem when servicing in Chinese sand dust environment, abrasive wear of two kinds of polymer tapes specified for ATM, PI (Polyimide) and PEN (Polyethylene-2, 6-naphthalenedicarboxylate), was investigated in simulated sand dust environment with ATM tape-scraper tribosystem under various conditions of loads and sliding distances. The surface profiles of worn tape were measured with a surface profiler in order to calculating the wear cross-section areas and the wear volumes. The specific wear rates of polymer tapes were calculated under load conditions of 0.6, 1 and 1.5 N, and wear mechanisms were investigated with optical topography photos. As main results, the specific wear rates show stage variations in the wear process and the wear resistance of polymer tape shows good relationship with the mechanical deformation factors. In consideration of the service life, four wear models are generalized according to the magnitude of specific wear rates,which include no wear, mild wear, normal wear and severe wear model and the corresponding wear mechanisms for the four wear models are discussed with typical worn topographies. Based on the wear models and corresponding wear mechanisms, the abrasive wear maps of two polymer tapes servicing in sand dust environments are concluded for its industrial applications.

  2. Abrasive wear behaviour of as cast and austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Baydogan, M.; Koekden, M.U.; Cimenoglu, H. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Science Engineering Istanbul (Turkey)

    2000-07-01

    In this study, abrasive wear behaviour of as cast and austempered GGG 50 and GGG 80 quality ductile irons was investigated. In the as cast condition, GGG 50 and GGG 80 quality ductile irons were having ferritic and pearlitic matrix structures, respectively. Austempering at 250 C after austenitisation at 900 C for 100 minutes produced bainitic matrix structure in both of the investigated ductile irons. Abrasive wear tests performed by rubbing the as cast and austempered specimens on Al{sub 2}O{sub 3} abrasive bands, revealed that austempering treatment improves abrasion resistance about 10-70% depending on the abrasive particle size and composition of the base iron. In the as cast condition, pearlitic GGG 80 grade ductile iron, has higher wear resistance than ferritic GGG 50 grade ductile iron. In the austempered condition GGG 50 and GGG 80 grade ductile irons which have bainitic matrix structure, exhibit almost similar wear resistance. (orig.)

  3. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    Science.gov (United States)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  4. Performance of Flame Sprayed Ni-WC Coating under Abrasive Wear Conditions

    Science.gov (United States)

    Harsha, S.; Dwivedi, D. K.; Agarwal, A.

    2008-02-01

    This paper describes the influence of a post spray heat treatment on the microstructure, microhardness and abrasive wear behavior of the flame sprayed Ni-WC (EWAC 1002 ET) coating deposited on the mild steel. Coatings were deposited by using an oxy-acetylene flame spraying torch (Superjet Eutalloy L & T, India). The wear behavior of the coating was evaluated using a pin on disc wear system against SiC abrasive medium of 120 and 600 grades at 5, 10, 15, and 20 N normal load. Results revealed that the influence of normal load on wear is governed by the microstructure, hardness and abrasive grit size. The heat treatment increased average microhardness of the coating. However, it was found that the hardness does not correctly indicate the abrasive wear resistance of Ni-WC coating in an as sprayed and heat treated condition. The heat treatment of the coating improved its abrasive wear resistance against fine abrasive medium while the wear resistance against coarse abrasive was found to be a function of a normal load. At low-normal load (5 and 10 N) the heat treated coating showed lower-wear rate than as spayed coating while at high-normal loads (15 and 20 N) heat treated coating was subjected to higher-wear rate than as sprayed coating. In general, an increase in normal load increased the wear rate. The scanning electron microscopy study indicated that the wear largely takes place by groove formation and scoring of eutectic matrix and the fragmentation of the carbide particles.

  5. Abrasive wear and surface roughness of contemporary dental composite resin.

    Science.gov (United States)

    Han, Jian-min; Zhang, Hongyu; Choe, Hyo-Sun; Lin, Hong; Zheng, Gang; Hong, Guang

    2014-01-01

    The purpose of this study was to evaluate the abrasive wear and surface roughness of 20 currently available commercial dental composite resins, including nanofilled, supra-nanofilled, nanohybrid and microhybrid composite resins. The volume loss, maximum vertical loss, surface roughness (R(a)) and surface morphology [Scanning electron microscopy (SEM)] were determined after wear. The inorganic filler content was determined by thermogravimetric analysis. The result showed that the volume loss and vertical loss varied among the materials. The coefficients of determination (R(2)) of wear volume loss and filler content (wt%) was 0.283. SEM micrographs revealed nanofilled composites displayed a relatively uniform wear surfaces with nanoclusters protrusion, while the performance of nanohybrid composites varied. The abrasive wear resistance of contemporary dental composite resins is material-dependent and cannot be deduced from its category, filler loading and composite matrix; The abrasive wear resistance of some flowable composites is comparable to the universal/posterior composite resins.

  6. Wear characterization of abrasive waterjet nozzles and nozzle materials

    Science.gov (United States)

    Nanduri, Madhusarathi

    Parameters that influence nozzle wear in the abrasive water jet (AWJ) environment were identified and classified into nozzle geometric, AWJ system, and nozzle material categories. Regular and accelerated wear test procedures were developed to study nozzle wear under actual and simulated conditions, respectively. Long term tests, using garnet abrasive, were conducted to validate the accelerated test procedure. In addition to exit diameter growth, two new measures of wear, nozzle weight loss and nozzle bore profiles were shown to be invaluable in characterizing and explaining the phenomena of nozzle wear. By conducting nozzle wear tests, the effects of nozzle geometric, and AWJ system parameters on nozzle wear were systematically investigated. An empirical model was developed for nozzle weight loss rate. To understand the response of nozzle materials under varying AWJ system conditions, erosion tests were conducted on samples of typical nozzle materials. The effect of factors such as jet impingement angle, abrasive type, abrasive size, abrasive flow rate, water pressure, traverse speed, and target material was evaluated. Scanning electron microscopy was performed on eroded samples as well as worn nozzles to understand the wear mechanisms. The dominant wear mechanism observed was grain pullout. Erosion models were reviewed and along the lines of classical erosion theories a semi-empirical model, suitable for erosion of nozzle materials under AWJ impact, was developed. The erosion data correlated very well with the developed model. Finally, the cutting efficiency of AWJ nozzles was investigated in conjunction with nozzle wear. The cutting efficiency of a nozzle deteriorates as it wears. There is a direct correlation between nozzle wear and cutting efficiency. The operating conditions that produce the most efficient jets also cause the most wear in the nozzle.

  7. A physically-based abrasive wear model for composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  8. Characteristics and mechanism of abrasive wear for thermoplastic polymers

    Institute of Scientific and Technical Information of China (English)

    Xian Jia; Xiaomei Ling

    2003-01-01

    Abrasive wear characteristics of polyethylene, polystyrene, polymethylmethacrylate, nylon 1010 and polyvinyl chloride were investigated. The volume relative wear resistance coefficients of these thermoplastic polymers are 18%-35 % (hardened and low temperature tempered steel 45 was used as a comparing material), and have a linear correlation with square roots of their cohesive energy densities. The coefficients of linear correlation is 0.949. Wear morphologies were observed by scanning electron microscope (SEM). Main wear mechanism of the thermoplastic polymers includes brittle breaking for the hard and brittle polymers & plowing and fatiguing for the soft and tough ones.

  9. Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    J.Ahmadi; M.Monirvaghefi; M.Salehi; B.Niroumand

    2004-01-01

    The aim of this investigation was the determination of the predominant wear mechanism an three-body abrasion of fully pearlitic low ahoy steel. Furthermore. the effect of pearlite interlamellar spacing on wear behavior was investigated, For this purpase, the samples were subjected to the different heat treating to artainthg different interlamellar spacing. Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated. Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus. Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy. The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear realstance, so it may be due to subsurface work hardening and interlamellar spacing and cernentite in fine and/or coarse pearlite, thai influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed front ploughing to cuttthg mode.

  10. Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    J. Ahmadi; M. Monirvaghefi; M. Salehi; B. Niroumand

    2004-01-01

    The aim of this investigation was the determination of the predominant wear mechanism on three-body abrasion of fully pearlitic low alloy steel. Furthermore, the effect of pearlite interlamellar spacing on wear behavior was investigated.For this purpose, the samples were subjected to the different heat treating to attaining different interlamellar spacing.Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated.Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus.Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy.The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear resistance, so it may be due to subsurface work hardening and interlamellar spacing and cementite in fine and/or coarse pearlite, that influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed from ploughing to cutting mode.

  11. Structural transformations in wear resistance of iron- and cobalt-based amorphous alloys during abrasive wear

    Science.gov (United States)

    Korshunov, L. G.; Shabashov, V. A.; Chernenko, N. L.

    2010-04-01

    The wear resistance and structural changes in a number of amorphous alloys based on iron and cobalt and in high-carbon tool steels are studied during wear by a fixed abrasive (crondum, Carborundum) at room temperature and -196°C. The abrasive wear resistance of the amorphous alloys is shown to be 1.6-3.1 lower than that of the high-carbon tool steels having a similar hardness. The relatively low level of the abrasive wear resistance of the amorphous alloys is assumed to be caused by strain softening of their surface during wear. A nanocrystalline structure is found to form in local microvolumes in a thin deformed surface layer of the alloys.

  12. Gears castings from ductile iron of improved abrasion wear resistance

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2011-10-01

    Full Text Available The aim of this study was to develop an industrial technological process for the manufacturing of castings from alloyed ductile iron characterized by improved resistance to abrasion wear. The outcome of the study was the implementation of developed technology under the industrial conditions of ASPAMET Foundry Plant and start up of production of a wide range of cast gears.

  13. Surface roughness and wear of resin cements after toothbrush abrasion

    Directory of Open Access Journals (Sweden)

    Sérgio Kiyoshi ISHIKIRIAMA

    2015-01-01

    Full Text Available Increased surface roughness and wear of resin cements may cause failure of indirect restorations. The aim of this study was to evaluate quantitatively the surface roughness change and the vertical wear of four resin cements subjected to mechanical toothbrushing abrasion. Ten rectangular specimens (15 × 5 × 4 mm were fabricated according to manufacturer instructions for each group (n = 10: Nexus 3, Kerr (NX3; RelyX ARC, 3M ESPE (ARC; RelyX U100, 3M ESPE (U100; and Variolink II, Ivoclar/Vivadent (VL2. Initial roughness (Ra, µm was obtained through 5 readings with a roughness meter. Specimens were then subjected to toothbrushing abrasion (100,000 cycles, and further evaluation was conducted for final roughness. Vertical wear (µm was quantified by 3 readings of the real profile between control and brushed surfaces. Data were subjected to analysis of variance, followed by Tukey’s test (p < 0.05. The Pearson correlation test was performed between the surface roughness change and wear (p < 0.05. The mean values of initial/final roughness (Ra, µm/wear (µm were as follows: NX3 (0.078/0.127/23.175; ARC (0.086/0.246/20.263; U100 (0.296/0.589/16.952; and VL2 (0.313/0.512/22.876. Toothbrushing abrasion increased surface roughness and wear of all resin cements tested, although no correlation was found between those variables. Vertical wear was similar among groups; however, it was considered high and may lead to gap formation in indirect restorations.

  14. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    Science.gov (United States)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  15. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  16. Wear behavior of austenite containing plate steels

    Science.gov (United States)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  17. Abrasive wear property of laser melting/deposited Ti2Ni/TiNi intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A wear resistant intermetallic alloy consisting of TiNi primary dendrites and Ti2Ni matrix was fabricated by the laser melting deposition manufacturing process. Wear resistance of Ti2Ni/TiNi alloy was evaluated on an abrasive wear tester at room temperature under the different loads. The results show that the intermetallic alloy suffers more abrasive wear attack under low wear test load of 7, 13 and 25 N than high-chromium cast-iron. However, the intermetallic alloy exhibits better wear resistance under wear test load of 49 N. Abrasive wear of the laser melting deposition Ti2Ni/TiNi alloy is governed by micro-cutting and plowing.Pseudoelasticity of TiNi plays an active role in contributing to abrasive wear resistance.

  18. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Polyurethanes from the crystalline prepolymers resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    Domańska Agata

    2014-12-01

    Full Text Available The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether glycol (PTMEG, as well as from two different isocyanates 4,4′-methylenebis(cyclohexylisocyanate (HMDI and 4.4′-methylenebis(phenyl isocyanate (MDI in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyurethane surface wettability, friction coefficient for different couples of the co-working materials such as polyurethane-polyurethane, polyurethane-titanium alloy, polyurethane-alumina, in comparison to commonly used polyethylene-titanium alloy. Shear strength of polyurethane-alumina joint, as well as viscosity of prepolymers were also measured. The values of friction coefficient were compared to literature data on commercially available polyurethane with the trade name Pellethane. Polyurethanes obtained are characterized by low abrasive wear and low friction coefficient in couple with the titanium alloy, what makes them attractive as possible components of ceramic-polymer endoprosthesis joints.

  20. Abrasive Wear of Fe-Mn-Si-Cr-Ni Shape Memory Stainless Steel: Preliminary Results

    Science.gov (United States)

    Silva, Christian Egidio Da; Bernardi, Heide Heloise; Otubo, Jorge

    2011-07-01

    This study was developed to understand the influence of chemical composition and austenitic grain size on the wear resistance in stainless shape memory steel. A two-body abrasive wear device was used to understand the wear mechanism involved. They were tested pins with the following chemical composition: Fe-10.3Mn-5.3Si-9.9Cr-4.9Ni-0.006C and Fe-14.2Mn-5.3Si-8.8Cr-4.6Ni-0.008C after being austenitized at 900 and 1050 °C, followed by water quenching. The surface characterization was performed by optical microscopy and scanning electron microscopy, and the roughness profile evaluation was also conducted. The weight loss was measured after conducting the wear testing, and the wear rates were estimated. The results demonstrated that the alloy with less manganese and higher chromium content has the best wear resistance (between 17.5 and 18.9%). With an increase of the austenitic grain size there was a small reduction on the wear resistance (between 3.0 and 4.1%). The chemical composition demonstrated to have higher influence on the wear behavior than the austenitic grain size.

  1. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  2. An Investigation of Abrasive Wear Behaviour of Al 2014-SiC Composites

    Science.gov (United States)

    Çalin, Recep; Cilasun, Niyazi Selçuk

    2015-04-01

    In this study, the effects of SiC reinforcement volume fractions on hardness, porosity and abrasive wear behaviour were examined in Al 2014-SiC (composites (MMCs) of 3%, 6% and 12% reinforcement-volume (R-V) ratios produced by melt-stirring. Abrasive wear tests were carried out by 320 mesh Al2O3 abrasive paper and a pin-on-disc wear test apparatus, under 10N, 20N and 30N load, and at 0.2 ms-1 sliding speed. The same specimens were tested by 150, 240 and 320 mesh abrasive paper at 0.2 ms-1 sliding speed, under 10N, 20N and 30N load. After the tests, the microstructures of the worn surfaces were examined with scanning electron microscope (SEM) studies and EDS analyses. Besides, the amount of hardness and porosity of the specimens were identified. It was recorded that the amounts of hardness and porosity increases as the SiC reinforcement in the composite increases. The highest amount of abrasive wear was recorded in the specimens with 3% reinforcements. It was identified that the amount of abrasive wear decreases while the SiC reinforcement in the composite structure increases by volume, and that the amount of porosity and reinforcement volume (R-V) ratio are important parameters in abrasive wear.

  3. Two-Body Abrasive Wear of the Surfaces of Pangolin Scales

    Institute of Scientific and Technical Information of China (English)

    Jin Tong; Tie-biao Lü; Yun-hai Ma; Heng-kun Wang; Lu-quan Ren; R. D. Arnell

    2007-01-01

    The Pangolin, a soil-burrowing animal, is covered with scales. These scales are often abraded by soil and rock and their surface is corrugated. The abrasive wear of the surface of the scales was examined. The scales were taken from a pangolin that had died of natural causes. The tests were run on a rotary disc abrasive wear tester. The abrasive material was quartz sand (96.5 wt.%) and bentonite (3.5 wt.%). The morphology of the abraded surfaces and the abrasion were examined by stereoscopic microscopy and scanning electron microscopy. The concepts are proposed of "Guiding-Effect" and "Rolling-Effect" on the textured surfaces under free abrasive wear conditions and the critical dimensions of the "Rolling-Effect" are discussed.

  4. Friction and Wear Behaviors of Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    Zhong HAN; Yusheng ZHANG; Ke LU

    2008-01-01

    Nanostructured (ns) materials, i.e., polycrystalline materials with grain sizes in the nanometer regime (typically below 100 nm), have drawn considerable attention in the past decades due to their unique properties such as high strength and hardness. Wear resistance of ns materials, one of the most important properties for engineering materials, has been extensively investigated in the past decades. Obvious differences have been identified in friction and wear behaviors Between the ns materials and their corresponding coarse-grained (cg) counterparts, consistently correlating with their unique structure characteristics and mechanical properties. On the other hand, the superior tribological properties of ns materials illustrate their potential applications under contact loads. The present overview will summarize the important progresses achieved on friction and wear behaviors of ns metallic materials, including ultrafine-grained (ufg) materials in recent years. Tribological properties and effects on friction and wear behaviors of ns materials will be discussed under different wear conditions including abrasive wear, sliding wear, and fretting wear. Their correlations with mechanical properties will be analyzed. Perspectives on development of this field will be highlighted as well.

  5. A review on nozzle wear in abrasive water jet machining application

    Science.gov (United States)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  6. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  7. Abrasion, Erosion and Cavitation Erosion Wear Properties of Thermally Sprayed Alumina Based Coatings

    Directory of Open Access Journals (Sweden)

    Ville Matikainen

    2014-01-01

    Full Text Available Thermally-sprayed alumina based materials, e.g., alumina-titania (Al2O3-TiO2, are commonly applied as wear resistant coatings in industrial applications. Properties of the coatings depend on the spray process, powder morphology, and chemical composition of the powder. In this study, wear resistant coatings from Al2O3 and Al2O3-13TiO2 powders were sprayed with plasma and high-velocity oxygen-fuel (HVOF spray processes. Both, fused and crushed, and agglomerated and sintered Al2O3-13TiO2 powders were studied and compared to pure Al2O3. The coatings were tested for abrasion, erosion, and cavitation resistances in order to study the effect of the coating structure on the wear behavior. Improved coating properties were achieved when agglomerated and sintered nanostructured Al2O3-13TiO2 powder was used in plasma spraying. Coatings with the highest wear resistance in all tests were produced by HVOF spraying from fused and crushed powders.

  8. Abrasive wear characteristics and mechanisms of Al2O3/PA1010 composite coatings

    Institute of Scientific and Technical Information of China (English)

    JIA Xian; LING Xiaomei

    2004-01-01

    The abrasive wear characteristics of Al2O3/PA1010 composite coatings on the surface of quenched and low-temperature temper steel 45 were tested on the mmplate abrasive wear testing machine and the same uncoated steel 45 was used as a reference material. Experimental results showed that the abrasive wear resistance of Al2O3//PAl010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PAl010 composite coatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA l010 composite coatings. By treating the surface of Al2O3 particles with a suitable bonding agent, the distribution of Al2O3 particles in matrix PAl010 is more homogeneous and the bonding state between Al2O3 particles and matrix PAl010 is better. Therefore, the ml2O3 particles in Al2O3/PA1010 composite coatings make the Al2O3/PAl010 composite coatings have better abrasive wear resistance than PA1010 coatings. The wear resistance of Al2O3/PA 1010 composite coatings is about 45% compared with that of steel 45.

  9. Impact–abrasion wear characteristics of in-situ VC-reinforced austenitic steel matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, E.G., E-mail: emad_g_moghaddam@alum.sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran (Iran, Islamic Republic of); Karimzadeh, N. [Department of Materials Engineering, Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of); Varahram, N.; Davami, P. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran (Iran, Islamic Republic of)

    2013-11-15

    In this investigation, in-situ precipitation of vanadium carbides was employed to reinforce Fe–13Mn and Fe–13Mn–3W alloys by means of conventional melting and casting route. Microstructures were characterized by optical and scanning electron microscopy techniques. Mechanical properties of the materials were determined by hardness, impact toughness and tension tests. It was observed that tungsten improved the strength of the matrix and the reinforcements as well as tensile properties and work hardening rate of the VC-reinforced composite. Ball mill abrasion test was utilized to simulate impact–abrasion wear condition using two types of abrasive minerals. The results showed that the degree of benefit to be gained by the use of in-situ VC-reinforced composite materials depends strongly on crush strength of the abrasives. It was found that the studied particle-reinforced composite materials were only advantageous when the abrasives were relatively soft, providing low-stress abrasion condition.

  10. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  11. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  12. Multiphase Flow and Wear in the Cutting Head of Ultra-high Pressure Abrasive Water Jet

    Institute of Scientific and Technical Information of China (English)

    YANG Minguan; WANG Yuli; KANG Can; YU Feng

    2009-01-01

    Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 Mpa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of particles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.

  13. A review of the prediction of textile wear performance with specific reference to abrasion

    CSIR Research Space (South Africa)

    Bird, SL

    1984-08-01

    Full Text Available conditions and thus fail fmt. With trousering the knee, crotch and seat area's receive severest wearW26'". In shirting, abrasion of collars and cuffs and tearing in the shoulder area represent the critical points's* %@, 68&93+%130-134. With sheeting... totally responsible for deterioration and not actual uses'. According to studies on shirts, collar edge wear is dependent on mechanical attrition in launderingf3% l.7, the wear a t collar folds arises mainly from personal use68 and that cuff wear...

  14. ANN & ANFIS Models for Prediction of Abrasive Wear of 3105 Aluminium Alloy with Polyurethane Coating

    Directory of Open Access Journals (Sweden)

    H. Alimam

    2016-06-01

    Full Text Available The quest for safety and reliability has increased significantly after Industrial revolution, so is the case for coating industries. In this paper 3105 Aluminium alloy sheet is coated with organic polyurethane coating. After the implementation of coating, various processes are undergone to check its reliability under elevated conditions. ANN & ANFIS model were developed and trained with an objective to find abrasive wear during the process. ANN & ANFIS model were compared with the experimental results. It is observed that the abrasive wear of a coated specimen can be predicted accurately and precisely using ANN and ANFIS models.

  15. Structural transformations and wear resistance of abrasive-affected amorphous Fe- and Co-based alloys

    Science.gov (United States)

    Korshunov, L. G.; Chernenko, N. L.

    2008-12-01

    The abrasive wear resistance of the Fe64Co30Si3B3, Fe82.6Nb5Cu3Si8B1.4, Co86.5Cr4Si7B2.5, and Fe81Si4B13C2 amorphous alloys (ribbon 30 μm thick) has been investigated upon sliding over fixed abrasives (corundum and silicon carbide). The character of fracture of the surface and structural transformations initiated in these materials by the abrasive action have been studied by the metallographic, X-ray diffraction, and electron-microscopic methods. It has been shown that the abrasive wear resistance of the amorphous alloys is smaller by a factor of 1.6-2.9 than that of the Kh12M and U8 tool steels possessing approximately the same level of hardness. A pronounced softening of the surface layer of the amorphous alloys in the process of wear, which is characterized by a decrease in their microhardness reaching 12.5%, has been found. It has been shown that in the surface layer of these amorphous alloys upon wear there arises a small amount (on the order of several volume percent) of the nanocrystalline structure, which does not exert a marked effect on the microhardness and wear resistance of the alloys. In the alloys under study, the main factor that is responsible for their comparatively low abrasive wear resistance is their local softening in the process of wear caused by specific features of deformation processes occurring heterogeneously under the action of high shear contact stresses.

  16. Abrasive wear behaviour of bio-active glass ceramics containing apatite

    Indian Academy of Sciences (India)

    I Sevim; M K Kulekci

    2006-06-01

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture toughness equations using experimental hardness results of the bio-active glass ceramic material. Two fracture toughness equations in the literature were used to identify the wear behaviour of studied ceramics. Wear resistance results that identified with both of the equations were similar. The results showed that the abrasive wear resistance of the bio-active glass ceramics produced with hot pressing process was found to be higher than that of the ceramics produced by conventional casting and controlled crystallization process.

  17. Effects of hybrid composition of LCP and glass fibres on abrasive wear of reinforced LLDPE

    Indian Academy of Sciences (India)

    S A R Hashmi; Ajay Naik; Navin Chand

    2006-02-01

    The hybrid of liquid crystalline polymer (LCP) fibres and glass fibres (GF) provide a combination of modulus and toughness to semi-crystalline linear-low-density-polyethylene (LLDPE). LCP and GF fibres reinforced composites were studied using two-body abrasion tester under different applied loads. Two sets of fibre reinforced LLDPE, 10 and 20 vol%, were investigated. The contents of LCP and glass fibres were varied as 25, 50, 75 and 100 vol% of overall volume of fibres in LLDPE. The effect of replacing glass fibre with LCP fibre on wear is reported. Wear loss increased with the applied loads and glass fibre contents in LLDPE. The replacements of glass fibres with LCP fibres improved abrasive wear resistance of composite. The composite containing 20 vol% of glass fibres in LLDPE showed the specific wear rate nearly double to that of LCP fibre reinforced LLDPE. Incorporation of LCP fibre improved wear resistance of glass fibre reinforced LLDPE. Worn surfaces were studied using SEM. Glass fibres were broken in small debris and removed easily whereas LCP fibres yielded to fibrillation during abrasive action. The overall wear rate was governed by the composition and test conditions.

  18. The importance of extractives and abrasives in wood materials on the wearing of cutting tools

    Directory of Open Access Journals (Sweden)

    Wayan Darmawan

    2012-11-01

    Full Text Available For many wood cutting processes, the interest of high-speed tool steels and tungsten carbides remains very important because of their good tool edge accuracy and easy grinding. The wear of high-speed steel and tungsten carbide is an important economic parameter. Wood extractives and silica have a potential adverse effect on tool wear. Rapid chemical wearing due to corrosion and mechanical wearing has been attributed to the presence of extractives and silica in wood and wood composites. This paper presents the wear characteristics of SKH51 high-speed steel and K10 tungsten carbide caused by extractive and abrasive materials present in the lesser-known Tapi-Tapi wood and wood composites of wood cement board, particleboard, MDF, and oriented strand board (OSB. Experimental results showed that wearing of the cutting tools tested was determined by extractives and silica contained in the wood and wood composites. Wood cement board, which is high in silica content, caused severe damage to the cutting edge of the high-speed steel. A corrosion/oxidation mechanism was found to contribute to the wear of SKH51 and K10 when cutting the Tapi-Tapi wood, MDF, particleboard, wood cement board, and OSB. The silica and extractives determined the abrasion and corrosion wear mechanism to a varying degree.

  19. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    Science.gov (United States)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  20. Relationship among wear-resistance of three-body abrasion,substructure and property in martensite steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of subsurface hardness on wear-resistance of martensitic steel 20Cr, 40CrSi, 60Mn, T8 and T10 in three-body abrasion under static load was investigated. It shows that the characteristic ofthe subsurface hardness distribution and the abrasive wear resistanceis related to the substructure near the worn surface. The substructure of the tested martensite steel has an apparent relationship with thecarbon content and steels with moderate carbon content and hardness exhibit good resistance to abrasive wear. The competition of the work-hardening effect and the temper softening effect, which resulted from deformation and friction heat generating during abrasive wear is considered to be a main reason for the relation among wear-resistance, hardness and substructure. At the test conditions, the wear-resistance of 40CrSi is the best.

  1. Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad

    Science.gov (United States)

    Bansal, Amit; Zafar, Sunny; Sharma, Apurbba Kumar

    2015-10-01

    In the present work, Ni-WC powder was deposited on mild steel substrate to develop clads through microwave hybrid heating technique. The cladding trials were carried out in an industrial microwave applicator at 1.1 kW for 540 s. The Ni-WC composite clads were characterized for microstructure and abrasive wear performance through combination of x-ray diffraction, electron and optical microscopy, microhardness, and wear tests. Phase analysis of the Ni-WC clad indicated the presence of stable carbides such as WC, W2C, Ni2W4C, and Fe6W6C. The microstructure study of the clad layer revealed the presence of a uniformly distributed interlocked WC-based reinforcement embedded in the Ni-based matrix. The average Vicker's microhardness in the clad layer was observed to be 1028 ± 90 HV, which was approximately three times the microhardness of the substrate. Abrasive wear resistance of the microwave clads was superior to the MS substrate. Abrasion was the main wear mechanism in the Ni-WC clads and the substrate samples. However, the presence of WC-based reinforcement in the composite clads reduced microcutting, resulting in enhanced wear resistance.

  2. Selected Plastics Wear Resistance to Bonded Abrasive Particles Compared to Some Ferrous Materials

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2015-01-01

    Full Text Available Plastics are macromolecular materials without we cannot imagine any branch of human activity with. Plastics have unique properties, often very different from metals. At the choice of the concrete plastic for the concrete application it is necessary to evaluate its mechanical, physical, chemical and technological properties. In last years producers offer also plastics for production of parts exposed to different types of wear. In the contribution the results of wear resistance studying of 10 types of plastics (PTFE, PVC, POM-C, PC, PETP, PEEK, PA66, PP, PA6E and PE-UHMW of one producer are published and compared with test results of four different Fe alloys (grey iron, structural steel, cast steel wear resistant and high-speed steel. The laboratory tests were carried out using the pin-on-disk machine with abrasive cloth (according to ČSN 01 5084, when the abrasive clothes of three different grits (240, 120 and 60 were used. It corresponds to the average abrasive grain sizes of 44.5 µm, 115.5 µm and 275 µm. During the test the test sample was pressed to the abrasive cloth by the pressure of 0.1 MPa. The wear intensity was assessed by the volume, weight and length losses of tested samples. The technical-economical evaluation was the part of the carried out tests. It was univocally proved that at the intensive abrasive wear using the abrasive cloth the best results shows the High-Speed Steel HSS Poldi Radeco 19 810 according to ČSN 41 9810, although its price is relatively high. Other tested Fe alloys, namely grey iron according to ČSN 42 2415, structural steel 11 373 according to ČSN 41 1373 and wear resistant cast steel VPH 6 showed also very favourable properties at the material low price. In comparison with Fe alloys the wear of all plastics was considerably higher and the plastics were considerably more expensive.

  3. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy

    Science.gov (United States)

    Yang, Ke; Yu, Shengfu; Li, Yingbin; Li, Chenglin

    2008-06-01

    Hardfacing alloy of martensitic stainless steel expect higher abradability to be achieved through the addition of nitrogen being provided by the fine scale precipitation of complex carbonitride particles. Niobium and titanium as the most effective carbonitride alloying elements were added in the Fe-Cr13-Mn-N hardfacing alloy to get carbonitride precipitates. Carbonitride was systematically studied by optical microscopy, scanning electronic microscopy and energy spectrum analysis. Abrasive wear resistance of hardfacing alloy in as-welded and heat-treated conditions was tested by using the belt abrasion test apparatus where the samples slide against the abrasive belt. It is found that carbonitride particles in the hardfacing alloy are complex of Cr, Ti and Nb distributing on the grain boundary or matrix of the hardfacing alloy with different number and size in as-welded and heat-treated conditions. A large number of carbonitrides can be precipitated with very fine size (nanoscale) after heat treatment. As a result, the homogeneous distribution of very fine carbonitride particles can significantly improve the grain-abrasion wear-resisting property of the hardfacing alloy, and the mass loss is plastic deformation with minimum depth of grooving by abrasive particles and fine delamination.

  4. Fretting wear behavior of AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN An-hua; HUANG Wei-jiu; LI Zhao-feng

    2006-01-01

    The fretting behaviour of the AZ91D magnesium alloy was investigated. The influence of the number of cycles, normal load (contact pressure) and the amplitude of slip on the fretting behavior of the material were focused. Fretting tests were performed under various running conditions with regard to normal load levels and slip amplitudes. The friction coefficient between the surfaces at the fretting junction was continuously recorded. The fretting damage on the magnesium specimens was studied by SEM. The results show that the wear volume increases with the increase of slip amplitude, and linearly increases with the increase of normal load in the mixed and gross slip regime, but the normal load has no obvious effect on the wear volume in the partial slip regime. The predominant fretting wear mechanism of magnesium alloy in the slip regime is the oxidation wear, delaminated wear and abrasive wear.

  5. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  6. Modeling of Tool Wear in Vibration Assisted Nano Impact-Machining by Loose Abrasives

    Directory of Open Access Journals (Sweden)

    Sagil James

    2014-01-01

    Full Text Available Vibration assisted nano impact-machining by loose abrasives (VANILA is a novel nanomachining process that combines the principles of vibration assisted abrasive machining and tip-based nanomachining, to perform target specific nanoabrasive machining of hard and brittle materials. An atomic force microscope (AFM is used as a platform in this process wherein nanoabrasives, injected in slurry between the workpiece and the vibrating AFM probe which is the tool, impact the workpiece and cause nanoscale material removal. The VANILA process are conducted such that the tool tip does not directly contact the workpiece. The level of precision and quality of the machined features in a nanomachining process is contingent on the tool wear which is inevitable. Initial experimental studies have demonstrated reduced tool wear in the VANILA process as compared to indentation process in which the tool directly contacts the workpiece surface. In this study, the tool wear rate during the VANILA process is analytically modeled considering impacts of abrasive grains on the tool tip surface. Experiments are conducted using several tools in order to validate the predictions of the theoretical model. It is seen that the model is capable of accurately predicting the tool wear rate within 10% deviation.

  7. Fissure sealants: in vitro evaluation of abrasion wear and superficial roughness

    Directory of Open Access Journals (Sweden)

    Vanessa Pardi

    2008-06-01

    Full Text Available The aim of this study was to compare the in vitro wear and superficial roughness of four materials (Delton Dyract Flow, Dentsply; Filtek Flow, Vitremer, 3M ESPE used as fissure sealant in 32 extracted human molars divided in four groups (n = 8 after abrasion with toothbrush/dentifrice. Impressions of each occlusal surface were made to analyze wear and circular specimens were prepared to analyze the roughness. Teeth and specimens were mounted in a toothbrushing machine. The replicas were observed using a SEM to determine the superficial wear. Wear: there were no statistically significant differences either between Delton and Filtek Flow or between Dyract Flow and Vitremer. Roughness: there were no statistical differences between Filtek Flow and Dyract Flow, Dyract Flow and Vitremer, Vitremer and Delton., Considering the clinical practice, if caries activity is present the use of Vitremer is suggested not only for its well known fluoride release, but it presented good roughness results.

  8. Abrasive wear resistance optimization of three different carbide coatings by the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Ali Kaya [Firat Univ., Elazig (Turkey). Dept. of Metallurgy and Materials; Kaya, Sinan [Firat Univ., Elazig (Turkey). Faculty of Technology

    2017-06-01

    In this study, FeCrC, SiC and B{sub 4}C powders were alloyed on the surface of AISI 430 ferritic stainless steel by plasma arc welding. The mass losses of the abrasive wear of the AISI 430 substrate were examined under the loads of 6, 10 and 16 N and in the distances of 10, 20 and 30 m by using Taguchi design method. The results of abrasive wear test were optimized by the minimum optimal control characteristics of the Taguchi procedure and the results were analyzed by using graphical methods. The Taguchi procedure is an important approach to achieve high quality without increasing the cost during the optimization of process parameters. The orthogonal planes of maximum effects of the controllable process parameters and minimum effects of uncontrollable process parameters were employed in the Taguchi method.

  9. Structure and abrasive wear resistance of R6M5 steel-tungsten carbide composite coatings

    Science.gov (United States)

    Gnyusov, S. F.

    2012-09-01

    Features of the structure formation, composition, and abrasive wear resistance of R6M5 steel-tungsten carbide (R6M5-WC) composite coatings have been studied as dependent on the WC content. The introduction of ˜20 wt % WC into the hardening composition leads to an increase in the fraction of M6C carbide (in the form of eutectic inclusions with average size ˜5.9 μm at grain boundaries and dispersed ˜0.25 μm particles in the volume of grains), while a large proportion of metastable austenite (˜88 vol %) is still retained. The R6M5-WC coatings exhibit high abrasive wear resistance, which is ensured by the γ → α' martensite transformation during friction and a muiltimodal size distribution of hardening particles.

  10. Structure and Abrasive Wear of Composite HSS M2/WC Coating

    Directory of Open Access Journals (Sweden)

    S. F. Gnyusov

    2012-01-01

    Full Text Available Features of phase-structure formation and abrasive wear resistance of composite coatings “WC-M2 steel” worn against tungsten monocarbide have been investigated. It was established that adding 20 wt.% WC to the deposited powder mixture leads to the increase in M6C carbide content. These carbides show a multimodal size distribution consisting of ~5.9 μm eutectic carbides along the grain boundaries, ~0.25 μm carbides dispersed inside the grains. Also a greater amount of metastable austenite (~88 vol.% is found. The high abrasive wear resistance of these coatings is provided by γ→α′-martensitic transformation and multimodal size distribution of reinforcing particles.

  11. The microstructural aspects of abrasive wear resistance in composite electron beam clad coatings

    Science.gov (United States)

    Gnyusov, S. F.; Tarasov, S. Yu.

    2014-02-01

    The effect of microstructure and phase composition of composite coatings based on manganese-containing or nickel-containing austenitic steel and containing either 10 wt.% TiC or 15 wt.% WC on the abrasive wear resistance has been studied. Both post-deposition heat treatment and self-aging in the course of deposition served to improve the relative wear resistance coefficient by 38-42 and 5-12% for Fe-20%Mn-4%V-4%Mo + 15%WC and Fe-20%Ni-4%V-4%Mo + 15%WC coatings, respectively.

  12. Effect of Fe2B boride orientation on abrasion wear resistance of Fe-B cast alloy

    Directory of Open Access Journals (Sweden)

    Da-wei Yi

    2017-07-01

    Full Text Available The microstructures and abrasion wear resistance of directional solidification Fe-B alloy have been investigated using optical microscopy, X-ray diffraction, scanning electron microscopy and laser scanning microscopy. The results show that the microstructure of as-cast Fe-B alloy consists of ferrite, pearlite and eutectic boride. After heat treatment, the microstructure is composed of boride and martensite. The plane which is perpendicular to the boride growth direction possesses the highest hardness. In two-body abrasive wear tests, the silicon carbide abrasive can cut the boride and martensite matrix synchronously, and the wear mechanism is micro cutting mechanism. The worn surface roughness and the wear weight loss both increase with the increasing contact load. Moreover, when the boride growth direction is perpendicular to the worn surface, the highest hardness plane of the boride can effectively oppose abrasion, and the martensite matrix can surround and support borides perfectly.

  13. Abrasion Behavior of High Manganese Steel under Low Impact Energy and Corrosive Conditions

    Directory of Open Access Journals (Sweden)

    Du Xiaodong

    2009-01-01

    Full Text Available The abrasion behavior of high manganese steel is investigated under three levels of impact energy in acid-ironstone slurry. The wear test was carried out by an MLDF-10 tester with impact energy of 0.7 J, 1.2 J, and 1.7 J. The impact abrasion property of high manganese steel in corrosive condition was compared according to the wear mass loss curves. The wear mechanism was analysed by the SEM analysis of the worn surface and the optical metallographic analysis of the vertical section to the wear surface. The results show that the impact energy has a great effect on the impact corrosion and abrasion properties of it. Its abrasion mechanism in corrosive condition is mainly microplough and breakage of plastic deformed ridges and wedges under the impact energy of 0.7 J. It is mainly the spelling of plastic deformed ridges and wedges under 1.2 J and the spalling of the work-hardening layer under 1.7 J after a long time testing.

  14. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments

    Directory of Open Access Journals (Sweden)

    Marcela Charantola Rodrigues

    2013-04-01

    Full Text Available Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50 fragments of bovine enamel (15 mm × 5 mm were randomly assigned to five groups (n=10 according to the product utilized: G1 (control= silicone polisher (TDV, G2= 37% phosphoric acid (3M/ESPE + pumice stone (SS White, G3= Micropol (DMC Equipment, G4= Opalustre (Ultradent and G5= Whiteness RM (FGM Dental Products. Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p≤0.05 which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p≤0.05. Results: Means and standard deviations of roughness and wear (µm after all the promoted stages were: G1=7.26(1.81/13.16(2.67, G2=2.02(0.62/37.44(3.33, G3=1.81(0.91/34.93(6.92, G4=1.92(0.29/38.42(0.65 and G5=1.98(0.53/33.45(2.66. At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.

  15. Measurement of the Resistance of Treated Metal Foils to Scrubbing Abrasion Using a Modified Reciprocating Wear Test

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Sikka, Vinod K [ORNL

    2007-01-01

    A reciprocating wear test method has been developed to evaluate the resistance of metal foils to scrubbing abrasion. Development included the definition of a quantitative measure of the scrubbing resistance. In order to test the ability of the new method to differentiate between surface treatments, four versions of Type 316 stainless steel foils were tested: annealed (A-NT), cold-worked (C-NT), annealed plus a case-hardened (A-T), and cold-worked plus case-hardened (C-T). Measurements were made of their scrubbing resistance using commercial kitchen scrub pads as the counterface material. Results showed that the case-hardening process significantly increased the scrubbing resistance both under dry conditions and with cleaning solutions to lubricate the contact. While this linearly-reciprocating method does not simulate the circular, overlapping motion commonly occurring in service, results indicated that the new test method could sufficiently discriminate levels of two-body abrasion behavior, and therefore can be useful for studying the effects of surface treatments on abrasion resistance.

  16. Wear Behavior of Laser-Cladded Co-Cr-Mo Coating on γ-TiAl Substrate

    Science.gov (United States)

    Barekat, Masoud; Shoja Razavi, Reza; Ghasemi, Ali

    2017-07-01

    In this study, laser cladding of Co-Cr-Mo alloy on a γ-TiAl substrate was performed to investigate the wear behavior of coated and uncoated TiAl alloy at room temperature. Dry sliding wear tests were conducted for coated and uncoated counterfaces against three pins of alumina, Inconel 718 and Co-Cr-Mo. Overall, laser cladding of Co-Cr-Mo powder resulted in the formation of a thick coating with minimal imperfections, as well as increasing the wear resistance of TiAl alloy. The results of wear tests indicated that the relative wear resistance was about 1.97, 2.17, and 1.92 for sliding against alumina, Inconel 718, and Co-Cr-Mo pins, respectively. The investigation of worn surfaces also showed that the abrasive wear mechanism was dominant for all samples. In addition, severe abrasive wear was changed to mild abrasive wear by local formation of chromium-based oxides.

  17. Analysis Of The Austenite Grain Growth In Low-Alloy Boron Steel With High Resistance To Abrasive Wear

    Directory of Open Access Journals (Sweden)

    Białobrzeska B.

    2015-09-01

    Full Text Available Today low-alloy steels with boron achieve high resistance to abrasive wear and high strength. These features are obtained by using advanced technology of manufacturing. This makes boron steels increasingly popular and their application more diverse. Application of these steels can extend the lifetime of very expensive machine construction in many industries such as mining, the automotive, and agriculture industries. An interesting subgroup of these materials is steel with boron intended for heat treatment. These steels are supplied by the manufacturer after cold or hot rolling so that it is possible for them to be heat treated in a suitable manner by the purchaser for its specific application. Very important factor that determines the mechanical properties of final product is austenite grain growth occurring during hot working process such us quenching or hot rolling. Investigation of the effect of heating temperature and holding time on the austenite grain size is necessary to understand the growth behavior under different conditions. This article presents the result of investigation of austenite grain growth in selected low-allow boron steel with high resistance to abrasive wear and attempts to describe the influence of chemical composition on this process.

  18. Effect of heat treatment on the wear resistance of high-carbon and high-nitrogen steels subjected to abrasive wear

    Science.gov (United States)

    Filippov, M. A.; Belozerova, T. A.; Blinov, V. M.; Kostina, M. A.; Val'kov, E. V.

    2006-03-01

    The effect of quenching and tempering on the capacity of steels based on chromium-carbon, chromium-nitrogen, and carbon-manganese austenite for strain-induced martensitic transformation, hardening, and wear resistance in the process of abrasive wear is studied. The steels contain 1-1.2% C or N and 18% Cr or Mn. The wear resistance of the studied steels having a structure of metastable austenite is compared to that of steel 110G13.

  19. Influence of Shot Peening on Abrasion Wear in Real Conditions of Ni-Cu-Ausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Wieczorek A. N.

    2016-12-01

    Full Text Available The paper presents results of the wear tests of chain wheels made of austempered ductile iron with various content of residual austenite. The aim of this study was to demonstrate the impact of the dynamic surface treatment (shot peening on wear properties of surface layers of the chain wheels tested that were subjected to the action of quartz abrasive. Apart from determining the value of the abrasive wear, examinations of the magnetic phase content in the microstructure were carried out and plots of hardness of the surface layer as a function of the distance from the surface and microstructure of the materials were prepared. Based on the results, the following was found: an increase in the abrasive wear and a reduction in the hardness of the surface layer of chain wheels subjected to shot peening, as well as reduction of susceptibility to negative action of the shot for cast irons with the structure of upper ausferrite.

  20. Abrasion of ultrafine WC-Co by fine abrasive particles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Abrasive wear of a series of WC-(5%-14%, mass fiaction)Co hardmetals was investigated employing coarse and fine SiC abrasive under two-body dry abrasion conditions with pin-on-disc and edge-on-disc test arrangements. Unexpectedly, it is found that submicron grades demonstrate substantially higher wear rates comparing with the coarse grades if fine abrasive is utilized in pin-on-disc tests. Such a behavior is attributed to changes in a ratio of abrasive size to size of hard phase as finer abrasive is used.The edge-on-disc test demonstrates that edge wear may be described in two stages with the highest wear rates at the beginning stage.This behavior is associated with a transition of wear mechanisms as edge is wider due to wear. Compared with the ultrafine grades of the same Co content, the coarse grades demonstrate higher wear rates at the beginning, but lower wear rates at the final stage. Wear rates and mechanisms observed at final stage correlate well to the results observed for pin-on-disc tests employing fine abrasive.

  1. Study of abrasive wear rate of silicon using n-alcohols

    Science.gov (United States)

    Danyluk, S.

    1982-01-01

    The work carried out at the University of Illinois at Chicago for the Flat-Plate Solar Array Project under contract No. 956053 is summarized. The abrasion wear rate of silicon in a number of fluid environments and the parameters that influence the surface mechanical properties of silicon were determined. Three tests were carried out in this study: circular and linear multiple-scratch test, microhardness test and a three-point bend test. The pertinent parameters such as effect of surface orientation, dopant and fluid properties were sorted. A brief review and critique of previous work is presented.

  2. Influence of prophylaxis paste treatment on the abrasive wear of surface sealants.

    Science.gov (United States)

    Wegehaupt, Florian J; Tauböck, Tobias T; Attin, Thomas

    2013-01-01

    To investigate the abrasive wear of surface sealants (Seal&Protect and K-0184 (experimental sealant)) and the influence of pre-treatment with mineral deposit forming prophylaxis pastes (NUPRO Sensodyne and NUPRO) on this wear. One hundred and eight bovine dentine samples were randomly allocated to nine groups (1-9). Pre-treatment (10 s): groups 1-3: untreated, groups 4-6: NUPRO, groups 7-9: NUPRO Sensodyne. Sealing: groups 1, 4 and 7: unsealed, groups 2, 5 and 8: Seal&Protect, groups 3, 6 and 9: K-0184 (experimental sealer). Samples were then brushed with 12 000 brushing strokes (BS) with toothpaste slurry in an automatic brushing machine (120 BS/min; F = 2.5 N). Surface profiles were recorded at baseline, after pre-treatment and sealing and after each 2000 BS. Total profile change (wear or gain due to pre-treatment, treatment and 12 000 BS): groups 1, 4 and 7 (no surface sealant) showed a not significantly different wear of 18.48 ± 2.63 µm, 24.98 ± 3.02 µm and 21.50 ± 5.47 µm, respectively. Remaining groups (sealed) showed a gain in height with no significant difference among each other. Wear in sealed groups (2, 3, 5, 6, 8 and 9) were not significantly different at all numbers of brushing strokes. Starting with 4000 BS, the wear in unsealed groups (1, 4 and 7) was statistically significantly higher compared to all other groups. Stability and wear resistance of surface sealants are not affected by pre-treatment of dentine with NUPRO Sensodyne. The surface sealants tested provide a stable protective surface layer on dentine, which lasts for at least 12 000 brushing strokes.

  3. The Wear Behavior of HVOF Sprayed Near-Nanostructured WC-17%Ni(80/20)Cr Coatings in Dry and Slurry Wear Conditions

    Science.gov (United States)

    Ben Mahmud, Tarek A.; Atieh, Anas M.; Khan, Tahir I.

    2017-07-01

    The ability to deposit nanostructured feedstock by using high-velocity oxygen-fuel (HVOF) spray offers potential improvements in coating hardness, wear resistance and toughness for applications in the oil sands industry. In this study, the wear behavior of a near-nanostructured coating was compared under dry and slurry abrasive wear test using an uncoated AISI-1018 low-carbon steel substrate as a reference. The coating microstructures were analyzed in the as-sprayed, dry and slurry test conditions using scanning electron microscopy, x-ray diffraction and microhardness measurements. Wear behavior of the steel and coating surfaces were assessed using a pin-on-plate wear test under various loads. The results showed that a coating could be successfully deposited using the HVOF spraying technique and with retention of the near-nanosized WC dispersion within the coating structure. The wear rate under dry test conditions was greater for the steel and coating compared to tests performed under slurry conditions. Examination of the wear tracks revealed that the wear mechanism was different for the two test conditions. Wear in the dry test condition resulted from 2-body abrasion, while 3-body abrasion dominated wear in slurry conditions. The latter showed lower wear rates due to a lubricating effect of the oil.

  4. Wear characteristics of second-phase-reinforced sol-gel corundum abrasives

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Joachim [Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52056 Aachen (Germany)]. E-mail: mayer@gfe.rwth-aachen.de; Engelhorn, Robert [Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, 52056 Aachen (Germany); Bot, Rosemarie [Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, 52056 Aachen (Germany); Weirich, Thomas [Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52056 Aachen (Germany); Herwartz, Cleo [Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52056 Aachen (Germany); Klocke, Fritz [Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, 52056 Aachen (Germany)

    2006-08-15

    The use of sol-gel technologies makes it possible to manufacture new corundum-based abrasives with superior performance in terms of grinding processes. The aim of the present work is to reveal the detailed wear mechanisms on a nanometre scale and relate them to the particular microstructure of these new materials. A commercial sol-gel corundum (Cubitron 321{sup TM}) was used. In the grinding experiments, wheels consisting of four different mixtures with 0%, 30%, 50% and 100% of sol-gel corundum were used to machine a tool steel (100Cr6V) by plane grinding. Changes to the contact zone were studied after controlled abrasion experiments on hard steel substrates using a pin-on-wheel tribometer, in single grit scratch tests and after tests of resistance to heat shock. Cross-sections through contact areas of a sol-gel grain were prepared using a focused ion beam workstation and investigated using conventional and analytical transmission electron microscopy. The results indicate that the combined effect of controlled propagation of subsurface shear cracks and plastic deformation leads to the formation of flat contact zones. On these contact zones, a nanocrystalline FeO debris layer adheres to the alumina. The results of our investigations were verified in grinding experiments and give insight into the physical reasons of the superior tribological properties of the sol-gel corundum abrasives.

  5. Mechanical and Abrasive Wear Properties of Anodic Oxide Layers Formed on Aluminium

    Institute of Scientific and Technical Information of China (English)

    W.Bensalah; K.Elleuch; M.Feki; M.Wery; H.F.Ayedi

    2009-01-01

    Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The Vickers microhardness, D (HV0.2). and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Caul) was maintained at 160 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.

  6. Effect of Intercritical Heat Treatment on the Abrasive Wear Behaviour of Plain Carbon Dual Phase Steel

    Science.gov (United States)

    Manoj, M. K.; Pancholi, V.; Nath, S. K.

    Dual phase (DP) steels have been prepared from low carbon steel (0.14% C) at intercritical temperature 740°C and time is varied from 1 minute to 30 minutes followed by water quenching. These steels have been characterized by optical microscopy, FE-SEM, hardness measurements, tensile properties and electron backscattered diffraction (EBSD) studies. Tensile properties of a typical dual phase steel are found to be 805 MPa ultimate tensile strength with 18% total elongation. Martensite volume fraction of D P steel (determined by EBSD technique) prepared at 740°C for 6 minutes is found to be 10.2% and the grain size of ferrite and martensite found to be 14.39 micron and 1.05 microns respectively. Abrasive wear resistance of dual phase steels has been determined by pin on drum wear testing machine. DP steels have been found to be 25% more wear resistant than that of normalized steel. Short intercritical heating time followed by water quenching gives higher wear resistance by virtue of smaller and well dispersed martensite island in the matrix of ferrite.

  7. Tribological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current

    Institute of Scientific and Technical Information of China (English)

    TU Chuan-jun; CHEN Zhen-hua; CHEN Ding; YAN Hong-ge; HE Feng-yi

    2008-01-01

    The resin-matrix pantograph contact strip (RMPCS), which has excellent abrasion resistance with electrical current and friction-reducing function, was developed in view of the traditional contact strips with high maintenance cost, high wear rate with electrical current and severe damage to the copper conducting wire. The characteristics of worn surfaces, cross-section and typical elemental distributions of RMPCS were studied by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS).The wear behavior and arc discharge of RMPCS against copper were investigated with self-made electrical wear tester. The results show that the electrical current plays a critical role in determining the wear behavior, and the wear rate of the RMPCS against copper with electrical current is 2.7-5.8 times higher than the value without electrical current. The wear rate of the contact strip increases with the increase of the sliding speed and electrical current density. The main wear mechanism of RMPCS against copper without electrical current is low stress grain abrasive and slightly adhesive wear, while arc erosion wear and oxidation wear are the dominate mechanism with electrical current, which is accompanied by adhesive wear during the process of wear.

  8. Tooth length and incisal wear and growth in guinea pigs (Cavia porcellus) fed diets of different abrasiveness.

    Science.gov (United States)

    Müller, J; Clauss, M; Codron, D; Schulz, E; Hummel, J; Kircher, P; Hatt, J-M

    2015-06-01

    Dental diseases are among the most important reasons for presenting guinea pigs (Cavia porcellus) and other rodents to veterinary clinics, but the aetiopathology of this disease complex is unclear. Clinicians tend to believe that the ever-growing teeth of rabbits and rodents have a constant growth that needs to be worn down by the mastication of an appropriate diet. In this study, we tested the effect of four different pelleted diets of increasing abrasiveness [due to both internal (phytoliths) and external abrasives (sand)] or whole grass hay fed for 2 weeks each in random order to 16 guinea pigs on incisor growth and wear, and tooth length of incisors and cheek teeth. There was a positive correlation between wear and growth of incisors. Tooth lengths depended both on internal and external abrasives, but only upper incisors were additionally affected by the feeding of whole hay. Diet effects were most prominent in anterior cheek teeth, in particular M1 and m1. Cheek tooth angle did not become shallower with decreasing diet abrasiveness, suggesting that a lack of dietary abrasiveness does not cause the typical 'bridge formation' of anterior cheek teeth frequently observed in guinea pigs. The findings suggest that other factors than diet abrasiveness, such as mineral imbalances and in particular hereditary malocclusion, are more likely causes for dental problems observed in this species. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  9. Analog Studies of Thermomechanical Fatigue and Abrasive Wear of Cast and Forged Steels for "Autoforge" Dies

    Science.gov (United States)

    Kolesnikov, M. S.; Mironova, Yu. S.; Mukhametzyanova, G. F.; Novikova, I. E.; Novikov, V. Yu.

    2014-07-01

    Processes of thermomechanical fatigue and abrasive wear of suspension-cast precipitation-hardening ferrite-carbide steel 30T6NTiC-1.5 and standard steel 4Kh5MFS are studied. The dominant kinds of fracture typical for dies for semisolid stamping are determined. The factors and parameters of cyclic temperature and force loading are shown to produce a selective action on the competing kinds of damage of the die steels. A comparative analysis of the properties of the steels is performed. Steel 30T6NTiC-1.5 is shown to have substantial advantages over steel 4Kh5FMS traditionally used for making "Autoforge" dies.

  10. Effect of the powder particle size on the wear behavior of boronized AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guenen, Ali [Mustafa Kemal Univ., Hatay (Turkey). Dept. of Metallurgy and Material Engineering; Kuecuek, Yilmaz; Oege, Mecit; Goek, M. Sabri [Bartin Univ. (Turkey). Dept. of Mechanical Engineering; Er, Yusuf [Firat Univ., Elazig (Turkey); Cay, V. Veli [Dicle Univ., Diyarbakir (Turkey). Civil Aviation Higher School

    2015-06-01

    In this study, the AISI 304 steel specimens were boronized with nanoboron of the size of 10 50 nm and commercial Ekabor 3 powders (<1400 μm) at 950 C to 1000 C for 2 h and 4 h. Boronized steel specimens were characterized via SEM, microhardness and XRD analyses. Abrasive wear behavior of the specimens, boronized at different temperatures and treatment durations, were examined. The fixed ball micro-abrasion tests were carried out using the abrasive slurry, prepared with different SiC powder particle sizes on the boronized specimens at different rotational speeds. The specimens boronized with nanoboron powders exhibited a higher hardness and abrasive wear resistance than the samples boronized with the Ekabor 3 powders.

  11. Controlled wear of vitrified abrasive materials for precision grinding applications

    Indian Academy of Sciences (India)

    M J Jackson; B Mills; M P Hitchiner

    2003-10-01

    The study of bonding hard materials such as aluminium oxide and cubic boron nitride (BN) and the nature of interfacial cohesion between these materials and glass is very important from the perspective of high precision grinding. Vitrified grinding wheels are typically used to remove large volumes of metal and to produce components with very high tolerances. It is expected that the same grinding wheel is used for both rough and finish machining operations. Therefore, the grinding wheel, and in particular its bonding system, is expected to react differently to a variety of machining operations. In order to maintain the integrity of the grinding wheel, the bonding system that is used to hold abrasive grains in place reacts differently to forces that are placed on individual bonding bridges. This paper examines the role of vitrification heat treatment on the development of strength between abrasive grains and bonding bridges, and the nature of fracture and wear in vitrified grinding wheels that are used for precision grinding applications.

  12. Wear Characterization of Cemented Carbides (WC–CoNi Processed by Laser Surface Texturing under Abrasive Machining Conditions

    Directory of Open Access Journals (Sweden)

    Shiqi Fang

    2017-06-01

    Full Text Available Cemented carbides are outstanding engineering materials widely used in quite demanding material removal applications. In this study, laser surface texturing is implemented for enhancing, at the surface level, the intrinsic bulk-like tribological performance of these materials. In this regard, hexagonal pyramids patterned on the cutting surface of a tungsten cemented carbide grade (WC–CoNi have been successfully introduced by means of laser surface texturing. It simulates the surface topography of conventional honing stones for abrasive application. The laser-produced structure has been tested under abrasive machining conditions with full lubrication. Wear of the structure has been characterized and compared, before and after the abrasive machining test, in terms of changes in geometry aspect and surface integrity. It is found that surface roughness of the machined workpiece was improved by the laser-produced structure. Wear characterization shows that laser treatment did not induce any significant damage to the cemented carbide. During the abrasive machining test, the structure exhibited a high wear resistance. Damage features were only discerned at the contacting surface, whereas geometrical shape of pyramids remained unchanged.

  13. On the Friction and Wear Behaviors of Dental Machinable Porcelain

    Institute of Scientific and Technical Information of China (English)

    YU Hai-yang; ZHOU Zhong-rong; CAI Zhen-Bing

    2004-01-01

    In order to well design tribosystems of dental CAD-CAM restorations, an understanding of the tribological mechanisms of dental machinable porcelain are essential. The friction and wear behavior of new generation industrially prefabricated Cerec Vitablocs Mark Ⅱ against uniform Si3N4 ball has been performed using a small amplitude reciprocating apparatus under simulating oral conditions. The loads of 10-40 N, reciprocating amplitudes of 100-500 μm, frequencies of 1-4 Hz and two lubrications (no / artificial saliva lubrication) were selected. Tests lasting up to 10 000 cycles were conducted. The results show that Cerec Vitablocs Mark Ⅱ record a friction coefficient of 0.55-0.84. Artificial saliva plays a lubricant effect during wear process. Among three parameters of the test on friction coefficient and wear depth of dental machinable porcelains, the load effect is prominent. Abrasive wear is the main wear mechanism, but brittle cracks and delamination are more popular especially under unlubricated friction.

  14. On the Friction and Wear Behaviors of Dental Machinable Porcelain

    Institute of Scientific and Technical Information of China (English)

    YUHai-yang; ZHOUZhong-rong; CAIZhen-Bing

    2004-01-01

    In order to well design tribosystems of dental CAD-CAM restorations, an understanding of the tribological mechanisms of dental machinable porcelain are essential. The friction and wear behavior of new generation industrially prefabricated Cerec Vitablocs Mark II against uniform Si3N4ball has been performed using a small amplitude reciprocating apparatus under simulating oral conditions. The loads of 10-40N, reciprocating amplitudes of 100-500μm, frequencies of 1-4Hz and two lubrications (no / artificial saliva lubrication) were selected. Tests lasting up to 10 000 cycles were conducted. The results show that Cerec Vitablocs Mark Ⅱ record a friction coefficient of 0.55-0.84. Artificial saliva plays a lubricant effect during wear process. Among three parameters of the test on friction coefficient and wear depth of dental machinable porcelains, the load effect is prominent. Abrasive wear is the main wear mechanism, but brittle cracks and delamination are more popular especially under unlubricated friction.

  15. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains.

    Directory of Open Access Journals (Sweden)

    Jie Min

    Full Text Available The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains.Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated.The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes.Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings.

  16. Behavior of HVOF WC-10Co4Cr Coatings with Different Carbide Size in Fine and Coarse Particle Abrasion

    Science.gov (United States)

    Ghabchi, Arash; Varis, Tommi; Turunen, Erja; Suhonen, Tomi; Liu, Xuwen; Hannula, S.-P.

    2010-01-01

    A modified ASTM G 65 rubber wheel test was employed in wet and dry conditions using 220 nm titania particles and 368 μm sand particles, respectively. Both tests were conducted on WC-CoCr coatings produced with two powders with different carbide grain sizes (conventional and sub-micron) to address the effect of carbide size and abrasive medium characteristics on the wear performance. The same spot before and after the wet abrasion wear testing was analyzed in detail using SEM to visualize wear mechanisms. It was shown that the wear mechanism depends on the relative size of the carbide and abrasive particles. Wear mechanisms in dry sand abrasion were studied by analyzing the single scratches formed by individual abrasive particles. Interaction of surface open porosity with moving abrasive particles causes formation of single scratches. By tailoring the carbide size, the wear performance can be improved.

  17. Researches concerning the ultasonic energy influence on the resistence to the abrasive wear of loaded welded parts

    Directory of Open Access Journals (Sweden)

    Gh. Amza

    2013-01-01

    Full Text Available The researches presented in the paper refer to the effect of ultrasounds propagation in the liquid metal bath on the process of transferring the additive material through the electric arch and on the crystallization process, and all these effects are analyzed for loaded welded parts solicited at the abrasive wear. All these influences are conferred to these two basic phenomena due to the ultrasounds propagation in liquid environments, namely, ultra-acoustic cavitation and acceleration of the diffusion process. The results concerns the resistance to the wear obtained for the loaded parts through manual welding with electric arch and classically covered electrode and ultrasonically activated.

  18. Abrasive Wear of Four Direct Restorative Materials by Standard and Whitening Dentifrices

    Science.gov (United States)

    2013-06-01

    superficial stains. Insufficient abrasiveness promotes the formation of pellicle and increased bacterial adhesion. Whitening toothpastes generally...production of a pigmented pellicle. Similarly, Saxton (1976) confirmed that an abrasive is necessary to control the thickness of pellicle and to...difficult to remove. However, while insufficient abrasiveness can promote the formation of pellicle and increased bacterial adhesion, excessive

  19. Effect of Austenite Transformation on Abrasive Wear and Corrosion Resistance of Spheroidal Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Medyński D.

    2016-09-01

    Full Text Available Within the presented work, the effect of austenite transformation on abrasive wear as well as on rate and nature of corrosive destruction of spheroidal Ni-Mn-Cu cast iron was determined. Cast iron contained: 3.1÷3.4 %C, 2.1÷2.3 %Si, 2.3÷3.3 %Mn, 2.3÷2.5 %Cu and 4.8÷9.3 %Ni. At a higher degree of austenite transformation in the alloys with nickel equivalent below 16.0%, abrasive wear resistance was significantly higher. Examinations of the corrosion resistance were carried out with the use of gravimetric and potentiodynamic method. It was shown that higher degree of austenite transformation results in significantly higher abrasive wear resistance and slightly higher corrosion rate, as determined by the gravimetric method. However, results of potentiodynamic examinations showed creation of a smaller number of deep pinholes, which is a favourable phenomenon from the viewpoint of corrosion resistance.

  20. The structure, properties and a resistance to abrasive wear of railway sections of steel with a different pearlite morphology

    Energy Technology Data Exchange (ETDEWEB)

    Aniolek, K [Institute of Materials Science, University of Silesia, Bankowa 12, 40-007 Katowice (Poland); Herian, J, E-mail: jerzy.herian@polsl.pl [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The article presents the characteristics of pearlite rail steels used in the construction of railways. The article discusses the influence of isothermal annealing process parameters on the pearlite morphology and properties of the R260 steel. The pearlite structure with a diverse pearlite morphology was obtained in the physical modeling of the isothermal annealing on the 3800 Gleeble Simulator. After the heat treatment, the existence of the pearlite microstructure with pearlite colonies was identified. They were smaller in relation to colonies after the hot rolling process. It was shown that the reduction of isothermal holding temperature influences the decrease of the interlamellar distance in the pearlite steel. On the basis of the received results, the dependences between the resistance to the abrasive wear and the pearlite morphology for operational conditions occurring in the switches were estimated. The resistance to the abrasive wear tests were conducted for steel with a different morphology of pearlite on the Amsler stand in conditions of rolling- sliding frictions. The resistance to the abrasive wear of R260 steel with a different pearlite morphology increases, when the interlamellar distance in cementite decreases and decreases as the load and slip increase.

  1. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    Science.gov (United States)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  2. Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    何凤姣; 雷惊天; 陆欣; 黄宇宁

    2004-01-01

    The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.

  3. Influence of applied load on wear behavior of C/C-Cu composites under electric current

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2017-04-01

    Full Text Available Using carbon fiber needled fabrics with Cu-mesh and graphite powder as the preform, Cu mesh modified carbon/carbon(C/C-Cu composites were prepared by chemical vapor deposition (CVD with C3H6 and impregnation-carbonization (I/C with furan resin. C/C composites, as a comparison, were also prepared. Their microstructures and wear morphologies were observed by optical microscopy (OM and scanning electron microscope (SEM, respectively. Wear behavior of C/C and C/C-Cu composites under different applied loads were investigated on a pin-on-disc wear tester. The results show that Cu meshes are well dispersed and pyrolytic carbon is in rough laminar structure. Both C/C and C/C-Cu composites had good wear properties. The current-carrying capacity of C/C-Cu composites increases and the arc discharge is hindered as the applied load increases from 40 N to 80 N. Both C/C and C/C-Cu composites had good wear properties. The mass wear rate of C/C-Cu composites under 80 N was only 4.2% of that under 60 N. In addition, C/C-Cu composites represent different wear behaviors because wear mechanisms of arc erosion, abrasive wear, adhesive wear, and oxidative wear are changing under different applied loads.

  4. Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Pablo Guzmán

    2017-07-01

    Full Text Available The object of this work was the deposition of a Ta-Hf-C thin film with a gold interlayer on stainless steel, via the physical vapor deposition (PVD technique, in order to evaluate the properties of different systems subjected to micro-abrasive wear phenomena generated by alumina particles in Ringer's solution. The surface characterization was performed using a scanning electron microscope (SEM and atomic force microscope (AFM. The crystallographic phases exhibited for each coating were obtained by X-ray diffraction (XRD. As a consequence of modifying the composition of Ta-Hf there was evidence of an improvement in the micro-abrasive wear resistance and, for each system, the wear constants that confirm the enhancement of the surface were calculated. Likewise, these surfaces can be bioactive, generating an alternative to improve the biological fixation of the implants, therefore, the coatings of TaC-HfC/Au contribute in the development of the new generation of orthopedic implants.

  5. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  6. Research on the abrasive wear resistance of YDCrMoV coating produced by CO2 shielded flux-cored wire surfacing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.

  7. Wear behavior of tetragonal zirconia polycrystal versus titanium and titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kanbara, Tsunemichi; Yajima, Yasutomo [Department of Oral Implantology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502 (Japan); Yoshinari, Masao, E-mail: yosinari@tdc.ac.jp [Division of Oral Implant Research, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502 (Japan)

    2011-04-15

    The aim of this study was to clarify the influence of tetragonal zirconia polycrystal (TZP) on the two-body wear behavior of titanium (Ti). Two-body wear tests were performed using TZP, two grades of cp-Ti or Ti alloy in distilled water, and the cross-sectional area of worn surfaces was measured to evaluate the wear behavior. In addition, the surface hardness and coefficient of friction were determined and an electron probe microanalysis performed to investigate the underlying mechanism of wear. The hardness of TZP was much greater than that of Ti. The coefficient of friction between Ti and Ti showed a higher value than the Ti/TZP combination. Ti was more susceptible to wear by both TZP and Ti than TZP, indicating that the mechanism of wear between TZP and Ti was abrasive wear, whereas that between Ti and Ti was adhesive wear. No remarkable difference in the amount of wear in Ti was observed between TZP and Ti as the opposite material, despite the hardness value of Ti being much smaller than that of TZP. (communication)

  8. Influence of Hardness, Matrix and Carbides in Combination with Nitridation on Abrasive Wear Resistance of X210Cr12 Tool Steel

    Directory of Open Access Journals (Sweden)

    Martin Orečný

    2016-10-01

    Full Text Available Materials used in abrasive wear conditions are usually selected according to their microstructure and hardness, however, other factors such as grain size, matrix saturation, carbides size and morphology are rarely considered. Therefore, the present study deals with the influence of different heat and chemical-heat treatments including their combination on abrasive wear resistance of X210Cr12 tool steel. The effects of material hardness, carbide morphology and microstructure on wear resistance after quenching and nitriding were also investigated. One sample series was quenched after austenitization at 960 °C for 20 min and tempered at 180 °C for 2 h. The second sample series was quenched from 1060 °C austenitization for 20 min and afterwards twice tempered at 530 °C for 1 h. From both the quenched and tempered states, one half of the samples was gas nitrided in NH3 atmosphere for 3 h and then diffusion annealed in N2 atmosphere for 4 h. Abrasion wear tests were performed by sliding the samples on Al2O3 paper. The samples weight loss was considered the main criterion for the wear resistance evaluation. The microstructures, nitrided layers and worn surfaces were observed using SEM microscopy. The highest abrasion wear resistance was obtained for the nitrided samples that were previously quenched from 1060 °C and tempered at 530 °C.

  9. Effect of ion nitriding on the abrasive wear resistance of ultrahigh-strength steels with different silicon contents

    Science.gov (United States)

    Riofano, R. M. Muñoz; Casteletti, L. C.; Nascente, P. A. P.

    2005-02-01

    This article studies the effect of silicon (Si) on ultrahigh-strength AISI 4340 steels in connection with the thermal treatment, as well as the influence of this element on nitriding and, consequently, abrasive wear. Four alloys with different Si contents were nitrided at 350 °C (4 and 8 h) and 500 and 550 °C (2 and 4 h) in a gas mixture of 80 vol.% H2 and 20 vol.% N2. The nitrided layers were characterized by microhardness and pin-on-disk tests, optical microscopy, scanning electron microscopy with energy-dispersive x-ray spectrometry, and x-ray diffraction (XRD). The increase in Si enhanced the tempering resistance of the steels and also improved considerably the hardness of the nitrided layers. The increase in Si produced thinner compound layers with better hardness quality and high abrasive wear resistance. XRD analysis detected a mixture of nitrides in the layers γ‧-Fe4N, ɛ-Fe2 3N, CrN, MoN, and Si3N4 with their proportions varying with the nitriding conditions.

  10. Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2013-12-01

    Full Text Available The study attempts to determine the impact of the high-manganese cast steel strain hardening on its abrasion wear resistance in a mixture of SiC and water prepared in accordance with ASTM G75. For tests, the high-manganese cast steel containing 10.7, 17.9 and 20.02% Mn was selected. The results of microstructure examinations and abrasion wear resistance tests carried out on the material in non-hardened condition and after strain hardening with a force of 539.55kN were disclosed. Additionally, the surface of samples after a 16-hour cycle of abrasion tests was examined. Moreover, based on the obtained results, the effect of different contents of Mn in cast steel was studied, mainly in terms of its impact on the abrasion wear resistance. The results obtained on the tested materials were compared with the results obtained on the low-alloyed abrasion wear-resistant cast steel L35GSM.

  11. Impact wear behaviors of Hadfield manganese steel

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XU Yun-hua; CEN Qi-hong; ZHU Jin-hua

    2005-01-01

    Impact wear behaviors of Hadfield manganese steel at different impact angles were investigated. The results of impact wear tests show that there exists a critical impact load for Hadfield steel. The wear rate suddenly turns down after some impact cycles when the impact load is greater than the critical load. The critical impact load is smaller than 8.2 J in this research because the nano-sized austenitic grains embedded in amorphous delay the crack propagation in subsurface. From high resolution transmission electron microscope (HRTEM) examination of subsurface microstructure, it is found that a large amount of nano-sized grains embedded in bulk amorphous matrix are fully developed and no martensitic transformation occurs during the impact wear process. The analytical results of worn surface morphology and debris indicate that the initiation of crack, propagation and spalling are restricted in the amorphous phase, resulting in the size distribution of debris in nano-sizes, which is the reason why the wear rate of Hadfield steel is greatly decreased at high impact load.

  12. Abrasive wear based predictive maintenance for systems operating in sandy conditions

    NARCIS (Netherlands)

    Woldman, M.; Tinga, T.; Heide, E. van der; Masen, M.A.

    2015-01-01

    Machines operating in sandy environments are damaged by the abrasive action of sand particles that enter the machine and become entrapped between components and contacting surfaces. In the case of the military services the combination of a sandy environment and the wide range of tasks to be fulfille

  13. 高硼低碳耐磨合金磨料磨损性能研究%Study on Abrasive Wear Performance of High Boron Low Carbon Wear-resistant Alloy

    Institute of Scientific and Technical Information of China (English)

    麻健梅; 王顺波; 苏广才; 汤宏群

    2013-01-01

    借助光学显微镜和SEM电镜观察,运用磨损试验手段及对比研究法,研究了高硼低碳耐磨合金的磨料磨损性能.结果表明,在中、低冲击工况下,高硼低碳耐磨合金的磨损质量损失、相对磨损率均小于高铬铸铁和高锰钢,且磨面磨损形成的沟槽少,压坑小,这显示出了良好的耐磨料磨损性.%The high boron low carbon wear-resistant alloy abrasive wear performance was researched by OM, SEM observation, wear test methods and comparision approach. The results show that in the medium or low impact conditions, the wear mass loss and relative wear rate of high boron low carbon wear-resistant alloy are less than that of high chromium cast iron and high manganese steel. The number of the wear grooves and the pits on the wear surface morphology is smaller, which shows the good characteristics in abrasive wear performance of high boron low carbon wear-resistant alloy.

  14. Effect of heat treatment on strength and abrasive wear behaviour of Al6061–SiCp composites

    Indian Academy of Sciences (India)

    N R Prabhu Swamy; C S Ramesh; T Chandrashekar

    2010-02-01

    In recent years, aluminum alloy based metal matrix composites (MMC) are gaining importance in several aerospace and automobile applications. Aluminum 6061 has been used as matrix material owing to its excellent mechanical properties coupled with good formability and its wide applications in industrial sector. Addition of SiCp as reinforcement in Al6061 alloy system improves its hardness, tensile strength and wear resistance. In the present investigation Al6061–SiCp composites was fabricated by liquid metallurgy route with percentages of SiCp varying from 4 wt% to 10 wt% in steps of 2 wt%. The cast matrix alloy and its composites have been subjected to solutionizing treatment at a temperature of 530°C for 1 h followed by quenching in different media such as air, water and ice. The quenched samples are then subjected to both natural and artificial ageing. Microstructural studies have been carried out to understand the nature of structure. Mechanical properties such as microhardness, tensile strength, and abrasive wear tests have been conducted both on matrix Al6061 and Al6061–SiCp composites before and after heat treatment. However, under identical heat treatment conditions, adopted Al6061–SiCp composites exhibited better microhardness and tensile strength reduced wear loss when compared with Al matrix alloy.

  15. Determining the functional and material properties needed for abrasive wear prediction

    Science.gov (United States)

    Petre, I.

    2016-08-01

    Abrassive wear is a complex mechanical process with specific characteristics, dependent on the bodies velocities and load, the quality of contact surfaces, the mechanical properties of the superficial layers, lubrication etc. During the friction of the bodies in contact, the mechanical properties and the micro-topography of superficial layers change, most of the time irrecoverable, leading to the shut-down of the technical system they are part of. The present paper proposes a theoretical and experimental analysis of the abrassive wear behaviour of a coupling made of steel/cast iron as well as the detection of the wear trace dependent on the inclination angle of the harder material asperities (penetrator).

  16. An Investigation into the Behavior of Disc Blake Wear

    Directory of Open Access Journals (Sweden)

    Muneer A. H.Jassim

    2007-01-01

    Full Text Available A real method of predication brake pad wear ,could lead to substantiol economies of time and money. This paper describes how such a procedure has been used and gives the results to establish is reliability by comparing the predicted wear with that which actually occurs in an existing service. The experimental work was carried out on three different commercial samples ,tested under different operation conditions (speed,load,time...etcusing a test ring especially modified for this purpose. Abrasive wear is mainly studied , since it is the type of wear that takes place in such arrangements. Samples wear tested in presences of sand or mud between the mating surfaces under different operational conditions of speed, load and braking time .Mechanical properties of the pad material samples (hardness, young,s modulus and collapse load under pure bending condition wear established . The thermal conductivity and surface roughness of the pad material wear also found in order to enable comparison between the surface condition before and after testing. Sliding velocity had a small effect on the wear rate but it had great effect on friction coefficient. Wear rate was affected mainly by the surface temperature which causing a reduction friction coefficient and increasing the wear rate. Surface roughness had almost no effect on the wear rate since it was proved experimentally ,that the surface becomes softer during operation .mechanical properties of the pad material had fluctuating effect on wear rate. The existence of solid particles between pad and disc increasing wear rate and friction coefficient while the mud caused a reduction in wear rate of the pad surface since it acts as a lubricant absorbing the surface heat generated during sliding the area of contact between pad and disc. wear rate obtained experimentally agreed fairly well that found from empirically obtained equations.

  17. Reciprocating sliding wear behavior of alendronate sodium-loaded UHMWPE under different tribological conditions.

    Science.gov (United States)

    Huang, Jie; Qu, Shuxin; Wang, Jing; Yang, Dan; Duan, Ke; Weng, Jie

    2013-07-01

    The aim of this study is to investigate the tribological behaviors and wear mechanisms of ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN), a potential drug to treat osteolysis, under different normal loads and lubrication conditions. A mixture of UHMWPE powder and ALN (1.0 wt.%) solution was dried and hot pressed. The static and dynamic friction coefficients of UHMWPE-ALN were slightly higher than those of UHMWPE except under normal load as 10 N and in 25 v/v % calf serum. The specific wear rates of UHMWPE-ALN and UHMWPE were the lowest in 25 v/v % calf serum compared to those in deionized water or physiological saline. In particular, the specific wear rate of UHMWPE-ALN was lower than that of UHMWPE at 50 N in 25 v/v % calf serum. The main wear mechanisms of UHMWPE and UHMWPE-ALN in deionized water and UHMWPE in physiological saline were abrasive. The main wear mechanism of UHMWPE-ALN in physiological saline was micro-fatigue. In 25 v/v % calf serum, the main wear mechanism of UHMWPE and UHMWPE-ALN was abrasive wear accompanied with plastic deformation. The results of Micro-XRD indicated that the molecular deformation of UHMWPE-ALN and UHMWPE under the lower stress were in the amorphous region but in the crystalline region at the higher stress. These results showed that the wear of UHMWPE-ALN would be reduced under calf serum lubricated, which would be potentially applied to treat osteolysis.

  18. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Fei [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Wang, Qingliang [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~ 500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  19. Effect of flame conditions on abrasive wear performance of HVOF sprayed nanostructured WC-12Co coatings

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-yue; LI Chang-jiu; MA Jian; YANG Guan-jun

    2004-01-01

    Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigated. The wear properties of the coatings were characterized using a dry rubber-wheel wear test. The results show that the nanostructured WC-Co coatings consist of WC, W2C, W and an amorphous binder phase. The microstructure of the coating is significantly influenced by the ratio of oxygen flow to fuel flow. Under the lower ratio of oxygen/fuel flow, the nanostructured coating presents a relative dense microstructure and severe decarburization of WC phase occurs during spraying. With increasing ratio of oxygen/fuel flow, the bonding of WC particles in the coating becomes loose resulting from the original structure of feedstock and the decarburization of WC becomes less owing to limited heating to the powder. Both the decarburization of WC particles in spraying and the bonding among WC particles in the coatings affect the wear performance. The examination of the worn surfaces of the nanostructured coatings reveals that the dominant wear mechanisms would be spalling from the interface of WCCo splats when spray particles undergo a limited melting. While the melting state of the spray particles is improved,the dominant wear mechanisms become the plastic deformation and plowing of the matrix and spalling of WC particles from the matrix.

  20. Investigation of the time-dependent wear behavior of veneering ceramic in porcelain fused to metal crowns during chewing simulations.

    Science.gov (United States)

    Guo, Jiawen; Tian, Beimin; Wei, Ran; Wang, Weiguo; Zhang, Hongyun; Wu, Xiaohong; He, Lin; Zhang, Shaofeng

    2014-12-01

    The excessive abrasion of occlusal surfaces in ceramic crowns limits the service life of restorations and their clinical results. However, little is known about the time-dependent wear behavior of ceramic restorations during the chewing process. The aim of this in vitro study was to investigate the dynamic evolution of the wear behavior of veneering porcelain in PFM crowns as wear progressed, as tested in a chewing simulator. Twenty anatomical metal-ceramic crowns were prepared using Ceramco III as the veneering porcelain. Stainless steel balls served as antagonists. The specimens were dynamically loaded in a chewing simulator with 350N up to 2.4×10(6) loading cycles, with additional thermal cycling between 5 and 55°C. During the testing, several checkpoints were applied to measure the substance loss of the crowns' occlusal surfaces and to evaluate the microstructure of the worn areas. After 2.4×10(6) cycles, the entire wear process of the veneering porcelain in the PFM crowns revealed three wear stages (running-in, steady and severe wear stages). The occlusal surfaces showed traces of intensive wear on the worn areas during the running-in wear stage, and they exhibited the propagation of cracks in the subsurface during steady wear stage. When the severe wear stage was reached, the cracks penetrated the ceramic layer, causing the separation of porcelain pieces. It also exhibited a good correlation among the microstructure, the wear loss and the wear rate of worn ceramic restorations. The results suggest that under the conditions of simulated masticatory movement, the wear performance of the veneering porcelain in PFM crowns indicates the apparent similarity of the tribological characteristics of the traditional mechanical system. Additionally, the evaluation of the wear behavior of ceramic restorations should be based on these three wear stages.

  1. The Dry Sliding Wear Behavior of HVOF-Sprayed WC: Metal Composite Coatings

    Science.gov (United States)

    Ward, Liam P.; Pilkington, Antony

    2014-09-01

    WC-based cermet coatings containing various metallic binders such as Ni, Co, and Cr are known for their superior tribological properties, particularly abrasion resistance and enhanced surface hardness. Consequently, these systems are considered as replacements for traditional hard chrome coatings in critical aircraft components such as landing gear. The purpose of this investigation was to conduct a comparative study on the dry sliding wear behavior of three WC-based cermet coatings (WC-12Ni, WC-20Cr2C3-7Ni, and WC-10Co-4Cr), when deposited on carbon steel substrates. Ball on disk wear tests were performed on the coatings using a CSEM Tribometer (pin-on-disk) with a 6-mm ruby ball at 20 N applied load, 0.2 m/s sliding velocity, and sliding distances up to 2000 m. Analysis of both the coating wear track and worn ruby ball was performed using optical microscopy and an Alphastep-250 profilometer. The results of the study revealed both wear of the ruby ball and coated disks allowed for a comparison of both the ball wear and coating wear for the systems considered. Generally, the use of Co and Cr as a binder significantly improved the sliding wear resistance of the coating compared to Ni and/or Cr2C3.

  2. Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites

    Science.gov (United States)

    Jha, Pushkar; Gautam, R. K.; Tyagi, Rajnesh; Kumar, Devendra

    2016-10-01

    The present investigation explores the effect of TiC content on the sliding wear properties of Cu-4 wt.% Ni matrix composites. Cu-4 wt.% Ni - x wt.% TiC ( x = 0, 2, 4 and 8 wt.%) metal matrix composites were developed by powder metallurgy route. Their friction and wear was studied under dry sliding at different loads of 5, 7.5 and 10 N and constant sliding speed of 2 m/s using a pin-on-disk machine. The metallographic observations showed an almost uniform distribution of TiC particles in the matrix. Hardness of the composites increased with increasing TiC content (up to 4 wt.%). Friction and wear results of TiC-reinforced composites show better wear resistance than unreinforced matrix alloy. However, the optimum wear resistance was observed for 4 wt.% TiC-reinforced composites. Worn surfaces of specimens indicated the abrasion as the primary mechanism of wear in all the materials investigated in the study. The observed behavior has been explained on the basis of (1) the hardness which results in a decrease in real area of contact in composites containing TiC particles and (2) the formation of a transfer layer of wear debris on the surface of the composites which protects underlying substrate by inhibiting metal-metal contact.

  3. An experimental and theoretical investigation into three-body abrasive wear

    NARCIS (Netherlands)

    Woldman, Martijn

    2014-01-01

    When machines operate under extreme conditions, they often need to perform to maximum capacity. The high demands cause the amount of wear to increase relative to ‘the normal’ situation. Moreover, the extreme conditions are typically variable, making it impossible to define fixed maintenance interval

  4. Microstructure and Wear Behavior of FeBSiNbCr Metallic Glass Coatings

    Institute of Scientific and Technical Information of China (English)

    Jiangbo Cheng; Xiubing Liang; Binshi Xu; Yixiong Wu

    2009-01-01

    In this paper, FeBSiNbCr metallic glass coatings were prepared onto AISI 1045 steel substrate by using wire arc spraying process. The phase and structure of the coating were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning election microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX). The microstructure of the coating consists of full amorphous phase. The coating has high hardness and low porosity. Full density and little oxides are detected in the coating. The mechanical properties, especially wear resistance, were investigated. The relationship between wear behavior and structure of the coatings were analyzed in detail. The main failure mechanism of the metallic glass coating is brittle breaking and fracture. The results indicate that FeBSiNbCr metallic glass coating has excellent resistance to abrasive wear.

  5. Sliding wear and friction behavior of ZA-27 alloy reinforced by Mn-containing intermetallic compounds

    Institute of Scientific and Technical Information of China (English)

    龙雁; 李元元; 张大童; 邱诚; 陈维平

    2002-01-01

    A ZA-27 alloy reinforced with M n-containing intermeta llic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA-27 alloy, the test alloy (ZMJ) was fabricated by sand casting. Microstructural analysis shows that considerable amount of Mn-containing intermetallic compounds such as Al5MnZn, Al9(MnZn)2 and Al65 Mn(RE)6Ti4Zn36 are formed. Compared to ZA-27, ZMJ shows better wear resistance, lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition. ZMJ also shows the lowest steady friction coefficient under dry friction condition. The wear resistance improvement of ZMJ is mainly attributed to the high hardness and good dispersion of these Mn-containing intermetallic compounds. It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA-27 alloy.

  6. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHULiu; LINGGuo-ping; LIJian; WANGYou-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al2O3 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.% Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt% ) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs, ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM. The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  7. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHU Liu; LING Guo-ping; LI Jian; WANG You-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al203 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.%Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt%) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs,ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM.The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  8. Wear behaviors of HVOF sprayed WC-12Co coatings by laser remelting under lubricated condition

    Science.gov (United States)

    Dejun, Kong; Tianyuan, Sheng

    2017-03-01

    A HVOF (high velocity oxygen fuel) sprayed WC-12Co coating was remelted with a CO2 laser. The surface-interface morphologies and phases were analyzed by means of SEM (scanning electron microscopy), and XRD (X-ray diffraction), respectively. The friction and wear behaviors of WC-12Co coating under the dry and lubricated conditions were investigated with a wear test. The morphologies and distributions of chemical elements on worn scar were analyzed with a SEM, and its configured EDS (energy diffusive spectrometer), respectively, and the effects of lubricated condition on COFs (coefficient of friction) and wear performance were also discussed. The results show that the adhesion between the coating and the substrate is stronger after laser remetling (LR), in which mechanical bonding, accompanying with metallurgical bonding, was found. At the load of 80 N, the average COF under the dry and lubricated friction conditions is 0.069, and 0.052, respectively, the latter lowers by 23.3% than the former, and the wear rate under the lubricated condition decreases by 302.3% than that under the dry condition. The wear mechanism under the dry and lubrication conditions is primarily composed of abrasive wear, cracking, and fatigue failure.

  9. Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings

    Science.gov (United States)

    Viswanathan, S.; Mohan, L.; Bera, Parthasarathi; Kumar, V. Praveen; Barshilia, Harish C.; Anandan, C.

    2017-08-01

    A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D / I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/ sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.

  10. Microstructure and Abrasive Wear Resistance of 18Cr-4Ni-2.5Mo Cast Steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2012-12-01

    Full Text Available An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratoryconditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing at 1060C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel.The Cr content decrease, in ferritic-austenitic cast steels (duplex, from 24-26%Cr to 18% leads to the changes of the castingsmicrostructure and eliminating of a brittle  phase. In dependence of the casting cooling rate, apart from ferrite and austenite, also fine martensite precipitates occur in the casting structure. It was shown that the investigated cast steel is characterised by a slightly lower wear resistance than the typical cast steel duplex grades.

  11. Wear and corrosion behavior of W/WC bilayers deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, N.A. de [Excellence Center for Novel Materials, Universidad del Valle, Cali (Colombia); Jaramillo, H.E. [Science and Engineering of Materials Group, Department of Basic Science of Engineering, Universidad Autonoma de Occidente, Cali (Colombia); Department of Energetic and Mechanic, Universidad Autonoma de Occidente, Cali (Colombia); Bejarano, G. [Excellence Center for Novel Materials, Universidad del Valle, Cali (Colombia); Group for Engineering and Materials Development, CDT ASTIN-SENA, Cali (Colombia); Group of Corrosion and Protection, Antioquia University, Medellin (Colombia); Villamil, B.E.; Teran, G. [Richer Young, COLCIENCIAS, Cali (Colombia)

    2007-07-01

    WC/W coatings were deposited by reactive magnetron sputtering using 40%, 60% and 80% methane CH{sub 4} in the gas mixture. The bilayers were grown on to AISI 420 stainless-steel substrates in order to study the wear and corrosion behavior. Before growing the bilayers, one Ti monolayer was grown to improve the adherence of the coatings to the substrate. The wear resistance and the friction coefficient of the coatings were determined using a pin-on-disk tribometer. All coatings had a friction coefficient of about 0.5. The measured weight lost of the bilayers from each probe allowed the qualitative analysis of wear behavior all coatings. The bilayers grown with 80% methane showed the best abrasive wear resistance and adhesion without failure through the coating in the wear track for dry pin-on-disk sliding. Electrochemical corrosion test showed that the bilayers grown with 80% methane were more resistant to corrosion than the ones uncoated. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Effect of alloying and heat treatment on the structure and tribological properties of nitrogen-bearing stainless austenitic steels under abrasive and adhesive wear

    Science.gov (United States)

    Korshunov, L. G.; Goikhenberg, Yu. N.; Chernenko, N. K.

    2007-05-01

    The effect of nitrogen, silicon, and aging modes on the structure, resistance to abrasive and adhesive wear, friction factor, and mechanical properties of nitrogen-bearing (0.27-0.83% N) chromium-manganese austenitic steels is studied. It is shown that it is possible to ensure a favorable combination of mechanical and tribological properties in such steels by choosing the appropriate chemical composition and aging mode.

  13. Efficacy of TiF4 and NaF varnish and solution: a randomized in situ study on enamel erosive-abrasive wear.

    Science.gov (United States)

    Levy, Flávia Mauad; Rios, Daniela; Buzalaf, Marília A R; Magalhães, Ana Carolina

    2014-05-01

    This in situ/ex vivo study analysed the anti-erosive/abrasive effect of TiF4 and NaF varnish and solution on enamel wear. Twelve subjects took part in this study which was performed in three periods (phases) with the duration of 5 days each. Each two human enamel specimens per subject were pretreated with experimental NaF varnish or solution (phase A), experimental-TiF4 varnish or solution (phase B) and placebo varnish or untreated control (phase C). The specimens were worn in palatal appliances; one enamel specimen, from each treatment, was subjected to erosion (ERO; cola soft drink, 4 × 90 s/day), and the other specimen was subjected to erosion plus abrasion (ERO + ABR; tooth brushing, 2 × 10 s/day). The tooth wear was quantified by a contact profilometer (micrometre) and analysed using two-way repeated measures ANOVA and Bonferroni's test (n = 12 subjects, p fluoride varnishes and solutions reduced the enamel wear (around 25 %) significantly compared to the control and placebo varnish. There were no significant differences among the fluoride formulations and between the conditions ERO and ERO + ABR. Therefore, it can be concluded that TiF4 has the same protective potential as NaF formulations to reduce human enamel wear under this experimental in situ model. In vitro studies have indicated a better anti-erosive/abrasive effect of TiF4 compared to NaF varnish. The present in situ study does not support the previous findings. Therefore, any of the tested professional fluoride varnishes in principle could be able to partially reduce enamel wear.

  14. Wear and Corrosion Behavior of Functionally Graded Nano-SiC/2014Al Composites Produced by Powder Metallurgy

    Science.gov (United States)

    Wang, Zhi-Guo; Li, Chuan-Peng; Wang, Hui-Yuan; Zhu, Jia-Ning; Wang, Cheng; Jiang, Qi-Chuan

    2017-02-01

    Functionally graded 2014Al/SiC composites (FGMs) with varying volume fractions (1-7%) of nano-SiC particulates (n-SiCp) were fabricated by powder metallurgy. The effect of n-SiCp content on corrosion and wear behaviors was studied. The microstructures of composites were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. The corrosion behavior of the composites was evaluated by potentiodynamic polarization scans in 3.5 wt.% NaCl solution. Corrosion results show that corrosion current of composite layer with 3 vol.% n-SiC was much lower than that of 2014Al matrix. Mechanical properties of the composites were assessed by microhardness tests and ball-on-disk wear tests. As the applied load changed from 15 to 30 N, wear rates of the composites increased significantly and the wear mechanism transformed from mild to severe wear regime. It also shows that 3 vol.% n-SiCp/2014Al composite layer observed the lowest wear rate where adhesive and abrasive wear mechanisms played a major role. These results suggest that the n-SiCp are effective candidates for fabricating FGMs for the applications demanding a tough core and a hard, wear or corrosion resisting surface.

  15. Wear behavior of Ni/WC surface-infiltrated composite coating on copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gui-rong; Ma, Ying; Hao, Yuan [Lanzhou University of Technology, Gansu (China). State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals; Song, Wen-ming [Lanzhou University of Technology, Gansu (China). State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals; Lanzhou Petroleum Machinery Institute, Gansu (China); Li, Jian [Wuhan Research Institute of Materials Protection (China); Lu, Jin-jun [Chinese Academy of Sciences, Lanzhou, Gansu (China). State Key Laboratory of Solid Lubrication

    2016-01-15

    Ni/WC surface-infiltrated composite coating was fabricated on copper alloy substrate through vacuum infiltration casting using Ni-based alloying powder and with different WC particle contents as raw materials. The wear behavior of Ni/WC surface-infiltrated composite coating was investigated using a block-on-ring tester at different loads and sliding speeds at room temperature. Results show that the wear rate of Ni/WC surface-infiltrated composite coating decreased to approximately one-sixth of the wear rate of the Ni-based alloy infiltrated coating. This phenomenon resulted from the supporting function of WC particles under varying loads applied on the specimen surface and the antifriction effect of the transformation layer. Wear rate was reduced by the Ni/WC-infiltrated composite coating with increasing load, especially when the load exceeded 100 N. The friction coefficient decreased with increasing sliding speed for all infiltrated coatings at any load condition. The reduction in the friction coefficient at high sliding speed was larger than that at low sliding speed with increasing load. The wear mechanism was dominated by oxidation under all experimental conditions and accompanied by adhesion and abrasion mechanisms at high load and high sliding speed.

  16. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  17. A level set methodology for predicting the effect of mask wear on surface evolution of features in abrasive jet micro-machining

    Science.gov (United States)

    Burzynski, T.; Papini, M.

    2012-07-01

    A previous implementation of narrow-band level set methodology developed by the authors was extended to allow for the modelling of mask erosive wear in abrasive jet micro-machining (AJM). The model permits the prediction of the surface evolution of both the mask and the target simultaneously, by representing them as a hybrid and continuous mask-target surface. The model also accounts for the change in abrasive mass flux incident to both the target surface and, for the first time, the eroding mask edge, that is brought about by the presence of the mask edge itself. The predictions of the channel surface and eroded mask profiles were compared with measurements on channels machined in both glass and poly-methyl-methacrylate (PMMA) targets at both normal and oblique incidence, using tempered steel and elastomeric masks. A much better agreement between the predicted and measured profiles was found when mask wear was taken into account. Mask wear generally resulted in wider and deeper glass target profiles and wider PMMA target profiles, respectively, when compared to cases where no mask wear was present. This work has important implications for the AJM of complex MEMS and microfluidic devices that require longer machining times.

  18. Wear behavior of electroless Ni-P-W coating under lubricated condition - a Taguchi based approach

    Science.gov (United States)

    Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta

    2016-09-01

    The present study aims to investigate the tribological behavior of electroless Ni-P-W coating under engine oil lubricated condition to ascertain its suitability in automotive applications. Coating is deposited onto mild steel specimens by the electroless method. The experiments are carried out on a pin - on - disc type tribo tester under lubrication. Three tribotesting parameters namely the applied normal load, sliding speed and sliding duration are varied at their three levels and their effects on the wear depth of the deposits are studied. The experiments are carried out based on the combinations available in Taguchi's L27 orthogonal array (OA). Optimization of the tribo-testing parameters is carried out using Taguchi's S/N ratio method to minimize the wear depth. Analysis of variance carried out at a confidence level of 99% indicates that the sliding speed is the most significant parameter in controlling the wear behavior of the deposits. Coating characterization is done using scanning electron microscope, energy dispersive X-ray analysis and X-ray diffraction techniques. It is seen that the wear mechanism under lubricated condition is abrasive in nature.

  19. Abrasive Wear of Laser Surface Hardened 9SiCr in Soils%激光硬化9SiCr表面土壤磨损研究

    Institute of Scientific and Technical Information of China (English)

    陈卓君; 张祖立

    2011-01-01

    Abrasive wear tests of laser treated 9SiCr blade were conducted using three kinds of abrasives ( loam soil, sand soil and clay soil). The parameters of laser treatment (e. g. laser power 1 200 W, scanning velocity 14 mm/s, laser power 1 500 W, scanning velocity 16 mm/s) were optimized to obtain the hard and wear resistant surface on 9SiCr blade. Wear resistances of laser treated 9SiCr blade in three kinds of soils were measured and compared. The wear resistance of laser hardened 9SiCr steel blade was 5 times as high as that of quenched 9SiCr steel blade. The main wear mechanism of laser hardened 9SiCr blade in soil was abrasive wear. By improving the hardness, the wear lifetime of laser hardened 9SiCr blade was prompted.%在壤土、沙土和黏土3种土壤中对激光处理的9SiCr材料进行磨损试验,考察了激光硬化工艺参数对9SiCr旋耕刀基体显微硬度的影响,获得9SiCr旋耕刀基体激光硬化处理的最佳工艺参数.结果表明:在激光功率为1 200 W、扫描速度为14 mm/s和激光功率1 500 W、扫描速度16 mm/s的条件下,磨损率较小.激光处理表面在3种土壤条件下进行了耐磨性比较,沙土对试件的磨损率影响最小.9SiCr经过激光处理其表面耐磨性比一般淬火表面的耐磨性提高约5倍.9Sicr表面磨损形式主要是磨粒磨损.激光处理9SiCr表面提高了表面硬化层的硬度,从而提高了材料的耐磨性,增加了9SiCr的使用寿命.

  20. Dry sliding wear behavior of an extruded Mg–Dy–Zn alloy with long period stacking ordered phase

    Directory of Open Access Journals (Sweden)

    Guangli Bi

    2015-03-01

    Full Text Available The dry sliding wear behavior of extruded Mg-2Dy-0.5Zn alloy (at.% was investigated using a pin-on-disk configuration. The friction coefficient and wear rate were measured within a load range 20–760 N at a sliding velocity of 0.785 m/s. Microstructure and wear surface of alloy were examined using scanning electron microscopy. The mechanical properties of alloy were tested at room and elevated temperatures. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening and melting dominated the whole wear behavior with increasing applied load. The extruded Mg-2Dy-0.5Zn alloy exhibited the better wear resistance as compared with as-cast Mg97Zn1Y2 alloy under the given conditions through contact surface temperature analysis. The improved wear resistance was mainly related to fine grain size, good thermal stability of long period stacking order (LPSO phase and excellent higher-temperature mechanical properties.

  1. Effect of electromagnetic stirring on the microstructure and wear behavior of iron-based composite coatings

    Institute of Scientific and Technical Information of China (English)

    Jiangbo Cheng; Binshi Xu; Xiubing Liang; Yixiong Wu; Zhengun Liu

    2008-01-01

    The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by applying different magnetic field currents. The microstructure and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and wet sand rubber wheel abrasion tester. The experimental results showed that the microstructure of the coatings was mainly theγ-Fe matrix and (Cr, Fe)7C3 carbide reinforced phase. The coatings were metallurgically bonded to the substrate. With increasing magnetic field current, the amount of the block-like (Cr, Fe)7C>3 carbide reinforced phase increased at first, reached a local maximum, and then decreased sharply. When the magnetic field current reached 3 A, the block-like (Cr, Fe)7C3 carbides with high volume fraction were uniformly distributed in the matrix and the coating displayed a high microhardness and an excellent wear resistance under the wear test condition.

  2. Microstructural aspects and wear behavior of sinter hardened distaloy HP

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhi Moghaddam, K.; Ghambari, M.; Farhangi, H. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Solimanjad, N.; Bergmark, A. [Hoeganaes AB, Bruksgatan, Hoeganaes (Sweden); Khorsand, H. [K.N. Toosi University, Tehran (Iran, Islamic Republic of)

    2011-11-15

    Effect of cooling rate during sinter hardening on the microstructure and wear behavior of sintered steel grade Distaloy HP has been studied. Wear performances are closely related to macro and micro hardness of the materials. Dry sliding wear tests have been conducted using a reciprocating pin on flat wear testing machine under normal loads of 25, 35 and 45N and at a constant speed of 0.3 m/s. The samples were sinter hardened at different cooling rates 0.5-3 C/s in order to investigate the influence of microstructure and hardness on wear behavior. It has been shown that, sintering process and cooling rate change the microstructure and hence the hardness and wear behavior of the material. The best wear resistance was detected at a cooling rate of 3 C/s. At this cooling rate the material had an almost martensitic microstructure and the wear rate was some how independent of the applied load. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk.

    Science.gov (United States)

    Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  4. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    2014-01-01

    Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.

  5. Abrasive Endoprosthetic Wear Particles Inhibit IFN-γ Secretion in Human Monocytes Via Upregulating TNF-α-Induced miR-29b.

    Science.gov (United States)

    Bu, Yan-Min; Zheng, De-Zhi; Wang, Lei; Liu, Jun

    2017-02-01

    The adverse biological responses to prostheses wear particles commonly led to the failure of total hip arthroplasty. Among the released cytokines, interferon-γ (IFN-γ) has been found to be a critical functional factor during osteoclast differentiation. However, the molecular mechanism underlying the regulation of IFN-γ in wear particles-induced cells still needs to be determined. Four kinds of abrasive endoprosthetic wear particle were used to treat THP-1 cells, including polymethylmethacrylate (PMMA), zirconiumoxide (ZrO2), commercially pure titanium (cpTi), and titanium alloy (Ti-6Al-7Nb), with a concentration of 0.01, 0.05, 0.1, or 0.2 mg/ml for 48 h. The expression of IFN-γ and miR-29b was detected by real-time RT-PCR or ELISA. Luciferase reporter assay was performed to determine the regulation of miR-29b on IFN-γ. The effect of miR-29b inhibitor on the expression of wear particle-induced IFN-γ was detected. The expression of miR-29b was examined in THP-1 cells treated with tumor necrosis factor-alpha (TNF-α). The expression of IFN-γ was downregulated and the level of miR-29b was increased in THP-1 cells pretreated with wear particles. IFN-γ was a target of miR-29b. Wear particles inhibited the expression of IFN-γ through miR-29b. The expression of miR-29b was significantly reduced in THP-1 cells treated with TNF-α neutralizing antibody and particles comparing to that in the cells treated with particles alone. Wear particles inhibit the IFN-γ secretion in human monocytes, which was associated with the upregulating TNF-α-induced miR-29b.

  6. Wear and Friction Behavior of Metal Impregnated Microporous Carbon Composites

    Science.gov (United States)

    Goller, Gultekin; Koty, D. P.; Tewari, S. N.; Singh, M.; Tekin, A.

    1996-01-01

    Metal-matrix composites have been prepared by pressure-infiltration casting of copper-base alloy melts into microporous carbon preforms. The carbon preforms contained varying proportions of amorphous carbon and graphite. Load dependence of the wear and friction behavior of the composite pins has been examined under ambient conditions against cast-iron plates, using a pin-on-plate reciprocating wear tester. The wear resistance of the composite is significantly improved, as compared with the base alloy. Contrary to the normally expected behavior, the addition of graphite to the amorphous carbon does not reduce the friction coefficient, especially at high loads. The wear and friction behavior of the composites is very sensitive to the size and distribution of the microstructural constituents.

  7. Effect of La2O3 Addition on Microstructure and Wear Behavior of Electrospark Deposited Ni-BASED Coatings

    Science.gov (United States)

    Yuxin, Gao; Jian, Yi

    2013-12-01

    La2O3 doped Ni-based coatings have been prepared by electrospark deposition technique. The effect of La2O3 on the microstructure, hardness and wear behavior of the as-prepared Ni-based coatings is investigated by using X-ray diffractometer, scanning electron microscope, wear tribometer and Vickers hardness tester. Results indicates that the microstructure, hardness and wear resistance of La2O3 doped Ni-based coatings are effectively improved as compared to the undoped one, and the coating with the addition of 2.5 wt.% La2O3 shows the optimal improvement effects. The addition of La2O3 can reduce the defects, refine grains and increase hardness of the coating, which can inhibit the nucleation and propagation of cracking, consequently resist cutting and fracture during the wear process. Moreover, the addition of La2O3 leads to changes in abrasion mechanism of the coatings, and the reasons resulting in different abrasion mechanisms are discussed.

  8. Wear resistance properties of austempered ductile iron

    Science.gov (United States)

    Lerner, Y. S.; Kingsbury, G. R.

    1998-02-01

    A detailed review of wear resistance properties of austempered ductile iron (ADI) was undertaken to examine the potential applications of this material for wear parts, as an alternative to steels, alloyed and white irons, bronzes, and other competitive materials. Two modes of wear were studied: adhesive (frictional) dry sliding and abrasive wear. In the rotating dry sliding tests, wear behavior of the base material (a stationary block) was considered in relationship to countersurface (steel shaft) wear. In this wear mode, the wear rate of ADI was only one-fourth that of pearlitic ductile iron (DI) grade 100-70-03; the wear rates of aluminum bronze and leaded-tin bronze, respectively, were 3.7 and 3.3 times greater than that of ADI. Only quenched DI with a fully martensitic matrix slightly outperformed ADI. No significant difference was observed in the wear of steel shafts running against ADI and quenched DI. The excellent wear performance of ADI and its countersurface, combined with their relatively low friction coefficient, indicate potential for dry sliding wear applications. In the abrasive wear mode, the wear rate of ADI was comparable to that of alloyed hardened AISI 4340 steel, and approximately one-half that of hardened medium-carbon AISI 1050 steel and of white and alloyed cast irons. The excellent wear resistance of ADI may be attributed to the strain-affected transformation of high-carbon austenite to martensite that takes place in the surface layer during the wear tests.

  9. Effect of Phenomena Accompanying Wear in Dry Corundum Abrasive on the Properties and Microstructure of Austempered Ductile Iron with Different Chemical Composition

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2015-04-01

    Full Text Available The research described in this article is a fragment in the series of published works trying to determine the applicability of new materials for parts of the mining machinery. Tests were performed on two groups of austempered ductile iron - one of which contained 1.5% Ni and 0.5% Mo, while the other contained 1.9% Ni and 0.9% Cu. Each group has been heat treated according to the three different heat treatment variants and then the material was subjected to detailed testing of mechanical properties and abrasion wear resistance, measuring also hardness and magnetic properties, and conducting microstructural examinations. The results indicated that each of the tested materials was senstive to the surface hardening effect, which resulted in high wear resistance. It has been found that high temperature of austempering, i.e. 370°C, favours high wear resistance of ductile iron containing nickel and molybdenum. Low temperature of austempering, i.e. 270°C, develops high wear resistance in ductile iron containing nickel and copper. Both these materials offer completely different mechanical properties and as such can be used for different and specific applications.

  10. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yan [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Guo, Xingwu [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhou, Zhifeng [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Dong, Jie [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China)

    2015-02-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  11. Corrosion and wear behavior of functionally graded Al2024/SiC composites produced by hot pressing and consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Fatih; Canakci, Aykut, E-mail: aykut@ktu.edu.tr; Varol, Temel; Ozkaya, Serdar

    2015-09-25

    Highlights: • Functionally graded Al2024/SiC composites were produced by hot pressing. • Effect of the number of graded layers was investigated on the corrosion behavior. • Functionally graded composites has the most corrosion resistant than composites. • Wear mechanisms of Al2024/SiC composites were explained. - Abstract: Functionally graded Al2024/SiC composites (FGMs) with varying percentage of SiC (30–60%) were produced by hot pressing and consolidation method. The effects of SiC content and number of layers of Al2024/SiC FGMs on the corrosion and wear behaviors were investigated. The microstructures of these composites were characterized by a scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The corrosion performances of composites were evaluated by potentiodynamic polarization scans in 3.5% NaCl solution. Corrosion experiments shows that corrosion rate (1109 mpy) of two layered FGMs which containing 50 wt.% SiC were much higher than Al2024 matrix (2569 mpy) and Al2024/50 wt.% SiC composite (2201 mpy). Mechanical properties of these composites were evaluated by microhardness measurements and ball-on-disk wear tests. As the applied load change from 15 to 20 N, the wear rates of the Al2024 increased significantly and wear mechanism transformed from mild to severe wear regime. It has been shown that Al2024/40 wt.% SiC composite has lower wear rate where adhesive and abrasive wear mechanisms play a major role.

  12. Predicting bicycle helmet wearing intentions and behavior among adolescents.

    Science.gov (United States)

    O'Callaghan, Frances V; Nausbaum, Sarah

    2006-01-01

    Cycling accidents in Australia, especially those resulting in head injuries, are a substantive cause of death and disability; but despite legislation and evidence that helmets reduce the risk of head injury, few adolescents wear them. This study employed a revised version of the Theory of Planned Behavior (TPB; [Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211]) to investigate the determinants of helmet use among a sample of adolescents. Participants in the initial data collection were 294 high school students in Year 8 and Year 11, with 266 completing a follow-up questionnaire measuring behavior over the previous two weeks. Social norms, perceptions of control, and past behavior significantly predicted intentions to use helmets and perceptions of control and past behavior predicted actual helmet use. Strengthening the routine of helmet use and building young people's confidence that they can overcome any perceived barriers to helmet use will improve adherence to helmet wearing behavior.

  13. STUDYING THE ABRASION BEHAVIOR OF RUBBERY MATERIALS WITH COMBINED DESIGN OF EXPERIMENT-ARTIFICIAL NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    Mehdi Shiva; Hossein Atashi; Mahtab Hassanpourfard

    2012-01-01

    In this study,an application of artificial neural network (ANN) has been presented in modeling and studying the effect of compounding variables on abrasion behavior of rubber formulations.Three case studies were carried out in which the experiment data were collected according to classical response surface designs.Besides developing the ANN models,we developed response surface methodology (RSM) to confirm the ANN predictions.A simple relation was employed for determination of relative importance of each variable according to ANN models.It was shown through these case studies that ANN models delivered very good data fitting and their simulating curves could help the researchers to better understand the abrasion behavior.

  14. Assessment of mechanical and three-body abrasive wear peculiarity of TiO$_2$- and ZnO-filled bi-directional E-glass fibre-based polyester composites

    Indian Academy of Sciences (India)

    AKANT KUMAR SINGH; SIDDHARTHA; DEEPAK

    2016-08-01

    This paper is about the development of bi-directional E-glass fibre-based polyester composites filled with zinc oxide (ZnO) and titanium dioxide (TiO$_2$) fillers, respectively. The mechanical characterization of these composites is performed. The three-body abrasive wear characteristic of fabricated composites has been assessed under different operating conditions. For this, the three-body abrasion test is done on dry abrasion test rig (TR-50)and analysed using Taguchi’s experimental design scheme and analysis of variance. The results obtained from these experiments are also validated against existing microscopic models of Ratner–Lancaster and Wang. A good linear relationship is obtained between specific wear rate and the reciprocal of ultimate strength and strain at tensile fracture of these composites. It indicates that the experimentally obtained results are in good agreement with theseexisting models. It is found that the tensile strength decreases with filler loading, while hardness, flexural strength, inter-laminar shear strength and impact strength are increased. TiO$_2$-filled composites were observed to performbetter than ZnO-filled composites under abrasive wear situations. The wear mechanism is studied in correlation with the SEM micrograph of the worn-out surface of composites. Performance optimization of composites is doneby using VIKOR method.

  15. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  16. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Varma, S.K.; Andrews, S.; Vasquez, G. [Univ. of Texas, El Paso, TX (United States). Dept. of Metallurgical and Materials Engineering

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  17. Abrasive Wear of AlSi12-Al2O3 Composite Materials Manufactured by Pressure Infiltration

    Directory of Open Access Journals (Sweden)

    Kremzer M.

    2016-09-01

    Full Text Available The aim of this study is to investigate tribological properties of EN AC-AlSi12 alloy composite materials matrix manufactured by pressure infiltration of Al2O3 porous preforms. In the paper, a technique of manufacturing composite materials was described in detail as well as wear resistance made on pin on disc was tested. Metallographic observations of wear traces of tested materials using stereoscopic and confocal microscopy were made. Studies allow concluding that obtained composite materials have much better wear resistance than the matrix alloy AlSi12. It was further proved that the developed technology of their preparation consisting of pressure infiltration of porous ceramic preforms can find a practical application.

  18. Modeling of wear behavior of Al/B{sub 4}C composites produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Ismail; Bektas, Asli [Gazi Univ., Ankara (Turkey). Dept. of Industrial Design Engineering; Guel, Ferhat; Cinci, Hanifi [Gazi Univ., Ankara (Turkey). Dept. of Materials and Metallurgy Engineering

    2017-06-01

    Wear characteristics of composites, Al matrix reinforced with B{sub 4}C particles percentages of 5, 10,15 and 20 produced by the powder metallurgy method were studied in this study. For this purpose, a mixture of Al and B{sub 4}C powders were pressed under 650 MPa pressure and then sintered at 635 C. The analysis of hardness, density and microstructure was performed. The produced samples were worn using a pin-on-disk abrasion device under 10, 20 and 30 N load through 500, 800 and 1200 mesh SiC abrasive papers. The obtained wear values were implemented in an artificial neural network (ANN) model having three inputs and one output using feed forward backpropagation Levenberg-Marquardt algorithm. Thus, the optimum wear conditions and hardness values were determined.

  19. Dry wear behaviors of wear resistant composite coatings produced by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Wenjin Liu; Minlin Zhong

    2004-01-01

    Using different proportional mixtures of Ni-coated MoS2, TiC and pure Ni powders, new typical wear resistant and selflubricant coatings were formed on low carbon steel by laser cladding process. The microstructures and phase composition of the composite coatings were studied by SEM and XRD. The typical microstructure of the composite coating is composed of multisulfide phases including binary element sulfide and ternary element sulfide, γ-Ni, TiC and Mo2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The friction coefficient and mass loss of three kinds of MoS2/TiC/Ni laser clad coatings are lower than those of quenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because of high hardness combined with low friction, the laser cladding composite coating with a mixture of 70% Ni-coated MoS2, 20%TiC and 10%pure Ni powder presents better wear behaviors than the composite coating with other powder blends. The composition analysis of the worn surface of GCr15 bearing steel shows that the transferred film from the laser cladding coating to the opposite surface of GCr15beating steel contains an amount of sulfide, which can change the micro-friction mechanism and lead to a reduced friction coefficient.

  20. Wear Behavior of Austempered Ductile Iron with Nanosized Additives

    Directory of Open Access Journals (Sweden)

    J. Kaleicheva

    2014-03-01

    Full Text Available The microstructure and properties of austempered ductile iron (ADI strengthened with nanosized addtives of titanium nitride + titanium carbonitride (TiN + TiCN, titanium nitride TiN and cubic boron nitride cBN are investigated. The TiN, TiCN and cBN, nanosized particles are coated by electroless nickel coating EFTTOM-NICKEL prior to the edition to the melt. The spheroidal graphite iron samples are undergoing an austempering, including heating at 900 оС for an hour, after that isothermal retention at 280 оС, 2 h and 380 оС, 2h. The metallographic analysis by optical metallographic microscope GX41 OLIMPUS and hardness measurements by Vickers Method are performed. The structure of the austempered ductile iron consists of lower bainite and upper bainite.Experimental investigation of the wear by fixed abrasive are also carried out. The influence of the nanosized additives on the microstructure, mechanical and tribological properties of the austempered ductile irons (ADI is studied.

  1. Tooth wear

    Directory of Open Access Journals (Sweden)

    Tušek Ivan

    2014-01-01

    surfaces. Attrition of teeth (attritio dentium represents teeth wear during mastication, friction on the tooth or teeth during parafunctional mandibular movements (bruxism, but without the abrasive effect. Dental erosion (erosio dentium or corrosive wear is a progressive, irreversible loss of dental hard tissue resulting from the effect of acids and /or chelation in the mouth, but without the participation of bacteria. Acids, of either exogenous or endogenous origin (peptic ulcer, gastritis, or bulimia, anoreksia nervosa, that come into the mouth can lead to different clinical manifestations of erosion depending on the time of exposure, the microstructure of teeth, buffering capacity, the amount of saliva and other factors. The changes are visible on the palatal surfaces of upper anterior teeth and, in severe cases, the lingual surfaces of posterior teeth. Occupational dental erosion occurs during exposure to industrial gases that contain hydrochloric or sulfuric acids, as well as the acids used in galvanizing and manufacture of battery and weapons. Due to the multifactorial nature of erosive tooth wear preventive measures must be applied taking into account chemical and biological factors as well as the patient's behavior associated with the etiology and pathogenesis of erosion. It is recommended to consume food and drinks that stimulate the secretion of large amounts of saliva base; to use neutral or alkaline mouthwash, and to chew sugar-free gum; to apply adequate oral hygiene (soft brushes, non-abrasive tooth paste, proper washing technique and not to consume aciding food and carbonated soft drinks and fizzy drinks in a great amount and frequently. It is necessary to apply preparations with high content of fluoride, and lubricant of tooth wear (powder CaF, CaF mixture and olive oil, and asset-based titanium tetrafluoride and casein-calcium phosphate. Commercial tooth paste that contains CPP-ACP (casein phosphopeptide-amorphous calcium phosphate and calcium phosphate

  2. Abrasive wear under multiscratching of polystyrene + single-walled carbon nanotube nanocomposites. Effect of sliding direction and modification by ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, M.D., E-mail: mdolores.bermudez@upct.es [Grupo de Ciencia de Materiales e Ingenieria Metalurgica, Departamento de Ingenieria de Materiales y Fabricacion, Universidad Politecnica de Cartagena, Campus de la Muralla del Mar. C/Doctor Fleming, s/n. 30202 Cartagena (Spain); Carrion, F.J.; Espejo, C.; Martinez-Lopez, E.; Sanes, J. [Grupo de Ciencia de Materiales e Ingenieria Metalurgica, Departamento de Ingenieria de Materiales y Fabricacion, Universidad Politecnica de Cartagena, Campus de la Muralla del Mar. C/Doctor Fleming, s/n. 30202 Cartagena (Spain)

    2011-08-15

    Single-walled carbon nanotubes (NTs) and single-walled carbon nanotubes modified (NTms) by the room-temperature ionic liquid (IL) 1-octyl, 3-methylimidazolium tetrafluoroborate ([OMIM]BF{sub 4}) were added in a 1 wt.% to polystyrene (PS) and processed by compression or injection moulding to obtain PS + NT and PS + NTm, respectively. Friction coefficients and abrasive wear from penetration depth, residual depth and viscoelastic recovery were determined under multiple scratching. The effect of the moulding process, the additives and the sliding direction was studied. Compression moulded PS shows a transition to more severe damage after a critical number of successive passes. Addition of NTs or NTms to compression moulded PS induces a strain hardening effect and reduces friction, residual depth and viscoelastic recovery. Strain hardening is also observed in injection moulded PS with sliding in the longitudinal and random directions, but not in the transverse direction. The scratch resistance of PS + NTm depends on sliding direction. The lowest friction coefficient and residual depth values, and the highest viscoelastic recovery were found for injection moulded PS + NTm, in the sliding direction parallel to injection flow. Mechanisms of surface damage are discussed upon scanning electron microscopy (SEM), focused ion beam-field emission scanning electron microscopy (FIB-FESEM), 3D surface topography, surface roughness and profilometry observations.

  3. Wear Resistance of Piston Sleeve Made of Layered Material Structure: MMC A356R, Anti-Abrasion Layer and FGM Interface

    Directory of Open Access Journals (Sweden)

    Hernik Szymon

    2016-09-01

    Full Text Available The aim of this paper is the numerical analysis of the one of main part of car engine – piston sleeve. The first example is for piston sleeve made of metal matrix composite (MMC A356R. The second improved material structure is layered. Both of them are comparison to the classical structure of piston sleeve made of Cr-Ni stainless steel. The layered material structure contains the anti-abrasion layer at the inner surface of piston sleeve, where the contact and friction is highest, FGM (functionally graded material interface and the layer of virgin material on the outer surface made of A356R. The complex thermo-elastic model with Archard's condition as a wear law is proposed. The piston sleeve is modelling as a thin walled cylindrical axisymmetric shell. The coupled between the formulation of thermo-elasticity of cylindrical axisymmetric shell and the Archard’s law with functionally changes of local hardness is proposed.

  4. 低压等离子喷涂MoB/CoCr涂层的组织及耐磨性%Microstructure and Abrasive Wear Resistance of MoB/CoCr Coatings by LPPS

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌; 王洪涛

    2012-01-01

    MoB/CoCr coatings were prepared by low pressure plasma spraying(I.PPS), the abrasive wear experiment was investigated. The surface and cross sectional morphologies of the MoB/CoCr coatings were observed by SEM. The properties of microhardness And bond strength of the MoB/CoCr coatings were iested. The abrasive wear properties were evaluated by MLS-225 wet sand rubber wheel tester. The results show that MoB/CoCr coatings are dense and have excellent mechanical properties with high microhardness(930HV0. 3) and bond strength(71 Mpa). The MoB/CoCr coatings have high abrasive wear resistance property.%采用低压等离子喷涂技术(LPPS)制备MoB/CoCr潦层,对涂层进行磨粒磨损试验研究.采用SEM观察涂层的表面和截面形貌,显微硬度计测试潦层的力学性能,湿式橡胶轮磨粒磨损试验机测试潦层的磨粒磨损性能.结果表明,涂层组织致密,呈层状结构;涂层具有良好的力学性能,显微硬度达到930HV0.3,结合强度在71MPa以上,具有较高的耐磨性能.

  5. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-06-01

    Thermal oxidation under water oxidizing atmosphere was performed on Ti6Al4V alloy under different durations from 2 h to 8 h. Surface characterizations were performed using X-ray diffractometery (XRD), scanning electron microscopy (SEM), Raman spectroscopy, nanoindentation and nano scratch testing. Fretting wear behaviors of untreated and oxidized samples were also examined. The formed oxide coating mainly included rutile TiO{sub 2} as well as a little alumina. The weight gain with respect to the oxidation duration obeyed the linear oxidation kinetics law. The growth of oxide grains was in inadequate growth state of incomplete scale coverage from 2nd to 4th hour duration, in normal growth state from 4th to 6th hour duration while in excessive growth state of oxide particle agglomeration and surface roughening from 6th to 8th (or more than 8th) hour duration. The coating thickness increased from 5 μm to 12 μm as oxidation duration increased from 2 h to 8 h. The increase in duration also increased surface roughness and nano hardness as well as adhesion strength of the film/substrate for oxidized samples. The nano hardness value was 10.06 ± 2.15 GPa and the critical load of failure during nano scratch testing was 554.3 ± 6.44 mN for 4 h treated sample. The untreated and oxidized samples showed a same fretting running status and fretting regime with a displacement amplitude of 200 μm while revealing different fretting failure mechanisms. It was mainly abrasive and adhesive wear under ploughing force for untreated sample, while a mix of 3-body abrasion by rolling oxide particles and severe plastic deformation under high contact stress between two ceramic materials for the oxidized samples. The oxide coating was not worn out and improved the fretting wear resistance of titanium alloy. - Highlights: • A thickness of 5–12 μm rutile TiO{sub 2} coating formed under different oxidation durations. • Weight gain with respect to oxidation duration obeyed linear

  6. Abrasive and corrosive behaviors of Cu-Zr-Al-Ag-Nb bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J L; Shek, C H [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Lu, J X, E-mail: apchshek@cityu.edu.h

    2009-01-01

    The present work investigated effects of Nb (1-5 at.%) on CuZrAlAg bulk metallic glasses. The addition of Nb did not change the amorphous structure but affected the thermal behaviors significantly. The corrosion resistances of the BMGs with addition of 5 at% Nb in 0.5 N H{sub 2}SO{sub 4} solutions was the best among the samples. Pin-on-disk measurements showed that the hardest sample, viz. the one with 3 at% Nb exhibited the best wear resistance. Mechanical properties were also investigated using a nanoindentation technique. It was found that the addition of Nb may improved corrosion resistance and wear resistance of the Cu-based BMG, but not in a simple and systematic manner.

  7. Abrasive and corrosive behaviors of Cu-Zr-Al-Ag-Nb bulk metallic glasses

    Science.gov (United States)

    Zhang, J. L.; Lu, J. X.; Shek, C. H.

    2009-01-01

    The present work investigated effects of Nb (1-5 at.%) on CuZrAlAg bulk metallic glasses. The addition of Nb did not change the amorphous structure but affected the thermal behaviors significantly. The corrosion resistances of the BMGs with addition of 5 at% Nb in 0.5 N H2SO4 solutions was the best among the samples. Pin-on-disk measurements showed that the hardest sample, viz. the one with 3 at% Nb exhibited the best wear resistance. Mechanical properties were also investigated using a nanoindentation technique. It was found that the addition of Nb may improved corrosion resistance and wear resistance of the Cu-based BMG, but not in a simple and systematic manner.

  8. 干摩擦条件下树脂刹车片磨损机制研究%Research on Wear Behavior of Resin Brake Pads under Dry Sliding

    Institute of Scientific and Technical Information of China (English)

    潘道元; 张育增; 刘健; 高中学; 王其兵

    2014-01-01

    To improve the wear resistance of resin brake pads made of resin and brass in the towing engine,the wear be-havior of Brass and Brass/Resin blends was investigated in the MPV-600 type abrasive wear tester under dry sliding.Worn morphology of the brake pad surface was observed using the stereo microscope in order to analyze the wear mechanism.Ex-perimental results show that the decrease in hardness and the change in wear mechanism because of the temperature rise caused by frictional heat are the main reason of the wear of resin brake pads under dry friction.Brass/Resin blends has better heat resistance and wear resistance than Brass sample.The friction coefficient of the friction pairs of resin brake pads and steel is mainly determined by copper mesh material.The wear mechanism is abrasive wear and oxidative wear for the friction pairs of Brass/Resin blends and 45 steel,and abrasive wear and abrasive wear for the friction pairs of brass and 45 steel under dry sliding.%为了优化拖缆机刹车部件的设计参数,同时进一步提高刹车片的耐磨性能,采用MPV-600型磨粒磨损试验机研究无石棉树脂摩擦片和黄铜试样与45#钢配副在干摩擦条件下的摩擦学性能,利用体式显微镜观察试样的磨损形貌并分析其磨损机制。结果表明:摩擦热引起的温升导致的硬度下降及磨损机制的改变是干摩擦条件下摩擦片磨损的主要原因;树脂刹车片的耐热性能、耐磨性能均好于黄铜试样,树脂刹车片与钢配副的摩擦因数主要是由树脂刹车片中的铜纤维材料决定的;干摩擦条件下树脂摩擦片的磨损机制是以磨粒磨损和氧化磨损为主,而黄铜试样以磨粒磨损和黏着磨损为主。

  9. 热轧高锰钢Mn13的冲滚磨料磨损性能∗%Impact and Rolling Abrasive Wear Properties of Hot Rolling Mn13 High Manganese Steel

    Institute of Scientific and Technical Information of China (English)

    赵欣; 张恒; 王斐; 王庆良

    2015-01-01

    The impact⁃rolling abrasive wear properties of hot rolling high manganese steel of Mn13 were studied under the condition of coal gangue abrasive by the experimental machine of M2000. XRD and SEM were used to investigate the structural transformation and wear mechanism of Mn13 steel. The results show that the hot rolled steel Mn13 reveals the better resistance to impact⁃rolling abrasive wear properties under the high impact loads. The hardened layer with a certain thickness is formed in worn surface.The hardness and thickness of hardened layer are improved with the increasing of im⁃pact loads.The deformation twinning and martensite phase transformation are the main reasons to improve the work harden⁃ing and wear resistance of hot rolling high manganese steel of Mn13.At the low impact loads,the drilling and plowing wear are the main wear mechanism,and at the high impact loads,the wear mechanism changes to fatigue fracture and drilling wear.%在M2000摩擦磨损试验机上,研究以煤矸石为磨料时热轧高锰钢Mn13冲滚耦合的磨料磨损性能,利用XRD和SEM分析其组织转变及磨损机制。实验结果表明,在较高冲滚载荷下,热轧Mn13钢表现出更好的抗冲滚磨料磨损性能;冲滚磨料磨损表面存在一定厚度的硬化层,且随冲滚载荷的增加,磨损面硬度增加,硬化层厚度增大,形变孪晶和马氏体相变是其加工硬化和耐磨损性能改善的主要原因;低载荷冲击时,磨损机制主要表现为凿削磨损并伴随犁沟切削磨损,较高载荷冲击时,磨损机制凿削磨损和犁沟划伤过渡到疲劳剥落和凿削磨损。

  10. A new methodology for predictive tool wear

    Science.gov (United States)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  11. Estimation of the operational reliability determined with Weibull modulus based on the abrasive wear in a cylinder-piston ring system

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2012-12-01

    Full Text Available Purpose: The main purpose of the study was to determine methodology for estimation of the operational reliability based on the statistical results of abrasive wear testing.Design/methodology/approach: For research, a traditional tribological system, i.e. a friction pair of the AlSi17CuNiMg silumin in contact with the spheroidal graphite cast iron of EN-GJN-200 grade, was chosen. Conditions of dry friction were assumed. This system was chosen based on mechanical cooperation between the cylinder (silumin and piston rings (spheroidal graphite cast iron in conventional internal combustion piston engines with spark ignition.Findings: Using material parameters of the cylinder and piston rings, nominal losses qualifying the cylinder for repair and the maximum weight losses that can be smothered were determined. Based on the theoretical number of engine revolutions to repair and stress acting on the cylinder bearing surface, the maximum distance that the motor vehicle can travel before the seizure of the cylinder occurs was calculated. These results were the basis for statistical analysis carried out with the Weibull modulus, the end result of which was the estimation of material reliability (the survival probability of tribological system and the determination of a pre-operation warranty period of the tribological system.Research limitations/implications: The analysis of Weibull distribution modulus will estimate the reliability of a tribological cylinder-ring system enabled the determination of an approximate theoretical time of the combustion engine failure-free running.Originality/value: The results are valuable statistical data and methodology proposed in this paper can be used to determine a theoretical life time of the combustion engine.

  12. Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; ZHENG Jianfeng; PENG Jinfang; HE Liping; ZHU Minhao

    2010-01-01

    The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear

  13. HVOF- and HVAF-Sprayed Cr3C2-NiCr Coatings Deposited from Feedstock Powders of Spherical Morphology: Microstructure Formation and High-Stress Abrasive Wear Resistance Up to 800 °C

    Science.gov (United States)

    Janka, L.; Norpoth, J.; Trache, R.; Thiele, S.; Berger, L.-M.

    2017-08-01

    Chromium carbide-based coatings are commonly applied to protect surfaces against wear at high temperatures. This work discusses the influence of feedstock powder and spray torch selection on the microstructure and high-stress abrasion resistance of thermally sprayed Cr3C2-NiCr coatings. Four commercial feedstock powders with spherical morphology and different microstructures were deposited by different high-velocity spray processes, namely third-generation gas- and liquid-fueled HVOF torches and by the latest generation HVAF torch. The microstructures of the coatings were studied in the as-sprayed state and after various heat treatments. The high-stress abrasion resistance of as-sprayed and heat-treated coatings was tested at room temperature and at 800 °C. The study reveals that the selection of the spray torch mainly affects the room temperature abrasion resistance of the as-sprayed coatings, which is due to differences in the embrittlement of the binder phase generated by carbide dissolution. At elevated temperatures, precipitation and growth of secondary carbides yields a fast equalization of the various coatings microstructures and wear properties.

  14. Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: Part II. effect on the wear behavior

    Science.gov (United States)

    Bedolla-Jacuinde, A.; Aguilar, S. L.; Maldonado, C.

    2005-06-01

    In this work, we studied the wear behavior of a low-Cr white cast iron (WCI) modified with ferrotitanium-rare earths-bismuth (Fe-Ti-RE-Bi) up to 2%. These additions modified the eutectic carbide structure of the alloy from continuous ledeburite into a blocky, less interconnected carbide network. The modified structure was wear tested under pure sliding conditions against a hardened M2 steel counter-face using a load of 250 N. It was observed that wear resistance increased as the modifier admixture increased. The modified structure had smaller more isolated carbides than the WCI with no Fe-Ti-RE-Bi additions. It was observed that large carbides fracture during sliding, which destabilizes the structure and causes degradation in the wear behavior. A transition from abrasive to oxidative wear after 20 km sliding occurred for all alloys. In addition, the modified alloys exhibited higher values of hardness and fracture toughness. These results are discussed in terms of the modified eutectic carbide microstructure.

  15. Sliding Wear and Friction Behavior of Fuel Rod Material in Water and Dry State

    Science.gov (United States)

    Park, Jin Moo; Kim, Jae Hoon; Jeon, Kyeong Lak; Park, Jun Kyu

    In water cooled reactors, the friction between spacer grid and fuel rod can lead to severe wear and it is an important topic to study. In the present study, sliding wear behavior of zirconium alloy was investigated in water and dry state using the pin-on-disc sliding wear tester. Sliding wear resistance of zirconium alloy against heat treated inconel alloy was examined at room temperature. The parameters in this study were sliding velocity, axial load and sliding distance. The wear characteristics of zirconium alloy was evaluated by friction coefficient, specific wear rate and wear volume. The micro-mechanisms responsible for wear in zirconium alloy were identified to be micro-cutting, micro-pitting, delamination and micro-cracking of deformed surface zone.

  16. Heat treatment process optimization of roller material of wheat mill against abrasive wear%小麦磨粉机磨辊材料抗磨损热处理工艺优化

    Institute of Scientific and Technical Information of China (English)

    张克平; 姜良朋; 黄晓鹏

    2016-01-01

    植物磨料磨损是辊式制粉工业中磨辊磨损失效的主要原因,热处理工艺是磨辊材料(低铬白口铁)表面硬度强化的一般手段。该文选用与辊式制粉工况相似的磨损试验机进行试验,利用正交试验考察了不同工艺参数热加工对低铬白口铁抗小麦粉料磨损性能的影响,并择选出最优工艺组合。基于最优工艺组合,以低铬白口铁原始件为参照,综合质量损失、磨痕特征及扫描电镜形貌等手段提取磨损特征,考察最优热处理工艺对低铬白口铁抗小麦粉料磨损性能的强化效果。试验推荐最优热处理工艺组合为:960℃(1 h)空淬+250℃(2 h)回火,实际生产推荐最优热处理工艺组合为:基于960℃淬火+250℃回火的表面热加工;经最优热加工工艺处理的低铬白口铁的磨损质量损失约为原始试样质量损失的42%,铸态组织内共晶碳化物断网现象明显,以半连续网状或孤立块状分布于基体;被磨面沟槽宽深度与棱脊峰谷值等磨痕特征及金属元素含量有所降低,试样硬度显著增加;磨损形式主要为微观切削、多次塑性变形与低周期疲劳磨损。该研究可为磨辊耐磨性能的提升以及降低加工过程对面粉的金属污染提供参考。%The wear of plant abrasive is the main reason to roller wear failure in wheat roller milling industry, while the heat treatment is the general strengthening means of surface hardness of low chromium white iron which is usually used as roller material. In this paper, 3 principles of abrasive wear were applied, and low chromium white iron was chosen as the test samples and wheat powder was chosen as abrasive. The wear test was conducted on wear test machine under the similar work process of industrial roller milling. The test was divided into 2 phases. In the first phase, 9 groups of samples were heat treated with different process parameters according to the

  17. Laser cladding of Al-Si/SiC composite coatings : Microstructure and abrasive wear behavior

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J.Th.M.

    2007-01-01

    Surface coatings of an Al-Si-SiC composite were produced on UNS A03560 cast Al-alloy substrates by laser cladding using a mixture of powders of Al-12 wt.% Si alloy and SiC. The microstructure of the coatings depends considerably on the processing parameters. For a specific energy of 26 MJ/m2 the

  18. Laser cladding of Al-Si/SiC composite coatings : Microstructure and abrasive wear behavior

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J.Th.M.

    2007-01-01

    Surface coatings of an Al-Si-SiC composite were produced on UNS A03560 cast Al-alloy substrates by laser cladding using a mixture of powders of Al-12 wt.% Si alloy and SiC. The microstructure of the coatings depends considerably on the processing parameters. For a specific energy of 26 MJ/m2 the mic

  19. Wear mechanism for spray deposited Al-Si/SiCp composites under dry sliding condition

    Institute of Scientific and Technical Information of China (English)

    滕杰; 李华培; 陈刚

    2015-01-01

    Al-Si/15%SiCp (volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy (OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10−220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear.

  20. The Comparative Effect of Sugarcane Juice on the Abrasion-Corrosion Behavior of Fe-Cr-B Electric Arc Sprayed and Fe-Cr-C Weld Coatings

    Science.gov (United States)

    Buchanan, Vernon E.

    2012-02-01

    Abrasion-corrosion tests were conducted on two commonly Fe-Cr-C shielded metal arc welding (SMAW) hardfacings used in the sugar industry and an arc sprayed Fe-Cr-based coating. The tests were performed on a modified block-on-ring tester with the coatings sliding against compressed sugarcane fiber in the presence of abrasive slurry. The findings showed that, in the presence of sugarcane juice and sand slurry, the SMAW coatings had similar wear performance while the abrasive wear of the arc-sprayed coating was superior to the SMAW coatings. In the presence of a neutral solution, the material loss from the arc-sprayed coating was similar to that obtained in the sugarcane juice while the SMAW coatings showed a marked decrease; this demonstrated that the arc-sprayed coating was more desirable in an abrasive-corrosion environment. The study also showed that the resistance to material does not follow the expected trend, in which wear resistance increases with increasing hardness.

  1. Experimental Study of the Hygrothermal Effect on Wear Behavior of Composite Materials

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas. Abdulla

    2017-07-01

    Full Text Available The hygrothermal effect on the wear behavior of composite material (fiberglass and polyester resin vf=40% was investigated experimentally in this work. The study includes manufacturing of test device (pin on disc according to ASTM G 99. In order to study the hygrothermal effect on wear behavior of composite materials the hygrothermal chamber was manufactured. The experimental results show that the wear of glass fiber/polyester increased with increasing the load, sliding speed and sliding distance. The load and sliding distance were more effective on the wear of the composite rather than sliding speed. Also, it has been revealed that, the hygrothermal is considerable effect that, the wear rate of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect. Applied load is the wear factor that has the highest physical influence on the wear of composites materials than other wear factors. Also, the wear of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect.

  2. Friction and Wear Behavior of GCr15 Under Multiple Movement Condition

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Friction and wear of GCr15 under cross-sliding condition is tested on a ball-on-disc wear test machine. This result shows that the cross-sliding of friction pair leads to different friction and wear behavior. For the condition described in this paper, the friction coefficients with ball reciprocating are smaller than that without ball reciprocating. The friction coefficients increase with the increase of reciprocating frequency.. The wear weight loss of the ball subjected reciprocating sliding decreases, however, the wear weight loss of disc against the reciprocating ball increases. In cross-sliding friction, the worn surfaces of the ball show crinkle appearance along the circumferential sliding traces. Delaminating of small strip debris is formed along the plowing traces on the disc worn surface. The plowing furrow on the disc surfaces looks deeper and wider than that without reciprocating sliding. The size of wear particles from cross-sliding wear is larger than those without reciprocating sliding.

  3. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  4. WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches.

    Science.gov (United States)

    Amiri, Amir Mohammad; Peltier, Nicholas; Goldberg, Cody; Sun, Yan; Nathan, Anoo; Hiremath, Shivayogi V; Mankodiya, Kunal

    2017-02-28

    Autism is a complex developmental disorder that affects approximately 1 in 68 children (according to the recent survey conducted by the Centers for Disease Control and Prevention-CDC) in the U.S., and has become the fastest growing category of special education. Each student with autism comes with her or his own unique needs and an array of behaviors and habits that can be severe and which interfere with everyday tasks. Autism is associated with intellectual disability, impairments in social skills, and physical health issues such as sleep and abdominal disturbances. We have designed an Internet-of-Things (IoT) framework named WearSense that leverages the sensing capabilities of modern smartwatches to detect stereotypic behaviors in children with autism. In this work, we present a study that used the inbuilt accelerometer of a smartwatch to detect three behaviors, including hand flapping, painting, and sibbing that are commonly observed in children with autism. In this feasibility study, we recruited 14 subjects to record the accelerometer data from the smartwatch worn on the wrist. The processing part extracts 34 different features in each dimension of the three-axis accelerometer, resulting in 102 features. Using and comparing various classification techniques revealed that an ensemble of 40 decision trees has the best accuracy of around 94.6%. This accuracy shows the quality of the data collected from the smartwatch and feature extraction methods used in this study. The recognition of these behaviors by using a smartwatch would be helpful in monitoring individuals with autistic behaviors, since the smartwatch can send the data to the cloud for comprehensive analysis and also to help parents, caregivers, and clinicians make informed decisions.

  5. WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches

    Directory of Open Access Journals (Sweden)

    Amir Mohammad Amiri

    2017-02-01

    Full Text Available Autism is a complex developmental disorder that affects approximately 1 in 68 children (according to the recent survey conducted by the Centers for Disease Control and Prevention—CDC in the U.S., and has become the fastest growing category of special education. Each student with autism comes with her or his own unique needs and an array of behaviors and habits that can be severe and which interfere with everyday tasks. Autism is associated with intellectual disability, impairments in social skills, and physical health issues such as sleep and abdominal disturbances. We have designed an Internet-of-Things (IoT framework named WearSense that leverages the sensing capabilities of modern smartwatches to detect stereotypic behaviors in children with autism. In this work, we present a study that used the inbuilt accelerometer of a smartwatch to detect three behaviors, including hand flapping, painting, and sibbing that are commonly observed in children with autism. In this feasibility study, we recruited 14 subjects to record the accelerometer data from the smartwatch worn on the wrist. The processing part extracts 34 different features in each dimension of the three-axis accelerometer, resulting in 102 features. Using and comparing various classification techniques revealed that an ensemble of 40 decision trees has the best accuracy of around 94.6%. This accuracy shows the quality of the data collected from the smartwatch and feature extraction methods used in this study. The recognition of these behaviors by using a smartwatch would be helpful in monitoring individuals with autistic behaviors, since the smartwatch can send the data to the cloud for comprehensive analysis and also to help parents, caregivers, and clinicians make informed decisions.

  6. WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches

    Science.gov (United States)

    Amiri, Amir Mohammad; Peltier, Nicholas; Goldberg, Cody; Sun, Yan; Nathan, Anoo; Hiremath, Shivayogi V.; Mankodiya, Kunal

    2017-01-01

    Autism is a complex developmental disorder that affects approximately 1 in 68 children (according to the recent survey conducted by the Centers for Disease Control and Prevention—CDC) in the U.S., and has become the fastest growing category of special education. Each student with autism comes with her or his own unique needs and an array of behaviors and habits that can be severe and which interfere with everyday tasks. Autism is associated with intellectual disability, impairments in social skills, and physical health issues such as sleep and abdominal disturbances. We have designed an Internet-of-Things (IoT) framework named WearSense that leverages the sensing capabilities of modern smartwatches to detect stereotypic behaviors in children with autism. In this work, we present a study that used the inbuilt accelerometer of a smartwatch to detect three behaviors, including hand flapping, painting, and sibbing that are commonly observed in children with autism. In this feasibility study, we recruited 14 subjects to record the accelerometer data from the smartwatch worn on the wrist. The processing part extracts 34 different features in each dimension of the three-axis accelerometer, resulting in 102 features. Using and comparing various classification techniques revealed that an ensemble of 40 decision trees has the best accuracy of around 94.6%. This accuracy shows the quality of the data collected from the smartwatch and feature extraction methods used in this study. The recognition of these behaviors by using a smartwatch would be helpful in monitoring individuals with autistic behaviors, since the smartwatch can send the data to the cloud for comprehensive analysis and also to help parents, caregivers, and clinicians make informed decisions. PMID:28264474

  7. Investigation of austenitizing temperature on wear behavior of austempered gray iron (AGI)

    Science.gov (United States)

    Sarkar, T.; Sutradhara, G.

    2016-09-01

    This study is about finding the effect of austenitizing temperature on microstructure and wear behavior of copper alloyed austempered gray iron (AGI), and then comparing it with an as- cast (solidified) state. Tensile and wear tests specimens are prepared from as-cast gray iron material, and austenitized at different temperatures and then austempered at a fixed austempering temperature. Resulting microstructures are characterized through optical microscopy, scanning electron microscope (SEM) and X-Ray diffraction. Wear test is carried out using a block-on-roller multi-tribotester with sliding speed of 1.86 m/sec. In this investigation, wear behavior of all these austempered materials are determined and co-related with the micro structure. Hence the wear surface under scanning electron microscope showed that wear occurred mainly due to adhesion and delamination under dry sliding condition. The test results indicate that the austenitizing temperature has remarkable effect on resultant micro structure and wear behavior of austempered materials. Wear behavior is also found to be dependent on the hardness, tensile strength, austenite content and carbon content in austenite. It is shown that coarse ausferrite micro structure exhibited higher wear depth than fine ausferrite microstructure.

  8. Fundamental studies on dynamic wear behavior of SBR rubber compounds modified by SBR rubber powder

    OpenAIRE

    Euchler, Eric; Heinrich, Gert; Michael, Hannes; Gehde, Michael; Stocek, Radek; Kratina, Ondrej; Kipscholl, Reinhold; Bunzel, Jörg-Michael; Saal, Wolfgang

    2016-01-01

    The aim of this study is focused on the experimental investigation of dynamic wear behavior of carbon black filled rubber compounds comprising pristine styrene butadiene rubber (SBR) together with incorporated SBR ground rubber (rubber powder). We also analyzed and described quantitatively the service conditions of some dynamically loaded rubber products, which are liable to wear (e.g. conveyor belts, tires). Beside the well-known standard test method to characterize wear resistance at steady...

  9. Influence of Eta-Phase on Wear Behavior of WC-Co Carbides

    Directory of Open Access Journals (Sweden)

    A. Formisano

    2016-01-01

    Full Text Available Cemented carbides, also known as Widia, are hard metals produced by sintering process and widely used in mechanical machining. They show high cutting capacity and good wear resistance; consequently, they result to be excellent materials for manufacturing cutting tools and sandblast nozzles. In this work, the wear resistance of WC-Co carbides containing Eta-phase, a secondary phase present in the hard metals when a carbon content deficiency occurs, is analyzed. Different mixtures of carbide are prepared and sintered, with different weight percentages of carbon, in order to form Eta-phase and then analyze how the carbon content influences the wear resistance of the material. This characterization is carried out by abrasive wear tests. The test parameters are chosen considering the working conditions of sandblast nozzles. Additional information is gathered through microscopic observations and the evaluation of hardness and microhardness of the different mixtures. The analyses highlight that there is a limit of carbon content below which bad sintering occurs. Considering the mixtures without these sintering problems, they show a wear resistance depending on the size and distribution of the Eta-phase; moreover, the one with high carbon content deficiency shows the best performance.

  10. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    Science.gov (United States)

    Cai, Zhen-Bing; Peng, Jin-Fang; Qian, Hao; Tang, Li-Chen; Zhu, Min-Hao

    2017-07-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry environment is used for comparison. Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Characterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  11. Wear mechanisms of dental composite restorative materials by two different in-vitro methods

    Directory of Open Access Journals (Sweden)

    Juliana Antonino de Souza

    2013-04-01

    Full Text Available In this work two very simple apparatuses, namely the ball crater (or ball-on-plate and the linear reciprocating (or pin-on-plate tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.

  12. Wear mechanisms of dental composite restorative materials by two different in-vitro methods

    Directory of Open Access Journals (Sweden)

    Juliana Antonino de Souza

    2012-01-01

    Full Text Available In this work two very simple apparatuses, namely the ball crater (or ball-on-plate and the linear reciprocating (or pin-on-plate tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.

  13. Influence of silicon content and heat treatment on wear resistance of white chromium cast irons under high speed solidification conditions; Influencia del contenido de silicio y el tratamiento termico en la resistencia al desgaste de fundiciones blancas al cromo en condiciones de rapida solidificacion

    Energy Technology Data Exchange (ETDEWEB)

    Goyo, L.; Varela, A.; Verhaege, M.; Garcia, A.; Mier, J.; Moors, M.

    2012-11-01

    The influence of silicon content and heat treatment on microstructure, abrasive and dry friction wear resistance of a 3 % C, 12 % Cr cast iron, under fast solidification conditions is studied. The fast solidification condition diminishes the carbide volume and the silicon content increases their dispersion and finesses. All matrixes obtained were perlitics, whit different finesses. No intermediate transformation products were noticed. Hardness had little variation. Austenization treatment show little effectivity, with tendency to increase wear in reference to as cast and maintenance treatments. Behavior under dry friction and abrasive wear were similar under test conditions applied whit more influence of carbide morphology in the abrasive wear conditions. (Author) 32 refs.

  14. COMPOSITION EFFECT ON DRY SLIDING WEAR BEHAVIORS OF Ti-B-N THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    P. Sit; Y.H. Lu; H. Chen; Z.F. Zhou; Y.G. Shen; K.Y. Li

    2005-01-01

    Friction and sliding wear behaviour of Ti-B-N coatings against AISI440C steel ball and WC-6wt%Co ball were studied by using pin-on-disk tribometer along with microstructure characterization using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the wear resistance of film depended on the wear mechanism. In the case of AISI440C steel, adhesive wear were pre-dominant and the wear rate increased sharply to a maximum when N content reach ~38at. %. This might be related to the change of film microstructure and phase configuration, so the least adhesive transfer of tribo-film was observed. If WC-6wt% Co ball was used, less deformation wear debris was observed, this was responsible for the rise of wear rate. Despite of different wear modes, friction coefficients in both cases were found to depend mainly on the formation and the amount of h-BN phase. Elemental analysis by energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) revealed that oxygen participated in the wear behavior by reacting with films to form the debris comprised of various types of Ti oxide including TiO, TiO2 and Ti2O3 ,which increased wear resistance.

  15. Sliding wear behavior of high velocity arc sprayed Fe-Al coating

    Institute of Scientific and Technical Information of China (English)

    朱子新; 徐滨士; 马世宁; 张伟

    2003-01-01

    The friction and wear behavior of Fe-Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball-on-disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.

  16. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    Science.gov (United States)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  17. Sliding Wear Behavior of Plasma Sprayed Zirconia Coating on Cast Aluminum against Silicon Carbide Ceramic

    Institute of Scientific and Technical Information of China (English)

    Thuong-Hien LE; Young-Hun CHAE; Seock-Sam KIM

    2005-01-01

    The sliding wear behaviors of ZrO2-22 wt pct MgO (MZ) and ZrO2-8 wt pct Y2O3 (YZ) coatings deposited on a cast aluminum alloy with bond layer (NiCrCoAlY) by plasma spray were investigated under dry test conditions at room temperature. Under all load conditions, the wear mechanisms of the MZ and YZ coatings were almost the same.The material transfer and pullout were involved in the wear process of the studied coatings under the test conditions.The wear rate of the MZ coating was less than that of the YZ coating. While increasing the normal load, the wear rates of the MZ and YZ coatings increased. SEM was used to examine the worn surfaces and to elucidate likely wear mechanisms. Energy dispersive X-ray spectroscopy (EDX) analysis of the worn surfaces indicated that material transfer occurred in the direction from the SiC ball to the disk. Fracture toughness had a significant influence on the wear performance of the coatings. It was suggested that the material transfer played an important role in the wear behavior.

  18. Microstructure and Dry-Sliding Wear Behavior of B4C Ceramic Particulate Reinforced Al 5083 Matrix Composite

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2016-09-01

    Full Text Available B4C ceramic particulate–reinforced Al 5083 matrix composite with various B4C content was fabricated successfully via hot-press sintering under Argon atmosphere. B4C particles presented relative high wettability, bonding strength and symmetrical distribution in the Al 5083 matrix. The hardness value, friction coefficient and wear resistance of the composite were higher than those of the Al 5083 matrix. The augment of the B4C content resulted in the increase of the friction coefficient and decrease of the wear mass loss, respectively. The 30 wt % B4C/Al 5083 composite exhibited the highest wear resistance. At a low load of 50 N, the dominant wear mechanisms of the B4C/Al 5083 composite were micro-cutting and abrasive wear. At a high load of 200 N, the dominant wear mechanisms were micro-cutting and adhesion wear associated with the formation of the delamination layer which protected the composite from further wear and enhanced the wear resistance under the condition of high load.

  19. Process monitoring evaluation and implementation for the wood abrasive machining process.

    Science.gov (United States)

    Saloni, Daniel E; Lemaster, Richard L; Jackson, Steven D

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading.

  20. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the abrasive wear of austempered ductile irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2009-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular,ocupa en la actualidad, uno de los lugares más importantes entre los hierros fundidos de altaresistencia, y con la introducción del tratamiento térmico de austemperado, aplicado a estasfundiciones, se da lugar a una nueva familia de materiales, caracterizados por su alta resistenciamecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de lasfundiciones nodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteosde nódulos, a los que les fue aplicado el tratamiento de austemperado, y posteriormente se lessometió a ensayos de desgaste abrasivo.Con los resultados obtenidos, se hace un análisis de la influencia del conteo de nódulos en dichaspropiedades, así como también, de la interrelación del conteo de nódulos, con las variables detratamiento térmico utilizadas en las muestras ensayadas.Palabras claves: hierro nodular, conteo de nódulos, austemperado.__________________________________________________________________________AbstractBetween the metallic materials of greater demand, the iron production with nódular graphiteoccupies at the present time, one of the most important places between fused irons of highresistance, and with the introduction of the austemperado heat treatment of, applied to thesesmeltings, gives rise to a new family of materials, characterized by its high resistance mechanicaland elevated tenacity, that the economy and facility of production of the smeltings maintainnodulares. This work, makes a valuation of the iron behavior nodulares, with different counts fromnodules, to which the austemperado was applied treatment to them of, and later it was put underto them tests of abrasive wearing down. Of the obtained results, an analysis takes control of theinfluence of the count of nodules in these properties, as well as, of the interrelation of

  1. Sliding contacts on printed circuit boards and wear behavior

    Science.gov (United States)

    Le Solleu, J.-P.

    2010-04-01

    Automotive suppliers use since decades printed circuit boards (PCB) gold plating pads, as direct contact interface for low current sliding contacts. Several gold plating processes are available on the market, providing various wear behaviour. Some specific galvanic hard gold (AuCo or AuNi). plating was developed on PCB's. This specific plating generates extra costs due to the material quantity and also the process complexity. In a cost driven industry, the challenge is to use a standard low cost PCB for systems requesting high reliability performances. After a brief overview of standard PCB manufacturing processes and especially gold plating processes, the global experimental results of wear behaviour of three different gold plating technologies will be exposed and an explanation of the correlation between surface key parameters and wear out will be provided.

  2. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  3. Effect of binder on abrasive wear resistance of tungsten carbide coating prepared by HVOF spraying%粘结剂对超音速火焰喷涂碳化钨涂层磨粒磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    梁文军; 张宏; 沈承金; 马瑞勇

    2012-01-01

    WC-lONi and WC-12Co coatings were deposited on 35 steel substrate by HVOF (high velocity oxygen fuel) spraying process. The effects of Ni and Co as binders on microhardness, friction coefficient, and abrasive wear resistance of WC coating were studied. The surface morphologies of the coating before and after wearing were analyzed by scanning electron microscopy (SEM) and the mechanism of abrasive wear was discussed. The results indicated that both WC coatings prepared by HVOF have high microhardness, and show little difference in friction coefficient when they rub against SiC sandpaper under dry friction condition. Both coatings have good anti-abrasive wear performance at low load, while at high load the WC-12Co coating has obviously better wear resistance than the WC-lONi coating. Their main abrasive wear form is uniform abrasion wear and the abrasive wear mechanismis mainly micro-cutting and micro-peeling. The surface damage of the WC-12Co coating after wearing is lighter and has better comprehensive performance as compared with the WC-lONi coating.%采用超音速火焰喷涂(HVOF)工艺在35钢基体上制备了WC- 10Ni涂层和WC- 12Co涂层,研究了镍、钴这两种粘结剂对WC涂层的显微硬度、摩擦系数和抗磨粒磨损性能的影响,采用扫描电子显微镜观察涂层磨损前后的表面形貌,探讨了WC涂层的磨粒磨损机理.结果表明,以HVOF方法制备的2种WC涂层均有较高的显微硬度,WC- 10Ni涂层和WC- 12Co涂层与SiC砂纸摩擦副之间的干摩擦系数相差不大.2种涂层在低载荷下均有较好的抗磨粒磨损性能,但在较高载荷下WC- 12Co涂层的抗磨性明显优于WC-10Ni涂层.2种涂层的磨粒磨损形式主要为均匀磨耗磨损,磨损机理以微切削和微剥落为主.WC-12Co涂层的磨损表面损伤较轻微,综合性能优于WC- 10Ni涂层.

  4. Research on Abrasive Wear Resistance of Ni-Ti Coating Prepared by High Velocity Air-fuel Arc Spraying%超音速电弧喷涂Ni-Ti涂层的磨粒磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    张健; 周勇; 张志萍

    2012-01-01

    采用超音速电弧喷涂工艺在2Cr13马氏体不锈钢基体上制备了Ni-Ti涂层.用X射线衍射研究了涂层的相组成,用扫描电镜对涂层的显微结构和磨损后形貌进行了分析,测试了涂层的显微硬度,在橡胶轮磨粒磨损试验机上研究了涂层的耐磨粒磨损性能.结果表明,Ni-Ti涂层主要组织为NiTi(B2)相和一定量的TiO、NiO等氧化物,该涂层不仅有较高的硬度,而且较2Cr13基体有更加良好的耐磨粒磨损性能.%Ni-Ti coating was prepared on 2Crl3 martensitic stainless steel substrate by high velocity air-fuel arc spraying. The phase composition of the coating was investigated by XRD; the microstructure and the worn surface morphology of the coating were analyzed by SEM; the microhardness of the coating was determined; the abrasive resistance of the coating was studied by rubber wheel abrasion tester. The results show that Ni-Ti coating is mainly composed of NiTi (B2) phase and some oxides such as TiO and NiO. The coating is of higher hardness and has much better abrasive wear resistance than 2Crl3 substrate.

  5. Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated through Friction Stir Welding Process

    Institute of Scientific and Technical Information of China (English)

    Halil Ibrahim KURT; Murat ODUNCUOGLU; Ramazan ASMATULU

    2016-01-01

    Effects of friction stir processing (FSP)parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated.A mathematical formulation was derived to calculate the wear volume loss of the composites.The experimental results were contrasted with the results of the proposed model.The influ-ences of sliding distance,tool traverse and rotational speeds,as well as graphite (Gr)and titanium carbide (TiC) volume fractions on the wear volume loss of the composites were also investigated using the prepared formulation. The results demonstrated that the wear volume loss of the composites significantly increased with increasing sliding distance,tool traverse speed,and rotational speed;while the wear volume loss decreased with increasing volume fraction of the reinforcements.A minimum wear volume loss for the hybrid composites with complex reinforcements was specified at the inclusion ratio of 50% TiC+50% Al2 O3 because of improved lubricant ability,as well as resist-ance to brittleness and wear.New possibilities to develop wear-resistant aluminum-based composites for different in-dustrial applications were proposed.

  6. Casting fabrication of in situ Al3Ti-Al composites and their wear behaviors

    Institute of Scientific and Technical Information of China (English)

    Chen Tijun; Li Jian; Hao Yuan

    2009-01-01

    The Al3li intermetallic reinforced pure Al, Al-13Si and Al-17Cu matrix composites were prepared by casting method. Their microstructures and dry sliding wear behaviors at room temperature and 100℃ were particularly investigated. The results indicated that the Al3Ti phases in these composites were all in flaky form. But the aspect ratio of the Al3Ti platelets decreased with the increase of Ti content in the pure AI, Al-Cu and Al-Si matrix composites, in order of effectiveness. The effect of Si on the Al3Ti morphology seemed to be greater than that of Cu. The distributions of the Al3Ti platelets were different in the different matrix composites, leading to different grain refining effects. Except for the sub-wear regime of adhesive wear, the plastic deformation induced wear was a dominant wear mechanism for all of the composites at room temperature and 100℃. Increasing the testing temperature, decreasing the Al3Ti content or the hardness of materials could enhance these two wear mechanisms, and thus increase the wear rate. The Al-Cu matrix composite had the best wear resistance, while the pure Al matrix composite showed the worst for the same Ti content. These differences or changes were attributed to the differences in materials' hardness or the strengthening effects of the Al3Ti platelets.

  7. Changing life jacket wearing behavior: an evaluation of two approaches.

    Science.gov (United States)

    Mangione, Thomas; Chow, Wendy

    2014-05-01

    In the United States during 1999-2012, about 4 per cent of adults wore life jackets while engaged in recreation on powerboats. Educational campaigns have promoted life jacket use. Mandatory use regulations target primarily children or boaters on personal watercrafts or water skiing. We describe findings from two interventions - 'Wear It California!', a targeted marketing campaign in the California Delta region and mandatory wear regulations at four US Army Corps of Engineers (USACE) lakes in the state of Mississippi. Before the campaign in the Delta, adult wear was 8.5 per cent, increasing to 12.1 per cent during the first year, dipping to 9.4 per cent during the second year, and rising slightly to 10.5 per cent 3 plus years after the campaign. Before mandatory regulations at USACE lakes, adult wear was 13.7 per cent, increasing to 75.6 per cent during the first year, 70.1 per cent during the second year, and remaining high at 68.1 per cent in the third year. Policymakers should consider these findings when choosing how to increase life jacket use.

  8. Usage of abrasion-resistant materials in agriculture

    Directory of Open Access Journals (Sweden)

    J Votava

    2014-06-01

    Full Text Available Agricultural soil-processing machines are subject to an extensive abrasive wear. This paper analyses technical materials and their fitness to exchangeable parts of plough bottoms, such as edge-tools and whole plough cutting edges. There were tested abrasion-resistant steels with different microstructures: austenite, martensite-bainite, and carbide. Steel with the pearlite-ferrite structure was used as an etalon. Abrasion resistance tests were processed in compliance with the norm CSN 01 5084, which is a test of abrasion wear on abrasive cloth.

  9. Wear behavior of an austempered ductile iron containing Mo-Ni-Cu

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, S.; Rahimi, M.A. [Faculty of Materials Engineering, Sahand Univ. of Technology, Tabriz (Iran)

    2005-07-01

    The aim of the this investigation is to study the influence of Ni on tribiological behavior of an austempered ductile iron (ADI) containing Mo, Ni and Cu. Ductile irons with chemical composition Fe-3.56%C-2.67%Si -0.25%Mo-0.5%Cu and Ni contents of 0.8 and 1.5% were cast into standard Y-blocks. Wear test samples were machined off from the bottom section of blocks. Austenitizing heat treatment was carried out at 870 C temperature followed by austempering at 270, 320, and 370 C for 5-1140 minutes. The wear test was carried out by using block-on-ring test machine. Sliding dry wear behavior was studied under applied loads of 50, 100 and 150 N. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Wear mechanism is described as being due to subsurface fatigue, with cracks nucleated at plastically, deformed graphite interfaces. The wear controlling mechanism is the crack growth when wear shows a dependence on applied load and austempering temperature. (orig.)

  10. Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad

    Science.gov (United States)

    Amaren, S. G.; Yawas, D. S.; Aku, S. Y.

    The effect of periwinkle shell particle size on the wear behavior of asbestos free brake pad has been investigated. The asbestos free brake pad produced by varying the periwinkle shell particles was from +125 to +710 μm with phenolic resin as the binder. The wear test was performed using pin on disk machine by varying the sliding speed, applied load, temperatures and periwinkle shell particle size. Full factorial design of four factor-two levels and analysis of variance were used in the study of the wear test. The results shown that wear rate increases with increasing the sliding speed, load, temperatures and periwinkle particle size. The co-efficient of friction obtained is within the recommended standard for automobile brake pad. The +125 μm particles of periwinkles gave the best wear resistance. Factorial design of the experiment can be successfully employed to describe the wear behavior of the samples and developed linear equation for predicting wear rate within selected experimental conditions. The results of this research indicate that periwinkle shell particles can be effectively used as a replacement for asbestos in brake pad manufacture.

  11. Rubberized Concrete Durability Against Abrasion

    Directory of Open Access Journals (Sweden)

    Md Noor Nurazuwa

    2016-01-01

    Full Text Available Durability performance of rubberized concrete against abrasion is presented in this paper. Surface depth loss was measured when abrasion load was constantly applied on concrete surface at each 500 interval rotation. Specimen with water-to cement ratio of 0.50 and 0.35 was prepared and tested at 28 days of curing age. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against wear when added with crumb rubber. Results showed that crumb rubber shows good potential in providing abrasion resistance to concrete mix. However, in the case of rubberized concrete with silica fume, abrasion resistance was found to be slightly decreased with compressive strength more than 50N/mm2 due to the lack of low elastic modulus of CR particles to accommodate with denser cement matrix.

  12. Electrochemical behavior and polishing properties of silicon wafer in alkaline slurry with abrasive CeO2

    Institute of Scientific and Technical Information of China (English)

    SONG Xiao-lan; XU Da-yu; ZHANG Xiao-wei; SHI Xun-da; JIANG Nan; QIU Guan-zhou

    2008-01-01

    The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated. The variations of corrosion potential (φcorr) and corrosion current density (Jcorr) of the P-type (100) silicon wafer with the slurry pH value and the concentration of abrasive CeO2 were studied by polarization curve technologies. The dependence of the polishing rate on the pH and the concentration of CeO2 in slurries during chemical mechanical polishing(CMP) were also studied. It is discovered that there is a large change of φcorr and Jcorr when slurry pH is altered and the Jcorr reaches the maximum (1.306 μA/cm2) at pH 10.5 when the material removal rate(MRR) comes to the fastest value. The Jcorr increases gradually from 0.994 μA/cm2 with 1% CeO2 to 1.304 μA/cm2 with 3% CeO2 and reaches a plateau with the further increase of CeO2 concentration. There is a considerable MRR in the slurry with 3% CeO2 at pH 10.5. The coherence between Jcorr and MRR elucidates that the research on the electrochemical behavior of silicon wafers in the alkaline slurry could offer theoretic guidance on silicon polishing rate and ensure to adjust optimal components of slurry.

  13. Improvement the wear behavior of low carbon steels by friction stir processing

    Science.gov (United States)

    Sekban, D. M.; Aktarer, S. M.; Yanar, H.; Alsaran, A.; Purcek, G.

    2017-02-01

    A low carbon structural steel was surface-hardened by friction stir processing (FSP) through 4 mm thickness from the surface. The hardness of the alloy increased from 140 Hv0.1 to about 240 Hv0.1 after single-pass FSP. This improvement came from the substantial microstructural refinement due to both severe plastic deformation and dynamic recrystallization. Both yield and tensile strength of the alloy increased without a considerable decrease in ductility after FSP. Friction and wear behavior of the alloy before and after FSP was investigated by a pin-on-disk type tribometer according to ASTM-G133. The substantial increase in both hardness and yield strength resulted in a considerable improvement in wear resistance of the alloy depending on applied pressure. In this study, metallurgical and mechanical reasons for such improvement in wear behavior and any change in wear mechanisms after FSP were investigated.

  14. Process Optimization and Wear Behavior of Red Mud Reinforced Aluminum Composites

    Directory of Open Access Journals (Sweden)

    Rajesh Shanmugavel

    2016-01-01

    Full Text Available This work presents the application of hybrid approach for optimizing the dry sliding wear behavior of red mud based aluminum metal matrix composites (MMCs. The essential input parameters are identified as applied load, sliding velocity, wt.% of reinforcement, and hardness of the counterpart material, whereas the output responses are specific wear rate and Coefficient of Friction (COF. The Grey Relational Analysis (GRA is performed to optimize the multiple performance characteristics simultaneously. The Principle Component Analysis (PCA and entropy methods are applied to evaluate the values of weights corresponding to each output response. The experimental result shows that the wt.% of reinforcements (Q=34.9% followed by the sliding velocity (Q=34.5% contributed more to affecting the dry sliding wear behavior. The optimized conditions are verified through the confirmation test, which exhibited an improvement in the grey relational grade of specific wear rate and COF by 0.3 and 0.034, respectively.

  15. Effect of dried sunflower seeds on incisal edge abrasion: A rare case report.

    Science.gov (United States)

    Rath, Avita; Ramamurthy, Priyadarshini H; Fernandes, Bennete Aloysius; Sidhu, Preena

    2017-01-01

    Tooth surface loss (TSL) is a complex phenomenon characterized by the loss of hard tooth structure at various locations of the teeth, usually due to more than one factor. TSL due to abrasion can be significant in patients consuming coarse, abrasive diet. The present case reports an interesting incisal edge abrasion in a female patient, attributed to a particular dietary behavior of long-term consumption of sunflower seeds. All her family members and most of the people from her native place were also reported to have similar lesions by the patient. Larger epidemiological studies to assess the prevalence and severity of such abrasive lesions in geographic areas with this particular dietary habit need to be carried out so that people may be made aware and educated about alternative ways of eating sunflower seeds that will not cause any form of tooth wear.

  16. Wear behavior of SiC, Cr{sub 3}C{sub 2} and WC doped alumina

    Energy Technology Data Exchange (ETDEWEB)

    Mindivan, H.; Cimenoglu, H.; Kayali, E.S. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Engineering, Istanbul (Turkey); Bakan, H.I. [Tubitak, MAM, Gebze-Kocaeli (Turkey)

    2004-07-01

    In this study, the wear behavior of the pure and carbide (SiC, Cr{sub 3}C{sub 2}, and WC) doped alumina was investigated. Carbide doping increased the hardness and improved the wear resistance, significantly. WC doped alumina exhibited the highest hardness and wear resistance. (orig.)

  17. Sliding contacts on printed circuit boards and wear behavior

    OpenAIRE

    Le Solleu, J.-P.

    2010-01-01

    Abstract Automotive suppliers use since decades printed circuit boards (PCB) gold plating pads, as direct contact interface for low current sliding contacts. Several gold plating processes are available on the market, providing various wear behaviour. Some specific galvanic hard gold (AuCo or AuNi). plating was developed on PCB's. This specific plating generates extra costs due to the material quantity and also the process complexity. In a cost driven indust...

  18. Friction and wear behavior of carbon fiber reinforced brake materials

    Institute of Scientific and Technical Information of China (English)

    Du-qing CHENG; Xue-tao WANG; Jian ZHU; Dong-bua QIU; Xiu-wei CHENG; Qing-feng GUAN

    2009-01-01

    A new composite brake material was fabri-cated with metallic powders, barium sulphate and modified phenolic resin as the matrix and carbon fiber as the reinforced material. The friction, wear and fade character-istics of this composite were determined using a D-MS friction material testing machine. The surface structure of carbon fiber reinforced friction materials was analyzed by scanning electronic microscopy (SEM). Glass fiber-reinforced and asbestos fiber-reinforced composites with the same matrix were also fabricated for comparison. The carbon fiber-reinforced friction materials (CFRFM) shows lower wear rate than those of glass fiber- and asbestos fiber-reinforced composites in the temperature range of 100℃-300℃. It is interesting that the frictional coefficient of the carbon fiber-reinforced friction materials increases as frictional temperature increases from 100℃ to 300℃, while the frictional coefficients of the other two composites decrease during the increasing temperatures. Based on the SEM observation, the wear mechanism of CFRFM at low temperatures included fiber thinning and pull-out. At high temperature, the phenolic matrix was degraded and more pull-out enhanced fiber was demonstrated. The properties of carbon fiber may be the main reason that the CFRFM possess excellent tribological performances.

  19. Friction and Wear Behaviors of Nano-Silicates in Water

    Institute of Scientific and Technical Information of China (English)

    Chen Boshui; Lou Fang; Fang Jianhua; Wang Jiu; Li Jia

    2009-01-01

    Nano-metric magnesium silicate and zinc silicate with particle size of about 50--70nm were prepared in water by the method of chemical deposition. The antiwear and friction reducing abilities of the nano-silicates, as well as their compos-ites with oleie acid tri-ethanolamine (OATEA), were evaluated on a four-ball friction tester. The topographies and tribochemical features of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). Results show that nano-silicates alone provide poor antiwear and friction reducing abilities in water, but exhibits excellent synergism with OATEA in reducing friction and wear. The synergism in reducing friction and wear between naao-silicates and OATEA does exist almost regardless of particle sizes and species, and may be attributed, on one hand, to the formation of an adsorption film of OATEA, and, on the other hand, to the formation oftdbochemical species of silicon dioxide and iron oxides on the friction surfaces. Tribo-reactions and tribo-adsorptions of nano-silicates and OATEA would produce hereby an effective composite boondary lubrication film, which could efficiently enhance the anti-wear and friction-reducing abilities of water.

  20. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  1. Study on Abrasive Wear Properties of MoB/CoCr Cermet Coating%MoB/CoCr金属陶瓷涂层的磨粒磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌

    2012-01-01

    在310S基体表面采用低压等离子喷涂(LPPS)技术制备MoB/CoCr金属陶瓷涂层.用扫描电镜观察涂层的组织结构:测试了MoB/CoCr涂层的显微硬度和结合强度;用湿式橡胶轮磨粒磨损试验机测试涂层的磨损性能.结果显示:MoB/CoCr涂层组织为层状结构,涂层与310S基体之间、表面涂层与过渡涂层之间结合良好.MoB/CoCr涂层具有较高的硬度值和结合强度,且具有良好的抗磨粒磨损性能.%MoB/CoCr cermet coating was deposited by low pressure plasma spraying (LPPS) on 310S steel. The microstructure of the MoB/CoCr coating was observed by SEM. The microhardness and bonding strength of the MoB/CoCr coating were tested. The abrasive wear properties were evaluated by wet sand rubber wheel tester. The results show that MoB/CoCr coating is dense and has excellent combination with 310S steel substrate. MoB/CoCr coating has high hardness and excellent wear properties.

  2. Control of erosive tooth wear: possibilities and rationale

    Directory of Open Access Journals (Sweden)

    Mônica Campos Serra

    2009-06-01

    Full Text Available Dental erosion is a type of wear caused by non bacterial acids or chelation. There is evidence of a significant increase in the prevalence of dental wear in the deciduous and permanent teeth as a consequence of the frequent intake of acidic foods and drinks, or due to gastric acid which may reach the oral cavity following reflux or vomiting episodes. The presence of acids is a prerequisite for dental erosion, but the erosive wear is complex and depends on the interaction of biological, chemical and behavioral factors. Even though erosion may be defined or described as an isolated process, in clinical situations other wear phenomena are expected to occur concomitantly, such as abrasive wear (which occurs, e.g, due to tooth brushing or mastication. In order to control dental loss due to erosive wear it is crucial to take into account its multifactorial nature, which predisposes some individuals to the condition.

  3. Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications

    Directory of Open Access Journals (Sweden)

    Young-Jae Shin

    2008-01-01

    Full Text Available Recently, the magnetorheological (MR polishing process has been examined asa new ultra-precision polishing technology for micro parts in MEMS applications. In theMR polishing process, the magnetic force plays a dominant role. This method uses MRfluids which contains micro abrasives as a polishing media. The objective of the presentresearch is to shed light onto the material removal mechanism under various slurryconditions for polishing and to investigate surface characteristics, including shape analysisand surface roughness measurement, of spots obtained from the MR polishing process usingalumina abrasives. A series of basic experiments were first performed to determine theoptimum polishing conditions for BK7 glass using prepared slurries by changing the processparameters, such as wheel rotating speed and electric current. Using the obtained results,groove polishing was then performed and the results are investigated. Outstanding surfaceroughness of Ra=3.8nm was obtained on the BK7 glass specimen. The present resultshighlight the possibility of applying this polishing method to ultra-precision micro partsproduction, especially in MEMS applications.

  4. 扫描间距对45钢激光熔凝强化组织性能的影响%Influence of scanning interval on microstructure and abrasive wear resistance of 45 Steel by laser melting

    Institute of Scientific and Technical Information of China (English)

    孙浩; 凌刚; 李洪文; 高晓丽; 姚国才

    2011-01-01

    为了研究扫描间距对45钢激光熔凝强化组织性能的影响,采用HLD1001-5型固体激光器对45钢表面进行了多条带等间距激光熔凝处理,分别利用扫描电镜、洛氏硬度计、磨损试验机观察和测量了不同扫描间距下硬化层的显微组织及性能.结果表明:激光熔凝处理的硬化层由熔化区、相变硬化区和热影响区组成,组织为马氏体:多条带等间距激光熔凝处理在垂直于熔凝条带方向上的硬度分布由左高硬度区、左过渡区、低硬度区、右过渡区和右高硬度区组成,高硬度区的硬度为58.1~59.6 HRC,低硬度区的硬度约16 HRC:在试验范围内,经激光扫描间距为4.5 mm熔凝处理的试样具有最好的耐磨性.%A variety of the multi-stripe and equal-interval laser melting treatments on the surface of 45 Steel samples were obtained using HLD1001.5 solid-state laser for studying the influence of scanning interval on the microstructure and abrasive wear resistance of 45 Steel by laser melting.The microstructure and properties of the samples were studied by SEM, Rockwell hardness tester and wear tester.The results showed that the hardened layer by laser melting was composed of melted zone, phase transformation zone and heat affected zone.The hardened layer was a martensite microstructure.The Rockwell hardness distribution was composed of left high value zone, left transitional zone, low value zone, right transitional hardness zone and right high value zone.The hardness at high value zone and low value zone was 58.1-59.6 HRC and 16 HRC respectively.Under the conditions of the experiment, the samples with the treatment of 4.5 mm scanning interval featured the best abrasive wear resistance.

  5. Fretting Wear Behavior of Tin Plated Contacts:. Influence on Contact Resistance

    Science.gov (United States)

    Park, Young Woo; Sankara Narayanan, T. S. N.; Lee, Kang Yong

    The fretting wear behavior of tin plated copper alloy contacts and its influence on the contact resistance are addressed in this paper. Based on the change in the area of contact zone as well as the wear depth as a function of fretting cycles, a model was proposed to explain the observed low and stable contact resistance. The extent of wear of tin coating and the formation of wear debris as a function of fretting cycles were assessed by scanning electron microscopy (SEM). Energy dispersive X-ray line scanning (EDX), X-ray mapping, and EDX spot analysis were employed to characterize the nature of changes that occur at the contact zone. The study reveals that the fretted area increases linearly up to 8000 cycles due to the continuous removal of the tin coating and attains saturation when the fretting path length reaches a maximum. The observed low and stable contact resistance observed up to 8000 cycles is due to the common area of contact which provides an electrically conducting area. Surface analysis by SEM, EDX, and X-ray elemental mapping elucidate the nature of changes that occurred at the contact zone. Based on the change in contact resistance as a function of fretting cycles, the fretting wear and fretting corrosion dominant regimes are proposed. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behavior of tin plated contacts.

  6. Wear behavior of gas tunnel type plasma sprayed Zr-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yugeswaran, S., E-mail: yugeswaran@gmail.com [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kobayashi, A., E-mail: kobayasi@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Suresh, K., E-mail: ksureshphy@gmail.com [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); Rao, K.P., E-mail: mekprao@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); Subramanian, B., E-mail: subramanianb3@gmail.com [CSIR - Central Electrochemical Research Institute, Karaikudi 630 006 (India)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Zr-based metallic glass composite coatings are prepared by gas tunnel plasma torch. Black-Right-Pointing-Pointer Increasing plasma current increases crystallinity amount and hardness of coatings. Black-Right-Pointing-Pointer Coating produced at 300 A plasma current gives minimum sliding wear rate. Black-Right-Pointing-Pointer Coating produced at higher plasma current gives lower erosive wear rate. - Abstract: Gas tunnel type plasma spraying is a prospective method to produce metallic glass composite coatings with high quality due to its noteworthy feature of process controllability. In this study, Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} metallic glass composite coatings were produced by gas tunnel type plasma spraying torch under optimum spraying conditions with selected plasma currents. The formation mechanism, sliding, and erosive wear behaviors of the coatings with respect to plasma current was examined. The phase and thermal analyses as well as microstructure of the plasma sprayed coatings produced at different plasma currents were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) techniques. The sliding and erosive wear behaviors of the coatings were studied using a pin-on-disc and a specially designed erosive wear tester, respectively. The results showed that an increase in plasma current increased the crystalline content in the metallic glass composite coatings, which enhanced the hardness and wear resistance of the coatings.

  7. 高铬铸铁及低合金钢与高锰钢的磨损试验对比研究%Comparing Investigation on Abrasive Wear of High Chromium Cast Iron, Low Alloy Steel and High Manganese Steel

    Institute of Scientific and Technical Information of China (English)

    张鲲鹏; 陈培友; 唐建新

    2013-01-01

    在模拟实际破碎机工况条件下,对高铬铸铁、低合金钢与高锰钢进行磨料磨损性能试验与对比,以得到在试验对应的实际工作条件下性能较优的抗磨材料.试验结果表明,在低应力冲击载荷条件下,高铬铸铁的抗磨性能最好,低合金钢次之,高锰钢最差;在低冲击载荷条件下高锰钢的性能潜力不能得到充分发挥,而高铬铸铁更适用于低冲击载荷条件下的抗磨件.%Under the condition of simulating actual working of broken machine,the impact abrasive wear resistances of high-Cr cast iron,low alloy steel and high-Mn steel were studied,and the better material in wear-resistant performance was obtained under the test conditions of corresponding actual operating conditions.The results show that the anti-wear properties of high chromium cast iron is best in low-stress impact load conditions,followed by low-alloy steel,highmanganese steel is worst; the potential of high manganese steel in performance can not be given full in low-impact load conditions,high chromium cast iron is more suitable.

  8. Corrosion-wear behavior of nanocrystalline Fe88Si12 alloy in acid and alkaline solutions

    Science.gov (United States)

    Fu, Li-cai; Qin, Wen; Yang, Jun; Liu, Wei-min; Zhou, Ling-ping

    2017-01-01

    The corrosion-wear behavior of a nanocrystalline Fe88Si12 alloy disc coupled with a Si3N4 ball was investigated in acid (pH 3) and alkaline (pH 9) aqueous solutions. The dry wear was also measured for reference. The average friction coefficient of Fe88Si12 alloy in the pH 9 solution was approximately 0.2, which was lower than those observed for Fe88Si12 alloy in the pH 3 solution and in the case of dry wear. The fluctuation of the friction coefficient of samples subjected to the pH 9 solution also showed similar characteristics. The wear rate in the pH 9 solution slightly increased with increasing applied load. The wear rate was approximately one order of magnitude less than that in the pH 3 solution and was far lower than that in the case of dry wear, especially at high applied load. The wear traces of Fe88Si12 alloy under different wear conditions were examined and analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that the tribo-chemical reactions that involve oxidation of the worn surface and hydrolysis of the Si3N4 ball in the acid solution were restricted in the pH 9 aqueous solution. Thus, water lubrication can effectively improve the wear resistance of nanocrystalline Fe88Si12 alloy in the pH 9 aqueous solution.

  9. The Abrasive Wear Properties of Aluminum Alloy 6061 Reinforced with Nano-SiC Particles%纳米SiC颗粒强化AA6061的磨粒磨损行为

    Institute of Scientific and Technical Information of China (English)

    李晓丹; 翟玉春; 马军平

    2011-01-01

    Aluminium alloy 6061(AA6061) matrix composites reinforced with nano-SiC particles were produced.The microstructure,Vickers microhardness and characteristic wear properties of the composites were investigated.The results showed that the wear rate and the friction coefficient values of the composites are lower than the matrix alloy at 20 N load,the wear rate of 0.6%SiC/AA6061 decreases 50% than the matrix.This is attributed to the strong bonding between the matrix and the particles in the composites.So the presence of SiC particles in the composites improves the wear resistance because these particles remain intact and retain their load-bearing capacity,they promote the formation of iron-rich transfer layer.The dominant wear mechanisms are found to be abrasion for the AA6061 alloy and its composites at 20 N load.%实验制备了纳米SiC颗粒强化AA6061基材料,并考察了其微观组织、硬度及磨损性能.结果表明:在20 N载荷下,强化试样的磨损率及摩擦系数均低于AA6061基体,其中0.6%SiC/AA6061复合材料的磨损率较基体降低50%.这主要是由于SiC颗粒自身良好的载荷承载能力,加之增强颗粒/基体间界面良好的结合,使SiC颗粒的添加提高了复合材料的磨损抗力.同时,促进了富铁机械转移层的形成,降低了摩擦系数和磨损率.AA6061基体和强化材料在20 N载荷下的磨损机制均为磨粒磨损.

  10. Preparation and Abrasion Performance Study of High-Temperature and Wear-Resisting Metal Substrate Compound Coatings%金属基体高温耐磨复合涂层的制备与磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    程银健; 陈九磅; 王平; 桂老虎

    2011-01-01

    The heating surface wear of boiler metal wall is a difficult problem troubling power plant safe operation. By using modified inorganic silicon sol as bond, wearability excellent SiC, Al2O3 particles as the basic aggregate assisted by a few Cr2 O3 grain, adding a small amount of bentonite and inorganic fibers for reinforced materials, the adhesion between coatings and substrate are improved. The experimental coatings were obtained after curing at 500 ℃. In regerd to blunt angle of 15°, 25°, 45°, 35°, 60°, respectively, the corrosion-proof and wear resislance of the coatings are studied. Experiments have found: the abrasion resistance of SiC - Al2 O3 composite coatings with different particle sizes behave wear-resistance better than that with singre particle size. When the mass fraction of coarse SiC is 45%, the wear resistance is the bests In the erosion angle 45°, the coatings wear are the most.%锅炉受热面金属管壁的磨损问题是困扰电厂安全运行的一大难题.实验采用改性无机粘结剂,以耐磨性优良的SiC、Al2O3颗粒为基本骨料,辅以少量Cr2O3颗粒,再添加少量的膨润土和无机纤维为增强材料,提高涂层和基体间的结合力.在500℃下固化后得到实验涂层.分别在冲蚀角15°、25°、35°、45°、60°下研究了涂层耐冲蚀磨损特性.实验发现:不同粒径的SiC-Al2O3复合涂层结合紧密,比单一组分涂层耐磨性好.当粗SiC的质量分数为45%时,涂层耐磨损性能最好;在冲蚀角为45°时,涂层的磨损量最大.

  11. Accelerated electrospark deposition and the wear behavior of coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.Z.; Pan, G.S.; Zhou, Y.; Qu, J.X.; Shao, H.S. [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

    1997-12-01

    Electrospark deposition (ESD) is a coating process that is featured by low heat input to the substrate. Low coating efficiency and other limitations influence its wider application. The present paper introduces newly designed ESD equipment, by which a higher coating rate can be reached. The relationship among coating thickness, surface roughness, and process parameters such as pulse energy, pulse frequency, and deposition time are presented. Electrospark deposition coating by the new equipment on AISI 1045 steel (with WC-8% Co as electrode) increases the wear resistance by 5 to 8 times. The micromechanism is investigated by scanning electron microscopy observation.

  12. Abrasion test of flexible protective materials on hydraulic structures

    Directory of Open Access Journals (Sweden)

    Xin WANG

    2014-01-01

    Full Text Available In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.

  13. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide riders. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron atomic radius ratio and the decreasing rates of change of coefficient of friction and groove height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys.

  14. Corneal Abrasions

    Science.gov (United States)

    ... and lead to a serious condition called a corneal ulcer . That's why it's important to see a doctor to get a corneal abrasion checked out. What Causes a Corneal ... and land on your cornea, tears help to wash the particles away. Sometimes, ...

  15. Dry Sliding Wear Behavior of Hafnium-Based Bulk Metallic Glass at Room and Elevated Temperatures

    Science.gov (United States)

    Keshri, Anup Kumar; Behl, Lovish; Lahiri, Debrupa; Dulikravich, George S.; Agarwal, Arvind

    2016-09-01

    Dry sliding wear behavior of hafnium-based bulk metallic glass was studied at two loads (5 and 15 N) and two temperatures (298 and 673 K) using aluminum oxide (Al2O3) ball as a wear counterpart. At 5 N load, wear reduced by ~71% on increasing the temperature from 298 to 673 K. At a higher load of 15 N, the weight loss reduction was much lower (45%) on increasing the temperature from 298 to 673 K. Decreased wear weight loss on increasing the temperature was attributed to the increased hardness of the Hf-based metallic glass at high temperatures. Micro-hardness of the alloy at 293 K was found to be 636 Hv, which gradually increased to 655 Hv on annealing at 673 K. Improvement in the hardness at elevated temperature is attributed to: (1) free volume annihilation, (2) surface oxide formation and (3) nano-crystallites precipitation. Reduced wear at elevated temperature resulted in smaller volume of debris generation that restricted three-body wear to obtain lower coefficient of friction (COF) (0.25-0.35) compared to COF (0.65-0.75) at room temperature.

  16. Wear Behavior of Woven Roving Aramid / Epoxy Composite under Different Conditions

    Directory of Open Access Journals (Sweden)

    Asad A. Khalid

    2012-09-01

    Full Text Available Wear behavior studies of aramid woven roving /epoxy composite has been conducted. Sliding the material against smooth steel counter face under dry and  lubricated with oil conditions has been investigated. Powder of Silicon carbide has been mixed with the epoxy resin and tested also. The powder was mixed in a volumetric fraction of 10% with the epoxy resin. Four Laminates of six layers were fabricated by hand lay up  method. A pin on disc apparatus has been fabricated to conduct the sliding wear tests on specimens of (4 mm   4 mm   12 mm in size have been cut from the four laminates. The effect of sliding condition including dry, lubricated, dry with additives and lubricated with additives have been studied. Wear rate tests have been conducted at different sliding speeds and loads. Results show that the wear characteristics are influenced by the operating conditions and the construction of the composite material used. It was also found that the wear of aramid /epoxy composite onto the steel counter face were significantly reduced by using lubricant and additives but still took place.Keywords: Wear, Composite materials, Woven roving aramid, Epoxy, Additives, Lubricant.

  17. Fretting wear behavior of nitrogen implanted Zircaloy-4 alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Zircaloy-4 was implanted with nitrogen at 120keV with various ion doses between 1 × 1013 and 1 × 1014 ions/m2. Fretting wear tests were performed at various cycles and loads under water immersion condition by the fretting simulator, The implanted surfaces were analyzed by Auger electron spectroscopy (AES) and transmission electron microscope(TEM). Micro-hardnees tester measured surface hardness. It is shown that nitrogen imphantation produced Zirconium nitride oxide and high density dislocations in implanted ltyer, surface hardness was enhanced from HK280 for unimplantedspecimen to HK1800 for a total ion dose of 1 × 1014 ions/m2. The nitrogen ion implantation treatment provided significantimprovements in the resistance of fretting damage.

  18. The influence of social networking technologies on female religious veil-wearing behavior in Iran.

    Science.gov (United States)

    Young, Sean D; Shakiba, Abbas; Kwok, Justin; Montazeri, Mohammad Sadegh

    2014-05-01

    Abstract Social networking technologies can influence attitudes, behaviors, and social norms. Research on this topic has been conducted primarily among early adopters of technology and within the United States. However, it is important to evaluate how social media might affect people's behaviors in international settings, especially among countries with longstanding, government recommended, cultural and religious traditions and behaviors, such as Iran. This study seeks to assess whether Iranian women who have been using social networking technologies for a longer time (compared to those who have recently joined) would be less likely to cover themselves with a veil and be more comfortable publicly displaying pictures of this behavior on Facebook. Iranian females (N=253) were selected through snowball sampling from nongovernmental organizations in November 2011 and asked to complete a survey assessing their use of Facebook, concerns about not wearing a veil in Facebook pictures, and their actual likelihood of wearing a veil. Items were combined to measure lack of interest in wearing a veil. Length of time as a Facebook user was significantly associated with not wearing a veil (b=0.16, pnetworking technologies can affect attitudes and behaviors internationally. We discuss methods of using social media for self-presentation and expression, as well as the difficulties (and importance) of studying use of technologies, such as social media, internationally.

  19. Microstructures and friction-wear behaviors of cathodic arc ion plated CrC coating at high temperatures

    Science.gov (United States)

    Dejun, Kong; Shouyu, Zhu

    2016-11-01

    A CrC coating was deposited on YT14 cemented carbide cutting tools by a CAIP (cathodic arc ion plating). The surface and interface morphologies, chemical composition, and phases of the obtained coating were analyzed with a field emission scanning electronic microscope (FESEM), energy dispersive spectroscope (EDS), and x-ray diffraction (XRD), respectively. The COFs (coefficient of frictions) and worn morphologies of the CrC coating at 300 °C, 400 °C, and 500 °C were investigated by using a high temperature tribometer, the effects of wear temperatures on the friction-wear properties of the CrC coating were discussed. The results show that the CrC coating exhibits fine dense structure, and the lattice constants of CrC coatings are dependent on processing parameters. The C and Cr elements in the coating are mutually diffused with the W, Co, and Ti in the substrate. The average COF of the coating at 300 °C, 400 °C, and 500 °C is 0.64, 0.63, and 0.40, respectively. The Cr2O3 layer formed on the CrC coating at 500 °C has excellent oxidation resistance, which improves lubrication and wear performance, the wear mechanism is abrasive wear and oxidation wear.

  20. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    Science.gov (United States)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  1. Sandblasting as a surface modification technique on titanium alloys for biomedical applications: abrasive particle behavior

    Science.gov (United States)

    Balza, J. C.; Zujur, D.; Gil, L.; Subero, R.; Dominguez, E.; Delvasto, P.; Alvarez, J.

    2013-06-01

    The present work shows the analysis of a sandblasting process using alumina abrasive particles on Ti-6Al-4V surfaces. The metallic samples were first characterized by optical microscopy (OM), revealing an α+β microstructure with a Widmanstätten morphology. Topography of the samples was assessed by scanning electron microscopy (SEM), before and after sandblasting. The Al2O3 particles used had a granulometric distribution between 420 and 850 μm, with a median particle size (d50) of 670 μm, which decreased to 420 μm after sandblasting for 10 seconds. This change in the size of the particles generated a loss on particle kinetic energy by a factor of 3.5. Such variation on processing conditions induced a progressive increase on average roughness (Ra) of the Ti-6Al-4V surfaces, until the first 7 seconds were reached. From that point on, a reverse process was observed, exerting a polishing effect on the surface of the Ti-6Al-4V alloy.

  2. Differential negative reinforcement of other behavior to increase wearing of a medical bracelet.

    Science.gov (United States)

    Cook, Jennifer L; Rapp, John T; Schulze, Kimberley A

    2015-12-01

    We used a changing criterion design to evaluate the extent to which differential negative reinforcement of other behavior increased compliance with wearing a medical alert bracelet for a young boy with autism. Results showed the duration for which the participant wore the bracelet systematically increased across trials from 5 s to 7 hr over several weeks.

  3. 低碳中铬钢渗碳层的耐磨粒磨损性能研究%Study on Abrasive Wear-Resistance of Carburized Low-carbon Medium-chromium Steel

    Institute of Scientific and Technical Information of China (English)

    张黔; 孙小华; 李朝志

    2001-01-01

    The microstructure and abrasive wear-resistence of carburized layer of low-carbon medium-chromiun steel.compered with cemented 20 steel and Cr12Mo1V steel,was investigated.Carburized layer of 1Cr6Si2Mo steel contains large number of fine carbide(2.5~3.0 μm),which size smaller than that one of Cr12Mo1V.The wear-resistence of 1Cr6Si2Mo steel after carburizing and queching is obviously better than that of 20 steel.but less than that of Cr12Mo1V steel by vacuum heat treatment.%对低碳中铬钢(1Cr6Si2Mo)固体法稀土渗碳层的组织和耐磨性能与渗碳20钢及淬火Cr12Mo1V钢进行了对比试验研究。1Cr6Si2Mo钢的渗碳层内含有大量粒度为2.5~3.0 μm、弥散分布的铬碳化物,其尺寸比Cr12Mo1V钢中的共晶碳化物小。渗碳淬火后的1Cr6Si2Mo钢试样耐磨粒磨损性能大大优于渗碳淬火后的20钢,但不及真空热处理的Cr12Mo1V。

  4. Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting

    Science.gov (United States)

    Kang, Nan; Coddet, Pierre; Liao, Hanlin; Baur, Tiphaine; Coddet, Christian

    2016-08-01

    This work investigates the microstructure and wear behavior of hypereutectic Al-Si alloys, in-situ fabricated using selective laser melting of a mixture of eutectic Al-12Si (wt.%) and pure Si powders. The first observation was that the size and morphology of the Si phase are strongly influenced by the laser power. In addition, it was also observed that a high laser power causes serious evaporation of aluminum during the remelting process. Dry sliding wear test and Vickers microhardness measurements were employed to characterize the mechanical properties of the material. The lowest wear rate of about 7.0 × 10-4 mm3 N-1 m-1 was observed for samples having the highest value of relative density (96%) and microhardness (105 Hv0.3).

  5. Effect of Microstructure on the Wear Behavior of Heat Treated SS-304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2016-12-01

    Full Text Available Sliding wear characteristics of some heat treated SS-304 stainless steel against EN-8 steel in dry condition have been studied in the present experimental work. Samples of SS-304 stainless steel have been heated in a muffle furnace in desired temperature and allowed to dwell for two hours. The heated specimen are then cooled in different media namely inside the furnace, open air, cutting grade oil (grade 44 and water at room temperature to obtain different grades of heat treatment. Microstructures and corresponding micro hardness of the samples have been measured along with Feritscopic studies. Wear characteristics have been studied in a multi tribo-tester (Ducom in dry sliding condition against EN-8 steel roller. Speed, load on job and duration of test run have been considered as the experimental parameters. The wear of the samples have been obtained directly from ‘Winducom 2006’ software. Mass loss of the samples before and after operation has also been considered as the measure of wear in the present study. All the samples have been slid against EN-8 steel roller with fixed experimental parameters. The data have been plotted, compared and analyzed. Effect of microstructures as well as micro hardness on the wear behavior has been studied and concluded accordingly.

  6. Comparison of the Wear Behavior of UHMWPE Lubricated by Human Plasma and Brine

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-bo; GE Shi-rong; NORM Gitis; MICHAEL Vinogradov; XIAO Jun

    2007-01-01

    The effect of plasma and brine lubricants on the friction and wear behavior of UHMWPE were studied by using the geometry of a Si3N4 ball sliding on a UHMWPE disc under patterns of uni-directional reciprocation and bi-directional sliding motions. The worn surface and wear particles produced in these two lubricants were analyzed. Sliding motion pattern affected the friction coefficients lubricated with plasma, while seldom affected that lubricated with brine. UHMWPE lubricated with plasma showed about half of the wear rate of that lubricated with brine. The two rates were 0.75 pg/m and 2.19 pg/m for the two motion patterns, respectively. However, wear particles generated in plasma included a greater amount of small particles, compared to that in brine. In uni-directional reciprocation, the main wear mechanism is ploughing both in plasma and in brine. In bi-directional sliding modes, the significant characteristic is ripples on the worn surface in plasma, while there are oriented fibers on the worn surface in brine.

  7. Effect of gallic acid on the wear behavior of early carious enamel

    Energy Technology Data Exchange (ETDEWEB)

    Gao, S S; Huang, S B; Yu, H Y [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Qian, L M, E-mail: yhyang6812@scu.edu.c [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2009-06-15

    The purpose of this research was to investigate the wear behavior of early carious enamel remineralized with gallic acid. Forty natural human premolar specimens with early caries lesions were prepared. A remineralization pH-cycling treatment agent of 4000 ppm gallic acid was used for 12 days to treat the early lesions. The changes in microhardness were monitored. Nanoscratch tests were used to evaluate wear resistance. The experimental data were analyzed by using a t-test. The widths of traces were measured by an AMBIOS XP-2 stylus profilometer. After remineralization, all samples re-hardened significantly. The coefficients of friction became higher, and the widths of scratches were larger than they were before remineralization. Gallic acid significantly improved the early carious enamel's hardness. The wear damage of the samples treated with gallic acid was more severe than that of the control group. There were more obvious cracks and delaminations on the traces of the treated group. Compared with the control group, the enamel remineralized with gallic acid had inferior wear resistance. After remineralization, the dominant damage mechanisms of early carious enamel had changed from plastic deformation and adhesive wear to a combination of brittle cracks and delamination of enamel.

  8. Assessment of variations in wear test methodology.

    Science.gov (United States)

    Gouvêa, Cresus V D; Weig, Karin; Filho, Thales R M; Barros, Renata N

    2010-01-01

    The properties of composite resin for dental fillings were improved by development, but its weakness continues to be its wear strength. Several tests have been proposed to evaluate wear in composite resin materials. The aim of this study was to verify how polishing and the type of abrasive can influence the wear rate of composite resin. The test was carried out on two groups. In one group we employed an ormocer and a hybrid composite that was polished group the composite was polished with the same abrasive paper plus a 1 microm and 0.25 microm grit diamond paste. A three-body wear test was performed using the metal sphere of the wear test machine, the composite and an abrasive. A diamond paste and aluminum oxide dispersion were used as abrasive. Analysis of the results showed that there was no difference between polishing techniques, but revealed a difference between abrasives.

  9. Effect of wearing fingers rings on the behavioral and psychological symptoms of dementia: An exploratory study

    Science.gov (United States)

    Yokoi, Teruo; Okamura, Hitoshi; Yamamoto, Tomoka; Watanabe, Katsuya; Yokoi, Shigeko; Atae, Hitoshi; Ueda, Masayuki; Kuwayama, Takahiro; Sakamoto, Shigekazu; Tomino, Saaya; Fujii, Hideo; Honda, Takefumi; Morita, Takayosi; Yukawa, Takafumi; Harada, Nobuko

    2017-01-01

    Objective: This study was conducted to examine the effects of an approach that wears finger rings on elderly females with behavioral and psychological symptoms of dementia. Method: The subjects were seven Japanese dementia patients living in elderly nursing homes. A single-case experimental design was adopted for the study. Each study subject was asked to put rings on her finger (from 9:00 to 19:00) for 7 days. The Neuropsychiatric Inventory, scenes of behavioral and psychological symptoms of dementia, interest in wearing rings, self-awareness, and overall profile were determined to assess the effect on the patients of wearing rings. Results: The majority of nursing care providers stated, based on their assessment, that the “irritability/lability” that was noted during the baseline period disappeared during the ring-wearing intervention period in the three patients who displayed an interest in rings. In the assessment of the self-awareness ability, these three women were aware themselves of their intellect collapsing and were capable of conjecturing their own and others’ minds. It was commonly seen that the nursing staff, even though they had not been asked to do so by the researchers, told the patients, “Mrs. XX, you look so beautiful” when they found a patient wearing rings. Discussion/conclusion: Individuals with low self-esteem are inclined to get angry and display aggression. In subjects with low self-esteem, anger and aggression readily arise when they are slighted by others. Self-esteem is low in those women who are aware of their own status of collapsing intellect. It is concluded that the words of conjuration, “you look so beautiful,” which the wearing of the ring per se by the patient elicited from the caregivers heightened the self-esteem and alleviated “irritability/lability” in the study subjects. PMID:28856006

  10. Wear and Corrosion Behavior of Zr-Doped DLC on Ti-13Zr-13Nb Biomedical Alloy

    Science.gov (United States)

    Kumar, Prateek; Babu, P. Dilli; Mohan, L.; Anandan, C.; Grips, V. K. William

    2013-01-01

    Zirconium (Zr)-doped DLC was deposited on biomedical titanium alloy Ti-13Nb-13Zr by a combination of plasma-enhanced chemical vapor deposition and magnetron sputtering. The concentration of Zr in the films was varied by changing the parameters of the bi-polar pulsed power supply and the Ar/CH4 gas composition. The coatings were characterized for composition, morphology, nanohardness, corrosion resistance in simulated body fluid (SBF) and tribological properties. X-ray photoelectron spectroscopy (XPS) studies on the samples were used to estimate the concentration of Zr in the films. XPS and micro-Raman studies were used to find the variation of I D/ I G ratio with Zr concentration. These studies show that the disorder in the film increased with increasing Zr concentration as deduced from the I D/ I G ratio. Nanohardness measurements showed no clear dependence of hardness and Young's modulus on Zr concentration. Reciprocating wear studies showed a low coefficient of friction (0.04) at 1 N load and it increased toward 0.4 at higher loads. The wear volume was lower at all loads on the coated samples. The wear mechanism changed from abrasive wear on the substrate to adhesive wear after coating. The corrosion current in SBF was unaffected by the coating and corrosion potential moved toward nobler (more positive) values.

  11. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    Science.gov (United States)

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.

  12. A comparison of material removal mechanism under low stress abrasive condition of steel and hardfacing alloys

    Science.gov (United States)

    Dasgupta, R.; Prasad, B. K.; Modi, O. P.; Jha, A. K.

    1999-08-01

    The low stress abrasive wear behavior of two types of steels commonly used for making a number of commonly used engineering components has been compared with the composition of a few hardfacing alloys that can be overlayed on the steels to impart a wear-resistant surface. The mechanism of material removal as studied by the scanning electron micrographs of the worn and transverse sections is different for the steels and hardfacing alloys. An attempt has been made to explain the mechanism of material removal for the steels and hardfacing alloys.

  13. Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, M., E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-04-07

    Research highlights: > The microstructure of the surface layer consisted of carbides embedded in a Co-rich solid solution with dendritic structure. Primary phases formed during the process were identified as Co(FCC) and lamellar eutectic phases (M{sub 23}C{sub 6}, M{sub 6}C, Cr{sub 7}C{sub 3}). > Microhardness profiles showed that hardness increases from interface to the coating surface. This is due to the finer size of the grains at coating surface in comparison to that at interface and also diffusion of Fe adjacent to the interface. > The delamination was suggested as the dominant mechanism of the wear. In this regard, plate-like wear debris consisted of voids and cracks. In addition, due to increase in surface temperature, Cr{sub 2}O{sub 3} oxide phase was formed during wear tests. - Abstract: This paper deals with the investigation of the microstructure and wear behavior of the stellite 6 cladding on precipitation hardening martensitic stainless steel (17-4PH) using gas tungsten arc welding (GTAW) method. 17-4 PH stainless steel is widely used in oil and gas industries. Optical metallography, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to study the microstructure and wear mechanisms. X-ray diffraction analysis was also used to identify phases formed in the coating. The results showed that the microstructure of the surface layer consisted of carbides embedded in a Co-rich solid solution with a dendritic structure. In addition, the dendritic growth in the coating was epitaxial. Primary phases formed during the process were Co (fcc), Co (hcp), lamellar eutectic phases, M{sub 23}C{sub 6} and Cr{sub 7}C{sub 3} type carbides. The results of the wear tests indicated that the delamination was the dominant mechanism. So, it is necessary to apply an inter-layer between the substrate and top coat.

  14. 泥浆中磨粒对Al2O3增强Y-TZP复合陶瓷材料耐磨性的影响%Effect of Abrasive Particles in Slurry on the Wear Resistance of Alumina-reinforced Y-TZP Composites

    Institute of Scientific and Technical Information of China (English)

    梁小平; 葛志平; 靳正国; 杨正方; 袁启明

    2004-01-01

    在不同磨粒的5%NaOH泥浆中,采用销-盘式摩擦磨损试验机考察了磨粒对氧化铝增强四方氧化锆多晶陶瓷材料(ADZ)耐磨性的影响进行了研究.结果表明:尖锐SiO2磨粒对ADZ复合陶瓷材料磨损的影响要比球形SiO2磨粒严重得多,磨料硬度是影响陶瓷材料磨损率的重要因素,磨损率随磨粒硬度的提高而增大.在不同形状的SiO2磨粒的泥浆中,ADZ陶瓷材料的主要磨损机理为塑性变形和微犁削.在高硬度Al2O3磨料的泥浆中,ADZ陶瓷材料磨损表面以断裂机制占主导地位.%The effect of the properties of abrasive particles in slurry, including the morphology and hardness, on the wear resistance of alumina-reinforced yttria-stabilized zirconia polycrystals (3Y-TZP/10wt%Al2O3, 10ADZ) was investigated in 5%NaOH slurry containing different abrasive particles using a pin-on-plate tribometer. The results showed that the wear resistance of ADZ ceramic depends on the properties of the abrasive particles. As expected, the wear resistance is increased with hardness of abrasive particles decreasing, but it is also influenced by the other, more subtle differences in the morphology, that is, the sharper the abrasive particle the higher wear rate. The main wear mechanism of ADZ in SiO2 particle slurry is plastic deformation and microploughing, but the removal of material is controlled by brittle fracture in the Al2O3 slurry.

  15. Corrosion and wear behaviors of Al-bronzes in 5.0% H2SO4 solution

    Institute of Scientific and Technical Information of China (English)

    LI Wen-sheng; WANG Zhi-ping; LU Yang; YUAN Li-hua; XIAO Rong-zhen; ZHAO Xu-dong

    2009-01-01

    Steady-state corrosion and wear behaviors of two Al-bronzes, Cu-14Al-X and QAl9-4, in 5.0% H2SO4 solution were investigated. It is found that wear loss of bronzes in 5.0% H2SO4 solution is lower than that in water or in air, namely, it exhibits negative synergy between corrosion and wear. Further analysis shows that corrosive solution plays an important role in cooling of specimen during the sliding wear to prevent the reduction of the surface hardness of specimen, induced by frictional heat. On the other hand, the bronzes suffer a de-alloying corrosion, and a noble copper subsurface and patina form on the specimen surface in corrosive solution, which has a passive function for further corrosion. The noble copper subsurface experiences strain hardening during the corrosion and wear, resulting in the increase of the surface hardness thus the increase in wear resistance.

  16. Compressional behavior of knitted fabrics exposed to repeated wash and wear cycles

    Directory of Open Access Journals (Sweden)

    Stanković Snežana B.

    2006-01-01

    Full Text Available The quality requirements of knitted fabrics nowadays have become highly demanding in terms of appearance and comfort properties. It is well known that yarns are subjected to tension, bending, torsion and compression during the wear and care of apparels. The appropriate selection of raw materials could be the way to reduce the deformation of knits caused by mechanical forces. Keeping in mind the fact that natural fibers and man-made fibers can significantly differ in respect to elastic properties, natural fiber and synthetic fiber knits were produced for the experiment. The experimental material included three different variants of knitted fabrics: 100% hemp knit, 100% PAC knit and hemp 50%/PAC 50% knit. The behavior of knitted fabrics during the relaxation of compression was investigated. In order to indicate the change of the compressional properties of knitted fabrics, the same investigation after undergoing repeated wash and wear cycles (during eight weeks was repeated. Although the structure of the tested samples was the same, there were differences in the compressional behavior of the knitted fabrics. It is obvious that the differences in the elastic properties of hemp and PAC fibers were projected into the knits. Compression curves were drawn in order to obtain an insight into the change of the compressional behavior of knitted fabrics during wear. These curves also enabled a comparative estimation of the compressional behavior of knits made of different yarn components. The surfaces proportional to the work of the compression for each of the cycles, as well as the work of compression between the first and the fifth cycles, of loading-unloading cycles were calculated. In order to compare the tested knitted fabrics, the hysteresis of compression was analyzed from the aspect of ability of elastic recovery. The change in compressional behavior of knits exposed to wear and care cycles was confirmed. However, analysis of the comparative

  17. Wear Behavior of Mechanically Alloyed Ti-Based Bulk Metallic Glass Composites Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2016-11-01

    Full Text Available The present paper reports the preparation and wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotube (CNT particles. The differential scanning calorimeter results show that the thermal stability of the amorphous matrix is affected by the presence of CNT particles. Changes in glass transition temperature (Tg and crystallization temperature (Tx suggest that deviations in the chemical composition of the amorphous matrix occurred because of a partial dissolution of the CNT species into the amorphous phase. Although the hardness of CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composites is increased with the addition of CNT particles, the wear resistance of such composites is not directly proportional to their hardness, and does not follow the standard wear law. A worn surface under a high applied load shows that the 12 vol. % CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composite suffers severe wear compared with monolithic Ti50Cu28Ni15Sn7 bulk metallic glass.

  18. Preparation of Ni-CNT composite coatings on aluminum substrate and its friction and wear behavior

    Institute of Scientific and Technical Information of China (English)

    涂江平; 朱丽萍; 陈卫祥; 赵新兵; 刘芙; 张孝彬

    2004-01-01

    Nickel-carbon nanotube(CNT) composite coatings with a Zn-Ni interlayer were prepared by electrodeposition technique on aluminum substrate. The effects of CNT concentration in plating bath on the volume fraction of CNTs in the deposits and the coating growth rate were investigated. The friction and wear behavior of the Ni-CNT composite coatings were examined using a pin-on-disk wear tester under dry sliding conditions at a sliding speed of 0. 062 3 m/s and load range from 12 N to 150 N. Because of the reinforcement of CNTs in the composite coatings, at lower applied loads, the wear resistance was improved with increasing volume fraction of CNTs. Since cracking and peeling occur on the worn surface, the wear rates of composite coatings with high volume fraction of CNTs increase rapidly at higher applied loads. The friction coefficient of the composite coatings decreases with the increasing volume fraction of CNTs due to the reinforcement and self-lubrication of CNTs.

  19. Considerations regarding the volume fraction influence on the wear behavior of the fiber reinforced composite systems

    Science.gov (United States)

    Caliman, R.

    2017-08-01

    This paper contains an analysis of the factors that have an influence on the tribological characteristics of the composite material sintered with metal matrix reinforced with carbon fibers. These composites are used generally if it’s needed the wear resistant materials, whereas these composites have high specific strength in conjunction with a good corrosion resistance at low densities and some self-lubricating properties. Through the knowledge of the better tribological properties of the materials and their behavior to wear, can be generated by dry and the wet friction. Thus, where necessary the use of high temperature resistant material with low friction between the elements, carbon fiber composite materials are very suitable because they have: mechanical strength and good ductility, melting temperature on the higher values, higher electrical and thermal conductivity, lower wear speed and lower friction forces. For this purpose, this paper also contains an experimental program based on the evidence of formaldehyde resin made from fiber reinforced Cu-carbon with the aim to specifically determine the volume of fibers fraction for the consolidation of the composite material. In order to determine the friction coefficient and the wear rates of the various fiber reinforced polymer mixtures of carbon have been used special devices with needle-type with steel disc. These tests were conducted in the atmosphere at the room temperature without external lubrication study taking into consideration the sliding different speeds with constant loading task.

  20. Effect of Load on Friction-Wear Behavior of HVOF-Sprayed WC-12Co Coatings

    Science.gov (United States)

    Yifu, Jin; Weicheng, Kong; Tianyuan, Sheng; Ruihong, Zhang; Dejun, Kong

    2017-07-01

    A WC-12Co coating was sprayed on AISI H13 hot work mold steel using a high-velocity oxygen fuel. The morphologies, phase compositions, and distributions of chemical elements of the obtained coatings were analyzed using a field emission scanning electron microscope, x-ray diffraction, and energy-dispersive spectroscope (EDS), respectively. The friction-wear behaviors under different loads were investigated using a reciprocating wear tester; the morphologies and distributions of the chemical elements of worn tracks were analyzed using a SEM and its configured EDS, respectively. The results show the reunited grains of WC are held together by the Co binder; the primary phases of the coating are WC, Co, and a small amount of W2C and W, owing to the oxidation and decarburization of WC. Inter-diffusion of Fe and W between the coating and the substrate is shown, which indicates a good coating adhesion. The values of the average coefficient of friction under the loads of 40, 80, and 120 N are 0.29, 0.31, and 0.49, respectively. The WC grains are pulled out of the coating during the sliding wear test, but the coating maintains its integrity, suggesting that the coating is intact and continuously protects the substrate from wearing.

  1. Effect of active screen plasma nitriding pretreatment on wear behavior of TiN coating deposited by PACVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Raoufi, M., E-mail: raoufi@iust.ac.ir [School of Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Mirdamadi, Sh. [School of Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Mahboubi, F. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ahangarani, Sh. [Advanced Materials and Renewable Energies Dep., Iranian Research Organization for Science and Technology (Iran, Islamic Republic of); Mahdipoor, M.S. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Elmkhah, H. [Department of Metallurgical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2012-08-01

    Titanium based alloys are used extensively for improving wear properties of different parts due to their high hardness contents. Titanium nitride (TiN) is among these coatings which can be deposited on surface using various techniques such as CVD, PVD and PACVD. Their weak interface with substrate is one major drawback which can increase the total wear in spite of favorite wear behavior of TiN. Disc shaped samples from AISI H13 (DIN 1.2344) steel were prepared in this study. Single TiN coating was deposited on some of them while others have experienced a TiN deposition by active screen plasma nitriding (ASPN). Hardness at the surface and depth of samples was measured through Vickers micro hardness test which revealed 1810 Hv hardness as the maximum values for a dual-layered ASPN-TiN. Pin-on-disc wear test was done in order to study the wear mechanism. In this regard, the wear behavior of samples was investigated against pins from 100Cr6 (Din 1.3505) bearing steel and tungsten carbide-cobalt (WC-Co) steel. It was evidenced that the dual-layer ASPN-TiN coating has shown the least weight loss with the best wearing behavior because of its high hardness values, stable interface and acceptable resistance against peeling during wearing period.

  2. Uniform Design of Optimizing Formulation of Friction Materials with Composite Mineral Fiber (CMF) and Their Friction and Wear Behavior

    Science.gov (United States)

    Yang, Yazhou; Jiang, Man; Xu, Jie; Ma, Yunhai; Tong, Jin

    2012-04-01

    In this work, the uniform design method was applied to arrange the experimental scheme for optimizing formulation of friction materials. The friction and wear of the friction materials based on the optimized formulation was carried out on a constant speed friction tester (JF150D-II), using pad-on-disc contact mode against gray cast iron disc. The worn surfaces of the friction materials were examined by scanning electron microscopy (JSM5310) and the friction mechanism was discussed. The results showed that the uniform design method was appropriate for finding the optimum formulation of the friction materials with better properties. Compared with two conventional friction materials, the friction materials based on the optimized formulation possessed higher and stable friction coefficient and higher wear resistance, even at the disc temperature of 350°C. The adhesion, strain fatigue and abrasive wear were the main wear mechanisms of the friction materials. Tribo-chemical phenomenon and plastic deformation existed on the worn surface layer.

  3. A review of micro-scale abrasion testing

    Energy Technology Data Exchange (ETDEWEB)

    Gant, A J; Gee, M G [Electronics and Modelling Group, Division of Industry and Innovation, Module 9, Space G9-A5, Queens Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2011-02-23

    Micro-scale abrasion (commonly referred to as 'ball cratering') is a small-scale tribological test method which can be operated on a desktop. It offers the possibility of providing a quick, cheap, localized abrasion test that can be used with small samples. In principle its operation is simple, but in practice there are issues with wear scar measurement, wear mode and its applicability to a wide variety of monolithic materials and coatings. (topical review)

  4. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    Science.gov (United States)

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples.

  5. A comparative study on the wear behavior of a polymer infiltrated ceramic network (PICN) material and tooth enamel.

    Science.gov (United States)

    Xu, Zhou; Yu, Ping; Arola, Dwayne D; Min, Jie; Gao, Shanshan

    2017-09-20

    To investigate the wear mechanisms of a polymer infiltrated ceramic network (PICN) material, to compare its wear behavior with that of tooth enamel, and to provide evidence relevant to its clinical use. The Vickers hardness (HV) and elastic modulus (E) of a commercial PICN material (ENAMIC) and enamel were measured. Reciprocating wear tests were performed under a ball-on-flat configuration. Three wear pairs were explored including ENAMIC and enamel subjected to Si3N4 ball antagonists and ENAMIC subjected to enamel cusp antagonists. The coefficients of Friction (CoFs) were monitored continuously to 5×10(4) cycles. The wear depth of ENAMIC, enamel specimens and enamel cusps were quantified using white light interferometry, and the wear morphologies were examined using scanning electron microscopy (SEM) to distinguish the wear mechanisms. The HV of ENAMIC is similar to tooth enamel but the E is much lower. For both materials, the CoFs increased sharply in the early stage and then reached plateaus in the later phase. Throughout the cyclic loading history, ENAMIC exhibited larger wear depths than enamel. However, the damage evolution in ENAMIC was similar to that of enamel as the polymer phase was worn preferentially similar to inter-rod enamel, and then the ceramic phase exfoliated from the wear surface akin to enamel rods. The SEM images showed evidence of few cracks within wear tracks of ENAMIC, in comparison to numerous cracks in tooth enamel. ENAMIC has lower wear resistance than tooth enamel, but it exhibits a wear damage mode similar to tooth enamel. Copyright © 2017. Published by Elsevier Ltd.

  6. Microstructure and Wear Behaviors of In-situ Al2O3p/7075 Composites%原位Al2O3P/7075复合材料微观组织与磨损行为

    Institute of Scientific and Technical Information of China (English)

    刘慧敏; 杨树青; 许萍; 李进福

    2012-01-01

    采用原位反应近液相线铸造法制备具有不同质量分数的Al2O3P/7075复合材料,并对其进行干滑动磨损实验研究,通过OM,SEM,TEM等材料分析方法测试了材料的微观组织和磨损表面形貌.结果表明,原位Al2O3颗粒对7075铝合金的晶粒组织有明显细化效果,Al2O3P/7075复合材料的耐磨性比基体7075铝合金有明显的提高.原因是原位合成的复合材料界面结合良好,原位Al2O3颗粒在摩擦过程中起着抑制金属流动和支撑的双重作用.磨损表面形貌显示,原位Al2O3颗粒的加入,使磨损机制由黏着磨损变为磨粒磨损,从而改善了材料的耐磨性.%The Al2O3P/7075 Al composites were synthesized by in-situ reaction near-liquidus casting. The microstructure and dry sliding wear behavior of the prepared composites were analyzed using OM, SEM and TEM as well as wear friction testing. The results reveal that in-situ Al2O3 particle with average size of approximately <1μm is uniformly distributed in the matrix, which exhibits desirable refining effects on microstructure of 7075 Al alloy. The wear behavior of the composites is greatly superior to that of the matrix, which is attributed to the grain refining and formation of a compact interface of Al2O3P/7075 Al composites. In addition, in-situ Al2O3 particles exhibit coupling effects of inhibiting metal flow and bearing some load in process of friction. The wear mechanism of the matrix 7075A1 alloy is adhesive wear, while the wear surface of Al2O3p/7075 Al composites is superior to that of the matrix 7075 Al alloy. The wear mechanism of Al2O3P/7075 Al composites is abrasive wear, and wear resistance of Al2O3P/7075 Al is improved.

  7. Effects of Geometrical Clearances, Supports Friction, and Wear Rings on Hydraulic Actuators Bending Behavior

    Directory of Open Access Journals (Sweden)

    Sergio Baragetti

    2016-01-01

    Full Text Available Hydraulic actuators are commonly adopted in machines and structures to provide translating forces with significant magnitudes. Although their application dates back to the industrial revolution, their bending behavior under compression is typically addressed by simple Euler’s instability analysis on the rod, neglecting effects such as the cylinder inertia and stiffness, the presence of contact elements in the cylinder-rod junction and on the piston, geometrical misalignments and imperfections, and friction moments at the support. Such simplifications lead to unjustified reduced critical load calculations on the component. In the present paper, a complete mathematical formulation, which accounts for such effects, is presented and validated against experimental data. A numerical sensitivity analysis is conducted, to assess the contributions of initial rectilinear imperfections, wear rings stiffness and dimension, and supports friction on the actuator’s limit buckling load and bending behavior under compression. Results are presented, including the effect of the cited parameters on the buckling load, providing a reliable tool for the mechanical designer. In particular, an optimum position for the wear ring distance is found. Moreover, increased wear ring stiffness and reduced imperfections increase the buckling load and reduce the bending stresses before the critical load.

  8. Comparação dos valores de desgaste abrasivo e de microdureza de 13 resinas compostas usadas em odontologia através do método do disco retificado Comparing abrasive wear and microhardness of 13 dental composite resins

    Directory of Open Access Journals (Sweden)

    Eduardo C. Bianchi

    2007-06-01

    Full Text Available Atualmente tem-se buscado simplificar a tarefa de caracterização da vida útil de restaurações dentárias realizadas por resinas compostas através de métodos laboratoriais, que são mais rápidos e não sofrem influência de variáveis pessoais inerentes às análises clínicas. Com este propósito, este trabalho apresenta uma nova metodologia de ensaio laboratorial para a avaliação do desgaste abrasivo de resinas compostas através do método do disco retificado. Realizaram-se ensaios de resistência ao desgaste abrasivo com 13 resinas compostas odontológicas e buscou-se analisar o comportamento da resistência ao desgaste abrasivo em relação à microdureza dessas resinas. Com a análise dos resultados concluiu-se que o método de discos retificados é eficiente para a obtenção da resistência ao desgaste abrasivo. Notou-se também ser extremamente pequeno o nível de correlação entre microdureza e desgaste abrasivo o que indica que cada resina composta tem características próprias e que o desgaste é dependente também de outros fatores.It is now commonplace to search for methods to assess the useful lifetime of dental restorations made of resins, which are quicker and less subjective than clinical analyses. With this purpose, this work presents a new methodology based on the grinding disk for evaluating the abrasive wear of composed resins. Resistance tests to the abrasive wear were made with 13 composed resins used as dental material, and a comparison was done with the hardness of those resins. From the data analysis, we concluded that the method of rectified disks is efficient for obtaining the resistance to the abrasive wear. Furthermore, the correlation between hardness and abrasive wear was very small, which indicates that each composed resin has its own characteristics and that the wear also depends on other factors.

  9. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    Science.gov (United States)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  10. Friction and wear properties of N+ ion implanted nylon 1010

    Institute of Scientific and Technical Information of China (English)

    XIONG Dang-sheng

    2004-01-01

    The PA1010 was implanted with 450 keV N+ ions to three doses of 5× 1014 cm-2 , 2.5× 1015 cm-2 and 1.25 × 1016 cm-2. The friction and wear behaviors of the ion implanted PA1010 disks rubbing with two ceramic (ZrO2 and Si3N4) balls were studied using a pin-on-disk tribometer under dry friction. The results shows that the wear resistance of PA1010 is increased with the increasing implantation doses. The adhesion, plastic deformation and plow groove are wearing mechanisms for un-implanted PA1010, while abrasive wear for implanted PA1010.

  11. A comparison of the abrasiveness of six ceramic surfaces and gold.

    Science.gov (United States)

    Jacobi, R; Shillingburg, H T; Duncanson, M G

    1991-09-01

    A type III gold alloy and six different ceramic surfaces were secured in an abrasion machine opposing extracted teeth to determine their relative abrasiveness and resistance to wear. The rankings of restorative materials from least abrasive to most abrasive were: gold alloy, polished; cast ceramic, polished; porcelain, polished; cast ceramic, polished and shaded; porcelain, polished and glazed; cast ceramic, cerammed skin shaded; and cast ceramic, cerammed skin unshaded. The ranking of materials from most wear-resistant to least wear-resistant was: gold alloy, cast ceramic cerammed, cast ceramic cerammed and shaded, porcelain polished, porcelain glazed, cast ceramic polished and shaded, and cast ceramic polished.

  12. Avaliação do desgaste abrasivo causado pelas cerâmicas Duceram e Vita em resinas compostas pelo método do disco retificado Evaluation of the abrasive wear caused by the ceramics Duceram and Vita in composite resins by the method of the ground disk

    Directory of Open Access Journals (Sweden)

    T. V. França

    2004-06-01

    Full Text Available O presente trabalho apresenta uma metodologia confiável e de execução rápida para a avaliação do desgaste abrasivo entre as cerâmicas Duceram e Vita nas resinas compostas Z-100 e Charisma. Estes materiais são amplamente utilizados nos consultórios e clínicas dentais para restaurações funcionais e estéticas dos dentes. Para avaliar o desgaste abrasivo entre os materiais, um disco dinâmico revestido com porcelana foi utilizado sobre um disco estático revestido com resina. Os resultados indicaram que a cerâmica Vita apresenta desgaste inferior a Duceram nas resinas analisadas.This work presents a fast and trustworthy methodology for the evaluation of the abrasive wear between the ceramics Duceram and Vita and the composites resins Z-100 and Charisma. These materials are widely used in dental clinics to restoration of function and aesthetics of the teeth. To evaluate the abrasive wear between the materials, a dynamic disk covered with ceramic was used contrary to a static disk covered with resin. The results showed that Vita presents an inferior wear against Duceram in the resins tested.

  13. A Fractional Factorial Design Study of Reciprocating Wear Behavior of Al-Si-SiCp Composites at Lubricated Contacts

    Science.gov (United States)

    Rajeev, V. R.; Dwivedi, D. K.; Jain, S. C.

    2011-04-01

    The lubricated reciprocating wear behavior of two composites A319/15%SiCp and A390/15%SiCp produced by the liquid metallurgy route was investigated by means of an indigenously developed reciprocating friction wear test rig using a fractional factorial-design approach. The main purpose was to study the influence of wear and friction test parameters such as applied load, sliding distance, reciprocating velocity, counter surface temperature and silicon content in composites, as well as their interactions on the wear and friction characteristics of these composites. Two output responses (wear loss and coefficient of friction) were measured. The input parameter levels were fixed through pilot experiment conducted in the newly developed reciprocating friction and wear test rig. The counter surface material used for the wear study was cast iron having Vickers hardness of 244 HVN. It had been demonstrated through established equations that A390/15%SiCp composite is subjected to low wear compared to the A319/15%SiCp composite. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The applied load, sliding distance, reciprocating velocity, counter surface temperature, and silicon content in composite are the five important factors controlling the friction and wear characteristics of the composite in lubricated condition. Moreover, the two factor interactions have a strong effect on the wear of composites. The results give a comprehensive insight into the wear of the composites.

  14. Dynamic and kinematic effects in the friction and wear of rubber

    Science.gov (United States)

    Gerrard, David Peter

    Research is presented which focuses on the micro-mechanical processes that dominate the friction and wear of rubber. New test concepts and equipment were developed to study the dynamic and kinematic effects involved in these processes. Several new analytical tools were presented to explain the observed results in quantifiable terms. Experiments conducted on filled NR confirmed that a transition in wear behavior does not occur across a wide range of power inputs. Examination of the debris distributions across the contact revealed that an agglomeration process of intrinsic particles occurs, the extent of which is purely a function of distance from the contact's leading edge. This revelation is used to explain the commonly reported bimodal size distribution of debris generated during rubber wear and to expose the mechanical process that generates intrinsic debris as the primary cause of wear. The effect of contact length (i.e. extent of agglomeration) on corresponding friction and wear levels was studied. The effects of dynamically changing slip orientation on the properties of a coated abrasive and the friction and wear of a filled SBR were studied. The process of removal of intrinsic debris from a rubber surface was described in terms of a micro-mechanical fatigue fracture process that occurs at varying rates that are dependent on the frictional work acting on the average intrinsic nodule. The model was successfully tested against previously published data and new data and was shown to account for pressure and abrasive effects with one set of two constants. The potential effects of pattern morphologies on rubber friction and wear were examined as well. The wear patterns showed a clear tendency to roll up as opposed to peeling back. The intrinsic wear model was then applied to a description of pattern wear by assuming that the rate of intrinsic abrasion across a pattern is simply a function of the local pressure distribution which varies from the front to the back

  15. Solid Bonded Films or Monolithic Ceramics in Tracked Chains of Construction Equipments for Wear Management

    Science.gov (United States)

    2004-06-01

    and the sprocket, in which abrasive wear is predominant. According to Rabinowicz [17], the abrasive wear is shared into three regions of low wear/high...12 RTO-MP-AVT-109 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED The methodology of Rabinowicz is more valid for metals and represents a...494-499 [17] E. Rabinowicz Abrasive wear resistance as a material test, Lubrication Engineering 33 (1977), p. 378 [18] Uetz, H. (ed

  16. The Wear behavior of UHMWPE against Surface Modified CP-Titanium by Thermal Oxidation

    Directory of Open Access Journals (Sweden)

    B.T. Prayoga

    2016-12-01

    Full Text Available The effects of thermal oxidation duration on hardness, roughness, and wettability of the CP-titanium surfaces were investigated in this paper. The thermal oxidation treatment was done at 700 oC for 12-36 hours in an air atmosphere. The wear behavior of the UHMWPE sliding against treated thermal oxidation of the CP-titanium was tested by a pin-on-plate tribometer under lubrication of the solution of 75 % distilled water and 25 % bovine serum. The results showed that the layer of the oxide titanium was formed on the surface after being treated by the thermal oxidation for 12-36 hours. The oxide titanium layer was dominated by rutile form of TiO2, that offers an improvement of hardness and wettability of the CP-titanium surfaces. The average wear factor of the UHMWPE reduced significantly when the sliding against of the CP-titanium was modified by the thermal oxidation, and the lowest average wear factor was reached when the sliding against the 12 hour oxidized CP-titanium counterfaces.

  17. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    Science.gov (United States)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  18. Tribological and wear behavior of HfN/VN nanomultilayer coated cutting tools

    Directory of Open Access Journals (Sweden)

    Willian Aperador Chaparro

    2014-03-01

    Full Text Available Wear and tribological behavior of [HfN/VN]n multinanolayers deposited via magnetron sputtering has been exhaustively studied in this work. Enhancement of both hardness and elastic modulus up to 37 GPa and 351 GPa, respectively, was observed as bilayer periods in the coatings were decreased. The sample with a bilayer period (Λ of 15 nm and bilayer number n = 80, showed the lowest friction coefficient (∼0.15 and the highest critical load (72 N, corresponding to 2.2 and 1.38 times better than those values for the coating deposited with n = 1, respectively. Taking into account the latest results of tungsten carbide (WC inserts were used as substrates to improve the mechanical and tribological properties of [HfN/VN]n coatings as a function of increased interface number and to manage higher efficiency of these coatings in different industrial applications, like machining and extrusion. Their physical, mechanical, and tribological characteristics were investigated, including cutting tests with AISI 1020 steel (workpiece to assess wear as a function of the bilayer number and bilayer period. A comparison of the tribological properties revealed a decrease of flank wear (approximately 24% for WC inserts coated with [HfN/VN]80 (Λ =15 nm, when compared to uncoated tungsten carbide inserts. These results demonstrate the possibility of using [HfN/VN] multilayers as new coatings for tool machining with excellent industrial performance.

  19. Investigation on Dry Sliding Wear Behavior of Nylon66/GnP Nano-composite

    Science.gov (United States)

    Sankara Narayana, Kota; Suman, Koka Naga Sai; Arun Vikram, Kothapalli

    2017-04-01

    The tribological behavior of graphene nano platelets (GnP) reinforced Nylon66 polymer Nano composites were studied using a pin-on-disc apparatus under dry sliding conditions. The influence of wear control factors like applied load, velocity, sliding distance and weight percentage of GnP reinforcement on the responses like specific wear rate and frictional coefficient were investigated. Nano composites were developed by melt mixing of various weight fractions of GnP (0/0.5/1/2) with nylon 66 using twin screw extruder. A design of experiments based on the Taguchi technique was performed to acquire data in a controlled way and was successfully used to identify the optimal combinations of control factors influencing the outputs. Analysis of variance was employed to investigate the influence and contribution of control factors on the responses. The results showed that the inclusion of GnP as reinforcing material in Nylon66 Nano composites, decreases the friction coefficient and increases the wear resistance of the Nano composites significantly.

  20. Investigation on Dry Sliding Wear Behavior of Nylon66/GnP Nano-composite

    Science.gov (United States)

    Sankara Narayana, Kota; Suman, Koka Naga Sai; Arun Vikram, Kothapalli

    2016-06-01

    The tribological behavior of graphene nano platelets (GnP) reinforced Nylon66 polymer Nano composites were studied using a pin-on-disc apparatus under dry sliding conditions. The influence of wear control factors like applied load, velocity, sliding distance and weight percentage of GnP reinforcement on the responses like specific wear rate and frictional coefficient were investigated. Nano composites were developed by melt mixing of various weight fractions of GnP (0/0.5/1/2) with nylon 66 using twin screw extruder. A design of experiments based on the Taguchi technique was performed to acquire data in a controlled way and was successfully used to identify the optimal combinations of control factors influencing the outputs. Analysis of variance was employed to investigate the influence and contribution of control factors on the responses. The results showed that the inclusion of GnP as reinforcing material in Nylon66 Nano composites, decreases the friction coefficient and increases the wear resistance of the Nano composites significantly.

  1. Effects of the ratio of hardness to Young's modulus on the friction and wear behavior of bilayer coatings

    Science.gov (United States)

    Ni, Wangyang; Cheng, Yang-Tse; Lukitsch, Michael J.; Weiner, Anita M.; Lev, Lenoid C.; Grummon, David S.

    2004-11-01

    We present a study of the effects of the ratio of hardness to Young's modulus on the friction and wear behavior of layered composite coatings. Layered coating structures with the same surface coating but different interlayers were prepared by physical vapor deposition. We found that the ratio of hardness to Young's modulus plays an important role in determining the friction coefficient and wear resistance of layered composite coatings. A low friction coefficient and high wear resistance can be achieved in structures with high ratio of hardness to Young's modulus and moderately high hardness.

  2. EFFECT OF La2O3 ADDITION ON MICROSTRUCTURE AND WEAR BEHAVIOR OF ELECTROSPARK DEPOSITED Ni-BASED COATINGS

    OpenAIRE

    GAO YUXIN; YI JIAN

    2013-01-01

    La2O3 doped Ni-based coatings have been prepared by electrospark deposition technique. The effect of La2O3 on the microstructure, hardness and wear behavior of the as-prepared Ni-based coatings is investigated by using X-ray diffractometer, scanning electron microscope, wear tribometer and Vickers hardness tester. Results indicates that the microstructure, hardness and wear resistance of La2O3 doped Ni-based coatings are effectively improved as compared to the undoped one, and the coating wit...

  3. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  4. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  5. Study on the Thermal Fatigue Behavior of Hot Deformed Wear Resistance Cast Iron and Effect of Carbide

    Institute of Scientific and Technical Information of China (English)

    Dong Litao; Liu Rongchang; Li Xingyuan; Chen Xiuhong

    2007-01-01

    The thermal fatigue behavior of wear resistance cast iron with different quantity of deformation has been investigated. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, approving that the more serious, the carbide breaks. The higher thermal fatigue resistance of wear resistance cast iron will be and thermal fatigue fracture belongs mainly to brittleness.

  6. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available on the composition of the alloying powder mixture. The wear performance of the alloyed surfaces was characterised using an ASTM G65 three body dry abrasion apparatus. A maximum 82% improvement in the wear resistance of the pure aluminium was achieved with a 40 wt% Ni...

  7. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes

    Directory of Open Access Journals (Sweden)

    Tianchen Li

    2017-09-01

    Full Text Available In the present research, the spherical FeCoCrNiMo0.2 high entropy alloy (HEA powders with a single FCC solid solution structure were prepared by gas atomization. Subsequently, the FeCoCrNiMo0.2 coatings with a different content of oxide inclusions were prepared by air plasma spraying (APS and high-velocity oxy-fuel spraying (HVOF, respectively. The microstructure, phase composition, mechanical properties, and tribological behaviors of these HEA coatings were investigated. The results showed that both HEA coatings showed a typical lamellar structure with low porosity. Besides the primary FCC phase, a mixture of Fe2O3, Fe3O4, and AB2O4 (A = Fe, Co, Ni, and B = Fe, Cr was identified as the oxide inclusions. The oxide content of the APS coating and HVOF coating was calculated to be 47.0% and 12.7%, respectively. The wear resistance of the APS coating was approximately one order of magnitude higher than that of the HVOF coating. It was mainly attributed to the self-lubricated effect caused by the oxide films. The mass loss of the APS coating was mainly ascribed to the breakaway of the oxide film, while the main wear mechanism of the HVOF coating was the abrasive wear.

  8. Friction and wear behavior of nanosilica-filled epoxy resin composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kang Yingke [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen Xinhua, E-mail: xuc0374@163.com [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Song Shiyong; Yu Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2012-06-15

    Hydrophilic silica nanoparticles (abridged as nano-SiO{sub 2}) surface-capped with epoxide were dispersed in the solution of epoxy resin (abridged as EP) in tetrahydrofuran under magnetic stirring. Resultant suspension of nano-SiO{sub 2} in EP was then coated onto the surface of glass slides and dried at 80 Degree-Sign C in a vacuum oven for 2 h, generating epoxy resin-nanosilica composite coatings (coded as EP/nano-SiO{sub 2}). EP coating without nano-SiO{sub 2} was also prepared as a reference in the same manner. A water contact angle meter and a surface profiler were separately performed to measure the water contact angles and surface roughness of as-prepared EP/nano-SiO{sub 2} composite coatings. The friction and wear behavior of as-prepared EP/nano-SiO{sub 2} composite coatings sliding against steel in a ball-on-plate contact configuration under unlubricated condition was evaluated. Particularly, the effect of coating composition on the friction and wear behavior of the composite coatings was highlighted in relation to their microstructure and worn surface morphology examined by means of scanning electron microscopy. Results indicate that EP/nano-SiO{sub 2} composite coatings have a higher surface roughness and water contact angle than EP coating. The EP-SiO{sub 2} coatings doped with a proper amount of hydrophilic SiO{sub 2} nanoparticles show lower friction coefficient than EP coating. However, the introduction of surface-capped nanosilica as the filler results in inconsistent change in the friction coefficient and wear rate of the filled EP-matrix composites; and it needs further study to achieve well balanced friction-reducing and antiwear abilities of the composite coatings for tribological applications.

  9. Structure and wear behavior of AlCrSiN-based coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chengdu Tool Research Institute Co., Ltd., Chengdu 610500 (China); Du, Hao [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065 (China); Chen, Ming, E-mail: mchen@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Jun [Chengdu Tool Research Institute Co., Ltd., Chengdu 610500 (China); Xiong, Ji [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhao, Haibo [The Analysis and Testing Centre, Sichuan University, Chengdu 610065 (China)

    2016-05-01

    Graphical abstract: - Highlights: • AlCrSiN based coating showed amorphous structure. • AlCrSiN/Me{sub x}N coatings obtained better wear resistance. • Molybdenum and niobium increased the coating hardness and wear resistance. - Abstract: AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC–Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N{sub 2} mixtures. Al{sub 0.6}Cr{sub 0.4}, Al{sub 0.6}Cr{sub 0.3}Si{sub 0.1}, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiN{sub x} peak were formed in the AlCrSiN/Me{sub x}N coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H{sup 3}/E{sup 2} ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  10. Wear resistance of TiAlSiN thin coatings.

    Science.gov (United States)

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions.

  11. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  12. Effect of austempering process on microstructure and wear behavior of ductile iron containing Mn-Ni-Cu-Mo

    Science.gov (United States)

    PourAsiabi, HaMiD; Saghafian, Hasan; Pourasiabi, Hamed

    2013-01-01

    In this work, the effects of austempering time and temperature on the microstructure and sliding wear behavior of a Mn-Ni-Cu-Mo alloyed ductile iron were investigated. Ductile iron samples with the desired chemical composition were cast according to ASTM A897M-1990 Y-block. Wear test samples austenitized at 900 °C for 90 min, were austempered at 260, 290 and 320 °C for 30, 60, 90 and 120 min. The wear tests on samples were conducted by Block-on-Ring testing machine according to ASTM G77-98 standard, at the applied load of 75N and the displacement speed of 3.27 m/s. The results showed that the sample austempered at 260 °C for 90 min exhibited the maximum relative wear resistance in comparison with the as-cast sample. The X-ray diffraction patterns of wear debris and the SEM observations of worn surfaces and crosssection of worn surfaces together with wear debris showed that delamination associated with oxidation is the dominant wear mechanism in the samples.

  13. High-speed friction and wear behaviors of bulk Ti3SiC2

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhen-ying; ZHAI Hong-xiang; ZHOU Wei; ZHOU Yang; AI Ming-xin; ZHANG Zhi-li; LI Shi-bo

    2005-01-01

    High-speed friction and wear behaviors of bulk Ti3 SiC2 sliding drily against low carbon steel were investigated. Tests were carried out using a block-on-disk type tester with normal pressures ranging from 0.1 to 0.8 MPa and several sliding speeds from 20 to 60 m/s. The results show that, in the case of sliding speeds of 20 - 40 m/s, the friction coefficient exhibits a decreasing tendency with increasing the normal pressure after an increment in the smaller pressure range, and the worn quantity of Ti3SiC2 exhibits a nearly linear increase with increasing the normal pressure. However, when the sliding speed is up to 60 m/s, the friction coefficient exhibits a monotonous increase and the worn quantity exhibits a quadric increase with increasing the normal pressure. These speed-dependent and pressure-dependent behaviors are attributed to the antifriction effects of a frictionally generated oxide film covering the friction surface of Ti3SiC2, and a balance between the generating rate and the removing (wearing) rate of the film.

  14. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  15. Sliding Wear Behavior of Plasma Sprayed Alumina-Based Composite Coatings against Al2O3 Ball

    Institute of Scientific and Technical Information of China (English)

    Minh-quy Le; Young-hun Chae; Seock-sam Kim

    2004-01-01

    The sliding wear behaviors of a single layer Al2O3-30 wt pct ZrO2, a double layer Al2O3-30 wt pct ZrO2/Ni-Cr and a single layer Al2O3-13 wt pct TiO2 coating deposited on low carbon steel by plasma spraying were investigated under lubricated conditions with various normal loads. The plastic deformation, detachment and pull out of splats were involved in the wear process of the studied coatings under test conditions. Crack propagation was found in Al2O3-13 wt pct TiO2 under loads of 70 and 100 N and in Al2O3-30 wt pct ZrO2/Ni-Cr under a load of 130 N.While increasing the normal load, the wear rates of Al2O3-30 wt pct ZrO2 and Al2O3-30 wt pct ZrO2/Ni-Cr slightly increased, the wear rate of Al2O3-13 wt pct TiO2 increased rapidly. The results showed that the Ni-Cr bonding layer improved the wear resistance of the coating system even it is relatively thin compared with the outer coating layer.The influence of this bonding layer on wear behavior of the coating increased as increasing the normal load.

  16. Effect of Micro-addition Rare Earth and Chrome on Friction and Wear Behavior of Boronized layer

    Institute of Scientific and Technical Information of China (English)

    XUBin; WANGShu-hua; LUYu-peng; CUIJian-jun; LIMu-sen

    2004-01-01

    Application of powder boronizing to mechanical industry has been restricted because of the brittleness of boronized layer, which inevitably leeds to decrease of service life of boronized paris. Therefore, attention should be paid to reducing the brittleness of boronized layer without decreasing its high hardness. In the present paper, a study on the effect of micro-additionr are earth and chrome on friction and wear behavior of boronized layer was carded out using an MM-200 wear test machine. Compared with that of pure single Fe2B phase, the brittleness of the boronized layer containing minim rare earth and chrome elements, obtained by powder RE-chrome-boronizing, is reduced, which results in increasing the bearing capacity and wear resistance of the boronized layer, The friction and wear mechanism is also briefly analyzed.

  17. Effect of Micro-addition Rare Earth and Chrome on Friction and Wear Behavior of Boronized layer

    Institute of Scientific and Technical Information of China (English)

    XU Bin; WANG Shu-hua; LU Yu-peng; CUI Jian-jun; LI Mu-sen

    2004-01-01

    Application of powder boronizing to mechanical industry has been restricted because of the brittleness of boronized layer, which inevitably leads to decrease of service life of boronized parts. Therefore, attention should be paid to reducing the brittleness of boronized layer without decreasing its high hardness. In the present paper, a study on the effect of micro-addition rare earth and chrome on friction and wear behavior of boronized layer was carried out using an MM-200 wear test machine.Compared with that of pure single Fe2B phase, the brittleness of the boronized layer containing minim rare earth and chrome elements, obtained by powder RE-chrome-boronizing, is reduced, which results in increasing the bearing capacity and wear resistance of the boronized layer. The friction and wear mechanism is also briefly analyzed.

  18. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  19. Wear of hard materials by hard particles

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  20. Structure and wear behavior of AlCrSiN-based coatings

    Science.gov (United States)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  1. Adhesion, friction, and wear behavior of clean metal-ceramic couples

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1995-01-01

    When a clean metal is brought into contact with a clean, harder ceramic in ultrahigh vacuum, strong bonds form between the two materials. The interfacial bond strength between the metal and ceramic surfaces in sliding contact is generally greater than the cohesive bond strength in the metal. Thus, fracture of the cohesive bonds in the metal results when shearing occurs. These strong interfacial bonds and the shearing fracture in the metal are the main causes of the observed wear behavior and the transfer of the metal to the ceramic. In the literature, the surface energy (bond energy) per unit area of the metal is shown to be related to the degree of interfacial bond strength per unit area. Because the two materials of a metal-ceramic couple have markedly different ductilities, contact can cause considerable plastic deformation of the softer metal. It is the ductility of the metal, then, that determines the real area of contact. In general, the less ductile the metal, the smaller the real area of contact. The coefficient of friction for clean surfaces of metal-ceramic couples correlates with the metals total surface energy in the real area of contact gamma A (which is the product of the surface energy per unit area of the metal gamma and the real area of contact (A)). The coefficient of friction increases as gamma A increases. Furthermore, gamma A is associated with the wear and transfer of the metal at the metal-ceramic interface: the higher the value of gamma A, the greater the wear and transfer of the metal.

  2. Wear Behavior of Cold Pressed and Sintered Al2O3/TiC/CaF2Al2O3/TiC Laminated Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    Xuefeng YANG; Jian CHENG; Peilong SONG; Shouren WANG; Liying YANG; Yanjun WANG; Ken MAO

    2013-01-01

    A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance,such as low friction coefficient and low wear rate.Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure.Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear.Al2O3/TiC ceramic was also cold pressed and sintered for comparison.Friction analysis of the two ceramics was then conducted via a wear-and-tear machine.Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum,respectively.Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite.Under the friction load,the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits.This process formed a smooth,self-lubricating film,which led to better anti-wear properties.Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.

  3. RESEARCH ABOUT RESULTS REPRODUTIBILITY AND ABRASIVE PARTICLES FRAGMENTATION IN BALL-CRATERING TESTS

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2013-06-01

    Full Text Available The micro-abrasive wear tests by rotating ball (crater wear have played an important role in abrasive wear researches. In this type of test, the contact between a specimen and a ball on rotating motion and abrasive particles supplied between these two elements, results in a crater on the specimen, based on which the abrasive wear behaviour is analysed. The purpose of this work is to study results the reprodutibility and the silicon carbide (SiC abrasive particles fragmentation during micro-abrasive wear tests. Tests were conducted with carburized AISI 1010 steel balls and high speed steel specimens, “with” and “without” titanium nitride (TiN coatings. The abrasive slurry was prepared with black silicon carbide (average particle size of 5 µm and distilled water. Grooving abrasion is related with lower reprodutibility results. For the test conditions of this work, no abrasive particles fragmentation was observed, independently of the sliding distance, what is justified, among others factors, by the low normal force applied.

  4. Seat-belt wearing and driving behavior: an instrumented-vehicle study.

    Science.gov (United States)

    Janssen, W

    1994-04-01

    Less-than-expected fatality reductions after seat-belt legislation has been introduced in a jurisdiction may be explained in terms of selective recruitment of parts of the driving population and/or behavioral adaptation by beginning belt users. The present investigation has compared the relative merits of these two hypotheses at the level of individual driver behavior. In the initial study the driving behavior of groups of habitual wearers and nonwearers of the belt was compared. Nonwearers made two trips, one with the belt on and one without the belt. Habitual wearers drove belted only. The main part of the experiment was a 105 km freeway route. Two additional tasks of a somewhat more critical nature, a double lane-change manoeuvre and the performance of a braking manoeuvre in front of a fixed obstacle, were performed after the freeway trips. Factor analysis on 39 variables describing driving behavior on the road and during the additional tasks resulted in five factors. One of these, the factor describing the distribution of driving speed on the freeway, differentiated between nonwearers and wearers (thus yielding support for the selective recruitment hypothesis) as well as between wearing and not wearing the belt by the same drivers (thus yielding support for the behavioral adaptation hypothesis). In the follow-up study the original wearers and nonwearers were assigned to one of four experimental treatments: (i) the promise by the experimenter of a considerable incentive for not having a culpable motor vehicle accident over a period of a year. Half the habitual wearer subjects were assigned to this condition. The expectation was that this group would become more careful in their driving; (ii) a control group, consisting of the remaining habitual wearers; (iii) the agreement between the experimenter and the subject that the latter would buckle up in everyday driving for the year to come--half the habitual nonwearer subjects were assigned to this condition; (iv) a

  5. Microstructure and wear properties of tungsten carbide reinforced steel matrix composites

    Institute of Scientific and Technical Information of China (English)

    YOU Xian-qing; SONG Xue-feng; REN Hao; MA Jian-guo; HUANG Man-ping; ZHANG Cheng-jun

    2005-01-01

    WC(27%) reinforced steel matrix composites were produced by using an electroslag melting casting technique. The microstructure of the material was characterized using scanning electron microscopy(SEM), optical microscopy and X-ray diffraction(XRD). Energy dispersive spectroscopy(EDS) and transmission electron micro-scopy were performed to investigate the interfacial composition between WC particle and steel matrix. The results reveal that the WC particles are partially melted into the steel substrate. At the same time, a reaction layer was detected along with the periphery of WC particle, which significantly enhances the bonding strength of the interface. A slipping wear (high stress abrasion) test was utilized to understand the wear behavior of this material. Abrasive experiment displays a better wear resistance than unreinforced steel matrix when coarse WC particles are dispersed into it. The coarse particles provide greater wear-resistance than the fine particles and operatively takes on the most applied loads. Additionally, the large particles have not been peeled during the wear process for a long time, which indicates the effect of interfacial reaction on wear behavior at the ambient temperature. A double carbide (Fe, W)3C is detected in the interface zone between particles and matrices using transmission electron microscopy.

  6. Effect of porosity on wear resistance of SiCp/Cu composites prepared by pressureless infiltration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; QU Xuan-hui; DUAN Bo-hua; HE Xin-bo; QIN Ming-li

    2008-01-01

    The influence of porosity on the wear behavior of high volume fraction (61%) SiCp/Cu composite produced by pressureless infiltration was studied using a sliding, reciprocating and vibrating(SRV) machine. SiCp/Cu composites slid against hardened GCr15 bearing steel ball in the load range of 40-200 N. The results show that the wear rate increases with increasing porosity. The composite containing low porosity shows excellent wear resistance, which is attributed to the presence of mechanically mixed layer on the worn surface. In this case, the dominant wear mechanism is oxidative wear. Comparatively, the composite containing high porosity exhibits inferior wear resistance. Fracture and spalling of the particles are considered as the main causes of severe wear. Third body abrasion is the controlling wear mechanism. In addition, porosity has more important influence on wear rate at high load than at low load. This is associated with the fact that the fracture and spalling of particles is a process of crack initiation and propagation. At lower load, the pores beneath the worn surface can not propagate significantly, while the pores become unstable and easily propagate under high load, which results in a higher wear rate.

  7. Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    Science.gov (United States)

    Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.

    2015-03-01

    In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.

  8. Core/shell composites with polystyrene cores and meso-silica shells as abrasives for improved chemical mechanical polishing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com; Qin, Jiawei; Wang, Yayun; Li, Zefeng [Changzhou University, School of Material Science and Engineering (China)

    2015-09-15

    The core/shell-structured organic/inorganic composite abrasive has an important potential application in damage-free chemical mechanical polishing (CMP) due to its non-rigid mechanical property. In this work, the PS/{sub M}SiO{sub 2} composites, containing polystyrene (PS) sphere (211 ± 4 nm) cores and mesoporous silica shells (31 ± 3 nm in thickness) were synthesized through directed surface sol–gel process of tetraethylorthosilicate on the polymer cores in the presence of the cetyltrimethylammonium bromide surfactant. For comparison, the conventional core/shell PS/{sub N}SiO{sub 2} composites with non-porous silica shells were also prepared via a modified Stöber procedure that involved the hydrolysis of TEOS under acidic condition. The physical properties of the samples were examined by small-angle X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, and nitrogen adsorption–desorption. As novel abrasives, the core/shell-structured PS/{sub M}SiO{sub 2} composites were introduced into the CMP process for silicon oxide films. The oxide-CMP performance among conventional solid silica particles, PS/{sub N}SiO{sub 2} composites, and novel PS/{sub M}SiO{sub 2} composites was explored by atomic force microscopy. Polishing results indicated that the substrate revealed a comparable root-mean-square surface roughness (0.25 ± 0.03 and 0.22 ± 0.02 nm, respectively) after CMP with PS/{sub N}SiO{sub 2} and PS/{sub M}SiO{sub 2} abrasives under the same polishing conditions. However, the material removal rate of the PS/{sub M}SiO{sub 2} composites (123 ± 15 nm/min) was about three times larger than that of the PS/{sub N}SiO{sub 2} composites (47 ± 13 nm/min). The reduced surface roughness and improved removal rate might be due to the optimization of the physical and/or chemical environments in the local contacting region between abrasives

  9. Effect of Different Parameters on Mechanical and Erosion Wear Behavior of Bamboo Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Anu Gupta

    2011-01-01

    Full Text Available The application of natural fibers as reinforcement in polymer composites has been continuously growing during the last few decades. These composites find diverse applications in hostile environment where they are exposed to external attacks such as solid particle erosion. Also, in many respects, the mechanical properties of different polymer composites are their most important characteristics. Therefore, improvement of the erosion resistance and mechanical behavior of polymer composites are the prime requirements in their applications. Bamboo fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for reinforcement in polymers. To this end, an attempt has been made in this paper not only to study the utilization potential of bamboo fiber in polymer composites but also to study the effect of various parameters on mechanical and erosion wear performance of bamboo fiber reinforced epoxy composites.

  10. Wear Behavior of a NiCr/AgVO3 Self-Lubricating Composite

    Institute of Scientific and Technical Information of China (English)

    Wenting ZHANG; Lingzhong DU; Hao LAN; Chuanbing HUANG; Weigang ZHANG

    2013-01-01

    NiCr/AgVO3 self-lubricating composite was prepared by powder cold-pressed method with the NiCr alloy as the matrix and 10 wt.% additive of AgVO3 as solid lubricant.The AgVO3 additive powder was synthesized by the precipitation method which exhibits a melting point of 460 ℃.Microstructure,phase composition and thermal properties of the AgVO3 powder,as well as the composite of NiCr/AgVO3 were analyzed using scanning electron microscopy (SEM),transmission electron microscopy (TEM),X-ray diffraction (XRD) and differential scanning calorimeter (DSC).The friction and wear behavior of the specimens from room temperature (R.T.)to 800 ℃ was evaluated using a ball-on-disk tribometer and 3D white light interference (WLI).The results showed that the friction coefficient of this material under atmosphere decreases with temperature increasing from R.T.to 800 ℃.However,the wear rate firstly increases from R.T.to 200 ℃,almost remains stable from 200 ℃ to 600 ℃,and then decreases with further increasing the temperature up to 800 ℃.It is also found that the prepared composite materials show a better frictional behavior than NiCr alloy over the whole range of temperatures,which is mainly attributed to solid lubrication of AgVO3 exhibiting a lamella-slip structure at temperatures below 460 ℃ and forms liquid-film at elevated temperatures above the melting point.

  11. Wear Behavior and Mechanism of H13 Steel in Different Environmental Media

    Science.gov (United States)

    Li, Xinxing; Zhou, Yin; Cao, Huan; Li, Yixian; Wang, Lan; Wang, Shuqi

    2016-10-01

    Sliding wear tests were performed for H13 steel in atmosphere, distilled water, 3.5% NaCl, and 5% NaOH water solutions under various loads on a pin-on-disk wear tester. The results showed that for different environmental media, the wear rate of H13 steel in atmosphere was the maximum and that in 3.5% NaCl solution was the minimum. The maximum wear rate in atmosphere was caused by a larger quantity of heat produced in the friction process. In this case, the adhesive wear prevailed. In three wet environments, the mild wear prevailed due to the good lubrication and cooling capacity of media as well as corrosion product film on worn surface. In distilled water, the wear mechanism was a typical fatigue wear. On the other hand, in 3.5% NaCl and 5% NaOH solutions, corrosive wear prevailed. The minimum wear rate in 3.5% NaCl solution was attributed to the protective function of corrosion product film. On the contrary, noncompact corrosion product film in 5% NaOH solution resulted in higher wear rate.

  12. Friction and wear behavior of steam-oxidized ferrous PM compacts

    Energy Technology Data Exchange (ETDEWEB)

    Raj, P. Philomen-D-Anaand; GopalaKrishna, A. [Dept. of Mechanical Engineering, Jawaharlal Nehru Technological University, Kakinada (India); Palaniradja, K [Dept. of Mechanical Engineering, Pondicherry Engineering College, Pondicherry (India)

    2016-10-15

    This study determines density effect by assessing sintering temperature and graphite content on the dry sliding wear characteristics of steam-treated iron materials using a pin-on-disk wear test. The specimens were prepared from atomized premixed iron base powders and contained 0.1 to 1.0 wt.% carbon compacted at different densities (5.9 g/cc to 6.8 g/cc). The specimens were sintered for 1 h at different sintering temperatures (1090°C to 1130°C), and then subjected to continuous steam treatment at 540°C for 95 min through in situ Powder metallurgy (PM) technique. Steam treatment was proposed to improve the wear performances of the components of PM. Wear tests were conducted using a pin-on-disk-type machine. Load ranged from 20 N to 60 N. Sliding distance and sliding velocity of 312 m and 0.26 m/s, respectively, were adopted for all tests. Scanning electron microscope was used to analyze wear surface. Increased density and graphite content reduced the wear rate of steam-treated materials. Hardness increased with increasing graphite content. Wear mechanism, wear rate map, and wear maps were drawn for the test result data. Wear transition map identified mild, severe, and ultra-severe wear regimes as functions of applied load.

  13. Dry sliding wear behavior of Ti-6Al-4V alloy in air

    Institute of Scientific and Technical Information of China (English)

    刘勇; 杨德庄; 武万良; 杨士勤

    2002-01-01

    The dry sliding wear properties of Ti-6Al-4V alloy sliding against GCr15 steel under different velocities(between 0.2 and 1.2 m/s)and applied loads(from 30 to 90 N)were tested using a pin-on-disk tester in air. The wear occurred on both surfaces of the tested couplings. The wear rate of the Ti-6Al-4V alloy ranged from 23.0 to 123.8 mg/km. The wear of Ti-6Al-4V samples was in severe wear. The wear rate of Ti-6Al-4V samples increased with the increasing of load and shows a minimum on the curves of wear rate versus sliding velocity. SEM morphologies of worn surfaces and debris were observed. Phases in the debris were analyzed by means of XRD spectra.

  14. Evaluation of sliding wear behavior of graphite particle-containing magnesium alloy composites

    Institute of Scientific and Technical Information of China (English)

    QI Qing-ju

    2006-01-01

    The influence of graphite particle content on the friction and wear characteristics of AZ91 magnesium alloy matrix composite was studied. The results show that the wear resistances of graphite-containing composite are much better than those of the matrix under the test conditions. The anti-wear ability of magnesium alloy composite is improved substantially with the increase of the graphite content from 5% to 20%, and both wear mass loss and coefficient of friction are decreased to low level. Different wear mechanisms operate at different sliding stages. A continuous black lubricating film forms progressively on the worn surface along sliding, which effectively limits the direct interaction between the composite tribosurface and the counterpart, and also remarkably delays the transition from mild wear to severe wear for magnesium alloy composite.

  15. Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments

    Directory of Open Access Journals (Sweden)

    Islak S.

    2015-01-01

    Full Text Available The aim of this study was to investigate the effect of sintering temperature and boron carbide content on wear behavior of diamond cutting segments. For this purpose, the segments contained 2, 5 and 10 wt.% B4C were prepared by hot pressing process carried out under a pressure of 35 MPa, at 600, 650 and 700 °C for 3 minutes. The transverse rupture strength (TRS of the segments was assessed using a three-point bending test. Ankara andesite stone was cut to examine the wear behavior of segments with boron carbide. Microstructure, surfaces of wear and fracture of segments were determined by scanning electron microscopy (SEM-EDS, and X-ray diffraction (XRD analysis. As a result, the wear rate decreased significantly in the 0-5 wt.% B4C contents, while it increased in the 5-10 wt.% B4C contents. With increase in sintering temperature, the wear rate decreased due to the hard matrix.

  16. Preparation of Ce-doped colloidal SiO{sub 2} composite abrasives and their chemical mechanical polishing behavior on sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hong, E-mail: hong_lei2005@aliyun.com [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Tong, Kaiyu; Wang, Zhanyong [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2016-04-01

    Chemical mechanical polishing (CMP) has become a widely accepted global planarization technology. Abrasive is one of key elements during CMP process. In order to enhance removal rate and improve surface quality of sapphire substrate, a series of novel Ce-doped colloidal SiO{sub 2} composite abrasives were prepared by chemical co-precipitation method. The CMP performances of the Ce-doped colloidal SiO{sub 2} composite abrasives on sapphire substrate were investigated by using UNIPOL-1502 polishing equipment. The analyses on the surface of polished sapphire substrate indicate that slurries containing the Ce-doped colloidal SiO{sub 2} composite abrasives exhibit lower surface roughness, higher material removal rate than that of pure colloidal SiO{sub 2} abrasive under the same testing conditions. Furthermore, the acting mechanism of the Ce-doped colloidal silica in sapphire CMP was investigated. X-ray photoelectron spectroscopy analysis shows that solid-state chemical reactions between Ce-doped silica abrasives and sapphire surface occur during CMP process, which can promote the chemical effect in CMP and lead to the improvement of material removing rate. - Highlights: • Novel Ce-doped colloidal SiO{sub 2} composite abrasives were prepared. • The chemical mechanical polishing (CMP) performances of the composite abrasives on sapphire substrate were investigated. • Novel composite abrasives show excellent polishing characteristics comparison with pure colloidal SiO{sub 2} abrasive. • We explore and report the acting mechanism of composite abrasives to sapphire CMP.

  17. Effects of heat treatment on wear behavior of carbon/carbon-copper composites under electrical current%热处理对炭/炭-铜复合材料载流磨损行为的影响

    Institute of Scientific and Technical Information of China (English)

    杨鹏翱; 张红波; 尹健; 杨双磊

    2015-01-01

    To explore the effects of heat treatment of Carbon/Carbon ( C/C ) substrates on wear behavior of Carbon/Carbon⁃Copper ( C/C-Cu) composites, copper⁃impregnated carbon fiber reinforced carbon composites were fabricated by infiltrating molten copper alloy into C/C substrates, which were made by chemical vapor infiltration ( CVI) . The wear behavior of C/C-Cu composites was investigated by using a dynamic wear test apparatus during application of an AC electrical current. The worn surfaces of composites before and after test were observed by 3D microscope and SEM. Effects of 2 000℃ heat treatment of C/C substrates on wear behavior of C/C-Cu composites were investigated. The results indicate that the mass wear rate and linear wear rate of the C/C-Cu composites whose C/C substrates were treated at 2 000 ℃ were 34. 42% and 17. 84%, respectively, lower than that of composites without heat treatment. The graphitization degree of C/C substrates improved after 2 000 ℃ heat treatment, thus, the interlaminar splitting resistance was reduced. Thus it is easier for graphite sheets to split into small graphite scraps and form a smooth and lubricant film on the surface, which restrained the inhomogeneous wear induced by surface defects. Therefore, the mutual effects of abrasive wear, adhesive wear, oxidation wear and arc ablation are weakened.%为探明炭/炭( C/C)多孔体热处理对炭/炭-铜( C/C-Cu)复合材料载流磨损行为的影响,采用化学气相渗透法( CVI)增密的C/C多孔体,再通过压力熔渗法制备C/C-Cu复合材料.采用载流动态磨损试验机测试C/C-Cu复合材料载流磨损行为,利用数字式三维视频显微镜和扫描电子显微镜观察复合材料磨损前后的表面形貌,研究了C/C多孔体经过2000℃热处理对C/C-Cu复合材料载流磨损行为的影响.结果表明:C/C-Cu复合材料的质量磨损率和线磨损率比C/C多孔体未经热处理

  18. Performance of recycling abrasives in rock cutting by abrasive water jet

    Institute of Scientific and Technical Information of China (English)

    Gokhan Aydin

    2015-01-01

    Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and the rock particles. The recycling abrasive particles were then dried and sieved for determination of their disintegration behaviors. Before each cutting with recycling abrasives, the abrasive particles less than 106mm were screened out. It is revealed that a considerable amount of used abrasives can be effectively reused in the rock cutting. The reusabilities of abrasives are determined as 81.77%, 57.50%, 34.37%and 17.72%after the first, second, third and fourth cuttings, respectively. Additionally, it is determined that recycling must be restricted three times due to the excessive disintegration of abrasives with further recycling. Moreover, it is concluded that cutting depth, kerf width and surface roughness decreases with recycling. No clear trend is found between the kerf taper angle and recycling. Particle size distribution is determined as an important parameter for improving the cutting performance of recycling abrasives.

  19. Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings.

    Science.gov (United States)

    Amadeh, A; Ebadpour, R

    2013-02-01

    Metal-ceramic composite coatings are widely used in automotive and aerospace industries as well as micro-electronic systems. Electrodeposition is an economic method for application of these coatings. In this research, nickel-cobalt coatings reinforced by nano WC particles were applied on carbon steel substrate by pulse electrodeposition from modified Watts bath containing different amounts of cobalt sulphate as an additive. Saccharin and sodium dodecyl sulphate (SDS) were also added to electroplating bath as grain refiner and surfactant, respectively. The effect of cobalt content on wear and corrosion behavior of the coatings was investigated. Wear and corrosion properties were assessed by pin-on-disk and potentiodynamic polarization methods, respectively. Phase analysis was performed by X-ray diffraction (XRD) using CuK(alpha) radiation and the worn surfaces were studied by means of Scanning Electron Microscopy (SEM). The results showed that the addition of cobalt improved the wear resistance of the coatings. In the presence of 18 g/L cobalt in electrodeposition bath, the wear rate of the coating decreased to 0.002 mg/m and the coefficient of friction reduced to 0.695 while they were 0.004 mg/m and 0.77 in the absence of cobalt, respectively. This improvement in wear properties can be attributed to the formation of hcp phase in metallic matrix. Meanwhile, the corrosion resistance of the coatings slightly reduced because cobalt is more active metal with respect to nickel.

  20. Wear-resistance of Aluminum Matrix Microcomposite Materials

    Directory of Open Access Journals (Sweden)

    M. Kandeva

    2011-03-01

    Full Text Available A procedure is developed for the study of wear of aluminum alloys AlSi7 obtained by casting, reinforced by TiC microparticles, before and after heat treatment. Tribological study is realized under conditions of friction on counterbody with fixed abrasive. Experimental results were obtained for mass wear, wear rate, wear intensity and wear-resistance of the alloys with different wt% of microparticles.

  1. Wear Resistance and Wear Mechanism of a Hot Dip Aluminized Steel in Sliding Wear Test

    Science.gov (United States)

    Xue, Zhiyong; Hao, Xiaoyang; Huang, Yao; Gu, Lingyun; Ren, Yu; Zheng, Ruipeng

    2016-12-01

    Sliding wear experiments were conducted on a hot dip aluminized steel to investigate its wear resistance and wear mechanism. The wear tests were also carried out on a hot dip galvanized steel and the base material (steel Q345) as a comparison. Results show that the wear resistance and hardness of the hot dip aluminized steel are significantly higher than that of the hot dip galvanized steel and the steel Q345 at room temperature. The better wear resistance of the hot dip aluminized steel attributes mainly to the formation of a transition layer containing abundant Fe-Al intermetallic compounds and the transformation of wear-resisting oxides during the friction process. The main phase in the transition layer is Fe2Al5. The thickness of the transition layer is about 90-120 μm. When the wear load increases from 3 N to 19 N, the wear type of the aluminized layer transform from adhesive wear (3 N) into abrasive wear (7 N) and finally into slight wear mixed with oxidation (higher than 11 N).

  2. Microstructure and Dry Sliding Wear Behavior of Fe-Based (Cr, Fe)7C3 Composite Coating Fabricated by PTA Welding Process

    Science.gov (United States)

    Yuan, Y. L.; Li, Z. G.

    2013-11-01

    Using Cr3C2 and Fe-CrNiBSi powder blends as raw materials, an α-Fe matrix composite coating reinforced by in situ (Cr, Fe)7C3 rods, with a thickness of about 3.6 mm, was fabricated on the surface of AISI A36 low carbon steel by means of plasma-transferred arc welding. The results of microstructural analysis show that in the coating, a large number of carbides, (Cr, Fe)7C3, in rod shape grow, and radiate around some half-dissolved Cr3C2 particles. The results of dry sliding wear tests at loads 100, 200, and 300 N show that the wear resistances of (Cr, Fe)7C3-reinforced coating, respectively, are about 6.9, 14.9, and 17 times higher than that of nonreinforced pure Fe-CrNiBSi alloy coating; the average value and fluctuation range of friction coefficient (FC) of (Cr, Fe)7C3-reinforced coating are less than those of pure Fe-CrNiBSi alloy coating; the main wear mechanisms of pure Fe-CrNiBSi alloy coating are ploughing, deformation, and adhesive wear, whereas those of (Cr, Fe)7C3-reinforced coating are microcutting, abrasive, and oxidation wear; the cracks on surfaces of (Cr, Fe)7C3 rods increased with the increasing loads; and the matrix α-Fe can prevent them from extending further in the composite coating.

  3. STUDY ON THE WEAR CHARACTERISTICS OF Ni-P BRUSH-PLATING COATING

    Institute of Scientific and Technical Information of China (English)

    WuWenyue; HuangJinruo; QuJinxin; ShaoHesheng

    1996-01-01

    This paper studied the wear characteristics as well as the wear mechanismof the Ni-P alloy brush-plating coating by means of sliding-wear tests, SEM and X-Ray analyses. The results show that Ni-Palloy coating has excellent wear-ability inhigh temperature, and the wear mechanism of the coating is that both the adhesivewear and abrasive wear exist in a boundary lubrication condition. The wear model wasbuilt up.

  4. Wear Performance of Cu-Alloyed Austempered Ductile Iron

    Science.gov (United States)

    Batra, Uma; Batra, Nimish; Sharma, J. D.

    2013-04-01

    An investigation was carried out to examine the influence of structural and mechanical properties on wear behavior of austempered ductile iron (ADI). Ductile iron (DI) samples were austenitized at 900 °C for 60 min and subsequently austempered for 60 min at three temperatures: 270, 330, and 380 °C. Microstructures of the as-cast DI and ADIs were characterized using optical and scanning microscopy, respectively. The structural parameters, volume fraction of austenite, carbon content of austenite, and ferrite particle size were determined using x-ray diffraction technique. Mechanical properties including Vicker's hardness, 0.2% proof strength, ultimate tensile strength, ductility, and strain hardening coefficient were determined. Wear tests were carried out under dry sliding conditions using pin-on-disk machine with a linear speed of 2.4 m/s. Normal load and sliding distance were 45 N and 1.7 × 104 m, respectively. ADI developed at higher austempering temperature has large amounts of austenite, which contribute toward improvement in the wear resistance through stress-induced martensitic transformation, and strain hardening of austenite. Wear rate was found to depend on 0.2% proof strength, ductility, austenite content, and its carbon content. Study of worn surfaces and nature of wear debris revealed that the fine ausferrite structure in ADIs undergoes oxidational wear, but the coarse ausferrite structure undergoes adhesion, delamination, and mild abrasion too.

  5. Effect of temperature on friction and wear behavior of CuO-zirconia composites

    NARCIS (Netherlands)

    Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.; Winnubst, Aloysius J.A.

    2012-01-01

    Results of wear tests using an alumina ball sliding against 5 wt% copper oxide doped tetragonal zirconia polycrystalline (CuO-TZP) ceramics are reported as a function of temperature up to 700 °C. The specific wear rate and friction coefficient are strongly dependent on temperature. Below a critical

  6. Effect of temperature on friction and wear behavior of CuO-zirconia composites

    NARCIS (Netherlands)

    Valefi, M.; Rooij, de M.B.; Schipper, D.J.; Winnubst, A.J.A.

    2012-01-01

    Results of wear tests using an alumina ball sliding against 5 wt% copper oxide doped tetragonal zirconia polycrystalline (CuO-TZP) ceramics are reported as a function of temperature up to 700 °C. The specific wear rate and friction coefficient are strongly dependent on temperature. Below a critical

  7. INTERNAL FINISHING OF CYLINDRICAL PIPES USING SINTERED MAGNETIC ABRASIVES

    Directory of Open Access Journals (Sweden)

    PALWINDER SINGH

    2011-07-01

    Full Text Available An internal magnetic abrasive finishing (MAF process was proposed to produce highly finished inner surfaces of workpieces used in critical applications. The process principle and the finishing characteristics of magnetic abrasive finishing of cylindrical pipes using sintered magnetic abrasives are described in this research work. Thesintered magnetic abrasive is a mixture of Al2O3 abrasive and ferromagnetic particles. The Al2O3 based sintered magnetic abrasives have been developed in sintering machine. The surface roughness measurements resulting from finishing experiments demonstrate the effects of the abrasive behavior on the surface modifications. Thesurface finish was analysed in terms of percent improvement in surface finish (PISF. Also surface finish was analysed using Response Surface Methodology (RSM. The obtained maximum PISF was 95% and minimum surface roughness was 0.05 μm Ra. To further study the improvement in surface finish, the surface was microscopically examined using X-Ray Diffraction (XRD.

  8. Protective effect of green tea on dentin erosion and abrasion

    Directory of Open Access Journals (Sweden)

    Melissa Thiemi Kato

    2009-12-01

    Full Text Available OBJECTIVE: This in situ study evaluated the protective effect of green tea on dentin erosion (ERO and erosion-abrasion (ABR. MATERIAL AND METHODS: Ten volunteers wore intraoral palatal appliances with bovine dentin specimens subjected to ERO or ERO + toothbrushing abrasion performed immediately (ERO+I-ABR or 30 min after erosion (ERO+30-min-ABR. During 2 experimental 5-day crossover phases, the volunteers rinsed with green tea or water (control, 1 min between each erosive (5 min, cola drink and abrasive challenge (30 s, toothbrushing, 4x/day. Dentin wear was measured by profilometry. RESULTS: The green tea reduced the dentin wear significantly for all conditions compared to control. ERO+I-ABR led to significantly higher wear than ERO, but it was not significantly different from ERO+30-min-ABR. ERO+30-min-ABR provoked significant higher wear than ERO, only for the placebo treatment. CONCLUSIONS: From the results of the present study, it may be concluded that green tea reduces the dentin wear under erosive/abrasive conditions.

  9. Wear Behavior of Ceramic CAD/CAM Crowns and Natural Antagonists

    Directory of Open Access Journals (Sweden)

    Ella A. Naumova

    2017-02-01

    Full Text Available Objective: Evaluation of wear behavior of computer-aided design/computer-aided manufacturing (CAD/CAM crowns from various restorative materials and natural antagonists. Method: Full CAD/CAM crowns fabricated with nanoceramic resin (Lava Ultimate (LU, a glass ceramic in a resin interpenetrating matrix (Vita Enamic (VE and a lithium silicate reinforced ceramic enriched with zirconia (Vita Suprinity (VS were cemented on human molars. The crown and antagonists were subjected to simulated chewing. 3D data sets, before and after the chewing simulation, were generated and matched. Occlusal surface roughness, vertical and volume loss of the crowns and antagonists were analyzed. Results: Crown roughness was significantly different between the LU and VE groups after chewing simulation. Crown vertical loss differed in all groups. The highest crown volume loss was found in the LU group, and the lowest in the VE group. Comparisons between the LU and VE groups and the LU and VS groups were significantly different. The highest antagonist volume loss was reached in the VE group, the lowest was in the LU group. Conclusion: Roughness increased after chewing simulation. LU crowns are the most natural antagonist-friendly; these were the most susceptible to vertical and volume loss. Of the tested materials, the VE crowns are the most stable regarding occlusion.

  10. Friction and wear behavior of nitrogen-doped ZnO thin films deposited via MOCVD under dry contact

    Directory of Open Access Journals (Sweden)

    U.S. Mbamara

    2016-06-01

    Full Text Available Most researches on doped ZnO thin films are tilted toward their applications in optoelectronics and semiconductor devices. Research on their tribological properties is still unfolding. In this work, nitrogen-doped ZnO thin films were deposited on 304 L stainless steel substrate from a combination of zinc acetate and ammonium acetate precursor by MOCVD technique. Compositional and structural studies of the films were done using Rutherford Backscattering Spectroscopy (RBS and X-ray Diffraction (XRD. The frictional behavior of the thin film coatings was evaluated using a ball-on-flat configuration in reciprocating sliding under dry contact condition. After friction test, the flat and ball counter-face surfaces were examined to assess the wear dimension and failure mechanism. Both friction behavior and wear (in the ball counter-face were observed to be dependent on the crystallinity and thickness of the thin film coatings.

  11. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium.

    Science.gov (United States)

    Wu, Yan-Ping; Li, Zheng-Yang; Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing

    2017-01-01

    The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip.

  12. Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding

    Directory of Open Access Journals (Sweden)

    Wen-yi Huo

    2015-01-01

    Full Text Available Alloy cladding coatings are widely prepared on the surface of tools and machines. High-entropy alloys are potential replacements of nickel-, iron-, and cobalt-base alloys in machining due to their excellent strength and toughness. In this work, CoCrFeMnNbNi HEA coating was produced on AISI 304 steel by tungsten inert gas cladding. The microstructure and wear behavior of the cladding coating were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, microhardness tester, pin-on-ring wear tester, and 3D confocal laser scanning microscope. The microstructure showed up as a nanoscale lamellar structure matrix which is a face-centered-cubic solid solution and niobium-rich Laves phase. The microhardness of the cladding coating is greater than the structure. The cladding coating has excellent wear resistance under the condition of dry sliding wear, and the microploughing in the worn cladding coating is shallower and finer than the worn structure, which is related to composition changes caused by forming the nanoscale lamellar structure of Laves phase.

  13. Structure and sliding wear behavior of 321 stainless steel/Al composite coating deposited by high velocity arc spraying technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-xiong; XU Bin-shi; LIU Yan; LIANG Xiu-bing; XU Yi

    2008-01-01

    A typical 321 stainless steel/aluminum composite coating (321/Al coating) was prepared by high velocity arc spraying technique (HVAS) with 321 stainless steel wire as the anode and aluminum wire as the cathode.The traditional 321 stainless steel coating was also prepared for comparison.Tribological properties of the coatings were evaluated with the ring-block wear tester under different conditions.The structure and worn surface of the coatings were analyzed by scanning electron microscopy (SEM),X-ray diffractometry (XRD) and energy dispersion spectroscopy (EDS).The results show that,except for aluminum phase addition in tne 321/Al coating,no other phases are created compared with the 321 coating.However,due to the addition of aluminum,the 321/Al coating forms a type of "ductile/hard phases inter-deposited" structure and performs quite different tribological behavior.Under the dry sliding condition,the anti-wear property of 321/Al coating is about 42% lower than that of 321 coating.Butunder the oil lubricated conditions with or without 32h oil-dipping pretreatment,the anti-wear property of 321/Al coating is about 9% and 5% higher than that of 321 coating,respectively.The anti-wear mechanism of the composite coating is mainly relevant to the decrease of oxide impurities and the strengthening action resulted from the "ductile/hard phases inter-deposited" coating structure.

  14. Quantifying Cutting and Wearing Behaviors of TiN- and CrNCoated AISI 1070 Steel

    Directory of Open Access Journals (Sweden)

    Ahmet Cakan

    2008-11-01

    Full Text Available Hard coatings such as titanium nitride (TiN and chromium nitride (CrN are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscopy (SEM, line scan analyses and X-ray diffraction (XRD. The wear properties of TiN- and CrNcoated samples were determined using an on-line monitoring system. The results show that TiN-coated samples demonstrate higher wear resistance than CrN-coated samples.

  15. Quantifying Cutting and Wearing Behaviors of TiN- and CrNCoated AISI 1070 Steel.

    Science.gov (United States)

    Cakan, Ahmet; Ozkaner, Vedat; Yildirim, Mustafa M

    2008-11-05

    Hard coatings such as titanium nitride (TiN) and chromium nitride (CrN) are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP) technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscopy (SEM), line scan analyses and X-ray diffraction (XRD). The wear properties of TiN- and CrNcoated samples were determined using an on-line monitoring system. The results show that TiN-coated samples demonstrate higher wear resistance than CrN-coated samples.

  16. Cold-Sprayed Cu-MoS2 and Its Fretting Wear Behavior

    Science.gov (United States)

    Zhang, Yinyin; Descartes, Sylvie; Vo, Phuong; Chromik, Richard R.

    2016-02-01

    Cu and Cu-MoS2 coatings were fabricated by cold spray, and the fretting wear performance of the two coatings was compared. A mixture (95 wt.% Cu + 5 wt.% MoS2) was used as feedstock for the composite coating. Coatings were sprayed with identical gas flow conditions on the substrates pre-heated to approximately 170 °C. The morphology of coating top surface and polished cross sections was analyzed by scanning electron microscopy (SEM) and light optical microscopy (LOM). The influence of MoS2 on Cu deposition was examined. The local MoS2 concentration within the coating was found to affect the hardness. Fretting tests were carried out at two different normal loads, and the influence of MoS2 on friction and wear was studied. The morphology and elemental compositions of the wear scars and wear debris were observed by SEM and energy dispersive x-ray spectroscopy (EDS), respectively.

  17. Ultrasonic magnetic abrasive finishing

    Institute of Scientific and Technical Information of China (English)

    LU Ya-ping; MA Ji; ZHANG Jun-qiang; WANG Long-shan

    2006-01-01

    Put forward a new kind of polishing method, ultrasonic magnetic abrasive finishing (UMAF), and studied its mechanism of improving polishing efficiency. By analyzing all kind of forces acting on single abrasive particle in the polishing process and calculating the size of the composition of forces, get the conclusion that UMAF will enhance the efficiency of the normal magnetic abrasive finishing(MAF) due to the ultrasonic vibration increases the cutting force and depth. At last the idea of designing the UMAF system based on numerical control milling machine is put forward which is convenient to setup and will accelerate the practical application of MAF.

  18. Wear Behavior of Fiber Laser Textured TiN Coatings in a Heavy Loaded Sliding Regime

    Directory of Open Access Journals (Sweden)

    Daniele Ugues

    2012-11-01

    Full Text Available In heavy loaded mating components, such as sliders and sliding bearings, guaranteeing the efficiency of lubricant films for long times during severe service conditions is very complicated. In this work, the benefits deriving from the use of fiber laser sources for surface texturing of very thin TiN coatings in severe wear working conditions were demonstrated. Evaluations of the laser textured dimples shape, geometry and density are given. Wear performance of the fiber laser textured surfaces was evaluated in discontinuous oil lubricated conditions with a flat contact. High normal load and low sliding speed were applied. Comparison tests were also performed on commercial TiN and WC/C coatings. In terms of average wear volume and maximum wear depth, Laser Surface Texturing of TiN provided respectively a 70% and a 45% reduction if compared to plain TiN. If compared to WC/C the wear resistance gains were lower but LST TiN maintained such benefits for longer wear runs. SEM analysis also revealed that the laser interaction provided a localized thermal cracking to the TiN coating. However, the sliding action caused very limited and localized coating fragmentation or delamination.

  19. The Effect of Time Variation on the Wear Sliding Behavior of Composites

    Directory of Open Access Journals (Sweden)

    Wafaa M. Salih

    2009-01-01

    Full Text Available Composites materials are widely used in all industries all over the world, replacing many other engineering materials. Reasons for such popularity are many, among such, are their physical and mechanical properties in addition to the simplicity of their manufacturing processes. Machine elements that are made of polymeric materials are usually exposed to different causes of failure such as wear. The time effect on the wear behaviour of some composite materials (polyester-commercially fiber reinforcement named (E-glass was studied. In this study four type of composite different in number of layers, it had (3-6-9-12 layers (Wear volume 0.48, 0.41, 0.71 and 0.78 respectively. All experiments were conducted under dry condition. Preliminary results show the wear volume increases for all examined composites, as the statically applied load increases. Fourth type has the highest wear resistance, then third type and lastly first type. The wear volume increases for all examined composites, varied of time increases.

  20. Failure analysis of wear of main clutch separating ring of heavy vehicles

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-long; LI Xiao-yan; ZHU You-li; XU Bin-shi

    2005-01-01

    The severe wear of separating ring is considered to be a main reason which leads to the improper declutch of the main clutch of heavy vehicles. The wear mechanism of the separating ring is not well understood. Scanning electron microscopy and transmission electron microscopy were employed to analyze the surface features and dislocation characteristics of the separating ring. The typical features of furrows and rolled tongue-like metal were found on the surface of separating ring by scanning electron microscopy observation, which can be considered as a major indi cation of the grain-abrasion. A zone of high density dislocation was noted on the subsurface of the separating ring by transmission electron microscopy observation, which implies the contribution of the severe impact on the surface of the separating ring in the wear process. The influences of the structure of the separating ring, the service condition and the in-service stress distribution on the wear behavior, were also analyzed. The results show that the failure of separating ring results from the impact wear and grain-abrasion together with the plastic deformation.

  1. Study on Abrasion Properties of Common Materials for Fluid Mechanical Impeller at Interactive Erosion and Cavitation Wear%流体机械叶轮常用材料冲蚀与空蚀交互磨损特性研究

    Institute of Scientific and Technical Information of China (English)

    庞佑霞; 李彬; 刘厚才; 唐勇

    2013-01-01

    模拟流体机械冲蚀与空蚀交互磨损工况,通过对比材料的绝对失重量与试验时间的变化曲线、24 h 试验的磨痕演变规律以及 SEM微观形貌,研究 Q235、45#和40Cr 钢及 HT200铸铁4种叶轮常用金属材料的磨蚀特性。结果表明:在冲蚀与空蚀交互磨损下,材料的失重量与磨损时间接近正比;试件的磨痕沿水流方向,在空蚀孔两边呈彗星状分布;沙粒对 Q235等塑性材料微切削过程中,动能转化为材料的塑性变形功,使材料产生塑性流动,形成犁沟状磨痕;对于脆性材料 HT200,空泡溃灭和沙粒的冲击超过其弹塑性变形极限,使材料产生微裂纹、微体积疲劳剥落,形成蜂窝状蚀坑。相同硬度下,塑性材料耐交互磨蚀性能优于脆性材料。%Through simulating turbine working condition on interactive erosion and cavitation wear,the abrasion charac-teristics of Q235,45 and 40Cr steel,and HT200 cast iron were studied,and the change curves between material’s abso-lute weight loss with experimental time were obtained.The wear scar evolution of four materials during the 24 h experiment was compared and the specimen microstructure was observed by SEM.The results show that the weight loss of material is a-bout in direct proportion to the abrasion time under interactive wear;the specimen wear scar along the flow direction takes a comet formation distribution on both sides of the cavitation hole;during the process of sand micro-cutting on plastic mate-rial such as Q235 steel,the kinetic energy is converted to plastic deformation work,which causes material plastic flow and forms furrow-like wear scar;brittle material like HT200 cast iron,the bubble collapse and sand impact exceeds its elastic-plastic deformation limit,as a result,micro-cracks,fatigue spalling and honeycomb pits are generated for material;the wear resistance of plastic material is better than that of brittle material at the same

  2. Wear prediction in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, E.J. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  3. Ti6Al4V Blade Wear Behavior During High-Speed Rubbing with NiAl-hBN Abradable Seal Coating

    Science.gov (United States)

    Xue, Weihai; Gao, Siyang; Duan, Deli; Zhang, Jiaping; Liu, Yang; Li, Shu

    2016-12-01

    The high-speed rubbing wear behavior between a Ti6Al4V blade and a NiAl-hBN seal coating was studied with a high-speed rub test rig. Blade wear behavior, which had not received enough attentions, was the key concern of this study. The rub tests conducted at different linear speeds and single-pass depths indicated that although wear distance was constant and rub forces decreased at high linear speed, blade wear increased with the increment of linear speed when single-pass depth was invariable. According to scanning electron microscopy, x-ray diffraction, electron probe microanalysis and microhardness analyses of the wear scars, different blade and coating wear mechanisms were observed when rubbed at different linear speeds. Remarkably, when rubbing was done at high linear speed, there was severe blade oxidation with the generation of oxidation layer full of cracks and high-hardness transfer layer in the coating wear scar, and these were identified as reasons of aggravated blade wear.

  4. Ti6Al4V Blade Wear Behavior During High-Speed Rubbing with NiAl-hBN Abradable Seal Coating

    Science.gov (United States)

    Xue, Weihai; Gao, Siyang; Duan, Deli; Zhang, Jiaping; Liu, Yang; Li, Shu

    2017-02-01

    The high-speed rubbing wear behavior between a Ti6Al4V blade and a NiAl-hBN seal coating was studied with a high-speed rub test rig. Blade wear behavior, which had not received enough attentions, was the key concern of this study. The rub tests conducted at different linear speeds and single-pass depths indicated that although wear distance was constant and rub forces decreased at high linear speed, blade wear increased with the increment of linear speed when single-pass depth was invariable. According to scanning electron microscopy, x-ray diffraction, electron probe microanalysis and microhardness analyses of the wear scars, different blade and coating wear mechanisms were observed when rubbed at different linear speeds. Remarkably, when rubbing was done at high linear speed, there was severe blade oxidation with the generation of oxidation layer full of cracks and high-hardness transfer layer in the coating wear scar, and these were identified as reasons of aggravated blade wear.

  5. Contact air abrasion.

    Science.gov (United States)

    Porth, R

    1999-05-01

    The advantages of contact air abrasion techniques are readily apparent. The first, of course, is the greatly increased ease of use. Working with contact also tends to speed the learning curve by giving the process a more natural dental feel. In addition, as one becomes familiar with working with a dust stream, the potential for misdirecting the air flow is decreased. The future use of air abrasion for deep decay removal will make this the treatment of choice for the next millennium.

  6. Effect of the Carbides and Matrix on the Wear Resistance of Nodular Cast Iron

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2013-07-01

    Full Text Available This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.

  7. Effect of the Carbides and Matrix on the Wear Resistance of Nodular Cast Iron

    Directory of Open Access Journals (Sweden)

    Gumienny G.

    2013-09-01

    Full Text Available This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.

  8. Optimization of wear behavior of electroless Ni-P-W coating under dry and lubricated conditions using genetic algorithm (GA

    Directory of Open Access Journals (Sweden)

    Arkadeb Mukhopadhyay

    2016-12-01

    Full Text Available The present study aims to investigate the tribological behavior of Ni-P-W coating under dry and lubricated condition. The coating is deposited onto mild steel (AISI 1040 specimens by the electroless method using a sodium hypophosphite based alkaline bath. Coating characterization is done to investigate the effect of microstructure on its performance. The change in microhardness is observed to be quite significant after annealing the deposits at 400°C for 1h. A pin–on–disc type tribo-tester is used to investigate the tribological behavior of the coating under dry and lubricated conditions. The experimental design formulation is based on Taguchi’s orthogonal array. The design parameters considered are the applied normal load, sliding speed and sliding duration while the response parameter is wear depth. Multiple regression analysis is employed to obtain a quadratic model of the response variables with the main design parameters under considerations. A high value of coefficient of determination of 95.3% and 87.5% of wear depth is obtained under dry and lubricated conditions, respectively which indicate good correlation between experimental results and the multiple regression models. Analysis of variance at a confidence level of 95% shows that the models are statistically significant. Finally, the quadratic equations are used as objective functions to obtain the optimal combination of tribo testing parameters for minimum wear depth using genetic algorithm (GA.

  9. Abrasive Performance of Chromium Carbide Reinforced Ni3Al Matrix Composite Cladding

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; LUO He-li; FENG Di; CAO Xu; ZHANG Xi-e

    2009-01-01

    The Microstructure and room temperature abrasive wear resistance of chromium carbide reinforced NiM3Al matrix composite cladding at different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3 Al matrix composite at different depth. Three kinds of tests, designed for different load and abrasive size, were used to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding at the depth of 6 mm, namely NC-M2, was much higher than that of the composite cladding at the depth of 2 mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180 μm to 50μm. The mierostructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, was a function of distance from the interface between the coating and substrate varied gradually. The chromium carbide particles near the interface were finer than that far from inter-face, which was the main reason for the different wear resistance of the composite cladding at different depth.

  10. Effect of carbon nanotube addition on the wear behavior of basalt/epoxy woven composites.

    Science.gov (United States)

    Kim, M T; Rhee, K Y; Lee, B H; Kim, C J

    2013-08-01

    The effect of acid-treated carbon nanotube (CNT) addition on the wear and dynamic mechanical thermal properties of basalt/epoxy woven composites was investigated in this study. Basalt/CNT/epoxy composites were fabricated by impregnating woven basalt fibers into epoxy resin mixed with 1 wt% CNTs which were acid-treated. Wear and DMA (dynamic mechanical analyzer) tests were performed on basalt/epoxy composites and basalt/CNT/epoxy composites. The results showed that the addition of the acid-treated CNTs improved the wear properties of basalt/epoxy woven composites. Specifically, the friction coefficient of the basalt/epoxy composite was stabilized in the range of 0.5-0.6 while it fell in the range of 0.3-0.4 for basalt/CNT/epoxy composites. The wear volume loss of the basalt/CNT/epoxy composites was approximately 68% lower than that of the basalt/epoxy composites. The results also showed that the glass transition temperature of basalt/CNT/epoxy composites was higher than that of basalt/epoxy composites. The improvement of wear properties of basalt/epoxy composites by the addition of acid-treated CNTs was caused by the homogeneous load transfer between basalt fibers and epoxy matrix due to the reinforcement of CNTs.

  11. Influence of composition on friction-wear behavior of composite materials reinforced by brass fibers

    Institute of Scientific and Technical Information of China (English)

    JIA Xian; LING Xiaomei

    2003-01-01

    In the study, for the composite materials reinforced by brass fibers, the influence of dominant ingredients, such as organic adhesion agent, cast iron debris, brass fiber, and graphite powder, on the friction-wear characteristics was investigated. The friction-wear experiment was carried out on the block-on-ring tribometer MM200. The worn surfaces of the friction pair consisting of the composite materials and grey cast iron HT200 under dry sliding friction were examined using scanning electron microscope (SEM), energy dispersive analysis (EDX) and differential thermal analysis-thermogravimetric analysis (DTA-TAG). The experimental results showed that the friction coefficient and the wear loss of the composite material increase obviously with the increase of cast iron debris content, but decrease obviously with the increase of graphite powder content, and increase a little when the mass fraction of brass fiber was over 19%, and the orientation of brass fiber has obvious influence on friction-wear property. When the mass fraction of organic adhesion agent was about 10-11%, the composite materials have an excellent friction-wear performance. The friction heat can pyrolyze organic ingredient in worn surface layer.

  12. Sliding wear behavior of E-glass-epoxy/MWCNT composites: An experimental assessment

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2016-03-01

    Full Text Available This investigation has evaluated the sliding wear properties of E-glass-epoxy/MWCNT (multiwalled carbon nanotube composite and Epoxy/MWCNT composite. Four different reinforcements (0, 0.5,1 and 1.5 wt % of MWCNTs are dispersed into an epoxy resin. Design of experiments (DOE and Analysis of variance (ANOVA are employed to understand the relationship between control factors (Percentage of reinforcement, Sliding distance, Sliding velocity and Normal load and response measures (specific wear rate and friction coefficient. The control variables such as sliding distance (300, 600, 900 and 1200 m and normal loads of 10, 15, 20 and 25 N and at sliding velocities of 1, 2, 3 and 4 m/s are chosen for this study. It is observed that that the specific wear rate and friction coefficient can be reduced by the addition of MWCNTs. Scanning electron microscopy (SEM is used to observe the worn surfaces of the samples. Compared with neat epoxy, the composites with MWCNTs showed a lower mass loss, friction coefficient and wear rate and these parameters decreased with the increase of MWCNT percentage. Microscopic investigation of worn out sample fracture surface has revealed that fiber debonding happens when the stresses at the fiber matrix interface exceeds the interfacial strength, causing the fiber to debond from the matrix. The optimum control variables have been derived to reduce both wear and friction coefficient of composites.

  13. Anti-abrasive nanocoatings current and future applications

    CERN Document Server

    2015-01-01

    This book provides an overview of the fabrication methods for anti-abrasive nanocoatings. The connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties (i.e. nanohardness, toughness, wear rate, load-bearing ability, friction coefficient, and scratch resistance) are discussed. Size-affected mechanical properties of nanocoatings are examined, including their uses. Anti-abrasive nanocoatings, including metallic-, ceramic-, and polymeric-based layers, as well as different kinds of nanostructures, such as multi-layered nanocomposites and thin films, are reviewed. * Provides a comprehensive overview of the fabrication methods for anti-abrasive nanocoatings* Discusses the connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties* Reviews advantages and drawbacks of fabrication methods for anti-abrasive nanocoatings and clarifies the place of these nanocoatings in the world of nanotechnology

  14. Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal-transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon-shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.

  15. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    Directory of Open Access Journals (Sweden)

    L. Francis Xavier

    2016-01-01

    Full Text Available With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  16. Wear Behaviour of Pressible Lithium Disilicate Glass Ceramic

    Science.gov (United States)

    Peng, Zhongxiao; Rahman, Muhammad Izzat Abdul; Zhang, Yu; Yin, Ling

    2015-01-01

    This paper reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressible lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using 3D laser scanning microscopy, scanning electron microscopy and energy dispersive x-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behaviour of LDGC and will provide guidelines for better utilisation and preparation of the material for long-term success in dental restorations. PMID:25980530

  17. Impact of toothpaste slurry abrasivity and toothbrush filament stiffness on abrasion of eroded enamel - an in vitro study.

    Science.gov (United States)

    Wiegand, Annette; Schwerzmann, Martina; Sener, Beatrice; Magalhaes, Ana Carolina; Roos, Malgorzata; Ziebolz, Dirk; Imfeld, Thomas; Attin, Thomas

    2008-08-01

    Toothbrush abrasion is significant in the development of tooth wear, particularly when combined with erosion. This in vitro study aimed to evaluate the impact of toothpaste slurry abrasivity and toothbrush filament stiffness on abrasion of eroded enamel. Eroded enamel samples (hydrochloric acid, pH: 2.6, 15 s) were brushed with 40 strokes in an automatic brushing machine using manual toothbrushes with different filament stiffness (filament diameter: 0.15, 0.20, or 0.25 mm). A paste-free control slurry (relative enamel abrasion (REA) value 2) and toothpaste slurries with different abrasivity (REA values 6 or 9) were used for brushing. Erosion and abrasion were followed by storing the enamel samples in artificial saliva for 3 h. After each 4th cycle, the samples were stored in artificial saliva for 15 h. After 60 cycles, enamel loss was measured by profilometry and statistically analyzed by two-way and one-way ANOVA and Bonferroni/Dunn post-hoc tests. Loss of enamel (mean, microm) was influenced mainly by the abrasivity of the slurry and increased along with REA value (REA 2: 0.0-0.2, REA 6: 2.1-3.3, REA 9: 2.9-3.7). Abrasion of eroded enamel was also affected by filament stiffness of the toothbrush, but only groups brushed with toothpaste slurry of REA 6 showed any significant difference between the different toothbrushes. Thereby, toothbrushes with 0.2 mm filament diameter caused higher enamel loss than 0.15 and 0.25 mm filaments. Toothbrush abrasion of eroded enamel is influenced mainly by the abrasivity of the toothpaste slurry, but is also modified by toothbrush filament stiffness.

  18. Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures

    Science.gov (United States)

    Escobar de Obaldia, Enrique; Herrera, Steven; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo

    2016-11-01

    The remarkable mechanical properties observed in biological composite materials relative to those of their individual constituents distinguish them from common engineering materials. Some naturally occurring high-performance ceramics, like the external veneer of the Chiton (Cryptochiton stelleri) tooth, have been shown to have superior hardness and impressive abrasion resistance properties. The mechanical performance of the chiton tooth has been attributed to a hierarchical arrangement of nanostructured magnetite rods surrounded with organic material. While nanoindentation tests provide useful information about the overall performance of this biological composite, understanding the key microstructural features and energy dissipation mechanisms at small scales remains a challenging task. We present a combined experimental/numerical approach to elucidate the role of material deformation in the rods, debonding at the rod interfaces and the influence of energy dissipation mechanisms on the ability of the microstructure to distribute damage under extreme loading conditions. We employ a 3D finite element-based micromechanical model to simulate the nanoindentation tests performed in geological magnetite and cross-sections of the chiton tooth. This proposed model is capable of capturing the inelastic deformation of the rods and the failure of their interfaces, while damage, fracture and fragmentation of the mineralized rods is assessed using a probabilistic function. Our results show that these natural materials achieve their abrasion resistant properties by controlling the interface strength between rods, alleviating the tensile stress on the rods near the indentation tip and therefore decreasing the probability of catastrophic failure without significantly sacrificing resistance to penetration. The understanding of these competing energy dissipating mechanisms provides a path to the prediction of new combination of materials. In turns, these results suggest certain

  19. Sliding wear behaviors of electrodeposited Ni composite coatings containing micrometer and nanometer Cr particles

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-gang; ZHOU Yue-bo; ZHANG Hai-jun

    2009-01-01

    Micrometer and nanometer Cr particles were co-deposited with Ni by electroplating from a nickel sulfate bath containing a certain content of Cr particles. Cr microparticles are in a size range of 1-5 (m and Cr nanoparticles have an average size of 40 nm. The friction and the wear performance of the co-deposited Ni-Cr composite coatings were comparatively evaluated by sliding against Si3N4 ceramic balls under non-lubricated conditions. It is found that the incorporation of Cr particles enhances the microhardness and wear resistance of Ni coatings. The wear resistance of Ni composite coating containing Cr nanoparticles is higher than that of the Ni composite coating containing Cr microparticles with a comparable Cr particle content. The co-deposition of smaller nanometer Cr particles with Ni effectively reduces the size of Ni crystals and significantly increases the hardness of the composite coatings due to grain-refinement strengthening and dispersion-strengthening, resulting in a significant improvement of wear resistance of the Ni-Cr nanocomposite coatings.

  20. Investigation of the Wear and Hardness Behaviour of Aluminium Alloy Coated Using the Powder Flame Spraying Method

    Directory of Open Access Journals (Sweden)

    Nurullah KIRATLI

    2009-03-01

    Full Text Available In this study, the wear behavior of aluminum alloy AL 5754 ( Etial 53 coated with powders of 10Al-Cu alloy (RotoTec® 19850 and 15Cr7Fe-Ni alloy (RotoTec® 19985 using powder flame spraying method has been investigated. To avoid thermal expansions between substrate and coating materials, Ni-Al RotoTec® 51000 was used as binding material. The wear test was performed on a pin-on-disc test apparatus. As an abrasive material, a SiC, 800 sandpaper was used. The wear tests of coated materials were carried out at room temperature and at 1.0m/s sliding speed with 0.35 and 0.70MPa pressures. To characterize coated specimens, they have been examined with optical microscope. As a result, it is found that the both coating materials have improved wear resistance.

  1. Wear Behavior of Uncoated and Coated Tools under Complex Loading Conditions

    Directory of Open Access Journals (Sweden)

    M. Wieland

    2012-03-01

    Full Text Available In automotive industry crash relevant structures of the body in white are manufactured using the direct hot stamping process. Due to the high temperature difference between the hot blank and the cold tool surfaces and the relative movement between the blank and the tool surfaces during the forming operation, high thermal and mechanical loads are applied on the tool leading to excessive wear in terms of adhesion on the tool surfaces. One possibility to reduce wear of hot stamping tools is the application of tool coating systems. In the scope of this work uncoated and coated tools are characterized under complex loading conditions with respect to adhesive layer build-up.

  2. Effect of Ultrasonic Vibration on the Behavior of Antifriction and Wear Resistance of Al2O3/Al2O3 Ceramic Friction Pairs Under Oil Lubrication

    Science.gov (United States)

    Dong, X. Y.; Qiao, Y. L.; Zang, Y.; Cui, Q. S.

    The behavior of antifriction and wear resistance of Al2O3/Al2O3 ceramic friction pairs lubricated by four different lubrication oils under ultrasonic vibration was studied. The surface morphologies of wear scare was analyzed by metallographic microscope. The effect mechanism of ultrasonic vibration on frictional pairs under different lubrication oils was discussed. The studied results showed that, ultrasonic vibration would improve the behavior of antifriction and wear resistance of the Al2O3/Al2O3 ceramic friction pairs under various lubrication oils.The improving would be dramaticer when the viscosity of lubrication oil was low. Ultrasonic vibration decreased the friction coefficient and wear volume 12.9% and 38.7% respectively, when the lubrication oil was 6#,the viscosity of which is 39.77 mm2/s. When the lubrication oil was 150BS, the viscosity of which is 549.69 mm2/s, ultrasonic vibration made friction coefficient and wear volume decreased 4.6% and 11.6% respectively.The effect of ultrasonic vibration on the behavior of antifriction and wear resistance of Al2O3/Al2O3 ceramic friction pairs was determined by the formation and the destruction of oil film on the friction surface and the upward floatage created by ultrasonic vibration.

  3. Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles

    Science.gov (United States)

    Liu, Aiguo; Guo, Mianhuan; Hu, Hailong

    2010-08-01

    Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.

  4. A comparative study on the wear behaviors of cladding candidates for accident-tolerant fuel

    Science.gov (United States)

    Lee, Young-Ho; Byun, Thak Sang

    2015-10-01

    Accident-tolerant fuels are expected to have considerably longer coping time to respond to the loss of active cooling under severe accidents and, at the same time, have comparable or improved fuel performance during normal operation. The wear resistance of accident tolerant fuels, therefore, needs to be examined to determine the applicability of these cladding candidates to the current operating PWRs because the most common failure of nuclear fuel claddings is still caused by grid-to-rod fretting during normal operations. In this study, reciprocating sliding wear tests on three kinds of cladding candidates for accident-tolerant fuels have been performed to investigate the tribological compatibilities of self-mated cladding candidates and to determine the direct applicability of conventional Zirconium-based alloys as supporting structural materials. The friction coefficients of the cladding candidates are strongly influenced by the test environments and coupled materials. The wear test results under water lubrication conditions indicate that the supporting structural materials for the cladding candidates of accident-tolerant fuels need to be replaced with the same cladding materials instead of using conventional Zirconium-based alloys.

  5. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  6. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  7. A Comparative Study on Wear Properties of As Cast, Cast Aged and Forge Aged A356 Alloy with Addition of Grain Refiner and/or Modifier

    Directory of Open Access Journals (Sweden)

    D.G. Mallapur

    2015-03-01

    Full Text Available In the present work, a comparative wear behavior study of three categories of materials viz, as cast, cast aged (casting followed by T6 and forge aged (forging followed by T6 has been investigated. Neither melt treatment nor solid state processing (like aging and forging seems to be altering the wear behavior of the materials drastically. Cast aged A356 materials exhibit higher wear resistance compared to as cast and forge aged A356 materials. Further, it was observed that cast aged samples register lower coefficient of friction compared to other samples. It is also noted that the difference in wear behavior is revealed only at conditions of higher load, higher speed and longer sliding distance of testing. At lower regimes the difference is marginal. Among cast aged samples, ones treated with combined addition exhibit better wear resistance compared to other materials. Samples treated with combined addition register lowest coefficient of friction followed by samples treated with Sr, those with B, those with Ti and untreated ones. Abrasive wear mechanism is found to be operative in the regime of higher loading and higher velocity of sliding. Adhesive wear mechanism seems to be dominating the wear process at the lower regime of load and velocity of sliding.

  8. Micro-scale abrasion behaviour of electroless Ni-P-SiC coating on aluminium alloy

    OpenAIRE

    2014-01-01

    Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to pa...

  9. Micro-scale Abrasion and Medium Load Multiple Scratch Tests of PVD Coatings.

    Institute of Scientific and Technical Information of China (English)

    S.Poulat; H.Sun; D.GTeer

    2004-01-01

    Micro-scale abrasion testing is widely used to determine the abrasion resistance of thin film coatings; it is a simple technique that can easily be used as part of a quality control procedure, but it has got the disadvantage of not allowing an easy study of the wear mechanisms involved: it is difficult to estimate the load applied on each abrasive particles in the contact between the loaded ball and the specimen. The possibility of using progressive loading scratch testing, a method widely used to assess the adhesion of thin film coatings, to model the abrasive wear of coatings has been studied in the past; the use of multiple scratch tests to study the wear mechanisms corresponding to a single abrasion scratch event has also been studied in the case of bulk materials (ceramics and hard metals). Two coatings, deposited by Closed Field Unbalanced Magnetron Sputter Ion Plating (CFUBMSIP) on ASP23 powder metallurgy steel substrate are chosen to be representative of the use of protective coatings in industry: titanium nitride, which is widely used to prevent tool wear, and TCL Graphit-iCTM, which is widely used as a wear resistant solid lubricant coating. The two coatings are first characterised by using a standard quality control procedure: their thickness is determined by the cap grinding method, their adhesion by progressive loading scratch. Then micro-scale abrasion tests performed with a slurry at a concentration which promotes grooving wear, and medium load multiple scratch tests performed with diamond indenters are completed; the results of these tests are analysed and compared to determine if there is any correlation between the two sets of results; the multiple scratch tests wear tracks are also observed to determine the wear mechanisms involved.

  10. Influence of carbon content on wear resistance and wear mechanism of Mn13Cr2 and Mn18Cr2 cast steels

    Directory of Open Access Journals (Sweden)

    Ding-shan Lu

    2015-01-01

    Full Text Available By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to study the influence of different carbon contents (1.25wt.%, 1.35wt.%, and 1.45 wt.% on the wear resistance and wear mechanism of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The research results show that the wear resistance of the Mn18Cr2 cast steel is superior to that of the Mn13Cr2 cast steel under the condition of the same carbon content and different impact abrasive wear conditions because the Mn18Cr2 cast steel possesses higher worn work hardening capacity as well as a more desirable combination of high hardness and impact toughness than that of the Mn13Cr2 cast steel. When a 4.5 J impact abrasive load is applied, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the former dominates. When the carbon content is increased, the worn work hardening effect becomes increasingly dramatic, while the wear resistance of both steels decreases, which implies that an increase in impact toughness is beneficial to improving the wear resistance under severe impact abrasive wear conditions. Under the condition of a 1.0 J impact abrasive load, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the latter plays a leading role. The worn work hardening effect and wear resistance intensify when the carbon content is increased, which implies that a higher hardness can be conducive to better wear resistance under low impact abrasive condition.

  11. The Effect of Bias Voltage and Gas Pressure on the Structure, Adhesion and Wear Behavior of Diamond Like Carbon (DLC Coatings With Si Interlayers

    Directory of Open Access Journals (Sweden)

    Liam Ward

    2014-04-01

    Full Text Available In this study diamond like carbon (DLC coatings with Si interlayers were deposited on 316L stainless steel with varying gas pressure and substrate bias voltage using plasma enhanced chemical vapor deposition (PECVD technology. Coating and interlayer thickness values were determined using X-ray photoelectron spectroscopy (XPS which also revealed the presence of a gradient layer at the coating substrate interface. Coatings were evaluated in terms of the hardness, elastic modulus, wear behavior and adhesion. Deposition rate generally increased with increasing bias voltage and increasing gas pressure. At low working gas pressures, hardness and modulus of elasticity increased with increasing bias voltage. Reduced hardness and modulus of elasticity were observed at higher gas pressures. Increased adhesion was generally observed at lower bias voltages and higher gas pressures. All DLC coatings significantly improved the overall wear resistance of the base material. Lower wear rates were observed for coatings deposited with lower bias voltages. For coatings that showed wear tracks considerably deeper than the coating thickness but without spallation, the wear behavior was largely attributed to deformation of both the coating and substrate with some cracks at the wear track edges. This suggests that coatings deposited under certain conditions can exhibit ultra high flexible properties.

  12. Wear behavior of 2-1/4 Cr-1 Mo tubing against alloy 718 tube-support material in sodium-cooled steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W L

    1983-05-01

    A series of prototypic steam generator 2-{1/4} Cr-1 Mo tube/alloy 718 tube support plate wear tests were conducted in direct support of the Westinghouse Nuclear Components Division -- Breeder Reactor Components Project Large Scale steam Generator design. The initial objective was to verify the acceptable wear behavior of softer, over-aged'' alloy 718 support plate material. For all interfaces under all test conditions, resultant wear damage was adhesive in nature with varying amounts of 2-{1/4} Cr-1 Mo tube material being adhesively transferred to the alloy 718 tube supports. Maximum tube wear depths exceeded the initially established design allowable limit of 127 {mu}m (.005 in.) at 17 of the 18 interfaces tested. A decrease in contact stresses produced acceptable tube wear depths below a readjusted maximum design allowable value of 381 {mu}m (.015 in.). Additional conservatisms associated with the simulation of a 40-year lifetime of rubbing in a one-week laboratory test provided further confidence that the 381 {mu}m maximum tube wear allowance would not be exceeded in service. Softer, over-aged'' alloy 718 material was found to produce slightly less wear damage on 2-{1/4} Cr-1 Mo tubing than fully age hardened material. Also, air formed oxide films on the alloy 718 reduced initial tube wear and delayed the onset of adhesive surface damage. However, at high surface stress levels, these films were not sufficiently stable to provide adequate long term protection from adhesive wear. The results of the present work and those of previous test programs suggest that the successful in-sodium tribological performance of 2-{1/4} Cr-1 Mo/alloy 718 rubbing couples is dependent upon the presence of lubricative surface films, such as oxides and/or surface reaction or deposition products. 11 refs., 13 figs., 4 tabs.

  13. Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry.

    Science.gov (United States)

    Saha, Gobinda C; Khan, Tahir I; Glenesk, Larry B

    2009-07-01

    Oil sands deposits in Northern Alberta, Canada represent a wealth of resources attracting huge capital investment and significant research focus in recent years. As of 2005, crude oil production from the current oil sands operators accounted for 50% of Canada's domestic production. Alberta's oil sands deposits contain approximately 1.7 trillion barrels of bitumen, of which over 175 billion are recoverable with current technology, and 315 billion barrels are ultimately recoverable with technological advances. A major problem of operating machinery and equipment in the oil sands is the unpredictable failure from operating in this highly aggressive environment. One of the significant causes of that problem is premature material wear. An approach to minimize this wear is the use of protective coatings and, in particular, a cermet thin coating. A high level of coating homogeneity is critical for components such as bucketwheels, draglines, conveyors, shovels, heavyhauler trucks etc. that are subjected to severe degradation through abrasive wear. The identification, development and application of optimum wear solutions for these components pose an ongoing challenge. Nanostructured cermet coatings have shown the best results of achieving the degree of homogeneity required for these applications. In this study, WC-17Co cermet powder with nanocrystalline WC core encapsulated with 'duplex' Co layer was used to obtain a nanostructured coating. To apply this coating, high velocity oxy-fuel (HVOF) thermal spraying technique was used, as it is known for producing wear-resistant coatings superior to those obtained from plasma-based techniques. Mechanical, sliding wear and microstructural behavior of the coating was compared with those of the microstructured coating obtained from spraying WC-10Co-4Cr cermet powder by HVOF technique. Results from the nanostructured coating, among others, showed an average of 25% increase in microhardness, 30% increase in sliding wear resistance and

  14. Tribological performance evaluation of coated steels with TiNbCN subjected to tribo-chemical wear in Ringers solution

    Energy Technology Data Exchange (ETDEWEB)

    Caballero G, J.; Aperador, W. [Universidad Militar Nueva Granada, Volta Research Group, 101-80 Bogota (Colombia); Caicedo, J. C., E-mail: g.ing.materiales@gmail.com [Universidad del Valle, Tribology Polymers, Powder Metallurgy and Processing of Solid Recycled Research Group, Cali (Colombia)

    2016-11-01

    With the aim of generating solutions against the deterioration of the joint prostheses, it was studied the tribo-corrosive behavior of titanium niobium carbonitride (TiNbCN) deposited on stainless steel AISI 316 LVM using the technique of magnetron sputtering physical vapor deposition. The tests were performed in a balanced saline solution (Ringers solution) which represents the characteristics of the body fluids, using an equipment where the micro-abrasive wear is generated by the contact of micro particles in the system; the micro-abrasion-corrosion mechanism is described by means of the incorporation of an electrochemical cell consisting of three electrodes. Both the substrate and the coating, were subjected to micro-abrasive wear simultaneously with the electrochemical tests of Tafel polarization curves and electrochemical impedance spectroscopy (EIS); subsequently of the tests, the specimens were analyzed by optical microscopy and scanning electron microscopy characterizing the surface morphology. It was observed that the coating presents an increase in its corrosion and wear resistance with the presence of a simulated biological fluid. The samples were characterized via X-ray diffraction. (Author)

  15. Behavioral factors.

    Science.gov (United States)

    Zero, D T; Lussi, A

    2006-01-01

    During and after an erosive challenge, behavioral factors play a role in modifying the extent of erosive tooth wear. The manner that dietary acids are introduced into the mouth (gulping, sipping, use of a straw) will affect how long the teeth are in contact with the erosive challenge. The frequency and duration of exposure to an erosive agent is of paramount importance. Night-time exposure (e.g. baby bottle-feeding) to erosive agents may be particularly destructive because of the absence of salivary flow. Health-conscious individuals tend to ingest acidic drinks and juices more frequently and tend to have higher than average oral hygiene. While good oral hygiene is of proven value in the prevention of periodontal disease and dental caries, frequent toothbrushing with abrasive oral hygiene products may enhance erosive tooth wear. Unhealthy lifestyles such as consumption of designer drugs, alcopops and alcohol abuse are other important behavioral factors.

  16. Wear Behavior of the Lead-Free Tin Bronze Matrix Composite Reinforced by Carbon Nanotubes

    Science.gov (United States)

    Zeng, Jun; Fan, Huiqing; Wang, Yangli; Zhang, Siquan

    2011-12-01

    Copper-coated carbon nanotubes were prepared by the electroless plating route. The structure and component of copper/carbon tubes were characterized using a transmission electron microscope and energy dispersive spectrometer. The results show that the surface of the carbon tubes was covered by the copper particles. Copper/carbon tubes were used as the substitute of part of tin and all of lead in the tin bronze matrix, and the tribological properties of carbon nanotube-reinforced Cu-4 wt pct Sn-6 wt pct Zn composites were studied. The effects of the carbon nanotube volume fraction and sliding distance in unlubricated ball-on-disc wear test were investigated. The 3 vol pct carbon nanotube-reinforced Cu-4 wt pct Sn-6 wt pct Zn composite shows the Vickers hardness of 126.9, which is approximately 1.6 times higher than that of Cu-6 wt pct Sn-6 wt pct Zn-3 wt pct Pb tin bronze. The wear rate and average friction coefficients of 3 vol pct carbon nanotube-reinforced Cu-4 wt pct Sn-6 wt pct Zn composite were lower than those of the Cu-6 wt pct Sn-6 wt pct Zn-3 wt pct Pb tin bronze, respectively.

  17. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  18. Tribological and Impact Fatigue Behaviors of Pure Titanium Treated by Plasma Ni Alloying

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenxia; HE Zhiyong; WANG Yingqin; LIU Xiaoping; TANG Bin

    2012-01-01

    Ni modified layer is prepared on the surface of pure titanium by plasma surface alloying technique.Surface appearance,micro-structure morphology,composition distribution,phase structure and microhardness of Ni modified layer are analyzed.Tribological performance and fatigue behaviors of Ni modified layer of pure titanium are observed using Pin-on-disc tribometer and repeated impact test.The results indicate that the surface mean Ni concentration of Ni modified layer is nearly 18% which is composed of TiNi,Ti2Ni and Ti phase.The maximum surface microhardness of Ni modified layer is approximately 580 HV which is almost two-fold of the hardness of the substrate.The wear resistance of Ni modified layer is improved obviously.The wear mechanism of Ni modified layer shows slight abrasion wearing,while pure titanium is abrasion and adhesion wearing.Ni modified layer presents better impact fatigue strength.

  19. Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti-13Nb-13Zr alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, K.S. [Department of Materials. Engineering, Indian Institute of Science, Bangalore 560012 (India); Geetha, M., E-mail: geethamanivasagam@vit.ac.in [School of Mechanical and Building Sciences, VIT University, Vellore (India); Richard, C. [Laboratoire de Mecanique et de Rheologie EA 2640, Polytech' Tours, 37000 Tours (France); Landoulsi, J. [Laboratoire de Reactivite de Surface, UMR 7197 CNRS, Universite Pierre and Marie Curie - Paris VI, 4 Place Jussieu, Case 178, F-75252 Paris (France); Ramasawmy, H. [University of Mauritius, Faculty of Engineering, Reduit (Mauritius); Suwas, S. [Department of Materials. Engineering, Indian Institute of Science, Bangalore 560012 (India); Asokamani, R. [School of Mechanical and Building Sciences, VIT University, Vellore (India)

    2012-05-01

    We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end, potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 Degree-Sign C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. Highlights: Black-Right-Pointing-Pointer Relevancy of ECAE process applied to titanium alloy for biomedical applications. Black-Right-Pointing-Pointer Significant improvement of mechanical properties of the surface. Black-Right-Pointing-Pointer Noticeable increase of the corrosion resistance in simulated body fluid.

  20. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Aseel Basim Abdul Hussein

    2015-06-01

    Full Text Available In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60°, grin size of sand 425µm , temperature 30Ċ , 300 gm salt content in 2liter of water and 15 hour. Coating specimen with mixed epoxy resin -RHA with particles size in the range (1.4-4.2 µm improves erosion wear resistance characteristics of the coated specimen, coating thickness was (16 ± 1 μm and after erosion at (15 hour the thickness was (10 μm .

  1. The fractal characterization of wear particles in relation to the wear status

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The topography and distribution of wear particles produced in the wear process containmuch information about the wear status. Fractal geometry is applied in this paper to describe thewear particle accumulation in order to characterize the wear status change. The sliding wear test isperformed on a pin-on-disc apparatus using steel disc and brass pin. The investigation resultsshow that wear particle accumulation presents a strong bi-fractal behavior. Also, the fractal dimen-sion varies in correspondence to the wear status change. A new fractal index characterizing thewear particle accumulation is put forward. The wear tests of brass pin demonstrate that the fractalindex is effective in describing the wear status change.

  2. Friction and wear behavior of TiC particle reinforced ZA43 matrix composites

    Institute of Scientific and Technical Information of China (English)

    谢贤清; 张荻; 刘金水; 吴人洁

    2001-01-01

    TiC/ZA43 composites were fabricated by XDTM and stirring-casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block-on-ring apparatus. Experimental results show that the incorporation of TiC particles improves the microstructure of ZA43 matrix alloy. The coefficient of friction μ and the width of worn groove decrease with the increase of TiC volume fraction φ(TiC). The width of worn groove and μ of the composite during wear testing increase with increasing the applied load. Metallographic examinations reveal that unreinforced ZA43 alloy has deep ploughing grooves with obvious adhesion phenomenon, whereas TiC/ZA43 composites have smooth worn surface. Delamination formation is related to the fatigue cracks and the shear cracks on the surface.

  3. Wear Behavior and Its Correlation with Mechanical Properties of TiB2 Reinforced Aluminium-Based Composites

    Directory of Open Access Journals (Sweden)

    N. B. Dhokey

    2011-01-01

    Full Text Available Aluminium-based TiB2 reinforced composite is a promising material to be used as brake drum material, and it may emerge as substitute for conventional gray cast iron. Aluminium-based composites containing 2% by wt copper reinforced with 2.5 and 5 wt% TiB2 composites were made in induction furnace by in situ synthesis process using simultaneous addition of halide fluxes (K2TiF6 and KBF4. These cast composites were evaluated for microstructures, hardness, flow curve properties, and tensile properties. It was observed that overall wear behavior gave reasonably good correlation with mechanical properties of composites as compared to gray cast iron.

  4. Prediction of wear rates in comminution equipment

    DEFF Research Database (Denmark)

    Jensen, Lucas Roald Dörig; Fundal, Erling; Møller, Per

    2010-01-01

    Raw material comminution equipment may be exposed to excessive wear, which makes it difficult to operate minerals processing plants continuously because lengthy and unplanned shut-downs interrupt the overall process. In general, most comminution equipment is fine-tuned to operate at low vibrations......-resistant high chromium white cast iron (21988/JN/HBW555XCr21), a heat-treated wear resistant steel (Hardox 400) and a plain carbon construction steel (S235). Quartz, which accounts for the largest wear loss in the cement industry, was chosen as abrasive. Other process parameters such as velocity (1–7 m...

  5. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    Science.gov (United States)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  6. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion.

    Science.gov (United States)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-24

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  7. Tribological Behavior of MC Nylon6 Composites Filled with Glass Fiber and Fly ash

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shihua; CUI Chong; CHEN Guang

    2012-01-01

    To improve tribological property of MC Nylon6,the glass fiber and fly ash reinforced monomer casting nylon composites (GFFAPA) were prepared by anionic polymerization of ε-caprolactam.The friction and wear behaviors of composites under dry condition,water lubrication and oil lubrication were investigated through a ring-black wear tester.Worn surfaces were analyzed using a scanning electron microscope.The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing.Compared to MC nylon,the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites (GFPA) with GF30% respectively decrease by 33.1% and 65.3%,of fly ash reinforced nylon composites (FAPA) with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%.The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear.The worn surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites.Compared with dry friction,the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions.The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.

  8. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  9. Influences of surface treatments with abrasive paper and sand-blasting on surface morphology, hydrophilicity, mineralization and osteoblasts behaviors of n-CS/PK composite.

    Science.gov (United States)

    Tang, Xiaoming; Huang, Kai; Dai, Jian; Wu, Zhaoying; Cai, Liang; Yang, Lili; Wei, Jie; Sun, Hailang

    2017-04-03

    The surfaces of nano-calcium silicate (n-CS)/polyetheretherketone (PK) composites were treated with abrasive paper and sand-blasting, and the surfaces performances of the as-treated composites were studied. The results showed that the surface roughness, hydrophilicity and mineralization of the simulated body fluid (SBF) of the composites surfaces were significantly improved, and the properties of the composites treated by with sand-blasting were better than those treated with abrasive paper. Moreover, the treated composites significantly promoted osteoblasts responses, such as cell attachment, spreading, proliferation and alkaline phosphatase (ALP) activity, compared to un-treated composites, and the cellular responses to the composites treated with sand-blasting were better than those treated with abrasive paper. The results suggested that surface treatment with sand-blasting was an effective method to greatly improve the surface bioperformances of the n-CS/PK composite, and this treated composite with improved bioactivity and cytocompatibility might be a promising implant material for orthopedic applications.

  10. Swing Friction Behavior of the Contact Interface Between CoCrMo and UHMWPE Under Dynamic Loading

    Science.gov (United States)

    Chen, Kai; Zhang, Dekun; Yang, Xuehui; Zhang, Xin; Wang, Qingliang; Qi, Jianwei

    2016-12-01

    CoCrMo alloy and UHMWPE have been widely used in knee joint prosthesis implantation materials. In this paper, swing friction behavior of the contact interface between CoCrMo alloy and UHMWPE is studied under dynamic loading. Swing friction characteristic and damage mechanism are discussed. The results show that swing friction coefficients increase with the rising of maximum normal load and swing angular amplitude. Unloading-standing could play alleviative roles in friction and wear to a large degree. As the cycle number gradually increases, the surface roughness of UHMWPE decreases, while the roughness of CoCrMo increases. During the swing friction, the main damage mechanism of CoCrMo is abrasive wear and the main damage mechanisms of UHMWPE are abrasive wear, fatigue wear and plastic deformation. Besides, it is easier to generate surface damages with small angle and heavy load.

  11. Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr

    Science.gov (United States)

    Mohan, L.; Anandan, C.

    2013-10-01

    Titanium alloy Ti-13Nb-13Zr was implanted with oxygen ions by plasma immersion ion implantation. The influence of oxygen ion implantation on the growth of apatite on the implanted sample was investigated by immersion in Hanks’ solution and also by potentiodynamic polarization studies in Hanks’ solution. XRD shows the formation of mainly anatase form of oxide. FESEM images of immersion tested samples show that growth of apatite is more with larger sized deposits on oxygen implanted surface as compared to that on the untreated substrate. XPS investigation of corrosion tested and 1 day immersed samples show higher amount of calcium, phosphorous and oxygen in hydroxide/phosphate form on the oxygen implanted sample. EDS results also confirm higher concentration of Ca and P on oxygen implanted sample. Polarization and electrochemical impedance spectroscopy studies show that the oxygen implanted layer behaves like a nearly ideal capacitor with better passivation characteristics. In sliding wear studies, the implanted layers displayed a lower friction coefficient as compared to the substrate one.

  12. Emission factors and source apportionment for abrasion particles produced by road traffic

    Science.gov (United States)

    Bukowiecki, N.; Lienemann, P.; Figi, R.; Hill, M.; Richard, A.; Furger, M.; Rickers, K.; Cliff, S. S.; Baltensperger, U.; Gehrig, R.

    2009-04-01

    Particle emissions of road traffic are generally associated with fresh exhaust emissions only. However, recent studies identified a clear contribution of non-exhaust emissions to the PM10 load of the ambient air. These emissions consist of particles produced by abrasion from brakes, road wear, tire wear, as well as resuspension of deposited road dust. For many urban environments, quantitative information about the contributions of the individual abrasion processes is still scarce. For effective PM10 reduction scenarios it is of particular interest to know whether road wear, resuspension or fresh abrasion from vehicles is dominating the non-exhaust PM10 contribution. In Switzerland, the emissions of road traffic abrasion particles into the ambient air were characterized in the project APART (Abrasion Particles produced by Road Traffic). The project aimed at finding the contribution of the non-exhaust sources to total traffic-related PM10 and PM2.5 for different traffic conditions, by determining specific elemental fingerprint signatures for the various sources. This was achieved by hourly elemental mass concentration measurements in three size classes (2.5-10, 1-2.5 and 0.1-1 micrometers) with a rotating drum impactor (RDI) and subsequent synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). The elemental fingerprint measurements were embedded into a large set of aerosol, gas phase, meteorological and traffic count measurements. To identify traffic related emissions, measurements were performed upwind and downwind of selected roads. For a better investigation of road wear, a road wear simulator was applied in additional experiments. This allows for the identification and quantification of the different source contributions by means of source-receptor modeling, and for the calculation of real-world emission factors for the individual abrasion sources. The preliminary analysis of hourly resolved trace element measurements in a street canyon in Zürich showed

  13. Tribological behavior of HM1 steel fabricated by precision spray forming under high temperature

    Science.gov (United States)

    Cheng, Y. Q.; Zhang, P.; Zhu, M. D.; Sun, Y. S.

    2015-12-01

    In this study, we investigated the tribological behavior of HM1 steel fabricated by precision spay forming (PSF). WE used block ring friction test for our investigation, at various temperature, which was compared with that of the as-cast specimen. The results indicate that the wear rate and the friction coefficient of the PSFed specimen are reduced compared to that of the as-cast specimen. Attribution to these results is the fine grain, the eliminated segregation of elements, and the uniformly distributed matrix material elements for the PSFed specimen. SEM morphology of wear scar shows that the mainly wear mechanism of the as-cast specimen is adhesive wear, while the wear mechanism of the PSFed specimen is mainly abrasive wear.

  14. Effects of nano-LaF3 on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    Science.gov (United States)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2016-09-01

    Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.

  15. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-09-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  16. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-11-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  17. The Effect of Nodular Cast Iron Metal Matrix on the Wear Resistance

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2012-04-01

    Full Text Available The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive and adhesive wear resistance under conditions of dry friction has a nodular cast iron with carbides with upper and lower bainite. Carbides in bainitic and pearlitic cast iron significantly increase the wear resistance in these conditions. In terms of fluid friction the largest wear resistance had cast iron group with the highest hardness.

  18. Fretting wear behavior of Cr-coated fuel rod for accident-tolerant fuel in flowing fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Kim, Hyung Kyu; Kim, Hyun Gil; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Fretting wear test of the Cr-coated fuel clading candidate have been performed in the flowing fluid condition in order to verify the reliability of Cr-coated layer on zirconium-based fuel cladding. Rod wear volume at each grid spring and dimple is dramaically increased with GTR gap even though each wear scar is not evenly distributed within a 1x1 grid cell.

  19. Effect of amide type modified rapeseed oil as lubricating additive on friction and wear behavior of steel-steel and steel-aluminum alloy systems

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-hua; CHEN Bo-shui; LIU Wei-min; DONG Lin; WANG Jiu

    2004-01-01

    A new type of environmentally friendly lube additive-amide type modified rapeseed oil was synthesized and characterized by infrared spectrum. Its effect on the friction and wear behavior of steel-steel and steel-aluminum alloy systems were investigated with a four-ball machine and an Optimol SRV friction and wear tester respectively.The morphographies of the worn surfaces were analyzed by means of scanning electron microscopy(SEM). The worn surfaces of the 2024Al alloy block were analyzed by means of X-ray photoelectron spectroscopy(XPS). The results show that the modified rapeseed oil as additives can obviously decrease the wear rate and friction coefficient of steel pair and steel-aluminum frictional pair. Its lubrication mechanism is inferred that a high strength complex protection films form on the worn surface of the Al alloy due to the adsorption or tribochemistry reaction of a long chain additive molecule and high reaction activity of N element.

  20. Microstructural effects on the wear behavior of a biomedical as-cast Co-27Cr-5Mo-0.25C alloy exposed to pulsed laser melting.

    Science.gov (United States)

    Acevedo-Dávila, J L; López, H F; Cepeda-Rodríguez, F; Rodriguez-Reyes, M; García-Vazquez, F; Hernández-Garcia, H M

    2014-06-01

    In this work, the effect of pulsed laser melting on the exhibited microstructure and properties of a cast Co-27Cr-5Mo-0.25C alloy was investigated. In particular, properties such as surface hardness and wear behavior of the laser modified microstructure were determined as a function of the implemented laser melting parameters. It was found that laser melting promotes significant grain refinement while preventing the precipitation of coarse carbide phases. Apparently, a refined dendritic grain structure develops which is surrounded by a fine carbide distribution in the interdendritic regions. Moreover, the high-temperature face centered cubic (FCC) phase remains untransformed at room temperature. Hardness measurements and wear testing using a Pin-On-Disk tribological machine indicate that the modified laser surfaces exhibit both, high wear resistance and high microhardness when compared with the untreated as-cast Co-27Cr-5Mo-0.25C alloy. In particular, it was found that the laser modified surfaces exhibit improved wear and friction properties comparable to the ones found in Co-Cr-Mo alloys with a predominantly hexagonal closest packed (HCP) matrix. However, surface defects associated with the laser process can be detrimental for the improved wear performance and they should be considered in identifying the proper laser parameters in alloy melting.

  1. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  2. The microstructural dependence of wear resistance in austenite containing plate steels

    Science.gov (United States)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  3. Diamond-Fluoroplastic Composites for Abrasive Tools

    Science.gov (United States)

    Adrianova, O. A.; Kirillin, A. D.; Chersky, I. N.

    2001-07-01

    Composite materials based on polytetrafluoroethylene (PTFE) and natural technical diamond powders from Yakutia diamond deposits are developed. It is shown that the compositions based on PTFE and a technical diamond powder at a content of up to 60 wt.%, due to their good physicomechanical characteristics, low friction coefficient, and good wetting of diamond particles by polymer, make is possible to create abrasive tools for polishing and grinding hard metals and semiprecious and precious stones with high serviceability and operational life combined with a considerable increase in the quality of treated surfaces and operational stability of the tools. It is found that PTFE, being a more elastic and softer matrix than the traditional ones, exhibits a self-sharpening effect of diamond grains upon grinding hard surfaces, when the grains go deep into the elastic matrix, the matrix wears out, and the working part of the tool becomes enriched with the diamond powder. These conclusions are confirmed by electron microscopic investigations. It is shown that the introduction of ultradisperse fillings (up to 2 wt.%) into such compositions allows us to improve the characteristics of abrasive tools considerably, especially for grinding hard semiprecious stones. The physicomechanical and frictional characteristics of the compositions and specific examples of their application in the jewelry industry and in stone working are discussed.

  4. Characterization and wear performance of boride phases over tool steel substrates

    Directory of Open Access Journals (Sweden)

    Edgar E Vera Cárdenas

    2016-02-01

    Full Text Available This research work was conducted to characterize boride phases, obtained from the powder-pack process, on AISI H13 and D2 steel substrates, and investigate their tribological behavior. The boriding was developed at a temperature of 1273 K with an exposure time of 8 h. X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were conducted on the borided material to characterize the presence of the FeB, Fe2B, and CrB phases and the distribution of heavy elements on the surface of the substrates. The adherence of the boride layers was evaluated, in a qualitative form, through the Daimler-Benz Rockwell-C indentation technique. Sliding wear tests were then performed using a reciprocating wear test machine. All tests were conducted in dry conditions at room temperature. A frequency of 10 Hz and 15-mm sliding distance were used. The applied Hertzian pressure was 2.01 GPa. Scanning electron microscopy was used to observe and analyze the wear mechanisms. Additionally, the variation of the friction coefficient versus the number of cycles was obtained. Experimental results showed that the characteristic wear mechanism for the borided surface was plastic deformation and mild abrasive wear; for unborided substrates, cracking and spalling were observed.

  5. On the Physics of Machining Titanium Alloys: Interactions between Cutting Parameters, Microstructure and Tool Wear

    Directory of Open Access Journals (Sweden)

    Mohammed Nouari

    2014-07-01

    Full Text Available The current work deals with the analysis of mechanisms involved during the machining process of titanium alloys. Two different materials were chosen for the study: Ti-6Al-4V and Ti-55531. The objective was to understand the effect of all cutting parameters on the tool wear behavior and stability of the cutting process. The investigations were focused on the mechanisms of the chip formation process and their interaction with tool wear. At the microstructure scale, the analysis confirms the intense deformation of the machined surface and shows a texture modification. As the cutting speed increases, cutting forces and temperature show different progressions depending on the considered microstructure (Ti-6Al-4V or Ti-55531 alloy. Results show for both materials that the wear process is facilitated by the high cutting temperature and the generation of high stresses. The analysis at the chip-tool interface of friction and contact nature (sliding or sticking contact shows that machining Ti55531 often exhibits an abrasion wear process on the tool surface, while the adhesion and diffusion modes followed by the coating delamination process are the main wear modes when machining the usual Ti-6Al-4V alloy.

  6. A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings

    Science.gov (United States)

    2008-09-01

    P., Rabinowicz , E., Iwasa, Y.: Friction and wear of polymeric materials at 293-k, 77-k and 4.2-k. Cryogenics 31, 695–704 (1991). doi:10.1016/0011-2275...Lett. 27, 113–117 (2007) 9. Michael, P.C., Rabinowicz , E., Iwasa, Y.: Thermal activation in boundary lubricated friction. Wear 193, 218–225 (1996

  7. Effect of Produced Fluid on the Wear Behavior of Grade D Sucker Rod and N80 Type Tubing

    Institute of Scientific and Technical Information of China (English)

    YanTingjun; WangKuisheng

    2005-01-01

    Inuestigated wear tests of grade D sucker rod and N80 tubing with a produced liquid are the effect of the water cut of produced,liquid on the wear rate and the wear coefficient of the friction pair. And presented here is a comparison of tribological performance of tubing/sucker rod with sprayed tubing/sucker rod and tubing/sprayed sucker rod. The results show that one of the main reasons for wear failure between the sucker rod and the tubing is a high water cut of the produced liquid. The wear rate increases greatly when the water cut ranges from 70% to 85%, and increases gradually when the water cut is less than 70% or more than 85%. The higher the water cut is, the greater the wear rate will be. SEM (scanning electron microscope) micrographs show that the worn surface of the tubing is smoother, with shallow grooves, when the water cut is 55%; when the water cut is 95%, there are broader and deeper grooves on the worn surface. The results also show that the wear rate of the sprayed wear-resistant coating of sucker rod/tubing is less than that of the unsprayed sucker rod/tubing.

  8. Microstructure and Abrasion Resistance of In-situ TiC Particles Reinforced Ni-based Composite Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    MA Shi-bang

    2017-06-01

    Full Text Available Laser cladding of Ni-based Ni60A+x% (SiC+Ti(mass fraction,the same below composite powder coating on 45 steel substrate was studied by using the method of preplaced powder. The dry friction and wear experiments of different material coatings were carried out by reciprocating friction wear tester. The microstructure and worn morphology of cladding layers were observed and analyzed by using metallographic microscope, scanning electron microscope(SEM respectively. The results show that the prepared composite coating with dispersively distributed TiC enhanced particles are obtained in-situ, the size and number of the granular TiC gradually increase with the increase of the composite powder SiC+Ti. When the composite powder SiC+Ti reaches 60%, pores and inclusions defects exist in microstructure. When the composite powder SiC+Ti reaches 48%, wear resistance of cladding coating is the best. The wear behavior of the composite coating is abrasive wear, and the mechanism is micro cutting and extrusion spalling.

  9. Resistance of weldclads made by flux-cored arc welding technology against erosive wear

    Directory of Open Access Journals (Sweden)

    I. Pernis

    2013-07-01

    Full Text Available The paper deals with the tribological properties of investigated types of hardfacing materials at erosive wear process. Influence of impact angle of abrasive grains on wear resistance and microhardness changes of hardfacing layer were investigated too. From quantitative aspect weldclads wear resistance were evaluated on the base of weight loss. Results achieved showed that impact angle is one of determining factors of material’s wear measure.

  10. Friction and wear behaviors of dental zirconia ceramics%牙科氧化锆瓷摩擦磨损性能的研究

    Institute of Scientific and Technical Information of China (English)

    宋海燕; 曾剑玉; 司文捷

    2014-01-01

    目的:研究牙科氧化锆瓷的摩擦磨损性能以及与天然牙釉质摩擦磨损性能匹配情况。方法微摩擦磨损试验机上,以滑石瓷为对磨物,人工唾液润滑下对Upcera ST 和 Zenostar Zr Translucent氧化锆瓷、牙釉质和饰面瓷进行摩擦磨损实验。实验前,用激光共聚焦显微镜测试件表面粗糙度Ra;实验结束后,光学显微镜下观察滑石瓷磨斑形貌、测量滑石瓷磨斑面积;激光共聚焦显微镜测量试件磨斑宽度;扫描电镜下观察试件磨斑的微观形貌。采用单因素方差分析进行统计学分析。结果饰面瓷的磨斑宽度大于其它3种材料(P<0.01),饰面瓷对磨物滑石瓷磨斑面积大于氧化锆瓷和牙釉质(P<0.05)。结论与饰面瓷对比,氧化锆瓷具有更佳耐磨性及较低对磨物磨损,并且与天然牙釉质的磨擦学性能相似。%Objective To evaluate the zirconia ceramics ’ friction and wear behaviors to compare with natural enamel. Methods In a micro friction and wear testing apparatus, the friction and wear tests on Upcera ST,Zenostar Zr Translucent,teeth enamel and veneering ceramic were carried out under artificial saliva lubrication condition and steatite served as antagonist. Before wear test, surface roughness ( Ra) was determined by laser scanning confocal microscope. After test , the wear morphology of steatite was observed under light microscope and the wear area measured. The width of the wear area was measured by laser scanning confocal microscope and the scanning electron microscopy was used to observe the wear surface micro-morphology of the ceramics and enamel. Statistical analysis was performed using one-way analysis of variance (ANOVA). Results The width of the wear area on the veneering ceramic was greater than other three materials(P <0. 01). Veneering ceramic caused significantly higher antagonist wear than zirconia and teeth enamel ( P< 0. 05 ) . Conclusion Zirconia ceramics yielded

  11. WEAR OF THE FRICTION SURFACES PARTS IN THE PRESENSE OF SOLID PARTICLES CONTACTING ZONE

    Directory of Open Access Journals (Sweden)

    B. M. Musaibov

    2015-01-01

    Full Text Available The problems of intensity of wear of details of the cars working in the oil polluted by abrasive particles, depending on mechanical properties of material of details and abrasive particles, their sizes, a form and concentration, loading, temperature of a surface of friction, speed of sliding, quality of lubricant are considered. 

  12. Patching for corneal abrasion.

    Science.gov (United States)

    Lim, Chris H L; Turner, Angus; Lim, Blanche X

    2016-07-26

    Published audits have demonstrated that corneal abrasions are a common presenting eye complaint. Eye patches are often recommended for treating corneal abrasions despite the lack of evidence for their use. This systematic review was conducted to determine the effects of the eye patch when used to treat corneal abrasions. The objective of this review was to assess the effects of patching for corneal abrasion on healing and pain relief. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 4), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to May 2016), EMBASE (January 1980 to May 2016), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to May 2016), System for Information on Grey Literature in Europe (OpenGrey) (January 1995 to May 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 9 May 2016. We also searched the reference lists of included studies, unpublished 'grey' literature and conference proceedings and contacted pharmaceutical companies for details of unpublished trials. We included randomised and quasi-randomised controlled trials that compared patching the eye with no patching to treat simple corneal abrasions. Two authors independently assessed the risk of bias and extracted data. Investigators were contacted for further information regarding the quality of trials. The primary outcome was healing at 24, 48 and 72 hours while secondary outcomes included measures of pain, quality of life and adverse effects. We graded the certainty of the evidence using GRADE. We included 12 trials which

  13. Effects of gap size and excitation frequency on the vibrational behavior and wear rate of fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zupan [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Thouless, M.D., E-mail: thouless@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Lu, Wei, E-mail: weilu@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-11-15

    Graphical abstract: A wear map shows wear rate as a function of the grid-to-rod gap size and the frequency of the excitation force. The critical gap size, which is associated with the maximum wear rate, lies within the harmonic regime. In the no wear region the amplitude of the rod vibration is smaller than the gap size so that no impact between the rod and plate can happen. The curve of the resonant frequency of the system appears to overlap with the peaks in the contour. - Highlights: • A 3D finite-element based approach to study grid-to-rod fretting. • Two important factors: grid-to-rod gap size and frequency of the excitation force. • Rod vibration shows three regimes: harmonic, period-doubling and chaotic. • A critical gap size is associated with the maximum wear rate. • A wear map shows wear rate as a function of the gap size and excitation frequency. - Abstract: Grid-to-rod fretting (GTRF) wear is a major cause of fuel leaks. Understanding its mechanism is crucial for improving the reliability of nuclear reactors. In this paper we present a three-dimensional, finite-element based approach, which reveals how the wear rate depends on the size of the gap between the grid and the fuel rod, and on the frequency of the excitation force. We show that these two factors affect the dynamic vibration of the rod, which leads to three different regimes: harmonic, period-doubling and chaotic. The wear rate in the harmonic regime is significantly larger than that in the other two regimes, and reaches a maximum when the excitation frequency is close to the resonant frequency of the system, which is dependent on the gap size. We introduce the concept of a critical gap size that gives the maximum wear rate, and we identify the properties and values of this critical gap size. A wear map is developed as a result of a large number of parametric studies. This map shows quantitatively the wear rate as a function of the gap size and excitation frequency, and will be a

  14. HEAT TREATING OF SINTERED Fe-1.5Mo-0.7C STEELS AND THEIR SLIDING WEAR BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    J.A. Wang; Y. He; H. Danninger

    2003-01-01

    The influence of heat treating on mechanical properties as well as on the sliding wearbehavior of sintered Fe-1.SMo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper bainite to martensite, tempered martensite,pearlite and lower bainite depending on the heat treating conditions. Heat treatingincreases the hardness of sintered steels but high tempering temperature, i.e. 700℃,causes the hardness to be even lower than that of the as-sintered ones. The impactenergy of sintered steels increases with increasing tempering temperature and arrivesthe highest at 700℃, while the steels tempered at 200℃ have the highest transverserupture strength. Austempering results in fair good overall properties, such as hard-ness, impact energy, and transverse rupture strength. When the sintered steels wereaustempered, oil-quenched or tempered below 400℃ after quenched, the wear coef-ficient becomes considerably lower. Fair high hardness, such as HV30 > 380, andstructures of martensite, tempered martensite or lower bainite are beneficial to low-ering the wear coefficient. Under the wear test conditions given, delamination andoxidational wear are the main wear regimes for sintered Fe-1.5Mo-0.7C steels. Fe3O4in the wear debris is beneficial to lowering wear coefficient.

  15. Wear behaviour of epoxy resin filled with hard powders

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Minutolo, F. Capece; Carrino, L.; Durante, M.; Langella, A.

    2016-10-01

    The development of high performance materials based on epoxy resin finds a growing number of applications in which high wear resistance is required. One major drawback in many of these applications is the relatively poor wear resistance of the epoxy resin. Therefore, in order to investigate on the possibility of increasing wear resistance of thermoset polymers filled with hard powders, sliding tests are carried out by means of a pin on disc apparatus. In particular, composite resins, constituted by an epoxy resin filled with different contents and sizes of Silicon Carbide powder, are analyzed; the wear resistance, in terms of volume loss, is measured for different abrasive counterfaces and loads.

  16. Wear Behavior of Aluminum Alloy 6061-Based Composites Reinforced with SiC, Al2O3, and Red Mud: A Comparative Study

    Science.gov (United States)

    Singla, Yogesh Kumar; Chhibber, Rahul; Bansal, Hitesh; Kalra, Anil

    2015-09-01

    Metal-matrix composites are widely used in shipping, aerospace, automotive, and nuclear applications. Research attempts have been made in the past to reduce the cost of processing of composites, decrease the weight of the composites, and increase the desired performance characteristics. In this research article, an attempt has been made in using red mud obtained as an industrial waste during the production of aluminum from bauxite ore. This article discusses the novel findings of the experimental study on the dry sliding wear behavior of aluminum alloy 6061-based composites reinforced individually with red mud, SiC, and Al2O3. The microstructural characterization of the composites provides the further insight into the structure—wear behavior of the processed composites.

  17. Eye Wear

    Science.gov (United States)

    Eye wear protects or corrects your vision. Examples are Sunglasses Safety goggles Glasses (also called eyeglasses) Contact ... jobs and some sports carry a risk of eye injury. Thousands of children and adults get eye ...

  18. Abrasive wear of two glass ionomer cements after simulated toothbrushing

    OpenAIRE

    Márcia Furtado Antunes de Freitas; Leandro Jum Imai; César Antunes de Freitas; Eduardo Carlos Bianchi; Carina Thaís de Almeida; Ismar Eduardo Martins Filho

    2011-01-01

    Introduction and objective: Glass ionomer cement, which was first introduced in Dentistry in 1972, presents good qualities such as aesthetics, fluoride release and adhesion to dental tissues. Because of its preventive characteristics regarding to dental caries, glass ionomer cement has been used for Atraumatic Restorative Treatment (ART), as reported by Frencken and Holmgren [6], meeting the principles announced by the World Health Organization (WHO) for application to large population groups...

  19. Friction and Wear Properties of Cold Gas Dynamic Sprayed α-Al2O3-Al Composite Coatings

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2013-01-01

    Full Text Available Different proportions of α-Al2O3 and pure Al powders were coated onto AZ91D magnesium alloy substrates by cold gas dynamic spray. The microstructure and morphologies of the coatings were observed by scanning electron microscope. The friction and wear properties were tested by a ball-on-disk wear tester. It was found that the interfaces between grains and substrates formed close boundaries. It is revealed that the composite coatings could increase the friction or wear properties of the coatings. It was observed that the wear of coatings was converted from adhesive wear into abrasive wear with α-Al2O3 particles increasing and that the adhesive wear accompanied with abrasive wear would increase the wear rate of coatings.

  20. Wear mechanism and wear prevention in coal-fueled diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  1. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  2. Effects of nano-LaF{sub 3} on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yulong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wan, Hongqi, E-mail: wanhq@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Lei, E-mail: chenlei@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou, Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-09-30

    Highlights: • Nano-LaF{sub 3} was used to modify tribological behavior of PTFE bonded solid lubricating coating. • The tribological properties of lubricating coatings were investigated under different lubrication conditions. • The modified PTFE bonded coating exhibited superior tribological performance both under two kinds of lubrication conditions. - Abstract: Influence of nanometer lanthanum fluoride (nano-LaF{sub 3}) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF{sub 3} modified coatings and the distribution states of nano-LaF{sub 3} were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF{sub 3} improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF{sub 3} filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load

  3. Fretting wear behavior of laser-nitrided Ti-5Al-5Mo-5V-1Cr-1Fe alloy fabricated by laser melting deposition

    Science.gov (United States)

    Liu, L.; Shangguan, Y. J.; Tang, H. B.; Wang, H. M.

    2014-09-01

    Fretting wear behavior of laser-nitrided titanium alloy (Ti-5Al-5Mo-5V-1Cr-1Fe) fabricated by laser melting deposition (LMD) has been investigated to explore surface engineering for protection against wear damage of laser melting deposited titanium alloy. The morphology and volume of the wear scars of unmodified and laser-nitrided LMD Ti-5Al-5Mo-5V-1Cr-1Fe tested at different frequencies, 10 and 50 Hz, were studied using non-contact three-dimensional surface profilometer and scanning electron microscope. Friction coefficients measured at different frequencies or loading forces were compared for unmodified and laser-nitrided LMD specimens. Experimental results show that laser-nitrided LMD specimens have shown fretting resistance superior to unmodified LMD specimens due to the presence of hard TiN dendrites in the laser-nitrided layer. W-shaped wear scar caused by local rotation of fretting ball at the two ends of the scar was observed. Given a constant loading force of 50 N, unmodified and laser-nitrided LMD specimens exhibited similar friction coefficients and their friction coefficients increased with test frequency. The friction coefficients of both specimens increased with the reduction of normal load, which corresponds to the trend in Hertzian contact model.

  4. Quantifying Cutting and Wearing Behaviors of TiN- and CrN-Coated AISI 1070 Steel

    Science.gov (United States)

    Cakan, Ahmet; Ozkaner, Vedat; Yildirim, Mustafa M.

    2008-01-01

    Hard coatings such as titanium nitride (TiN) and chromium nitride (CrN) are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP) technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscopy (SEM), line scan analyses and X-ray diffraction (XRD). The wear properties of TiN- and CrN-coated samples were determined using an on-line monitoring system. The results show that TiN-coated samples demonstrate higher wear resistance than CrN-coated samples. PMID:27873912

  5. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  6. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    Science.gov (United States)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  7. Microstructure Evolution and Its Effect on the Wear Performance of HVOF-Sprayed Conventional WC-Co Coating

    Science.gov (United States)

    Fu, Dingfa; Xiong, Haoqi; Wang, Qun

    2016-10-01

    In this work, a conventional tungsten carbide 12% cobalt (WC-12Co) coating was deposited by using a liquid fuel JP-8000 high velocity oxyfuel spray system. The properties of the coating namely phase content, microstructure, hardness, porosity, and fracture toughness were examined. The microstructure evolution and its influence on the abrasive wear behavior of the coatings were evaluated in detail by in-situ scanning electron microscopy and a comprehensive model for decarburization of WC has been established using x-ray diffraction and transmission electron microscopy analyses.

  8. Effect of TiB2 Additives on Wear Behavior of NiCrBSi-Based Plasma-Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Oleksandr UMANSKYI

    2016-05-01

    Full Text Available The influence of titanium diboride additives on microstructure and wear-resistance of NiCrBSi thermally sprayed coatings deposited on a steel substrate has been studied. NiCrBSi-based composite powders with 10, 20, 40 wt.% TiB2 particles content were produced. The structure of NiCrSiB-TiB2 coatings consists of TiB2 and CrB grains distributed in Ni-based matrix. The wear-resistance of NiCrSiB-TiB2 plasma sprayed coatings in dry sliding conditions against the same coating using pin-on-disk tester. It was determined that the amount of titanium diboride particles in  NiCrBSi-based coatings influences essentially on the wear  resistance and wear mechanism. The NiCrBSi-based plasma sprayed coatings containing 20 wt. % of TiB2 possess the highest wear resistance due to the realization of mechano-oxidational wear mechanism.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7307

  9. Tribology of Si/SiO2 in humid air: transition from severe chemical wear to wearless behavior at nanoscale.

    Science.gov (United States)

    Chen, Lei; He, Hongtu; Wang, Xiaodong; Kim, Seong H; Qian, Linmao

    2015-01-13

    Wear at sliding interfaces of silicon is a main cause for material loss in nanomanufacturing and device failure in microelectromechanical system (MEMS) applications. However, a comprehensive understanding of the nanoscale wear mechanisms of silicon in ambient conditions is still lacking. Here, we report the chemical wear of single crystalline silicon, a material used for micro/nanoscale devices, in humid air under the contact pressure lower than the material hardness. A transmission electron microscopy (TEM) analysis of the wear track confirmed that the wear of silicon in humid conditions originates from surface reactions without significant subsurface damages such as plastic deformation or fracture. When rubbed with a SiO2 ball, the single crystalline silicon surface exhibited transitions from severe wear in intermediate humidity to nearly wearless states at two opposite extremes: (a) low humidity and high sliding speed conditions and (b) high humidity and low speed conditions. These transitions suggested that at the sliding interfaces of Si/SiO2 at least two different tribochemical reactions play important roles. One would be the formation of a strong "hydrogen bonding bridge" between hydroxyl groups of two sliding interfaces and the other the removal of hydroxyl groups from the SiO2 surface. The experimental data indicated that the dominance of each reaction varies with the ambient humidity and sliding speed.

  10. The effect of boron on the wear behavior of iron-based hardfacing alloys for nuclear power plants valves

    Science.gov (United States)

    Yoo, Jeong Wan; Lee, Seong Hun; Yoon, Chong S.; Kim, Seon Jin

    2006-06-01

    The effect of boron of Fe-Cr-C-Si alloys, replacing Stellite 6 traditionally used in nuclear power industry, on the high temperature wear resistance was characterized. Sliding wear tests of Fe-Cr-C-Si-xB (x = 0.3, 0.6, 1.0 and 2.0 wt%) alloys were performed in air at temperatures ranging from 300 to 725 K under a contact stress of 103 MPa. Low-boron alloys containing less than 0.6 wt% boron showed the excellent wear resistance than any other tested alloys in an elevated temperature. The improvement was associated with the matrix hardening by promotion of the γ → α‧ strain-induced martensitic transformation occurred during wear. In addition, protective oxide layers formed on the contacting surface reduced the wear loss by minimizing the direct metal-to-metal contact. However, high-boron alloys containing more than 1 wt% boron showed somewhat larger amount of wear loss than low-boron alloys due to the absence of the strain-induced martensitic transformation and the presence of the brittle FeB particles connected with easy crack initiation.

  11. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  12. Detecting Safety Zone Drill Process Parameters for Uncoated HSS Twist Drill in Machining GFRP Composites by Integrating Wear Rate and Wear Transition Mapping

    Directory of Open Access Journals (Sweden)

    Sathish Rao Udupi

    2016-01-01

    Full Text Available The previous research investigations informed that the tool wear of any machining operation could be minimized by controlling the machining factors such as speed, feed, geometry, and type of cutting tool. Hence the present research paper aims at controlling the process parameters to minimize the drill tool wear, during the machining of Glass Fiber Reinforced Polymer (GFRP composites. Experiments were carried out to find the tool wear rate and a wear mechanism map of uncoated High Speed Steel (HSS drill of 10 mm diameter was developed for the drilling of GFRP composite laminates. The surface micrograph images on the drill land surface displayed dominant wear mechanisms induced on HSS drill during machining of GFRP and they were found to be adhesive wear, adhesive and abrasive wear, abrasive wear, and diffusion and fatigue wear. A “safety wear zone” was identified on the wear mechanism map, where the minimum tool wear of the HSS drill occurs. From the safety zone boundaries, it was inferred that the drill spindle speed should be set between 1200 and 1590 rpm and feed rate must be set within a range of 0.10–0.16 mm/rev for GFRP work and HSS tool combination to enhance the service life of 10 mm HSS drills and to minimize the tool wear.

  13. Specification of rock abrasiveness for the purposes of tunnel driving using TBM

    Directory of Open Access Journals (Sweden)

    Miklúšová Viera

    2000-09-01

    Full Text Available This article analyses rock abrasiveness that causes attrition (wearing down of the disintegration indentors. In the case of drilling machines equipped with disc chipper tools it is the attrition of the discs. The attrition of the discs results in the reduction of the drilling rate and the increase in the specific disintegration energy, thus directly affecting the total economic outcome of the mining site (tunnel.Abrasiveness of the rock is the rock’s ability to wear down the working tool during the mutual interaction between the working indentor and the rock in the mechanic rock disintegration process. The disintegration indentor wears down during the interaction, that changes its geometric dimensions, causing the increase in the contact area between the tool and the surface of the rock. The changes in these dimensions consequently alter the rate of advance of the drilling machine and the specific disintegration energy.Abrasiveness is therefore an overall result of physical and mechanical characteristics of the rock during the interaction between the disintegration indentor and the rock. In the present time there is no method that would formulate the rock’s abrasiveness at the hands of physical-mechanical characteristics of the rock. Because the interaction between the tool and the rock depends on the characteristics of the tool, abrasiveness is at present a relative quantity, dependent also on the quality of the disintegration indentors. With the progress in the quality of disintegration tools, the abrasiveness and the attrition of the tool during mechanic rock disintegration changes. From this standpoint it is, in the course of determining the rock’s abrasiveness in the laboratory procedures, needed to eliminate the impact of the disintegration indentor characteristics. By choosing one disintegration indentor type with predetermined physical-mechanical characteristics for the laboratory measurements, we can obtain abrasiveness that

  14. Effect of Fe content on the friction and abrasion properties of copper base overlay on steel substrate by TIG welding

    Institute of Scientific and Technical Information of China (English)

    Lü Shixiong; Song Jianling; Liu Lei; Yang Shiqin

    2009-01-01

    Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.

  15. Wear and microstructure in fine ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vijande-Diaz, R.; Belzunce, J.; Fernandez, E. (ETS de Ingenieros Industriales, Area de Ingeneria Mecanica, Gijon (Spain)); Rincon, A.; Perez, M.C. (Inst. de Fisica-Quimica ' Roco Solano' , CSIC, Madrid (Spain))

    1991-08-15

    This paper presents a study of the wear resistance of two ceramic, plasma sprayed coatings of Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3}. Tests were carried out using an LWF-1 standard machine, with lineal contact, under dry friction, abrasion and lubricant conditions. The purpose of the tests were to study how load and speed affect material wear. Results show the lower wear rate of the ceramic coating compared with the steel one, as well as how remarkably load affects wear. On the other hand, however, considering the speed ranges used, wear resistance does not depend significantly on speed. The paper proves that the wear process follows Czichos' law. At the same time, reformulation of Archard's equation allows us to quantify wear using easily measurable factors such as pressure, speed, hardness, and those factors typically featuring this type of coatings, e.g. porosity. Also, a micrographic study of the coatings carried out by means of a scanning electron microscope has evidenced three stages in the wear mechanism: (a) plastic deformation of particles; (b) crack nucleation and propagation; and (c) loosening of ceramic particles. (orig.).

  16. Friction and Wear Behavior of Two NiCrA1Y Coatings at Room Temperature%两种NiCrAlY涂层的室温摩擦磨损性能

    Institute of Scientific and Technical Information of China (English)

    张健; 郭策安; 张罡; 郝士明

    2011-01-01

    The friction and wear properties of a sputtered NiCrAlY coating and an electrospark deposited (ESD) NiCrAlY on CrNi3MoVA steel substrate coating were investigated at room temperature. The results show that the friction coefficient of the two coatings is lower than that of the substrate during stable wearing course. The electrospark deposited NiCrAlY coating has a significant antifriction effect because its friction coefficient value is much lower than the sputtered one. The wear mechanism of the sputtered NiCrAlY coating could be mainly characterised by adhesive wear while the dominant wear mechanism for electrospark deposited NiCrAlY coating is micro-abrasive wear.%分别测试在CrNi3MoVA钢表面溅射NiCrAlY涂层和电火花沉积NiCrAlY涂层的室温摩擦磨损性能,研究了磨损机制.结果表明:在稳定磨损阶段,两种涂层的摩擦系数均低于基体,其中电火花沉积层的摩擦系数最小,具有显著的减摩效果.溅射涂层的磨损机制主要是粘着磨损,而电火花沉积层的磨损机制主要是微切削磨料磨损.

  17. The effect of anti-sensitivity dentifrices on brushing abrasion of eroded dentin in vitro.

    Science.gov (United States)

    Hughes, Nathan; Mason, Stephen; Creeth, Jonathan; Hara, Anderson T; Parmar, Madhu; González-Cabezas, Carlos

    2008-01-01

    To investigate the abrasive effects of three marketed anti-sensitivity, and one marketed regular dentifrice on dentin, using an erosion-abrasion in vitro model. Standardized human dentin specimens were prepared and exposed to cycles of erosion, remineralization, and tooth brushing, utilizing the four commercially available dentifrices. Dentin surface loss was then measured by optical profilometry after a total of nine complete cycles. The RDA and pH values of the dentifrices were also measured to assist in the interpretation of results. Profilometry showed significantly greater dentin surface loss for both Colgate Sensitive Fresh Stripe and Colgate Sensitive Multi Protection when compared with Sensodyne Total Protection or Crest Cavity Protection dentifrices. The abrasive level of dentifrices correlated positively (r-squared = 0.66; p < 0.05) with dentin surface loss. This study demonstrated that the abrasivity of dentifrices can have a significant effect on the wear of eroded dentin in vitro.

  18. Optimization of Abrasive Water Jet Cutting of Ductile Materials

    Institute of Scientific and Technical Information of China (English)

    Asif IQBAL; Naeem U DAR; Ghulam HUSSAIN

    2011-01-01

    Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material.Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.

  19. Wear Modalities and Mechanisms of the Mining Non-asbestos Composite Brake Material

    Science.gov (United States)

    Bao, Jiusheng; Yin, Yan; Zhu, Zhencai; Tong, Minming; Lu, Yuhao; Peng, Yuxing

    2013-08-01

    The mining brake material is generally made of composite materials and its wear has important influences on the braking performance of disc brakes. In order to improve the braking reliability of mine hoisters, this paper did some tribological investigations on the mining brake material to reveal its wear modalities and mechanisms. The mining non-asbestos brake shoe and 16Mn steel were selected as braking pairs and tested on a pad-on-disc friction tester. And a SEM was used to observe the worn surface of the brake shoe. It is shown that the non-asbestos brake material has mainly five wear modalities: adhesive wear, abrasive wear, cutting wear, fatigue wear and high heat wear. At the front period of a single braking the wear modality is mainly composed of some light mechanical wear such as abrasive, cutting and point adhesive. With the temperature rising at the back period it transforms to some heavy mechanical wear such as piece adhesive and fatigue. While in several repeated brakings once the surface temperature rises beyond the thermal-decomposition point of the bonding material, the strong destructive high heat wear takes leading roles on the surface. And a phenomenon called friction catastrophe (FC) occurs easily, which as a result causes a braking failure. It is considered that the friction heat has important influences on the wear modalities of the brake material. And the reduction of friction heat must be an effective technical method for decreasing wear and avoiding braking failures.

  20. Wear behavior of contacting between thin film coating on SKD11 ball and 304 stainless steel disk

    Directory of Open Access Journals (Sweden)

    Sriprasird, J.

    2007-11-01

    Full Text Available Wear is a well known problem in metal stamping die, especially on the die working with stainless steel workpiece, in which wear rate is severe. This research considered various types of material coating on tool surface which were regularly practised in modern stamping industry due to the ability to increase wear resistance. The model study of friction "Ball-on-disk" technique was employed throughout this work. The disk was made from stainless steel austenitic grade (SUS304. The ball was made from cold work tool steel, SKD11 (JIS and was hardened to 60±2 HRC. Ball surface conditions selected for this work were non-coated, coated by TiC-CVD, TiCN (TiC/TiCN/TiN Multilayer-CVD and TiCN (TiN/TiCN Double layer-PVD, and treated by VC-TD. Tests were carried out without lubricant. The results show that the coating film and the surface treatment has no effect on the friction coefficient but it can reduce wear rate by 64.1-99.7% at contact pressure condition less than 1,100 MPa. At the higher level of contact pressure, only 2 types of coating, TiCN (Multilayer-CVD and TiC-CVD, can reduce wear rate. The other two, which are TiCN (Double layer-PVD coating film and a surface treatment by VC-TD process, on the contrary increase the rate of wear significantly. This is due to delamination of coating film at high contact pressure. The coating particles of high hardness accelerate wear phenomenon on the tool surface. Therefore, proper selection of tool surface condition depends on level of contact pressure generated in the process.

  1. Refractive behavior changes with six months daily wear of high and low oxygen permeability hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    W.D.H. Gillan

    2006-01-01

    Full Text Available Introduction: The investigation of myopia and soft contact lenses is not new. Many reports show  that  the  wearing  of  silicone  hydrogel lenses as opposed to conventional disposable hydrogel lenses results in little progression of myopia in the eyes wearing silicone hydrogels. Method: Six subjects wore a silicone hydro-gel lens on one eye while the other eye wore a habitual disposable hydrogel lens for six months of daily wear. Fifty measurements of refractive state in each eye were taken prior to the subjects wearing a silicone lens in one eye and a conven-tional hydrogel lens in the other eye. After six months of daily wear another fifty measurements of refractive state were taken for each subject. Results:  Although  there  is  no  statisti-cal  support  for  the  findings  of  this  study, comet stereo-pairs are used to show the chang-es in refractive state for each subject. Four of  the  six  subjects  showed  an  increase  in myopia in the eye wearing the silicone lens. Discussion:  The  increase  in  myopia in eyes wearing a silicone hydrogel lens is contrary  to  the  findings  of  other  studies.

  2. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    Energy Technology Data Exchange (ETDEWEB)

    Alsem, Daniel Henricus [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ~4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (~50-100 nm) created by fracture through the silicon grains (~500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (~20-200 nm) forms at worn regions. No dislocations or

  3. Corrosion and wear resistant metallic layers produced by electrochemical methods

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1999-01-01

    Corrosion and wear-corrosion properties of novel nickel alloy coatings with promising production characteristics have been compared with conventional bulk materials and hard platings. Corrosion properties in neutral and acidic environments have been investigated with electrochemical methods....... Determination of polarisation resistance during 100 hours followed by stepwise anodic polarisation seems to be a promising technique to obtain steady state data on slowly corroding coatings with transient kinetics. A slurry test enables determination of simultaneous corrosion and abrasive wear. Comparison...

  4. Microstructure, Properties and Wear Behaviors of (Ni3Al)p Reinforced Cu Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    I brahim Celikyurek; Nese O. Korpe; Tugba Olcer; Remzi Gurler

    2011-01-01

    Pure copper and its composites reinforced with Ni3Al particles were produced by powder metallurgy (PM). Ni3Al powders were produced by mechanical ball milling from vacuum arc melted compounds. The Ni3Al powders were characterized by X-ray diffraction (XRD). The microscopy examinations revealed that the Ni3Al particles were distributed uniformly in the matrix. The effects of the particle fraction on the density, electrical conductivity, strength and dry sliding wear resistance of composite were investigated. It was found that the density and electrical conductivity of the composites decrease while the compression yield strength and wear resistance of composites increase with an increase in the particle fraction. The dry sliding wear tests were performed with pin-on-disk geometry. After sliding wear tests, the worn surfaces were examined by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Results have shown that the wear mechanism is oxidative and adhesive.

  5. Wear Behavior of Al-Mg2Si Cast In-situ Composite: Effect of Mg2Si Different Volume Fractions

    Science.gov (United States)

    Ghiasinejad, J.; Emamy, M.; Ghorbani, M. R.; Malekan, A.

    2010-06-01

    Al-Mg2Si in situ composites are great candidates for automobile brake discs due to their low density, reasonably high young's modulus and low thermal expansion coefficient. Thus, understanding wear properties of this composite is of a great importance. In this study wear behavior of an in-situ Al-Mg2Si composite, prepared from a simple casting route, has been investigated using a pin-on-disc configuration concerning the effect of Mg2Si volume fractions, 15, 20 and 25% respectively. It was found that the weight loss increases with increase in reinforce volume fraction which can be due to a coarse morphology of primary Mg2Si particles. It was found that the variations of weight loss with sliding distance comprise different regimes of which the mechanisms are discussed.

  6. Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes).

    Science.gov (United States)

    Klein, Marie-Christin G; Gorb, Stanislav N

    2014-10-01

    Snakes are limbless tetrapods highly specialized for sliding locomotion. This locomotion leads to the skin being exposed to friction loads, especially on the ventral body side, which leads to wear. It is presumed that snakes therefore have specific optimizations for minimizing abrasion. Scales from snakes with habitat, locomotor and/or behavior specializations have specific gradients in material properties that may be due to different epidermal architecture. To approach this issue we examined the skin of Lampropeltis getula californiae (terrestrial), Epicrates cenchria cenchria (generalist), Morelia viridis (arboreal), and Gongylophis colubrinus (burrowing) with a focus on (i) the ultrastructure of the ventral epidermis and (ii) the qualitative abrasion pattern of the ventral scales. Scanning and transmission electron microscopy revealed variations in the structure, thickness, layering, and material composition of the epidermis between the species. Furthermore, SEM and white light interferometer images of the scale surface showed that the abrasion patterns differed, even when the snakes were reared on the same substrate. These data support the idea that (i) a specific gradient in material properties may be due to a variation in epidermis architecture (thickness/ultrastructure) and (ii) this variation may be an optimization of material properties for specific ways of life.

  7. Modeling and evaluation of the influence of micro-EDM sparking state settings on the tool electrode wear behavior

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    Micromachining technologies are now being employed in various industries for generation of precise features on engineering components. Among these processes, micro electrical discharge machining is a 'non-contact' machining technology suitable for material removal from electrically conductive...... materials characterized by considerable wear ofthe tool used for material removal. This paper presents an investigation involving modeling and estimation of the effect of settings for generation of discharges in stable conditions of micro-EDM on the phenomenon of tool electrode wear. A stable sparking...... condition during the process is achieved with varying voltage (V), capacitance (C), threshold (T), and discharge frequency (f). The tool electrode wear model has revealed that the energy of the sparks interacting with the tool surfaces control the phenomenon through the settings of capacitance followed...

  8. Preparation and wear behavior of polymer matrix composites with an interpenetrating network structure derived from natural sponge

    Energy Technology Data Exchange (ETDEWEB)

    Wang Tianchi; Zhou Tianle; Xiong Dangsheng, E-mail: tianchiwang@yahoo.com.c [Department of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2010-03-15

    Natural sponge was used as a template to produce carbon/epoxy resin and (carbon+silicon carbide)/epoxy resin composites with interpenetrating network structures. Carbon with a network structure was first obtained by pyrolysis of the natural sponge. The composites were then obtained by injecting epoxy resin and silicone resin into the carbon. Their microstructures and wear properties were analyzed. The results show that the natural structure of sponge controlled the interpenetrating network structures of the composites. The netlike carbon in the composites reduced the wear rate of the epoxy resin. Compared with the carbon/epoxy resin composite, the (carbon+silicon carbide)/epoxy resin composite shows better wear resistance.

  9. Effect of PostNitride Annealing on Wear and Corrosion Behavior of Titanium Alloy Ti-6Al-4V

    Science.gov (United States)

    Anandan, C.; Mohan, L.

    2016-10-01

    Titanium alloy, Ti-6Al-4V, was plasma nitrided using RF plasma with 100% N at 800 °C and annealed at 850 °C in vacuum. XRD and XPS studies show the formation of titanium nitrides after nitriding and redistribution of nitrogen after annealing. Potentiodynamic polarization and electrochemical impedance spectroscopy studies in Hank's solution show that nitriding decreases the corrosion resistance of the substrate and postnitride annealing improves the corrosion resistance of the nitrided samples. After nitriding, wear rate has decreased by an order of magnitude in reciprocating wear experiments and decreased further in annealed samples in comparison with that of substrate. Thus, postnitride annealing improves both corrosion and wear resistance of the nitrided sample. These improvements are attributed to redistribution of nitrogen and formation of a thin oxide layer on the sample due to annealing.

  10. Influence on the wear resistance of the particle size used in coatings of Alumina

    Science.gov (United States)

    Santos, A.; Guzmán, R.; Ramirez, Z. Y.

    2017-01-01

    In the literature, it is common to find that the size of the particles used in coatings through thermal spraying processes influences the hardness and wear resistance thereof; this project aimed to quantify the importance of this parameter in the adhesive and abrasive wear resistance when aluminium oxide is deposited on a substrate of AISI 1020 steel, through a thermal spraying by flame process. The methodology consisted of: a) morphological characterization of the powder used in the coatings by scanning electron microscopy, b) deposition of coatings, c) testing of adhesive and abrasive wear (ASTM G99-05 Standard test method for wear testing with a pin-on-disk apparatus and ASTM G65–04 Standard test method for measuring abrasion using dry sand/rubber wheel apparatus), and d) statistical analysis to determine the influence of particle size on wear resistance. The average size of the powder used for coatings was 92, 1690, 8990 and 76790nm. The obtained results allow to identify an inversely proportional behaviour between particle size and wear resistance, in both types of wear (adhesive and abrasive) is shown a logarithmic trend indicating an increase in loss mass during the test as the particle size is also increased and therefore a decrease in wear resistance of the coating.

  11. Wear Performance Optimization of Electroless Ni-B Coating Using Taguchi Design of Experiments

    Directory of Open Access Journals (Sweden)

    S. K. DAS

    2010-12-01

    Full Text Available The present study outlines the use of Taguchi parameter design to minimize the wear performance of electroless Ni-B coating by optimizing the tribological testing parameters. The tests are carried out in a multi- tribotester and the three parameters viz. load (L, speed (S and time (T are considered with three levels each. An L27 array is used to accommodate the three factors as well as their interaction effects. The Taguchi experiments gave the optimal combination of parameters L1S2T1 (50 N for load, 60 rpm for speed and 5 minute for time. Furthermore, a statistical analysis of variance reveals that both load and time have significant influence over the wear behavior of electroless coating. Also the interaction between load and speed and that between load and time influence wear quite significantly. The coating is characterized using scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction analysis. The wear mechanism is also studied and found to be abrasive in nature.

  12. Wear and Friction Behavior of Stir Cast Al-TiB2 Metal Matrix Composites with Various Lubricants

    Directory of Open Access Journals (Sweden)

    S. Poria

    2016-12-01

    Full Text Available Al- TiB2 metal matrix composites are fabricated using stir cast method and its tribological characterization is done using three different lubricants. Tribological studies are performed in a multi-tribotester using block-on-roller configuration under 25-75 N loads and 400-600 rpm rotational speeds. Four different weight percentages of TiB2 are considered in this study. Comparison between dry condition and lubricated conditions is gleaned to differentiate wear and friction characteristics and SEM images are taken to fortify them. Lubricated conditions yield large reduction in wear and friction compared to dry condition.

  13. Effect of a hard sublayer on contact interaction and wear behavior of electrodeposited gold-based coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lyazgin, Alexander O., E-mail: lyazgin@list.ru, E-mail: shugurov@ispms.tsc.ru, E-mail: pav@ispms.tsc.ru; Shugurov, Artur R., E-mail: lyazgin@list.ru, E-mail: shugurov@ispms.tsc.ru, E-mail: pav@ispms.tsc.ru; Panin, Alexey V., E-mail: lyazgin@list.ru, E-mail: shugurov@ispms.tsc.ru, E-mail: pav@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Shesterikov, Evgeniy V., E-mail: evgen@micran.ru [Research and Production Company Micran, Tomsk, 634034, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    The mechanical properties and wear of electroplated Au–Ni coatings deposited on beryllium bronze substrates with Ni or Ni–B intermediate layers were investigated. It was revealed that the sublayer material has no significant effect on the hardness and the elastic modulus of the coatings. At the same time, the harder sublayer favors localization of plastic deformation and, thus, strain hardening of coatings in the course of tribological tests. The Ni–B sublayer was shown to provide significant wear reduction of Au–Ni coatings as compared with the Ni sublayer.

  14. Optimization of Profile and Material of Abrasive Water Jet Nozzle

    Science.gov (United States)

    Anand Bala Selwin, K. P.; Ramachandran, S.

    2017-05-01

    The objective of this work is to study the behaviour of the abrasive water jet nozzle with different profiles and materials. Taguchi-Grey relational analysis optimization technique is used to optimize the value with different material and different profiles. Initially the 3D models of the nozzle are modelled with different profiles by changing the tapered inlet angle of the nozzle. The different profile models are analysed with different materials and the results are optimized. The optimized results would give the better result taking wear and machining behaviour of the nozzle.

  15. Assessment of abrasiveness for research of rock cutting

    Directory of Open Access Journals (Sweden)

    Milan Labaš

    2012-12-01

    Full Text Available Rock abrasiveness is ability of rock to wear down the working tool during the mutual interaction between the working indentorand the rock in the mechanical rock cutting process. The cutting indentor is worn down during the interaction, which changes itsgeometric dimensions causing the enlargement of a contact area between the tool and the rock surface. The changes in these dimensionsconsequently alter the rate of advance of the drilling machine and the specific cutting energy. We have determined the abrasivenessaccording to the norm ON 44 1121 (1982 on the testing device constructed at the Institute of Geotechnics SAS.

  16. Effect of high-intensity ultrasonic treatment on microstructure, hardness and wear behaviour of the hypereutectic Mg-5Si alloy

    Science.gov (United States)

    Moussa, M. E.; Waly, M. A.; El-Sheikh, A. M.

    2016-07-01

    The effect of high-intensity ultrasonic treatment (HIUST) on microstructure, hardness and wear behavior in Mg-5wt.%Si hypereutectic alloy has been investigated. The results showed clearly that without HIUST, most of primary Mg2Si appeared as coarse dendritic morphology with average size of about 200 µm. With HIUST, the average size of primary Mg2Si decreased significantly to about 33 µm and their morphologies changed to polyhedral shape. The modification mechanism is mainly attributed conjugation of two mechanisms: cavitation-enhanced heterogeneous nucleation and cavitation-induced dendrite fragmentation. The alloy treated with HIUST has higher hardness and wear resistance than that untreated with HIUST. The wear mechanism of investigated alloys at low applied load (10 N) and low sliding speed (0.3 m/s) is a mild abrasive oxidative wear with little adhesion. However, the wear mechanism due to the applied high loads (30, 50 N) at low sliding speed (0.3 m/s) and/or to the applied high sliding speeds (0.6, 0.9 m/s) under low load (10 N), could be described as delamination mechanism. The microstructures of the specimens were analyzed by optical microscope (OM) (model OPTIKA M-790, Italy). Energy dispersion spectrum (EDS) affiliated to field emission scanning electron microscopy (FESEM) (model Quanta FEG, The Netherlands) were performed to reveal the concentration of alloying elements in selected areas of the microstructure.

  17. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  18. Dry Sliding Wear Behavior of A356 Alloy/Mg2Sip Functionally Graded in-situ Composites: Effect of Processing Conditions

    Directory of Open Access Journals (Sweden)

    S.C. Ram

    2016-09-01

    Full Text Available In present study, the effect of dry sliding wear conditions of A356 alloy/Mg2Sip functionally graded in-situ composites developed by centrifugal casting method has been studied. A pure commercial A356 alloy (Al–7.5Si–0.3Mg was selected to be the matrix of the composites and primary Mg2Sip reinforcing particles were formed by in-situ chemical reaction with an average grain size of 40-47.8 µm. The Al–(Mg2Sip functionally graded metal matrix composites (FGMMC’s were synthesized by centrifugal casting technique with radial geometry, using two different mould rotating speeds ( 1200 and 1600 rpm. The X-ray diffraction (XRD characterization technique was carried out to confirm the in-situ formed Mg2Si particles in composites. Optical microscopy examination was carried out to reveals the grain refinement of Al-rich grains due to in-situ formed Mg2Si particles. Scanning electron microscope (SEM and Energy dispersive X-ray spectroscopy (EDS techniques were carried out to reveal the distribution of phases, morphological characteristics and confirmation of primary Mg2Si particles in the matrix. The sliding wear behavior was studied using a Pin-on-Disc set-up machine with sliding wear parameters: effect of loads (N, effect of sliding distances (m and effect of Mg on wear at room temperature with a high-carbon chromium steel disc (HRC-64 as counter surfaces. A good correlation was evidenced between the dry sliding behaviour of functionally graded in-situ composites and the distribution of Mg2Si reinforcing particles. Beside the above processing conditions, the dominant wear mechanisms of functionally graded in-situ composites have been correlated with the microstructures. The hardness and wear resistance properties of these composites increase with increasing volume percent of reinforced primary Si/Mg2Si particles toward inner zone of cast cylindrical shapes. The objective of this works was to study the tribological characteristics under dry sliding

  19. Micro-scale wear characteristics of electroless Ni-P/SiC composite coating under two different sliding conditions

    OpenAIRE

    2014-01-01

    The electroless nickel composite (ENC) with various silicon carbide contents was deposited onto aluminium alloy (LM24) substrate. The wear behaviour and the microhardness of the composite coating samples were investigated and compared with particles free and aluminium substrate samples using micro-scale abrasion tester and microhardness tester respectively. The wear scar marks and wear volume were analysed by optical microscope. The wear tracks were further studied using scanning electron mic...

  20. Effect of Rhenium Addition on Wear Behavior of Cr-Al2O3 Metal Matrix Composites

    Science.gov (United States)

    Chmielewski, Marcin; Piątkowska, Anna

    2015-05-01

    Materials for applications in the automotive industry are required to be strong, stiff, hard, light weight, and wear resistant, which is very difficult to achieve in the case of conventional materials. To meet all these diverse requirements, it is necessary to combine various types of materials (such as metals and ceramics). In the present study, the chromium and chromium-rhenium matrices were reinforced with aluminum oxide to obtain composite materials with improved wear resistance. The composites were fabricated by a powder metallurgy method. The effects of the rhenium addition and volume fraction of aluminum oxide on the wear rate and the friction coefficient of the composites at room temperature were examined in a ball-on-surface apparatus under dry conditions. The worn surfaces and debris were studied by scanning electron microscopy. The final values of the friction coefficient were 0.9 and 0.8 for the Cr-25%Al2O3 and Cr-40%Al2O3 composites, respectively. Alloying Cr matrix with Re improved wear resistance of composite but, at the same time, it caused an increase in its coefficient of friction.

  1. Microstructure and Wear Behavior of Ti-6Al-4V Treated by Plasma Zr-alloying and Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    CHEN Kai; LIU Xiaoping; LIU Xiaozhen; MENG Tianxu; GUO Qi; WANG Zhenxia; LIN Naimin

    2016-01-01

    A duplex treatment of plasma Zr-alloying and plasma nitriding was used to improve the tribological properties of Ti-6Al-4V. The microstructure of the Zr-N composite (alloyed) layer formed on Ti-6Al-4V and its hardness, friction and wear properties were investigated by using OM, SEM, GDOES, EDS, microhardness tester as well as ball-on-disk tribometer. The results of microstructural analysis show that the alloyed layer is compact and uniform and is mainly composed of ZrN, TiN0.3 and AlN. A very tiny adhesive and slight oxidation wear is the primary wear mechanism for the modiifed Ti-6Al-4V. The tribological property is improved signiifcantly after the duplex treatment. The good combination of antifriction and wear resistance for modiifed Ti-6Al-4V is mainly attributed to the higher surface hardness of metal nitrides formed on the surface and enhanced supporting of the Zr-diffusing layer.

  2. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  3. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  4. Friction and Wear Behavior of Titania Nanotube Layers with Different Thicknesses on Titanium Surface%钛表面不同厚度氧化钛纳米管层的摩擦磨损行为

    Institute of Scientific and Technical Information of China (English)

    罗锦洁; 冯波; 郭振永; 范兴平; 屈树新

    2012-01-01

    为了改善钛的摩擦学性能,采用阳极氧化法在钛表面制备了纳米管径约100 nm,厚度分别为500 nm、1 000 nm和1 500 nm的TiO2纳米管层,并在450℃保温3h进行热处理.对试样的表面形貌、显微硬度和粗糙度进行测试.利用摩擦磨损试验考察了热处理前后不同试样在大气环境下的摩擦磨损行为.结果表明:干摩擦下,纳米管层的存在降低了钛与GCr15轴承钢球之间的摩擦系数;随TiO2纳米管层厚度的增加,试样的摩擦因数逐渐降低,磨损逐渐下降;热处理使纳米管由无定型氧化钛转变为锐钛矿晶型,进一步降低了摩擦因数,增加了钛的耐磨性能;纳米管层的磨损机制为磨粒磨损,接触疲劳磨损和粘着磨损.%To improve the tribological properties of titanium, anodic oxidation was used to fabricate a series of nanotube layers on Ti surface with the same inner diameter about 100 nm and different thicknesses of 500 nm, 1 000 nm and 1 500 nm. Specimens were heat-treated at 450 ℃ for 3 h. Morphology, micro-hardness and rough-ness of specimens surface were measured. The friction and wear properties of the specimens treated before and after heat - treatment in atmosphere were investigated by friction and wear experiments. The results indicate that in dry friction condition, the friction coefficients between Ti and GCrl5 bearing steel ball decrease due to the existence of nanotube layers. The friction coefficients and wear rates decrease with the increase of the nanotube thickness. Amorphous titania nanotubes transform into anatase through heat - treatment, which re-duces the friction factor and increases the wear resistance of titanium. The wear mechanisms of the nanotube layers involve abrasive wear, fatigue wear and adhesive wear.

  5. Microstructural Characterization and Wear Behavior of Nano-Boride Dispersed Coating on AISI 304 Stainless Steel by Hybrid High Velocity Oxy-Fuel Spraying Laser Surface Melting

    Science.gov (United States)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2015-07-01

    The current study concerns the detailed microstructural characterization and investigation of wear behavior of nano-boride dispersed coating developed on AISI 304 stainless steel by high velocity oxy-fuel spray deposition of nickel-based alloy and subsequent laser melting. There is a significant refinement and homogenization of microstructure with improvement in microhardness due to laser surface melting (1200 VHN as compared to 945 VHN of as-sprayed and 250 VHN of as-received substrate). The high temperature phase stability of the as-coated and laser melted surface has been studied by differential scanning calorimeter followed by detailed phase analysis at room and elevated temperature. There is a significant improvement in wear resistance of laser melted surface as compared to as-sprayed and the as-received one due to increased hardness and reduced coefficient of friction. The mechanism of wear has been investigated in details. Corrosion resistance of the coating in a 3.56 wt pct NaCl solution is significantly improved (4.43 E-2 mm/year as compared to 5 E-1 mm/year of as-sprayed and 1.66 mm/year of as-received substrate) due to laser surface melting as compared to as-sprayed surface.

  6. Thermo-mechanical, Wear and Fracture Behavior of High-density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications:Effect of Accelerated Ageing

    Institute of Scientific and Technical Information of China (English)

    H.Fouad; R.Elleithy; Othman Y.Alothman

    2013-01-01

    The objective of this work is to demonstrate how the viscoelastic,thermal,rheological,hardness,wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles.Also the effects of accelerated thermal ageing on the composite properties have been investigated.Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder.The fracture toughness results showed a remarkable decrease in proportion to the HAP content.The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix.The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility.The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa).Finally,the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles.The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its hang composites crystallinity increased while the fracture toughness,hardness,wear resistance,storage and loss modulus decreased.

  7. Research of Consumer Behavior on Female Home Wear in Shanghai%上海市女性家居服消费行为研究

    Institute of Scientific and Technical Information of China (English)

    于素利

    2013-01-01

    Service questionnaire survey on female consumer purchased home wear in Shanghai based on the consumer’s basic conditions, consumptive habit, the consumer preferences and other aspects, analyzed the consumptive behavior characteristics the domestic female home ware service, summed up the important factors in product design for the home wear and provided suggestions and reference for home wear enterprise to make correctly target market and product design.%从消费者的基本情况、消费行为以及对家居服的喜好等方面,对上海市女性家居服消费者进行问卷调查,分析讨论了国内女性家居服消费者的消费行为特点,总结了家居服设计要素的侧重点,为家居服企业正确确定目标市场和产品设计提供参考。

  8. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the

  9. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    Science.gov (United States)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  10. Heat Treatment Parameters to Optimize Friction and Wear behavior of Novel Hybrid Aluminium Composites Using Taguchi Technique

    Directory of Open Access Journals (Sweden)

    V.C.Uvaraja

    2014-05-01

    Full Text Available In the present study, an Al 7075 alloy is used as the matrix and varying weight percentage of Silicon Carbide (SiC and constant weight percentage of Boron Carbide (B4C as the reinforcing material. The composite is produced using stir casting technique. The composite thus formed is termed as hybrid composite. The samples are prepared for heat treatment process by subjecting to solutionizing temperature of 530o C for 1 hr followed by quenching in water. Further the specimens are subjected to artificial aging for durations of 4, 6 and 8 hr at a temperature of 175°C. The mechanical and tribological properties of composites before and after heat treatment are examined by Vickers hardness test machine and pin-on-disc test machine respectively. The wear rate and friction co-efficient of heat treatment parameters are evaluated based on Taguchi technique. The analysis is further extended to the optimization of test parameters using Design of Experiment (DoE based on L9 orthogonal array. The developed Analysis of Variance (ANOVA and the regression equations is obtained through MINITAB R16 are used to investigate the influence of parameters like sliding speed, applied load, sliding time, and percentage of reinforcement on the dry sliding wear and friction co-efficient of the composites. The wear surface morphology and wear mechanism of the pins are investigated using Scanning Electron Microscope (SEM and are correlated them with wear test results. Finally, confirmation tests are carried out to verify the experimental results.

  11. Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel

    Science.gov (United States)

    Tong, Xin; Li, Fu-hai; Kuang, Min; Ma, Wen-you; Chen, Xing-chi; Liu, Min

    2012-01-01

    The CO2 laser surface alloying technique was used to form wear resistance layers on medium carbon steel with a kind of spherical WC powder. The effects of WC particle size on the abrasive wear resistance were thoroughly investigated. The results indicate that the laser alloyed layer is characterized by dendritic primary phase and ledeburite microstructure, consisting of austenite, martensite and carbides of Fe3W3C, W2C and WC. The laser surface alloying with WC powder could improve the abrasive wear resistance of the medium carbon steel by over 63%. The factors such as the hardness, the amount and the distribution of WC particle determined the laser alloyed samples' wear resistance, and the laser alloyed sample with WC powder of 88-100 μm diameter presented the best wear resistance in this study. Furthermore, the wear resistance mechanisms of the laser alloyed layers were also explored.

  12. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    Science.gov (United States)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  13. Cover and Erosion Asymmetry in Saltation-Abrasion

    Science.gov (United States)

    Stark, C. P.; Parker, G.

    2014-12-01

    Erosion in bedrock-floored rivers is both driven and limited by the amount of sediment transported along the bed. Some sediment boosts wear rates, whereas too much generates a protective cover. This phenomenon determines the shape of river channels in a variety of landscapes and limits how fast they evolve. Here we reevaluate data from a well-known bedrock wear experiment to throw new light on how the saltation-abrasion process. Instead of a symmetric form for erosion versus sediment flux relative to transport capacity, we find the erosion rate peak shifts towards lower sediment fluxes when blocking of oblique saltation trajectories is taken into account. The theoretical context for this reevaluation is a cover-saltation-abrasion model, based on queueing theory (QT), for bedload transport over a planar bedrock bed. The QT approach provides some clarity in the stochastic treatment of granular impacts and cover, and generates closed-form solutions for wear rate in terms of sediment flux and simplified saltation geometry. Applied to the Sklar & Dietrich (2001) experiments in a very small recirculating flume, the two-parameter QT model fits the observed relation between erosion rate and sediment load, infers sediment flux as a function of load, admits non-negligible wear rates for a mean sediment depth of one grain, i.e., for full cover on average, but also suggests that bedrock erosion is blocked at >=50% instantaneous cover. The QT model makes testable predictions for future laboratory experiments and highlights the need for specific improvements in more comprehensive treatments of bedrock erosion and cover.

  14. Tool wear during high speed turning in situ TiCp/TiBw hybrid reinforced Ti-6Al-4V matrix composite

    Directory of Open Access Journals (Sweden)

    Ge Yingfei

    2016-10-01

    Full Text Available Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4 matrix composite (TMCs. The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6–10 times longer than that for TMCs.

  15. Tool wear during high speed turning in situ TiCp/TiBw hybrid reinforced Ti-6Al-4V matrix composite

    Institute of Scientific and Technical Information of China (English)

    Ge Yingfei; Xu Jiuhua; Huan Haixiang

    2016-01-01

    Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the poly-crystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of car-bide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6–10 times longer than that for TMCs.

  16. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, S. V., E-mail: svp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Suan, T. Nguen [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  17. Damage tolerant functionally graded materials for advanced wear and friction applications

    Science.gov (United States)

    Prchlik, Lubos

    The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to

  18. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  19. Wear monitoring of protective nitride coatings using image processing

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.

    2010-01-01

    A double-layer model system, consisting of a thin layer of tribological titanium aluminum nitride (TiAlN) on 17 top of titanium nitride (TiN), was deposited on polished 100Cr6 steel substrates. The TiAlN top-coatings 18 were exposed to abrasive wear by a reciprocating wear process in a linear tribo...... processing by color detection is a potential technique for early 25 warning or determination of residual thickness of tribological tool coatings prior to complete wear....

  20. Wear resistance of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2011-07-01

    Full Text Available In this paper results of abrasive and adhesive wear resistance of selected grades of nodular cast iron with carbides are presented. It was demonstrated, that the maximum wear resistance has got nodular cast iron with the microstructure of upper bainite, lower bainite and carbides. This cast iron with hardened steel and sulfonitrided steel is the most advantageous friction pair during adhesive wear testing. It was found, that the least advantageous friction pair is pearlitic nodular cast iron with carbides and normalized steel.

  1. 30 CFR 72.610 - Abrasive blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 72.610 Section 72.610... HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.610 Abrasive blasting. (a) Surface and underground mines. When an abrasive blasting operation is performed, all exposed miners shall properly...

  2. 30 CFR 58.610 - Abrasive blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 58.610 Section 58.610... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.610 Abrasive blasting. (a) Surface and underground mines. When an abrasive blasting operation is performed, all...

  3. New concepts in air abrasion.

    Science.gov (United States)

    Porth, R N

    1998-03-01

    There is no doubt that air abrasion is going to be part of the millennial shift in dentistry away from traditional treatment modalities. With the change in incidence and morphology of caries as a result of the hardening effect of fluoride on enamel, this ability to remove only decayed areas and permanently seal the less susceptible areas becomes increasingly desirable.

  4. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review

    Directory of Open Access Journals (Sweden)

    Pierangiola Bracco

    2017-07-01

    Full Text Available Ultra-high molecular weight polyethylene (UHMWPE is the most common bearing material in total joint arthroplasty due to its unique combination of superior mechanical properties and wear resistance over other polymers. A great deal of research in recent decades has focused on further improving its performances, in order to provide durable implants in young and active patients. From “historical”, gamma-air sterilized polyethylenes, to the so-called first and second generation of highly crosslinked materials, a variety of different formulations have progressively appeared in the market. This paper reviews the structure–properties relationship of these materials, with a particular emphasis on the in vitro and in vivo wear performances, through an analysis of the existing literature.

  5. Microstructure and wear behavior of laser cladding Ni-based alloy composite coating reinforced by Ti(C,N) particulates

    Institute of Scientific and Technical Information of China (English)

    Qi Yongtian; Shi Hanchao; Zou Zengda; Hu Liping

    2008-01-01

    In this paper, Ni-based alloy composite coating reinforced by Ti (C,N) particles was fabricated on the mild steel through laser cladding technology. The microstructure of laser cladding layer was analyzed by means of optical microscopy (OM),X-ray diffraction (XRD) and scanning electron microscopy (SEM).The wear resistance test of the coating was evaluated using an M-2000 tester. The results showed that the Ni-based composite coating had an ability of rapid solidification to form dendritic crystals microstructure consisting of Ti (C,N) particulates uniformly distributed in the matrix. It was found that some Ti(C,N) particles are similar to be round in shape, and the others are irregular. Laser cladding layer reinforced by Ti(C,N) particulates was found to possess good wear resistance property.

  6. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the

  7. On the abrasion of heat-treated 2.8C21Cr1Mo white cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rubaie, Kassim S.; Preti, Orlando [Centro Universitario SOCIESC, Joinville (Brazil). Engenharia Mecanica; Pohl, Michael [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2016-09-15

    The abrasion behaviour of heat-treated 2.8C21Cr1Mo cast iron was studied. The specimens were destabilised at two temperatures, 980 and 1050 C, for 4 h, air hardened, and then tempered at five temperatures, 220, 320, 400, 500, and 620 C, for 2 h followed by air cooling. Using a pin-on-plate abrasion apparatus, the specimens were abraded on four types of bonded abrasives (silicon carbide, corundum, flint, and glass). The effect of work hardening on the abrasion resistance was investigated. It was found that the increase in alloy hardness produced by heat treatment had little effect on the abrasion resistance against silicon carbide or corundum; the inverse was true against flint or glass. The as-hardened structure containing 40% retained austenite gave the best abrasion resistance, whereas the hardened and tempered at 620 C showed the worst. Both bulk hardness and matrix hardness before wear correlated poorly with the abrasion resistance. Therefore, a general model ''equivalent hardness'' was developed, in which the hardness of the abraded matrix was considered. With this model, the abrasion behaviour can be clearly analysed.

  8. Computed tomography to quantify tooth abrasion

    Science.gov (United States)

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomograp