WorldWideScience

Sample records for aboveground herbivory shapes

  1. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem.

    Science.gov (United States)

    Blue, Jarrod D; Souza, Lara; Classen, Aimée T; Schweitzer, Jennifer A; Sanders, Nathan J

    2011-11-01

    Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.

  2. Emerging role of roots in plant responses to aboveground insect herbivory

    Institute of Scientific and Technical Information of China (English)

    Vamsi J.Nalam; Jyoti Shah; Punya Nachappa

    2013-01-01

    Plants have evolved complex biochemical mechanisms to counter threats from insect herbivory.Recent research has revealed an important role of roots in plant responses to above ground herbivory (AGH).The involvement of roots is integral to plant resistance and tolerance mechanisms.Roots not only play an active role in plant defenses by acting as sites for biosynthesis of various toxins and but also contribute to tolerance by storing photoassimilates to enable future regrowth.The interaction of roots with beneficial soilborne microorganisms also influences the outcome of the interaction between plant and insect herbivores.Shoot-to-root communication signals are critical for plant response to AGH.A better understanding of the role of roots in plant response to AGH is essential in order to develop a comprehensive picture of plant-insect interactions.Here,we summarize the current status of research on the role of roots in plant response to AGH and also discuss possible signals involved in shoot-to-root communication.

  3. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    Science.gov (United States)

    Reidinger, Stefan; Eschen, René; Gange, Alan C.; Finch, Paul; Bezemer, T. Martijn

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF colonization levels of individual ragwort ( Senecio jacobaea) plants growing in grassland plots that were originally sown with 15 or 4 plant species, or were unsown. We measured the concentrations of carbon, nitrogen and pyrrolizidine alkaloids (PAs), and assessed the presence of aboveground insect herbivores on the sampled plants. Total AMF colonization and colonization by arbuscules was lower in plots sown with 15 species than in plots sown with 4 species and unsown plots. AMF colonization was positively related to the cover of oxeye daisy ( Leucanthemum vulgare) and a positive relationship between colonization by arbuscules and the occurrence of a specialist seed-feeding fly ( Pegohylemyia seneciella) was found. The occurrence of stem-boring, leaf-mining and sap-sucking insects was not affected by AMF colonization. Total PA concentrations were negatively related to colonization levels by vesicles, but did not differ among the sowing treatments. No single factor explained the observed differences in AMF colonization among the sowing treatments or insect herbivore occurrence on S. jacobaea. However, correlations across the treatments suggest that some of the variation was due to the abundance of one plant species, which is known to stimulate AMF colonization of neighbouring plants, while AMF colonization was related to the occurrence of a specialist insect herbivore. Our results thus illustrate that in natural systems, the ecosystem impact of AMF through their influence on the occurrence of specialist insects can be recognised, but they also highlight the confounding effect of neighbouring plant species identity. Hence, our results emphasise the importance of field

  4. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance

    NARCIS (Netherlands)

    Wang, M.; Biere, A.; Putten, van der W.H.; Bezemer, T.M.

    2014-01-01

    Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua an

  5. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.

    Science.gov (United States)

    Johnson, Scott N; Mitchell, Carolyn; McNicol, James W; Thompson, Jacqueline; Karley, Alison J

    2013-09-01

    1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root

  6. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq

    Full Text Available Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores, their parasitoids, and a dipteran species (root herbivore.We tested the hypotheses that: (1 high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2 drought stress and root herbivory change the profile of volatile organic chemicals (VOCs emitted by the host plant; (3 parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference, plant volatile emissions, parasitism success (performance, and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial

  7. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem

    DEFF Research Database (Denmark)

    Blue, Jarrod D.; Souza, Lara; Classen, Aimée T.

    2011-01-01

    in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth...

  8. Crop resistance traits modify the effects of an aboveground herbivore, brown planthopper, on soil microbial biomass and nematode community via changes to plant performance.

    NARCIS (Netherlands)

    Huang, J.; Liu, M.; Chen, F.; Griffiths, B.S.; Chen, X.; Johnson, S.N.; Hu, F.

    2012-01-01

    Plant-mediated effects of aboveground herbivory on the belowground ecosystem are well documented, but less attention has been paid to agro-ecosystems and in particular how crop cultivars with different traits (i.e. resistance to pests) shape such interactions. A fully factorial experiment was conduc

  9. Legacy effects of aboveground-belowground interactions.

    Science.gov (United States)

    Kostenko, Olga; van de Voorde, Tess F J; Mulder, Patrick P J; van der Putten, Wim H; Martijn Bezemer, T

    2012-08-01

    Root herbivory can greatly affect the performance of aboveground insects via changes in plant chemistry. These interactions have been studied extensively in experiments where aboveground and belowground insects were feeding on the same plant. However, little is known about how aboveground and belowground organisms interact when they feed on plant individuals that grow after each other in the same soil. We show that feeding by aboveground and belowground insect herbivores on ragwort (Jacobaea vulgaris) plants exert unique soil legacy effects, via herbivore-induced changes in the composition of soil fungi. These changes in the soil biota induced by aboveground and belowground herbivores of preceding plants greatly influenced the pyrrolizidine alkaloid content, biomass and aboveground multitrophic interactions of succeeding plants. We conclude that plant-mediated interactions between aboveground and belowground insects are also important when they do not feed simultaneously on the same plant.

  10. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar

    OpenAIRE

    Michal Samuni-Blank; Ido Izhaki; Sivan Laviad; Avi Bar-Massada; Yoram Gerchman; Malka Halpern

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that "everything is everywhere, but the environment selects". Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacteria...

  11. The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar.

    Science.gov (United States)

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that "everything is everywhere, but the environment selects". Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs.

  12. The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar.

    Directory of Open Access Journals (Sweden)

    Michal Samuni-Blank

    Full Text Available Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that "everything is everywhere, but the environment selects". Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs.

  13. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  14. The effects of vertebrate herbivory on plant community structure in the coastal marshes of the Pearl River, Louisiana, USA

    Science.gov (United States)

    Taylor, K.L.; Grace, J.B.

    1995-01-01

    In this study, we investigated the impacts of herbivory by the introduced aquatic herbivore, nutria (Myocastor coypus), on three marsh communities of the Pearl River using fenced exclosures and control plots. Although total community above-ground biomass was reduced by 30% in the plots exposed to herbivory as compared to those protected from herbivory, we found species richness to be unaffected. When individual species were examined within each community,Panicum virgatum andAster subulatus were found to be significantly reduced by herbivory in the freshwater community,Panicum virgatum andVigna luteola were significantly increased by herbivory in the oligohaline community, and no species were significantly affected in the mesohaline community. We conclude that this herbivory has some specific effects on some plant species as well as having a general community effect.

  15. Differential responses of herbivores and herbivory to management in temperate European beech.

    Directory of Open Access Journals (Sweden)

    Martin M Gossner

    Full Text Available Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory

  16. Vertebrate herbivory in managed coastal wetlands: A manipulative experiment

    Science.gov (United States)

    Johnson, L.A.; Foote, A.L.

    1997-01-01

    Structural marsh management and nutria herbivory are both believed to strongly influence plant production in the brackish, deltaic marshes of coastal Louisiana, USA. Previous studies have tested the effects of structural management on aboveground biomass after implementing management, but very few studies have collected data before and after management. Thus, to test the effects of structural marsh management on Spartina patens (Ait.) Muhl. and Scirpus americanus Pers., the aboveground biomass of both species was estimated before and after the construction of shallow, leveed impoundments. The water level in each impoundment was managed with a single flap-gated culvert fitted with a variable crest weir. Additionally, the influence of nutria grazing on aboveground biomass was measured by nondestructively sampling fenced (ungrazed) and unfenced (grazed) plots in both managed and unmanaged areas. While there was no significant difference in S. patens production between managed and unmanaged areas, marsh management negatively affected Sc. americanus production the two species also differed in their responses to grazing. Grazing dramatically reduced the sedge, Sc. americanus, while the grass, S. patens, remained at similar biomass levels in grazed and ungrazed plant stands. These findings support the belief that herbivory has a strong influence on plant production, but do not support the claim that management increases plant production in the deltaic marshes of Louisiana.

  17. Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale.

    Science.gov (United States)

    de la Peña, Eduardo; Bonte, Dries

    2014-08-01

    Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.

  18. Disentangling fragmentation effects on herbivory in understory plants of longleaf pine savanna.

    Science.gov (United States)

    Levey, Douglas J; Caughlin, T Trevor; Brudvig, Lars A; Haddad, Nick M; Damschen, Ellen I; Tewksbury, Joshua J; Evans, Daniel M

    2016-09-01

    Habitat fragmentation affects species and their interactions through intertwined mechanisms that include changes to fragment area, shape, connectivity and distance to edge. Disentangling these pathways is a fundamental challenge of landscape ecology and will help identify ecological processes important for management of rare species or restoration of fragmented habitats. In a landscape experiment that manipulated connectivity, fragment shape, and distance to edge while holding fragment area constant, we examined how fragmentation impacts herbivory and growth of nine plant species in longleaf pine savanna. Probability of herbivory in open habitat was strongly dependent on proximity to forest edge for every species, increasing with distance to edge in six species (primarily grasses and annual forbs) and decreasing in three species (perennial forbs and a shrub). In the two species of perennial forbs, these edge effects were dependent on fragment shape; herbivory strongly decreased with distance to edge in fragments of two shapes, but not in a third shape. For most species, however, probability of herbivory was unrelated to connectivity or fragment shape. Growth was generally determined more strongly by leaf herbivory than by distance to edge, fragment shape, or connectivity. Taken together, these results demonstrate consistently strong edge effects on herbivory, one of the most important biotic factors determining plant growth and demography. Our results contrast with the generally inconsistent results of observational studies, likely because our experimental approach enabled us to tease apart landscape processes that are typically confounded.

  19. The roots of defense: plant resistance and tolerance to belowground herbivory.

    Directory of Open Access Journals (Sweden)

    Sean M Watts

    Full Text Available BACKGROUND: There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts. METHODOLOGY AND PRINCIPAL FINDINGS: We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory to island populations (free from gophers for up to 500,000 years. Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1 Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2 captive gophers were used to test the palatability of E. californica roots and 3 simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals. CONCLUSIONS AND SIGNIFICANCE: These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest

  20. Spider silk reduces insect herbivory.

    Science.gov (United States)

    Rypstra, Ann L; Buddle, Christopher M

    2013-02-23

    The role of predators in food webs extends beyond their ability to kill and consume prey. Such trait-mediated effects occur when signals of the predator influence the behaviour of other animals. Because all spiders are silk-producing carnivores, we hypothesized that silk alone would signal other arthropods and enhance non-lethal effects of spiders. We quantified the herbivory inflicted by two beetle species on green bean plants (Phaseolus vulgaris) in the presence of silkworm silk and spider silk along with no silk controls. Single leaflets were treated and enclosed with herbivores in the laboratory and field. Another set of leaflets were treated and left to experience natural herbivory in the field. Entire plants in the field were treated with silk and enclosed with herbivores or left exposed to herbivory. In all cases, the lowest levels of herbivory occurred with spider silk treatments and, in general, silkworm silk produced intermediate levels of leaf damage. These results suggest that silk may be a mechanism for the trait-mediated impacts of spiders and that it might contribute to integrated pest management programmes.

  1. Herbivory, Predation, and Biological Control.

    Science.gov (United States)

    Murphy, Terence M.; And Others

    1992-01-01

    Authors describe a set of controlled ecosystems that can be used to demonstrate the effects of herbivory on the health and growth of a plant population and of predation on the growth of a primary consumer population. The system also shows the effectiveness of biological pest control measures in a dramatic way. The construction of the ecosystems is…

  2. Linking aboveground and belowground diversity

    NARCIS (Netherlands)

    Deyn, de G.B.; Putten, van der W.H.

    2005-01-01

    Aboveground and belowground species interactions drive ecosystem properties at the local scale, but it is unclear how these relationships scale-up to regional and global scales. Here, we discuss our current knowledge of aboveground and belowground diversity links from a global to a local scale. Glob

  3. Intermediate coupling between aboveground and belowground biomass maximises the persistence of grasslands.

    Science.gov (United States)

    Scheiter, Simon; Higgins, Steven I

    2013-01-01

    Aboveground and belowground biomass compartments of vegetation fulfil different functions and they are coupled by complex interactions. These compartments exchange water, carbon and nutrients and the belowground biomass compartment has the capacity to buffer vegetation dynamics when aboveground biomass is removed by disturbances such as herbivory or fire. However, despite their importance, root-shoot interactions are often ignored in more heuristic vegetation models. Here, we present a simple two-compartment grassland model that couples aboveground and belowground biomass. In this model, the growth of belowground biomass is influenced by aboveground biomass and the growth of aboveground biomass is influenced by belowground biomass. We used the model to explore how the dynamics of a grassland ecosystem are influenced by fire and grazing. We show that the grassland system is most persistent at intermediate levels of aboveground-belowground coupling. In this situation, the system can sustain more extreme fire or grazing regimes than in the case of strong coupling. In contrast, the productivity of the system is maximised at high levels of coupling. Our analysis suggests that the yield of a grassland ecosystem is maximised when coupling is strong, however, the intensity of disturbance that can be sustained increases dramatically when coupling is intermediate. Hence, the model predicts that intermediate coupling should be selected for as it maximises the chances of persistence in disturbance driven ecosystems.

  4. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    Science.gov (United States)

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  5. Long-term habitat selection and chronic root herbivory: explaining the relationship between periodical cicada density and tree growth.

    Science.gov (United States)

    Yang, Louie H; Karban, Richard

    2009-01-01

    Periodical cicadas (Magicicada spp.) are insect herbivores that feed on host tree roots, but their distribution among hosts is determined largely by the oviposition of female cicadas in the previous generation. A pattern of decreasing tree growth rates with increasing cicada densities is predicted when considering the costs of chronic root herbivory, but the opposite pattern is expected when considering adaptive habitat selection. Here, we report observations indicating that the relationship between periodical cicada densities and host tree growth rates is hump shaped. We suggest that both herbivory and habitat selection are likely to be key processes explaining this pattern, resulting in regions of positive and negative correlation. These results suggest that the effects of cicada herbivory are most apparent at relatively high cicada densities, while habitat selection tends to distribute cicada herbivory on host trees that are able to compensate for cicada root herbivory up to threshold cicada densities.

  6. Herbivory increases diversification across insect clades.

    Science.gov (United States)

    Wiens, John J; Lapoint, Richard T; Whiteman, Noah K

    2015-09-24

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life.

  7. Plant architecture and growth response of kudzu (fabaceae: Fabaceae) to simulated insect herbivory.

    Science.gov (United States)

    Frye, M J; Hough-Goldstein, J

    2013-10-01

    Kudzu [Pueraria montana variety lobata (Willd.) Maesen & S. M. Almeida] plant architecture and growth were compared for plants subjected to 4 wk of simulated herbivory (75% leaf cutting) and no damage. Simulated herbivory reduced above-ground and root biomass by 40 and 47%, respectively, whereas total vine length and average length of the 10 longest vines were reduced by 48 and 43%, respectively, compared with control plants. Plant architecture was also affected, with damaged plants showing a significantly reduced proportion of primary vines, shorter secondary vines, and reduced average internode distances compared with the control plants. In natural situations, these changes would reduce the ability of kudzu to compete for light and other resources by affecting the plant's climbing habit.

  8. Latitudinal variation in resistance and tolerance to herbivory in the perennial herb Lythrum salicaria is related to intensity of herbivory and plant phenology.

    Science.gov (United States)

    Lehndal, L; Ågren, J

    2015-03-01

    Both the length of the growing season and the intensity of herbivory often vary along climatic gradients, which may result in divergent selection on plant phenology, and on resistance and tolerance to herbivory. In Sweden, the length of the growing season and the number of insect herbivore species feeding on the perennial herb Lythrum salicaria decrease from south to north. Previous common-garden experiments have shown that northern L. salicaria populations develop aboveground shoots earlier in the summer and finish growth before southern populations do. We tested the hypotheses that resistance and tolerance to damage vary with latitude in L. salicaria and are positively related to the intensity of herbivory in natural populations. We quantified resistance and tolerance of populations sampled along a latitudinal gradient by scoring damage from natural herbivores and fitness in a common-garden experiment in the field and by documenting oviposition and feeding preference by specialist leaf beetles in a glasshouse experiment. Plant resistance decreased with latitude of origin, whereas plant tolerance increased. Oviposition and feeding preference in the glasshouse and leaf damage in the common-garden experiment were negatively related to damage in the source populations. The latitudinal variation in resistance was thus consistent with reduced selection from herbivores towards the northern range margin of L. salicaria. Variation in tolerance may be related to differences in the timing of damage in relation to the seasonal pattern of plant growth, as northern genotypes have developed further than southern have when herbivores emerge in early summer.

  9. Leaf mimicry in a climbing plant protects against herbivory.

    Science.gov (United States)

    Gianoli, Ernesto; Carrasco-Urra, Fernando

    2014-05-05

    Mimicry refers to adaptive similarity between a mimic organism and a model. Mimicry in animals is rather common, whereas documented cases in plants are rare, and the associated benefits are seldom elucidated [1, 2]. We show the occurrence of leaf mimicry in a climbing plant endemic to a temperate rainforest. The woody vine Boquila trifoliolata mimics the leaves of its supporting trees in terms of size, shape, color, orientation, petiole length, and/or tip spininess. Moreover, sequential leaf mimicry occurs when a single individual vine is associated with different tree species. Leaves of unsupported vines differed from leaves of climbing plants closely associated with tree foliage but did not differ from those of vines climbing onto leafless trunks. Consistent with an herbivory-avoidance hypothesis, leaf herbivory on unsupported vines was greater than that on vines climbing on trees but was greatest on vines climbing onto leafless trunks. Thus, B. trifoliolata gains protection against herbivory not merely by climbing and thus avoiding ground herbivores [3] but also by climbing onto trees whose leaves are mimicked. Unlike earlier cases of plant mimicry or crypsis, in which the plant roughly resembles a background or color pattern [4-7] or mimics a single host [8, 9], B. trifoliolata is able to mimic several hosts.

  10. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.

    Science.gov (United States)

    Gough, Laura; Moore, John C; Shaver, Gauis R; Simpson, Rodney T; Johnson, David R

    2012-07-01

    Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The exploitation ecosystem hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The

  11. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands

    Science.gov (United States)

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species’ recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary. PMID:28333985

  12. Temporal variability in aboveground plant biomass decreases as spatial variability increases.

    Science.gov (United States)

    McGranahan, Devan Allen; Hovick, Torre J; Elmore, R Dwayne; Engle, David M; Fuhlendorf, Samuel D; Winter, Stephen L; Miller, James R; Debinski, Diane M

    2016-03-01

    Ecological theory predicts that diversity decreases variability in ecosystem function. We predict that, at the landscape scale, spatial variability created by a mosaic of contrasting patches that differ in time since disturbance will decrease temporal variability in aboveground plant biomass. Using data from a multi-year study of seven grazed tallgrass prairie landscapes, each experimentally managed for one to eight patches, we show that increased spatial variability driven by spatially patchy fire and herbivory reduces temporal variability in aboveground plant biomass. This pattern is associated with statistical evidence for the portfolio effect and a positive relationship between temporal variability and functional group synchrony as predicted by metacommunity variability theory. As disturbance from fire and grazing interact to create a shifting mosaic of spatially heterogeneous patches within a landscape, temporal variability in aboveground plant biomass can be dampened. These results suggest that spatially heterogeneous disturbance regimes contribute to a portfolio of ecosystem functions provided by biodiversity, including wildlife habitat, fuel, and forage. We discuss how spatial patterns of disturbance drive variability within and among patches.

  13. Herbivory and Stoichiometric Feedbacks to Primary Production

    NARCIS (Netherlands)

    Krumins, Jennifer Adams; Krumins, Valdis; Forgoston, Eric; Billings, Lora; van der Putten, Wim H.

    2015-01-01

    Established theory addresses the idea that herbivory can have positive feedbacks on nutrient flow to plants. Positive feedbacks likely emerge from a greater availability of organic carbon that primes the soil by supporting nutrient turnover through consumer and especially microbially-mediated metabo

  14. Land-use legacies and present fire regimes interact to mediate herbivory by altering the neighboring plant community.

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Philip G. [University of Wisconsin; Orrock, John L. [University of Wisconsin

    2015-04-01

    Past and present human activities, such as historic agriculture and fire suppression, are widespread and can create depauperate plant communities. Although many studies show that herbivory on focal plants depends on the density of herbivores or the composition of the surrounding plant community, it is unclear whether anthropogenic changes to plant communities alter herbivory. We tested the hypothesis that human activities that alter the plant community lead to subsequent changes in herbivory. At 20 sites distributed across 80 300 hectares, we conducted a field experiment that manipulated insect herbivore access (full exclosures and pseudo-exclosures) to four focal plant species in longleaf pine woodlands with diff erent land-use histories (post-agricultural sites or non-agricultural sites) and degrees of fi re frequency (frequent and infrequent). Plant cover, particularly herbaceous cover, was lower in post-agricultural and fi re suppressed woodlands. Density of the dominant insect herbivore at our site (grasshoppers) was positively related to plant cover. Herbivore access reduced biomass of the palatable forb Solidago odora in frequently burned post-agricultural sites and in infrequently burned non-agricultural woodlands and increased mortality of another forb (Pityopsis graminifolia ), but did not aff ect two other less palatable species ( Schizachyrium scoparium and Tephrosia virginiana ). Herbivory on S. odora exhibited a hump-shaped response to plant cover, with low herbivory at low and high levels of plant cover. Herbivore density had a weak negative effect on herbivory. These findings suggest that changes in plant cover related to past and present human activities can modify damage rates on focal S. odora plants by altering grasshopper foraging behavior rather than by altering local grasshopper density. The resulting changes in herbivory may have the potential to limit natural recovery or restoration eff orts by reducing the establishment or performance of

  15. Interactive effects of herbivory and competition intensity determine invasive plant performance.

    Science.gov (United States)

    Huang, Wei; Carrillo, Juli; Ding, Jianqing; Siemann, Evan

    2012-10-01

    Herbivory can reduce plant fitness, and its effects can be increased by competition. Though numerous studies have examined the joint effects of herbivores and competitors on plant performance, these interactive effects are seldom considered in the context of plant invasions. Here, we examined variation in plant performance within a competitive environment in response to both specialist and generalist herbivores using Chinese tallow as a model species. We combined tallow plants from native and invasive populations to form all possible pairwise combinations, and designated invasive populations as stronger neighbours and native populations as weaker neighbours. We found that when no herbivory was imposed, invasive populations always had higher total biomass than natives, regardless of their neighbours, which is consistent with our assumption of increased competitive ability. Defoliation by either generalist or specialist herbivores suppressed plant growth but the effects of specialists were generally stronger for invasive populations. Invasive populations had their lowest biomass when fed upon by specialists while simultaneously competing with stronger neighbours. The root/shoot ratios of invasive populations were lower than those of native populations under almost all conditions, and invasive plants were taller than native plants overall, especially when herbivores were present, suggesting that invasive populations may adopt an "aboveground first" strategy to cope with herbivory and competition. These results suggest that release from herbivores, especially specialists, improves an invader's performance and helps to increase its competitive ability. Therefore, increasing interspecific competition intensity by planting a stronger neighbour while simultaneously releasing a specialist herbivore may be an especially effective method of managing invasive plants.

  16. Recurrent evolution of herbivory in small, cold-climate lizards: Breaking the ecophysiological rules of reptilian herbivory

    OpenAIRE

    Espinoza, Robert E.; Wiens, John J.; Tracy, C. Richard

    2004-01-01

    Herbivory has evolved in many groups of vertebrates, but it is rare among both extinct and extant nonavian reptiles. Among squamate reptiles, (lizards, snakes, and their relatives), 7,800 species are considered to be herbivorous, and herbivory is restricted to lizards. Here, we show that within a group of South American lizards (Liolaemidae, ≈170 species), herbivory has evolved more frequently than in all other squamates combined and at a rate estimated to be >65 times faster. Furthermore, in...

  17. The 'Herbivory Uncertainty Principle': application in a cerrado site

    Directory of Open Access Journals (Sweden)

    CA Gadotti

    Full Text Available Researchers may alter the ecology of their studied organisms, even carrying out apparently beneficial activities, as in herbivory studies, when they may alter herbivory damage. We tested whether visit frequency altered herbivory damage, as predicted by the 'Herbivory Uncertainty Principle'. In a cerrado site, we established 80 quadrats, in which we sampled all woody individuals. We used four visit frequencies (high, medium, low, and control, quantifying, at the end of three months, herbivory damage for each species in each treatment. We did not corroborate the 'Herbivory Uncertainty Principle', since visiting frequency did not alter herbivory damage, at least when the whole plant community was taken into account. However, when we analysed each species separately, four out of 11 species presented significant differences in herbivory damage, suggesting that the researcher is not independent of its measurements. The principle could be tested in other ecological studies in which it may occur, such as those on animal behaviour, human ecology, population dynamics, and conservation.

  18. Variable effects of temperature on insect herbivory

    Directory of Open Access Journals (Sweden)

    Nathan P. Lemoine

    2014-05-01

    Full Text Available Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass.

  19. Aboveground and belowground net primary production

    Science.gov (United States)

    Marianne K. Burke; Hal O. Liechty; Mark H. Eisenbies

    2000-01-01

    The relationship among net primary productivity (NPP), hydroperiod, and fertility in forested wetlands is poorly understood (Burke and others 1999), particularly with respect to belowground NPP (Megonigal and others 1997). Although some researchers have studied aboveground and belowground primary production in depressional, forested wetland systems, e.g., Day and...

  20. [Estimation of aboveground biomass of desert plants].

    Science.gov (United States)

    Zhao, Chengyi; Song, Yudong; Wang, Yuchao; Jiang, Pinan

    2004-01-01

    Based on the research of plant quadrate in Sangong River Basin in Xinjiang, the fitted equations were given, which could be used to estimate the aboveground biomass of typical desert plant by using the thicket characteristics such as length of crown diameter, width of crown diameter, number of basal branch, length of new branch, basal diameter (D) and plant height (H) as parameters. Using the length of crown diameter and the width of crown diameter as parameters, the fitted equation was set up and tested for estimating the aboveground biomass of Reaumuria soongorica Maxim. It had a relatively high accuracy and a fine linear relationship between the predicted values and measured values. Its coefficient and relative standard deviation was 0.9989 and 4.79%-10.12%, respectively. The results indicated that the fitted equation was easy and available for estimating the aboveground biomass of Reaumuria soongorica Maxim in large scale. The fitted equations were also set up and tested for estimating the aboveground biomass of Haloxylon ammodendron and Tamarix ramosissima by using the basal diameter and height of plant as the parameters. The coefficients and relative standard deviations of these equations were 0.9902, 0.9875 and 6.87%-19.22%, 7.49%-18.47%, respectively. Therefore, estimating the biomass of Reaumuria soongorica in large scale through crown characteristics was available, and estimating the biomass of Halaxylon Ammodendron and Tamarix ramosissima through crown characteristics would produce certain error.

  1. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  2. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory.

    Science.gov (United States)

    Espinoza, Robert E; Wiens, John J; Tracy, C Richard

    2004-11-30

    Herbivory has evolved in many groups of vertebrates, but it is rare among both extinct and extant nonavian reptiles. Among squamate reptiles, (lizards, snakes, and their relatives), 7,800 species are considered to be herbivorous, and herbivory is restricted to lizards. Here, we show that within a group of South American lizards (Liolaemidae, approximately 170 species), herbivory has evolved more frequently than in all other squamates combined and at a rate estimated to be >65 times faster. Furthermore, in contrast to other herbivorous lizards and to existing theory, most herbivorous liolaemids are small bodied and live in cool climates. Herbivory is generally thought to evolve only in reptile species that are large bodied, live in warm climates, and maintain high body temperatures. These three well known "rules" of herbivory are considered to form the bases of physiological constraints that explain the paucity of herbivorous reptile species. We suggest that the recurrent and paradoxical evolution of herbivory in liolaemids is explained by a combination of environmental conditions (promoting independent origins of herbivory in isolated cool-climate regions), ecophysiological constraints (requiring small body size in cool climates, yet high body temperatures for herbivores), and phylogenetic history. More generally, our study demonstrates how integrating information from ecophysiology and phylogeny can help to explain macroevolutionary trends.

  3. Urban warming reduces aboveground carbon storage

    DEFF Research Database (Denmark)

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert Roberdeau

    2016-01-01

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon...... photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future....... sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because...

  4. Prairie forb response to timing of vole herbivory.

    Science.gov (United States)

    Sullivan, Amy T; Howe, Henry F

    2009-05-01

    The timing of herbivory can be an important factor in the strength and direction of plant response to herbivore damage. To determine the effect of vole herbivory timing within a growing season on tallgrass prairie forbs, we used individual plant enclosures to limit vole access to three species, Desmanthus illinoensis, Echinacea purpurea, and Heliopsis helianthoides, in an experimental restoration in northern Illinois, USA. As part of a long-term experiment, we implemented five vole access treatments in 2003: (1) vole access for the entire growing season, (2) early-season access, (3) mid-season access, (4) late-season access, and (5) no vole access. We protected all plants from herbivory in the following growing season (2004) to test whether the effects of herbivory in one growing season carried over to the next. We also tested how restoration planting design, including seeding time (June or December) and density (35 or 350 seeds/m2 of each species) affected patterns of herbivory and plant recovery. Vole access for the entire growing season was most detrimental for the growth and reproduction of all three species. In contrast, vole access for a portion of the growing season had different effects on the three species: Desmanthus growth and reproduction was negatively affected by early-season access, Echinacea reproductive output was reduced by late-season access, and Heliopsis was not affected by early-, mid-, or late-season vole access. Negative effects of continual vole access carried over to the following growing season for Desmanthus and Heliopsis, but not for Echinacea. Effects of herbivory did not carry over to the next season for Echinacea and Heliopsis when plants were accessible to voles for only part of the growing season. In contrast, Desmanthus plants exposed to early-season herbivory in one year continued to produce fewer seeds per plant after being protected from vole herbivory for a growing season. Planting density and planting season had mixed effects

  5. Herbivory Network: An international, collaborative effort to study herbivory in Arctic and alpine ecosystems

    Science.gov (United States)

    Barrio, I. C.; Hik, D. S.; Jónsdóttir, I. S.; Bueno, C. G.; Mörsdorf, M. A.; Ravolainen, V. T.

    2016-09-01

    Plant-herbivore interactions are central to the functioning of tundra ecosystems, but their outcomes vary over space and time. Accurate forecasting of ecosystem responses to ongoing environmental changes requires a better understanding of the processes responsible for this heterogeneity. To effectively address this complexity at a global scale, coordinated research efforts, including multi-site comparisons within and across disciplines, are needed. The Herbivory Network was established as a forum for researchers from Arctic and alpine regions to collaboratively investigate the multifunctional role of herbivores in these changing ecosystems. One of the priorities is to integrate sites, methodologies, and metrics used in previous work, to develop a set of common protocols and design long-term geographically-balanced, coordinated experiments. The implementation of these collaborative research efforts will also improve our understanding of traditional human-managed systems that encompass significant portions of the sub-Arctic and alpine areas worldwide. A deeper understanding of the role of herbivory in these systems under ongoing environmental changes will guide appropriate adaptive strategies to preserve their natural values and related ecosystem services.

  6. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests

    Science.gov (United States)

    Sah, J.P.; Ross, M.S.; Koptur, S.; Snyder, J.R.

    2004-01-01

    Species-specific allometric equations that provide estimates of biomass from measured plant attributes are currently unavailable for shrubs common to South Florida pine rocklands, where fire plays an important part in shaping the structure and function of ecosystems. We developed equations to estimate total aboveground biomass and fine fuel of 10 common hardwood species in the shrub layer of pine forests of the lower Florida Keys. Many equations that related biomass categories to crown area and height were significant (p aboveground shrub biomass and shrub fine fuel increased with time since last fire, but the relationships were non-linear. The relative proportion of biomass constituted by the major species also varied with stand age. Estimates based on mixed-species regressions differed slightly from estimates based on species-specific models, but the former could provide useful approximations in similar forests where species-specific regressions are not yet available. ?? 2004 Elsevier B.V. All rights reserved.

  7. Consequences of insect herbivory on grape fine root systems with different growth rates.

    Science.gov (United States)

    Bauerle, T L; Eissenstat, D M; Granett, J; Gardner, D M; Smart, D R

    2007-07-01

    Herbivory tolerance has been linked to plant growth rate where plants with fast growth rates are hypothesized to be more tolerant of herbivory than slower-growing plants. Evidence supporting this theory has been taken primarily from observations of aboveground organs but rarely from roots. Grapevines differing in overall rates of new root production, were studied in Napa Valley, California over two growing seasons in an established vineyard infested with the sucking insect, grape phylloxera (Daktulosphaira vitifoliae Fitch). The experimental vineyard allowed for the comparison of two root systems that differed in rates of new root tip production (a 'fast grower', Vitis berlandieri x Vitis rupestris cv. 1103P, and a slower-growing stock, Vitis riparia x Vitis rupestris cv. 101-14 Mgt). Each root system was grafted with a genetically identical shoot system (Vitis vinifera cv. Merlot). Using minirhizotrons, we did not observe any evidence of spatial or temporal avoidance of insect populations by root growth. Insect infestations were abundant throughout the soil profile, and seasonal peaks in phylloxera populations generally closely followed peaks in new root production. Our data supported the hypothesis that insect infestation was proportional to the number of growing tips, as indicated by similar per cent infestation in spite of a threefold difference in root tip production. In addition, infested roots of the fast-growing rootstock exhibited somewhat shorter median lifespans (60 d) than the slower-growing rootstock (85 d). Lifespans of uninfested roots were similar for the two rootstocks (200 d). As a consequence of greater root mortality of younger roots, infested root populations in the fast-growing rootstock had an older age structure. While there does not seem to be a trade-off between potential growth rate and relative rate of root infestation in these cultivars, our study indicates that a fast-growing root system may more readily shed infested roots that are

  8. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Science.gov (United States)

    2010-10-01

    ... Standard 620 and first placed in service after October 2, 2000, hydrostatic and pneumatic testing must be... aboveground breakout tanks. (a) For aboveground breakout tanks built into API Specification 12F and first placed in service after October 2, 2000, pneumatic testing must be in accordance with section 5.3 of...

  9. Tropical forest loss and its multitrophic effects on insect herbivory

    NARCIS (Netherlands)

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Lohbeck, Madelon; Tscharntke, Teja; Faria, Deborah

    2016-01-01

    Forest loss threatens biodiversity, but its potential effects on multitrophic ecological interactions are poorly understood. Insect herbivory depends on complex bottom-up (e.g., resource availability and plant antiherbivore defenses) and top-down forces (e.g., abundance of predators and

  10. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Zhilan Feng; Rongsong Liu; Donald L. DeAngelis; John P. Bryant; Knut Kielland; F. Stuart Chapin; Robert K. Swihart

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of...

  11. Elk herbivory alters small mammal assemblages in high elevation drainages

    Science.gov (United States)

    Parsons, Elliott W.R.; Maron, John L.; Martin, Thomas E.

    2012-01-01

    Heavy herbivory by ungulates can substantially alter habitat, but the indirect consequences of habitat modification for animal assemblages that rely on that habitat are not well studied. This is a particularly important topic given that climate change can alter plant–herbivore interactions.

  12. Herbivory on freshwater and marine macrophytes : A review and perspective

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Wood, Kevin A.; Pages, Jordi F.; Veen, G. F. (Ciska); Christianen, Marjolijn J. A.; Santamaria, Luis; Nolet, Bart A.; Hilt, Sabine

    2016-01-01

    Until the 1990s, herbivory on aquatic vascular plants was considered to be of minor importance, and the predominant view was that freshwater and marine macrophytes did not take part in the food web: their primary fate was the detritivorous pathway. In the last 25 years, a substantial body of

  13. Herbivory on freshwater and marine macrophytes : A review and perspective

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Wood, Kevin A.; Pages, Jordi F.; Veen, G. F. (Ciska); Christianen, Marjolijn J. A.; Santamaria, Luis; Nolet, Bart A.; Hilt, Sabine

    2016-01-01

    Until the 1990s, herbivory on aquatic vascular plants was considered to be of minor importance, and the predominant view was that freshwater and marine macrophytes did not take part in the food web: their primary fate was the detritivorous pathway. In the last 25 years, a substantial body of evidenc

  14. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  15. Costs and Tradeoffs of Resistance and Tolerance to Belowground Herbivory in Potato.

    Science.gov (United States)

    Garrido, Etzel; Díaz, Maria Fernanda; Bernal, Hugo; Ñustez, Carlos Eduardo; Thaler, Jennifer; Jander, Georg; Poveda, Katja

    2017-01-01

    The success of sustainable crop production depends on our ability to select or create varieties that can allocate resources to both growth and defence. However, breeding efforts have emphasized increases in yields but have partially neglected defence traits against pests. Estimating the costs of multiple defences against tuber herbivores and the tradeoffs among them, as well as understanding the relationship between yield and multiple defences is still unknown but relevant to both basic and applied ecology. Using twenty commercial potato varieties available in Colombia and the tuber herbivore Tecia solanivora, we tested whether high yielding varieties show a reduction in three types of defence: constitutive and induced resistance, as well as tolerance. Specifically, we determined (1) the costs in terms of yield of all three defences, (2) the possible tradeoffs among them, and (3) if oviposition preference was related to the expression of these defences. We detected no costs in terms of yield of constitutive and induced resistance to tuber damage. We did, however, find evidence of costs of being able to tolerate tuber herbivory. While we found no tradeoffs among any of the estimated defences, there was a positive correlation between aboveground compensatory growth and tolerance in terms of tuber production, suggesting that after damage there are no shifts in the allocation of resources from aboveground to belowground biomass. Finally, we found that females laid more eggs on those varieties with the lowest level of constitutive resistance. In conclusion our findings suggest that in potatoes, breeding for higher yields has not caused any reduction in constitutive or induced resistance to tuber damage. This is not the case for tolerance where those varieties with higher yields are also less likely to tolerate tuber damage. Given the high incidence of tuber pests in Colombia, selecting for higher tolerance could allow for high productivity in the presence of herbivores

  16. Costs and Tradeoffs of Resistance and Tolerance to Belowground Herbivory in Potato

    Science.gov (United States)

    Díaz, Maria Fernanda; Bernal, Hugo; Ñustez, Carlos Eduardo; Thaler, Jennifer; Jander, Georg

    2017-01-01

    The success of sustainable crop production depends on our ability to select or create varieties that can allocate resources to both growth and defence. However, breeding efforts have emphasized increases in yields but have partially neglected defence traits against pests. Estimating the costs of multiple defences against tuber herbivores and the tradeoffs among them, as well as understanding the relationship between yield and multiple defences is still unknown but relevant to both basic and applied ecology. Using twenty commercial potato varieties available in Colombia and the tuber herbivore Tecia solanivora, we tested whether high yielding varieties show a reduction in three types of defence: constitutive and induced resistance, as well as tolerance. Specifically, we determined (1) the costs in terms of yield of all three defences, (2) the possible tradeoffs among them, and (3) if oviposition preference was related to the expression of these defences. We detected no costs in terms of yield of constitutive and induced resistance to tuber damage. We did, however, find evidence of costs of being able to tolerate tuber herbivory. While we found no tradeoffs among any of the estimated defences, there was a positive correlation between aboveground compensatory growth and tolerance in terms of tuber production, suggesting that after damage there are no shifts in the allocation of resources from aboveground to belowground biomass. Finally, we found that females laid more eggs on those varieties with the lowest level of constitutive resistance. In conclusion our findings suggest that in potatoes, breeding for higher yields has not caused any reduction in constitutive or induced resistance to tuber damage. This is not the case for tolerance where those varieties with higher yields are also less likely to tolerate tuber damage. Given the high incidence of tuber pests in Colombia, selecting for higher tolerance could allow for high productivity in the presence of herbivores

  17. Impact of Invertebrate Herbivory on Native Aquatic Macrophytes

    Science.gov (United States)

    2007-08-01

    be seen in the non-treated leaves (b). 5 ERDC/TN APCRP-BC-9 August 2007 a Donacia spp., and the oviposition by various species of odonates ...1999). Figure 7. Odonate eggs on the underside of a P. nodosus leaf. After emergence, the leaf will be left with numerous holes. 7 ERDC/TN...Apparently, the dry biomass differences to P. nodosus were due to insect herbivory and non-consumptive damage such as odonate eggs. Figure 8

  18. Tropical forest loss and its multitrophic effects on insect herbivory.

    Science.gov (United States)

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Lohbeck, Madelon; Tscharntke, Teja; Faria, Deborah

    2016-12-01

    Forest loss threatens biodiversity, but its potential effects on multitrophic ecological interactions are poorly understood. Insect herbivory depends on complex bottom-up (e.g., resource availability and plant antiherbivore defenses) and top-down forces (e.g., abundance of predators and herbivorous), but its determinants in human-altered tropical landscapes are largely unknown. Using structural equation models, we assessed the direct and indirect effects of forest loss on insect herbivory in 40 landscapes (115 ha each) from two regions with contrasting land-use change trajectories in the Brazilian Atlantic rainforest. We considered landscape forest cover as an exogenous predictor and (1) forest structure, (2) abundance of predators (birds and arthropods), and (3) abundance of herbivorous arthropods as endogenous predictors of insect leaf damage. From 12 predicted pathways, 11 were significant and showed that (1) leaf damage increases with forest loss (direct effect); (2) leaf damage increases with forest loss through the simplification of vegetation structure and its associated dominance of herbivorous insects (indirect effect); and further demonstrate (3) a lack of top-down control of herbivores by predators (birds and arthropods). We conclude that forest loss favors insect herbivory by undermining the bottom-up control (presumably reduced plant antiherbivore defense mechanisms) in forests dominated by fast-growing pioneer plant species, and by improving the conditions required for herbivores proliferation. © 2016 by the Ecological Society of America.

  19. Inducible defenses against herbivory and fouling in seaweeds

    Science.gov (United States)

    Pereira, Renato Crespo; Costa, Erica da Silva; Sudatti, Daniela Bueno; da Gama, Bernardo Antonio Perez

    2017-04-01

    Secondary metabolites play an important ecological role as a defense mechanism in seaweeds. Chemical defenses are well known to change in response to herbivory, but other driving factors, either biotic or abiotic, are often neglected. Epibiosis may not only reduce seaweed fitness, but also increase attractiveness to consumers, and thus defense production should also be triggered by epibionts. In this study, three Southwestern Atlantic seaweeds, Gracilaria cearensis, Pterocladiella capillacea (Rhodophyceae) and Codium decorticatum (Chlorophyceae) were investigated in laboratory bioassays designed to test whether the action of herbivory or simulated epibiosis influences chemical defenses. Crossed induction experiments were also performed in order to assess whether herbivore induction influences antifouling chemical defense, as well as whether epibiont induction would affect defense against herbivores. The effect of laboratory conditions on seaweeds in the absence of field stimuli was also investigated by comparing consumption of artificial food with extracts from acclimatized and non-acclimatized seaweeds (i.e., natural defense levels). Only the green seaweed C. decorticatum exhibited inducible antifouling defenses triggered by simulated epibiosis, but not by herbivores. In the other seaweeds there was no induction either by herbivory or simulated epibiosis. Acclimatization did not affect C. decorticatum defenses. However, non-acclimatized G. cearensis artificial foods were preferred over acclimatized ones, while extracts from acclimatized P. capillacea increased herbivore consumption, highlighting the need to acclimatize seaweeds before the main induction experiments. This is the first report of inducible defenses due to simulated fouling in seaweeds.

  20. Nutrient subsidies to belowground microbes impact aboveground food web interactions.

    Science.gov (United States)

    Hines, Jes; Megonigal, J Patrick; Denno, Robert F

    2006-06-01

    Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences

  1. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Science.gov (United States)

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  2. Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly

    DEFF Research Database (Denmark)

    Whiteman, Noah K.; Gloss, Andrew D.; Sackton, Timothy B.

    2012-01-01

    Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the wi...

  3. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Stark, Sari; Tolvanen, Anne

    2009-01-01

    Climate warming increases the cover of deciduous shrubs in arctic ecosystems and herbivory is also known to have a strong influence on the biomass and composition of vegetation. However, research combining herbivory with warming is largely lacking. Our study describes how warming and simulated he...... on microbial N immobilization. Our study demonstrates that effects of warming on soil microorganisms are likely to differ in the presence and absence of herbivores....... herbivory affect vegetation, soil nutrient concentrations and soil microbial communities after 10-13 years of exposure. 2 We established a factorial warming and herbivory-simulation experiment at a subarctic tundra heath in Kilpisj rvi, Finland, in 1994. Warming was carried out using the open-top chamber...... setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003...

  4. Herbivory in a Mediterranean forest: browsing impact and plant compensation

    Science.gov (United States)

    Focardi, Stefano; Tinelli, Aleandro

    2005-11-01

    The compensatory response of plants to defoliation is likely to have important effects on plant-ungulate equilibria in forested ecosystems. We investigated the responses of six species of Mediterranean bushes to defoliation by wild ungulates, comparing an index of browsing impact with the productivity of plants in both open and exclusion plots. The data revealed a great diversity of plant responses to herbivory: Rubus ulmifolius was able to over-compensate and replace the lost tissues. Phillyrea latifolia exhibited a similar, albeit less evident, pattern, while Cistus salvifolius was severely damaged by browsing. Other species, such as Quercus ilex, Juncus acutus and Erica arborea, were not attacked to a large extent and suffered little or no harm. The results strongly suggest that Mediterranean ecosystems may tolerate large stocking rates of ungulates. However, the reduction of plant biomass due to browsing was very different in the six studied species, suggesting that when herbivory becomes severe the structure of the ecosystem will change with the more tolerant plants becoming more abundant. We can apply these results to improve management and conservation of relict coastal forests in the Mediterranean basin which are usually of small size and where decision-makers have to compromise between the conservation of plants and that of large mammals.

  5. Photosynthesis, growth and foliar herbivory of four Ardisia species (Myrsinaceae)

    Science.gov (United States)

    Zhao, Jin; Chen, Jin

    2011-05-01

    Ardisia elliptica is an understory shrub endemic to Southeast Asia and has become a notorious invasive plant in Florida. In this study, we determined the photosynthetic capacity of A. elliptica and phylogenetically related species under four levels of irradiations. In addition, the levels of damage from natural insect herbivory of these four species under common garden conditions were investigated. The results show that A. elliptica had the higher photosynthetic capacity and the relative growth rate (RGR) which could be attributed to its high light-saturated photosynthetic rates ( Pmax), relatively low respiratory rate ( Rd) and the increasing specific leaf area (SLA) with decreasing irradiation. A. elliptica also exhibited high phenotypic plasticity for photosynthetic traits in response to different irradiations including LSPT, Pmax and RGR. Comparing to its congeners, A. elliptica suffered consistently severe damage from natural herbivory. Our results suggest that high photosynthetic capacity and high phenotypic plasticity could enable A. elliptica become a nuisance with the absence of natural enemies in introduced habitats, especially in those disturbed environments with high-light conditions.

  6. Response of two prairie forbs to repeated vole herbivory.

    Science.gov (United States)

    Sullivan, Amy T; Howe, Henry F

    2011-04-01

    Vertebrate herbivores as diverse as ungulates, geese, and rabbits preferentially feed on plants that have previously experienced herbivory. Here, we ask whether smaller grassland "cryptic consumers" such as voles (Microtus ochrogaster and M. pennsylvanicus) preferentially clip (cut stems for access to leaves or seeds) or avoid previously clipped individuals of two tallgrass prairie species (Desmanthus illinoensis and Echinacea purpurea) within a growing season. Further, we ask how these plants respond to repeated clipping within a growing season, and whether the effects of this herbivory last into the subsequent growing season. Voles preferentially clipped stems of D. illinoensis and E. purpurea plants that had been previously clipped. The exception was indiscriminant clipping of stems of E. purpurea late in the growing season when its achenes, a favorite vole food, ripened. For D. illinoensis, repeated clipping resulted in a 59% reduction in biomass, 42% lower ratio of reproductive to vegetative biomass, and 57% fewer seeds produced per plant compared with unclipped plants. These effects lasted into the following growing season in which plants were protected from voles. In contrast, the only effect of repeated clipping for E. purpurea was that the number of achenes per plant was substantially reduced by three episodes of clipping. This effect did not carry over to the next growing season. Such differences in D. illinoensis and E. purpurea response to repeated stem clipping by voles offer insights into how these small rodents can effect major changes in composition and dominance in grassland communities.

  7. Interactions between aboveground and belowground induced responses against phytophages

    NARCIS (Netherlands)

    Dam, van N.M.; Harvey, J.A.; Waeckers, F.L.; Bezemer, T.M.; Putten, van der W.H.; Vet, L.E.M.

    2003-01-01

    Since their discovery about thirty years ago, induced plant responses have mainly been studied in interactions of plants with aboveground (AG) pathogens, herbivores and their natural enemies. Many induced responses, however, are known to be systemic and thus it is likely that responses induced by AG

  8. Family Differences Influence the Aboveground Biomass of Loblolly Pine Plantations

    Science.gov (United States)

    P.E. Pope; D.L. Graney

    1979-01-01

    We compared the aboveground biomass of 4 half-sib families of loblolly pine (Pinus taeda L.) 11 years after planting. Total dry weights differed significantly among families in plantations on the same soil type with the same site index. Differences in biomass resulted from differences in stem form and branch size. Distribution of growth -the proportion of tree weight...

  9. Empirical and theoretical challenges in aboveground-belowground ecology

    DEFF Research Database (Denmark)

    W.H. van der Putten,; R.D. Bardgett; P.C. de Ruiter

    2009-01-01

    A growing body of evidence shows that aboveground and belowground communities and processes are intrinsically linked, and that feedbacks between these subsystems have important implications for community structure and ecosystem functioning. Almost all studies on this topic have been carried out f...

  10. Estimates of forest canopy height and aboveground biomass using ICESat.

    Science.gov (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  11. Forecasting annual aboveground net primary production in the intermountain west

    Science.gov (United States)

    For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...

  12. Inventory of Tank Farm equipment stored or abandoned aboveground

    Energy Technology Data Exchange (ETDEWEB)

    Hines, S.C.; Lakes, M.E.

    1994-10-12

    This document provides an inventory of Tank Farm equipment stored or abandoned aboveground and potentially subject to regulation. This inventory was conducted in part to ensure that Westinghouse Hanford Company (WHC) does not violate dangerous waste laws concerning storage of potentially contaminated equipment/debris that has been in contact with dangerous waste. The report identifies areas inventoried and provides photographs of equipment.

  13. Some metals in aboveground biomass of Scots pine in Lithuania

    DEFF Research Database (Denmark)

    Varnagiryte-Kabašinskiene, Iveta; Armolaitis, Kestutis; Stupak, Inge;

    2014-01-01

    The stocks of iron (Fe), manganese (Mn), zinc (Zn) and aluminium (Al) in different compartments of the aboveground tree biomass were estimated in Scots pine (Pinus sylvestris L.) stands in Lithuania. Simulated removals of metals due to the forest biomass extraction in a model Scots pine stands...

  14. Indirect effects of herbivory on plant-pollinator interactions in invasive Lythrum salicaria.

    Science.gov (United States)

    Russell-Mercier, Jake L; Sargent, Risa D

    2015-05-01

    Herbivory can affect a plant's fitness in a variety of ways, including modifying the biotic interactions of the plant. In particular, when herbivory influences floral display, we hypothesize that pollinator visitation will be altered accordingly. Here we studied the indirect effects of feeding by two beetles, Neogalerucella calmariensis and N. pusilla, released as a biological control, on plant-pollinator interactions and fitness in the invasive plant, purple loosestrife (Lythrum salicaria). Two herbivory treatments (ambient and simulated) were applied to plants in a naturally occurring population of purple loosestrife. During flowering, traits of plants in the treatment and control groups were recorded. Data on pollinator visitation behavior was then collected after intense larval herbivory had ended. Plants exposed to herbivory treatments produced more flowers and inflorescences but flowered significantly later than those in the control group. Moreover, we found a significant, positive association of herbivory with the number of flowers probed by bumblebees and with the number of times a foraging pollinator moved among inflorescences on a single plant. No differences in female fitness (fruit or seed production) were detected. We conclude that herbivore-mediated differences in floral display traits impacted pollinator visitation behavior. However, as we discuss, differences in pollinator visitation did not translate into detectable differences in female reproductive success. We postulate that herbivory could influence other unmeasured aspects of fitness, such as seed quality or the number of seeds sired. © 2015 Botanical Society of America, Inc.

  15. Reading the Leaves' Palm: Leaf Traits and Herbivory along the Microclimatic Gradient of Forest Layers.

    Science.gov (United States)

    Stiegel, Stephanie; Entling, Martin H; Mantilla-Contreras, Jasmin

    2017-01-01

    Microclimate in different positions on a host plant has strong direct effects on herbivores. But little is known about indirect effects due to changes of leaf traits. We hypothesized that herbivory increases from upper canopy to lower canopy and understory due to a combination of direct and indirect pathways. Furthermore, we hypothesized that herbivory in the understory differs between tree species in accordance with their leaf traits. We investigated herbivory by leaf chewing insects along the vertical gradient of mixed deciduous forest stands on the broad-leaved tree species Fagus sylvatica L. (European beech) with study sites located along a 140 km long transect. Additionally, we studied juvenile Acer pseudoplatanus L. (sycamore maple) and Carpinus betulus L. (hornbeam) individuals within the understory as a reference of leaf traits in the same microclimate. Lowest levels of herbivory were observed in upper canopies, where temperatures were highest. Temperature was the best predictor for insect herbivory across forest layers in our study. However, the direction was opposite to the generally known positive relationship. Herbivory also varied between the three tree species with lowest levels for F. sylvatica. Leaf carbon content was highest for F. sylvatica and probably indicates higher amounts of phenolic defense compounds. We conclude that the effect of temperature must have been indirect, whereby the expected higher herbivory was suppressed due to unfavorable leaf traits (lower nitrogen content, higher toughness and carbon content) of upper canopy leaves compared to the understory.

  16. Plants can benefit from herbivory: stimulatory effects of sheep saliva on growth of Leymus chinensis.

    Directory of Open Access Journals (Sweden)

    Jushan Liu

    Full Text Available BACKGROUND: Plants and herbivores can evolve beneficial interactions. Growth factors found in animal saliva are probably key factors underlying plant compensatory responses to herbivory. However, there is still a lack of knowledge about how animal saliva interacts with herbivory intensities and how saliva can mobilize photosynthate reserves in damaged plants. METHODOLOGY/PRINCIPAL FINDINGS: The study examined compensatory responses to herbivory and sheep saliva addition for the grass species Leymus chinensis in three experiments over three years. The first two experiments were conducted in a factorial design with clipping (four levels in 2006 and five in 2007 and two saliva treatment levels. The third experiment examined the mobilization and allocation of stored carbohydrates following clipping and saliva addition treatments. Animal saliva significantly increased tiller number, number of buds, and biomass, however, there was no effect on height. Furthermore, saliva effects were dependent on herbivory intensities, associated with meristem distribution within perennial grass. Animal saliva was found to accelerate hydrolyzation of fructans and accumulation of glucose and fructose. CONCLUSIONS/SIGNIFICANCE: The results demonstrated a link between saliva and the mobilization of carbohydrates following herbivory, which is an important advance in our understanding of the evolution of plant responses to herbivory. Herbivory intensity dependence of the effects of saliva stresses the significance of optimal grazing management.

  17. Plants Can Benefit from Herbivory: Stimulatory Effects of Sheep Saliva on Growth of Leymus chinensis

    Science.gov (United States)

    Liu, Jushan; Wang, Ling; Wang, Deli; Bonser, Stephen P.; Sun, Fang; Zhou, Yifa; Gao, Ying; Teng, Xing

    2012-01-01

    Background Plants and herbivores can evolve beneficial interactions. Growth factors found in animal saliva are probably key factors underlying plant compensatory responses to herbivory. However, there is still a lack of knowledge about how animal saliva interacts with herbivory intensities and how saliva can mobilize photosynthate reserves in damaged plants. Methodology/Principal Findings The study examined compensatory responses to herbivory and sheep saliva addition for the grass species Leymus chinensis in three experiments over three years. The first two experiments were conducted in a factorial design with clipping (four levels in 2006 and five in 2007) and two saliva treatment levels. The third experiment examined the mobilization and allocation of stored carbohydrates following clipping and saliva addition treatments. Animal saliva significantly increased tiller number, number of buds, and biomass, however, there was no effect on height. Furthermore, saliva effects were dependent on herbivory intensities, associated with meristem distribution within perennial grass. Animal saliva was found to accelerate hydrolyzation of fructans and accumulation of glucose and fructose. Conclusions/Significance The results demonstrated a link between saliva and the mobilization of carbohydrates following herbivory, which is an important advance in our understanding of the evolution of plant responses to herbivory. Herbivory intensity dependence of the effects of saliva stresses the significance of optimal grazing management. PMID:22235277

  18. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  19. Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect?

    Science.gov (United States)

    Agrawal, A A

    2001-05-01

    Herbivory has many effects on plants, ranging from shifts in primary processes such as photosynthesis, growth, and phenology to effects on defense against subsequent herbivores and other species interactions. In this study, I investigated the effects of herbivory on seed and seedling characteristics of several families of wild radish (Raphanus raphanistrum) to test the hypothesis that herbivory may affect the quality of offspring and the resistance of offspring to plant parasites. Transgenerational effects of herbivory may represent adaptive maternal effects or factors that constrain or amplify natural selection on progeny. Caterpillar (Pieris rapae) herbivory to greenhouse-grown plants caused plants in some families to produce smaller seeds and those in other families to produce larger seeds compared with undamaged controls. Seed mass was positively associated with probability of emergence in the field. The number of setose trichomes, a putative plant defense, was higher in the progeny of damaged plants in some families and lower in the progeny of damaged plants in other families. In a field experiment, plant families varied in their resistance to several herbivores and pathogens as well as in growth rate and time to flowering. Seeds from damaged parent plants were more likely to become infested with a plant virus. Although herbivory on maternal plants did not directly affect interactions of offspring with other plant parasites, seed mass influenced plant resistance to several attackers. Thus, herbivory affected seed characters, which mediated interactions between plants and their parasites. Finally, irrespective of seed mass, herbivory on maternal plants influenced components of progeny fitness, which was dependent on plant family. Natural selection may act on plant responses to herbivory that affect seedling-parasite interactions and, ultimately, fitness.

  20. Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages

    Directory of Open Access Journals (Sweden)

    Chi-Yu Weng

    2017-08-01

    Full Text Available The best-known mechanism that herbivory affects species coexistence of tree seedlings is negative density-dependency driven by specialist natural enemies. However, in a forest with intense herbivory by non-specialists, what causes a diversifying seedling bank if rare species do not benefit from negative density-dependency in dominant species? We hypothesize that generalist herbivores can cause unevenly distributed species-specific mortality, which mediates recruitment dynamics and therefore affects species coexistence. To answer this question, we conducted a fence-control experiment in a montane cloud forest, Taiwan, and found that herbivorous damages were mainly caused by ungulates, which are generalists. We explored ungulate herbivory effects on recruitment dynamics by censusing tree seedling dynamics for three years. We found that herbivorous damages by ungulates significantly cause seedling death, mostly at their early stage of establishment. The percentage of death caused by herbivory varied among species. In particular, nurse plants and seedling initial height help shade-tolerant species to persist under such intense herbivory. Whereas, deaths caused by other factors occurred more often in older seedlings, with a consistent low percentage among species. We then tested species coexistence maintenance by dynamic modelling under different scenarios of ungulate herbivory. Raising percentages of death by herbivory changes relative species abundances by suppressing light-demanding species and increasing shade-tolerant species. Density-dependent mortality immediately after bursts of recruitments can suppress dominance of abundant species. With ungulate herbivory, fluctuating recruitment further prevent rare species from apparent competition induced by abundant species. Such bio-processes can interact with ungulate herbivory so that long-term coexistence can be facilitated.

  1. [Aboveground architecture and biomass distribution of Quercus variabilis].

    Science.gov (United States)

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline

  2. Assessing aboveground tropical forest biomass using Google Earth canopy images.

    Science.gov (United States)

    Ploton, Pierre; Pélissier, Raphaël; Proisy, Christophe; Flavenot, Théo; Barbier, Nicolas; Rai, S N; Couteron, Pierre

    2012-04-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) in efforts to combat climate change requires participating countries to periodically assess their forest resources on a national scale. Such a process is particularly challenging in the tropics because of technical difficulties related to large aboveground forest biomass stocks, restricted availability of affordable, appropriate remote-sensing images, and a lack of accurate forest inventory data. In this paper, we apply the Fourier-based FOTO method of canopy texture analysis to Google Earth's very-high-resolution images of the wet evergreen forests in the Western Ghats of India in order to (1) assess the predictive power of the method on aboveground biomass of tropical forests, (2) test the merits of free Google Earth images relative to their native commercial IKONOS counterparts and (3) highlight further research needs for affordable, accurate regional aboveground biomass estimations. We used the FOTO method to ordinate Fourier spectra of 1436 square canopy images (125 x 125 m) with respect to a canopy grain texture gradient (i.e., a combination of size distribution and spatial pattern of tree crowns), benchmarked against virtual canopy scenes simulated from a set of known forest structure parameters and a 3-D light interception model. We then used 15 1-ha ground plots to demonstrate that both texture gradients provided by Google Earth and IKONOS images strongly correlated with field-observed stand structure parameters such as the density of large trees, total basal area, and aboveground biomass estimated from a regional allometric model. Our results highlight the great potential of the FOTO method applied to Google Earth data for biomass retrieval because the texture-biomass relationship is only subject to 15% relative error, on average, and does not show obvious saturation trends at large biomass values. We also provide the first reliable map of tropical forest aboveground biomass predicted

  3. Climate, herbivory, and fire controls on tropical African forest for the last 60ka

    Science.gov (United States)

    Ivory, Sarah J.; Russell, James

    2016-09-01

    The Last Glacial Maximum (LGM) in Africa was drier than today and was followed by rapid step-wise climate changes during the last deglacial period. In much of Africa, these changes led to a drastic reduction of lowland forest area during the LGM, followed by recolonization of the lowlands by forest and woodland in concert with regional warming and wetting. However, the history of southeastern African vegetation contrasts with that observed further north. In particular, forest expansion appears to have occurred in southeastern Africa during episodes of high-latitude northern hemisphere cooling. Although vegetation history in Africa is generally assumed to relate purely to climate, previous studies have not addressed potential feedbacks between climate, vegetation, and disturbance regimes (fire, herbivory) that may create tipping points in ecosystems. This climate-vegetation history has profound implications for our understanding of the modern architecture of lowland and highland forests, both thought to be at risk from future climate change. Here we present analyses of fossil pollen, charcoal, and Sporormiella (dung fungus) on a continuous 60 kyr record from central Lake Tanganyika, Southeast Africa, that illustrates the interplay of climate and disturbance regimes in shaping vegetation composition and structure. We observe that extensive forests dominated the region during the last glacial period despite evidence of decreased rainfall. At the end of the LGM, forest opening at ∼17.5 ka followed warming temperatures but preceded rising precipitation, suggesting that temperature-induced water stress and disturbance from fire and herbivory affected initial landscape transformation. Our Sporormiella record indicates that mega-herbivore populations increased at the early Holocene. This higher animal density increased plant species richness and encouraged landscape heterogeneity until the mid-Holocene. At this time, regional drying followed by the onset of the Iron Age

  4. Herbivory in the soft coral Sinularia flexibilis (Alcyoniidae)

    Science.gov (United States)

    Piccinetti, Chiara C.; Ricci, Roberta; Pennesi, Chiara; Radaelli, Giuseppe; Totti, Cecilia; Norici, Alessandra; Giordano, Mario; Olivotto, Ike

    2016-03-01

    Our work provides strong support for the hypothesis that Sinularia flexibilis ingests diatoms such as Thalassiosira pseudonana. We assessed algal ingestion by S. flexibilis through estimates of algal removal, histological analyses, scanning electron microscopy observations, and gene expression determination (18S and silicon transporter 1) by real time PCR. Cell counts are strongly suggestive of algal removal by the coral; light and scanning microscopy provide qualitative evidence for the ingestion of T. pseudonana by S. flexibilis, while molecular markers did not prove to be sufficiently selective/specific to give clear results. We thus propose that previous instances of inability of corals to ingest algae are reconsidered using different technical approach, before concluding that coral herbivory is not a general feature.

  5. Selective Herbivory by an Invasive Cyprinid, the Rudd Scardinius erythrophthalmus

    Energy Technology Data Exchange (ETDEWEB)

    Kapuscinski, Kevin L [SUNY-ESF, SUNY College of Environmental Science and Forestry; John, Farrell M [SUNY-ESF, SUNY College of Environmental Science and Forestry; Stehman, Stephen V [SUNY-ESF, SUNY College of Environmental Science and Forestry; Boyer, Gregory L [SUNY-ESF, SUNY College of Environmental Science and Forestry; Fernando, Danilo D [SUNY-ESF, SUNY College of Environmental Science and Forestry; Teece, Mark A [SUNY-ESF, SUNY College of Environmental Science and Forestry; Tschaplinski, Timothy J [ORNL

    2014-01-01

    1. Herbivory by non-native animals is a problem of growing concern globally, especially for ecosystems where significant native herbivores did not previously exist or have been replaced by non-natives. The rudd (Scardinius erythrophthalmus) is an omnivorous cyprinid that has a nearly global longitudinal distribution due to human translocations, yet it is unknown whether the rudd feeds selectively among aquatic macrophyte species common to North American waters. 2. We tested a null hypothesis of non-selective feeding by rudds using five species of aquatic macrophytes: Ceratophyllum demersum, Elodea canadensis, Najas flexilis, Stuckenia pectinata, and Vallisneria americana. Four rudds were placed in 15 different 890-L tanks and presented with known quantities of each macrophyte species (each tank serving as a block in a randomized complete block design). Each macrophyte bundle was weighed on six dates during a 13 d experiment. Differences in mean percent weight remaining among macrophyte species were tested using repeated measures analysis of variance. We also quantified differences among chemical attributes of the five macrophyte species and qualitatively determined if selective feeding by rudds was related to dry matter content (DMC), percent C by dry weight (%C), percent N by dry weight (%N), and the concentrations of total soluble proteins, two organic acids (aconitic and oxalic acid), total soluble phenolic compounds (<1,000 Da), nine soluble phenolic metabolites, and total phenolic compounds. 3. Selective feeding by rudds was evident, with the order of macrophyte removal (from highest to lowest) being: N. flexilis > E. canadensis > S. pectinata > V. americana > C. demersum. Selection was positively related to %C and atomic C:N, but not DMC, %N, or concentration of total soluble proteins, contrary to the expectation that rudds would select the most nutritious plants available. The concentration of aconitic acid was greatest in N. flexilis, a preferred macrophyte

  6. Effects of zooplankton herbivory on biomarker proxy records

    Science.gov (United States)

    Grice, Kliti; Klein Breteler, Wim C. M.; Schouten, Stefan; Grossi, Vincent; de Leeuw, Jan W.; Sinninghe Damsté, Jaap S.

    1998-12-01

    The stable carbon isotopic compositions of cholesterol, generally the most dominant sterol in the copepod Temora, bears the δ13C "signature" of its dietary precursor sterol when fed on Isochrysis galbana and Rhodomonas sp. The δ13C of cholesterol in the faecal pellets released from Temora longicornis fed on Rhodomonas sp. is identical to the δ13C of the sterols in the diet, indicating that no significant carbon isotopic fractionation effects occur when the copepod modifies eukaryotic precursor sterols to cholesterol. Furthermore, the ratio of long-chain alkenones and their stable carbon isotopic compositions in I. galbana were identical to those egested in faecal material. Thus Zooplankton herbivory does not invalidate the use of these alkenones as a proxy for sea surface temperature and pCO2.

  7. Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community.

    Directory of Open Access Journals (Sweden)

    Katrin M Meyer

    Full Text Available In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the "boom-bust" behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

  8. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa.

    Science.gov (United States)

    Hempson, Gareth P; Archibald, Sally; Bond, William J

    2015-11-27

    Megafaunal extinctions and a lack of suitable remote sensing technology impede our understanding of both the ecological legacy and current impacts of large mammal herbivores in the Earth system. To address this, we reconstructed the form and intensity of herbivory pressure across sub-Saharan Africa ~1000 years ago. Specifically, we modeled and mapped species-level biomass for 92 large mammal herbivores using census data, species distributions, and environmental covariates. Trait-based classifications of these species into herbivore functional types, and analyses of their biomass surfaces, reveal four ecologically distinct continental-scale herbivory regimes, characterized by internally similar forms and intensities of herbivory pressure. Associations between herbivory regimes, fire prevalence, soil nutrient status, and rainfall provide important insights into African ecology and pave the way for integrating herbivores into global-scale studies. Copyright © 2015, American Association for the Advancement of Science.

  9. The effect of insect herbivory on the growth and fitness of introduced Verbascum thapsus L

    Directory of Open Access Journals (Sweden)

    Hannah Wilbur

    2013-10-01

    Full Text Available A majority of the plant species that are introduced into new ranges either do not become established, or become naturalized yet do not attain high densities and are thus considered ecologically and economically unproblematic. The factors that limit these relatively “benign” species are not well studied. The biotic resistance hypothesis predicts that herbivores, pathogens and competition reduce growth and reproduction of individual plants and so suppress population growth of non-native species. We explored the effect of insect herbivory and surrounding vegetation on growth and fitness of the non-native biennial plant Verbascum thapsus (common mullein in Colorado, USA. Mullein is widespread in its introduced North American range, yet is infrequently considered a management concern because populations are often ephemeral and restricted to disturbed sites. To evaluate the impact of insect herbivores on mullein performance, we reduced herbivory using an insecticide treatment and compared sprayed plants to those exposed to ambient levels of herbivory. Reducing herbivory increased survival from rosette to reproduction by 7%, from 70–77%. Of plants that survived, reducing herbivory increased plant area in the first year and plant height, the length of the reproductive spike, and seed set during the second year. Reducing herbivory also had a marked effect on plant fitness, increasing seed set by 50%, from about 48,000 seeds per plant under ambient herbivory to about 98,000 per plant under reduced herbivory. Our findings also highlight that the relationship between herbivory and performance is complex. Among plants exposed to ambient herbivory, we observed a positive relationship between damage and performance, suggesting that, as predicted by the plant vigor hypothesis, insect herbivores choose the largest plants for feeding when their choice is not restricted by insecticide treatment. In contrast to the strong effects of experimentally reduced

  10. First record of herbivory of the invasive macrophyte Hedychium coronarium J. König (Zingiberaceae)

    OpenAIRE

    Castro,Wagner Antonio Chiba de; Moitas,Marcel Loyo; Lobato,Gabriela Monteiro; Cunha-Santino,Marcela Bianchessi da; Matos,Dalva Maria da Silva

    2013-01-01

    Invasive species can cause structural and functional changes in their non-native habitats, such as changes in the trophic chain. We describe ramet herbivory of butterfly ginger, an aggressive aquatic weed in Brazil, by capybaras in a floodplain area of a Cerrado reserve. This is the first record of herbivory of H. coronarium in invaded areas. Capybaras could be using the butterfly ginger as habitat and as a food resource, which could cause changes in apparent competition between these invasiv...

  11. Within and Among Patch Variability in Patterns of Insect Herbivory Across a Fragmented Forest Landscape.

    Directory of Open Access Journals (Sweden)

    Dorothy Y Maguire

    Full Text Available Fragmentation changes the spatial patterns of landscapes in ways that can alter the flow of materials and species; however, our understanding of the consequences of this fragmentation and flow alteration for ecosystem processes and ecosystem services remains limited. As an ecological process that affects many ecosystem services and is sensitive to fragmentation, insect herbivory is a good model system for exploring the role of fragmentation, and the resulting spatial patterns of landscapes, in the provision of ecosystem services. To refine our knowledge of how changes in landscape pattern affect insect herbivory, we quantified the combined influence of among patch (patch area and patch connectivity and within patch (location within patch; canopy, edge, interior factors on amounts of insect herbivory in a fragmented forest landscape. We measured herbivory in 20 forest patches of differing size and connectivity in southern Quebec (Canada. Within each patch, herbivory was quantified at the interior, edge, and canopy of sugar maple trees during the spring and summer of 2011 and 2012. Results show that connectivity affects herbivory differently depending on the location within the patch (edge, interior, canopy, an effect that would have gone unnoticed if samples were pooled across locations. These results suggest considering structure at both the patch and within patch scales may help to elucidate patterns when studying the effects of fragmentation on ecosystem processes, with implications for the services they support.

  12. Interactive effect of herbivory and competition on the invasive plant Mikania micrantha.

    Science.gov (United States)

    Li, Junmin; Xiao, Tao; Zhang, Qiong; Dong, Ming

    2013-01-01

    A considerable number of host-specific biological control agents fail to control invasive plants in the field, and exploring the mechanism underlying this phenomenon is important and helpful for the management of invasive plants. Herbivory and competition are two of the most common biotic stressors encountered by invasive plants in their recipient communities. We predicted that the antagonistic interactive effect between herbivory and competition would weaken the effect of herbivory on invasive plants and result in the failure of herbivory to control invasive plants. To examine this prediction, thus, we conducted an experiment in which both invasive Mikania micrantha and native Coix lacryma-job i were grown together and subjected to herbivory-mimicking defoliation. Both defoliation and competition had significantly negative effects on the growth of the invader. However, the negative effect of 75% respective defoliation on the above- and below-ground biomass of Mikania micrantha was alleviated by presence of Coix lacryma-jobi. The negative effect of competition on the above- and below-ground biomass was equally compensated at 25%, 50% and 100% defoliation and overcompensated at 75% defoliation. The interactive effect was antagonistic and dependent on the defoliation intensity, with the maximum effect at 75% defoliation. The antagonistic interaction between defoliation and competition appears to be able to release the invader from competition, thus facilitating the invasiveness of Mikania, a situation that might make herbivory fail to inhibit the growth of invasive Mikania in the invaded community.

  13. Aboveground biomass of an invasive tree Melaleuca (Melaleuca quinquenervia) before and after herbivory by adventive and introduced natural enemies: a temporal case-study in Florida

    Science.gov (United States)

    Invasive plants may respond to injury from natural enemies by altering the quantity and distribution of biomass among woody materials, foliage, fruits, and seeds. Melaleuca, an Australian tree that has naturalized in south Florida, USA, has been reunited with two natural enemies: a weevil introduce...

  14. The influence of herbivory on pre- and postzygotic stages of reproduction following open, self, and outcross pollination.

    Science.gov (United States)

    Ghyselen, Céline; Bonte, Dries; Brys, Rein

    2015-12-01

    Herbivory affects pollination success and reproductive output in plants. However, the different stages in the process from pollination to seed maturation have hardly been investigated within the context of herbivory. Herbivory might affect these stages via its effect on geitonogamous pollination and thereby the proportion of self pollen delivered to the stigma and/or via its effect on the nutritional capacity of the maternal plant. Plants of monocarpic Cynoglossum officinale were experimentally subjected to root herbivory and exposed to natural open pollination in combination with self and outcross hand pollination. We quantified pollen germination, pollen tube competition intensity, pollen tube attrition, fruit set, and seed initiation, abortion, and maturation. Although root herbivory did not affect pollen germination or pollen tube attrition, fruit set and seed initiation and maturation were negatively affected by herbivory, but for seed initiation only in the case of outcross- and open-pollinated flowers. The intensity of pollen tube competition positively affected seed initiation, but only in plants infested with the herbivore. Our study demonstrates that herbivory did not affect the early stages following pollination, but significantly impacted later postpollination stages such as fruit set and seed maturation and selection based on pollen tube competition intensity on zygote development. Our findings suggest that decreased nutritional capacity of the mother plant in response to root herbivory rather than herbivory effects on pollen quality was responsible for the lower fruit and seed production in infested plants. © 2015 Botanical Society of America.

  15. Aboveground Biomass of Glossy Buckthorn is Similar in Open and Understory Environments but Architectural Strategy Differs

    Directory of Open Access Journals (Sweden)

    Caroline Hamelin

    2015-04-01

    Full Text Available The exotic shrub glossy buckthorn (Frangula alnus is a great concern among forest managers because it invades both open and shaded environments. To evaluate if buckthorn grows similarly across light environments, and if adopting different shapes contributes to an efficient use of light, we compared buckthorns growing in an open field and in the understory of a mature hybrid poplar plantation. For a given age, the relationships describing aboveground biomass of buckthorns in the open field and in the plantation were not significantly different. However, we observed a significant difference between the diameter-height relationships in the two environments. These results suggest a change in buckthorn’s architecture, depending on the light environment in which it grows. Buckthorn adopts either an arborescent shape under a tree canopy, or a shrubby shape in an open field, to optimally capture the light available. This architectural plasticity helps explain a similar invasion success for glossy buckthorn growing in both open and shaded environments, at least up to the canopy closure level of the plantation used for this study.

  16. [Growth, survival and herbivory of seedlings in Brosimum alicastrum (Moraceae), a species from the Neotropical undergrowth].

    Science.gov (United States)

    Ballina-Gómez, H S; Iriarte-Vivar, S; Orellana, R; Santiago, L S

    2008-12-01

    Growth responses, survival, and herbivory, on seedlings of Brosimum alicastrum were studied in a neotropical Mexican forest. We selected 122 seedlings and divided them into three groups assigned to defoliation treatments: control or 0 (n=21), 50 (n=51) and 90% (n=50). Every 4 months during two years we measured seedling growth (in terms of relative growth rate in biomass, leaf area growth, produced leaves and height growth) and survival. In addition, we evaluated every 12 months pathogen damage and insect herbivory using a 2 mm(-2) grid. Separately, we estimated mammal herbivory in 3-month old seedlings that were selected within a plot of 500 m x 10 m (N=1095). Pathogen damage and insect herbivory were evaluated within the same plot in 113 seedlings. We found that 50% defoliated seedlings showed compensatory responses in all growth parameters. Relative growth rate and height growth also had a compensatory response in seedlings at 90% defoliation. Relative growth rate and leaf area growth gradually decreased with time although height growth seedling showed an opposite pattern. Leaves produced were not affected by time. Estimated seedling survival probability increased with defoliation to a maximum of 97%, decreasing at 24 month to 37%. Mammal herbivory was more frequent and severe than herbivory caused by pathogens and insects. In some cases, mammal herbivory produced total defoliation. Compensatory growth in leaf area growth, produced leaves and height growth seedling suggest a synergic compensatory mechanism expressed in a whole-plant growth biomass (relative growth rate). Compensation and survival results suggest trade-offs at the leaf level, such as leaf area growth and produced leaves versus chemical defenses, respectively.

  17. Enough is enough: the effects of symbiotic ant abundance on herbivory, growth, and reproduction in an African acacia.

    Science.gov (United States)

    Palmer, Todd M; Brody, Alison K

    2013-03-01

    Understanding how cooperative interactions evolve and persist remains a central challenge in biology. Many mutualisms are thought to be maintained by "partner fidelity feedback," in which each partner bases their investment on the benefits they receive. Yet, we know little about how benefits change as mutualists vary their investment, which is critical to understanding the balance between mutualism and antagonism in any given partnership. Using an obligate ant-plant mutualism, we manipulated the density of symbiotic acacia ants (Crematogaster mimosae) and examined how the costs and benefits to Acacia drepanolobium trees scaled with ant abundance. Benefits of ants to plants saturated with increasing ant abundance for protection from branch browsing by elephants and attack by branch galling midges, while varying linearly for protection from cerambycid beetles. In addition, the risk of catastrophic whole-tree herbivory by elephants was highest for trees with very low ant abundance. However, there was no relationship between ant abundance and herbivory by leaf-feeding invertebrates, nor by vertebrate browsers such as giraffe, steinbuck, and Grant's gazelle. Ant abundance did not significantly influence rates of branch growth on acacias, but there was a significant negative relationship between ant abundance and the number of fruits produced by host plants, suggesting that maintaining high-density ant colonies is costly. Because benefits to plants largely saturated with increasing colony size, while costs to plant reproduction increased, we suggest that ant colonies may achieve abundances that are higher than optimal for host plants. Our results highlight the conflicts of interest inherent in many mutualisms, and demonstrate the value of examining the shape of curves relating costs and benefits within these globally important interactions.

  18. Continuous monitoring of a mountain snowpack in the Austrian Alps by above-ground neutron sensing

    Science.gov (United States)

    Schattan, Paul; Baroni, Gabriele; Oswald, Sascha E.; Schöber, Johannes; Fey, Christine; Francke, Till; Huttenlau, Matthias; Achleitner, Stefan

    2017-04-01

    In alpine catchments the knowledge of the spatially and temporally heterogeneous dynamics of snow accumulation and depletion is crucial for modelling and managing water resources. While snow covered area can be retrieved operationally from remote sensing data, continuous measurements of other snow state variables like snow depth (SD) or snow water equivalent (SWE) remain challenging. Existing methods of retrieving both variables in alpine terrain face severe issues like a lack of spatial representativeness, labour-intensity or discontinuity in time. Recently, promising new measurement techniques combining a larger support with low maintenance cost like above-ground gamma-ray scintillators, GPS interferometric reflectometry or above-ground cosmic-ray neutron sensors (CRNS) have been suggested. While CRNS has proven its potential for monitoring soil moisture in a wide range of environments and applications, the empirical knowledge of using CRNS for snowpack monitoring is still very limited and restricted to shallow snowpacks with rather uniform evolution. The characteristics of an above-ground cosmic-ray neutron sensor (CRNS) were therefore evaluated for monitoring a mountain snowpack in the Austrian Alps (Kaunertal, Tyrol) during three winter seasons. The measurement campaign included a number of measurements during the period from 03/2014 to 06/2016: (i) neutron count measurements by CRNS, (ii) continuous point-scale SD and SWE measurements from an automatic weather station and (iii) 17 Terrestrial Laser Scanning (TLS) with simultaneous SD and SWE surveys. The highest accumulation in terms of SWE was found in 04/2014 with 600 mm. Neutron counts were compared to all available snow data. While previous studies suggested a signal saturation at around 100 mm of SWE, no complete signal saturation was found. A strong non-linear relation was found for both SD and SWE with best fits for spatially distributed TLS based snow data. Initially slightly different shapes were

  19. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Directory of Open Access Journals (Sweden)

    Scott Ferrenberg

    2016-10-01

    Full Text Available Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species and belowground (species active in organic and mineral soil layers arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community and modified Winkler funnels (belowground community and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the

  20. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Science.gov (United States)

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod

  1. Human and environmental controls over aboveground carbon storage in Madagascar

    Directory of Open Access Journals (Sweden)

    Asner Gregory P

    2012-01-01

    Full Text Available Abstract Background Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1 could provide insight into human and environmental controls over ecosystem state and functioning, and could support conservation and climate policy development. However, mapping ACD has proven challenging, particularly in spatially complex regions harboring a mosaic of land use activities, or in remote montane areas that are difficult to access and poorly understood ecologically. Using a combination of field measurements, airborne Light Detection and Ranging (LiDAR and satellite data, we present the first large-scale, high-resolution estimates of aboveground carbon stocks in Madagascar. Results We found that elevation and the fraction of photosynthetic vegetation (PV cover, analyzed throughout forests of widely varying structure and condition, account for 27-67% of the spatial variation in ACD. This finding facilitated spatial extrapolation of LiDAR-based carbon estimates to a total of 2,372,680 ha using satellite data. Remote, humid sub-montane forests harbored the highest carbon densities, while ACD was suppressed in dry spiny forests and in montane humid ecosystems, as well as in most lowland areas with heightened human activity. Independent of human activity, aboveground carbon stocks were subject to strong physiographic controls expressed through variation in tropical forest canopy structure measured using airborne LiDAR. Conclusions High-resolution mapping of carbon stocks is possible in remote regions, with or without human activity, and thus carbon monitoring can be brought to highly endangered Malagasy forests as a climate-change mitigation and biological conservation strategy.

  2. [Aboveground biomass of three conifers in Qianyanzhou plantation].

    Science.gov (United States)

    Li, Xuanran; Liu, Qijing; Chen, Yongrui; Hu, Lile; Yang, Fengting

    2006-08-01

    In this paper, the regressive models of the aboveground biomass of Pinus elliottii, P. massoniana and Cunninghamia lanceolata in Qianyanzhou of subtropical China were established, and the regression analysis on the dry weight of leaf biomass and total biomass against branch diameter (d), branch length (L), d3 and d2L was conducted with linear, power and exponent functions. Power equation with single parameter (d) was proved to be better than the rests for P. massoniana and C. lanceolata, and linear equation with parameter (d3) was better for P. elliottii. The canopy biomass was derived by the regression equations for all branches. These equations were also used to fit the relationships of total tree biomass, branch biomass and foliage biomass with tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. For foliage-and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P biomass, with the highest for total biomass. By these equations, the aboveground biomass and its allocation were estimated, with the aboveground biomass of P. massoniana, P. elliottii, and C. lanceolata forests being 83.6, 72. 1 and 59 t x hm(-2), respectively, and more stem biomass than foliage-and branch biomass. According to the previous studies, the underground biomass of these three forests was estimated to be 10.44, 9.42 and 11.48 t x hm(-2), and the amount of fixed carbon was 47.94, 45.14 and 37.52 t x hm(-2), respectively.

  3. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

    Science.gov (United States)

    Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan

    2016-02-01

    Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.

  4. Retrieval of Aboveground Biomass Using Multi-Frequency SAR

    Science.gov (United States)

    Stelmaszczuk-Gorska, Martyna; Thiel, Christian; Schmullius, Christiane

    2016-08-01

    The objective of this study was to investigate above-ground biomass (AGB) estimation in forests by combining multi-frequency Synthetic Aperture Radar (SAR) L-band and C-band data. An area of Siberian boreal forest was selected for this study. The results demonstrated that relatively high estimation accuracy can be obtained at the spatial resolution of 0.5 ha using the L- and C-band SAR backscatter. Overall, the AGB estimation error was calculated to be approximately 24 t ha-1 using the Random Forests machine learning algorithm.

  5. The effects of herbivory on neighbor interactions along a coastal marsh gradient

    Science.gov (United States)

    Taylor, K.L.; Grace, J.B.; Marx, B.D.

    1997-01-01

    Many current theories of community function are based on the assumption that disturbances such as herbivory act to reduce the importance of neighbor interactions among plants. In this study, we examined the effects of herbivory (primarily by nutria, Myocastor coy-pus) on neighbor interactions between three dominant grasses in three coastal marsh communities, fresh, oligohaline, and mesohaline. The grasses studied were Panicum virgatum, Spartina patens, and Spartina alterniflora, which are dominant species in the fresh, oligohaline, and mesohaline marshes, respectively. Additive mixtures and monocultures of transplants were used in conjunction with exclosure fences to determine the impact of herbivory on neighbor interactions in the different marsh types. Herbivory had a strong effect on all three species and was important in all three marshes. In the absence of herbivores, the impact of neighbors was significant for two of the species (Panicum virgatum and Spartina patens) and varied considerably between environments, with competition intensifying for Panicum virgatum and decreasing for Spartina patens with increasing salinity. Indications of positive neighbor effects (mutualisms) were observed for both of these species, though in contrasting habitats and to differing degrees. In the presence of herbivores, however, competitive and positive effects were eliminated. Overall, then, it was observed that in this case, intense herbivory was able to override other biotic interactions such as competition and mutualism, which were not detectable in the presence of herbivores.

  6. Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical meta-analysis.

    Science.gov (United States)

    Rossetti, María Rosa; Tscharntke, Teja; Aguilar, Ramiro; Batáry, Péter

    2017-02-01

    Loss and fragmentation of natural habitats can lead to alterations of plant-animal interactions and ecosystems functioning. Insect herbivory, an important antagonistic interaction is expected to be influenced by habitat fragmentation through direct negative effects on herbivore community richness and indirect positive effects due to losses of natural enemies. Plant community changes with habitat fragmentation added to the indirect effects but with little predictable impact. Here, we evaluated habitat fragmentation effects on both herbivory and herbivore diversity, using novel hierarchical meta-analyses. Across 89 studies, we found a negative effect of habitat fragmentation on abundance and species richness of herbivores, but only a non-significant trend on herbivory. Reduced area and increased isolation of remaining fragments yielded the strongest effect on abundance and species richness, while specialist herbivores were the most vulnerable to habitat fragmentation. These fragmentation effects were more pronounced in studies with large spatial extent. The strong reduction in herbivore diversity, but not herbivory, indicates how important common generalist species can be in maintaining herbivory as a major ecosystem process. © 2017 John Wiley & Sons Ltd/CNRS.

  7. Linkages between below and aboveground communities: Decomposer responses to simulated tree species loss are largely additive.

    Science.gov (United States)

    Becky A. Ball; Mark A. Bradford; Dave C. Coleman; Mark D. Hunter

    2009-01-01

    Inputs of aboveground plant litter influence the abundance and activities of belowground decomposer biota. Litter-mixing studies have examined whether the diversity and heterogeneity of litter inputs...

  8. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    Science.gov (United States)

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    Science.gov (United States)

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Grassland productivity in response to nutrient additions and herbivory is scale-dependent

    Directory of Open Access Journals (Sweden)

    Erica A.H. Smithwick

    2016-12-01

    Full Text Available Vegetation response to nutrient addition can vary across space, yet studies that explicitly incorporate spatial pattern into experimental approaches are rare. To explore whether there are unique spatial scales (grains at which grass response to nutrients and herbivory is best expressed, we imposed a large (∼3.75 ha experiment in a South African coastal grassland ecosystem. In two of six 60 × 60 m grassland plots, we imposed a scaled sampling design in which fertilizer was added in replicated sub-plots (1 × 1 m, 2 × 2 m, and 4 × 4 m. The remaining plots either received no additions or were fertilized evenly across the entire area. Three of the six plots were fenced to exclude herbivory. We calculated empirical semivariograms for all plots one year following nutrient additions to determine whether the scale of grass response (biomass and nutrient concentrations corresponded to the scale of the sub-plot additions and compared these results to reference plots (unfertilized or unscaled and to plots with and without herbivory. We compared empirical semivariogram parameters to parameters from semivariograms derived from a set of simulated landscapes (neutral models. Empirical semivariograms showed spatial structure in plots that received multi-scaled nutrient additions, particularly at the 2 × 2 m grain. The level of biomass response was predicted by foliar P concentration and, to a lesser extent, N, with the treatment effect of herbivory having a minimal influence. Neutral models confirmed the length scale of the biomass response and indicated few differences due to herbivory. Overall, we conclude that interpretation of nutrient limitation in grasslands is dependent on the grain used to measure grass response and that herbivory had a secondary effect.

  11. Grassland productivity in response to nutrient additions and herbivory is scale-dependent

    Science.gov (United States)

    Baldwin, Douglas C.; Naithani, Kusum J.

    2016-01-01

    Vegetation response to nutrient addition can vary across space, yet studies that explicitly incorporate spatial pattern into experimental approaches are rare. To explore whether there are unique spatial scales (grains) at which grass response to nutrients and herbivory is best expressed, we imposed a large (∼3.75 ha) experiment in a South African coastal grassland ecosystem. In two of six 60 × 60 m grassland plots, we imposed a scaled sampling design in which fertilizer was added in replicated sub-plots (1 × 1 m, 2 × 2 m, and 4 × 4 m). The remaining plots either received no additions or were fertilized evenly across the entire area. Three of the six plots were fenced to exclude herbivory. We calculated empirical semivariograms for all plots one year following nutrient additions to determine whether the scale of grass response (biomass and nutrient concentrations) corresponded to the scale of the sub-plot additions and compared these results to reference plots (unfertilized or unscaled) and to plots with and without herbivory. We compared empirical semivariogram parameters to parameters from semivariograms derived from a set of simulated landscapes (neutral models). Empirical semivariograms showed spatial structure in plots that received multi-scaled nutrient additions, particularly at the 2 × 2 m grain. The level of biomass response was predicted by foliar P concentration and, to a lesser extent, N, with the treatment effect of herbivory having a minimal influence. Neutral models confirmed the length scale of the biomass response and indicated few differences due to herbivory. Overall, we conclude that interpretation of nutrient limitation in grasslands is dependent on the grain used to measure grass response and that herbivory had a secondary effect. PMID:27920956

  12. Simulated herbivory does not constrain phenotypic plasticity to shade through ontogeny in a relict tree.

    Science.gov (United States)

    Pardo, A; García, F M; Valladares, F; Pulido, F

    2016-07-01

    Ecological limits to phenotypic plasticity (PP), induced by simultaneous biotic and abiotic factors, can prevent organisms from exhibiting optimal plasticity, and in turn lead to decreased fitness. Herbivory is an important biotic stressor and may limit plant functional responses to challenging environmental conditions such as shading. In this study we investigated whether plant functional responses and PP to shade are constrained by herbivory, and whether such constraints are due to direct effects based on resource limitation by considering ontogeny. We used as a model system the relict tree Prunus lusitanica and implemented an indoor experiment to quantify the response of saplings of different ages to shade and herbivory. We measured five functional traits and quantitatively calculated PP. Results showed that herbivory did not constrain functional responses or PP to shade except for shoot:root ratio (SR), which, despite showing a high PP in damaged saplings, decreased under shade instead of increasing. Damaged saplings of older age did not exhibit reduced constraints on functional responses to shade and generally presented a lower PP than damaged saplings of younger age. Our findings suggest that herbivory-mediated constraints on plant plasticity to shade may not be as widespread as previously thought. Nonetheless, the negative effect of herbivory on SR plastic expression to shade could be detrimental for plant fitness. Finally, our results suggest a secondary role of direct effects (resource-based) on P. lusitanica plasticity limitation. Further studies should quantify plant resources in order to gain a better understanding of this seldom-explored subject.

  13. Sex-related differences in reproductive allocation, growth, defense and herbivory in three dioecious neotropical palms.

    Directory of Open Access Journals (Sweden)

    Verónica Cepeda-Cornejo

    Full Text Available BACKGROUND: Frequently, in dioecious plants, female plants allocate more resources to reproduction than male plants. Therefore it is expected that asymmetrical allocation to reproduction may lead to a reproduction-growth tradeoff, whereby female plants grow less than male plants, but invest more in defenses and thus experience lower herbivory than male plants. METHODOLOGY/PRINCIPAL FINDINGS: We tested these expectations by comparing resource allocation to reproduction, growth and defense and its consequences on herbivory in three sympatric dioecious Chamaedorea palms (C. alternans, C. pinnatifrons and C. ernesti-augusti using a pair-wise design (replicated male/female neighboring plants in a Mexican tropical rain forest. Our findings support the predictions. Biomass allocation to reproduction in C. pinnatifrons was 3-times higher in female than male plants, consistent with what is known in C. alternans and C. ernesti-augusti. Growth (height and leaf production rate and biomass production was higher in male plants of all three species. Female plants of the three species had traits that suggest greater investment in defense, as they had 4-16% tougher leaves, and 8-18% higher total phenolic compounds concentration. Accordingly, female plants sustained 53-78% lower standing herbivory and 49-87% lower herbivory rates than male plants. CONCLUSIONS/SIGNIFICANCE: Our results suggests that resource allocation to reproduction in the studied palms is more costly to female plants and this leads to predictable intersexual differences in growth, defense and herbivory. We conclude that resource allocation to reproduction in plants can have important consequences that influence their interaction with herbivores. Since herbivory is recognized as an important selective force in plants, these results are of significance to our understanding of plant defense evolution.

  14. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G

    2008-10-01

    Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.

  15. Genetic diversity increases insect herbivory on oak saplings.

    Directory of Open Access Journals (Sweden)

    Bastien Castagneyrol

    Full Text Available A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect. Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.

  16. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  17. Microzooplankton herbivory and community structure in the Amundsen Sea, Antarctica

    Science.gov (United States)

    Yang, Eun Jin; Jiang, Yong; Lee, SangHoon

    2016-01-01

    We examined microzooplankton abundance, community structure, and grazing impact on phytoplankton in the Amundsen Sea, Western Antarctica, during the early austral summer from December 2010 to January 2011. Our study area was divided into three regions based on topography, hydrographic properties, and trophic conditions: (1) the Oceanic Zone (OZ), with free sea ice and low phytoplankton biomass dominated by diatoms; (2) the Sea Ice Zone (SIZ), covered by heavy sea ice with colder water, lower salinity, and dominated by diatoms; and (3) the Amundsen Sea Polynya (ASP), with high phytoplankton biomass dominated by Phaeocystis antarctica. Microzooplankton biomass and communities associated with phytoplankton biomass and composition varied among regions. Heterotrophic dinoflagellates (HDF) were the most significant grazers in the ASP and OZ, whereas ciliates co-dominated with HDF in the SIZ. Microzooplankton grazing impact is significant in our study area, particularly in the ASP, and consumed 55.4-107.6% of phytoplankton production (average 77.3%), with grazing impact increasing with prey and grazer biomass. This result implies that a significant proportion of the phytoplankton production is not removed by sinking or other grazers but grazed by microzooplankton. Compared with diatom-based systems, Phaeocystis-based production would be largely remineralized and/or channeled through the microbial food web through microzooplankton grazing. In these waters the major herbivorous fate of phytoplankton is likely mediated by the microzooplankton population. Our study confirms the importance of herbivorous protists in the planktonic ecosystems of high latitudes. In conclusion, microzooplankton herbivory may be a driving force controlling phytoplankton growth in early summer in the Amundsen Sea, particularly in the ASP.

  18. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  19. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  20. Plant defense, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies.

    Science.gov (United States)

    Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M

    2012-11-01

    The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.

  1. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Directory of Open Access Journals (Sweden)

    Martin Pareja

    Full Text Available There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  2. Herbivory on the seagrass Cymodocea nodosa (Ucria) Ascherson in contrasting Spanish Mediterranean habitats

    NARCIS (Netherlands)

    Cebrian, J.; Duarte, C.M.; Marbà, N.

    1996-01-01

    We assess the magnitude and variability of herbivory (i.e. leaf consumption and sloughing caused by herbivore bites) on the seagrass Cymodocea nodosa along the Spanish Mediterranean coast and test the hypothesis that this is higher in meadows growing in sheltered bays than in exposed, open zones. To

  3. Ungulate herbivory modifies the effects of climate change on mountain forests

    NARCIS (Netherlands)

    Didion, M.P.; Kupferschmid, A.D.; Wolf, A.; Bugmann, H.

    2011-01-01

    Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation

  4. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Science.gov (United States)

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  5. Spatially distinct responses within willow to bark stripping by deer: effects on insect herbivory

    Science.gov (United States)

    Tanaka, Motonobu; Nakamura, Masahiro

    2015-10-01

    Within individual plants, cervid herbivory may cause positive or negative plant-mediated effects on insect herbivores, depending on where it occurs. Using a combination of field observations and artificial bark-stripping experiments in Hokkaido, Japan, we examined the plant-mediated effects of bark stripping by sika deer ( Cervus nippon yesoensis) on insect herbivory in two spatially distinct parts of willow ( Salix udensis) trees: resprouting leaves below bark-stripping wounds and canopy leaves above. Natural and artificial bark stripping stimulated resprouting from trunks below wounds. Resprouting leaves on bark-stripped trees had lower total phenolics, condensed tannin, and C/N ratios than did canopy leaves on control trees. Herbivory rates were higher in resprouting leaves on bark-stripped trees than in canopy leaves on controls. Conversely, above-wound canopy leaves on bark-stripped trees had higher total phenolics than did those on controls, while herbivory rates were lower in the canopy leaves of bark-stripped trees than in those on controls. These results demonstrate that plant-mediated effects of bark stripping diverge between plant tissues below and above wounds in individual willow trees. We submit that focusing on multiple plant parts can elucidate plant-mediated effects at the whole-plant scale.

  6. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality

    Science.gov (United States)

    Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.

    2014-01-01

    The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.

  7. Effects of fire and herbivory on the stability of savanna ecosystems

    NARCIS (Netherlands)

    van Langevelde, F; van de Vijver, CADM; Kumar, L; van de Koppel, J; de Ridder, N; van Andel, J; Skidmore, AK; Hearne, JW; Stroosnijder, L; Bond, WJ; Prins, HHT; Rietkerk, M; Vijver, Claudius A.D.M. van de; Skidmore, Andrew K.; Hearne, John W.; Bond, William J.; Lauenroth, W.K.

    2003-01-01

    Savanna ecosystems are characterized by the co-occurrence of trees and grasses. In this paper, we argue that the balance between trees and grasses is, to a large extent,determined by the indirect interactive effects of herbivory and fire. These effects are based on the positive feedback between fuel

  8. The ghost of herbivory past: slow defence relaxation in the chlorophyte Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    Jacobus VIJVERBERG

    2009-08-01

    Full Text Available The freshwater chlorophyte Scenedesmus obliquus (Turpin Kützing produces colonies as an inducible defence against herbivores. We investigated the dynamics of Scenedesmus colony formation and disintegration in response to the density of the herbivorous rotifer Brachionus calyciflorus in large-scale mesocosms. Additional bioassays were performed to investigate Scenedesmus colony disintegration under different light regimes. In the mesocosm experiment, colony formation took place rapidly, but relaxation towards the initial size took relatively long (>10 d after cessation of herbivory. In the bioassays, in the absence of infochemicals, colonies disintegrated almost immediately in the dark (1-1.5 d, within 4 d under a photoperiod of 16:8 (L:D and between 8 and 12 days under full light. Colony disintegration times in the mesocosm experiment were substantially longer as compared to treatments with the same photoperiod (L:D 16:8 in the bioassays. So after a peak of herbivory, the 'ghost of herbivory past', i.e. the remaining infochemicals, may continue to induce colony formation, causing an additional lengthening of colony disintegration times and associated fitness costs (higher sedimentation loss rates. This indicates that costs of colony formation are not only important during the induction phase, but may be even more important during the relaxation phase. We compared these sedimentation costs to the costs of herbivory for differently sized Scenedesmus, and found a clear trade-off pattern for these costs.

  9. Effects of herbivory on the reproductive effort of 4 prairie perennials

    Directory of Open Access Journals (Sweden)

    Bradley Kate L

    2002-02-01

    Full Text Available Abstract Background Herbivory can affect every aspect of a plant's life. Damaged individuals may show decreased survivorship and reproductive output. Additionally, specific plant species (legumes and tissues (flowers are often selectively targeted by herbivores, like deer. These types of herbivory influence a plant's growth and abundance. The objective of this study was to identify the effects of leaf and meristem removal (simulated herbivory within an exclosure on fruit and flower production in four species (Rhus glabra, Rosa arkansana, Lathyrus venosus, and Phlox pilosa which are known targets of deer herbivory. Results Lathyrus never flowered or went to seed, so we were unable to detect any treatment effects. Leaf removal did not affect flower number in the other three species. However, Phlox, Rosa, and Rhus all showed significant negative correlations between seed mass and leaf removal. Meristem removal had a more negative effect than leaf removal on flower number in Phlox and on both flower number and seed mass in Rosa. Conclusions Meristem removal caused a greater response than defoliation alone in both Phlox and Rosa, which suggests that meristem loss has a greater effect on reproduction. The combination of leaf and meristem removal as well as recruitment limitation by deer, which selectively browse for these species, is likely to be one factor contributing to their low abundance in prairies.

  10. Dealing with double trouble: consequences of single and double herbivory in Brassica juncea

    NARCIS (Netherlands)

    Mathur, V.; Tytgat, T.O.G.; Graaf, de R.M.; Kalia, V.; Reddy, A.S.; Vet, L.E.M.; Dam, van N.M.

    2013-01-01

    In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study focu

  11. The effect of structurally complex corals and herbivory on the dynamics of Halimeda

    Science.gov (United States)

    Castro-Sanguino, Carolina; Lovelock, Catherine; Mumby, Peter J.

    2016-06-01

    The calcareous green alga Halimeda is a key contributor to carbonate sediment production on coral reefs. As herbivores have a direct negative effect on the abundance of Halimeda, protection from herbivory is critical for Halimeda growth. Branching corals such as Acropora are likely to provide refugia for Halimeda from grazers, yet studies are scarce. Here, we investigated the vulnerability of two Halimeda species to herbivory using fish exclusion cages and assessed the contribution of coral structural complexity to seasonal changes in Halimeda biomass and morphometrics. While up to 50 % Halimeda abundance was depleted outside cages due to herbivory and the exclusion of large herbivores resulted in an increase in net growth up to threefold, Halimeda recruitment was positively affected by herbivory, more than two times greater outside cages. However, these responses differed between species and seasons; only one species was affected in winter but not summer. Coral structural complexity facilitated an increase of total algal biomass particularly in summer. At the individual level, thalli growing inside the Acropora canopy were always significantly larger (thallus biomass, volume and height) than those growing in exposed areas. We estimated that the carbonate production of Halimeda was nearly three times greater inside refuges provided by Acropora. Because Halimeda species differ in growth rates and susceptibility to grazing, we predict that the ongoing degradation of the habitat complexity provided by branching corals will alter Halimeda community structure and its contribution to local sediment budgets.

  12. Effects of resource competition and herbivory on plant performance along a natural productivity gradient

    NARCIS (Netherlands)

    Van Der Wal, R; Egas, M; Bakker, J; van der Veen, A.

    2000-01-01

    1 The effects of resource competition and herbivory on a target species, Triglochin maritima, were studied along a productivity gradient of vegetation biomass in a temperate salt marsh. 2 Transplants were used to measure the impact of grazing, competition and soil fertility over two growing seasons.

  13. Dealing with double trouble: consequences of single and double herbivory in Brassica juncea

    NARCIS (Netherlands)

    Mathur, V.; Tytgat, T.O.G.; Graaf, de R.M.; Kalia, V.; Reddy, A.S.; Vet, L.E.M.; Dam, van N.M.

    2013-01-01

    In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study

  14. Ungulate herbivory modifies the effects of climate change on mountain forests

    NARCIS (Netherlands)

    Didion, M.P.; Kupferschmid, A.D.; Wolf, A.; Bugmann, H.

    2011-01-01

    Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation ch

  15. Forest loss increases insect herbivory levels in human-altered landscapes

    Science.gov (United States)

    Dodonov, Pavel; Morante-Filho, José Carlos; Mariano-Neto, Eduardo; Cazetta, Eliana; Andrade, Edyla Ribeiro de; Rocha-Santos, Larissa; Inforzato, Igor; Gomes, Francisco Sanches; Faria, Deborah

    2016-11-01

    Insect herbivory has been observed to be affected by habitat loss and fragmentation, although the mechanisms by which these anthropogenic disturbances affect this process are not well understood. To aid in clarifying this issue, we assessed the relation between forest cover and leaf damage caused by herbivorous insects on a representative tropical forest understory plant family, the Rubiaceae. We measured leaf area loss of Rubiaceae plants in 20 forest sites located in the Brazilian Atlantic forest, and also tested whether variation in forest cover, abundance of insectivorous birds (predators) and of Rubiaceae plants (resources) could explain the observed variation in leaf damage. Herbivory levels varied between 2.6 and 12.5 percent leaf area lost and increased with decreasing forest cover, whereas the other explanatory variables did not provide additional explanatory power. Therefore, forest loss appears to be the main driver of changes in local herbivory, and ecological processes such as top-down and bottom-up control may not account for the deforestation-related increase in herbivory levels. Other mechanisms, for example leaf quality and/or the influence of the adjoining land uses, have to be explored in future studies.

  16. Ungulate herbivory modifies the effects of climate change on mountain forests

    NARCIS (Netherlands)

    Didion, M.P.; Kupferschmid, A.D.; Wolf, A.; Bugmann, H.

    2011-01-01

    Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation ch

  17. Additive effects of aboveground polyphagous herbivores and soil feedback in native and range-expanding exotic plants

    NARCIS (Netherlands)

    Morrien, W.E.; Engelkes, T.; Putten, van der W.H.

    2011-01-01

    Plant biomass and plant abundance can be controlled by aboveground and belowground natural enemies. However, little is known about how the aboveground and belowground enemy effects may add up. We exposed 15 plant species to aboveground polyphagous insect herbivores and feedback effects from the soil

  18. Recovering More than Tree Cover: Herbivores and Herbivory in a Restored Tropical Dry Forest

    Science.gov (United States)

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 –fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  19. Indirect effects of ecosystem engineering combine with consumer behaviour to determine the spatial distribution of herbivory.

    Science.gov (United States)

    Griffen, Blaine D; Riley, Megan E; Cannizzo, Zachary J; Feller, Ilka C

    2017-07-10

    Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system. We identified herbivory patterns in a dwarf mangrove forest on the archipelago of Twin Cays, Belize. Past wood-boring activity impacted more than one-third of trees through the creation of tree holes that are now used, presumably as predation or thermal refuge, by the herbivorous mangrove tree crab Aratus pisonii. The presence of these refuges had a significant impact on plant-animal interactions; herbivory was more than fivefold higher on trees influenced by tree holes relative to those that were completely isolated from these refuges. Additionally, herbivory decreased exponentially with increasing distance from tree holes. We use individual-based simulation modelling to demonstrate that the creation of these herbivory patterns depends on a combination of the use of engineered tree holes for refuge by tree crabs, and the use of two behaviour patterns in this species-site fidelity to a "home tree," and more frequent foraging near their home tree. We demonstrate that understanding the spatial distribution of herbivory in this system depends on combining both the use of ecosystem engineering structures with individual behavioural patterns of herbivores. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  20. Cascading effects of early-season herbivory on late-season herbivores and their parasitoids.

    Science.gov (United States)

    Hernandez-Cumplido, Johnattran; Glauser, Gaetan; Benrey, Betty

    2016-05-01

    There is an increasing awareness that herbivory by one insect species induces changes in a plant that affect the performance of other herbivore species that feed on the same plant. However, previous studies of interspecies interactions mediated by plant defense responses have rarely taken into account different insect guilds or the third trophic level. Using a combination of field and laboratory experiments, we examined how early-season herbivory in lima bean plants (Phaseolus lunatus) by the leaf-chewing herbivore Cerotoma ruficornis and the bean pod weevil Apion godmani affects the abundance and performance of the seed beetle Zabrotes subfasciatus and that of its parasitoid Stenocorse bruchivora, which occurs on the plants at the end of the growing season. In addition, we determined the consequences of early-season herbivore-induced defenses on plant performance. We hypothesized that early-season induction would affect plant reproduction and, hence, would alter the suitability of seeds for late-season seed-eating beetles, and that this would in turn alter the vulnerability of these seed beetles to parasitoids. We found strong support for these hypotheses. In the field, early-season herbivory negatively affected plant reproduction and seeds of these plants suffered lower levels of infestation by seed-eating beetles, which in turn suffered less parasitism. Laboratory assays with field-collected seeds confirmed that the performance of beetles and parasitoids was lower on seeds from plants that had been subjected to early-season herbivory. Further analyses revealed that seeds produced by control plants were larger, heavier, and had a higher concentration of cyanogenic glycosides and total protein content than seeds from plants subjected to herbivory. Our results provide insight into how direct and indirect interactions between and within different trophic levels affect the dynamics and structure of complex communities.

  1. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Iris Juan-Baeza

    Full Text Available Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae and Ipomoea pauciflora (Convolvulaceae were selected in each plot (N = 110 trees. Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp. was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and

  2. Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability

    Science.gov (United States)

    DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.

    2012-01-01

    We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.

  3. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    Science.gov (United States)

    Juan-Baeza, Iris; Martínez-Garza, Cristina; Del-Val, Ek

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  4. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    Science.gov (United States)

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  5. [Effects of shading on the aboveground biomass and stiochiometry characteristics of Medicago sativa].

    Science.gov (United States)

    Ma, Zhi-Liang; Yang, Wan-Qin; Wu, Fu-Zhong; Gao, Shun

    2014-11-01

    In order to provide scientific basis for inter-planting alfalfa in abandoned farmland, a shading experiment was conducted to simulate the effects of different light intensities on the aboveground biomass, the contents of carbon, nitrogen, phosphorus and potassium, and the stoichiometric characteristics of alfalfa under the plantation. The results showed that the aboveground biomass of alfalfa correlated significantly with the light intensity, and shading treatment reduced the aboveground biomass of alfalfa significantly. The aboveground alfalfa tissues under the 62% shading treatment had the highest contents of carbon, nitrogen and phosphorus, which was 373.73, 34.38 and 5.47 g · kg(-1), respectively, and significantly higher than those of the control. However, shading treatments had no significant effect on the potassium content of aboveground part. The C/N ratio in aboveground tissues under the 72% shading treatment was significantly higher than that of the control, but no significant differences among other treatments were found. The ratios of N/P and C/P in aboveground tissues showed a tendency that decreased firstly and then increased with the increase of light intensity.

  6. Population differentiation and the effects of herbivory and sand compaction on the subterranean growth of a desert lily.

    Science.gov (United States)

    Ruiz-R, Natalia; Ward, David; Saltz, David

    2006-01-01

    Differences in level of herbivory can select for local adaptation and genetic differentiation of plant populations in different environments. Mean bulb depth of the desert lily Pancratium sickenbergeri, differs considerably among populations differing in the level of herbivory by the dorcas gazelle. The gazelle digs in the sand to remove most of the bulb of the lily. Deeper bulbs have less material removed by herbivory than shallow bulbs and have higher fitness. A possible confounding factor is the degree of sand compaction, which may retard the downward growth of the bulb. We conducted a common garden experiment with 2 sand types with seeds from source populations with different levels of herbivory. There was a large genetic difference among populations. Two of 3 analyses indicated that there was an interaction between population and sand type, indicating that there is a heritable component of plasticity.

  7. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Science.gov (United States)

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  8. Global patterns of aboveground carbon stock and sequestration in mangroves.

    Science.gov (United States)

    Estrada, Gustavo C D; Soares, Mário L G

    2017-01-01

    In order to contribute to understand the factors that control the provisioning of the ecosystem service of carbon storage by mangroves, data on carbon stock and sequestration in the aboveground biomass (AGB) from 73 articles were averaged and tested for the dependence on latitude, climatic parameters, physiographic types and age. Global means of carbon stock (78.0 ± 64.5 tC.ha-1) and sequestration (2.9 ± 2.2 tC.ha-1.yr-1) showed that mangroves are among the forest ecosystems with greater capacity of carbon storage in AGB per area. On the global scale, carbon stock increases toward the equator (R²=0.22) and is dependent on 13 climatic parameters, which can be integrated in the following predictive equation: Carbon Stock in AGB = -16.342 + (8.341 x Isothermality) + (0.021 x Annual Precipitation) [R²=0.34; p stock variability is explained by age. Carbon stock and sequestration also vary according to physiographic types, indicating the importance of hydroperiod and edaphic parameters to the local variability of carbon stock. By demonstrating the contribution of local and regional-global factors to carbon stock, this study provides information to the forecast of the effects of future climate changes and local anthropogenic forcings on this ecosystem service.

  9. Aboveground Tree Biomass for Pinus ponderosa in Northeastern California

    Directory of Open Access Journals (Sweden)

    Todd A. Hamilton

    2013-03-01

    Full Text Available Forest managers need accurate biomass equations to plan thinning for fuel reduction or energy production. Estimates of carbon sequestration also rely upon such equations. The current allometric equations for ponderosa pine (Pinus ponderosa commonly employed for California forests were developed elsewhere, and are often applied without consideration potential for spatial or temporal variability. Individual-tree aboveground biomass allometric equations are presented from an analysis of 79 felled trees from four separate management units at Blacks Mountain Experimental Forest: one unthinned and three separate thinned units. A simultaneous set of allometric equations for foliage, branch and bole biomass were developed as well as branch-level equations for wood and foliage. Foliage biomass relationships varied substantially between units while branch and bole biomass estimates were more stable across a range of stand conditions. Trees of a given breast height diameter and crown ratio in thinned stands had more foliage biomass, but slightly less branch biomass than those in an unthinned stand. The observed variability in biomass relationships within Blacks Mountain Experimental Forest suggests that users should consider how well the data used to develop a selected model relate to the conditions in any given application.

  10. Aboveground to belowground herbivore defense signaling in maize

    Science.gov (United States)

    Gill, Torrence; Zhu, Lixue; Lopéz, Lorena; Pechanova, Olga; Shivaji, Renuka; Ankala, Arunkanth; Williams, W. Paul

    2011-01-01

    Insect pests that attempt to feed on the caterpillar-resistant maize genotype Mp708 encounter a potent, multipronged defense system that thwarts their invasion. First, these plants are on “constant alert” due to constitutively elevated levels of the phytohormone jasmonic acid that signals the plant to activate its defenses. The higher jasmonic acid levels trigger the expression of defense genes prior to herbivore attack so the plants are “primed” and respond with a faster and stronger defense. The second defense is the rapid accumulation of a toxic cysteine protease called Mir1-CP in the maize whorl in response to caterpillar feeding. When caterpillars ingest Mir1-CP, it damages the insect's midgut and retards their growth. In this article, we discuss a third possible defense strategy employed by Mp708. We have shown that foliar caterpillar feeding causes Mir1-CP and defense gene transcripts to accumulate in its roots. We propose that caterpillar feeding aboveground sends a signal belowground via the phloem that results in Mir1-CP accumulation in the roots. We also postulate that the roots serve as a reservoir of Mir1-CP that can be mobilized to the whorl in response to caterpillar assault. PMID:21270535

  11. Regional Mapping, Modelling, and Monitoring of Tree Aboveground Biomass Carbon

    Science.gov (United States)

    Hudak, Andrew

    2016-04-01

    Airborne lidar collections are preferred for mapping aboveground biomass carbon (AGBC), while historical Landsat imagery are preferred for monitoring decadal scale forest cover change. Our modelling approach tracks AGBC change regionally using Landsat time series metrics; training areas are defined by airborne lidar extents within which AGBC is accurately mapped with high confidence. Geospatial topographic and climate layers are also included in the predictive model. Validation is accomplished using systematically sampled Forest Inventory and Analysis (FIA) plot data that have been independently collected, processed and summarized at the county level. Our goal is to demonstrate that spatially and temporally aggregated annual AGBC map predictions show no bias when compared to annual county-level summaries across the Northwest USA. A prominent source of bias is trees outside forest; much of the more arid portions of our study area meet the FIA definition of non-forest because the tree cover does not exceed their minimum tree cover threshold. We employ detailed tree cover maps derived from high-resolution aerial imagery to extend our AGBC predictions into non-forest areas. We also employ Landsat-derived annual disturbance maps into our mapped AGBC predictions prior to aggregation and validation.

  12. Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    Science.gov (United States)

    Vergés, Adriana; Vanderklift, Mathew A.; Doropoulos, Christopher; Hyndes, Glenn A.

    2011-01-01

    Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the

  13. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    OpenAIRE

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In cont...

  14. The effect of chronic seaweed subsidies on herbivory: plant-mediated fertilization pathway overshadows lizard-mediated predator pathways.

    Science.gov (United States)

    Piovia-Scott, Jonah; Spiller, David A; Takimoto, Gaku; Yang, Louie H; Wright, Amber N; Schoener, Thomas W

    2013-08-01

    Flows of energy and materials link ecosystems worldwide and have important consequences for the structure of ecological communities. While these resource subsidies typically enter recipient food webs through multiple channels, most previous studies focussed on a single pathway of resource input. We used path analysis to evaluate multiple pathways connecting chronic marine resource inputs (in the form of seaweed deposits) and herbivory in a shoreline terrestrial ecosystem. We found statistical support for a fertilization effect (seaweed increased foliar nitrogen content, leading to greater herbivory) and a lizard numerical response effect (seaweed increased lizard densities, leading to reduced herbivory), but not for a lizard diet-shift effect (seaweed increased the proportion of marine-derived prey in lizard diets, but lizard diet was not strongly associated with herbivory). Greater seaweed abundance was associated with greater herbivory, and the fertilization effect was larger than the combined lizard effects. Thus, the bottom-up, plant-mediated effect of fertilization on herbivory overshadowed the top-down effects of lizard predators. These results, from unmanipulated shoreline plots with persistent differences in chronic seaweed deposition, differ from those of a previous experimental study of the short-term effects of a pulse of seaweed deposition: while the increase in herbivory in response to chronic seaweed deposition was due to the fertilization effect, the short-term increase in herbivory in response to a pulse of seaweed deposition was due to the lizard diet-shift effect. This contrast highlights the importance of the temporal pattern of resource inputs in determining the mechanism of community response to resource subsidies.

  15. Transcriptome analysis of food habit transition from carnivory to herbivory in a typical vertebrate herbivore, grass carp Ctenopharyngodon idella

    OpenAIRE

    He, Shan; Liang, Xu-Fang; Li, Ling; Sun, Jian; Wen, Zheng-Yong; Cheng, Xiao-Yan; Li, Ai-Xuan; Cai, Wen-Jing; He, Yu-Hui; Wang, Ya-ping; Tao, Ya-Xiong; Yuan, Xiao-Chen

    2015-01-01

    Background Although feeding behavior and food habit are ecologically and economically important properties, little is known about formation and evolution of herbivory. Grass carp (Ctenopharyngodon idella) is an ecologically appealing model of vertebrate herbivore, widely cultivated in the world as edible fish or as biological control agents for aquatic weeds. Grass carp exhibits food habit transition from carnivory to herbivory during development. However, currently little is known about the ...

  16. Sexual and Asexual Reproduction of Salix sitchensis and the Influence of Beaver (Castor canadensis) Herbivory on Reproductive Success

    OpenAIRE

    Travis G. Gerwing; Alyssa M. Allen Gerwing; Rapaport, Eric; Alström-Rapaport, Cecilia

    2012-01-01

    The influence of beaver (Castor canadensis Kuhl) herbivory on Salix reproduction, specifically the stimulation of asexual reproduction via browsed stem fragments, is relatively unknown. This study aimed to determine if beaver herbivory stimulates asexual reproduction of riparian willows and results in mature populations dominated by clones. The survival of seedlings and asexual propagules produced by beaver browse in populations of the riparian willow Salix sitchensis (Sanson in Bongard) were...

  17. Herbivory on temperate rainforest seedlings in sun and shade: resistance, tolerance and habitat distribution.

    Directory of Open Access Journals (Sweden)

    Cristian Salgado-Luarte

    Full Text Available Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1 herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2 consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun and forest understory (shade in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory

  18. Root-fed Salicylic Acid in Grape Involves the Response Caused by Aboveground High Temperature

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Liu; Yue-Ping Liu; Wei-Dong Huang

    2008-01-01

    In order to investigate the transportation and distribution of salicylic acid (SA) from root to aboveground tissues in response to high temperature, the roots of grape plant were fed with 14C-SA before high temperature treatment. Radioactivity results showed that progressive increase in SA transportation from root to aboveground as compared with the control varied exactly with the heat treatment time. Radioactivity results of leaves at different stem heights indicated that the increase in SA amount at the top and middle leaves during the early period was most significant in comparison with the bottom leaves. The up-transportation of SA from root to aboveground tissues was dependent on xylem rather than phloem. Auto-radiographs of whole grape plants strongly approved the conclusions drawn above. Root-derived SA was believed to be a fundamental source in response to aboveground high temperature.

  19. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores

    OpenAIRE

    Khaitov, Botir; Patiño Ruiz, José David; Pina Desfilis, María Tatiana; Schausberger, Peter

    2015-01-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinc...

  20. [Relationships between aboveground biomass and environmental factors along an altitude gradient of alpine grassland].

    Science.gov (United States)

    Li, Kai-Hui; Hu, Yu-Kun; Wang, Xin; Fan, Yong-Gang; Wu-Maier, Wu-Shou

    2007-09-01

    In order to analyze the relationships between aboveground biomass and environmental factors along an altitude gradient of Bayanbulak alpine grassland on the southern slope of Tianshan Mountain, nine plots were selected, with each at 100 m interval of altitude. The results showed that Stipa purpurea and Festuca ovina communities distributed at the altitude from 2460 to 2760 m, and the aboveground biomass were 52.2-75.9 g x m(-2). Kobresia capillifolia + S. purpurea communities distributed at altitude 2860 m, and the aboveground biomass was 53.2 g x m(-2). K. capillifolia, Aichemilla tianschanica and Carex stenocarpa distributed at the altitude from 2860 to 3260 m, and the aboveground biomass was 62.1-107.4 g x m(-2). The mean relative humidity in July and August had greater effects on the aboveground biomass. Altitude had a negative correlation with the aboveground biomass of gramineous functional group, but a positive correlation with that of sedge functional group. The mean air temperature in July and August was the key factor affecting the aboveground biomass of gramineous and sedge functional groups, and the stepwise regression equations were Y = 13.467X - 97.284 and Y = 171.699 - 15.331X, respectively (X represented mean air temperature, and Y represented aboveground biomass). Altitude was negatively correlated with mean air temperature and soil pH value (P < 0.01), and positively correlated with mean relative humidity (P < 0.01) and soil available nitrogen and water content (P < 0.05).

  1. [Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains].

    Science.gov (United States)

    Liang, Bei; Di, Li; Zhao, Chuan-Yan; Peng, Shou-Zhang; Peng, Huan-Hua; Wang, Chao

    2014-02-01

    This study estimated the spatial distribution of the aboveground biomass of shrubs in the Tianlaochi catchment of Qilian Mountains based on the field survey and remote sensing data. A relationship model of the aboveground biomass and its feasibly measured factors (i. e. , canopy perimeter and plant height) was built. The land use was classified by object-oriented technique with the high resolution image (GeoEye-1) of the study area, and the distribution of shrub coverage was extracted. Then the total aboveground biomass of shrubs in the study area was estimated by the relationship model with the distribution of shrub coverage. The results showed that the aboveground biomass of shrubs in the study area was 1.8 x 10(3) t and the aboveground biomass per unit area was 1598.45 kg x m(-2). The distribution of shrubs mainly was at altitudes of 3000-3700 m, and the aboveground biomass of shrubs on the sunny slope (1.15 x 10(3) t) was higher than that on the shady slope (0.65 x 10(3) t).

  2. Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum

    Science.gov (United States)

    Currano, Ellen D.; Wilf, Peter; Wing, Scott L.; Labandeira, Conrad C.; Lovelock, Elizabeth C.; Royer, Dana L.

    2008-01-01

    The Paleocene–Eocene Thermal Maximum (PETM, 55.8 Ma), an abrupt global warming event linked to a transient increase in pCO2, was comparable in rate and magnitude to modern anthropogenic climate change. Here we use plant fossils from the Bighorn Basin of Wyoming to document the combined effects of temperature and pCO2 on insect herbivory. We examined 5,062 fossil leaves from five sites positioned before, during, and after the PETM (59–55.2 Ma). The amount and diversity of insect damage on angiosperm leaves, as well as the relative abundance of specialized damage, correlate with rising and falling temperature. All reach distinct maxima during the PETM, and every PETM plant species is extensively damaged and colonized by specialized herbivores. Our study suggests that increased insect herbivory is likely to be a net long-term effect of anthropogenic pCO2 increase and warming temperatures. PMID:18268338

  3. Aboveground dendromass allometry of hybrid black poplars for energy crops

    Directory of Open Access Journals (Sweden)

    Tatiana Stankova

    2016-06-01

    Full Text Available Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra , traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock height as a composite quantitative variable, which reflected the interaction between the time since planting (age, site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for

  4. Aboveground dendromass allometry of hybrid black poplars for energy crops

    Directory of Open Access Journals (Sweden)

    Tatiana Stankova

    2016-06-01

    Full Text Available Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra , traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock height as a composite quantitative variable, which reflected the interaction between the time since planting (age, site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for

  5. Distribution of Aboveground Live Biomass in the Amazon Basin

    Science.gov (United States)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  6. Aboveground Whitefly Infestation-mediated Reshaping of the Root Microbiota

    Directory of Open Access Journals (Sweden)

    Hyun Gi Kong

    2016-09-01

    framework for investigating how aboveground insect feeding modulates the belowground microbiome

  7. Aboveground burial for managing catastrophic losses of livestock

    Directory of Open Access Journals (Sweden)

    Gary Alan Flory

    2017-09-01

    Full Text Available Background and Aim: Environmental impacts from carcass management are a significant concern globally. Despite a history of costly, ineffective, and environmentally damaging carcass disposal efforts, large animal carcass disposal methods have advanced little in the past decade. An outbreak today will likely be managed with the same carcass disposal techniques used in the previous decades and will likely result in the same economic, health, and environmental impacts. This article overviews the results of one field test that was completed in Virginia (United States using the aboveground burial (AGB technique and the disposal of 111 foot-and-mouth disease (FMD infected sheep in Tunisia using a similar methodology. Materials and Methods: Researchers in the United States conducted a field test to assess the environmental impact and effectiveness of AGB in decomposing livestock carcasses. The system design included a shallow trench excavated into native soil and a carbonaceous base placed on the bottom of the trenches followed by a single layer of animal carcasses. Excavated soils were subsequently placed on top of the animals, and a vegetative layer was established. A similar methodology was used in Tunisia to manage sheep infected with FMDs, Peste des Petits Ruminants virus, and Bluetongue Virus. Results: The results of the field test in the United States demonstrated a significant carcass degradation during the 1-year period of the project, and the migration of nutrients below the carcasses appears to be limited thereby minimizing the threat of groundwater contamination. The methodology proved practical for the disposal of infected sheep carcasses in Tunisia. Conclusions: Based on the analysis conducted to date, AGB appears to offer many benefits over traditional burial for catastrophic mortality management. Ongoing research will help to identify limitations of the method and determine where its application during large disease outbreaks or natural

  8. Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota

    Science.gov (United States)

    Kong, Hyun G.; Kim, Byung K.; Song, Geun C.; Lee, Soohyun; Ryu, Choong-Min

    2016-01-01

    study provides a new framework for investigating how aboveground insect feeding modulates the belowground microbiome. PMID:27656163

  9. Interactions among vegetation, climate, and herbivory control greenhouse gas fluxes in a subarctic coastal wetland

    Science.gov (United States)

    Kelsey, K. C.; Leffler, A. J.; Beard, K. H.; Schmutz, J. A.; Choi, R. T.; Welker, J. M.

    2016-12-01

    High-latitude ecosystems are experiencing the most rapid climate changes globally, and in many areas these changes are concurrent with shifts in patterns of herbivory. Individually, climate and herbivory are known to influence biosphere-atmosphere greenhouse gas (GHG) exchange; however, the interactive effects of climate and herbivory in driving GHG fluxes have been poorly quantified, especially in coastal systems that support large populations of migratory waterfowl. We investigated the magnitude and the climatic and physical controls of GHG exchange within the Yukon-Kuskokwim Delta in western Alaska across four distinct vegetation communities formed by herbivory and local microtopography. Net CO2 flux was greatest in the ungrazed Carex meadow community (3.97 ± 0.58 [SE] µmol CO2 m-2 s-1), but CH4 flux was greatest in the grazed community (14.00 ± 6.56 nmol CH4 m-2 s-1). The grazed community is also the only vegetation type where CH4 was a larger contributor than CO2 to overall GHG forcing. We found that vegetation community was an important predictor of CO2 and CH4 exchange, demonstrating that variation in regional gas exchange is best explained when the effect of grazing, determined by the difference between grazed and ungrazed communities, is included. Further, we identified an interaction between temperature and vegetation community, indicating that grazed regions could experience the greatest increases in CH4 emissions with warming. These results suggest that future GHG fluxes could be influenced by both climate and by changes in herbivore population dynamics that expand or contract the vegetation community most responsive to future temperature change.

  10. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Aimee T [ORNL; Chapman, Samantha K. [Smithsonian Environmental Research Center, Edgewater, MD; Whitham, Thomas G [Northern Arizona University; Hart, Stephen C [Northern Arizona University; Koch, George W [Northern Arizona University

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  11. Combined effects of extreme climatic events and elevation on nutritional quality and herbivory of Alpine plants.

    Directory of Open Access Journals (Sweden)

    Annette Leingärtner

    Full Text Available Climatic extreme events can cause the shift or disruption of plant-insect interactions due to altered plant quality, e.g. leaf carbon to nitrogen ratios, and phenology. However, the response of plant-herbivore interactions to extreme events and climatic gradients has been rarely studied, although climatic extremes will increase in frequency and intensity in the future and insect herbivores represent a highly diverse and functionally important group. We set up a replicated climate change experiment along elevational gradients in the German Alps to study the responses of three plant guilds and their herbivory by insects to extreme events (extreme drought, advanced and delayed snowmelt versus control plots under different climatic conditions on 15 grassland sites. Our results indicate that elevational shifts in CN (carbon to nitrogen ratios and herbivory depend on plant guild and season. CN ratios increased with altitude for grasses, but decreased for legumes and other forbs. In contrast to our hypotheses, extreme climatic events did not significantly affect CN ratios and herbivory. Thus, our study indicates that nutritional quality of plants and antagonistic interactions with insect herbivores are robust against seasonal climatic extremes. Across the three functional plant guilds, herbivory increased with nitrogen concentrations. Further, increased CN ratios indicate a reduction in nutritional plant quality with advancing season. Although our results revealed no direct effects of extreme climatic events, the opposing responses of plant guilds along elevation imply that competitive interactions within plant communities might change under future climates, with unknown consequences for plant-herbivore interactions and plant community composition.

  12. Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato

    OpenAIRE

    Tjiurutue, Muvari Connie; Palmer-Young, Evan C.; Lynn S. Adler

    2016-01-01

    Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types,...

  13. Epiphyte presence and seagrass species identity influence rates of herbivory in Mediterranean seagrass meadows

    Science.gov (United States)

    Marco-Méndez, Candela; Ferrero-Vicente, Luis Miguel; Prado, Patricia; Heck, Kenneth L.; Cebrián, Just; Sánchez-Lizaso, Jose Luis

    2015-03-01

    Herbivory on Mediterranean seagrass species is generally low compared to consumption of some other temperate and tropical species of seagrasses. In this study we: (1) investigate the feeding preference of the two dominant Mediterranean seagrass herbivores, the sea urchin Paracentrotus lividus and the fish Sarpa salpa, on Posidonia oceanica and Cymodocea nodosa and (2) elucidate the role of epiphytes in herbivore choices. We assessed consumption rates by tethering seagrass shoots, and preferences by food choice experiments with the following paired combinations: 1) Epiphytized leaves of both C. nodosa vs. P. oceanica (CE vs PE); 2) Non-epiphytized leaves of C. nodosa vs. P. oceanica (CNE vs. PNE); 3) Epiphytized vs non-epiphytized leaves of C. nodosa (CE vs. CNE) and 4) Epiphytized vs non-epiphytized leaves of P. oceanica (PE vs PNE). We found that preference for C. nodosa was weak for S. salpa, but strong for P. lividus, the species responsible for most consumption at our study. Overall both herbivores showed preference for epiphytized leaves. The higher nutritional quality of C. nodosa leaves and epiphytes together with the high coverage and diversity of the epiphyte community found on its leaves help explain the higher levels of herbivory recorded on epiphyted leaves of C. nodosa. Other factors such as seagrass accessibility, herbivore mobility and size, and behavioral responses to predation risks, may also affect the intensity of seagrass herbivory, and studies addressing the interactions with these factors are needed to improve our understanding of the nature, extent and implications of herbivory in coastal ecosystems.

  14. Recovering More than Tree Cover: Herbivores and Herbivory in a Restored Tropical Dry Forest

    OpenAIRE

    Iris Juan-Baeza; Cristina Martínez-Garza; Ek Del-Val

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tr...

  15. Response of an invasive liana to simulated herbivory: implications for its biological control

    Science.gov (United States)

    Raghu, S.; Dhileepan, K.; Treviño, M.

    2006-05-01

    Pre-release evaluation of the efficacy of biological control agents is often not possible in the case of many invasive species targeted for biocontrol. In such circumstances simulating herbivory could yield significant insights into plant response to damage, thereby improving the efficiency of agent prioritisation, increasing the chances of regulating the performance of invasive plants through herbivory and minimising potential risks posed by release of multiple herbivores. We adopted this approach to understand the weaknesses herbivores could exploit, to manage the invasive liana, Macfadyena unguis-cati. We simulated herbivory by damaging the leaves, stem, root and tuber of the plant, in isolation and in combination. We also applied these treatments at multiple frequencies. Plant response in terms of biomass allocation showed that at least two severe defoliation treatments were required to diminish this liana's climbing habit and reduce its allocation to belowground tuber reserves. Belowground damage appears to have negligible effect on the plant's biomass production and tuber damage appears to trigger a compensatory response. Plant response to combinations of different types of damage did not differ significantly to that from leaf damage. This suggests that specialist herbivores in the leaf-feeding guild capable of removing over 50% of the leaf tissue may be desirable in the biological control of this invasive species.

  16. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    Science.gov (United States)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-01

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  17. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    Directory of Open Access Journals (Sweden)

    C. L. Faiola

    2014-09-01

    Full Text Available The largest global source of volatile organic compounds (VOCs in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata, blue spruce (Picea pungens, western redcedar (Thuja plicata, grand fir (Abies grandis, and Douglas-fir (Pseudotsugas menziesii. Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID. Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  18. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    Science.gov (United States)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2014-09-01

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsugas menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  19. Herbivory, plant resistance, and climate in the tree ring record: interactions distort climatic reconstructions.

    Science.gov (United States)

    Trotter, R Talbot; Cobb, Neil S; Whitham, Thomas G

    2002-07-23

    To understand climate change, dendrochronologists have used tree ring analyses to reconstruct past climates, as well as ecological processes such as herbivore population dynamics. Such reconstructions, however, have been hindered by a lack of experiments that separate the influences of confounding impacts on tree rings, such as herbivores and the interactions of multiple factors. Our long-term experiments with scale insects on resistant and susceptible pines demonstrate three major points that are important to the application of this commonly used tool. (i) Herbivory reduced tree ring growth by 25-35%. (ii) The impact on ring growth distorted climate reconstruction, resulting in the overestimation of past moisture levels by more than 2-fold. Our data suggest that, if distortion because of herbivory has been a problem in previous reconstructions, estimates of the magnitude of recent climate changes are likely to be conservative. (iii) Our studies support a detectible plant resistance x herbivore x climate interaction in the tree ring record. Because resistance and susceptibility to herbivory are known to be genetically based in many systems, the potential exists to incorporate plant genetics into the field of dendrochronology, where it may be used to screen distortions from the tree ring record.

  20. Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction.

    Science.gov (United States)

    Sattar, Sampurna; Song, Yan; Anstead, James A; Sunkar, Ramanjulu; Thompson, Gary A

    2012-06-01

    Aphis gossypii resistance in melon (Cucumis melo) is due to the presence of a single dominant virus aphid transmission (Vat) gene belonging to the nucleotide-binding site leucine-rich repeat family of resistance genes. Significant transcriptional reprogramming occurs in Vat(+) plants during aphid infestation as metabolism shifts to respond to this biotic stress. MicroRNAs (miRNAs) are involved in the regulation of many biotic stress responses. The role of miRNAs was investigated in response to aphid herbivory during both resistant and susceptible interactions. Small RNA (smRNA) libraries were constructed from bulked leaf tissues of a Vat(+) melon line following early and late aphid infestations. Sequence analysis indicated that the expression profiles of conserved and newly identified miRNAs were altered during different stages of aphid herbivory. These results were verified by quantitative polymerase chain reaction experiments in both resistant Vat(+) and susceptible Vat(-) interactions. The comparative analyses revealed that most of the conserved miRNA families were differentially regulated during the early stages of aphid infestation in the resistant and susceptible interactions. Along with the conserved miRNA families, 18 cucurbit-specific miRNAs were expressed during the different stages of aphid herbivory. The comparison of the miRNA profiles in the resistant and susceptible interactions provides insight into the miRNA-dependent post-transcriptional gene regulation in Vat-mediated resistance.

  1. Tolerance to deer herbivory and resistance to insect herbivores in the common evening primrose (Oenothera biennis).

    Science.gov (United States)

    Puentes, A; Johnson, M T J

    2016-01-01

    The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.

  2. Ungulate herbivory on alpine willow in the Sangre de Cristo Mountains of Colorado

    Science.gov (United States)

    Zeigenfuss, L.C.; Schoenecker, K.A.; Amburg, L.K.V.

    2011-01-01

    In many areas of the Rocky Mountains, elk (Cervus elaphus) migrate from low-elevation mountain valleys during spring to high-elevation subalpine and alpine areas for the summer. Research has focused on the impacts of elk herbivory on winter-range plant communities, particularly on woody species such as willow and aspen; however, little information is available on the effects of elk herbivory on alpine willows. In the Sangre de Cristo Mountains of south central Colorado, select alpine areas appear to receive high levels of summer elk herbivory, while other areas are nearly unbrowsed. In 2005 and 2008, we measured willow height, cover, and utilization on sites that appeared to be used heavily by elk, as well as on sites that appeared to be used lightly, to determine differences between these communities over time. We found less willow cover and shorter willows at sites that received higher levels of browsing compared to those that had lower levels of browsing. Human recreational use was greater at lightly browsed sites than at highly browsed sites. From 2005 to 2008, willow utilization declined, and willow cover and height increased at sites with heavy browsing, likely owing to ownership change of adjacent valley land which led to (1) removal of grazing competition from, cattle at valley locations and (2) increased human use in alpine areas, which displaced elk. We discuss the implications of increased human use and climate change on elk use of these alpine habitats. ?? 2011.

  3. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    Science.gov (United States)

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.

  4. Patterns in soil fertility and root herbivory interact to influence fine-root dynamics.

    Science.gov (United States)

    Stevens, Glen N; Jones, Robert H

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8-9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  5. How plants connect pollination and herbivory networks and their contribution to community stability.

    Science.gov (United States)

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  6. Evaluation of aboveground and belowground biomass recovery in physically disturbed seagrass beds.

    Science.gov (United States)

    Di Carlo, Giuseppe; Kenworthy, W Judson

    2008-11-01

    Several studies addressed aboveground biomass recovery in tropical and subtropical seagrass systems following physical disturbance. However, there are few studies documenting belowground biomass recovery despite the important functional and ecological role of roots and rhizomes for seagrass ecosystems. In this study, we compared the recovery of biomass (g dry weight m(-2)) as well as the biomass recovery rates in ten severely disturbed multi-species seagrass meadows, after the sediments were excavated and the seagrasses removed. Three sites were located in the tropics (Puerto Rico) and seven in the subtropics (Florida Keys), and all were originally dominated by Thalassia testudinum. Total aboveground biomass reached reference values at four out of ten sites studied, two in the Florida Keys and two in Puerto Rico. Total belowground biomass was lower at the disturbed locations compared to the references at all sites, apart from two sites in the Florida Keys where the compensatory effect of opportunistic species (Syringodium filiforme and Halodule wrightii) was observed. The results revealed large variation among sites in aboveground and belowground biomass for all species, with higher aboveground recovery than belowground for T. testudinum. Recovery rates for T. testudinum were highly variable across sites, but a general trend of faster aboveground than belowground recovery was observed. Equal rates between aboveground and belowground biomass were found for opportunistic species at several sites in the Florida Keys. These results indicate the importance of belowground biomass when assessing seagrass recovery and suggest that the appropriate metric to assess seagrass recovery should address belowground biomass as well as aboveground biomass in order to evaluate the full recovery of ecological services and functions performed by seagrasses. We point out regional differences in species composition and species shifts following severe disturbance events and discuss

  7. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  8. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    Science.gov (United States)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and

  9. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo.

    Science.gov (United States)

    Paoli, Gary D; Curran, Lisa M; Slik, J W F

    2008-03-01

    Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8-196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees > or =10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0-20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 +/- 13 stems ha(-1), basal area 39.6 +/- 1.4 m(2) ha(-1) and aboveground biomass 518 +/- 28 Mg ha(-1) (mean +/- SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 +/- 25 Mg ha(-1). Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R (Pearson) = 0.368-0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60-90 cm dbh were negatively related to these

  10. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  11. Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides).

    Science.gov (United States)

    Rubert-Nason, Kennedy F; Couture, John J; Major, Ian T; Constabel, C Peter; Lindroth, Richard L

    2015-07-01

    Numerous studies have explored the impacts of intraspecific genetic variation and environment on the induction of plant chemical defenses by herbivory. Relatively few, however, have considered how those factors affect within-plant distribution of induced defenses. This work examined the impacts of plant genotype and soil nutrients on the local and systemic phytochemical responses of trembling aspen (Populus tremuloides) to defoliation by gypsy moth (Lymantria dispar). We deployed larvae onto foliage on individual tree branches for 15 days and then measured chemistry in leaves from: 1) branches receiving damage, 2) undamaged branches of insect-damaged trees, and 3) branches of undamaged control trees. The relationship between post-herbivory phytochemical variation and insect performance also was examined. Plant genotype, soil nutrients, and damage all influenced phytochemistry, with genotype and soil nutrients being stronger determinants than damage. Generally, insect damage decreased foliar nitrogen, increased levels of salicinoids and condensed tannins, but had little effect on levels of a Kunitz trypsin inhibitor, TI3. The largest damage-mediated tannin increases occurred in leaves on branches receiving damage, whereas the largest salicinoid increases occurred in leaves of adjacent, undamaged branches. Foliar nitrogen and the salicinoid tremulacin had the strongest positive and negative relationships, respectively, with insect growth. Overall, plant genetics and environment concomitantly influenced both local and systemic phytochemical responses to herbivory. These findings suggest that herbivory can contribute to phytochemical heterogeneity in aspen foliage, which may in turn influence future patterns of herbivory and nutrient cycling over larger spatial scales.

  12. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients.

    Science.gov (United States)

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-01-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.

  13. Response of the coral reef benthos and herbivory to fishery closure management and the 1998 ENSO disturbance.

    Science.gov (United States)

    McClanahan, T R

    2008-02-01

    The hypothesis that herbivory is higher in areas without fishing and will increase the rate at which hard coral communities return to pre-disturbance conditions was tested in and out of the marine protected areas (MPA) of Kenya after the 1998 El Niño Southern Oscillation (ENSO). Herbivory was estimated by assay and biomass methods, and both methods indicated higher herbivory in fishery closures. Despite higher herbivory, the effect of the ENSO disturbance was larger within these closures, with reefs undergoing a temporary transition from dominance by hard and soft coral to a temporary dominance of turf and erect algae that ended in the dominance of calcifying algae, massive Porites, Pocillopora and a few faviids six years after the disturbance. The fished reefs changed the least but had a greater cover of turf and erect algae and sponge shortly after the disturbance. Higher herbivory in the fishery closures reduced the abundance and persistence of herbivore-susceptible erect algae and created space and appropriate substratum for recruiting corals. Nonetheless, other post-settlement processes may have had strong influences such that annual rates of coral recovery were low ( approximately 2%) and not different between the management regimes. Recovery, as defined as and measured by the return to pre-disturbance coral cover and the dominant taxa, was slower in fishery closures than unmanaged reefs.

  14. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    Science.gov (United States)

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-06-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.

  15. The effects of herbivory by a mega- and mesoherbivore on tree recruitment in sand forest, South Africa.

    Directory of Open Access Journals (Sweden)

    D D Georgette Lagendijk

    Full Text Available Herbivory by megaherbivores on woody vegetation in general is well documented; however studies focusing on the individual browsing effects of both mega- and mesoherbivore species on recruitment are scarce. We determined these effects for elephant Loxodonta africana and nyala Tragelaphus angasii in the critically endangered Sand Forest, which is restricted to east southern Africa, and is conserved mainly in small reserves with high herbivore densities. Replicated experimental treatments (400 m(2 in a single forest patch were used to exclude elephant, or both elephant and nyala. In each treatment, all woody individuals were identified to species and number of stems, diameter and height were recorded. Results of changes after two years are presented. Individual tree and stem densities had increased in absence of nyala and elephant. Seedling recruitment (based on height and diameter was inhibited by nyala, and by elephant and nyala in combination, thereby preventing recruitment into the sapling stage. Neither nyala or elephant significantly reduced sapling densities. Excluding both elephant and nyala in combination enhanced recruitment of woody species, as seedling densities increased, indicating that forest regeneration is impacted by both mega- and mesoherbivores. The Sand Forest tree community approached an inverse J-shaped curve, with the highest abundance in the smaller size classes. However, the larger characteristic tree species in particular, such as Newtonia hildebrandtii, were missing cohorts in the middle size classes. When setting management goals to conserve habitats of key importance, conservation management plans need to consider the total herbivore assemblage present and the resulting browsing effects on vegetation. Especially in Africa, where the broadest suite of megaherbivores still persists, and which is currently dealing with the 'elephant problem', the individual effects of different herbivore species on recruitment and

  16. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  17. Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs.

    Science.gov (United States)

    Bessler, Holger; Temperton, Vicky M; Roscher, Christiane; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef; Weisser, Wolfgang W; Engels, Christof

    2009-06-01

    We investigated effects of plant species richness in experimental grassland plots on annual above- and belowground biomass production estimated from repeated harvests and ingrowth cores, respectively. Aboveground and total biomass production increased with increasing plant species richness while belowground production remained constant. Root to shoot biomass production ratios (R/S) in mixtures were lower than expected from monoculture performance of the species present in the mixtures, showing that interactions among species led to reduced biomass partitioning to belowground organs. This change in partitioning to belowground organs was not confined to mixtures with legumes, but also measured in mixtures without legumes, and correlated with aboveground overyielding in mixtures. It is suggested that species-rich communities invest less in belowground biomass than do monocultures to extract soil resources, thus leading to increased investment into aboveground organs and overyielding.

  18. Aboveground predation by an American badger (Taxidea taxus) on black-tailed prairie dogs (Cynomys ludovicianus)

    Science.gov (United States)

    Eads, D.A.; Biggins, D.E.

    2008-01-01

    During research on black-tailed prairie dogs (Cynomys ludovicianus), we repeatedly observed a female American badger (Taxidea taxus) hunting prairie dogs on a colony in southern Phillips County, Montana. During 1-14 June 2006, we observed 7 aboveground attacks (2 successful) and 3 successful excavations of prairie dogs. The locations and circumstances of aboveground attacks suggested that the badger improved her probability of capturing prairie dogs by planning the aboveground attacks based on perceptions of speeds, angles, distances, and predicted escape responses of prey. Our observations add to previous reports on the complex and varied predatory methods and cognitive capacities of badgers. These observations also underscore the individuality of predators and support the concept that predators are active participants in predator-prey interactions.

  19. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    Science.gov (United States)

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  20. The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods

    Institute of Scientific and Technical Information of China (English)

    CONRAD LABANDEIRA

    2007-01-01

    The early fossil record of terrestrial arthropod herbivory consists of two pulses.The first pulse was concentrated during the latest Silurian to Early Devonian (417 to 403 Ma),and consists of the earliest evidence for consumption of sporangia and stems (and limited fungivore borings). Herbivorization of most of these tissues was rapid, representing 0 to 20 million-year (m.y.) lags from the earliest occurrences of these organs in the fossil record to their initial consumption (Phase 1). For approximately the next 75 m.y., there was a second,more histologically varied origination and expansion of roots, leaves, wood and seeds,whose earliest evidence for herbivorization occurred from the Middle-Late Mississippian boundary to the Middle Pennsylvanian (327 to 309 Ma). The appearance of this second herbivory pulse during the later Paleozoic (Phase 2) is accompanied by major lags of 98 to 54 m.y. between times of appearance of each of the four organ and tissue types and their subsequent herbivory. Both pulses provide a context for three emerging questions. First is an explanation for the contrast between the near instantaneous consumption of plant tissues during Phase 1, versus the exceptionally long lags between the earliest occurrences of plant tissues and their subsequent herbivorization during Phase 2. Second is the identity of arthropod herbivores for both phases. Third is the cause behind the overwhelming targeting of seed-fern plant hosts during Phase 2. Regardless of the answers to these questions, the trace fossil record of plant-arthropod associations provides primary ecological data that remain unaddressed by the body-fossil record alone.

  1. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States

    Science.gov (United States)

    Gough, L.; Grace, J.B.

    1998-01-01

    Flooding and salinity stress are predicted to increase in coastal Louisiana as relative sea level rise (RSLR) continues in the Gulf of Mexico region. Although wetland plant species are adapted to these stressors, questions persist as to how marshes may respond to changed abiotic variables caused by RSLR, and how herbivory by native and non-native mammals may affect this response. The effects of altered flooding and salinity on coastal marsh communities were examined in two field experiments that simultaneously manipulated herbivore pressure. Marsh sods subjected to increased or decreased flooding (by lowering or raising sods, respectively), and increased or decreased salinity (by reciprocally transplanting sods between a brackish and fresh marsh), were monitored inside and outside mammalian herbivore exclosures for three growing seasons. Increased flooding stress reduced species numbers and biomass; alleviating flooding stress did not significantly alter species numbers while community biomass increased. Increased salinity reduced species numbers and biomass, more so if herbivores were present. Decreasing salinity had an unexpected effect: herbivores selectively consumed plants transplanted from the higher-salinity site. In plots protected from herbivory, decreased salinity had little effect on species numbers or biomass, but community composition changed. Overall, herbivore pressure further reduced species richness and biomass under conditions of increased flooding and increased salinity, supporting other findings that coastal marsh species can tolerate increasingly stressful conditions unless another factor, e.g., herbivory, is also present. Also, species dropped out of more stressful treatments much faster than they were added when stresses were alleviated, likely due to restrictions on dispersal. The rate at which plant communities will shift as a result of changed abiotic variables will determine if marshes remain viable when subjected to RSLR.

  2. Pyric herbivory: rewilding landscapes through the recoupling of fire and grazing.

    Science.gov (United States)

    Fuhlendorf, Samuel D; Engle, David M; Kerby, Jay; Hamilton, Robert

    2009-06-01

    Our understanding of fire and grazing is largely based on small-scale experimental studies in which treatments are uniformly applied to experimental units that are considered homogenous. Any discussion of an interaction between fire and grazing is usually based on a statistical approach that ignores the spatial and temporal interactions on complex landscapes. We propose a new focus on the ecological interaction of fire and grazing in which each disturbance is spatially and temporally dependent on the other and results in a landscape where disturbance is best described as a shifting mosaic (a landscape with patches that vary with time since disturbance) that is critical to ecological structure and function of many ecosystems. We call this spatiotemporal interaction pyric herbivory (literal interpretation means grazing driven by fire). Pyric herbivory is the spatial and temporal interaction of fire and grazing, where positive and negative feedbacks promote a shifting pattern of disturbance across the landscape. We present data we collected from the Tallgrass Prairie Preserve in the southern Great Plains of North America that demonstrates that the interaction between free-roaming bison (Bison bison) and random fires promotes heterogeneity and provides the foundation for biological diversity and ecosystem function of North American and African grasslands. This study is different from other studies of fire and grazing because the fires we examined were random and grazing animals were free to roam and select from burned and unburned patches. For ecosystems across the globe with a long history of fire and grazing, pyric herbivory with any grazing herbivore is likely more effective at restoring evolutionary disturbance patterns than a focus on restoring any large vertebrate while ignoring the interaction with fire and other disturbances.

  3. The role of genetic and chemical variation of Pinus sylvestris seedlings in influencing slug herbivory.

    Science.gov (United States)

    O'Reilly-Wapstra, Julianne M; Iason, Glenn R; Thoss, Vera

    2007-05-01

    This study investigated the genetic and chemical basis of resistance of Pinus sylvestris seedlings to herbivory by a generalist mollusc, Arion ater. Using feeding trials with captive animals, we examined selective herbivory by A. ater of young P. sylvestris seedlings of different genotypes and correlated preferences with seedling monoterpene levels. We also investigated the feeding responses of A. ater to artificial diets laced with two monoterpenes, Delta(3)-carene and alpha-pinene. Logistic regression indicated that two factors were the best predictors of whether seedlings in the trial would be consumed. Individual slug variation (replicates) was the most significant factor in the model; however, alpha-pinene concentration (also representing beta-pinene, Delta(3)-carene and total monoterpenes due to multicollinearity) of needles was also a significant factor. While A. ater did not select seedlings on the basis of family, seedlings not eaten were significantly higher in levels of alpha-pinene compared to seedlings that were consumed. We also demonstrated significant genetic variation in alpha-pinene concentration of seedlings between different families of P. sylvestris. Nitrogen and three morphological seedling characteristics (stem length, needle length and stem diameter) also showed significant genetic variation between P. sylvestris families. Artificial diets laced with high (5 mg g(-1) dry matter) quantities of either Delta(3)-carene or alpha-pinene, were eaten significantly less than control diets with no added monoterpenes, supporting the results of the seedling feeding trial. This study demonstrates that A. ater selectively feed on P. sylvestris seedlings and that this selection is based, in part, on the monoterpene concentration of seedlings. These results, coupled with significant genetic variation in alpha-pinene concentration of seedlings and evidence that slug herbivory is detrimental to P. sylvestris fitness, are discussed as possible evidence for A

  4. Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef.

    Science.gov (United States)

    Rasher, Douglas B; Engel, Sebastian; Bonito, Victor; Fraser, Gareth J; Montoya, Joseph P; Hay, Mark E

    2012-05-01

    Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.

  5. Seasonal regulation of herbivory and nutrient effects on macroalgal recruitment and succession in a Florida coral reef

    Directory of Open Access Journals (Sweden)

    Alain Duran

    2016-11-01

    Full Text Available Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succession tiles, kept in the field for nine months, were established in an ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment had already created very different algal communities across the different herbivory and nutrient treatments. We tracked algal recruitment, species richness, and species abundance through time. Our results show seasonal variation in the effect of herbivory and nutrient availability on recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species richness and abundance of recruits, herbivory appeared to have more control on macroalgal community structure than did nutrients. In contrast, there was no effect of either herbivory or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The abundance of recruits on tiles was positively correlated with the abundance of algal in the ongoing, established experiment, suggesting that propagule abundance is likely a strong influence on algal recruitment and early succession. Results of the present study suggest that abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the warm season when macroalgal growth is higher. However, herbivory appears less impactful on algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that the timing of coral mortality (e.g., summer vs. winter mortality and freeing of benthic space may strongly influence the dynamics of algae that colonize open space.

  6. Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Jacobsen, Dean

    2002-01-01

    to evaluate advantages and disadvantages of aerial and submerged life. 2. Terrestrial populations had higher area shoot density, biomass and leaf production than aquatic populations, while leaf turnover rate and longevity were the same. Terrestrial populations experienced lower percentage grazing loss of leaf......1. Many amphibious plant species grow in the transition between terrestrial and submerged vegetation in small lowland streams. We determined biomass development, leaf turnover rate and invertebrate herbivory during summer in terrestrial and aquatic populations of three amphibious species...

  7. Local above-ground persistence of vascular plants : Life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, Wim A.; Hennekens, Stephan M.; Schaminee, Joop H. J.; Smits, Nina A. C.; Bekker, Renee M.; Roemermann, Christine; Klimes, Leos; Bakker, Jan P.; van Groenendael, Jan M.

    2007-01-01

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  8. Local above-ground persistence of vascular plants: life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, W.A.; Hennekens, S.M.; Schaminée, J.H.J.; Smits, N.A.C.; Bekker, R.M.; Römermann, C.; Bakker, J.P.; Groenendael, van J.M.

    2007-01-01

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  9. Long-term effects of fuel treatments on aboveground biomass accumulation in ponderosa pine forests of the northern Rocky Mountains

    Science.gov (United States)

    Kate A. Clyatt; Christopher R. Keyes; Sharon M. Hood

    2017-01-01

    Fuel treatments in ponderosa pine forests of the northern Rocky Mountains are commonly used to modify fire behavior, but it is unclear how different fuel treatments impact the subsequent production and distribution of aboveground biomass, especially in the long term. This research evaluated aboveground biomass responses 23 years after treatment in two silvicultural...

  10. Characteristics of train noise in above-ground and underground stations with side and island platforms

    Science.gov (United States)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  11. Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests

    NARCIS (Netherlands)

    Rozendaal, Danaë M.A.; Chazdon, Robin L.; Arreola-Villa, Felipe; Balvanera, Patricia; Bentos, Tony V.; Dupuy, Juan M.; Hernández-Stefanoni, J.L.; Jakovac, Catarina C.; Lebrija-Trejos, Edwin E.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo E.S.; Meave, Jorge A.; Mesquita, Rita C.G.; Mora, Francisco; Pérez-García, Eduardo A.; Romero-Pérez, I.E.; Saenz-Pedroza, Irving; Breugel, van Michiel; Williamson, G.B.; Bongers, Frans

    2016-01-01

    The magnitude of the carbon sink in second-growth forests is expected to vary with successional biomass dynamics resulting from tree growth, recruitment, and mortality, and with the effects of climate on these dynamics. We compare aboveground biomass dynamics of dry and wet Neotropical forests, b

  12. Nondestructive estimates of above-ground biomass using terrestrial laser scanning

    NARCIS (Netherlands)

    Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; Kaasalainen, M.

    2015-01-01

    Allometric equations are currently used to estimate above-ground biomass (AGB) based on the indirect relationship with tree parameters. Terrestrial laser scanning (TLS) can measure the canopy structure in 3D with high detail. In this study, we develop an approach to estimate AGB from TLS data, which

  13. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam

    NARCIS (Netherlands)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for a

  14. Using landsat time-series and lidar to inform aboveground carbon baseline estimation in Minnesota

    Science.gov (United States)

    Ram K. Deo; Grant M. Domke; Matthew B. Russell; Christopher W. Woodall; Michael J. Falkowski

    2015-01-01

    Landsat data has long been used to support forest monitoring and management decisions despite the limited success of passive optical remote sensing for accurate estimation of structural attributes such as aboveground biomass. The archive of publicly available Landsat images dating back to the 1970s can be used to predict historic forest biomass dynamics. In addition,...

  15. Aboveground biomass subdivisions in woody species of the savanna ecosystem project study area, Nylsvley

    CSIR Research Space (South Africa)

    Rutherford, MC

    1979-01-01

    Full Text Available Aboveground peak season biomass is given for 11 woody species in each of five belt transects under study. Mean aerial biomass for all species was 16 273 kg ha, made up of 14 937 kg ha wood, 236 kg ha current season's twigs and 1 100 kg ha leaves...

  16. Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient

    DEFF Research Database (Denmark)

    Marshall, A.R.; Willcock, S.; Platts, P.J.

    2012-01-01

    Emerging international policy aimed at reducing carbon emissions from deforestation and forest degradation (REDD+) in developing countries, has resulted in numerous studies on above-ground live carbon (AGC) in tropical forests. However, few studies have addressed the relative importance of distur...

  17. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  18. Aboveground production and nutrient circulation along a flooding gradient in a South Carolina Coastal Plain forest

    Science.gov (United States)

    Marianne K. Burke; B. Graeme Lockaby; William H. Conner

    1999-01-01

    Relative to effects of flooding, little is known about the influence of hydrology-nutrient interactions on aboveground net primary production (NPP) in forested wetlands. The authors found that nutrient circulation and NPP were closely related along a complex physical, chemical, and hydrologic gradient in a bottomland hardwood forest with four distinct communities....

  19. Estimation of Aboveground Biomass Using Manual Stereo Viewing of Digital Aerial Photographs in Tropical Seasonal Forest

    Directory of Open Access Journals (Sweden)

    Katsuto Shimizu

    2014-11-01

    Full Text Available The objectives of this study are to: (1 evaluate accuracy of tree height measurements of manual stereo viewing on a computer display using digital aerial photographs compared with airborne LiDAR height measurements; and (2 develop an empirical model to estimate stand-level aboveground biomass with variables derived from manual stereo viewing on the computer display in a Cambodian tropical seasonal forest. We evaluate observation error of tree height measured from the manual stereo viewing, based on field measurements. RMSEs of tree height measurement with manual stereo viewing and LiDAR were 1.96 m and 1.72 m, respectively. Then, stand-level aboveground biomass is regressed against tree height indices derived from the manual stereo viewing. We determined the best model to estimate aboveground biomass in terms of the Akaike’s information criterion. This was a model of mean tree height of the tallest five trees in each plot (R2 = 0.78; RMSE = 58.18 Mg/ha. In conclusion, manual stereo viewing on the computer display can measure tree height accurately and is useful to estimate aboveground stand biomass.

  20. Relationships at the aboveground-belowground interface: plants, soil biota and soil processes

    NARCIS (Netherlands)

    Porazinska, D.L.; Bardgett, R.D.; Postma-Blaauw, M.B.; Hunt, H.W.; Parsons, A.N.; Seastedt, T.R.; Wall, D.M.

    2003-01-01

    Interactions at the aboveground-below ground interface provide important feedbacks that regulate ecosystem processes. Organisms within soil food webs are involved in processes of decomposition and nutrient mineralization, and their abundance and activity have been linked to plant ecophysiological tr

  1. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment

    Science.gov (United States)

    J.W. Raich; D.A. Clark; L. Schwendenmann; Tana Wood

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the...

  2. Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data

    Science.gov (United States)

    Qi Chen; Dengsheng Lu; Michael Keller; Maiza dos-Santos; Edson Bolfe; Yunyun Feng; Changwei Wang

    2015-01-01

    Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems...

  3. Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes

    Science.gov (United States)

    Wenchi Jin; Hong S. He; Frank R. Thompson; Wen J. Wang; Jacob S. Fraser; Stephen R. Shifley; Brice B. Hanberry; William D. Dijak

    2017-01-01

    The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using...

  4. Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India

    Science.gov (United States)

    Madugundu, Rangaswamy; Nizalapur, Vyjayanthi; Jha, Chandra Shekhar

    2008-06-01

    This study demonstrates the potentials of IRS P6 LISS-IV high-resolution multispectral sensor (IGFOV ˜ 6 m)-based estimation of biomass in the deciduous forests in the Western Ghats of Karnataka, India. Regression equations describing the relationship between IRS P6 LISS-IV data-based vegetation index (NDVI) and field measured leaf area index (ELAI) and estimated above-ground biomass (EAGB) were derived. Remote sensing (RS) data-based leaf area index (PLAI) image is generated using regression equation based on NDVI and ELAI ( r2 = 0.68, p ≤ 0.05). RS-based above-ground biomass (PAGB) image was generated based on regression equation developed between PLAI and EAGB ( r2 = 0.63, p ≤ 0.05). The mean value of estimated above-ground biomass and RS-based above-ground biomass in the study area are 280(±72.5) and 297.6(±55.2) Mg ha -1, respectively. The regression models generated in the study between NDVI and LAI; LAI and biomass can also help in generating spatial biomass map using RS data alone. LISS-IV-based estimation of biophysical parameters can also be used for the validation of various coarse resolution satellite products derived from the ground-based measurements alone.

  5. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    Science.gov (United States)

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (paboveground biomass that ranged from 7.9 to 23.2 ton haa??1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  6. [Spatiotemporal variations of aboveground biomass and leaf area index of typical grassland in tower flux footprint].

    Science.gov (United States)

    Wang, Meng; Li, Gui-cai; Wang, Jun-bang

    2011-03-01

    By using cyclic sampling method, the aboveground biomass and leaf area index (LAI) of typical grassland in tower flux footprint were measured at three growth stages, i.e., early July (July 2-7), late July (July 20-26), and late August (Aug. 25-30), with their spatial patterns analyzed by geostatistics. At the three stages, the aboveground biomass of the grassland kept rising, while the LAI decreased after an initial increase. Both the two variables had good spatial autocorrelation, with similar spatial pattern and temporal evolution trend, and changed from stripe to patch. From early July to late August, the C0/(C0+C) of the aboveground biomass and LAI all decreased significantly, indicating that the spatial autocorrelation of the two variables changed from medium to high. The change ranges of the two variables gradually decreased, presenting the decrease of spatial continuity. The fractal dimension (D) also decreased gradually, suggesting the increase of spatial dependence. Topography and field management were the main factors affecting the spatial distribution of aboveground biomass and LAI, which induced the spatial variability of water and heat, and further, affected the grass growth.

  7. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda

    NARCIS (Netherlands)

    Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C.

    2012-01-01

    Aboveground woody biomass for circa-2000 is mapped at national scale in Uganda at 30-m spatial resolution on the basis of Landsat ETM + images, a National land cover dataset and field data using an object-oriented approach. A regression tree-based model (Random Forest) produces good results (cross-v

  8. Allometric equations for aboveground and belowground biomass estimations in an evergreen forest in Vietnam

    NARCIS (Netherlands)

    Nam, Vu Thanh; Kuijk, Van Marijke; Anten, Niels P.R.

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations fo

  9. Impact of logging on aboveground biomass stocks in lowland rain forest, Papua New Guinea.

    Science.gov (United States)

    Bryan, Jane; Shearman, Phil; Ash, Julian; Kirkpatrick, J B

    2010-12-01

    Greenhouse-gas emissions resulting from logging are poorly quantified across the tropics. There is a need for robust measurement of rain forest biomass and the impacts of logging from which carbon losses can be reliably estimated at regional and global scales. We used a modified Bitterlich plotless technique to measure aboveground live biomass at six unlogged and six logged rain forest areas (coupes) across two approximately 3000-ha regions at the Makapa concession in lowland Papua New Guinea. "Reduced-impact logging" is practiced at Makapa. We found the mean unlogged aboveground biomass in the two regions to be 192.96 +/- 4.44 Mg/ha and 252.92 +/- 7.00 Mg/ha (mean +/- SE), which was reduced by logging to 146.92 +/- 4.58 Mg/ha and 158.84 +/- 4.16, respectively. Killed biomass was not a fixed proportion, but varied with unlogged biomass, with 24% killed in the lower-biomass region, and 37% in the higher-biomass region. Across the two regions logging resulted in a mean aboveground carbon loss of 35 +/- 2.8 Mg/ha. The plotless technique proved efficient at estimating mean aboveground biomass and logging damage. We conclude that substantial bias is likely to occur within biomass estimates derived from single unreplicated plots.

  10. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    Science.gov (United States)

    The distribution of many dryland vegetation species are expected to shift based on predictions of future increases in global temperatures. Quantifying aboveground biomass in dryland systems is important for assessing global carbon storage and monitoring the presence and distribution of these rapidl...

  11. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    Science.gov (United States)

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  12. Root growth dynamics linked to aboveground growth in walnuts (Juglans regia L.)

    Science.gov (United States)

    Background and Aims: Examination of belowground plant responses to canopy and soil moisture manipulation is scant compared to that aboveground but needed to understand whole plant responses to environmental factors. Plasticity in the seasonal timing and vertical distribution of root growth in respon...

  13. Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China

    Institute of Scientific and Technical Information of China (English)

    ZENG Wei-sheng; TANG Shou-zheng

    2012-01-01

    Because of global climate change,it is necessary to add forest biomass estimation to national forest resource monitoring.The biomass equations developed for forest biomass estimation should be compatible with volume equations.Based on the tree volume and aboveground biomass data of Masson pine (Pinus massoniana Lamb.) in southern China,we constructed one-,two-and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations.The prediction precision of aboveground biomass estimates from one variable equation exceeded 95%.The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height,although the contributions to regressions were statistically insignificant.For the biomass conversion function on one variable,the conversion factor decreased with increasing diameter,but for the conversion function on two variables,the conversion factor increased with increasing diameter but decreased with increasing tree height.

  14. Early forest thinning changes aboveground carbon distribution among pools, but not total amount

    Science.gov (United States)

    Michael S. Schaedel; Andrew J. Larson; David L. R. Affleck; Travis Belote; John M. Goodburn; Deborah S. Page-Dumroese

    2017-01-01

    Mounting concerns about global climate change have increased interest in the potential to use common forest management practices, such as forest density management with thinning, in climate change mitigation and adaptation efforts. Long-term effects of forest density management on total aboveground C are not well understood, especially for precommercial thinning (PCT)...

  15. Satellite detection of land-use change and effects on regional forest aboveground biomass estimates

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We used remote-sensing-driven models to detect land-cover change effects on forest aboveground biomass (AGB) density (Mg·ha−1, dry weight) and total AGB (Tg) in Minnesota, Wisconsin, and Michigan USA, between the years 1992-2001, and conducted an evaluation of the approach. Inputs included remotely-sensed 1992 reflectance data...

  16. Regional applicability of forest height and aboveground biomass models for the Geoscience Laser Altimeter System

    Science.gov (United States)

    Dirk Pflugmacher; Warren B. Cohen; Robert E. Kennedy; Michael. Lefsky

    2008-01-01

    Accurate estimates of forest aboveground biomass are needed to reduce uncertainties in global and regional terrestrial carbon fluxes. In this study we investigated the utility of the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite for large-scale biomass inventories. GLAS is the first spaceborne lidar sensor that will...

  17. Aboveground vertebrate and invertebrate herbivore impacts on net N mineralization in subalpine grasslands

    Science.gov (United States)

    Anita C. Risch; Martin Schutz; Martijn L. Vandegehuchte; Wim H. van der Putten; Henk Duyts; Ursina Raschein; Dariusz J. Gwiazdowicz; Matt D. Busse; Deborah S. Page-Dumroese; Stephan Zimmerman

    2015-01-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate...

  18. Maize (Zea mays) seeds can detect above-ground weeds; thiamethoxam alters the view.

    Science.gov (United States)

    Afifi, Maha; Lee, Elizabeth; Lukens, Lewis; Swanton, Clarence

    2015-09-01

    Far red light is known to penetrate soil and delay seed germination. Thiamethoxam as a seed treatment has been observed to enhance seed germination. No previous work has explored the effect of thiamethoxam on the physiological response of buried maize seed when germinating in the presence of above-ground weeds. We hypothesised that the changes in red:far red reflected from above-ground weeds would be detected by maize seed phytochrome and delay seed germination by decreasing the level of GA and increasing ABA. We further hypothesised that thiamethoxam would overcome this delay in germination. Thiamethoxam enhanced seed germination in the presence of above-ground weeds by increasing GA signalling and downregulating DELLA protein and ABA signalling genes. An increase in amylase activity and a degradation of starch were also observed. Far red reflected from the above-ground weeds was capable of penetrating below the soil surface and was detected by maize seed phytochrome. Thiamethoxam altered the effect of far red on seed germination by stimulating GA and inhibiting ABA synthesis. This is the first study to suggest that the mode of action of thiamethoxam involves both GA synthesis and ABA inhibition. © 2014 Society of Chemical Industry.

  19. [Effects of aboveground and belowground competition between grass and tree on elm seedlings growth in Horqin Sandy Land].

    Science.gov (United States)

    Tang, Yi; Jiang, De-ming; Chen, Zhuo; Toshio, Oshida

    2011-08-01

    Elm sparse woodland steppe plays an important role in vegetation restoration and landscape protection in Horqin Sandy Land. In this paper, a two-factor and two-level field experiment was conducted to explore the effects of aboveground and belowground competition between grass and tree on the growth of elm seedlings in the Sandy Land. Five aspects were considered, i.e., seedling biomass, belowground biomass/aboveground biomass, stem height, ratio of root to stem, and leaf number. For the one-year-old elm seedlings, their biomass showed a trend of no competition > aboveground competition > full competition > belowground competition, belowground biomass / aboveground biomass showed a trend of belowground competition > full competition > no competition > aboveground competition, stem height showed a trend of aboveground competition > no competition > full competition > belowground competition, root/stem ratio showed a trend of belowground competition > full competition > no competition > aboveground competition, and leaf number showed a trend of aboveground competition > no competition > belowground competition > full competition. Belowground competition had significant effects on the growth of one-year-old elm seedlings, while aboveground competition did not have. Neither belowground competition nor aboveground competition had significant effects on the growth of two-year-old elm seedlings. It was suggested that in Horqin Sandy Land, grass affected the growth of elm seedlings mainly via below-ground competition, but the belowground competition didn' t affect the resource allocation of elm seedlings. With the age increase of elm seedlings, the effects of grass competition on the growth of elm seedlings became weaker.

  20. Effects of generalist herbivory on resistance and resource allocation by the invasive plant, Phytolacca americana.

    Science.gov (United States)

    Huang, Wei; Ding, Jianqing

    2016-04-01

    Successful invasions by exotic plants are often attributed to a loss of co-evolved specialists and a re-allocation of resources from defense to growth and reproduction. However, invasive plants are rarely completely released from insect herbivory because they are frequently attacked by generalists in their introduced ranges. The novel generalist community may also affect the invasive plant's defensive strategies and resource allocation. Here, we tested this hypothesis using American pokeweed (Phytolacca americana L.), a species that has become invasive in China, which is native to North America. We examined resistance, tolerance, growth and reproduction of plant populations from both China and the USA when plants were exposed to natural generalist herbivores in China. We found that leaf damage was greater for invasive populations than for native populations, indicating that plants from invasive ranges had lower resistance to herbivory than those from native ranges. A regression of the percentage of leaf damage against mass showed that there was no significant difference in tolerance between invasive and native populations, even though the shoot, root, fruit and total mass were larger for invasive populations than for native populations. These results suggest that generalist herbivores are important drivers mediating the defensive strategies and resource allocation of the invasive American pokeweed. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  1. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory

    KAUST Repository

    Hernán, Gema

    2016-12-01

    Under future increased CO2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.

  2. Evolutionary changes in plant tolerance against herbivory through a resurrection experiment.

    Science.gov (United States)

    Bustos-Segura, C; Fornoni, J; Núñez-Farfán, J

    2014-03-01

    Both theoretical and empirical works have highlighted the difference in the evolutionary implications of host resistance and tolerance against their enemies. However, it has been difficult to show evolutionary changes in host defences in natural populations; thus, evaluating theoretical predictions of simultaneous evolution of defences remains a challenge. We studied the evolutionary changes in traits related to resistance and tolerance against herbivory in a natural plant population using seeds from two collections made in a period of 20 years. In a common garden experiment, we compared defensive traits of ancestral (1987) and descendant (2007) subpopulations of the annual plant Datura stramonium that shows genetic variation for tolerance and to which the specialist herbivore Lema daturaphila is locally adapted. We also examined the effects of different plant genotypes on the herbivore for testing the plant genetic variation in resistance. Based on the response to the contemporary herbivore populations, results revealed a nonsignificant response in plant resistance traits (herbivore consumption, foliar trichomes and tropane alkaloids), but a significant one in tolerance. The survival of herbivores in laboratory experiments depended on the plant genotype, which suggests genetic variation in plant resistance. Although we cannot identify the selective agent for the change nor exclude genetic drift, the results are consistent with the expectation that when resistance fails to control herbivory, tolerance should play a more important role in the evolution of the interaction. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  3. Lobelia siphilitica plants that escape herbivory in time also have reduced latex production.

    Directory of Open Access Journals (Sweden)

    Amy L Parachnowitsch

    Full Text Available Flowering phenology is an important determinant of a plant's reproductive success. Both assortative mating and niche construction can result in the evolution of correlations between phenology and other reproductive, functional, and life history traits. Correlations between phenology and herbivore defence traits are particularly likely because the timing of flowering can allow a plant to escape herbivory. To test whether herbivore escape and defence are correlated, we estimated phenotypic and genetic correlations between flowering phenology and latex production in greenhouse-grown Lobelia siphilitica L. (Lobeliaceae. Lobelia siphilitica plants that flower later escape herbivory by a specialist pre-dispersal seed predator, and thus should invest fewer resources in defence. Consistent with this prediction, we found that later flowering was phenotypically and genetically correlated with reduced latex production. To test whether herbivore escape and latex production were costly, we also measured four fitness correlates. Flowering phenology was negatively genetically correlated with three out of four fitness estimates, suggesting that herbivore escape can be costly. In contrast, we did not find evidence for costs of latex production. Generally, our results suggest that herbivore escape and defence traits will not evolve independently in L. siphilitica.

  4. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations

    Science.gov (United States)

    Bellwood, D. R.; Goatley, C. H. R.; Brandl, S. J.; Bellwood, O.

    2014-01-01

    The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene–Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs. PMID:24573852

  5. Risk of spider predation alters food web structure and reduces local herbivory in the field.

    Science.gov (United States)

    Bucher, Roman; Menzel, Florian; Entling, Martin H

    2015-06-01

    Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage by 50 %. In addition, spider cues led to changes in the arthropod community: smaller spiders avoided plants with spider cues. In contrast, the aphid-tending ant Myrmica rubra showed higher recruitment of workers on cue-bearing plants, possibly to protect aphids. Our results show that the risk of spider predation can reduce herbivory on wild plants and also demonstrate that non-consumptive effects can be particularly strong within the predator guild.

  6. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa.

    Directory of Open Access Journals (Sweden)

    Peter Houk

    Full Text Available BACKGROUND: Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s of spatial variation in the recovery process. METHODOLOGY/PRINCIPAL FINDINGS: This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. CONCLUSIONS/SIGNIFICANCE: Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.

  7. A new North American therizinosaurid and the role of herbivory in 'predatory' dinosaur evolution.

    Science.gov (United States)

    Zanno, Lindsay E; Gillette, David D; Albright, L Barry; Titus, Alan L

    2009-10-07

    Historically, ecomorphological inferences regarding theropod (i.e. 'predatory') dinosaurs were guided by an assumption that they were singularly hypercarnivorous. A recent plethora of maniraptoran discoveries has produced evidence challenging this notion. Here, we report on a new species of maniraptoran theropod, Nothronychus graffami sp. nov. Relative completeness of this specimen permits a phylogenetic reassessment of Therizinosauria-the theropod clade exhibiting the most substantial anatomical evidence of herbivory. In the most comprehensive phylogenetic study of the clade conducted to date, we recover Therizinosauria as the basalmost maniraptoran lineage. Using concentrated changes tests, we present evidence for correlated character evolution among herbivorous and hypercarnivorous taxa and propose ecomorphological indicators for future interpretations of diet among maniraptoran clades. Maximum parsimony optimizations of character evolution within our study indicate an ancestral origin for dietary plasticity and facultative herbivory (omnivory) within the clade. These findings suggest that hypercarnivory in paravian dinosaurs is a secondarily derived dietary specialization and provide a potential mechanism for the invasion of novel morpho- and ecospace early in coelurosaurian evolution-the loss of obligate carnivory and origin of dietary opportunism.

  8. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory

    Science.gov (United States)

    Hernán, Gema; Ramajo, Laura; Basso, Lorena; Delgado, Antonio; Terrados, Jorge; Duarte, Carlos M.; Tomas, Fiona

    2016-01-01

    Under future increased CO2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed. PMID:27905514

  9. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio.

  10. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    Science.gov (United States)

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  11. Regional contingencies in the relationship between aboveground biomass and litter in the world's grasslands.

    Science.gov (United States)

    O'Halloran, Lydia R; Borer, Elizabeth T; Seabloom, Eric W; MacDougall, Andrew S; Cleland, Elsa E; McCulley, Rebecca L; Hobbie, Sarah; Harpole, W Stan; DeCrappeo, Nicole M; Chu, Chengjin; Bakker, Jonathan D; Davies, Kendi F; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S; Knops, Johannes M H; Li, Wei; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Stevens, Carly J

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  12. Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands.

    Science.gov (United States)

    Isbell, Forest I; Wilsey, Brian J

    2011-03-01

    Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.

  13. Improved allometric models to estimate the aboveground biomass of tropical trees.

    Science.gov (United States)

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

  14. Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing.

    Directory of Open Access Journals (Sweden)

    Joseph B Riegel

    Full Text Available Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the LiDAR model (adj-R(2 values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha respectively. Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model. Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R(2 of 0.37. These results suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young, small trees and that high spatial resolution optical imagery may be the better tool in such areas.

  15. Aboveground biomass and nutrient allocation in an age-sequence of Larix oigensis plantations

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiong; LIU Xing-yu; ZENG De-hui

    2011-01-01

    Biomass and nutrient (N, P, K, Ca, Mg) stock in various aboveground tree components (stemwood, stembark, branches and leaves) were quantified in an age sequence of pure Larix olgensis plantations (20, 35, 53 and 69 years old) in Northeast China. The results show that the aboveground biomass allocation in various tree components was in the order of stemwood (62%-83%), branches (9%-21%), stembark (7%-11%) and leaves (1%-6%) for all stands. The proportion of stemwood biomass to total aboveground biomass increased whereas that of other tree components decreased consistently with stand age from 20 to 53 years old, but kept relatively constant with stand age from 53 and 69 years old. The nutrient allocation in various tree components generally followed the same pattern as the biomass allocation (i.e. stemwood > branches > stembark > leaves). The proportion of nutrient stock in leaves to total aboveground nutrient stock decreased consistently with increasing stand age, while that in stemwood increased with stand age from 20 to 53 years old but then decreased from 53 to 69 years old. The rate of nutrient removal for stands was estimated at different stand ages under different logging schemes, showing that the rate of nutrient removal would be unchanged when the rotation length was shortened to 20 years by the harvest of stem only, but greatly increased by the harvest of total aboveground biomass. The rate of nutrient removal would be a considerable reduction for all elements by debarking, especially for Ca.

  16. Invading from the garden? A comparison of leaf herbivory for exotic and native plants in natural and ornamental settings

    Institute of Scientific and Technical Information of China (English)

    Stephen F.Matter; Adam M.Stein; Richard Stokes; Brandy S.Wilkerson; Jessica R.Brzyski; Christopher J.Harrison; Sara Hyams; Clement Loo; Jessica Loomis; Hannah R.Lubbers; Leeann Seastrum; Trevor I.Stamper

    2012-01-01

    The enemies release hypothesis proposes that exotic species can become invasive by escaping from predators and parasites in their novel environment.Agrawal et al.(Enemy release? An experiment with congeneric plant pairs and diverse above-and below-ground enemies.Ecology,86,2979-2989) proposed that areas or times in which damage to introduced species is low provide opportunities for the invasion of native habitat.We tested whether ornamental settings may provide areas with low levels of herbivory for trees and shrubs,potentially facilitating invasion success.First,we compared levels of leaf herbivory among native and exotic species in ornamental and natural settings in Cincinnati,Ohio,United States.In the second study,we compared levels of herbivory for invasive and noninvasive exotic species between natural and ornamental settings.We found lower levels of leaf damage for exotic species than for native species; however,we found no differences in the amount of leaf damage suffered in ornamental or natural settings.Our results do not provide any evidence that ornamental settings afford additional release from herbivory for exotic plant species.

  17. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    Science.gov (United States)

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  18. Leaf-fracture properties correlated with nutritional traits in nine Australian seagrass species: implications for susceptibility to herbivory

    NARCIS (Netherlands)

    de los Santos, C.B.; Brun, F.G.; Onoda, Y.; Cambridge, M.L.; Bouma, T.J.; Vergara, J.J.; Pérez-Lloréns, J.L.

    2012-01-01

    Seagrasses are exposed to the constant risk of structural damage due to abiotic factors, such as waves and currents, and biotic factors, e. g. herbivory. Leaf mechanical resistance is therefore essential in protecting plants from structural failure and may also have ecological consequences. For exam

  19. Plant compensatory growth in aspen seedlings: the role of frequency and intensity of herbivory and resource availability

    Science.gov (United States)

    Nadir Erbilgin; David A. Galvez; Bin Zhang

    2012-01-01

    Plant ecologists have debated the mechanisms used by plants to cope with the impact of herbivore damage for more than a century. During that time, plant resistance mechanisms, which reduce the amount of herbivore damage before and during herbivory, have received most of the attention, while plant tolerance mechanisms, which may minimize the impacts of damage after...

  20. Predictable spatial escapes from herbivory: how do these affect the evolution of herbivore resistance in tropical marine communities?

    Science.gov (United States)

    Hay, Mark E

    1984-11-01

    Between-habitat differences in macrophyte consumption by herbivorous fishes were examined on three Caribbean and two Indian Ocean coral reefs. Transplanted sections of seagrasses were used as a bioassay to compare removal rates in reef-slope, reef-flat, sand-plain, and lagoon habitats. Herbivore susceptibility of fifty-two species of seaweeds from these habitats was also measured in the field. Seagrass consumption on shallow reef slopes was always significantly greater than on shallow reef flats, deep sand plains, or sandy lagoons. Reef-slope seaweeds were consistently resistant to herbivory while reef-flat seaweeds were consistently very susceptible to herbivory. This pattern supports the hypothesis that defenses against herbivores are costly in terms of fitness and are selected against in habitats with predictably low rates of herbivory.Sand-plain and lagoon seaweeds showed a mixed response when placed in habitats with high herbivore pressure; most fleshy red seaweeds were eaten rapidly, most fleshy green seaweeds were eaten at intermediate rates, and most calcified green seaweeds were avoided or eaten at very low rates. Differences in susceptibility between red and green seaweeds from sand-plain or lagoon habitats may result from differential competitive pressures experienced by these seaweed groups or from the differential probability of being encountered by herbivores. The susceptibility of a species to removal by herbivorous fishes was relatively consistent between reefs. Preferences of the sea urchin Diadema antillarum were also similar to those of the fish guilds.Unique secondary metabolites were characteristic of almost all of the most herbivore resistant seaweeds. However, some of the herbivore susceptible species also contain chemicals that have been proposed as defensive compounds. Genera such as Sargassum, Turbinaria, Thalassia, Halodule, and Thalassodendron, which produce polyphenolics or phenolic acids, were consumed at high to intermediate rates

  1. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  2. Among-population variation in tolerance to larval herbivory by Anthocharis cardamines in the polyploid herb Cardamine pratensis.

    Directory of Open Access Journals (Sweden)

    Malin A E König

    Full Text Available Plants have two principal defense mechanisms to decrease fitness losses to herbivory: tolerance, the ability to compensate fitness after damage, and resistance, the ability to avoid damage. Variation in intensity of herbivory among populations should result in variation in plant defense levels if tolerance and resistance are associated with costs. Yet little is known about how levels of tolerance are related to resistance and attack intensity in the field, and about the costs of tolerance. In this study, we used information about tolerance and resistance against larval herbivory by the butterfly Anthocharis cardamines under controlled conditions together with information about damage in the field for a large set of populations of the perennial plant Cardamine pratensis. Plant tolerance was estimated in a common garden experiment where plants were subjected to a combination of larval herbivory and clipping. We found no evidence of that the proportion of damage that was caused by larval feeding vs. clipping influenced plant responses. Damage treatments had a negative effect on the three measured fitness components and also resulted in an earlier flowering in the year after the attack. Tolerance was related to attack intensity in the population of origin, i.e. plants from populations with higher attack intensity were more likely to flower in the year following damage. However, we found no evidence of a relationship between tolerance and resistance. These results indicate that herbivory drives the evolution for increased tolerance, and that changes in tolerance are not linked to changes in resistance. We suggest that the simultaneous study of tolerance, attack intensity in the field and resistance constitutes a powerful tool to understand how plant strategies to avoid negative effects of herbivore damage evolve.

  3. Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany's largest connected deciduous forest.

    Science.gov (United States)

    Sobek, Stephanie; Scherber, Christoph; Steffan-Dewenter, Ingolf; Tscharntke, Teja

    2009-05-01

    Tree species-rich forests are hypothesised to be less susceptible to insect herbivores, but so far herbivory-diversity relationships have rarely been tested for tree saplings, and no such study has been published for deciduous forests in Central Europe. We expected that diverse tree communities reduce the probability of detection of host plants and increase abundance of predators, thereby reducing herbivory. We examined levels of herbivory suffered by beech (Fagus sylvatica L.) and maple saplings (Acer pseudoplatanus L. and Acer platanoides L.) across a tree species diversity gradient within Germany's largest remaining deciduous forest area, and investigated whether simple beech or mixed stands were less prone to damage caused by herbivorous insects. Leaf area loss and the frequency of galls and mines were recorded for 1,040 saplings (>13,000 leaves) in June and August 2006. In addition, relative abundance of predators was assessed to test for potential top-down control. Leaf area loss was generally higher in the two species of maple compared to beech saplings, while only beech showed a decline in damage caused by leaf-chewing herbivores across the tree diversity gradient. No significant patterns were found for galls and mines. Relative abundance of predators on beech showed a seasonal response and increased on species-rich plots in June, suggesting higher biological control. We conclude that, in temperate deciduous forests, herbivory-tree diversity relationships are significant, but are tree species-dependent with bottom-up and top-down control as possible mechanisms. In contrast to maple, beech profits from growing in a neighbourhood of higher tree richness, which implies that species identity effects may be of greater importance than tree diversity effects per se. Hence, herbivory on beech appeared to be mediated bottom-up by resource concentration in the sampled forest stands, as well as regulated top-down through biocontrol by natural enemies.

  4. Chemical defenses of the tropical marine seaweed Canistrocarpus cervicornis against herbivory by sea urchin

    Directory of Open Access Journals (Sweden)

    Éverson Miguel Bianco

    2010-09-01

    Full Text Available This paper reports on the defensive chemical properties of the marine tropical brown seaweed Canistrocarpus cervicornis against herbivory. A natural concentration of dichloromethane crude extract (DCE obtained from this seaweed significantly inhibited feeding by the sea urchin Lytechinus variegatus. The major metabolite isolated from this active DCE extract was identified as the (4R,7R,14S-4α,7α-diacetoxy-14-hydroxydolast-1(15,8-diene that strongly inhibited feeding by the same sea urchin. This result suggests that the dolastane diterpenes class may constitute the defensive system of C. cervicornis against herbivory, and probably also of that of other brown seaweeds endowed with a biosynthetic pathway capable of producing compounds of the dolastane-type, a typical skeleton found in Dyctioteae species worldwide. This is the first report showing this compound-type (dolastane diterpenes as a chemical defense against herbivory in marine seaweeds. This study constitutes an additional report broadening the known spectrum of action and roles of secondary metabolites of the C. cervicornis and Dyctioteae species.Este artigo demonstra a química defensiva anti-herbivoria da macroalga parda marinha Canistrocarpus cervicornis. Em sua concentração natural, o extrato bruto em diclorometano (DCE inibiu significativamente o consumo alimentar do ouriço-do-mar Lytechinus variegatus. Deste extrato em DCE foi isolado o metabólito majoritário identificado como o diterpeno (4R,7R,14S-4α,7α-diacetoxi-14-hidroxidolasta-1(15,8-dieno. Esses resultados comprovam que diterpenos da classe dolastano podem compor o sistema defensivo anti-herbivoria de C. cervircornis e, supostamente, o de outras algas pardas capazes de produzi-los, uma vez que são composto típicos encontrados em esqueletos de Dyctiotas em todo o mundo. Este é o primeiro estudo demonstrando a ação anti-herbivoria desta classe de metabolitos (diterpenos dolastanos em macroalgas marinhas. Tais

  5. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    Science.gov (United States)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for

  6. Schapiro Shapes

    Science.gov (United States)

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  7. Functional soil microbiome: belowground solutions to an aboveground problem.

    Science.gov (United States)

    Lakshmanan, Venkatachalam; Selvaraj, Gopinath; Bais, Harsh P

    2014-10-01

    There is considerable evidence in the literature that beneficial rhizospheric microbes can alter plant morphology, enhance plant growth, and increase mineral content. Of late, there is a surge to understand the impact of the microbiome on plant health. Recent research shows the utilization of novel sequencing techniques to identify the microbiome in model systems such as Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). However, it is not known how the community of microbes identified may play a role to improve plant health and fitness. There are very few detailed studies with isolated beneficial microbes showing the importance of the functional microbiome in plant fitness and disease protection. Some recent work on the cultivated microbiome in rice (Oryza sativa) shows that a wide diversity of bacterial species is associated with the roots of field-grown rice plants. However, the biological significance and potential effects of the microbiome on the host plants are completely unknown. Work performed with isolated strains showed various genetic pathways that are involved in the recognition of host-specific factors that play roles in beneficial host-microbe interactions. The composition of the microbiome in plants is dynamic and controlled by multiple factors. In the case of the rhizosphere, temperature, pH, and the presence of chemical signals from bacteria, plants, and nematodes all shape the environment and influence which organisms will flourish. This provides a basis for plants and their microbiomes to selectively associate with one another. This Update addresses the importance of the functional microbiome to identify phenotypes that may provide a sustainable and effective strategy to increase crop yield and food security.

  8. Above-ground antineutrino detection for nuclear reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by {sup 6}LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of {sup 6}Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  9. Ants visit nectaries of Epidendrum denticulatum (Orchidaceae in a Brazilian rainforest: effects on herbivory and pollination

    Directory of Open Access Journals (Sweden)

    A. M. Almeida

    Full Text Available Epidendrum denticulatum (Orchidaceae produces nectar on the petioles of buds, flowers, and fruits (extrafloral nectaries but no nectar is found on its flowers, and it is probably a deceptive species. In the Brazilian Atlantic rainforest, some aspects of both the ecology and behavior of Camponotus sericeiventris (Formicinae and Ectatomma tuberculatum (Ponerinae, two ant species foraging on E. denticulatum extrafloral nectaries, were investigated. Both experiments, using termites as baits and field observations, suggest that these ant species are able to prevent reproductive organ herbivory, without affecting pollinator behaviour. Since a low fruit set is often cited as a characteristic of the family, especially for deceptive species, ants attracted to orchid inflorescences protect reproductive structures and increase the probability of pollination success. Epidendrum denticulatum flowers were visited and probably pollinated by Heliconius erato (Nymphalidae and Euphyes leptosema (Hesperiidae.

  10. Ants visit nectaries of Epidendrum denticulatum (Orchidaceae in a Brazilian rainforest: effects on herbivory and pollination

    Directory of Open Access Journals (Sweden)

    Almeida A. M.

    2003-01-01

    Full Text Available Epidendrum denticulatum (Orchidaceae produces nectar on the petioles of buds, flowers, and fruits (extrafloral nectaries but no nectar is found on its flowers, and it is probably a deceptive species. In the Brazilian Atlantic rainforest, some aspects of both the ecology and behavior of Camponotus sericeiventris (Formicinae and Ectatomma tuberculatum (Ponerinae, two ant species foraging on E. denticulatum extrafloral nectaries, were investigated. Both experiments, using termites as baits and field observations, suggest that these ant species are able to prevent reproductive organ herbivory, without affecting pollinator behaviour. Since a low fruit set is often cited as a characteristic of the family, especially for deceptive species, ants attracted to orchid inflorescences protect reproductive structures and increase the probability of pollination success. Epidendrum denticulatum flowers were visited and probably pollinated by Heliconius erato (Nymphalidae and Euphyes leptosema (Hesperiidae.

  11. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.).

    Science.gov (United States)

    Hladun, Kristen R; Parker, David R; Tran, Khoa D; Trumble, John T

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator-plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8-9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se.

  12. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  13. Comparison of perimeter trap crop varieties: effects on herbivory, pollination, and yield in butternut squash.

    Science.gov (United States)

    Adler, L S; Hazzard, R V

    2009-02-01

    Perimeter trap cropping (PTC) is a method of integrated pest management (IPM) in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. Blue Hubbard (Cucurbita maxima Duch.) is a highly effective trap crop for butternut squash (C. moschata Duch. ex Poir) attacked by striped cucumber beetles (Acalymma vittatum Fabricius), but its limited marketability may reduce adoption of PTC by growers. Research comparing border crop varieties is necessary to provide options for growers. Furthermore, pollinators are critical for cucurbit yield, and the effect of PTC on pollination to main crops is unknown. We examined the effect of five border treatments on herbivory, pollination, and yield in butternut squash and manipulated herbivory and pollination to compare their importance for main crop yield. Blue Hubbard, buttercup squash (C. maxima Duch.), and zucchini (C. pepo L.) were equally attractive to cucumber beetles. Border treatments did not affect butternut leaf damage, but butternut flowers had the fewest beetles when surrounded by Blue Hubbard or buttercup squash. Yield was highest in the Blue Hubbard and buttercup treatments, but this effect was not statistically significant. Native bees accounted for 87% of pollinator visits, and pollination did not limit yield. There was no evidence that border crops competed with the main crop for pollinators. Our results suggest that both buttercup squash and zucchini may be viable alternatives to Blue Hubbard as borders for the main crop of butternut squash. Thus, growers may have multiple border options that reduce pesticide use, effectively manage pests, and do not disturb mutualist interactions with pollinators.

  14. Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient.

    Science.gov (United States)

    Garibaldi, Lucas A; Kitzberger, Thomas; Chaneton, Enrique J

    2011-09-01

    Environmental conditions and plant genotype may influence insect herbivory along elevational gradients. Plant damage would decrease with elevation as temperature declines to suboptimal levels for insects. However, host plants at higher elevations may exhibit traits that either reduce or enhance leaf quality to insects, with uncertain net effects on herbivory. We examined folivory, insect abundance and leaf traits along six replicated elevational ranges in Nothofagus pumilio forests of the northern Patagonian Andes, Argentina. We also conducted a reciprocal transplant experiment between low- and high-elevation sites to test the extent of environmental and plant genetic control on insect abundance and folivory. We found that insect abundance, leaf size and specific leaf area decreased, whereas foliar phosphorous content increased, from low-, through mid- to high-elevation sites. Path analysis indicated that changes in both insect abundance and leaf traits were important in reducing folivory with increasing elevation and decreasing mean temperature. At both planting sites, plants from a low-elevation origin experienced higher damage and supported greater insect loads than plants from a high-elevation origin. The differences in leaf damage between sites were twofold larger than those between plant origins, suggesting that local environment was more important than host genotype in explaining folivory patterns. Different folivore guilds exhibited qualitatively similar responses to elevation. Our results suggest an increase in insect folivory on high-elevation N. pumilio forests under future climate warming scenarios. However, in the short-term, folivory increases might be smaller than expected from insect abundance only because at high elevations herbivores would encounter more resistant tree genotypes.

  15. Assessing the Impacts of Herbivory on Plant Silica Accumulation across a Global Network of Grasslands

    Science.gov (United States)

    Quigley, K.

    2015-12-01

    Plants, especially grasses, have a profound impact on the biogeochemical cycling of silicon. Silicic acid (Si(OH)4) in soil water is absorbed by plant roots, transported via the transpiration stream, and deposited as solid silica (SiO2) phytoliths in leaf tissue. Evidence indicates that plant phytolith accumulation may have evolved as an anti-herbivore strategy, and modern studies reveal that these silica particles are abrasive to animal mouthparts and can interfere with digestion. Furthermore, several studies have shown that grasses have the ability to respond to insect and mammal herbivory by modifying the amount of silicon they absorb from soil, a property known as inducible defense. However, herbivory studies remain largely limited to a laboratory setting, and research in natural systems has only been conducted at a regional spatial scale. To address whether these localized patterns persist at the global scale, we utilized data from a network of 40 grassland sites occurring on six continents. Vegetation samples including grasses, forbs, and litter, were collected in and out of 6m x 6m herbivore exclosures by a team of collaborating scientists for an on-going research effort known as the Nutrient Network (NutNet). We utilized near infrared spectroscopy (NIRS) to create a calibration for plant silica which allowed for the rapid analysis of more than 1000 samples. Preliminary analyses indicate that silica content of grasses was higher outside of exclosures, where herbivores had access to vegetation. Our data reveal that herbivores play a significant role in modifying plant silicon uptake, and hence, the rates of silicon cycling in grasslands across the globe.

  16. Low Herbivory among Targeted Reforestation Sites in the Andean Highlands of Southern Ecuador.

    Science.gov (United States)

    Adams, Marc-Oliver; Fiedler, Konrad

    2016-01-01

    Insect herbivory constitutes an important constraint in the viability and management of targeted reforestation sites. Focusing on young experimental stands at about 2000 m elevation in southern Ecuador, we examined foliar damage over one season as a function of tree species and habitat. Native tree species (Successional hardwood: Cedrela montana and Tabebuia chrysantha; fast-growing pioneer: Heliocarpus americanus) have been planted among prevailing local landcover types (abandoned pasture, secondary shrub vegetation, and a Pinus patula plantation) in 2003/4. Plantation trees were compared to conspecifics in the spontaneous undergrowth of adjacent undisturbed rainforest matched for height and foliar volume. Specifically, we tested the hypotheses that H. americanus as a pioneer species suffers more herbivory compared to the two successional tree species, and that damage is inversely related to habitat complexity. Overall leaf damage caused by folivorous insects (excluding leafcutter ants) was low. Average leaf loss was highest among T. chrysantha (7.50% ± 0.19 SE of leaf area), followed by H. americanus (4.67% ± 0.18 SE) and C. montana (3.18% ± 0.15 SE). Contrary to expectations, leaf area loss was highest among trees in closed-canopy natural rainforest, followed by pine plantation, pasture, and secondary shrub sites. Harvesting activity of leafcutter ants (Acromyrmex sp.) was strongly biased towards T. chrysantha growing in open habitat (mean pasture: 2.5%; shrub: 10.5%) where it could result in considerable damage (> 90.0%). Insect folivory is unlikely to pose a barrier for reforestation in the tropical Andean mountain forest zone at present, but leafcutter ants may become problematic if local temperatures increase in the wake of global warming.

  17. Low Herbivory among Targeted Reforestation Sites in the Andean Highlands of Southern Ecuador.

    Directory of Open Access Journals (Sweden)

    Marc-Oliver Adams

    Full Text Available Insect herbivory constitutes an important constraint in the viability and management of targeted reforestation sites. Focusing on young experimental stands at about 2000 m elevation in southern Ecuador, we examined foliar damage over one season as a function of tree species and habitat. Native tree species (Successional hardwood: Cedrela montana and Tabebuia chrysantha; fast-growing pioneer: Heliocarpus americanus have been planted among prevailing local landcover types (abandoned pasture, secondary shrub vegetation, and a Pinus patula plantation in 2003/4. Plantation trees were compared to conspecifics in the spontaneous undergrowth of adjacent undisturbed rainforest matched for height and foliar volume. Specifically, we tested the hypotheses that H. americanus as a pioneer species suffers more herbivory compared to the two successional tree species, and that damage is inversely related to habitat complexity. Overall leaf damage caused by folivorous insects (excluding leafcutter ants was low. Average leaf loss was highest among T. chrysantha (7.50% ± 0.19 SE of leaf area, followed by H. americanus (4.67% ± 0.18 SE and C. montana (3.18% ± 0.15 SE. Contrary to expectations, leaf area loss was highest among trees in closed-canopy natural rainforest, followed by pine plantation, pasture, and secondary shrub sites. Harvesting activity of leafcutter ants (Acromyrmex sp. was strongly biased towards T. chrysantha growing in open habitat (mean pasture: 2.5%; shrub: 10.5% where it could result in considerable damage (> 90.0%. Insect folivory is unlikely to pose a barrier for reforestation in the tropical Andean mountain forest zone at present, but leafcutter ants may become problematic if local temperatures increase in the wake of global warming.

  18. An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana

    Science.gov (United States)

    2011-01-01

    Background Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. Results We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat). Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. Conclusions A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack. PMID:21392399

  19. When Forest become carbon sources: Impact of herbivory on carbon balance

    Science.gov (United States)

    Schafer, K. V.; Clark, K. L.; Skowronski, N. S.

    2008-12-01

    Traditionally forests are thought to be carbon sinks and are becoming important trading commodities in the carbon trading markets. However, disturbances such as fire, hurricanes and herbivory can lead to forests being sources rather than sinks of carbon. Here, we investigate the carbon balance of an oak/pine forest in the New Jersey Pine Barrens under herbivory attack in summer 2007. Net primary productivity (NPP) was reduced to ca 70% of previous year NPP (535 g m-2 a-1 in 2006) and canopy net assimilation (AnC), as modeled with the Canopy Conductance Constrained Carbon Assimilation model (4C-A), was reduced to ca 65 % of previous year (1335 g m-2 a-1 in 2006) AnC or ca 1015 g C m-2 a-1. Although the trees were defoliated for only 15 % of the normal annual growing season, the impact amounted to ca 30 % of C accumulation loss when integrated over the year. Overall NPP in 2007 was ca 378 g C m-2 a-1 with 50 % of NPP being allocated to foliage production which constitutes a short term carbon pool. On an ecosystem level net ecosystem exchange amounted to a release of 293 g C m-2 a-1 thus becoming a carbon source over the course of the year rather than being a sink for C. The overall impact of the defoliation spanned 21% of upland forests (320 km2) in the New Jersey Pine Barrens thus representing a significant amount of overall C being emitted back to the atmosphere rather than being accumulated in the biosphere.

  20. Data compilations for primary production, herbivory, decomposition, and export for different types of marine communities, 1962-2002 (NCEI Accession 0054500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of published data on primary production, herbivory, and nutrient content of primary producers in pristine communities of...

  1. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    OpenAIRE

    Finegan, B.; Pena Claros, M.; Silva de Oliveira, A.; ASCARRUNZ, N.; Bret-Harte, M. S.; Carreño Rocabado, I.G.; Casanoves, F; Diaz, S; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L; Salgado Negret, B.; Vaz, M; L. Poorter

    2014-01-01

    1. Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. 2. Data are presented for three rain forests in Bolivia, Brazil and Costa Rica. Initial above-ground biomass and biomass increments of survivors, recruits and survivors + recruits (total) were estimated for trees ≥10 cm d.b.h. in 62 and 21 1.0-ha plots, respecti...

  2. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China.

    Science.gov (United States)

    Lin, Dunmei; Lai, Jiangshan; Muller-Landau, Helene C; Mi, Xiangcheng; Ma, Keping

    2012-01-01

    The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha(-1) (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha(-1) (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha(-1) (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.

  3. Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient.

    Science.gov (United States)

    Kumordzi, Bright B; Gundale, Michael J; Nilsson, Marie-Charlotte; Wardle, David A

    2016-01-01

    Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems.

  4. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    Science.gov (United States)

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  5. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China.

    Directory of Open Access Journals (Sweden)

    Dunmei Lin

    Full Text Available The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha(-1 (bootstrapped 95% confidence intervals [217.6, 228.5] and varied substantially among four topographically defined habitats, from 180.6 Mg ha(-1 (bootstrapped 95% CI [167.1, 195.0] in the upper ridge to 245.9 Mg ha(-1 (bootstrapped 95% CI [238.3, 253.8] in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.

  6. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.

    Science.gov (United States)

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-19

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R² = 0.340, root-mean-square error (RMSE) = 81.89 g·m(-2), and relative error of 14.1%). The improvement of multiple regressions to the R² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.

  7. Relationships among the Stem,Aboveground and Total Biomass across Chinese Forests

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Forest biomass plays a key role in the global carbon cycle.In the present study,a general allometric model was derived to predict the relationships among the stem biomass Ms,aboveground biomass MA and total biomass Mr.based on previously developed scaling relationships for leaf,stem and root standing biomass.The model predicted complex scaling exponents for MT and/or MA with respect to MS.Because annual biomass accumulation in the stem,root and branch far exceeded the annual increase in standing leaf biomass,we can predict that MT∝MA∝Ms as a simple result of the model.Although slight variations existed in different phyletic affiliations(I.e.conifers versus angiosperms),empirical results using Model Type Ⅱ (reduced major axis) regression supported the model's predictions.The predictive formulas among stem,aboveground and total biomass were obtained using Model Type Ⅰ(ordinary least squares) regression to estimate forest biomass.Given the low mean percentage prediction errors for aboveground(and total biomass) based on the stem biomass.the results provided a reasonable method to estimate the biomass of forests at the individual level.which was insensitive to the variation in local environmental conditions (e.g.precipitation,tempereture,etc.).

  8. Contribution of aboveground biomass uncertainty to bias in modeled global net ecosystem exchange

    Science.gov (United States)

    Poulter, B.; Delbart, N.; Maignan, F.; Saatchi, S. S.; Sitch, S.; Ciais, P.

    2011-12-01

    Biomass is a key ecosystem property that links biogeochemical fluxes with the accumulation of carbon. The spatial and temporal dynamics of biomass have implications for climate stability and other ecosystem services. Globally, terrestrial forest ecosystems store approximately 383 Pg C in aboveground biomass, about 45% compared to the amount of carbon in the atmosphere. Model-data comparisons of aboveground biomass have so far been limited by a lack of wall-to-wall coverage, which has recently been resolved from satellite remote sensing. These recent satellite products use lidar to measure forest structure directly or have developed novel data-fusion techniques. Here, we compare biomass estimates among terrestrial carbon cycle models, and benchmark these estimates with inventory and satellite-based estimates. Using an ensemble of dynamic global vegetation model simulations from the TRENDY archive, we then use the distribution of biomass estimates to evaluate bias in net ecosystem exchange caused by uncertainty from carbon turnover. By identifying detailed model structure and parameters that are linked to carbon turnover, targeted improvements can be made to more realistically simulate aboveground biomass.

  9. DEVELOPMENT OF LOCAL ALLOMETRIC EQUATION TO ESTIMATE TOTAL ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2016-10-01

    Full Text Available Recently, pantropical allometric equations  have been commonly used across the globe to  estimate the aboveground biomass of the forests, including in Indonesia. However, in relation to regional differences in diameter, height and wood density, the lack of data measured, particularly from eastern part of Indonesia, may raise the question on  accuracy of pantropical allometric in such area. Hence, this paper examines  the differences of local allometric equations of Papua Island with equations developed by Chave and his research groups.. Measurements of biomass in this study were conducted directly based on weighing and destructive samplings. Results show that the most appropriate local equation to estimate total aboveground biomass in Papua tropical forest is Log(TAGB = -0.267 + 2.23 Log(DBH +0.649 Log(WD (CF=1.013; VIF=1.6; R2= 95%; R2-adj= 95.1%; RMSE= 0.149; P<0.001. This equation is also a better option in comparison to those of previously published pantropical equations with only 6.47% average deviation and 5.37 points of relative bias. This finding implies that the locally developed equation should be a better option to produce more accurate site specific total aboveground biomass estimation.

  10. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  11. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Science.gov (United States)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  12. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    NARCIS (Netherlands)

    Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fliessbach, A.; Gunst, L.; Hedlund, K.; Mäder, P.; Mikola, J.; Robin, C.; Setälä, H.; Tatin-Froux, F.; Putten, van der W.H.; Scheu, S.

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological param

  13. The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in 'devil's gardens' is increased herbivory on Duroia hirsuta trees.

    Science.gov (United States)

    Frederickson, Megan E; Gordon, Deborah M

    2007-04-22

    'Devil's gardens' are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant-plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests.

  14. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    Science.gov (United States)

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  15. Mapping Aboveground Biomass in the Amazon Basin: Exploring Sensors, Scales, and Strategies for Optimal Data Linkage

    Science.gov (United States)

    Walker, W. S.; Baccini, A.

    2013-05-01

    Information on the distribution and density of carbon in tropical forests is critical to decision-making on a host of globally significant issues ranging from climate stabilization and biodiversity conservation to poverty reduction and human health. Encouraged by recent progress at both the international and jurisdictional levels on the design of incentive-based policy mechanisms to compensate tropical nations for maintaining their forests intact, governments throughout the tropics are moving with urgency to implement robust national and sub-national forest monitoring systems for operationally tracking and reporting on changes in forest cover and associated carbon stocks. Monitoring systems will be required to produce results that are accurate, consistent, complete, transparent, and comparable at sub-national to pantropical scales, and satellite-based remote sensing supported by field observations is widely-accepted as the most objective and cost-effective solution. The effectiveness of any system for large-area forest monitoring will necessarily depend on the capacity of current and near-future Earth observation satellites to provide information that meets the requirements of developing monitoring protocols. However, important questions remain regarding the role that spatially explicit maps of aboveground biomass and carbon can play in IPCC-compliant forest monitoring systems, with the majority of these questions stemming from doubts about the inherit sensitivity of satellite data to aboveground forest biomass, confusion about the relationship between accuracy and resolution, and a general lack of guidance on optimal strategies for linking field reference and remote sensing data sources. Here we demonstrate the ability of a state-of-the-art satellite radar sensor, the Japanese ALOS/PALSAR, and a venerable optical platform, Landsat 5, to support large-area mapping of aboveground tropical woody biomass across a 153,000-km2 region in the southwestern Amazon

  16. Methyl jasmonate increases the tropane alkaloid scopolamine and reduces natural herbivory in Brugmansia suaveolens: is scopolamine responsible for plant resistance?

    Science.gov (United States)

    Arab, A; Alves, M N; Sartoratto, A; Ogasawara, D C; Trigo, J R

    2012-02-01

    The tropane alkaloid (TA) scopolamine is suggested to protect Brugmansia suaveolens (Solanaceae) against herbivorous insects. To test this prediction in a natural environment, scopolamine was induced by methyl jasmonate (MJ) in potted plants which were left 10 days in the field. MJ-treated plants increased their scopolamine concentration in leaves and herbivory decreased. These findings suggest a cause-effect relationship. However, experiments in laboratory showed that scopolamine affect differently the performance of the specialist larvae of the ithomiine butterfly Placidina euryanassa (C. Felder & R. Felder) and the generalist fall armyworm Spodoptera frugiperda (J. E. Smith): the specialist that sequester this TA from B. suaveolens leaves was not negatively affected, but the generalist was. Therefore, scopolamine probably acts only against insects that are not adapted to TAs. Other compounds that are MJ elicited may also play a role in plant resistance against herbivory by generalist and specialist insects, and deserve future investigations.

  17. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates.

    Science.gov (United States)

    Reisz, Robert R; Fröbisch, Jörg

    2014-01-01

    The origin and early evolution of amniotes (fully terrestrial vertebrates) led to major changes in the structure and hierarchy of terrestrial ecosystems. The first appearance of herbivores played a pivotal role in this transformation. After an early bifurcation into Reptilia and Synapsida (including mammals) 315 Ma, synapsids dominated Paleozoic terrestrial vertebrate communities, with the herbivorous caseids representing the largest vertebrates on land. Eocasea martini gen. et sp. nov., a small carnivorous caseid from the Late Carboniferous, extends significantly the fossil record of Caseidae, and permits the first clade-based study of the origin and initial evolution of herbivory in terrestrial tetrapods. Our results demonstrate for the first time that large caseid herbivores evolved from small, non-herbivorous caseids. This pattern is mirrored by three other clades, documenting multiple, independent, but temporally staggered origins of herbivory and increase in body size among early terrestrial tetrapods, leading to patterns consistent with modern terrestrial ecosystem.

  18. Herbivory effects of Argopistes tsekooni, a chrysomelid beetle, on container-grown Chinese privet, Ligustrum sinense

    Institute of Scientific and Technical Information of China (English)

    Yan-Zhuo Zhang; James L.Hanula; Jiang-Hua Sun

    2011-01-01

    The impact of Argopistes tsekooni Chen (Coleoptera: Chrysomelidae), a herbivore, on Chinese privet, Ligustrum sinense Lour. (Scrophulariales: Oleaceae), an invasive shrub in the United States, was studied in China. Five densities of adults were inoculated into 3-year-old potted Chinese privet plants in cages under field conditions for 1 month. Plants exposed to high densities of adults were severely damaged and the above-ground portions of some were killed, while the survival rates of adult A. tsekooni were comparatively high. The amount of new growth of the main stem, the number of new leaves, and oven-dried biomass were significantly reduced by the combined feeding of larvae and adults. Above-ground plant mortality was 100% when plants were exposed to 24 and 30 adults/plant. In this study A. tsekooni had a significant negative impact on Chinese privet growing in pots, which suggests that it may be a promising candidate for biological control of Chinese privet in the field in North America.

  19. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available BACKGROUND: Invasive plants are often confronted with heterogeneous environments and various stress factors during their secondary phase of invasion into more stressful habitats. A high tolerance to stress factors may allow exotics to successfully invade stressful environments. Ipomoea cairica, a vigorous invader in South China, has recently been expanding into salt marshes. METHODOLOGY/PRINCIPAL FINDINGS: To examine why this liana species is able to invade a stressful saline environment, we utilized I. cairica and 3 non-invasive species for a greenhouse experiment. The plants were subjected to three levels of salinity (i.e., watered with 0, 4 and 8 g L(-1 NaCl solutions and simulated herbivory (0, 25 and 50% of the leaf area excised treatments. The relative growth rate (RGR of I. cairica was significantly higher than the RGR of non-invasive species under both stress treatments. The growth performance of I. cairica was not significantly affected by either stress factor, while that of the non-invasive species was significantly inhibited. The leaf condensed tannin content was generally lower in I. cairica than in the non-invasive I. triloba and Paederia foetida. Ipomoea cairica exhibited a relatively low resistance to herbivory, however, its tolerance to stress factors was significantly higher than either of the non-invasive species. CONCLUSIONS/SIGNIFICANCE: This is the first study examining the expansion of I. cairica to salt marshes in its introduced range. Our results suggest that the high tolerance of I. cairica to key stress factors (e.g., salinity and herbivory contributes to its invasion into salt marshes. For I. cairica, a trade-off in resource reallocation may allow increased resources to be allocated to tolerance and growth. This may contribute to a secondary invasion into stressful habitats. Finally, we suggest that I. cairica could spread further and successfully occupy salt marshes, and countermeasures based on herbivory could be

  20. Efficacy of plastic mesh tubes in reducing herbivory damage by the invasive nutria (Myocastor coypus) in an urban restoration site

    Science.gov (United States)

    Sheffels, Trevor R.; Systma, Mark D.; Carter, Jacoby; Taylor, Jimmy D.

    2014-01-01

    The restoration of stream corridors is becoming an increasingly important component of urban landscape planning, and the high cost of these projects necessitates the need to understand and address potential ecological obstacles to project success. The nutria(Myocastor coypus) is an invasive, semi-aquatic rodent native to South America that causes detrimental ecological impacts in riparian and wetland habitats throughout its introduced range, and techniques are needed to reduce nutria herbivory damage to urban stream restoration projects. We assessed the efficacy of standard Vexar® plastic mesh tubes in reducing nutria herbivory damage to newly established woody plants. The study was conducted in winter-spring 2009 at Delta Ponds, a 60-ha urban waterway in Eugene, Oregon. Woody plants protected by Vexar® tubes demonstrated 100% survival over the 3-month initial establishment period, while only 17% of unprotected plantings survived. Nutria demonstrated a preference for black cottonwood (Populus balsamifera ssp trichocarpa) over red osier dogwood (Cornussericea) and willow (Salix spp). Camera surveillance showed that nutria were more active in unprotected rather than protected treatments. Our results suggest that Vexar® plastic mesh tubing can be an effective short-term herbivory mitigation tool when habitat use by nutria is low. Additionally, planting functionally equivalent woody plant species that are less preferred by nutria, and other herbivores, may be another method for reducing herbivory and improving revegetation success. This study highlights the need to address potential wildlife damage conflicts in the planning process for stream restoration in urban landscapes.

  1. The Effect of Bark Borer Herbivory on BVOC Emissions in Boreal Forests and Implications for SOA Formation

    Science.gov (United States)

    Faiola, Celia; Joutsensaari, Jorma; Holopainen, Jarmo; Yli-Juuti, Taina; Kokkola, Harri; Blande, James; Guenther, Alex; Virtanen, Annele

    2015-04-01

    Herbivore outbreaks are expected to increase as a result of climate change. These outbreaks can have significant effects on the emissions of biogenic volatile organic compound (BVOC) from vegetation, which contribute to the formation of secondary organic aerosol (SOA). We have synthesized the published results investigating changes to BVOC emissions from herbivory by the pine weevil, Hylobius abietis--a bark borer herbivore. Previous lab experiments have shown that bark borer herbivory on Scots pine trees increases monoterpene emissions 4-fold and sesquiterpene emissions 7-fold. Norway spruce exhibits a similar response. The BVOCs most impacted were linalool, beta-phellandrene, limonene, alpha-pinene, beta-pinene, myrcene, and sesquiterpenes like beta-farnesene, beta-bourbonene, and longifolene. The quantitative results from these studies were used to estimate potential impacts of bark borer herbivory on BVOC emissions at a regional scale using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). MEGAN was run under baseline and herbivore outbreak conditions for a typical boreal forest environment in spring. Emissions output from MEGAN was used to run a microphysical box model to estimate the SOA formation potential under baseline and outbreak conditions. This estimate could provide us with an upper limit to the potential impact of bark borer outbreaks on SOA formation in a boreal forest.

  2. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    Science.gov (United States)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-11-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  3. Herbivory and arbuscular mycorrhiza in natural populations of Datura stramonium L.: correlation with the availability of nutrients in the soil

    Directory of Open Access Journals (Sweden)

    Ana Aguilar-Chama

    2016-03-01

    Full Text Available Trophic interactions impose important costs to their host plants, affecting patterns of resource allocation. The relationship between host and consumers is also influenced by the availability of resources, e. g., soil nutrients. In this study, we explored the relationship among mycorrhiza-plant-herbivore in natural populations of Datura stramonium and their correlation with the content of phosphorus, nitrogen and carbon in the soil. We estimated the vegetative and reproductive biomass of plants, the arbuscular mycorrhizal colonization and the level of herbivory in populations of D. stramonium. The local abundance of D. stramonium was negatively related to the content of phosphorus in the soil. In contrast, soil carbon concentration affected positively the vegetative and reproductive mass of D. stramonium, although it was negatively correlated with the specific leaf area (SLA. Of the trophic interactions only herbivory was significantly correlated with the SLA and no relationship was detected between the two interaction types. The lack of significant response of mycorrhizae to the soil nutrients concentration, plant performance, and herbivory may result from the stochasticity in the availability of mycorrhizal inoculum (identity and abundance in the populations studied.

  4. Structure and distribution of glandular and non-glandular trichomes on above-ground organs in Inula helenium L. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Aneta Sulborska

    2014-01-01

    Full Text Available Micromorphology and distribution of glandular and non-glandular trichomes on the above-ground organs of Inula helenium L. were investigated using light and scanning electron microscopy (SEM. Two types of biseriate glandular trichomes, i.e. sessile and stalk hairs, and non-glandular trichomes were recorded. Sessile glandular trichomes were found on all examined I. helenium organs (with their highest density on the abaxial surface of leaves and disk florets, and on stems, whereas stalk glandular trichomes were found on leaves and stems. Sessile trichomes were characterised by a slightly lower height (58–103 μm and width (32–35 μm than the stalk trichomes (62–111 μm x 31–36 μm. Glandular hairs were composed of 5–7 (sessile trichomes or 6–9 (stalk trichomes cell tiers. Apical trichome cell tiers exhibited features of secretory cells. Secretion was accumulated in subcuticular space, which expanded and ruptured at the top, and released its content. Histochemical assays showed the presence of lipids and polyphenols, whereas no starch was detected. Non-glandular trichomes were seen on involucral bracts, leaves and stems (more frequently on involucral bracts. Their structure comprised 2–9 cells; basal cells (1–6 were smaller and linearly arranged, while apical cells had a prozenchymatous shape. The apical cell was the longest and sharply pointed. Applied histochemical tests revealed orange-red (presence of lipids and brow colour (presence of polyphenols in the apical cells of the trichomes. This may suggest that beside their protective role, the trichomes may participate in secretion of secondary metabolites.

  5. Effects of Canada goose herbivory on the tidal freshwater wetlands in Anacostia Park, 2009-2011

    Science.gov (United States)

    Krafft, Cairn C.; Hatfield, Jeffrey S.; Hammerschlag, Richard S.

    2013-01-01

    Herbivory has played a major role in dictating vegetation abundance and species composition at Kingman Marsh in Anacostia Park, Washington, D.C., since restoration of this tidal freshwater wetland was initiated in 2000. The diverse and robust vegetative cover that developed in the first year post-reconstruction experienced significant decimation in the second year, after the protective fencing was removed, and remained suppressed throughout the five-year study period. In June 2009 a herbivory study was initiated to document the impacts of herbivory by resident and nonmigratory Canada geese (Branta canadensis) to vegetation at Kingman Marsh. Sixteen modules consisting of paired fenced plots and unfenced control plots were constructed. Eight of the modules were installed in vegetated portions of the restoration site that had been protected over time by pre-existing fencing, while the remaining eight modules were placed in portions of the site that had not been protected over time and were basically unvegetated at the start of the experiment. Exclosure fencing was sufficiently elevated from the substrate level to allow access to other herbivores such as fish and turtles, while hopefully excluding mature Canada geese. The study was designed with an initial exclosure elevation of 20 cm. This elevation was chosen based on the literature, as adequate to exclude mature Canada geese, while maximizing access to other herbivores such as fish and turtles. Repeated measures analysis of variance (ANOVA) was used to analyze the differences between paired fenced and unfenced control plots for a number of variables including total vegetative cover. Differences in total vegetative cover were not statistically significant for the baseline data collected in June 2009. By contrast, two months after the old protective fencing was removed from the initially-vegetated areas to allow Canada geese access to the unfenced control plots, total vegetative cover had declined dramatically in the

  6. Teenagers’ Shape

    Institute of Scientific and Technical Information of China (English)

    亚玲

    2007-01-01

    <正>Teenagers have been of a new shape these days. They are about 20 pounds heavier than teenagers were 60 years ago. They are about four inches taller, too. These facts come from J. M. Tanner, a professor in England.

  7. Herbivory of wild Manduca sexta causes fast down-regulation of photosynthetic efficiency in Datura wrightii: an early signaling cascade visualized by chlorophyll fluorescence.

    Science.gov (United States)

    Barron-Gafford, Greg A; Rascher, Uwe; Bronstein, Judith L; Davidowitz, Goggy; Chaszar, Brian; Huxman, Travis E

    2012-09-01

    Plants experiencing herbivory suffer indirect costs beyond direct loss of leaf area, but differentially so based on the herbivore involved. We used a combination of chlorophyll fluorescence imaging and gas exchange techniques to quantify photosynthetic performance, the efficiency of photochemistry, and heat dissipation to examine immediate and longer-term physiological responses in the desert perennial Datura wrightii to herbivory by tobacco hornworm, Manduca sexta. Herbivory by colony-reared larvae yielded no significant reduction in carbon assimilation, whereas herbivory by wild larvae induced a fast and spreading down-regulation of photosynthetic efficiency, resulting in significant losses in carbon assimilation in eaten and uneaten leaves. We found both an 89 % reduction in net photosynthetic rates in herbivore-damaged leaves and a whole-plant response (79 % decrease in undamaged leaves from adjacent branches). Consequently, herbivory costs are higher than previously estimated in this well-studied plant-insect interaction. We used chlorophyll fluorescence imaging to elucidate the mechanisms of this down-regulation. Quantum yield decreased up to 70 % in a small concentric band surrounding the feeding area within minutes of the onset of herbivory. Non-photochemical energy dissipation by the plant to avoid permanent damage was elevated near the wound, and increased systematically in distant areas of the leaf away from the wound over subsequent hours. Together, the results underscore not only potential differences between colony-reared and wild-caught herbivores in experimental studies of herbivory but also the benefits of quantifying physiological responses of plants in unattacked leaves.

  8. Interaction Effect Between Herbivory and Plant Fertilization on Extrafloral Nectar Production and on Seed Traits: An Experimental Study With Ricinus communis (Euphorbiaceae).

    Science.gov (United States)

    De Sibio, P R; Rossi, M N

    2016-08-01

    It is known that the release of volatile chemicals by many plants can attract the natural enemies of herbivorous insects. Such indirect interactions are likely when plants produce nectar from their extrafloral nectaries, and particularly when the production of extrafloral nectar (EFN) is induced by herbivory. In the present study, we conducted experiments to test whether foliar herbivory inflicted by Spodoptera frugiperda Smith (Noctuidae) increases nectar production by extrafloral nectaries on one of its host plants, Ricinus communis L. (Euphorbiaceae). Due to the current economic importance of R. communis, we also investigated whether the following seed traits-water content, dry mass, and essential oil production-are negatively affected by herbivory. Finally, we tested whether or not nectar production and seed traits are influenced by plant fertilization (plant quality). We found that nectar production was increased after herbivory, but it was not affected by the type of fertilization. Seed dry mass was higher in plants that were subjected to full fertilization, without herbivory; plants maintained in low fertilization conditions, however, had higher seed mass when subjected to herbivory. The same inverted pattern was observed for oil production. Therefore, our results suggest that EFN production in R. communis may act as an indirect defense strategy against herbivores, and that there is a trade-off between reproduction and plant growth when low-fertilized plants are subjected to herbivory. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Is there a missing link? Effects of root herbivory on plant-pollinator interactions and reproductive output in a monocarpic species.

    Science.gov (United States)

    Ghyselen, C; Bonte, D; Brys, R

    2016-01-01

    Herbivores can have a major influence on plant fitness. The direct impact of herbivory on plant reproductive output has long been studied, and recently also indirect effects of herbivory on plant traits and pollinator attraction have received increasing attention. However, the link between these direct and indirect effects has seldom been studied. In this study, we investigated effects of root herbivory on plant and floral traits, pollination success and reproductive outcome in the monocarpic perennial Cynoglossum officinale. We exposed 119 C. officinale plants to a range of root herbivore damage by its specialist herbivore Mogulones cruciger. We assessed the effect of herbivory on several plant traits, pollinator foraging behaviour and reproductive output, and to elucidate the link between these last two we also quantified pollen deposition and pollen tube growth and applied a pollination experiment to test whether seed set was pollen-limited. Larval root herbivory induced significant changes in plant traits and had a negative impact on pollinator visitation. Infested plants were reduced in size, had fewer flowers and received fewer pollinator visits at plant and flower level than non-infested plants. Also, seed set was negatively affected by root herbivory, but this could not be attributed to pollen limitation since neither stigmatic pollen loads and pollen tube growth nor the results of the hand-pollination experiment differed between infested and non-infested plants. Our observations demonstrate that although herbivory may induce significant changes in flowering behaviour and resulting plant-pollinator interactions, it does not necessarily translate into higher rates of pollen limitation. The observed reductions in reproductive output following infection can mainly be attributed to higher resource limitation compared to non-infested plants.

  10. Nontarget herbivory by a weed biocontrol insect is limited to spillover, reducing the chance of population-level impacts.

    Science.gov (United States)

    Catton, Haley A; Lalonde, Robert G; De Clerck-Floate, Rosemarie A

    2015-03-01

    Insects approved for classical biocontrol of weeds are often capable of using close relatives of their target weed for feeding, oviposition, or larval development, with reduced preference and performance. When nontarget herbivory occurs and is suspected to reduce survival, growth, or fecundity of individual plants, and insects are capable of reproducing on their nontarget host, characterization of spatial and temporal patterns of the occurrence and intensity of herbivory is valuable for predicting potential population-level effects. Here, we perform a novel post-release manipulative field experiment with a root-feeding biocontrol weevil, Mogulones crucifer, released in Canada to control the rangeland weed Cynoglossum officinale, to test for its ability to establish on the nontarget plant Hackelia micrantha. After Cynoglossum, M. crucifer exhibits its highest preference for and performance on Hackelia spp. We released M. crucifer on Canadian rangeland sites with naturally occurring populations of H. micrantha growing interspersed with the target weed or in the near absence of the target weed. Adult weevil feeding on surrounding plants was monitored for three summers after release (years 0, 1, and 2), and, subsequently, subsets of plants were destructively sampled to determine M. crucifer oviposition levels. Additional oviposition and larval development data were obtained from seven non-experimental sites where weevils were released zero, three, or four years earlier. M. crucifer was not detected on experimental sites without C. officinale after two years, and nontarget herbivory was restricted to rare, low-level spillover. Visible evidence of adult herbivory (i.e., scars on shoots) was associated with oviposition in 90% of targets but only 30% of nontarget plants. We infer, through ecological refuge theory, that nontarget population-level impacts from M. crucifer spillover are unlikely because of temporal, spatial, and probabilistic refuges from herbivory, and make

  11. Population-level consequences of herbivory, changing climate, and source-sink dynamics on a long-lived invasive shrub.

    Science.gov (United States)

    van Klinken, R D; Pichancourt, J B

    2015-12-01

    Long-lived plant species are highly valued environmentally, economically, and socially, but can also cause substantial harm as invaders. Realistic demographic predictions can guide management decisions, and are particularly valuable for long-lived species where population response times can be long. Long-lived species are also challenging, given population dynamics can be affected by factors as diverse as herbivory, climate, and dispersal. We developed a matrix model to evaluate the effects of herbivory by a leaf-feeding biological control agent released in Australia against a long-lived invasive shrub (mesquite, Leguminoseae: Prosopis spp.). The stage-structured, density-dependent model used an annual time step and 10 climatically diverse years of field data. Mesquite population demography is sensitive to source-sink dynamics as most seeds are consumed and redistributed spatially by livestock. In addition, individual mesquite plants, because they are long lived, experience natural climate variation that cycles over decadal scales, as well as anthropogenic climate change. The model therefore explicitly considered the effects of both net dispersal and climate variation. Herbivory strongly regulated mesquite populations through reduced growth and fertility, but additional mortality of older plants will be required to reach management goals within a reasonable time frame. Growth and survival of seeds and seedlings were correlated with daily soil moisture. As a result, population dynamics were sensitive to rainfall scenario, but population response times were typically slow (20-800 years to reach equilibrium or extinction) due to adult longevity. Equilibrium population densities were expected to remain 5% higher, and be more dynamic, if historical multi-decadal climate patterns persist, the effect being dampened by herbivory suppressing seed production irrespective of preceding rainfall. Dense infestations were unlikely to form under a drier climate, and required net

  12. Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation.

    Science.gov (United States)

    Marín-Spiotta, E; Ostertag, R; Silver, W L

    2007-04-01

    Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.

  13. Potential aboveground biomass in drought-prone forest used for rangeland pastoralism.

    Science.gov (United States)

    Fensham, R J; Fairfax, R J; Dwyer, J M

    2012-04-01

    The restoration of cleared dry forest represents an important opportunity to sequester atmospheric carbon. In order to account for this potential, the influences of climate, soils, and disturbance need to be deciphered. A data set spanning a region defined the aboveground biomass of mulga (Acacia aneura) dry forest and was analyzed in relation to climate and soil variables using a Bayesian model averaging procedure. Mean annual rainfall had an overwhelmingly strong positive effect, with mean maximum temperature (negative) and soil depth (positive) also important. The data were collected after a recent drought, and the amount of recent tree mortality was weakly positively related to a measure of three-year rainfall deficit, and maximum temperature (positive), soil depth (negative), and coarse sand (negative). A grazing index represented by the distance of sites to watering points was not incorporated by the models. Stark management contrasts, including grazing exclosures, can represent a substantial part of the variance in the model predicting biomass, but the impact of management was unpredictable and was insignificant in the regional data set. There was no evidence of density-dependent effects on tree mortality. Climate change scenarios represented by the coincidence of historical extreme rainfall deficit with extreme temperature suggest mortality of 30.1% of aboveground biomass, compared to 21.6% after the recent (2003-2007) drought. Projections for recovery of forest using a mapping base of cleared areas revealed that the greatest opportunities for restoration of aboveground biomass are in the higher-rainfall areas, where biomass accumulation will be greatest and droughts are less intense. These areas are probably the most productive for rangeland pastoralism, and the trade-off between pastoral production and carbon sequestration will be determined by market forces and carbon-trading rules.

  14. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    Science.gov (United States)

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  15. Net changes in aboveground woody carbon stock in western juniper woodlands, 1946-1998

    Science.gov (United States)

    Strand, Eva K.; Vierling, Lee A.; Smith, Alistair M. S.; Bunting, Stephen C.

    2008-03-01

    Although regional increases in woody plant cover in semiarid ecosystems have been identified as a worldwide phenomenon affecting the global carbon budget, quantifying the impact of these vegetation shifts on C pools and fluxes is challenging. Challenges arise because woody encroachment is governed by ecological processes that occur at fine spatial resolutions (1-10 m) and, in many cases, at slow (decadal-scale) temporal rates over large areas. We therefore analyzed time series aerial photography, which exhibits both the necessary spatial precision and temporal extent, to quantify the expansion of western juniper into sagebrush steppe landscapes in southwestern Idaho. We established upper and lower bounds of aboveground woody carbon change across the landscape via two-dimensional spatial wavelet analysis, image texture analysis, and field data collection. Forty-eight 100-ha blocks across a 330,000-ha region were stratified by topography, soil characteristics, and land stewardship for analyses. Across the area we estimate aboveground woody carbon accumulation rates of 3.3 gCm-2yr-1 and 10.0 gCm-2yr-1 using the wavelet and texture method, respectively, during the time period 1946-1998. Carbon accumulation rates were significantly affected by soil properties and were highly dependent on the spatial and temporal scales of analysis. For example, at a 100-ha scale the aboveground carbon accumulation varied from -1.7 to 9.9 gCm-2yr-1, while at the 1-ha scale the range of variability increased to -11 to 22 gCm-2yr-1. These values are an order of magnitude lower than those previously suggested due to woody encroachment, highlighting the need for examining multiple spatial scales when accounting for changes in terrestrial carbon storage.

  16. Transport of root-derived CO2 via the transpiration stream affects aboveground tree physiology

    Science.gov (United States)

    Bloemen, J.; McGuire, M. A.; Aubrey, D. P.; Teskey, R. O.; Steppe, K.

    2012-04-01

    Recent research on soil CO2 efflux has shown that belowground autotrophic respiration is largely underestimated using classical net CO2 flux measurements. Aubrey & Teskey (2009) found that in forest ecosystems a substantial portion of the CO2 released from root respiration remained within the root system and was transported aboveground in the stem via the transpiration stream. The magnitude of this upward movement of CO2 from belowground tissues suggested important implications for how we measure above- and belowground respiration. If a considerable fraction of root-respired CO2 is transported aboveground, where it might be fixed in woody and leaf tissues, then we are routinely underestimating the amount of C needed to sustain belowground tissues. In this study, we infused 13C labeled water into the base of field-grown poplar trees as a surrogate for root-respired CO2 to investigate the possible role of root-derived CO2 as substrate for carbon fixation. The label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and fixed by chlorophyll-containing woody (young bark and xylem) and leaf (petiole) tissues. Moreover, based on 13C analysis of gas samples, we observed that up to 88 ± 0.10 % of the label applied was lost to the atmosphere by stem and branch efflux higher in the trees. Given that one-half of root-respired CO2 may follow this internal flux pathway (Aubrey & Teskey, 2009), we calculated that up to 44% of the root-respired CO2 could diffuse to the atmosphere once transported to the stem and branches. Thus, a large portion of CO2 that diffuses out of aboveground tissues may actually result from root respiration. Our results show that CO2 originating belowground can be transported internally to aboveground parts of trees, where it will have an important impact on tree physiology. Internal transport of CO2 indicates that the gas exchange approach to estimating above- and

  17. Aboveground biomass of three conifers in the Qianyanzhou plantation, Jiangxi Province, China

    Institute of Scientific and Technical Information of China (English)

    Xuanran LI; Qijing LIU; Yongrui CHEN; Lile HU; Fengting YANG

    2008-01-01

    Regressive models of the aboveground bio-mass for three conifers in subtropical China-slash pine (Pinus elliottii), Masson pine (P. massoniana) andChinese fir (Cunninghamia lanceolata)-were established. Regression analysis of leaf biomass and total biomass of each branch against branch diameter (d), branch length (L), d3 and d2L was conducted with functions of linear, power and exponent. A power law equation with a single parameter (d) was proved to be better than the rest for Masson pine and Chinese fir, and a linear equation with parameter (d3) is better for slash pine. The canopy biomass was derived by adopting the regression equa-tions to all branches of each individual tree. These kinds of equations were also used to fit the relationship between total tree biomass, branch biomass, foliage biomass and tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. However, for foliage biomass and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P<0.001) for foliage biomass, branch biomass and total biomass, among which the equation of the total biomass was the highest. With these equations, the aboveground biomass of Masson pine forest, slash pine forest and Chinese fir forest were estimated, in addition to the allocation of aboveground biomass. The above-ground biomass of Masson pine forest, slash pine forest and Chinese fir forest was 83.6, 72.1 and 59 t/hm2 respectively, and the stem biomass was more than the foliage biomass and the branch biomass. The under-ground biomass of these three forests which estimated with others' research were 10.44, 9.42 and 11.48 t/hm2, and the amount of carbon-fixed were 47.94, 45.14 and 37.52 t/hm2, respectively.

  18. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion

  19. Species Composition, Richness and Aboveground Biomass of Natural Grassland in Hilly-Gully Regions of the Loess Plateau, China

    Institute of Scientific and Technical Information of China (English)

    DENG Lei; SHANGGUAN; Zhou-ping

    2014-01-01

    In order to study the characteristics of species composition, richness and aboveground biomass of natural grasslands, and then ifnd out the relations between species richness and aboveground productivity of the communities and possible mechanisms to form the relations, four typical grassland communities (Artemisia capillaries (AC), Thymus quinquecostatus (TQ), Stipa bungeana (SB) and Stipa grandis (SG)) along with a succession sequence in hilly-gully regions of the Loess Plateau, China, were investigated by ifeld survey and laboratory analysis. The results were summarized as follows:Different succession stages had different species compositions as well as different proportions of plant life forms and photosynthetic types, and Asteraceae, Poaceae and Leguminosae were their dominant species as well as their dominant perennial herb species;and different succession stages had signiifcantly different species richness and aboveground biomasses. There were many relation patterns (linear positive correlation, unrelated relations and unimodal relations) between the species richness and aboveground biomass in different succession stages and a signiifcant unimodal relation between the species richness and aboveground biomass in all the grassland communities and the highest species diversity appeared at a moderate level of productivity. The results suggest the unimodal relations in all the grassland communities are accumulative results of the relations in each succession stage.

  20. Invasive plant Alternanthera philoxeroides suffers more severe herbivory pressure than native competitors in recipient communities.

    Science.gov (United States)

    Fan, Shufeng; Yu, Haihao; Dong, Xianru; Wang, Ligong; Chen, Xiuwen; Yu, Dan; Liu, Chunhua

    2016-11-09

    Host-enemy interactions are vital mechanisms that explain the success or failure of invasive plants in new ranges. We surveyed the defoliation of invasive Alternanthera philoxeroides and co-occurring native plants on two islands during different seasons over three consecutive years and measured the leaf nitrogen content and the C/N ratio of each plant species. To evaluate the effects of herbivory on A. philoxeroides, an herbivore exclosure experiment was conducted. We found that the mean defoliation of A. philoxeroides was higher than that of native plants, regardless of whether the dominant species was A. philoxeroides or native plants. A. philoxeroides defoliation increased significantly as the months progressed, whereas the defoliation of the total population of native plants was constant. The leaf nitrogen content was positively correlated with defoliation, and it was highest in A. philoxeroides. Additionally, A. philoxeroides in the herbivore exclusion treatment showed an increase in shoot biomass and total shoot length. Our study revealed that native generalist herbivores prefer the invasive plant to the natives because of the higher leaf nitrogen content. These results support the biotic resistance hypothesis, suggesting that native herbivore species can limit the population spread of invasive plants.

  1. Invasive plant Alternanthera philoxeroides suffers more severe herbivory pressure than native competitors in recipient communities

    Science.gov (United States)

    Fan, Shufeng; Yu, Haihao; Dong, Xianru; Wang, Ligong; Chen, Xiuwen; Yu, Dan; Liu, Chunhua

    2016-11-01

    Host-enemy interactions are vital mechanisms that explain the success or failure of invasive plants in new ranges. We surveyed the defoliation of invasive Alternanthera philoxeroides and co-occurring native plants on two islands during different seasons over three consecutive years and measured the leaf nitrogen content and the C/N ratio of each plant species. To evaluate the effects of herbivory on A. philoxeroides, an herbivore exclosure experiment was conducted. We found that the mean defoliation of A. philoxeroides was higher than that of native plants, regardless of whether the dominant species was A. philoxeroides or native plants. A. philoxeroides defoliation increased significantly as the months progressed, whereas the defoliation of the total population of native plants was constant. The leaf nitrogen content was positively correlated with defoliation, and it was highest in A. philoxeroides. Additionally, A. philoxeroides in the herbivore exclusion treatment showed an increase in shoot biomass and total shoot length. Our study revealed that native generalist herbivores prefer the invasive plant to the natives because of the higher leaf nitrogen content. These results support the biotic resistance hypothesis, suggesting that native herbivore species can limit the population spread of invasive plants.

  2. Identification of QTL in soybean underlying resistance to herbivory by Japanese beetles (Popillia japonica, Newman).

    Science.gov (United States)

    Yesudas, C R; Sharma, H; Lightfoot, D A

    2010-07-01

    Soybean [Glycine max (L.) Merr.] was one of the most important legume crops in the world in 2010. Japanese beetles (JB; Popillia japonica, Newman) in the US were an introduced and potentially damaging insect pest for soybean. JBs are likely to spread across the US if global warming occurs. Resistance to JB in soybean was previously reported only in plant introductions. The aims here were to identify loci underlying resistance to JB herbivory in recombinant inbred lines (RILs) derived from the cross of Essex x Forrest cultivars (EF94) and to correlate those with loci with factors that confer insect resistance in soybean cultivars. The RIL population was used to map 413 markers, 238 satellite markers and 177 other DNA markers. Field data were from two environments over 2 years. Pest severity (PS) measured defoliation on a 0-9 scale. Pest incidence (PI) was the percentage of plants within each RIL with beetles on them. Antibiosis and antixenosis data were from feeding assays with detached leaves in petri plates. Five QTL were detected for the mean PS field trait (16% root knot nematode (LG F) but not other major loci underlying resistance to nematode or insect pests (LGs G, H and M).

  3. Direct and Pollinator-Mediated Effects of Herbivory on Strawberry and the Potential for Improved Resistance.

    Science.gov (United States)

    Muola, Anne; Weber, Daniela; Malm, Lisa E; Egan, Paul A; Glinwood, Robert; Parachnowitsch, Amy L; Stenberg, Johan A

    2017-01-01

    The global decline in pollinators has partly been blamed on pesticides, leading some to propose pesticide-free farming as an option to improve pollination. However, herbivores are likely to be more prevalent in pesticide-free environments, requiring knowledge of their effects on pollinators, and alternative crop protection strategies to mitigate any potential pollination reduction. Strawberry leaf beetles (SLB) Galerucella spp. are important strawberry pests in Northern Europe and Russia. Given that SLB attack both leaf and flower tissue, we hypothesized pollinators would discriminate against SLB-damaged strawberry plants (Fragaria vesca, cultivar 'Rügen'), leading to lower pollination success and yield. In addition we screened the most common commercial cultivar 'Rügen' and wild Swedish F. vesca genotypes for SLB resistance to assess the potential for inverse breeding to restore high SLB resistance in cultivated strawberry. Behavioral observations in a controlled experiment revealed that the local pollinator fauna avoided strawberry flowers with SLB-damaged petals. Low pollination, in turn, resulted in smaller more deformed fruits. Furthermore, SLB-damaged flowers produced smaller fruits even when they were hand pollinated, showing herbivore damage also had direct effects on yield, independent of indirect effects on pollination. We found variable resistance in wild woodland strawberry to SLB and more resistant plant genotypes than the cultivar 'Rügen' were identified. Efficient integrated pest management strategies should be employed to mitigate both direct and indirect effects of herbivory for cultivated strawberry, including high intrinsic plant resistance.

  4. Direct and Pollinator-Mediated Effects of Herbivory on Strawberry and the Potential for Improved Resistance

    Directory of Open Access Journals (Sweden)

    Anne Muola

    2017-05-01

    Full Text Available The global decline in pollinators has partly been blamed on pesticides, leading some to propose pesticide-free farming as an option to improve pollination. However, herbivores are likely to be more prevalent in pesticide-free environments, requiring knowledge of their effects on pollinators, and alternative crop protection strategies to mitigate any potential pollination reduction. Strawberry leaf beetles (SLB Galerucella spp. are important strawberry pests in Northern Europe and Russia. Given that SLB attack both leaf and flower tissue, we hypothesized pollinators would discriminate against SLB-damaged strawberry plants (Fragaria vesca, cultivar ‘Rügen’, leading to lower pollination success and yield. In addition we screened the most common commercial cultivar ‘Rügen’ and wild Swedish F. vesca genotypes for SLB resistance to assess the potential for inverse breeding to restore high SLB resistance in cultivated strawberry. Behavioral observations in a controlled experiment revealed that the local pollinator fauna avoided strawberry flowers with SLB-damaged petals. Low pollination, in turn, resulted in smaller more deformed fruits. Furthermore, SLB-damaged flowers produced smaller fruits even when they were hand pollinated, showing herbivore damage also had direct effects on yield, independent of indirect effects on pollination. We found variable resistance in wild woodland strawberry to SLB and more resistant plant genotypes than the cultivar ‘Rügen’ were identified. Efficient integrated pest management strategies should be employed to mitigate both direct and indirect effects of herbivory for cultivated strawberry, including high intrinsic plant resistance.

  5. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.

    Science.gov (United States)

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T; Wu, Jianqiang

    2017-08-08

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta, and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta-connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.

  6. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants

    Science.gov (United States)

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T.

    2017-01-01

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta, and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta-connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts. PMID:28739895

  7. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways.

    Science.gov (United States)

    Kerchev, Pavel I; Fenton, Brian; Foyer, Christine H; Hancock, Robert D

    2012-02-01

    Under herbivore attack plants mount a defence response characterized by the accumulation of secondary metabolites and inhibitory proteins. Significant changes are observed in the transcriptional profiles of genes encoding enzymes of primary metabolism. Such changes have often been interpreted in terms of a requirement for an increased investment of resources to 'fuel' the synthesis of secondary metabolites. While enhanced secondary metabolism undoubtedly exerts an influence on primary metabolism, accumulating evidence suggests that rather than stimulating photosynthesis insect herbivory reduces photosynthetic carbon fixation and this response occurs by a re-programming of gene expression. Within this context, reactive oxygen species (ROS) and reductant/oxidant (redox) signalling play a central role. Accumulating evidence suggests that ROS signalling pathways are closely interwoven with hormone-signalling pathways in plant-insect interactions. Here we consider how insect infestation impacts on the stress signalling network through effects on ROS and cellular redox metabolism with particular emphasis on the roles of ROS in the plant responses to phloem-feeding insects.

  8. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced...... exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species...... in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...

  9. Linking belowground and aboveground phenology in two boreal forests in Northeast China.

    Science.gov (United States)

    Du, Enzai; Fang, Jingyun

    2014-11-01

    The functional equilibrium between roots and shoots suggests an intrinsic linkage between belowground and aboveground phenology. However, much less understanding of belowground phenology hinders integrating belowground and aboveground phenology. We measured root respiration (Ra) as a surrogate for root phenology and integrated it with observed leaf phenology and radial growth in a birch (Betula platyphylla)-aspen (Populus davidiana) forest and an adjacent larch (Larix gmelinii) forest in Northeast China. A log-normal model successfully described the seasonal variations of Ra and indicated the initiation, termination and peak date of root phenology. Both root phenology and leaf phenology were highly specific, with a later onset, earlier termination, and shorter period of growing season for the pioneer tree species (birch and aspen) than the dominant tree species (larch). Root phenology showed later initiation, later peak and later termination dates than leaf phenology. An asynchronous correlation of Ra and radial growth was identified with a time lag of approximately 1 month, indicating aprioritization of shoot growth. Furthermore, we found that Ra was strongly correlated with soil temperature and air temperature, while radial growth was only significantly correlated with air temperature, implying a down-regulating effect of temperature. Our results indicate different phenologies between pioneer and dominant species and support a down-regulation hypothesis of plant phenology which can be helpful in understanding forest dynamics in the context of climate change.

  10. Spatial Variation in Tree Density and Estimated Aboveground Carbon Stocks in Southern Africa

    Directory of Open Access Journals (Sweden)

    Lulseged Tamene

    2016-03-01

    Full Text Available Variability in woody plant species, vegetation assemblages and anthropogenic activities derails the efforts to have common approaches for estimating biomass and carbon stocks in Africa. In order to suggest management options, it is important to understand the vegetation dynamics and the major drivers governing the observed conditions. This study uses data from 29 sentinel landscapes (4640 plots across the southern Africa. We used T-Square distance method to sample trees. Allometric models were used to estimate aboveground tree biomass from which aboveground biomass carbon stock (AGBCS was derived for each site. Results show average tree density of 502 trees·ha−1 with semi-arid areas having the highest (682 trees·ha−1 and arid regions the lowest (393 trees·ha−1. The overall AGBCS was 56.4 Mg·ha−1. However, significant site to site variability existed across the region. Over 60 fold differences were noted between the lowest AGBCS (2.2 Mg·ha−1 in the Musungwa plains of Zambia and the highest (138.1 Mg·ha−1 in the scrublands of Kenilworth in Zimbabwe. Semi-arid and humid sites had higher carbon stocks than sites in sub-humid and arid regions. Anthropogenic activities also influenced the observed carbon stocks. Repeated measurements would reveal future trends in tree cover and carbon stocks across different systems.

  11. Modeling forest aboveground biomass by combining spectrum, textures and topographic features

    Institute of Scientific and Technical Information of China (English)

    Mingshi LI; Ying TAN; Jie PAN; Shikui PENG

    2008-01-01

    Many textural measures have been developed and used for improving land cover classification accu-racy, but they rarely examined the role of textures in improving the performance of forest aboveground biomass estimations. The relationship between texture and biomass is poorly understood. In this paper, SPOT5 HRG datasets were ortho-rectified and atmospherically calibrated. Then the transform of spectral features is introduced, and the extraction of textural measures based on the Gray Level Co-occurrence Matrix is also implemented in accordance with four different directions (0°, 45°, 90o and 135°) and various moving window sizes, ranging from 3 x 3 to 51 x 51. Thus, a variety of textures were generated. Combined with derived topo-graphic features, the forest aboveground biomass estima-tion models for five predominant forest types in the scenic spot of the Mausoleum of Sun Yat-Sen, Nanjing, are identified and constructed, and the estimation accuracies exhibited by these models are also validated and evaluated respectively. The results indicate that: 1) Most textures are weakly correlated with forest biomass, but minority textural measures such as ME, CR and VA play a significantly effective and critical role in estimating forest biomass; 2) The textures of coniferous forest appear preferable to those of broad-leaved forest and mixed forest in representing the spatial configurations of forests;and 3) Among the topographic features including slope,aspect and elevation,aspect has the lowest correlation with the biomass of a forest in this study.

  12. The relationship between aboveground biomass and radar backscatter as observed on airborne SAR imagery

    Science.gov (United States)

    Kasischke, Eric S.; Bourgeau-Chavez, Laura L.; Christensen, Norman L., Jr.; Dobson, M. Craig

    1991-01-01

    The initial results of an experiment to examine the dependence of radar image intensity on total above-ground biomass in a southern US pine forest ecosystem are presented. Two sets of data are discussed. First, we examine two L-band (VV-polarization) data sets which were collected 5 years apart. These data sets clearly illustrate the change in backscatter resulting from the growth of a young pine stand. Second, we examine the dependence between radar backscatter and biomass as a function of radar frequency using data from the JPL Airborne Synthetic Aperture Radar (AIRSAR) and ERIM/NADC P-3 SAR systems. These results show that there is a positive correlation between above-ground biomass and radar backscatter and at C-, L-, and P-bands, but very little correlation at C-band. The biomass level for which this positive correlation holds decreases as radar frequency increases. This positive correlation is stronger at HH and HV polarizations that VV polarization at L- and P-bands, but strongest at VV polarization for C-band.

  13. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.

  14. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    Directory of Open Access Journals (Sweden)

    James W Raich

    Full Text Available Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production. In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  15. [Effect of flooding disturbance on aboveground biomass of Leymus chinensis grassland--a preliminary study].

    Science.gov (United States)

    Wang, Zhengwen; Zhu, Tingcheng

    2003-12-01

    To investigate the effect of flooding disturbance on the net primary productivity of Songnen steppe, a comparatively thorough study was conducted on Sanjiadian State-owned Rangeland in Da'an city, Jilin Province, which was partly flooded in 1998. The study site was located in the south Songnen plain of Northeastern China, dominated by Leymus chinensis grassland. An extensively mild slope with flooding gradients (from un-flooded to heavily flooded) was taken as the study site. Two flooded transects coded FL and FH which was respectively subjected to 3 and 9 months of flooding were designed, and an un-flooded one coded CK at a relatively higher elevation was set as a control. Before flooding occurred in 1998, the slope had an almost uniform soil and L. chinensis dominated vegetation. Each transect was 0.2 hm2 (100 m x 20 m) in size, and the two flooded transects were almost paralleled each other, with the longer sides of them perpendicular to the retrieving direction of floodwater. In each transect twenty 1 m2 sized quadrats were randomly chosen to survey the community structure and the aboveground biomass. Comparative analyses were made on the dynamics of soil water, soil N and P, and species composition of grassland communities that occurred in responses to flooding disturbance. The results showed that the lightly and heavily flooded transects had a significantly larger aboveground biomass than the control, with the increase of 89.54% and 113.45%, respectively. The heavily flooded transect had a slightly but insignificantly larger aboveground biomass than the lightly flooded one, indicating that on flooded sites, water was not the limiting factor of the aboveground biomass. The acute changes of soil water caused by flooding led to the changes of soil nutrients and species assemblages, which would impact community biomass. Just as the case for aboveground biomass, the soil water contents of the two flooded transects were significantly larger than that of control

  16. QUANTIFICATION OF ABOVE-GROUND BIOMASS IN STAND OF Acacia mearnsii DE WILD., BATEMANS BAY PROVENANCE - AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Winckler Caldeira

    2010-08-01

    Full Text Available The above-ground biomass of the Australian provenance Batemans Bay of black wattle (Acacia mearnsii De Wild., at 2.4 years after planting was quantified. The provenance was established in soils of low fertility, with high acidity, at Fazenda Menezes, District of Capão Comprido, County of Butiá/RS. Nine trees were selected to form a sample. The destructive sampling comprised the individualization of the compartments of the above-ground biomass (leaves, live branches, dead branches, bark, and wood, and the determination of the dry matter allocated in each of these compartments. The production of above-ground biomass of the Australian provenance Batemans Bay was 36,1 Mg ha-1 with the following distribution: 20% in the leaves; 19,5% in the live branches; 2,8% in the dead branches; 11,8% in the bark and 45,9% in the wood.

  17. Mechanisms driving diversity-productivity relationships differ between exotic and native communities and are affected by gastropod herbivory.

    Science.gov (United States)

    Korell, Lotte; Schmidt, Robin; Bruelheide, Helge; Hensen, Isabell; Auge, Harald

    2016-04-01

    Biodiversity experiments have shown that productivity usually increases with plant species richness. However, most of those studies disregarded the importance of trophic interactions to the diversity-productivity relationship, and focused on the loss of native species while ignoring invasions by exotic species. Yet, as functional complementarity and the impact of plant antagonists are likely to differ between native and exotic communities, the diversity-productivity relationship may change when native communities are invaded by exotic species. We conducted a mesocosm experiment to test how diversity effects, evenness, and productivity differed between exotic and native assemblages of grassland plants, and how these communities were influenced by slug herbivory. In line with other experiments, we found higher productivity in exotic than in native communities. However, different mechanisms (complementarity vs. selection effect) contributed to the positive diversity-productivity relationships in exotic vs. native communities. Against expectations, native communities showed much lower evenness and a greater selection effect, suggesting that competitive dominance among native species may be even stronger than among exotic species. Slug herbivory decreased productivity independently of species origin and species diversity. However, exotic communities showed a threefold higher complementarity effect than native communities in the absence of slugs, which was mainly driven by differences in the responses of native and exotic legumes and nonleguminous herbs. Our results imply that underlying mechanisms for the positive diversity-productivity relationship differ between native and exotic communities in the early stages of community development, and that differential responses of plant functional groups to generalist herbivory can contribute to this pattern.

  18. Greening of the Arctic: Partitioning Warming Versus Reindeer Herbivory for Willow Populations on Yamal Peninsula, Northwest Siberia

    Science.gov (United States)

    Forbes, B. C.; Macias-Fauria, M.; Zetterberg, P.; Kumpula, T.

    2012-12-01

    Arctic warming has been linked to observed increases in tundra shrub cover and growth in recent decades on the basis of significant relationships between deciduous shrub growth/biomass and temperature. These vegetation trends have been linked to Arctic sea-ice decline and thus to the sea-ice/albedo feedback known as Arctic amplification. However, the interactions between climate, sea ice, tundra vegetation and herbivores remain poorly understood. Recently we revealed a 50-year growth response over a >100,000 km2 area to a rise in summer temperature for willow (Salix lanata), one the most abundant shrub genera at and north of the continental treeline and an important source of reindeer forage in spring, summer and autumn. We demonstrated that whereas plant productivity is related to sea ice in late spring, the growing season peak responds to persistent synoptic-scale air masses over West Siberia associated with Fennoscandian weather systems through the Rossby wave train. Substrate was important for biomass accumulation, yet a strong correlation between growth and temperature encompasses all observed soil types. Vegetation was especially responsive to temperature in early summer. However, the role of herbivory was not addressed. The present data set explores the relationship between long-term herbivory and growth trends of shrubs experiencing warming in recent decades. Semi-domestic reindeer managed by indigenous Nenets nomads occur at high densities in summer on exposed ridge tops and graze heavily on prostrate and low erect willows. A few meters away in moderately sloped landslides tall willows remain virtually ungrazed as their canopies have grown above the browse line of ca. 180 cm. Here we detail the responses of neighboring shrub populations with and without intensive herbivory yet subject to the same decadal warming trend.

  19. Seagrass Herbivory Levels Sustain Site-Fidelity in a Remnant Dugong Population.

    Directory of Open Access Journals (Sweden)

    Elrika D'Souza

    Full Text Available Herds of dugong, a largely tropical marine megaherbivore, are known to undertake long-distance movements, sequentially overgrazing seagrass meadows in their path. Given their drastic declines in many regions, it is unclear whether at lower densities, their grazing is less intense, reducing their need to travel between meadows. We studied the effect of the feeding behaviour of a small dugong population in the Andaman and Nicobar archipelago, India to understand how small isolated populations graze seagrasses. In the seven years of our observation, all recorded dugongs travelled either solitarily or in pairs, and their use of seagrasses was limited to 8 meadows, some of which were persistently grazed. These meadows were relatively large, contiguous and dominated by short-lived seagrasses species. Dugongs consumed approximately 15% of meadow primary production, but there was a large variation (3-40% of total meadow production in consumption patterns between meadows. The impact of herbivory was relatively high, with shoot densities c. 50% higher inside herbivore exclosures than in areas exposed to repeated grazing. Our results indicate that dugongs in the study area repeatedly graze the same meadows probably because the proportion of primary production consumed reduces shoot density to levels that are still above values that can trigger meadow abandonment. This ability of seagrasses to cope perhaps explains the long-term site fidelity shown by individual dugongs in these meadows. The fact that seagrass meadows in the archipelago are able to support dugong foraging requirements allows us to clearly identify locations where this remnant population persists, and where urgent management efforts can be directed.

  20. Herbivory and drought interact to enhance spatial patterning and diversity in a savanna understory.

    Science.gov (United States)

    Porensky, Lauren M; Wittman, Sarah E; Riginos, Corinna; Young, Truman P

    2013-10-01

    The combination of abiotic stress and consumer stress can have complex impacts on plant community structure. Effective conservation and management of semi-arid ecosystems requires an understanding of how different stresses interact to structure plant communities. We explored the separate and combined impacts of episodic drought, livestock grazing, and wild ungulate herbivory on species co-occurrence and diversity patterns in a relatively productive, semi-arid Acacia savanna. Specifically, we analyzed 9 years of biannual plant community data from the Kenya long-term exclosure experiment, a broad-scale manipulative experiment that has excluded different combinations of large mammalian herbivores from 18 4-ha plots since 1995. During droughts, we observed low species diversity and random species co-occurrence patterns. However, when rain followed a major drought, areas exposed to moderate cattle grazing displayed high species diversity and evidence of significant species aggregation. These patterns were not apparent in the absence of cattle, even if other large herbivores were present. To explore possible mechanisms, we examined patterns separately for common and rare species. We found that aggregation patterns were likely driven by rare species responding similarly to the availability of open micro-sites. Our results indicate that in a productive, fire-suppressed savanna, the combination of periodic drought and moderate cattle grazing can enhance plant biodiversity and fine-scale spatial heterogeneity by opening up space for species that are otherwise rare or cryptic. Our findings also emphasize that domestic herbivores can have significantly stronger impacts on plant community dynamics than wild herbivores, even in an ecosystem with a long history of grazing.

  1. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jules Beekwilder

    Full Text Available Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.

  2. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.

    Science.gov (United States)

    Beekwilder, Jules; van Leeuwen, Wessel; van Dam, Nicole M; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W; Schipper, Bert; Verbocht, Hans; de Vos, Ric C H; Morandini, Piero; Aarts, Mark G M; Bovy, Arnaud

    2008-04-30

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.

  3. Interspecific variation in compensatory regrowth to herbivory associated with soil nutrients in three Ficus (Moraceae saplings.

    Directory of Open Access Journals (Sweden)

    Jin Zhao

    Full Text Available Plant compensatory regrowth is an induced process that enhances plant tolerance to herbivory. Plant behavior against herbivores differs between species and depends on resource availability, thus making general predictions related to plant compensatory regrowth difficult. To understand how soil nutrients determine the degree of compensatory regrowth for different plant species, we selected saplings of three Ficus species and treated with herbivore insects and artificial injury in both glasshouse conditions and in the field at two soil nutrient levels. Compensatory regrowth was calculated by biomass, relative growth rate and photosynthetic characteristics. A similar pattern was found in both the glasshouse and in the field for species F. hispida, where overcompensatory regrowth was triggered only under fertile conditions, and full compensatory regrowth occurred under infertile conditions. For F. auriculata, overcompensatory regrowth was stimulated only under infertile conditions and full compensatory regrowth occurred under fertile conditions. Ficus racemosa displayed full compensatory regrowth in both soil nutrient levels, but without overcompensatory regrowth following any of the treatments. The three Ficus species differed in biomass allocation following herbivore damage and artificial injury. The root/shoot ratio of F. hispida decreased largely following herbivore damage and artificial injury, while the root/shoot ratio for F. auriculata increased against damage treatments. The increase of shoot and root size for F. hispida and F. auriculata, respectively, appeared to be caused by a significant increase in photosynthesis. The results indicated that shifts in biomass allocation and increased photosynthesis are two of the mechanisms underlying compensatory regrowth. Contrasting patterns among the three Ficus species suggest that further theoretical and empirical work is necessary to better understand the complexity of the plant responses to

  4. Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra

    Science.gov (United States)

    Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth

    2017-02-01

    , underlying ecosystem processes are beginning to change. In addition, even short bouts of intense herbivory can have long-term consequences for some species in these communities.

  5. Sediments influence accumulation of two macroalgal species through novel but differing interactions with nutrients and herbivory

    Science.gov (United States)

    Clausing, Rachel J.; Bittick, Sarah Joy; Fong, Caitlin R.; Fong, Peggy

    2016-12-01

    Despite increasing concern that sediment loads from disturbed watersheds facilitate algal dominance on tropical reefs, little is known of how sediments interact with two primary drivers of algal communities, nutrients and herbivory. We examined the effects of sediment loads on the thalli of two increasingly abundant genera of macroalgae, Galaxaura and Padina, in a bay subject to terrestrial sediment influx in Mo'orea, French Polynesia. Field experiments examining (1) overall effects of ambient sediments and (2) interacting effects of sediments (ambient/removal) and herbivores (caged/uncaged) demonstrated that sediments had strong but opposite effects on both species' biomass accumulation. Sediment removal increased accumulation of Padina boryana Thivy 50% in the initial field experiment but had no effect in the second; rather, in a novel interaction, herbivores overcompensated for increases in tissue nutrient stores that occurred with sediments loads, likely by preferential consumption of nutrient-rich meristematic tissues. Despite negative effects of sediments on biomass, Padina maintained rapid growth across treatments in both experiments. In contrast, positive growth in Galaxaura divaricata Kjellman only occurred with ambient sediment loads. In mesocosm experiments testing interactions of added nutrients and sediments on growth, Galaxaura grew at equivalent rates with sediments (collected from thalli on the reef) as with additions of nitrate and phosphate, suggesting sediments provide a nutrient subsidy. For Padina, however, the only effect was a 50% reduction in growth with sediment. Overall, retention of thallus sediments creates a positive feedback that Galaxaura appears to require to sustain net growth, while Padina merely tolerates sediments. These results indicate that sediments can modify nutrient and herbivore control of algae in ways that differ among species, with the potential for strong and unexpected effects on the abundance and composition of

  6. Testing for the effects and consequences of mid paleogene climate change on insect herbivory.

    Directory of Open Access Journals (Sweden)

    Torsten Wappler

    Full Text Available BACKGROUND: The Eocene, a time of fluctuating environmental change and biome evolution, was generally driven by exceptionally warm temperatures. The Messel (47.8 Ma and Eckfeld (44.3 Ma deposits offer a rare opportunity to take a census of two, deep-time ecosystems occurring during a greenhouse system. An understanding of the long-term consequences of extreme warming and cooling events during this interval, particularly on angiosperms and insects that dominate terrestrial biodiversity, can provide insights into the biotic consequences of current global climatic warming. METHODOLOGY/PRINCIPAL FINDINGS: We compare insect-feeding damage within two middle Eocene fossil floras, Messel and Eckfeld, in Germany. From these small lake deposits, we studied 16,082 angiosperm leaves and scored each specimen for the presence or absence of 89 distinctive and diagnosable insect damage types (DTs, each of which was allocated to a major functional feeding group, including four varieties of external foliage feeding, piercing- and-sucking, leaf mining, galling, seed predation, and oviposition. Methods used for treatment of presence-absence data included general linear models and standard univariate, bivariate and multivariate statistical techniques. CONCLUSIONS/SIGNIFICANCE: Our results show an unexpectedly high diversity and level of insect feeding than comparable, penecontemporaneous floras from North and South America. In addition, we found a higher level of herbivory on evergreen, rather than deciduous taxa at Messel. This pattern is explained by a ca. 2.5-fold increase in atmospheric CO(2 that overwhelmed evergreen antiherbivore defenses, subsequently lessened during the more ameliorated levels of Eckfeld times. These patterns reveal important, previously undocumented features of plant-host and insect-herbivore diversification during the European mid Eocene.

  7. Elk herbivory alters small mammal assemblages in high-elevation drainages.

    Science.gov (United States)

    Parsons, Elliott W R; Maron, John L; Martin, Thomas E

    2013-03-01

    Heavy herbivory by ungulates can substantially alter habitat, but the indirect consequences of habitat modification for animal assemblages that rely on that habitat are not well studied. This is a particularly important topic given that climate change can alter plant-herbivore interactions. We explored short-term responses of small mammal communities to recent exclusion of Rocky Mountain elk (Cervus elaphus) in high-elevation riparian drainages in northern Arizona, where elk impacts on vegetation have increased over the past quarter century associated with climate change. We used 10-ha elk exclosures paired with unfenced control drainages to examine how browsing influenced the habitat use, relative abundance, richness and diversity of a small mammal assemblage. We found that the small mammal assemblage changed significantly after 5 years of elk exclusion. Relative abundance of voles (Microtus mexicanus) increased in exclosure drainages, likely due to an increase in habitat quality. The relative abundances of woodrats (Neotoma neomexicana) and two species of mice (Peromyscus maniculatus and P. boylii) decreased in the controls, while remaining stable in exclosures. The decline of mice in control drainages was likely due to the decline in shrub cover that they use. Thus, elk exclusion may have maintained or improved habitat for mice inside the exclosures while habitat quality and mouse abundance both declined outside the fences. Finally, small mammal species richness increased in the exclosures relative to the controls while species diversity showed no significant trends. Together, our results show that relaxation of heavy herbivore pressure by a widespread native ungulate can lead to rapid changes in small mammal assemblages. Moreover, exclusion of large herbivores can yield rapid responses by vegetation that may enhance or maintain habitat quality for small mammal populations. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  8. Interspecific variation in compensatory regrowth to herbivory associated with soil nutrients in three Ficus (Moraceae) saplings.

    Science.gov (United States)

    Zhao, Jin; Chen, Jin

    2012-01-01

    Plant compensatory regrowth is an induced process that enhances plant tolerance to herbivory. Plant behavior against herbivores differs between species and depends on resource availability, thus making general predictions related to plant compensatory regrowth difficult. To understand how soil nutrients determine the degree of compensatory regrowth for different plant species, we selected saplings of three Ficus species and treated with herbivore insects and artificial injury in both glasshouse conditions and in the field at two soil nutrient levels. Compensatory regrowth was calculated by biomass, relative growth rate and photosynthetic characteristics. A similar pattern was found in both the glasshouse and in the field for species F. hispida, where overcompensatory regrowth was triggered only under fertile conditions, and full compensatory regrowth occurred under infertile conditions. For F. auriculata, overcompensatory regrowth was stimulated only under infertile conditions and full compensatory regrowth occurred under fertile conditions. Ficus racemosa displayed full compensatory regrowth in both soil nutrient levels, but without overcompensatory regrowth following any of the treatments. The three Ficus species differed in biomass allocation following herbivore damage and artificial injury. The root/shoot ratio of F. hispida decreased largely following herbivore damage and artificial injury, while the root/shoot ratio for F. auriculata increased against damage treatments. The increase of shoot and root size for F. hispida and F. auriculata, respectively, appeared to be caused by a significant increase in photosynthesis. The results indicated that shifts in biomass allocation and increased photosynthesis are two of the mechanisms underlying compensatory regrowth. Contrasting patterns among the three Ficus species suggest that further theoretical and empirical work is necessary to better understand the complexity of the plant responses to herbivore damage.

  9. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming.

    Science.gov (United States)

    Xue, Kai; Yuan, Mengting M; Xie, Jianping; Li, Dejun; Qin, Yujia; Hale, Lauren E; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2016-09-27

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the interactive effects of

  10. Algal growth and species composition under experimental control of herbivory, phosphorus and coral abundance in Glovers Reef, Belize.

    Science.gov (United States)

    McClanahan, T R; Cokos, B A; Sala, E

    2002-06-01

    The proliferation of algae on disturbed coral reefs has often been attributed to (1) a loss of large-bodied herbivorous fishes, (2) increases in sea water nutrient concentrations, particularly phosphorus, and (3) a loss of hard coral cover or a combination of these and other factors. We performed replicated small-scale caging experiments in the offshore lagoon of Glovers Reef atoll, Belize where three treatments had closed-top (no large-bodied herbivores) and one treatment had open-top cages (grazing by large-bodied herbivores). Closed-top treatments simulated a reduced-herbivory situation, excluding large fishes but including small herbivorous fishes such as damselfishes and small parrotfishes. Treatments in the closed-top cages included the addition of high phosphorus fertilizer, live branches of Acropora cervicornis and a third unmanipulated control treatment. Colonization, algal biomass and species composition on dead A. palmata "plates" were studied weekly for 50 days in each of the four treatments. Fertilization doubled the concentration of phosphorus from 0.35 to 0.77 microM. Closed-top cages, particularly the fertilizer and A. cervicornis additions, attracted more small-bodied parrotfish and damselfish than the open-top cages such that there was moderate levels of herbivory in closed-top cages. The open-top cages did, however, have a higher abundance of the chemically and morphologically defended erect algal species including Caulerpa cupressoides, Laurencia obtusa, Dictyota menstrualis and Lobophora variegata. The most herbivore-resistant calcareous green algae (i.e. Halimeda) were, however, uncommon in all treatments. Algal biomass increased and fluctuated simultaneously in all treatments over time, but algal biomass, as measured by wet, dry and decalcified weight, did not differ greatly between the treatments with only marginally higher biomass (p cervicornis suppressed algal colonization compared to the unmanipulated controls. Instead, the herbivore

  11. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    Science.gov (United States)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  12. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    Science.gov (United States)

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  13. Forest Aboveground Biomass Estimation in the Greater Mekong, Subregion and Russian Siberia

    Science.gov (United States)

    Pang, Yong; Li, Zengyuan; Sun, Gouqing; Zhang, Zhiyu; Schmullius, Christiane; Meng, Shili; Ma, Zhenyu; Lu, Hao; Li, Shiming; Liu, Qingwang; Bai, Lina; Tian, Xin

    2016-08-01

    Forests play a vital role in sustainable development and provide a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. We summarized works in forest aboveground biomass estimation in Greater Mekong Subregion (GMS) and Russian Siberia (RuS). Both regions are rich in forest resources. These mapping and estimation works were based on multiple-source remote sensing data and some field measurements. Biomass maps were generated at 500 m and 30 m pixel size for RuS and GMS respectively. With the available of the 2015 PALSAR-2 mosaic at 25 m spacing, Sentinel-2 data at 20 m, we will work on the biomass mapping and dynamic study at higher spatial resolution.

  14. A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico

    Directory of Open Access Journals (Sweden)

    Oliver Cartus

    2014-06-01

    Full Text Available A spatially explicit map of aboveground carbon stored in Mexico’s forests was generated from empirical modeling on forest inventory and spaceborne optical and radar data. Between 2004 and 2007, the Mexican National Forestry Commission (CONAFOR established a network of ~26,000 permanent inventory plots in the frame of their national inventory program, the Inventario Nacional Forestal y de Suelos (INFyS. INFyS data served as model response for spatially extending the field-based estimates of carbon stored in the aboveground live dry biomass to a wall-to-wall map, with 30 × 30 m2 pixel posting using canopy density estimates derived from Landsat, L-Band radar data from ALOS PALSAR, as well as elevation information derived from the Shuttle Radar Topography Mission (SRTM data set. Validation against an independent set of INFyS plots resulted in a coefficient of determination (R2 of 0.5 with a root mean square error (RMSE of 14 t∙C/ha in the case of flat terrain. The validation for different forest types showed a consistently low estimation bias (<3 t∙C/ha and R2s in the range of 0.5 except for mangroves (R2 = 0.2. Lower accuracies were achieved for forests located on steep slopes (>15° with an R2 of 0.34. A comparison of the average carbon stocks computed from: (a the map; and (b statistical estimates from INFyS, at the scale of ~650 km2 large hexagons (R2 of 0.78, RMSE of 5 t∙C/ha and Mexican states (R2 of 0.98, RMSE of 1.4 t∙C/ha, showed strong agreement.

  15. Latitudinal characteristics of below- and above-ground biomass of Typha: a modelling approach.

    Science.gov (United States)

    Asaeda, Takashi; Hai, Dinh Ngoc; Manatunge, Jagath; Williams, David; Roberts, Jane

    2005-08-01

    The latitudinal differences in the growth characteristics of Typha are largely unknown, although a number of studies have pointed out the effects of climate on the growth and productivity of Typha. Therefore, a dynamic growth model was developed for Typha to examine the effects of latitudinal changes in temperature and radiation on partitioning of the total biomass during the growing season into rhizomes, roots, flowering and vegetative shoots, and inflorescences. After validating the model with data from growth studies of Typha found in past literature, it was used to investigate the dynamics of above- and below-ground biomasses at three latitudes: 30 degrees, 40 degrees and 50 degrees. Regardless of the initial rhizome biomass, both above- and below-ground biomass values converged to a latitude-specific equilibrium produced by the balance between the total production and respiration and mortality losses. Above-ground biomass was high from 10 degrees to 35 degrees latitude with sufficient radiation, despite high metabolic losses; however, it decreased markedly at higher latitudes due to a low photosynthetic rate. Below-ground biomass, on the other hand, increased with latitude up to 40 degrees due to decreasing metabolic losses, and then markedly decreased at higher latitudes. Above-ground biomass was enhanced with an increasing number of cohorts regardless of latitude. However, although more cohorts resulted in a larger below-ground biomass at low latitudes, the largest below-ground biomass was provided by a smaller number of cohorts at high latitudes. This difference is due to low production rates of late-season cohorts in high latitudes, compared with consumption for shooting and establishing foliage. The model could be used to predict the potential growth of Typha in given conditions over a wide range of latitudes and is useful for practical applications such as wetland management or wastewater treatment systems using Typha.

  16. Mapping aboveground forest biomass combining dendrometric data and spectral signature of forest species

    Science.gov (United States)

    Avocat, H.; Tourneux, F.

    2013-12-01

    Accurate measures and explicit spatial representations of forest biomass compose an important aspect to model the forest productivity and crops, and to implement sustainable forest management. Several methods have been developed to estimate and to map forest biomass, combining point-sources measurements of biophysical variables such as diameter-at-breast height (DBH), tree height, crown size, crown length, crown volume and remote sensing data (spectral vegetation index values). In this study, we propose a new method for aboveground biomass (AGB) mapping of forests and isolated trees. This method is tested on a 1100 km2 area located in the eastern France. In contrast to most of studies, our model is not calibrated using field plot measurements or point-source inventory data. The primary goal of this model is to propose an accessible and reproducible method for AGB mapping of temperate forests, by combining standard biomass values coming from bibliography and remotely sensed data. This method relies on three steps. (1) The first step consists of produce a map of wooded areas including small woods and isolated trees, and to identify the major forest stands. To do this, we use an unsupervised classification of a Landsat 7 ETM+ image. Results are compared and improved with various land cover data. (2) The second step consists of extract the normalized difference vegetation index (NDVI) values of main forest stands. (3) Finally, these values are combined with standard AGB values provided by bibliography, to calibrate four AGB estimation models of different forest types (broadleaves, coniferous, coppices, and mixed stands). This method provides a map of aboveground biomass for forests and isolated trees with a 30 meters spatial resolution. Results demonstrate that 71 % of AGB values for hardwoods vary between 143 and 363 t.ha-1, i.e. × 1 standard deviation around the average. For coniferous stands, most of values of AGB range from 167 to 256 t.ha-1.

  17. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Paudel, Shishir; Longcore, Travis; MacDonald, Beau; McCormick, Melissa K; Szlavecz, Katalin; Wilson, Gail W T; Loss, Scot R

    2016-03-01

    A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms.

  18. Controls over aboveground forest carbon density on Barro Colorado Island, Panama

    Directory of Open Access Journals (Sweden)

    J. Mascaro

    2010-12-01

    Full Text Available Despite the importance of tropical forests to the global carbon cycle, ecological controls over landscape-level variation in live aboveground carbon density (ACD in tropical forests are poorly understood. Here, we conducted a spatially comprehensive analysis of ACD variation for a mainland tropical forest – Barro Colorado Island, Panama (BCI – and tested site factors that may control such variation. We mapped ACD over 98% of BCI (~1500 ha using airborne Light Detection and Ranging (LiDAR, which was well-correlated with ground-based measurements of ACD in Panamanian forests of various ages (r2 = 0.77, RMSE = 29 Mg C ha−1, P < 0.0001. We used multiple regression to examine controls over LiDAR-derived ACD, including slope angle, bedrock, soil texture, and forest age. Collectively, these variables explained 14% of the variation in ACD at 30-m resolution, and explained 33% at 100-m resolution. At all resolutions, slope (linked to underlying bedrock variation was the strongest driving factor; standing carbon stocks were generally higher on steeper slopes, where erosion rates tend to exceed weathering rates, compared to gentle slopes, where weathering in place produces deep, oxic soils. This result suggests that physiography may be more important in controlling ACD variation in Neotropical forests than currently thought. Although BCI has been largely undisturbed by humans for a century, past land-use over approximately half of the island still influences ACD variation, with younger forests (80–130 years old averaging ~15% less carbon storage than old-growth forests (>400 years old. If other regions of relatively old tropical secondary forests also store less carbon aboveground than primary forests, the effects on the global carbon cycle could be substantial and difficult to detect with satellite monitoring.

  19. Effect of stand structure on models for volume and aboveground biomass assessment (Castelfusano pinewood, Roma

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The main purpose of this research was to analyse the effects of stand structure on biomass allocation and on the accurancy of estimation models for volume and aboveground biomass of Italian stone pine (Pinus pinea L.. Although the species is widely distributed on Mediterranean coasts, few studies on forest biomass estimation have focused on pinewoods. The research was carried out in the Castelfusano’s pinewood (Rome and concerned the two most common structural types: (a 50 years-old pinewood originated by broadcast seeding; and (b 62 years-old pinewood originated by partial seeding alternating worked strips to firm strips. Some 83 sample trees were selected for stem volume estimation and a subset of 32 trees used to quantify the total epigeous biomass, the wooden biomass compartment, including stem and big branches (diameter > 3 cm and the photosynthetic biomass, including thin branches (diameter < 3 cm and needles. Collected data were used to elaborate allometric relations for stem volume, total biomass and specific relations for both compartments, based on one (d2 or two (d2h indipendent variables, for both structural types. Furthermore, pinewood specific biomass expansion factors (BEF - indexes used to estimate carbon stocks starting from stem biomass data - were obtained. The achieved estimation models were subjected to both parallelism and coincidence tests, showing significant effects of stand structure on the accurancy of the allometric relations. The effects of stand structure and reliability of tree height curves on the accurancy of estimation models for volume and aboveground biomass and on biomass allocation in different compartments are analysed and discussed.

  20. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.

    Science.gov (United States)

    Lü, Xiao-Tao; Tang, Jian-Wei; Feng, Zhi-Li; Li, Mai-He

    2009-01-01

    Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.

  1. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types

    Directory of Open Access Journals (Sweden)

    Johann G. Zaller

    2014-10-01

    Full Text Available Climate change scenarios for Central Europe predict less frequent but heavier rainfalls and longer drought periods during the growing season. This is expected to alter arthropods in agroecosystems that are important as biocontrol agents, herbivores or food for predators (e.g. farmland birds. In a lysimeter facility (totally 18 3-m2-plots, we experimentally tested the effects of long-term past vs. prognosticated future rainfall variations (15% increased rainfall per event, 25% more dry days according to regionalized climate change models from the Intergovernmental Panel on Climate Change (IPCC on aboveground arthropods in winter wheat (Triticum aestivum L. cultivated at three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem. Soil types were established 17 years and rainfall treatments one month before arthropod sampling; treatments were fully crossed and replicated three times. Aboveground arthropods were assessed by suction sampling, their mean abundances (± SD differed between April, May and June with 20 ± 3 m-2, 90 ± 35 m-2 and 289 ± 93 individuals m-2, respectively. Averaged across sampling dates, future rainfall reduced the abundance of spiders (Araneae, -47%, cicadas and leafhoppers (Auchenorrhyncha, -39%, beetles (Coleoptera, -52%, ground beetles (Carabidae, -41%, leaf beetles (Chrysomelidae, -64%, spring tails (Collembola, -58%, flies (Diptera, -73% and lacewings (Neuroptera, -73% but increased the abundance of snails (Gastropoda, +69%. Across sampling dates, soil types had no effects on arthropod abundances. Arthropod diversity was neither affected by rainfall nor soil types. Arthropod abundance was positively correlated with weed biomass for almost all taxa; abundance of Hemiptera and of total arthropods was positively correlated with weed density. These detrimental effects of future rainfall varieties on arthropod taxa in wheat fields can potentially alter arthropod-associated agroecosystem services.

  2. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR

    Directory of Open Access Journals (Sweden)

    Vincenzo Giannico

    2016-04-01

    Full Text Available Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem service planning and management, as most of the ecosystem services provided are a consequence of forest stand characteristics. However, collecting data for assessing forest stand conditions is time consuming and labor intensive. A plausible approach for addressing this issue is to establish a relationship between in situ measurements of stand characteristics and data from airborne laser scanning (LiDAR. In this study we assessed forest stand volume and above-ground biomass (AGB in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of a forest allometric model. We tested various methods for extracting proxies of basal area (BA and mean stand height (H from the LiDAR point-cloud distribution and evaluated the performance of different models in estimating forest stand volume and AGB. The best predictors for both models were the scale parameters of the Weibull distribution of all returns (except the first (proxy of BA and the 95th percentile of the distribution of all first returns (proxy of H. The R2 were 0.81 (p < 0.01 for the stand volume model and 0.77 (p < 0.01 for the AGB model with a RMSE of 23.66 m3·ha−1 (23.3% and 19.59 Mg·ha−1 (23.9%, respectively. We found that a combination of two LiDAR-derived variables (i.e., proxy of BA and proxy of H, which take the form of a forest allometric model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests with similar methods.

  3. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  4. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.

    2015-01-01

    The carbon (C) footprint of palm oil production is needed to judge emissions from potential biofuel use. Relevance includes wider sustainable palm oil debates. Within life cycle analysis, aboveground C debt is incurred if the vegetation replaced had a higher C stock than oil palm plantations. Our

  5. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark

    DEFF Research Database (Denmark)

    Joshi, Neha P.; Mitchard, Edward T A; Schumacher, Johannes

    2015-01-01

    Mapping forest aboveground biomass (AGB) using satellite data is an important task, particularly for reporting of carbon stocks and changes under climate change legislation. It is known that AGB can be mapped using synthetic aperture radar (SAR), but relationships between AGB and radar backscatter...

  6. Estimating Yellow Starthistle (Centaurea solstitialis) Leaf Area Index and Aboveground Biomass with the Use of Hyperspectral Data

    Science.gov (United States)

    Hyperspectral remote-sensed data were obtained via a Compact Airborne Spectrographic Imager-II (CASI-II) and used to estimate leaf-area index (LAI) and aboveground biomass of a highly invasive weed species, yellow starthistle (YST). In parallel, 34 ground-based field plots were used to measure abov...

  7. [Spatial distribution of Tamarix ramosissima aboveground biomass and water consumption in the lower reaches of Heihe River, Northwest China].

    Science.gov (United States)

    Peng, Shou-Zhang; Zhao, Chuan-Yan; Peng, Huan-Hua; Zheng, Xiang-Lin; Xu, Zhong-Lin

    2010-08-01

    Based on the field observation on the Tamarix ramosissima populations in the lower reaches of Heihe River, the relationship models between the aboveground biomass of T. ramosissima and its morphological features (basal diameter, height, and canopy perimeter) were built. In the mean time, the land use/cover of the study area was classified by the decision tree classification with high resolution image (QuickBird), the distribution of T. ramosissima was extracted from classification map, and the morphological feature (canopy perimeter) of T. ramosissima was calculated with ArcGIS 9.2. On the bases of these, the spatial distribution of T. ramosissima aboveground biomass in the study area was estimated. Finally, the spatial distribution of the water consumption of T. ramosissima in the study area was calculated by the transpiration coefficient (300) and the aboveground biomass. The results showed that the aboveground biomass of T. ramosissima was 69644.7 t, and the biomass per unit area was 0.78 kg x m(-2). Spatially, the habitats along the banks of Heihe River were suitable for T. ramosissima, and thus, this tree species had a high biomass. The total amount of water consumption of T. ramosissima in the study area was 2.1 x 10(7) m3, and the annual mean water consumption of T. ramosissima ranged from 30 mm to 386 mm.

  8. Changes in light- and nitrogen-use and in aboveground biomass allocation patterns along productivity gradients in grasslands.

    Science.gov (United States)

    Aan, Anne; Lõhmus, Krista; Sellin, Arne; Kull, Olevi

    2014-05-01

    Light- and nitrogen-use change was examined along productivity gradients in natural grasslands at Laelatu, western Estonia, both at community level and in most abundant species. Aboveground biomass (M) ranged from 341 to 503 g m(-2) in wet (W) and from 248 to 682 g m(-2) in dry (D) community. Aboveground leaf area ratio (aLAR) decreased with rising M in D site, while it increased in W site. In a high-aLAR W community (significantly higher compared to D), adjustment of leaf morphology through an increase in specific leaf area is responsible for an increase in aLAR with rising productivity. In low-aLAR stand, by contrast, adjustment of biomass allocation due to decrease in aboveground leaf mass fraction is primarily responsible for the tendency of aLAR to decline. In conclusion, a decrease in aLAR is not a universal response to increasing M. We hypothesise that there exists an optimum of light acquisition efficiency (ΦM) along a productivity gradient independent of community type. Aboveground nitrogen-use efficiency (aNUE) decreased in high-aLAR, W community with increasing M, while in low-aLAR, D site, there was no relationship along a gradient, although aNUE increased along six plots dominated by graminoids. A trade-off was established between leaf nitrogen content per unit leaf area (N A) and aLAR.

  9. Decreasing precipitation variability does not elicit major aboveground biomass or plant diversity responses in a mesic rangeland

    Science.gov (United States)

    There is an emergent need to understand how altered precipitation regimes will affect aboveground biomass, stability of this biomass, and diversity in grassland ecosystems. We used replicated 9X10 m rainout shelters to experimentally remove inherent intra- and inter-annual variability of precipitati...

  10. Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil

    Science.gov (United States)

    Carlos Alberto Silva; Carine Klauberg; Samuel de Padua Chaves e Carvalho; Andrew T. Hudak; e Luiz Carlos Estraviz. Rodriguez

    2014-01-01

    Fast growing plantation forests provide a low-cost means to sequester carbon for greenhouse gas abatement. The aim of this study was to evaluate airborne LiDAR (Light Detection And Ranging) to predict aboveground carbon (AGC) stocks in Eucalyptus spp. plantations. Biometric parameters (tree height (Ht) and diameter at breast height (DBH)) were collected from...

  11. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall

    2014-01-01

    Biodiversity conveys numerous functional benefits to forested ecosystems, including community stability and resilience. In the context of managing forests for climate change mitigation/adaptation, maximizing and/or maintaining aboveground biomass will require understanding the interactions between tree biodiversity, site productivity, and the stocking of live trees....

  12. Validation databases for simulation models: aboveground biomass and net primary productive, (NPP) estimation using eastwide FIA data

    Science.gov (United States)

    Jennifer C. Jenkins; Richard A. Birdsey

    2000-01-01

    As interest grows in the role of forest growth in the carbon cycle, and as simulation models are applied to predict future forest productivity at large spatial scales, the need for reliable and field-based data for evaluation of model estimates is clear. We created estimates of potential forest biomass and annual aboveground production for the Chesapeake Bay watershed...

  13. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.

    2015-01-01

    The carbon (C) footprint of palm oil production is needed to judge emissions from potential biofuel use. Relevance includes wider sustainable palm oil debates. Within life cycle analysis, aboveground C debt is incurred if the vegetation replaced had a higher C stock than oil palm plantations. Our st

  14. Plants as green as phones: Novel insights into plant-mediated communication between below- and above-ground insects

    NARCIS (Netherlands)

    Soler Gamborena, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    can act as vertical communication channels or ‘green phones’ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection

  15. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    Science.gov (United States)

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future.

  16. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    Science.gov (United States)

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  17. Electrophysiological and behavioral responses of male fall webworm moths (Hyphantria cunea to Herbivory-induced mulberry (Morus alba leaf volatiles.

    Directory of Open Access Journals (Sweden)

    Rui Tang

    Full Text Available Volatile organic compounds (VOCs were collected from damaged and intact mulberry leaves (Morus alba L., Moraceae and from Hyphantria cunea larvae by headspace absorption with Super Q columns. We identified their constituents using gas chromatography-mass spectrometry, and evaluated the responses of male H. cunea antennae to the compounds using gas chromatography-flame ionization detection coupled with electroantennographic detection. Eleven VOC constituents were found to stimulate antennae of male H. cunea moths: β-ocimene, hexanal, cis-3-hexenal, limonene, trans-2-hexenal, cyclohexanone, cis-2-penten-1-ol, 6-methyl-5-hepten-2-one, 4-hydroxy-4-methyl-2-pentanone, trans-3-hexen-1-ol, and 2,4-dimethyl-3-pentanol. Nine of these chemicals were released by intact, mechanically-damaged, and herbivore-damaged leaves, while cis-2-penten-1-ol was released only by intact and mechanically-damaged leaves and β-ocimene was released only by herbivore-damaged leaves. Results from wind tunnel experiments conducted with volatile components indicated that male moths were significantly more attracted to herbivory-induced volatiles than the solvent control. Furthermore, male moths' attraction to a sex pheromone lure was increased by herbivory-induced compounds and β-ocimene, but reduced by cis-2-penten-1-ol. A proof long-range field trapping experiment showed that the efficiency of sex pheromone lures in trapping male moths was increased by β-ocimene and reduced by cis-2-penten-1-ol.

  18. Nerium oleander indirect leaf photosynthesis and light harvesting reductions after clipping injury or Spodoptera eridania herbivory: high sensitivity to injury.

    Science.gov (United States)

    Delaney, Kevin J

    2012-04-01

    Variable indirect photosynthetic rate (P(n)) responses occur on injured leaves after insect herbivory. It is important to understand factors that influence indirect P(n) reductions after injury. The current study examines the relationship between gas exchange and chlorophyll a fluorescence parameters with injury intensity (% single leaf tissue removal) from clipping or Spodoptera eridania Stoll (Noctuidae) herbivory on Nerium oleander L. (Apocynaceae). Two experiments showed intercellular [CO(2)] increases but P(n) and stomatal conductance reductions with increasing injury intensity, suggesting non-stomatal P(n) limitation. Also, P(n) recovery was incomplete at 3d post-injury. This is the first report of a negative exponential P(n) impairment function with leaf injury intensity to suggest high N. oleander leaf sensitivity to indirect P(n) impairment. Negative linear functions occurred between most other gas exchange and chlorophyll a fluorescence parameters with injury intensity. The degree of light harvesting impairment increased with injury intensity via lower (1) photochemical efficiency indicated lower energy transfer efficiency from reaction centers to PSII, (2) photochemical quenching indicated reaction center closure, and (3) electron transport rates indicated less energy traveling through PSII. Future studies can examine additional mechanisms (mesophyll conductance, carbon fixation, and cardenolide induction) to cause N. oleander indirect leaf P(n) reductions after injury. Published by Elsevier Ireland Ltd.

  19. Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize.

    Science.gov (United States)

    Ray, Swayamjit; Alves, Patrick C M S; Ahmad, Imtiaz; Gaffoor, Iffa; Acevedo, Flor E; Peiffer, Michelle; Jin, Shan; Han, Yang; Shakeel, Samina; Felton, Gary W; Luthe, Dawn S

    2016-05-01

    The perception of herbivory by plants is known to be triggered by the deposition of insect-derived factors such as saliva and oral secretions, oviposition materials, and even feces. Such insect-derived materials harbor chemical cues that may elicit herbivore and/or pathogen-induced defenses in plants. Several insect-derived molecules that trigger herbivore-induced defenses in plants are known; however, insect-derived molecules suppressing them are largely unknown. In this study, we identified two plant chitinases from fall armyworm (Spodoptera frugiperda) larval frass that suppress herbivore defenses while simultaneously inducing pathogen defenses in maize (Zea mays). Fall armyworm larvae feed in enclosed whorls of maize plants, where frass accumulates over extended periods of time in close proximity to damaged leaf tissue. Our study shows that maize chitinases, Pr4 and Endochitinase A, are induced during herbivory and subsequently deposited on the host with the feces. These plant chitinases mediate the suppression of herbivore-induced defenses, thereby increasing the performance of the insect on the host. Pr4 and Endochitinase A also trigger the antagonistic pathogen defense pathway in maize and suppress fungal pathogen growth on maize leaves. Frass-induced suppression of herbivore defenses by deposition of the plant-derived chitinases Pr4 and Endochitinase A is a unique way an insect can co-opt the plant's defense proteins for its own benefit. It is also a phenomenon unlike the induction of herbivore defenses by insect oral secretions in most host-herbivore systems.

  20. Electrophysiological and behavioral responses of male fall webworm moths (Hyphantria cunea) to Herbivory-induced mulberry (Morus alba) leaf volatiles.

    Science.gov (United States)

    Tang, Rui; Zhang, Jin Ping; Zhang, Zhong Ning

    2012-01-01

    Volatile organic compounds (VOCs) were collected from damaged and intact mulberry leaves (Morus alba L., Moraceae) and from Hyphantria cunea larvae by headspace absorption with Super Q columns. We identified their constituents using gas chromatography-mass spectrometry, and evaluated the responses of male H. cunea antennae to the compounds using gas chromatography-flame ionization detection coupled with electroantennographic detection. Eleven VOC constituents were found to stimulate antennae of male H. cunea moths: β-ocimene, hexanal, cis-3-hexenal, limonene, trans-2-hexenal, cyclohexanone, cis-2-penten-1-ol, 6-methyl-5-hepten-2-one, 4-hydroxy-4-methyl-2-pentanone, trans-3-hexen-1-ol, and 2,4-dimethyl-3-pentanol. Nine of these chemicals were released by intact, mechanically-damaged, and herbivore-damaged leaves, while cis-2-penten-1-ol was released only by intact and mechanically-damaged leaves and β-ocimene was released only by herbivore-damaged leaves. Results from wind tunnel experiments conducted with volatile components indicated that male moths were significantly more attracted to herbivory-induced volatiles than the solvent control. Furthermore, male moths' attraction to a sex pheromone lure was increased by herbivory-induced compounds and β-ocimene, but reduced by cis-2-penten-1-ol. A proof long-range field trapping experiment showed that the efficiency of sex pheromone lures in trapping male moths was increased by β-ocimene and reduced by cis-2-penten-1-ol.

  1. Herbivory of sympatric elk and cattle on Lincoln National Forest, south-central New Mexico

    Directory of Open Access Journals (Sweden)

    Heather H. Halbritter

    2015-09-01

    Full Text Available Background Wildlife and livestock grazing are important products of forest ecosystems, but can be controversial. Herbivory by North American elk and domestic cattle is a contentious management issue throughout western North America, often driving management proposals to decrease cattle and elk numbers based on perceived overutilization of forages. Such observations are often site level rather than landscape, and may confuse ecological sustainability with desired conditions. Methods We used line transects to document vegetation composition, structure, and grazing and browsing utilization for 4 key habitat types: mountain meadows, aspen, thinned conifer, and burned conifer on Lincoln National Forest, New Mexico, USA. We documented relative habitat use of these types by elk, mule deer, and cattle and modeled relative use on residual grass biomass of mountain meadows and browse utilization of forested types. We determined diets and diet quality of elk and cattle to assess degree of competition. Results Use of grasses in meadows was below management thresholds, and combined elk, cattle, and deer relative habitat use accounted for < 14 % of the variance in residual stubble height of Poa pratensis, the most abundant grass. Palatable browse was limited in habitat types (< 107 stems·ha -1 , use was generally high, and elk presence was correlated with the majority of browsing. Elk and cattle diets did not significantly overlap (Schoener’s index 0.54–0.57; elk fed primarily on deciduous shrubs (34 %–55 % of annual diets and cattle on grass (72 %–77 %. Digestibility and crude protein levels of cattle diets and body condition of elk indicated high quality diets for cattle and marginal–good quality diets for elk. Conclusions At observed stocking levels and densities, cattle and elk were not competing for forage based on diet similarity, nor were key habitat types being used beyond sustainable levels. Low browse availability indicates that

  2. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    Science.gov (United States)

    Zeigenfuss, Linda C.; Binkley, Dan; Tuskan, Gerald A.; Romme, William H.; Yin, Tongming; DiFazio, Stephen; Singer, Francis J.

    2008-01-01

    very intense herbivory by elk and harsh environmental conditions. Conservation efforts through fencing protection and decreased elk browsing pressure are already being planned as part of the park's new elk management plan. If these efforts are undertaken, conditions that encourage stem recruitment to the tree canopy will likely result and the continued survival of these aspen stands will be enhanced.

  3. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  4. Patterns of growth, development and herbivory of Palicourea rigida are affected more by sun/shade conditions than by Cerrado phytophysiognomy

    Directory of Open Access Journals (Sweden)

    Renan Fernandes Moura

    Full Text Available ABSTRACT Plant development is influenced by several abiotic factors, which in turn influence morphological traits and life history. We investigated whether leaf area, herbivory, toughness, fluctuating asymmetry, structural complexity and the number of inflorescences of Palicourea rigida are influenced by sun/shade conditions or by Cerrado phytophysiognomy (typical cerrado or rupestrian field. We expected to find greater structural complexity, leaf toughness and more inflorescences in sun plants; shaded plants were expected to exhibit a greater degree of fluctuating asymmetry (an index of plant stress, reduced leaf toughness and greater herbivory. As for phytophysiognomies, we expected to find higher levels of leaf toughness and reduced structural complexity in plants from the rupestrian field. We sampled plants in the sun and shade from both phytophysiognomies. Leaf area, toughness, herbivory and fluctuating asymmetry, were influenced more by sun/shade conditions than phytophysiognomy; leaf toughness was the only variable to show greater values in conditions of sun. Our results indicate that exposure to sunlight is not a requirement for increased plant development, but plants in shade are experiencing stress, as shown by increased fluctuating asymmetry; increased leaf area, which is a strategy to compensate for lower light exposure for plants and higher herbivory, which depicts lower toughness.

  5. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient

    NARCIS (Netherlands)

    Olff, H.; De Leeuw, J.; Bakker, J.P.; Platerink, R.J.; Van Wijnen, H.J.; De Munck, W.

    1997-01-01

    1 The relationships between soil development, vertical vegetation zonation, vegetation succession and herbivory by Brent geese, Branta bernicla, were studied in a coastal salt marsh. We were able to analyse up to 100 years of salt marsh development by comparing sites where vegetation succession had

  6. Vegetation succession and herbivory in a salt marsh : changes induced by sea level rise and silt deposition along an elevational gradient

    NARCIS (Netherlands)

    Olff, H; De Leeuw, J; Bakker, JP; Platerink, RJ; Van Wijnen, HJ; De Munck, W

    1997-01-01

    1 The relationships between soil development, vertical vegetation zonation, vegetation succession and herbivory by Brent geese, Branta bernicla, were studied in a coastal salt marsh. We were able to analyse up to 100 years of salt marsh development by comparing sites where vegetation succession had

  7. Release from native herbivores facilitates the persistence of invasive marine algae: A biogeographical comparison of the relative contribution of nutrients and herbivory to invasion success

    NARCIS (Netherlands)

    Vermeij, M.J.A.; Smith, T.B.; Dailer, M.L.; Smith, C.M.

    2009-01-01

    The effect of herbivory and nutrient enrichment on the growth of invasive and native macroalgal species was simultaneously studied in two biogeographic regions: the Caribbean and Hawaii. Herbivores suppressed growth of invasive algae in their native (Caribbean) and invaded range (Hawaii), but

  8. Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur.

    Directory of Open Access Journals (Sweden)

    Stefan M Böhm

    Full Text Available The intensive foraging of insectivorous birds and bats is well known to reduce the density of arboreal herbivorous arthropods but quantification of collateral leaf damage remains limited for temperate forest canopies. We conducted exclusion experiments with nets in the crowns of young and mature oaks, Quercus robur, in south and central Germany to investigate the extent to which aerial vertebrates reduce herbivory through predation. We repeatedly estimated leaf damage throughout the vegetation period. Exclusion of birds and bats led to a distinct increase in arthropod herbivory, emphasizing the prominent role of vertebrate predators in controlling arthropods. Leaf damage (e.g., number of holes differed strongly between sites and was 59% higher in south Germany, where species richness of vertebrate predators and relative oak density were lower compared with our other study site in central Germany. The effects of bird and bat exclusion on herbivory were 19% greater on young than on mature trees in south Germany. Our results support previous studies that have demonstrated clear effects of insectivorous vertebrates on leaf damage through the control of herbivorous arthropods. Moreover, our comparative approach on quantification of leaf damage highlights the importance of local attributes such as tree age, forest composition and species richness of vertebrate predators for control of arthropod herbivory.

  9. Herbivory and habitat association of tree seedlings in lowland evergreen rainforest on white-sand and terra-firme in the upper Rio Negro

    NARCIS (Netherlands)

    Stropp, J.; van der Sleen, Peter; Quesada, C.A.; ter Steege, Hans

    2014-01-01

    Background: It has been proposed that the interaction between herbivory and soil nutrient availability drives habitat association of tree species in Peruvian Amazonia. Nevertheless, there is no empirical evidence that this interaction holds across other Amazonian regions. Aims: We address this knowl

  10. Release from native herbivores facilitates the persistence of invasive marine algae: A biogeographical comparison of the relative contribution of nutrients and herbivory to invasion success

    NARCIS (Netherlands)

    Vermeij, M.J.A.; Smith, T.B.; Dailer, M.L.; Smith, C.M.

    2009-01-01

    The effect of herbivory and nutrient enrichment on the growth of invasive and native macroalgal species was simultaneously studied in two biogeographic regions: the Caribbean and Hawaii. Herbivores suppressed growth of invasive algae in their native (Caribbean) and invaded range (Hawaii), but despit

  11. Formation of the unusual semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase TPS08 in the root stele is involved in defense against belowground herbivory

    Science.gov (United States)

    Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type-specific formation and anti-herbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. ...

  12. Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - how different are co-occurring savanna and forest formations?

    Science.gov (United States)

    Veenendaal, E. M.; Torello-Raventos, M.; Feldpausch, T. R.; Domingues, T. F.; Gerard, F.; Schrodt, F.; Saiz, G.; Quesada, C. A.; Djagbletey, G.; Ford, A.; Kemp, J.; Marimon, B. S.; Marimon-Junior, B. H.; Lenza, E.; Ratter, J. A.; Maracahipes, L.; Sasaki, D.; Sonke, B.; Zapfack, L.; Villarroel, D.; Schwarz, M.; Yoko Ishida, F.; Gilpin, M.; Nardoto, G. B.; Affum-Baffoe, K.; Arroyo, L.; Bloomfield, K.; Ceca, G.; Compaore, H.; Davies, K.; Diallo, A.; Fyllas, N. M.; Gignoux, J.; Hien, F.; Johnson, M.; Mougin, E.; Hiernaux, P.; Killeen, T.; Metcalfe, D.; Miranda, H. S.; Steininger, M.; Sykora, K.; Bird, M. I.; Grace, J.; Lewis, S.; Phillips, O. L.; Lloyd, J.

    2015-05-01

    Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna-forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence

  13. Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?

    Directory of Open Access Journals (Sweden)

    E. M. Veenendaal

    2015-05-01

    Full Text Available Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna–forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna–forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three

  14. Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin.

    Science.gov (United States)

    Chabi, Adéyèmi; Lautenbach, Sven; Orekan, Vincent Oladokoun Agnila; Kyei-Baffour, Nicholas

    2016-12-01

    The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations

  15. Ability of LANDSAT-8 Oli Derived Texture Metrics in Estimating Aboveground Carbon Stocks of Coppice Oak Forests

    Science.gov (United States)

    Safari, A.; Sohrabi, H.

    2016-06-01

    The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics

  16. ABILITY OF LANDSAT-8 OLI DERIVED TEXTURE METRICS IN ESTIMATING ABOVEGROUND CARBON STOCKS OF COPPICE OAK FORESTS

    Directory of Open Access Journals (Sweden)

    A. Safari

    2016-06-01

    Full Text Available The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9, and four different offsets ([0,1], [1,1], [1,0], and [1,-1] to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance from four bands (blue, green, red, and infrared. Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived

  17. Responses of aboveground and belowground forest carbon stocks to disturbances in boreal forests of Northeastern China

    Science.gov (United States)

    Huang, Chao; He, Hong S.; Hawbaker, Todd J.; Liang, Yu; Gong, Peng; Wu, Wuzhiwei; Zhu, Zhiliang

    2016-04-01

    Boreal forests represents about 1/3 of forest area and 1/3 of forest carbon on earth. Carbon dynamics of boreal forests are sensitive to climate change, natural (e.g., fire) and anthropogenic (e.g., harvest) disturbances. Field-based studies suggest that disturbances alter species composition, stand structure, and litter decomposition, and have significant effects on boreal forest carbon dynamics. Most of these studies, however, covered a relatively short period of time (e.g., few decades), which is limited in revealing such long-term effects of disturbances. Models are therefore developed as important tools in exploring the long-term (e.g., hundreds of years) effects of disturbances on forest carbon dynamics. In this study, we applied a framework of coupling forest ecosystem and landscape model to evaluating the effect of fire, harvest and their interactions on carbon stocks in a boreal forest landscape of Northeastern China. We compared the simulation results under fire, harvest and fire-harvest interaction scenarios with the simulated value of succession scenario at 26 landtypes over 150 years at a 10-year time step. Our results suggest that aboveground and belowground carbon are significantly reduced by fire and harvest over 150years. Fire reduced aboveground carbon by 2.3±0.6 ton/ha, harvest by 6.0±1.4 ton/ha, and fire and harvest interaction by 8.0±1.9 tons/ha. Fire reduced belowground carbon by 4.6±3.4 ton/ha, harvest by 5.0±3.5 ton/ha, and fire-harvest interaction by 5.7±3.7 tons/ha. The divergent response of carbon stocks among landtypes and between disturbance scenarios was due to the spatial interactions between fire, harvest, and species composition. Our results indicated that boreal forests carbon stocks prediction needs to consider the effects of fire and harvest for improving the estimation accuracy.

  18. Coupling aboveground and belowground activities using short term fluctuations in 13C composition of soil respiration

    Science.gov (United States)

    Epron, D.; Parent, F.; Grossiord, C.; Plain, C.; Longdoz, B.; Granier, A.

    2011-12-01

    There is a growing amount of evidence that belowground processes in forest ecosystems are tightly coupled to aboveground activities. Soil CO2 efflux, the largest flux of CO2 to the atmosphere, is dominated by root respiration and by respiration of microorganisms that find the carbohydrates required to fulfil their energetic costs in the rhizosphere. A close coupling between aboveground photosynthetic activity and soil CO2 efflux is therefore expected. The isotopic signature of photosynthates varies with time because photosynthetic carbon isotope discrimination is dynamically controlled by environmental factors. This temporal variation of δ13C of photosynthate is thought to be transferred along the tree-soil continuum and it will be retrieved in soil CO2 efflux after a time lag that reflects the velocity of carbon transport from canopy to belowground. However, isotopic signature of soil CO2 efflux is not solely affected by photosynthetic carbon discrimination, bur also by post photosynthetic fractionation, and especially by fractionation processes affecting CO2 during the transport from soil layers to surface. Tunable diode laser spectrometry is a useful tool to quantify short-term variation in δ13C of soil CO2 efflux and of CO2 in the soil atmosphere. We set up hydrophobic tubes to measure the vertical profile of soil CO2 concentration and its δ13C composition in a temperate beech forest, and we monitored simultaneously δ13C of trunk and soil CO2 efflux, δ13C of phloem exudate and δ13C of leaf sugars. We evidenced that temporal changes in δ13C of soil CO2 and soil CO2 efflux reflected changes in environmental conditions that affect photosynthetic discrimination and that soil CO2 was 4.4% enriched compared to soil CO2 efflux according to diffusion fractionation. However, this close coupling can be disrupted when advective transport of CO2 took place. We also reported evidences that temporal variations in the isotopic composition of soil CO2 efflux reflect

  19. Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes

    Science.gov (United States)

    Jin, Wenchi; He, Hong S.; Thompson, Frank R.; Wang, Wen J.; Fraser, Jacob S.; Shifley, Stephen R.; Hanberry, Brice B.; Dijak, William D.

    2017-01-01

    The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using one representative model for each of the simple, intermediate, and complex demographic approaches (ED2, LANDIS PRO, and LINKAGES, respectively). All approaches agreed that the current carbon sink would persist at least to 2100. However, carbon dynamics after current carbon sink diminishes to zero differ for different demographic modelling approaches. Both the simple and the complex demographic approaches predicted prolonged periods of relatively stable carbon densities after 2100, with minor declines, until the end of simulations in 2300. In contrast, the intermediate demographic approach predicted the CHF would become a carbon source between 2110 and 2260, followed by another carbon sink period. The disagreement between these patterns can be partly explained by differences in the capacity of models to simulate gross growth (both birth and subsequent growth) and mortality of short-lived, relatively shade-intolerant tree species. PMID:28165483

  20. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    Directory of Open Access Journals (Sweden)

    Jos Barlow

    Full Text Available Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001 community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  1. Mapping Aboveground Biomass using Texture Indices from Aerial Photos in a Temperate Forest of Northeastern China

    Directory of Open Access Journals (Sweden)

    Shili Meng

    2016-03-01

    Full Text Available Optical remote sensing data have been considered to display signal saturation phenomena in regions of high aboveground biomass (AGB and multi-storied forest canopies. However, some recent studies using texture indices derived from optical remote sensing data via the Fourier-based textural ordination (FOTO approach have provided promising results without saturation problems for some tropical forests, which tend to underestimate AGB predictions. This study was applied to the temperate mixed forest of the Liangshui National Nature Reserve in Northeastern China and demonstrated the capability of FOTO texture indices to obtain a higher prediction quality of forest AGB. Based on high spatial resolution aerial photos (1.0 m spatial resolution acquired in September 2009, the relationship between FOTO texture indices and field-derived biomass measurements was calibrated using a support vector regression (SVR algorithm. Ten-fold cross-validation was used to construct a robust prediction model, which avoided the over-fitting problem. By further comparison the performance of the model estimates for greater coverage, the predicted results were compared with a reference biomass map derived from LiDAR metrics. This study showed that the FOTO indices accounted for 88.3% of the variance in ground-based AGB; the root mean square error (RMSE was 34.35 t/ha, and RMSE normalized by the mean value of the estimates was 22.31%. This novel texture-based method has great potential for forest AGB estimation in other temperate regions.

  2. Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review

    Directory of Open Access Journals (Sweden)

    J. M. Barbosa

    2014-01-01

    Full Text Available Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB. New remote sensing methods, including sensors, image processing, statistical methods, and uncertainty evaluations, are constantly being developed to estimate biophysical forest changes. We review 318 peer-reviewed studies related to the use of remotely sensed AGB estimations in tropical forest succession studies and summarize their geographic distribution, sensors and methods used, and their most frequent ecological inferences. Remotely sensed AGB is broadly used in forest management studies, conservation status evaluations, carbon source and sink investigations, and for studies of the relationships between environmental conditions and forest structure. Uncertainties in AGB estimations were found to be heterogeneous with biases related to sensor type, processing methodology, ground truthing availability, and forest characteristics. Remotely sensed AGB of successional forests is more reliable for the study of spatial patterns of forest succession and over large time scales than that of individual stands. Remote sensing of temporal patterns in biomass requires further study, in particular, as it is critical for understanding forest regrowth at scales useful for regional or global analyses.

  3. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    Science.gov (United States)

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  4. Total aboveground biomass (TAGB) estimation using IFSAR: speckle noise effect on TAGB in tropical forest

    Science.gov (United States)

    Misbari, S.; Hashim, M.

    2014-02-01

    Total Aboveground Biomass (TAGB) estimation is critically important to enhance understanding of dynamics of carbon fluxes between atmosphere and terrestrial ecosystem. For humid tropical forest, it is a challenging task for researchers due to complex canopy structure and predominant cloud cover. Optical sensors are only able to sense canopy crown. In contrast, radar technology is able to sense sub-canopy structure of the forest with penetration ability through the cloud for precise biomass estimation with validation from field data including diameter at breast height (DBH) of trees. This study is concerned about estimation of TAGB through the utilization of Interferometry Synthetic Aperture Radar (IFSAR). Based on this study, it is found that the stand parameters such as DBH and backscattered on IFSAR image has high correlation, R2=0.6411. The most suitable model for TAGB estimation on IFSAR is Chave Model with R2=0.9139. This study analyzes the impact brought by speckle noises on IFSAR image. It is found that filtering process has improves TAGB estimation about +30% using several filtering schemes especially Gamma filter for 11×11 window size. Using field data obtained from a primary tropical forest at Gerik, Perak, TAGBestimation can be validated and the assessment has been carried out.

  5. Impacts of Tree Height-Dbh Allometry on Lidar-Based Tree Aboveground Biomass Modeling

    Science.gov (United States)

    Fang, R.

    2016-06-01

    Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.

  6. Research on acoustic emission in-service inspection for large above-ground storage tank floors

    Energy Technology Data Exchange (ETDEWEB)

    Mingchun Lin; Yewei Kang; Min Xiong; Juan Zheng; Dongjie Tan [Petrochina Pipeline R and Center, Langfang (China)

    2009-07-01

    Much manpower is needed and a lot of materials are wasted when the floor of large above-ground storage tank (AST) is inspected with conventional methods which need to shut down the tank, then to empty and clean it before inspection. Due to the disadvantages of that, an in-service inspection method using acoustic emission (AE) technology is presented. By this mean the rational inspection plan and integrity evaluation of tank floors can be constructed. First, specific inspection steps are established based on the acoustic emission principle for large AST's floors and the practical condition of AST in order to acquire the AE corrosion data. Second, analysis method of acoustic emission dataset is studied. Finally, maintenance proposes are provided based on results of analysis for the corrosion status of the tank floors. In order to evaluate the performance of our method, an in-service field inspection is practiced on product oil tank with a volume of 5000 cubic meters. Then a traditional inspection procedure using magnetic flux leakage (MFL) technology is followed up. Comparative analysis of the results of the two inspection methods shows that there is consistency in localizing the position of corrosion between them. The feasibility of in-service inspection of AST's floors with AE is demonstrated. (author)

  7. {sup 40}K/{sup 137}Cs discrimination ratios to the aboveground organs of tropical plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, N. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil); Anjos, R.M. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil)], E-mail: meigikos@if.uff.br; Mosquera, B. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil)

    2008-07-15

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of {sup 137}Cs and {sup 40}K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisiaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of {sup 137}Cs and {sup 40}K in their growing parts. However, a significant correlation between activity concentrations of {sup 137}Cs and {sup 40}K was observed in these tropical plants. The {sup 40}K/{sup 137}Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.

  8. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  9. Salinity influences on aboveground and belowground net primary productivity in tidal wetlands

    Science.gov (United States)

    Pierfelice, Kathryn N.; Graeme Lockaby, B.; Krauss, Ken W.; Conner, William H.; Noe, Gregory; Ricker, Matthew C.

    2017-01-01

    Tidal freshwater wetlands are one of the most vulnerable ecosystems to climate change and rising sea levels. However salinification within these systems is poorly understood, therefore, productivity (litterfall, woody biomass, and fine roots) were investigated on three forested tidal wetlands [(1) freshwater, (2) moderately saline, and (3) heavily salt-impacted] and a marsh along the Waccamaw and Turkey Creek in South Carolina. Mean aboveground (litterfall and woody biomass) production on the freshwater, moderately saline, heavily salt-impacted, and marsh, respectively, was 1,061, 492, 79, and 0  g m−2 year−1 versus belowground (fine roots) 860, 490, 620, and 2,128  g m−2 year−1. Litterfall and woody biomass displayed an inverse relationship with salinity. Shifts in productivity across saline sites is of concern because sea level is predicted to continue rising. Results from the research reported in this paper provide baseline data upon which coupled hydrologic/wetland models can be created to quantify future changes in tidal forest functions.

  10. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns

    Science.gov (United States)

    Riihimäki, Henri; Heiskanen, Janne; Luoto, Miska

    2017-04-01

    Topography is a key factor affecting numerous environmental phenomena, including Arctic and alpine aboveground biomass (AGB) distribution. Digital Elevation Model (DEM) is a source of topographic information which can be linked to local growing conditions. Here, we investigated the effect of DEM derived variables, namely elevation, topographic position, radiation and wetness on AGB and Normalized Difference Vegetation Index (NDVI) in a Fennoscandian forest-alpine tundra ecotone. Boosted regression trees were used to derive non-parametric response curves and relative influences of the explanatory variables. Elevation and potential incoming solar radiation were the most important explanatory variables for both AGB and NDVI. In the NDVI models, the response curves were smooth compared with AGB models. This might be caused by large contribution of field and shrub layer to NDVI, especially at the treeline. Furthermore, radiation and elevation had a significant interaction, showing that the highest NDVI and biomass values are found from low-elevation, high-radiation sites, typically on the south-southwest facing valley slopes. Topographic wetness had minor influence on AGB and NDVI. Topographic position had generally weak effects on AGB and NDVI, although protected topographic position seemed to be more favorable below the treeline. The explanatory power of the topographic variables, particularly elevation and radiation demonstrates that DEM-derived land surface parameters can be used for exploring biomass distribution resulting from landform control on local growing conditions.

  11. Carbon dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    Science.gov (United States)

    Schöngart, J.; Arieira, J.; Felfili Fortes, C.; Cezarine de Arruda, E.; Nunes da Cunha, C.

    2008-05-01

    This is the first estimation on carbon dynamics in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in Central Southern America. In four 1-ha plots in stands characterized by the pioneer species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height, DBH) have been performed and converted to predictions of AGWB by five different allometric models using two or three predicting parameters (DBH, tree height, wood density). Best prediction has been achieved using allometric equations with three independent variables. Carbon stocks (50% of AGWB) vary from 7.4 to 100.9 Mg C ha-1 between the four stands. Carbon sequestration differs 0.50-4.24 Mg C ha-1 yr-1 estimated by two growth models derived from tree-ring analysis describing the relationships between age and DBH for V. divergens and other tree species. We find a close correlation between estimated tree age and C-stock, C-sequestration and C-turnover (mean residence of C in AGWB).

  12. Inventory-based estimation of aboveground net primary production in Japan's forests from 1980 to 2005

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2011-02-01

    Full Text Available Recent studies based on remote sensing and carbon process models have revealed that terrestrial net primary production (NPP in the middle and high latitudes of the Northern Hemisphere has increased significantly; this is crucial for explaining the increased terrestrial carbon sink in the past several decades. Regional NPP estimation based on significant field data, however, has been rare. In this study, we estimated the long-term changes in aboveground NPP (ANPP for Japan's forests from 1980 to 2005, using forest inventory data, direct field measurements, and an allometric method. The overall ANPP for all forest types averaged 10.5 Mg ha−1 yr−1, with a range of 9.6 to 11.5 Mg ha−1 yr−1, and ANPP for the whole country totaled 249.1 Tg yr−1 (range: 230.0 to 271.4 Tg yr−1 during the study period. Over the 25 years, the net effect of increased ANPP in needle-leaf forests and decreased ANPP in broadleaf forests has led to an increase of 1.9 Mg ha−1 yr−1 (i.e., 0.79% yr−1. This increase may be mainly due to the establishment of plantations and the rapid early growth of these planted forests.

  13. Inventory-based estimation of aboveground net primary production in Japan's forests from 1980 to 2005

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2011-08-01

    Full Text Available Recent studies based on remote sensing and carbon process models have revealed that terrestrial net primary production (NPP in the middle and high latitudes of the Northern Hemisphere has increased significantly; this is crucial for explaining the increased terrestrial carbon sink in the past several decades. Regional NPP estimation based on significant field data, however, has been rare. In this study, we estimated the long-term changes in aboveground NPP (ANPP for Japan's forests from 1980 to 2005 using forest inventory data, direct field measurements, and an allometric method. The overall ANPP for all forest types averaged 10.5 Mg ha−1 yr−1, with a range of 9.6 to 11.5 Mg ha−1 yr−1, and ANPP for the whole country totaled 249.1 Tg yr−1 (range: 230.0 to 271.4 Tg yr−1 during the study period. Over the 25 years, the net effect of increased ANPP in needle-leaf forests and decreased ANPP in broadleaf forests has led to an increase of 1.9 Mg ha−1 yr−1 (i.e., 0.79 % yr−1. This increase may be mainly due to the establishment of plantations and the rapid early growth of these planted forests.

  14. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    Science.gov (United States)

    Bright, B. C.; Hicke, J. A.; Hudak, A. T.

    2012-12-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40-50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75-89% of the study area had >25% AGC in killed trees and 3-6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale.

  15. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

    Science.gov (United States)

    Ji, Lei; Wylie, Bruce K.; Nossov, Dana R.; Peterson, Birgit E.; Waldrop, Mark P.; McFarland, Jack W.; Rover, Jennifer R.; Hollingsworth, Teresa N.

    2012-01-01

    Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion.

  16. Correlation between soil characteristics and lead and cadmium content in the aboveground biomass of Virginia tobacco.

    Science.gov (United States)

    Zaprjanova, Penka; Dospatliev, Lilko; Angelova, Violina; Ivanov, Krasimir

    2010-04-01

    The study was conducted on alluvial-meadow, maroon-forest soils and vertisols with Virginia tobacco. The total content of lead and cadmium is measured through decomposition by HF, HClO(4), and HNO(3) acids. A solution of 0.005 M diethylentriaminepentaacetic acid + 0.1 M triethanolamine, pH 7.3 was used for extraction of the elements' mobile forms from soils. The preparation of plant samples was made by means of dry ashing and dissolution in 3 M HCl. An atomic absorption spectrometer "Spektra AA 220" of the Australian company Varian was used for determination of Pb and Cd content in the soil and plant samples. Certified reference materials (three soils and tobacco leaves) were also analyzed for the verification of the accuracy of Pb and Cd determination. A correlation/regression analysis was conducted between pH, humus content, total and mobile forms of lead and cadmium in the soil, and the concentration of these elements in the aboveground biomass of Virginia tobacco. It was established that there are no statistically significant dependencies determined between soil pH and lead concentration in the plant organs of Virginia tobacco. Regressional dependencies of great significance were determined between the humus content, total and mobile lead and cadmium in the soil, and the element concentration in the leaves of the three harvesting zones.

  17. Aboveground roofed design for the disposal of low-level radioactive waste in Maine

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.A. [Univ. of Maine, Orono, ME (United States)

    1993-03-01

    The conceptual designs proposed in this report resulted from a study for the Maine Low-level Radioactive Waste Authority to develop conceptual designs for a safe and reliable disposal facility for Maine`s low-level radioactive waste (LLW). Freezing temperatures, heavy rainfall, high groundwater tables, and very complex and shallow glaciated soils found in Maine place severe constraints on the design. The fundamental idea behind the study was to consider Maine`s climatic and geological conditions at the beginning of conceptual design rather than starting with a design for another location and adapting it for Maine`s conditions. The conceptual designs recommended are entirely above ground and consist of an inner vault designed to provide shielding and protection against inadvertent intrusion and an outer building to protect the inner vault from water. The air dry conditions within the outer building should lead to almost indefinite service life for the concrete inner vault and the waste containers. This concept differs sharply from the usual aboveground vault in its reliance on at least two independent, but more or less conventional, roofing systems for primary and secondary protection against leakage of radioisotopes from the facility. Features include disposal of waste in air dry environment, waste loading and visual inspection by remote-controlled overhead cranes, and reliance on engineered soils for tertiary protection against release of radioactive materials.

  18. Above-ground biomass and structure of 260 African tropical forests

    Science.gov (United States)

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  19. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest.

    Science.gov (United States)

    Shen, Yong; Yu, Shixiao; Lian, Juyu; Shen, Hao; Cao, Honglin; Lu, Huanping; Ye, Wanhui

    2016-06-09

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits were associated with C storage in different directions. Structural equation models (SEMs) of dominance and diversity explained 34% and 32% of variation in C storage. Environments explained 26-44% of variation in dominance and diversity. Similar proportions of variation in C storage were explained by dominance and diversity in regression models, they were improved after adding environments. Diversity of maximum diameter was the best predictor of C storage. Complementarity and selection effects contributed to C storage simultaneously, and had similar importance. The SEMs disengaged the complex relationships among the three components and C storage, and established a framework to show the direct and indirect effects (via dominance and diversity) of local environments on C storage. We concluded that local environments are important for regulating functional diversity and C storage.

  20. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands.

    Science.gov (United States)

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-09-26

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity-ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands.

  1. Aboveground to belowground herbivore defense signaling in maize: a two-way street?

    Science.gov (United States)

    Luthe, Dawn S; Gill, Torrence; Zhu, Lixue; Lopéz, Lorena; Pechanova, Olga; Shivaji, Renuka; Ankala, Arunkanth; Williams, W Paul

    2011-01-01

    Insect pests that attempt to feed on the caterpillar-resistant maize genotype Mp708 encounter a potent, multipronged defense system that thwarts their invasion. First, these plants are on "constant alert" due to constitutively elevated levels of the phytohormone jasmonic acid that signals the plant to activate its defenses. The higher jasmonic acid levels trigger the expression of defense genes prior to herbivore attack so the plants are "primed" and respond with a faster and stronger defense. The second defense is the rapid accumulation of a toxic cysteine protease called Mir1-CP in the maize whorl in response to caterpillar feeding. When caterpillars ingest Mir1-CP, it damages the insect's midgut and retards their growth. In this article, we discuss a third possible defense strategy employed by Mp708. We have shown that foliar caterpillar feeding causes Mir1-CP and defense gene transcripts to accumulate in its roots. We propose that caterpillar feeding aboveground sends a signal belowground via the phloem that results in Mir1-CP accumulation in the roots. We also postulate that the roots serve as a reservoir of Mir1-CP that can be mobilized to the whorl in response to caterpillar assault.

  2. Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Nicola Clerici

    2016-07-01

    Full Text Available Periurban forests are key to offsetting anthropogenic carbon emissions, but they are under constant threat from urbanization. In particular, secondary Neotropical forest types in Andean periurban areas have a high potential to store carbon, but are currently poorly characterized. To address this lack of information, we developed a method to estimate periurban aboveground biomass (AGB—a proxy for multiple ecosystem services—of secondary Andean forests near Bogotá, Colombia, based on very high resolution (VHR GeoEye-1, Pleiades-1A imagery and field-measured plot data. Specifically, we tested a series of different pre-processing workflows to derive six vegetation indices that were regressed against in situ estimates of AGB. Overall, the coupling of linear models and the Ratio Vegetation Index produced the most satisfactory results. Atmospheric and topographic correction proved to be key in improving model fit, especially in high aerosol and rugged terrain such as the Andes. Methods and findings provide baseline AGB and carbon stock information for little studied periurban Andean secondary forests. The methodological approach can also be used for integrating limited forest monitoring plot AGB data with very high resolution imagery for cost-effective modelling of ecosystem service provision from forests, monitoring reforestation and forest cover change, and for carbon offset assessments.

  3. Wildfire Risk to Aboveground Terrestrial Carbon Stocks in the Western United States

    Science.gov (United States)

    Riley, K. L.; Finney, M.

    2015-12-01

    Wildfire is an important part of the terrestrial carbon cycle, moving carbon stored in wood, leaves, litter, and duff into the black carbon and emissions pools. Here, we utilize a national raster of burn probabilities from wildland fire, a tree list for the western United States, and a national map of fuel loading models to calculate the risk to terrestrial carbon from wildland fires in the western United States. Annual burn probabilities are estimated by the Large Fire Simulator (FSim), based on current static landscape conditions and at least 10,000 years of statistically plausible weather sequences. For fires of varying intensity, forest carbon retained onsite and carbon emissions are estimated by the Fire and Fuels Extension of the Forest Vegetation Simulator. In grasslands and shrublands, carbon retained and emitted by wildfire is estimated based on current fuel loading and estimated consumption. We summarize expected carbon stocks and expected annual carbon loss at a variety of scales, aggregating values from the 270m pixel to National Forest, ecoregion, state, and regional scales. Our results indicate that following even a high intensity wildland fire in forested areas, the majority of aboveground carbon is retained onsite in the form of tree trunks. Because of the low annual probability of burning, emissions are small relative to carbon stocks. Additional work will be needed to integrate the complex temporal dimension of the carbon cycle, with areas burned in recent years being at first a carbon source and then a carbon sink after less than a decade in most areas.

  4. Aboveground biomass and carbon stocks modelling using non-linear regression model

    Science.gov (United States)

    Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd

    2016-06-01

    Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.

  5. National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China

    Directory of Open Access Journals (Sweden)

    Hong Chi

    2015-05-01

    Full Text Available Forest aboveground biomass (AGB was mapped throughout China using large footprint LiDAR waveform data from the Geoscience Laser Altimeter System (GLAS onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat, Moderate Resolution Imaging Spectro-radiometer (MODIS imagery and forest inventory data. The entire land of China was divided into seven zones according to the geographic characteristics of the forests. The forest AGB prediction models were separately developed for different forest types in each of the seven forest zones at GLAS footprint level from GLAS waveform parameters and biomass derived from height and diameter at breast height (DBH field observation. Some waveform parameters used in the prediction models were able to reduce the effects of slope on biomass estimation. The models of GLAS-based biomass estimates were developed by using GLAS footprints with slopes less than 20° and slopes ≥ 20°, respectively. Then, all GLAS footprint biomass and MODIS data were used to establish Random Forest regression models for extrapolating footprint AGB to a nationwide scale. The total amount of estimated AGB in Chinese forests around 2006 was about 12,622 Mt vs. 12,617 Mt derived from the seventh national forest resource inventory data. Nearly half of all provinces showed a relative error (% of less than 20%, and 80% of total provinces had relative errors less than 50%.

  6. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?

    Science.gov (United States)

    Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T

    2012-01-01

    Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.

  7. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery

    Science.gov (United States)

    Wu, Chaofan; Shen, Huanhuan; Shen, Aihua; Deng, Jinsong; Gan, Muye; Zhu, Jinxia; Xu, Hongwei; Wang, Ke

    2016-07-01

    Biomass is one significant biophysical parameter of a forest ecosystem, and accurate biomass estimation on the regional scale provides important information for carbon-cycle investigation and sustainable forest management. In this study, Landsat satellite imagery data combined with field-based measurements were integrated through comparisons of five regression approaches [stepwise linear regression, K-nearest neighbor, support vector regression, random forest (RF), and stochastic gradient boosting] with two different candidate variable strategies to implement the optimal spatial above-ground biomass (AGB) estimation. The results suggested that RF algorithm exhibited the best performance by 10-fold cross-validation with respect to R2 (0.63) and root-mean-square error (26.44 ton/ha). Consequently, the map of estimated AGB was generated with a mean value of 89.34 ton/ha in northwestern Zhejiang Province, China, with a similar pattern to the distribution mode of local forest species. This research indicates that machine-learning approaches associated with Landsat imagery provide an economical way for biomass estimation. Moreover, ensemble methods using all candidate variables, especially for Landsat images, provide an alternative for regional biomass simulation.

  8. Predicting above-ground density and distribution of small mammal prey species at large spatial scales.

    Science.gov (United States)

    Olson, Lucretia E; Squires, John R; Oakleaf, Robert J; Wallace, Zachary P; Kennedy, Patricia L

    2017-01-01

    Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal density and remotely-sensed environmental covariates in shrub-steppe and grassland ecosystems in Wyoming, USA. We sampled four sciurid and leporid species groups using line transect methods, and used hierarchical distance-sampling to model density in response to variation in vegetation, climate, topographic, and anthropogenic variables, while accounting for variation in detection probability. We created spatial predictions of each species' density and distribution. Sciurid and leporid species exhibited mixed responses to vegetation, such that changes to native habitat will likely affect prey species differently. Density of white-tailed prairie dogs (Cynomys leucurus), Wyoming ground squirrels (Urocitellus elegans), and leporids correlated negatively with proportion of shrub or sagebrush cover and positively with herbaceous cover or bare ground, whereas least chipmunks showed a positive correlation with shrub cover and a negative correlation with herbaceous cover. Spatial predictions from our models provide a landscape-scale metric of above-ground prey density, which will facilitate the development of conservation plans for these taxa and their predators at spatial scales relevant to management.

  9. Aboveground biomass and net primary production of semi-evergreen tropical forest of Manipur, north-eastern India

    Institute of Scientific and Technical Information of China (English)

    L.Supriya Devi; P.S Yadava

    2009-01-01

    The aboveground biomass dynamics and net primary productivity were investigated to assess the productive potential of Dipterocarpus forest in Manipur, Northeast India. Two forest stands (stand I and II) were earmarked randomly in the study site for the evaluation of biomass in the different girth classes of tree species by harvest method. The total biomass was 22.50 t·ha-1 and 18.27 t·ha-1 in forest stand I and II respectively. Annual aboveground net primary production varied from 8.86 to 10.43 t·ha-1 respectively in two forest stands (stand I and II). In the present study, the values of production efficiency and the biomass accumulation ratio indicate that the forest is at succession stage with high productive potential.

  10. Aboveground nutrient components of Eucalyptus camaldulensis and E. grandis in semiarid Brazil under the nature and the mycorrhizal inoculation conditions

    Institute of Scientific and Technical Information of China (English)

    Marcela C. Pagano; Antonio F. Bellote; Maria R. Scotti

    2009-01-01

    A study was conducted to evaluate the aboveground biomass, nutrient content and the percentages of mycorrhizal colonization in Eucalyptus camaldulensis and Eucalyptus grandis plantations in the semiarid region (15° 09' S 43° 49' W) in the north of the State of Minas Gerais in Brazil. Results show that the total above-ground biomass (dry matter) was 33.6 Mg·ha-1 for E. camaldulensis and 53.1 Mg·ha-1 for E. grandis. The biomass of the stem wood, leaves, branches, and stem bark for E. camaldulensis accounted for 64.4%, 19.6%, 15.4%, and 0.6% of the total biomass, respectively (Table 2); meanwhile a similar partition of the total above-ground biomass was also found for E. grandis. The dry matter of leaves and branches of E. camaldulensis accounted for 35% of total biomass, and the contents of N, P, K, Ca, Mg, and S in leaves and branches accounted for 15.5%, 0.7%, 12.3%, 22.6%, 1.9%, and 1.4% of those in total above-ground biomass, respectively. In the trunk (bark and wood), nutrient accumulation in general was lower. Nutrient content of E. grandis presented little variation compared with that of E. camaldulensis. Wood localized in superior parts of trunk presented a higher concentration of P and bark contained significant amounts of nutrients, especially in E. grandis. This indicated that leaving vegetal waste is of importance on the site in reducing the loss of tree productivity in this semi-arid region. The two species showed mycotrophy.

  11. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    Science.gov (United States)

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  12. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    OpenAIRE

    Köhler, P.; Huth, A.

    2010-01-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degr...

  13. Structure, Aboveground Biomass, and Soil Characterization of Avicennia marina in Eastern Mangrove Lagoon National Park, Abu Dhabi

    Science.gov (United States)

    Alsumaiti, Tareefa Saad Sultan

    Mangrove forests are national treasures of the United Arab Emirates (UAE) and other arid countries with limited forested areas. Mangroves form a crucial part of the coastal ecosystem and provide numerous benefits to society, economy, and especially the environment. Mangrove trees, specifically Avicennia marina, are studied in their native habitat in order to characterize their population structure, aboveground biomass, and soil properties. This study focused on Eastern Mangrove Lagoon National Park in Abu Dhabi, which was the first mangrove protected area to be designated in UAE. In situ measurements were collected to estimate Avicennia marina status, mortality rate (%), height (m), crown spread (m), stem number, diameter at breast height (cm), basal area (m), and aboveground biomass (t ha-1 ). Small-footprint aerial light detection and ranging (LIDAR) data acquired by UAE were processed to characterize mangrove canopy height and aboveground biomass density. This included extraction of LIDAR-derived height percentile statistics, segmentation of the forest into structurally homogenous units, and development of regression relationships between in situ reference and remote sensing data using a machine learning approach. An in situ soil survey was conducted to examine the soils' physical and chemical properties, fertility status, and organic matter. The data of soil survey were used to create soil maps to evaluate key characteristics of soils, and their influence on Avicennia marina in Eastern Mangrove Lagoon National Park. The results of this study provide new insights into Avicennia marina canopy population, structure, aboveground biomass, and soil properties in Abu Dhabi, as data in such arid environments is lacking. This valuable information can help in managing and preserving this unique ecosystem.

  14. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest.

    Science.gov (United States)

    Slik, J W Ferry; Bernard, Caroline S; Van Beek, Marloes; Breman, Floris C; Eichhorn, Karl A O

    2008-12-01

    Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.

  15. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    Science.gov (United States)

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  16. Maintenance and growth respiration of the aboveground parts of young field-grown hinoki cypress (Chamaecyparis obtusa).

    Science.gov (United States)

    Yokota, T; Hagihara, A

    1995-06-01

    Aboveground respiration of five 8-year-old trees of field-grown hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) was nondestructively measured at monthly intervals over 1 year with an enclosed standing tree method. The relationship between monthly specific respiration rate and monthly mean relative growth rate at the individual tree level was described by a linear equation. During the dormant season, respiration was used mainly for maintenance purposes, whereas during the growing season, more than 40% of the respiration was used for growth purposes, i.e., 60 to 70% in May. We conclude that annual maintenance and growth respiration of a tree are directly proportional to the aboveground phytomass and its annual increment, respectively. The maintenance coefficient was estimated to be 0.504 +/- 0.039 (SE) kg kg(-1) year(-1), indicating that the amount respired for maintaining already existing phytomass was equivalent to about half of the existing phytomass. The growth coefficient was estimated to be 0.772 +/- 0.043 (SE) kg kg(-1), indicating that the amount respired for constructing new phytomass was equivalent to about three-fourths of the annual phytomass increment. The annual stand maintenance and growth respiration were, respectively, 8.8 Mg ha(-1) year(-1) for an aboveground biomass of 17.4 Mg ha(-1) and 5.0 Mg ha(-1) year(-1) for an annual stand aboveground biomass increment of 6.5 Mg ha(-1) year(-1). About two-thirds of the total respiration was used to maintain already existing biomass, and about one-third was used to construct new biomass.

  17. The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications.

    Science.gov (United States)

    Muroi, Atsushi; Ramadan, Abdelaziz; Nishihara, Masahiro; Yamamoto, Masaki; Ozawa, Rika; Takabayashi, Junji; Arimura, Gen-ichiro

    2011-01-01

    A blend of volatile organic compounds (VOCs) emitted from plants induced by herbivory enables the priming of defensive responses in neighboring plants. These effects may provide insights useful for pest control achieved with transgenic-plant-emitted volatiles. We therefore investigated, under both laboratory and greenhouse conditions, the priming of defense responses in plants (lima bean and corn) by exposing them to transgenic-plant-volatiles (VOCos) including (E)-β-ocimene, emitted from transgenic tobacco plants (NtOS2) that were constitutively overexpressing (E)-β-ocimene synthase. When lima bean plants that had previously been placed downwind of NtOS2 in an open-flow tunnel were infested by spider mites, they were more defensive to spider mites and more attractive to predatory mites, in comparison to the infested plants that had been placed downwind of wild-type tobacco plants. This was similarly observed when the NtOS2-downwind maize plants were infested with Mythimna separata larvae, resulting in reduced larval growth and greater attraction of parasitic wasps (Cotesia kariyai). In a greenhouse experiment, we also found that lima bean plants (VOCos-receiver plants) placed near NtOS2 were more attractive when damaged by spider mites, in comparison to the infested plants that had been placed near the wild-type plants. More intriguingly, VOCs emitted from infested VOCos-receiver plants affected their conspecific neighboring plants to prime indirect defenses in response to herbivory. Altogether, these data suggest that transgenic-plant-emitted volatiles can enhance the ability to prime indirect defenses via both plant-plant and plant-plant-plant communications.

  18. The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications.

    Directory of Open Access Journals (Sweden)

    Atsushi Muroi

    Full Text Available A blend of volatile organic compounds (VOCs emitted from plants induced by herbivory enables the priming of defensive responses in neighboring plants. These effects may provide insights useful for pest control achieved with transgenic-plant-emitted volatiles. We therefore investigated, under both laboratory and greenhouse conditions, the priming of defense responses in plants (lima bean and corn by exposing them to transgenic-plant-volatiles (VOCos including (E-β-ocimene, emitted from transgenic tobacco plants (NtOS2 that were constitutively overexpressing (E-β-ocimene synthase. When lima bean plants that had previously been placed downwind of NtOS2 in an open-flow tunnel were infested by spider mites, they were more defensive to spider mites and more attractive to predatory mites, in comparison to the infested plants that had been placed downwind of wild-type tobacco plants. This was similarly observed when the NtOS2-downwind maize plants were infested with Mythimna separata larvae, resulting in reduced larval growth and greater attraction of parasitic wasps (Cotesia kariyai. In a greenhouse experiment, we also found that lima bean plants (VOCos-receiver plants placed near NtOS2 were more attractive when damaged by spider mites, in comparison to the infested plants that had been placed near the wild-type plants. More intriguingly, VOCs emitted from infested VOCos-receiver plants affected their conspecific neighboring plants to prime indirect defenses in response to herbivory. Altogether, these data suggest that transgenic-plant-emitted volatiles can enhance the ability to prime indirect defenses via both plant-plant and plant-plant-plant communications.

  19. More than one way to be an herbivore: convergent evolution of herbivory using different digestive strategies in prickleback fishes (Stichaeidae).

    Science.gov (United States)

    German, Donovan P; Sung, Aaron; Jhaveri, Parth; Agnihotri, Ritika

    2015-06-01

    In fishes, the evolution of herbivory has occured within a spectrum of digestive strategies, with two extremes on opposite ends: (i) a rate-maximization strategy characterized by high intake, rapid throughput of food through the gut, and little reliance on microbial digestion or (ii) a yield-maximization strategy characterized by measured intake, slower transit of food through the gut, and more of a reliance on microbial digestion in the hindgut. One of these strategies tends to be favored within a given clade of fishes. Here, we tested the hypothesis that rate or yield digestive strategies can arise in convergently evolved herbivores within a given lineage. In the family Stichaeidae, convergent evolution of herbivory occured in Cebidichthys violaceus and Xiphister mucosus, and despite nearly identical diets, these two species have different digestive physiologies. We found that C. violaceus has more digesta in its distal intestine than other gut regions, has comparatively high concentrations (>11 mM) of short-chain fatty acids (SCFA, the endpoints of microbial fermentation) in its distal intestine, and a spike in β-glucosidase activity in this gut region, findings that, when coupled to long retention times (>20 h) of food in the guts of C. violaceus, suggest a yield-maximizing strategy in this species. X. mucosus showed none of these features and was more similar to its sister taxon, the omnivorous Xiphister atropurpureus, in terms of digestive enzyme activities, gut content partitioning, and concentrations of SCFA in their distal intestines. We also contrasted these herbivores and omnivores with other sympatric stichaeid fishes, Phytichthys chirus (omnivore) and Anoplarchus purpurescens (carnivore), each of which had digestive physiologies consistent with the consumption of animal material. This study shows that rate- and yield-maximizing strategies can evolve in closely related fishes and suggests that resource partitioning can play out on the level of

  20. Gastrophysa polygoni herbivory on Rumex confertus: single leaf VOC induction and dose dependent herbivore attraction/repellence to individual compounds.

    Science.gov (United States)

    Piesik, Dariusz; Wenda-Piesik, Anna; Kotwica, Karol; Łyszczarz, Alicja; Delaney, Kevin J

    2011-11-15

    We report large induction (>65(fold) increases) of volatile organic compounds (VOCs) emitted from a single leaf of the invasive weed mossy sorrel, Rumex confertus Willd. (Polygonaceae), by herbivory of the dock leaf beetle, Gastrophysa polygoni L. (Coleoptera: Chrysomelidae). The R. confertus VOC blend induced by G. polygoni herbivory included two green leaf volatiles ((Z)-3-hexenal, (Z)-3-hexen-1-yl acetate) and three terpenes (linalool, ß-caryophyllene, (E)-ß-farnesene). Uninjured leaves produced small constitutive amounts of the GLVs and barely detectable amounts of the terpenes. A Y-tube olfactometer bioassay revealed that both sexes of adult G. polygoni were attracted to (Z)-3-hexenal and (Z)-3-hexen-1-yl acetate at a concentration of 300 ng h(-1). No significant G. polygoni attraction or repellence was detected for any VOC at other concentrations (60 and 1500 ng h(-1)). Yet, G. polygoni males and females were significantly repelled by (or avoided) at the highest test concentration (7500 ng h(-1)) of both GLVs and (E)-ß-farnesene. Mated male and female G. polygoni might be attracted to injured R. confertus leaves, but might avoid R. confertus when VOC concentrations (especially the terpene (E)-ß-farnesene) suggest high overall plant injury from conspecifics, G. viridula, or high infestations of other herbivores that release (E)-ß-farnesene (e.g., aphids). Tests in the future will need to examine G. polygoni responses to VOCs emitted directly from uninjured (constitutive) and injured (induced) R. confertus, and examine whether R. confertus VOC induction concentrations increase with greater tissue removal on a single leaf and/or the number of leaves with feeding injury.

  1. Epiphytes and nutrient contents influence Sarpa salpa herbivory on Caulerpa spp vs. seagrass species in Mediterranean meadows

    Science.gov (United States)

    Marco-Méndez, Candela; Ferrero-Vicente, Luis Miguel; Prado, Patricia; Sánchez-Lizaso, Jose Luis

    2017-01-01

    Mediterranean seagrass ecosystems are endangered by increased colonization of Caulerpa species, which may replace them, affecting key ecosystem processes. The fish Sarpa salpa (L.) is one of the main macroherbivores in the western Mediterranean seagrass meadows which is known to feed on a wide range of macroalgae such as Caulerpa species. In order to elucidate if this consumption could minimize the spread of invasive species, during summer-autumn 2012, we investigate the importance of S. salpa herbivory pressure on C. prolifera and C. cylindracea compared to Posidonia oceanica and Cymodocea nodosa in a mixed meadow. A combination of field experiments and dietary analyses were used to investigate consumption rates, dietary contributions, and feeding preferences for the different macrophytes, including the role of epiphytes and nutrient contents in mediating fish herbivory. In summer, C. nodosa was the most consumed macrophyte (12.75 ± 3.43 mg WW·d-1), probably influenced by higher fish densities, higher nutritional quality of leaves and epiphytes, and by differences in epiphyte composition. Feeding observations suggest that fish may have a variable diet, although with a consistent selection of mixed patches with C. nodosa and C. prolifera. Indeed, food choice experiments suggest that when seagrass leaves are not epiphytized, fish prefer feeding on C. prolifera. Gut content and stable isotopic analyses supported the dietary importance of epiphytes and C. prolifera but also suggested that C. cylindracea could occasionally be an important food item for S. salpa. Our results highlight the role of epiphytes in S. salpa feeding decisions but also suggest that C. nodosa and C. prolifera may have an important contribution to fish diet. The variability in S. salpa diet confirm the need to carry out multiple approach studies for a better understanding of its potential influence over different macrophytes species.

  2. Arthropod assemblage related to volatile cues in flowering wheat: interaction between aphid herbivory and soil conditions as induction factors.

    Science.gov (United States)

    Lenardis, Adriana E; Szpeiner, Alfonsina; Ghersa, Claudio M

    2014-04-01

    Volatile cues released by plants play an important role in plant-insect interactions and are influenced by pests or soil conditions affecting plant metabolism. Field microcosm experiments were used to characterize arthropod spontaneous assemblies in homogenous unstressed wheat patches exposed to volatile cues coming from wheat plants with different levels of stress. The design was a factorial completely randomized block design with three replications. Source wheat pots combined two stress factors: 1) soil degradation level: high and low, and 2) aphid herbivory: with (A) and without (B). Eighteen experimental units consisted of source stressed wheat pots, connected by tubes conducting the volatile cues to sink wheat patches. These patches were located at the end of the tubes placed in a flowering wheat field. Arthropod assemblies on wheat sinks were different between years and they were associated to the source cues. Soil condition was the main discriminating factor among arthropods when a clear contrast between high and low soil degradation was observed, whereas aphid herbivory was the main discriminating factor when soil condition effects were absent. Main soil properties related with arthropods assembly were Mg and K in the first year and cation exchange capacity, total nitrogen, and pH in the second year of experiment. According to this study, spontaneous arthropod distributions in the homogeneous, unstressed wheat patch responded to the volatile cues coming from wheat sources growing in particular soil conditions. It is possible to suggest that soil-plant-herbivore interactions change wheat cues and this phenomenon produces significant differences in neighboring arthropod community structure.

  3. Comparison and Intercalibration of Vegetation Indices from Different Sensors for Monitoring Above-Ground Plant Nitrogen Uptake in Winter Wheat

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2013-03-01

    Full Text Available Various sensors have been used to obtain the canopy spectral reflectance for monitoring above-ground plant nitrogen (N uptake in winter wheat. Comparison and intercalibration of spectral reflectance and vegetation indices derived from different sensors are important for multi-sensor data fusion and utilization. In this study, the spectral reflectance and its derived vegetation indices from three ground-based sensors (ASD Field Spec Pro spectrometer, CropScan MSR 16 and GreenSeeker RT 100 in six winter wheat field experiments were compared. Then, the best sensor (ASD and its normalized difference vegetation index (NDVI (807, 736 for estimating above-ground plant N uptake were determined (R2 of 0.885 and RMSE of 1.440 g·N·m−2 for model calibration. In order to better utilize the spectral reflectance from the three sensors, intercalibration models for vegetation indices based on different sensors were developed. The results indicated that the vegetation indices from different sensors could be intercalibrated, which should promote application of data fusion and make monitoring of above-ground plant N uptake more precise and accurate.

  4. Effects of site disturbance and vegetation control on aboveground biomass in young mixed-conifer plantations in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Powers, R.; Fiddler, G. [United States Dept. of Agriculture Forest Service, CA (United States). California Long-Term Soil Productivity Experiment Steering Committee, Pacific Southwest Research Station; Young, D. [United States Dept. of Agriculture Forest Service, CA (United States). California Long-Term Soil Productivity Experiment Steering Committee, Shasta-Trinity National Forest; Roath, B.; Landram, M. [United States Dept. of Agriculture Forest Service, CA (United States). California Long-Term Soil Productivity Experiment Steering Committee, Pacific Southwest Region

    2010-07-01

    This study evaluated the effect of vegetation control and site disturbance on aboveground biomass in young conifer plantations in California. Ten-year vegetation data from 12 long-term soil productivity sites in the Sierra Nevada and southern Cascades were used to determine above ground biomass. In addition, 15-year vegetation data from 3 earlier Sierra Nevada sites was also examined. The aim of the study was to determine how biomass management impacts site productivity in the next generation of forest. The sites included 9 factorial combinations of 3 organic matter removals. Plots were planted with a mixture of conifers and divided into 2 subplots where understory vegetation was either controlled, or allowed to develop naturally. The study showed that neither the 10-year nor the 15-year total aboveground biomass was significantly impacted by organic matter removal. Results indicated that no negative effect of either organic matter removal or soil compaction on total aboveground biomass occurred in the early stages of stand development of mixed conifer plantations. However, understory control significantly decreased total site production as a result of delayed site occupancy.

  5. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density

  6. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models

    NARCIS (Netherlands)

    Johnson, Michelle O.; Galbraith, David; Gloor, Manuel; Deurwaerder, De Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; Randow, Von Celso; Monteagudo, Abel; Phillips, Oliver L.; Brienen, Roel J.W.; Feldpausch, Ted R.; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A.; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves De Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E.O.C.; Araujo-Murakami, Alejandro; Arets, Eric J.M.M.; Arroyo, Luzmila; Aymard, Gerardo A.; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola Da Costa, Antonio C.; Fiore, Di Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N.; Killeen, Tim J.; Laurance, Susan G.; Laurance, William F.; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C.L.; Mendoza, Casimiro; Neill, David A.; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C.A.; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P.; Silveira, Marcos; Stropp, Juliana; Steege, Ter Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Heijden, van der Geertje M.F.; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A.; Baker, Timothy R.

    2016-01-01

    Understanding the processes that determine aboveground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody

  7. Analysis of biophysical and anthropogenic variables and their relation to the regional spatial variation of aboveground biomass illustrated for North and East Kalimantan, Borneo

    NARCIS (Netherlands)

    Van der Laan, Carina; Verweij, Pita A.; Quiñones, Marcela J.; Faaij, André P C

    2014-01-01

    Background: Land use and land cover change occurring in tropical forest landscapes contributes substantially to carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means of multiple statistical tests, including geographically weighted regressio

  8. Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-11-15

    The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R(2)=0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and

  9. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China

    Directory of Open Access Journals (Sweden)

    Xiao-Tao Lü

    2009-06-01

    Full Text Available Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with = 2 cm diameter at breast height (dbh were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha, 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded was the most important family in the study forests. The population density, basal area and importance value index (IVI varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha accounted for 1.4% of the total community aboveground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales. Rev. Biol. Trop. 57 (1-2: 211-222. Epub 2009 June 30.Las lianas son componentes importantes de los bosques tropicales y tienen importantes impactos en la diversidad, la estructura y la dinámica de los bosques tropicales. El presente estudio documenta la flora de lianas en una región tropical estacional china. La

  10. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  11. Allometric models for aboveground biomass of ten tree species in northeast China

    Directory of Open Access Journals (Sweden)

    Shuo Cai

    2013-05-01

    Full Text Available China contains 119 million hectares of natural forest, much of whichis secondary forest. An accurate estimation of the biomass of these forests is imperative because many studies conducted in northeast China have only used primary forest and this may have resulted in biased estimates. This study analyzed secondary forest in the area using information from a forest inventory to develop allometric models of the aboveground biomass (AGB. The parameter values of the diameter at breast height (DBH, tree height (H, and crown length (CL were derived from a forest inventory of 2,733 trees in a 3.5 ha plot. The wood-specific gravity (WSG was determined for 109 trees belonging to ten species. A partial sampling method was also used to determine the biomass of branches (including stem, bark and foliage in 120 trees, which substantially ease the field works. The mean AGB was110,729 kg ha–1. We developed four allometric models from the investigation and evaluated the utility of other 19 published ones for AGB in the ten tree species. Incorporation of full range of variables with WSG-DBH-H-CL, significantly improved the precision of the models. Some of models were chosen that best fitted each tree species with high precision (R2 ≥ 0.939, SEE 0.167. At the latitude level, the estimated AGB of secondary forest was lower than that in mature primary forests, but higher than that in primary broadleaf forest and the average level in other types of forest likewise.

  12. Quantification of uncertainty in aboveground biomass estimates derived from small-footprint LiDAR data

    Science.gov (United States)

    Xu, Q.; Greenberg, J. A.; Li, B.; Ramirez, C.; Balamuta, J. J.; Evans, K.; Man, A.; Xu, Z.

    2015-12-01

    A promising approach to determining aboveground biomass (AGB) in forests comes through the use of individual tree crown delineation (ITCD) techniques applied to small-footprint LiDAR data. These techniques, when combined with allometric equations, can produce per-tree estimates of AGB. At this scale, AGB estimates can be quantified in a manner similar to how ground-based forest inventories are produced. However, these approaches have significant uncertainties that are rarely described in full. Allometric equations are often based on species-specific diameter-at-breast height (DBH) relationships, but neither DBH nor species can be reliably determined using remote sensing analysis. Furthermore, many approaches to ITCD only delineate trees appearing in the upper canopy so subcanopy trees are often missing from the inventories. In this research, we performed a propagation-of-error analysis to determine the spatially varying uncertainties in AGB estimates at the individual plant and stand level for a large collection of LiDAR acquisitions covering a large portion of California. Furthermore, we determined the relative contribution of various aspects of the analysis towards the uncertainty, including errors in the ITCD results, the allometric equations, the taxonomic designation, and the local biophysical environment. Watershed segmentation was used to obtain the preliminary crown segments. Lidar points within the preliminary segments were extracted to form profiling data of the segments, and then mode detection algorithms were applied to identify the tree number and tree heights within each segment. As part of this analysis, we derived novel "remote sensing aware" allometric equations and their uncertainties based on three-dimensional morphological metrics that can be accurately derived from LiDAR data.

  13. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    Science.gov (United States)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  14. Allometric models for aboveground biomass of ten tree species in northeast China

    Directory of Open Access Journals (Sweden)

    Shuo Cai

    2013-07-01

    Full Text Available China contains 119 million hectares of natural forest, much of which is secondary forest. An accurate estimation of the biomass of these forests is imperative because many studies conducted in northeast China have only used primary forest and this may have resulted in biased estimates. This study analyzed secondary forest in the area using information from a forest inventory to develop allometric models of the aboveground biomass (AGB. The parameter values of the diameter at breast height (DBH, tree height (H, and crown length (CL were derived from a forest inventory of 2,733 trees in a 3.5 ha plot. The wood-specific gravity (WSG was determined for 109 trees belonging to ten species. A partial sampling method was also used to determine the biomass of branches (including stem, bark and foliage in 120 trees, which substantially easy the field works. The mean AGB was 110,729 kg ha–1. We developed four allometric models from the investigation and evaluated the utility of other 19 published ones for AGB in the ten tree species. Incorporation of full range of variables with WSG-DBH-H-CL, significantly improved the precision of the models. Some of models were chosen that best fitted each tree species with high precision (R2 = 0.939, SEE 0.167. At the latitude level, the estimated AGBof secondary forest was lower than that in mature primary forests, but higher than that in primary broadleaf forest and the average level in other types of forest likewise. 

  15. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling

    Science.gov (United States)

    Güneralp, İnci; Filippi, Anthony M.; Randall, Jarom

    2014-12-01

    Floodplain forests serve a critical function in the global carbon cycle because floodplains constitute an important carbon sink compared with other terrestrial ecosystems. Forests on dynamic floodplain landscapes, such as those created by river meandering processes, are characterized by uneven-aged trees and exhibit high spatial variability, reflecting the influence of interacting fluvial, hydrological, and ecological processes. Detailed and accurate mapping of aboveground biomass (AGB) on floodplain landscapes characterized by uneven-aged forests is critical for improving estimates of floodplain-forest carbon pools, which is useful for greenhouse gas (GHG) life cycle assessment. It would also help improve our process understanding of biomorphodynamics of river-floodplain systems, as well as planning and monitoring of conservation, restoration, and management of riverine ecosystems. Using stochastic gradient boosting (SGB), multivariate adaptive regression splines (MARS), and Cubist, we remotely estimate AGB of a bottomland hardwood forest on a meander bend of a dynamic lowland river. As predictors, we use 30-m and 10-m multispectral image bands (Landsat 7 ETM+ and SPOT 5, respectively) and ancillary data. Our findings show that SGB and MARS significantly outperform Cubist, which is used for U.S. national-scale forest biomass mapping. Across all data-experiments and algorithms, at 10-m spatial resolution, SGB yields the best estimates (RMSE = 22.49 tonnes/ha; coefficient of determination (R2) = 0.96) when geomorphometric data are also included. On the other hand, at 30-m spatial resolution, MARS yields the best estimates (RMSE = 29.2 tonnes/ha; R2 = 0.94) when image-derived data are also included. By enabling more accurate AGB mapping of floodplains characterized by uneven-aged forests, SGB and MARS provide an avenue for improving operational estimates of AGB and carbon at local, regional/continental, and global scales.

  16. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    Science.gov (United States)

    Longo, Marcos; Keller, Michael; dos-Santos, Maiza N.; Leitold, Veronika; Pinagé, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-11-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained 70% of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 ± 2.5 and 31.9 ± 10.8 kg C m-2. Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 ± 0.7 kg C m-2 (94%) of ACD. Forests that burned nearly 15 years ago had between 4.1 ± 0.5 and 6.8 ± 0.3 kg C m-2 (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 ± 0.3 and 4.4 ± 0.4 kg C m-2 (4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pantropical products consistently overestimated ACD in degraded forests, underestimated ACD in intact forests, and showed little sensitivity to fires and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation (REDD+).

  17. Toward Aboveground Biomass Estimation with RADAR, Lidar and Optical Remote Sensing Data in Southern Mexico

    Science.gov (United States)

    Urbazaev, M.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Information on the spatial distribution of aboveground biomass (AGB) over large areas is needed (1) for understanding and managing the processes involved in the carbon cycle, and (2) supporting international policies for climate change mitigation and adaption. Using remote sensing techniques it is possible to provide spatially explicit information of AGB from local to global scales. In this work we present the first results on the use of multi-sensor remote sensing data to estimate AGB over three test sites in southern Mexico. In order to develop a set of AGB retrieval algorithms, we firstly compared different SAR parameters (e.g. multi-polarized backscatter intensities and interferometric coherence) obtained from ALOS PALSAR sensor and Landsat imagery with field-based AGB estimates using empirical regressions and analyzed the relationships between them. The next steps of the work will be development of a two-stage up-scaling approach: firstly, to enlarge the cal/val data, we propose to estimate AGB along airborne LiDAR (from G-LiHT sensor) transects using field-based AGB and LiDAR height metrics. With LiDAR-based AGB we will then calibrate SAR parameters in a non-parametric model (e.g., randomForest) to create AGB maps over the study areas. An overall aim of the study is the analysis of capabilities and limitations of SAR data for AGB mapping and the investigation of the potential synergistic use of SAR, LiDAR and optical systems.The proposed monitoring tool will facilitate quantitative estimations in loss of carbon storage and support the selection of terrestrial (e.g. tropical dry forests, shrublands) sites for conservation priorities with high value for the national carbon budget.

  18. Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica.

    Directory of Open Access Journals (Sweden)

    Philip Taylor

    Full Text Available Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO Light Detection and Ranging (LiDAR system to detect top-of-canopy tree height (TCH and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors

  19. NH3 Volatilization from Aboveground Plants of Winter Wheat During Late Growing Stages

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-hui; LI Sheng-xiu

    2003-01-01

    Ammonia volatilized from aboveground parts of winter wheat was collected with an enclosuregrowth chamber and measured from jointing to maturing stage. The results showed that ammonia releasedfrom unfertilized plants grown in high and low fertility soils remained at low rates of 2.3 and 0.9 μg NH3 40plant-1 h-1 respectively at late filling stage. However, fertilized plants rapidly increased the rates to 43.4 and52.2 μg NH3 40 plant-1 h-1 in the high and low fertility soils, respectively, at the same period. The released a-mount was different in different parts of plants. At filling stage, lower senescing stems and leaves volatilizedmore ammonia than upper parts, i.e. , ears and flag leaves that grew normally, with an average of 1.4 and0.7 μg NH3 20 plant-1 h-1 respectively, strongly suggesting that it was the senile organs that released largeamounts of ammonia. At the grain filling stage, shortage of water supply (drought stress) reduced ammoniavolatilization. The average rate of ammonia released under water stress was 0.9 μg NH3 40 plant-1 h-1 , but 1.2μg NH3 40 plant-1 h-1 with moderate water supply. Application of N together with P fertilizer resulted in ahigher ammonia volatilization than N fertilization alone at the maturing stage. The average rate released was135.3 μg NH3 40 plant-1 h-1 when 0.4 g N and 0.13 g P had been added to per kg soil, while 33.7 μg when0.4 g N added alone. Ammonia volatilization from plants was closely related with plant biomass and N up-take; P fertilization increased plant biomass and N uptake and therefore increased its release.

  20. A radiative transfer model-based method for the estimation of grassland aboveground biomass

    Science.gov (United States)

    Quan, Xingwen; He, Binbin; Yebra, Marta; Yin, Changming; Liao, Zhanmang; Zhang, Xueting; Li, Xing

    2017-02-01

    This paper presents a novel method to derive grassland aboveground biomass (AGB) based on the PROSAILH (PROSPECT + SAILH) radiative transfer model (RTM). Two variables, leaf area index (LAI, m2m-2, defined as a one-side leaf area per unit of horizontal ground area) and dry matter content (DMC, gcm-2, defined as the dry matter per leaf area), were retrieved using PROSAILH and reflectance data from Landsat 8 OLI product. The result of LAI × DMC was regarded as the estimated grassland AGB according to their definitions. The well-known ill-posed inversion problem when inverting PROSAILH was alleviated using ecological criteria to constrain the simulation scenario and therefore the number of simulated spectra. A case study of the presented method was applied to a plateau grassland in China to estimate its AGB. The results were compared to those obtained using an exponential regression, a partial least squares regression (PLSR) and an artificial neural networks (ANN). The RTM-based method offered higher accuracy (R2 = 0.64 and RMSE = 42.67 gm-2) than the exponential regression (R2 = 0.48 and RMSE = 41.65 gm-2) and the ANN (R2 = 0.43 and RMSE = 46.26 gm-2). However, the proposed method offered similar performance than PLSR as presented better determination coefficient than PLSR (R2 = 0.55) but higher RMSE (RMSE = 37.79 gm-2). Although it is still necessary to test these methodologies in other areas, the RTM-based method offers greater robustness and reproducibility to estimate grassland AGB at large scale without the need to collect field measurements and therefore is considered the most promising methodology.

  1. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests

    Directory of Open Access Journals (Sweden)

    Yifan Yu

    2016-06-01

    Full Text Available Synthetic Aperture Radar (SAR backscatter measurements are sensitive to forest aboveground biomass (AGB, and the observations from space can be used for mapping AGB globally. However, the radar sensitivity saturates at higher AGB values depending on the wavelength and geometry of radar measurements, and is influenced by the structure of the forest and environmental conditions. Here, we examine the sensitivity of SAR at the L-band frequency (~25 cm wavelength to AGB in order to examine the performance of future joint National Aeronautics and Space Administration, Indian Space Research Organisation NASA-ISRO SAR mission in mapping the AGB of global forests. For SAR data, we use the Phased Array L-Band SAR (PALSAR backscatter from the Advanced Land Observing Satellite (ALOS aggregated at a 100-m spatial resolution; and for AGB data, we use more than three million AGB values derived from the Geoscience Laser Altimeter System (GLAS LiDAR height metrics at about 0.16–0.25 ha footprints across eleven different forest types globally. The results from statistical analysis show that, over all eleven forest types, saturation level of L-band radar at HV polarization on average remains ≥100 Mg·ha−1. Fresh water swamp forests have the lowest saturation with AGB at ~80 Mg·ha−1, while needleleaf forests have the highest saturation at ~250 Mg·ha−1. Swamp forests show a strong backscatter from the vegetation-surface specular reflection due to inundation that requires to be treated separately from those on terra firme. Our results demonstrate that L-Band backscatter relations to AGB can be significantly different depending on forest types and environmental effects, requiring multiple algorithms to map AGB from time series of satellite radar observations globally.

  2. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    Science.gov (United States)

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-02-04

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  3. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    Science.gov (United States)

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  4. Satellite detection of land-use change and effects on regional forest aboveground biomass estimates.

    Science.gov (United States)

    Zheng, Daolan; Heath, Linda S; Ducey, Mark J

    2008-09-01

    We used remote-sensing-driven models to detect land-cover change effects on forest aboveground biomass (AGB) density (Mg.ha(-1), dry weight) and total AGB (Tg) in Minnesota, Wisconsin, and Michigan USA, between the years 1992-2001, and conducted an evaluation of the approach. Inputs included remotely-sensed 1992 reflectance data and land-cover map (University of Maryland) from Advanced Very High Resolution Radiometer (AVHRR) and 2001 products from Moderate Resolution Imaging Spectroradiometer (MODIS) at 1-km resolution for the region; and 30-m resolution land-cover maps from the National Land Cover Data (NLCD) for a subarea to conduct nine simulations to address our questions. Sensitivity analysis showed that (1) AVHRR data tended to underestimate AGB density by 11%, on average, compared to that estimated using MODIS data; (2) regional mean AGB density increased slightly from 124 (1992) to 126 Mg ha(-1) (2001) by 1.6%; (3) a substantial decrease in total forest AGB across the region was detected, from 2,507 (1992) to 1,961 Tg (2001), an annual rate of -2.4%; and (4) in the subarea, while NLCD-based estimates suggested a 26% decrease in total AGB from 1992 to 2001, AVHRR/MODIS-based estimates indicated a 36% increase. The major source of uncertainty in change detection of total forest AGB over large areas was due to area differences from using land-cover maps produced by different sources. Scaling up 30-m land-cover map to 1-km resolution caused a mean difference of 8% (in absolute value) in forest area estimates at the county-level ranging from 0 to 17% within a 95% confidence interval.

  5. Biomassas de partes aéreas em plantas da caatinga Aboveground biomass of caatinga plants

    Directory of Open Access Journals (Sweden)

    Grécia Cavalcanti Silva

    2008-06-01

    Full Text Available As biomassas de partes aéreas de nove espécies da caatinga foram determinadas e relacionadas com as medidas das plantas, cortando-se 30 plantas de cada espécie e separando-as em caule, galhos, ramos e folhas. As espécies foram divididas em dois grupos: seis espécies com plantas grandes e três com plantas menores. Cada grupo foi separado em classes de diâmetro do caule (DAP. As alturas totais (HT dobraram (3,8 a 8,5 m da classe de menor para a de maior diâmetro (Biomass of aboveground parts of nine caatinga species were determined and related to plant measurements. Thirty plants of each species were collected and separated into stems, branches, twigs and leaves. The species were divided in two groups: six species of large plants and three species of smaller plants. Each group was divided into classes of stem diameter (DBH. Plant height (H doubled (3.8 to 8.5 m from the smallest-diameter class to the largest diameter ( 5 cm diameter, 20% of branches from 1 to 5 cm, 5% of twigs < 1 cm and 5% of leaves. DBH was the single variable that best predicted biomass of parts, in both species groups, according to a power equation (B = a DBH b. H and CPA were also significantly related to biomass for some parts and group, but with R² lower than DBH. Combining DBH and H improved estimation but not enough to justify the extra field effort in determining H. Therefore, plant part biomass can be estimated from measurements of stem diameter, in a non-destructive process.

  6. Allometric Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Vietnam

    Directory of Open Access Journals (Sweden)

    Bao Huy

    2016-08-01

    Full Text Available There are few allometric equations available for dipterocarp forests, despite the fact that this forest type covers extensive areas in tropical Southeast Asia. This study aims to develop a set of equations to estimate tree aboveground biomass (AGB in dipterocarp forests in Vietnam and to validate and compare their predictive performance with allometric equations used for dipterocarps in Indonesia and pantropical areas. Diameter at breast height (DBH, total tree height (H, and wood density (WD were used as input variables of the nonlinear weighted least square models. Akaike information criterion (AIC and residual plots were used to select the best models; while percent bias, root mean square percentage error, and mean absolute percent error were used to compare their performance to published models. For mixed-species, the best equation was AGB = 0.06203 × DBH 2.26430 × H 0.51415 × WD 0.79456 . When applied to a random independent validation dataset, the predicted values from the generic equations and the dipterocarp equations in Indonesia overestimated the AGB for different sites, indicating the need for region-specific equations. At the genus level, the selected equations were AGB = 0.03713 × DBH 2.73813 and AGB = 0.07483 × DBH 2.54496 for two genera, Dipterocarpus and Shorea, respectively, in Vietnam. Compared to the mixed-species equations, the genus-specific equations improved the accuracy of the AGB estimates. Additionally, the genus-specific equations showed no significant differences in predictive performance in different regions (e.g., Indonesia, Vietnam of Southeast Asia.

  7. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology

    Directory of Open Access Journals (Sweden)

    Melissa Koontz

    2016-02-01

    Full Text Available This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008–2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m−2·year−1, the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m−2·year−1·to 2874.2 ± 794.0 g·m−2·year−1. The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  8. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Investigating the spatial and temporal variance in productivity along natural precipitation gradients is one of the most efficient approaches to improve understanding of how ecosystems respond to climate change. In this paper, by using the natural precipitation gradient of the Inner Mongolian Plateau from east to west determined by relatively long-term observations, we analyzed the temporal and spatial dynamics of aboveground net primary productivity (ANPP) of the temperate grasslands covering this region. Across this grassland transect, ANPP increased exponentially with the increase of mean annual precipitation (MAP) (ANPP=24.47e0.005MAP, R2=0.48). Values for the three vegetation types desert steppe, typical steppe, and meadow steppe were: 60.86 gm-2a-1, 167.14 gm-2a-1 and 288.73 gm-2a-1 respectively. By contrast, temperature had negative effects on ANPP. The moisture index (K ), which takes into ac- count both precipitation and temperature could explain the spatial variance of ANPP better than MAP alone (ANPP=2020.34K1.24, R2=0.57). Temporally, we found that the inter-annual variation in ANPP (cal- culated as the coefficient of variation, CV) got greater with the increase of aridity. However, this trend was not correlated with the inter-annual variation of precipitation. For all of the three vegetation types, ANPP had greater inter-annual variation than annual precipitation (PPT). Their difference (ANPP CV/PPT CV) was greatest in desert steppe and least in meadow steppe. Our results suggest that in more arid regions, grasslands not only have lower productivity, but also higher inter-annual variation of production. Climate change may have significant effects on the productivity through changes in precipitation pattern, vegetation growth potential, and species diversity.

  9. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland

    Institute of Scientific and Technical Information of China (English)

    HU ZhongMin; FAN JiangWen; ZHONG HuaPing; YU GuiRui

    2007-01-01

    Investigating the spatial and temporal variance in productivity along natural precipitation gradients is one of the most efficient approaches to improve understanding of how ecosystems respond to climate change. In this paper, by using the natural precipitation gradient of the Inner Mongolian Plateau from east to west determined by relatively long-term observations, we analyzed the temporal and spatial dynamics of aboveground net primary productivity (ANPP) of the temperate grasslands covering this region. Across this grassland transect, ANPP increased exponentially with the increase of mean annual precipitation (MAP) (ANPP=24.47e0.005MAP,R2=0.48). Values for the three vegetation types desert steppe,typical steppe, and meadow steppe were: 60.86 gm-2a-1, 167.14 gm-2a-1 and 288.73 gm-2a-1 respectively.By contrast, temperature had negative effects on ANPP. The moisture index (K), which takes into account both precipitation and temperature could explain the spatial variance of ANPP better than MAP alone (ANPP=2020.34K1.24,R2=0.57). Temporally, we found that the inter-annual variation in ANPP (calculated as the coefficient of variation, CV) got greater with the increase of aridity. However, this trend was not correlated with the inter-annual variation of precipitation. For all of the three vegetation types,ANPP had greater inter-annual variation than annual precipitation (PPT). Their difference (ANPP CV/PPT CV) was greatest in desert steppe and least in meadow steppe. Our results suggest that in more arid regions, grasslands not only have lower productivity, but also higher inter-annual variation of production. Climate change may have significant effects on the productivity through changes in precipitation pattern, vegetation growth potential, and species diversity.

  10. Dynamics, aboveground biomass and composition on permanent plots, Tambopata National Reserve. Madre de Dios, Peru

    Directory of Open Access Journals (Sweden)

    Nadir C. Pallqui

    2014-12-01

    Full Text Available In this study we evaluated the floristic composition and changes in stored biomass and dynamics over time in 9 permanent plots monitored by RAINFOR (Amazon Forest Inventory Network and located in the lowland Amazon rainforest of the Tambopata National Reserve. Data were acquired in the field using the standardized methodology of RAINFOR. The biomass was estimated using the equation for tropical moist forests of Chave et al. (2005. Biomass dynamics were analyzed, in three separated periods from 2003 to 2011. 64 families, 219 genera and 531 species were recorded. The tree floristic composition is very similar in all plots except for one swamp plot, although but it is also evident that two slightly different forest communities exist in the rest of landscape, apparently related to the age of the ancient river terraces in the area. Mortality and recruitment of individuals averaged 2.12 ± 0.52% and 1.92 ± 0.49%, respectively. The turnover rate is 2.02% per year. Aboveground biomass stored in these forests averages 296.2 ± 33.9 t ha-1. The biomass dynamics show a total net gain of 1.96, 1.69 and –1.23 t ha-1 for period respectively. Prior to the drought of 2010 a change in biomass was found 1.88 t ha-1 yr-1 and post drought was -0.18 t ha-1 yr-1 on average, though the difference is not significant. Demographic analysis suggests a dynamic equilibrium in the plots. The negative balance of biomass observed for the period 2008 – 2011 may be due to the drought of 2010, in which half of the monitored plots experienced negative net biomass change due to mortality of individuals selectively affecting the floristic composition.

  11. A comparative study of aboveground biomass of three Mediterranean species in a post-fire succession

    Science.gov (United States)

    Montès, N.; Ballini, C.; Bonin, G.; Faures, J.

    2004-03-01

    The aboveground biomass of three woody species ( Cistus albidus, Quercus coccifera and Pinus halepensis) in two early successional stages (3- and 10-year old) of a post-fire Mediterranean ecosystem was investigated. Among these three species, which belong to the successional series of holm oak ( Quercus ilex), C. albidus and Q. coccifera are two dominant shrub species in the garrigue ecosystem and P. halepensis is a pioneer tree species widely represented in the Mediterranean area. The results obtained showed that in monospecific stands, C. albidus and Q. coccifera had a high recovery potential. In the 3-year-old stands, the cover of P. halepensis was only 19.8% for a total biomass of 0.75 ± 0.21 t ha -1, while the plant cover of C. albidus and Q. coccifera was, respectively, 26% and 85.5% and biomass was 4.72 ± 1.09 and 11.5 ± 0.16 t ha -1. Only 10 years after fire, the plant cover of C. albidus and Q. coccifera was, respectively, 55% and 100% and total biomass 13.2 ± 1.7 and 35.8 ± 4.7 t ha -1. The greatest increase in biomass was noted for P. halepensis (29.7 t ha -1). If mean annual biomass increments are considered, it appears that there was a significant decrease with the stand age for the two shrub species although the tree species showed an increase in productivity. These differing patterns in biomass and productivity of shrub and tree species with stand age provide information on biomass accumulation rates of pioneer species in a Mediterranean succession and their importance in the vegetation dynamics.

  12. Global patterns of woody residence time and its influence on model simulation of aboveground biomass

    Science.gov (United States)

    Xue, Bao-Lin; Guo, Qinghua; Hu, Tianyu; Xiao, Jingfeng; Yang, Yuanhe; Wang, Guoqiang; Tao, Shengli; Su, Yanjun; Liu, Jin; Zhao, Xiaoqian

    2017-05-01

    Woody residence time (τw) is an important parameter that expresses the balance between mature forest recruitment/growth and mortality. Using field data collected from the literature, this study explored the global forest τw and investigated its influence on model simulations of aboveground biomass (AGB) at a global scale. Specifically, τw was found to be related to forest age, annual temperature, and precipitation at a global scale, but its determinants were different among various plant function types. The estimated global forest τw based on the filed data showed large spatial heterogeneity, which plays an important role in model simulation of AGB by a dynamic global vegetation model (DGVM). The τw could change the resulting AGB in tenfold based on a site-level test using the Monte Carlo method. At the global level, different parameterization schemes of the Integrated Biosphere Simulator using the estimated τw resulted in a twofold change in the AGB simulation for 2100. Our results highlight the influences of various biotic and abiotic variables on forest τw. The estimation of τw in our study may help improve the model simulations and reduce the parameter's uncertainty over the projection of future AGB in the current DGVM or Earth System Models. A clearer understanding of the responses of τw to climate change and the corresponding sophisticated description of forest growth/mortality in model structure is also needed for the improvement of carbon stock prediction in future studies.

  13. Scaling of plant size and age emerges from linked aboveground and belowground transport network properties

    Science.gov (United States)

    Manzoni, S.; Hunt, A. G.

    2016-12-01

    Vegetation growth modulates cycling of water, carbon, and nutrients at local-to-global scales. It is therefore critical to quantify plant growth rates and how they are constrained by environmental conditions (especially limited resource availability). Various theoretical approaches have been proposed to this aim. Specifically, allometric theory provides a powerful tool to describe plant growth form and function, but it is focused on the properties of plant xylem networks, neglecting any role played by soils in supplying water to plants. On the other hand, percolation theory addresses physical constraints imposed by the soil pore network to water and nutrient transport, neglecting roles of root networks and vegetation taking up soil resources. In this contribution, we merge these two perspectives to derive scaling relations between plant size (namely height) and age. Our guiding hypothesis is that the root network expands in the soil at a rate sufficient to match the rate of transport of water and nutrients in an idealized optimal fractal pore network, as predicted by percolation theory; with nutrient transport distance vs. time scaling exponent 0.82, and water transport (saturated conditions) distance vs. time scaling exponent 1. The root expansion rate is mirrored by growth aboveground, as in allometric theory, which predicts an isometric relation between root extension and plant height. Building on these results, we predict that the scaling of plant height and age should also have exponent 0.82 in natural systems where nutrients are heterogeneously distributed, and 1 in fertilized systems where nutrients are homogeneously distributed. These predictions are successfully tested with extensive datasets covering major plant functional types worldwide, showing that soil and root network properties constrain vegetation growth by setting limits to the rates of water and nutrient supply to plants.

  14. Carbon Sequestration Potential in Aboveground Biomass of Hybrid Eucalyptus Plantation Forest

    Directory of Open Access Journals (Sweden)

    Siti Latifah

    2013-04-01

    Full Text Available Forests are a significant part of the global carbon cycle. Forests sequester carbon by conducting photosynthesis, which is the process of converting light energy to chemical energy and storing it in the chemical bonds of sugar. Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.  The present investigation was carried out to determine carbon sequestration potential of hybrid Eucalyptus. This study was conducted primarily to develop a prediction model of carbon storage capacity for plantation forest of hybrid Eucalyptus in Aek Nauli, Simalungun District, North Sumatera. Models were tested and assessed for statistical validity and accuracy in predicting biomass and carbon, based on determination coefficient (R and correlation coefficient (r, aggregative deviation percentage (AgD, and the average deviation percentage (AvD. The best general model to estimate the biomass of hybrid Eucalyptus was Y = 1351,09x^0,876. e^(0,094.  Results showed that hybrid Eucalyptus had an average above-ground b