WorldWideScience

Sample records for abnormal energy metabolism

  1. Frequency of metabolic abnormalities in urinary stones patients.

    Science.gov (United States)

    Ahmad, Iftikhar; Pansota, Mudassar Saeed; Tariq, Muhammad; Tabassum, Shafqat Ali

    2013-11-01

    To determine the frequency of metabolic abnormalities in the serum and urine of patients with urinary stones disease. Two hundred patients with either multiple or recurrent urolithiasis diagnosed on ultrasonography and intravenous urography were included in this study. 24 hour urine sample were collected from each patient and sent for PH, specific gravity, Creatinine, uric acid, calcium, phosphate, oxalate, citrate and magnesium. In addition, blood sample of each patient was also sent for serum levels of urea, creatinine, uric acid, phosphate and calcium. Mean age of patients was 38 ± 7.75 years with male to female ratio of 2:1. The main presenting complaint was lumber pain and 82.5% patients were found to have calcium oxalate stones on chemical analysis. Metabolic abnormalities were found in 90.5% patients, whereas there were no metabolic abnormalities in 19 (9.5%) patients. Forty patients (21.5%) only had one metabolic abnormality and 157 (78.5%) patients had multiple metabolic abnormalities. Hyperoxaluria was the most commonly observed metabolic abnormality and was found in 64.5% patients. Other significant metabolic abnormalities were hypercalciuria, Hypercalcemia, hypocitraturia and hyperuricemia. This study concludes that frequency of metabolic abnormalities is very high in patients with urolithiasis and hyperoxaluria, hypercalciuria and hypocitraturia are the most important metabolic abnormalities observed in these patients.

  2. PGC-1alpha Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Leone Teresa C

    2005-01-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha-/- mice. With age, the PGC-1alpha-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  3. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Teresa C Leone

    2005-04-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha(-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha(-/- mice. With age, the PGC-1alpha(-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha(-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha(-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha(-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha(-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha(-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha(-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  4. Evaluation of tributyltin toxicity in Chinese rare minnow larvae by abnormal behavior, energy metabolism and endoplasmic reticulum stress.

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping

    2015-02-05

    Tributyltin (TBT) is a ubiquitous contaminant in aquatic environment, but the detailed mechanisms underlying the toxicity of TBT have not been fully understood. In this study, the effects of TBT on behavior, energy metabolism and endoplasmic reticulum (ER) stress were investigated by using Chinese rare minnow larvae. Fish larvae were exposed at sublethal concentrations of TBT (100, 400 and 800 ng/L) for 7 days. Compared with the control, energy metabolic parameters (RNA/DNA ratio, Na(+)-K(+)-ATPase) were significantly inhibited in fish exposed at highest concentration (800 ng/L), as well as abnormal behaviors observed. Moreover, we found that the PERK (PKR-like ER kinase)-eIF2α (eukaryotic translation initiation factor 2α) pathway, as the main branch was activated by TBT exposure in fish larvae. In short, TBT-induced physiological, biochemical and molecular responses in fish larvae were reflected in parameters measured in this study, which suggest that these biomarkers could be used as potential indicators for monitoring organotin compounds present in aquatic environment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Fatty liver as a risk factor for progression from metabolically healthy to metabolically abnormal in non-overweight individuals.

    Science.gov (United States)

    Hashimoto, Yoshitaka; Hamaguchi, Masahide; Fukuda, Takuya; Ohbora, Akihiro; Kojima, Takao; Fukui, Michiaki

    2017-07-01

    Recent studies identified that metabolically abnormal non-obese phenotype is a risk factor for cardiovascular diseases. However, little is known about risk factor for progression from metabolically healthy non-overweight to metabolically abnormal phenotype. We hypothesized that fatty liver had a clinical impact on progression from metabolically healthy non-overweight to metabolically abnormal phenotype. In this retrospective cohort study, 14,093 Japanese (7557 men and 6736 women), who received the health-checkup program from 2004 to 2012, were enrolled. Overweight and obesity were defined as body mass index 23.0-25.0 and ≥25.0 kg/m 2 . Four metabolic factors (impaired fasting glucose, hypertension, hypertriglyceridemia and low high density lipoprotein-cholesterol concentration) were used for definition of metabolically healthy (less than two factors) or metabolically abnormal (two or more). We divided the participants into three groups: metabolically healthy non-overweight (9755 individuals, men/women = 4290/5465), metabolically healthy overweight (2547 individuals, 1800/747) and metabolically healthy obesity (1791 individuals, 1267/524). Fatty liver was diagnosed by ultrasonography. Over the median follow-up period of 5.3 years, 873 metabolically healthy non-overweight, 512 metabolically healthy overweight and 536 metabolically healthy obesity individuals progressed to metabolically abnormal. The adjusted hazard risks of fatty liver on progression were 1.49 (95% confidence interval 1.20-1.83, p = 0.005) in metabolically healthy non-overweight, 1.37 (1.12-1.66, p = 0.002) in metabolically healthy overweight and 1.38 (1.15-1.66, p overweight individuals.

  6. Persistent abnormal coronary flow reserve in association with abnormal glucose metabolism affects prognosis in acute myocardial infarction

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Høfsten, Dan E; Christophersen, Thomas B

    2011-01-01

    baseline CFR (P = 0.004), S' (P = 0.045) and abnormal glucose metabolism (P = 0.001) were predictors of a decreased CFR at 3 months of follow-up. In multivariate analyses abnormal glucose metabolism (OR: 5.3; 95%CI: 1.9-14.4; P = 0.001) remained a predictor of decreased CFR at follow-up, furthermore...

  7. Prevalence of Metabolic Abnormalities and Association with Obesity among Saudi College Students

    Directory of Open Access Journals (Sweden)

    Mostafa A. Abolfotouh

    2012-01-01

    Full Text Available Aim. (i To estimate the prevalence of the metabolic abnormalities among Saudi college students in Riyadh, Saudi Arabia, and (ii to investigate the association between different indicators of body composition and these abnormalities. Methods. A total of 501 college students participated in a cross-sectional study. Anthropometric assessments, BP measurements, and biochemical assessment were done. Metabolic abnormalities were identified. Results. Applying BMI, 21.9 % and 20.6% of students were classified as overweight and obese, respectively. Central obesity was prevalent in 26.9% and 42.2% of students based on WC and WHtR, respectively. Other metabolic abnormalities were hypertension (23.6% and abnormal FPG level (22.6%. Three or more abnormalities were prevalent in 7.8% of students and increased significantly to 26.4%, 20%, and 17.6 in obese subjects based on BMI, WC, and WHtR, respectively. With the exception of abnormal FPG, prevalence of individual metabolic abnormalities as well as the number of these abnormalities significantly increased with increasing BMI, WC, and WHtR (P<0.001 each. Conclusion. Our findings provide evidence for the presence of MS in Saudi college students. Central adiposity contributes to the high incidence of individual MS components. College health programs that promote healthful lifestyle and avoidance of adult weight gain are recommended.

  8. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Takashi Himoto

    2018-01-01

    Full Text Available Zinc (Zn is an essential trace element which has favorable antioxidant, anti-inflammatory, and apoptotic effects. The liver mainly plays a crucial role in maintaining systemic Zn homeostasis. Therefore, the occurrence of chronic liver diseases, such as chronic hepatitis, liver cirrhosis, or fatty liver, results in the impairment of Zn metabolism, and subsequently Zn deficiency. Zn deficiency causes plenty of metabolic abnormalities, including insulin resistance, hepatic steatosis and hepatic encephalopathy. Inversely, metabolic abnormalities like hypoalbuminemia in patients with liver cirrhosis often result in Zn deficiency. Recent studies have revealed the putative mechanisms by which Zn deficiency evokes a variety of metabolic abnormalities in chronic liver disease. Zn supplementation has shown beneficial effects on such metabolic abnormalities in experimental models and actual patients with chronic liver disease. This review summarizes the pathogenesis of metabolic abnormalities deriving from Zn deficiency and the favorable effects of Zn administration in patients with chronic liver disease. In addition, we also highlight the interactions between Zn and other trace elements, vitamins, amino acids, or hormones in such patients.

  9. ELECTROCARDIOGRAPHIC ABNORMALITIES AMONG MEXICAN AMERICANS: CORRELATIONS WITH DIABETES, OBESITY, AND THE METABOLIC SYNDROME.

    Science.gov (United States)

    Queen, Saulette R; Smulevitz, Beverly; Rentfro, Anne R; Vatcheva, Kristina P; Kim, Hyunggun; McPherson, David D; Hanis, Craig L; Fisher-Hoch, Susan P; McCormick, Joseph B; Laing, Susan T

    2012-04-01

    Resting ischemic electrocardiographic abnormalities have been associated with cardiovascular mortality. Simple markers of abnormal autonomic tone have also been associated with diabetes, obesity, and the metabolic syndrome in some populations. Data on these electrocardiographic abnormalities and correlations with coronary risk factors are lacking among Mexican Americans wherein these conditions are prevalent. This study aimed to evaluate the prevalent resting electrocardiographic abnormalities among community-dwelling Mexican Americans, and correlate these findings with coronary risk factors, particularly diabetes, obesity, and the metabolic syndrome. Study subjects (n=1280) were drawn from the Cameron County Hispanic Cohort comprised of community-dwelling Mexican Americans living in Brownsville, Texas at the United States-Mexico border. Ischemic electrocardiographic abnormalities were defined as presence of ST/T wave abnormalities suggestive of ischemia, abnormal Q waves, and left bundle branch block. Parameters that reflect autonomic tone, such as heart rate-corrected QT interval and resting heart rate, were also measured. Ischemic electrocardiographic abnormalities were more prevalent among older persons and those with hypertension, diabetes, obesity, and the metabolic syndrome. Subjects in the highest quartiles of QTc interval and resting heart rate were also more likely to be diabetic, hypertensive, obese, or have the metabolic syndrome. Among Mexican Americans, persons with diabetes, obesity, and the metabolic syndrome were more likely to have ischemic electrocardiographic abnormalities, longer QTc intervals, and higher resting heart rates. A resting electrocardiogram can play a complementary role in the comprehensive evaluation of cardiovascular risk in this minority population.

  10. Prevalence of Metabolic Abnormalities and Association with Obesity among Saudi College Students

    OpenAIRE

    Abolfotouh, Mostafa A.; Al-Alwan, Ibrahim A.; Al-Rowaily, Mohammed A.

    2012-01-01

    Aim. (i) To estimate the prevalence of the metabolic abnormalities among Saudi college students in Riyadh, Saudi Arabia, and (ii) to investigate the association between different indicators of body composition and these abnormalities. Methods. A total of 501 college students participated in a cross-sectional study. Anthropometric assessments, BP measurements, and biochemical assessment were done. Metabolic abnormalities were identified. Results. Applying BMI, 21.9 % and 20.6% of students were...

  11. Microglia energy metabolism in metabolic disorder.

    Science.gov (United States)

    Kalsbeek, Martin J T; Mulder, Laurie; Yi, Chun-Xia

    2016-12-15

    Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  13. Myocardial metabolic abnormalities in hypertrophic cardiomyopathy assessed by iodine-123-labeled beta-methyl-branched fatty acid myocardial scintigraphy and its relation to exercise-induced ischemia

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakamura, Yasuyuki; Takahashi, Masayuki; Mitsunami, Kenichi; Kinoshita, Masahiko

    1998-01-01

    Reversible thallium-201 ( 201 Tl) abnormalities during exercise stress have been used as markers of myocardial ischemia in hypertrophic cardiomyopathy (HCM) and are most likely to identify relatively underperfused myocardium. Although metabolic abnormalities in HCM were reported, the relationship between impaired energy metabolism and exercise-induced ischemia has not been fully elucidated as yet. To assess the relationship between myocardial perfusion abnormalities and fatty acid metabolic abnormalities, 28 patients with HCM underwent exercise 201 Tl and rest 123 I-15-(p-iodophenyl)-3-methyl pentadecanoic acid (BMIPP) scintigraphy. Perfusion abnormalities were observed by exercise 201 Tl in 19/28 patients with HCM. 123 I-BMIPP uptake was decreased compared with delayed 201 Tl in 106/364 (29%) of the total myocardial segments (p 123 I-BMIPP and 201 Tl was observed more often in the 49/75 (65%) segments with reversible exercise 201 Tl defects (p 123 I-BMIPP and 201 Tl suggests that myocardial ischemia may play an important role in metabolic abnormalities in HCM. (author)

  14. A community-based exercise intervention transitions metabolically abnormal obese adults to a metabolically healthy obese phenotype

    Science.gov (United States)

    Dalleck, Lance C; Van Guilder, Gary P; Richardson, Tara B; Bredle, Donald L; Janot, Jeffrey M

    2014-01-01

    Background Lower habitual physical activity and poor cardiorespiratory fitness are common features of the metabolically abnormal obese (MAO) phenotype that contribute to increased cardiovascular disease risk. The aims of the present study were to determine 1) whether community-based exercise training transitions MAO adults to metabolically healthy, and 2) whether the odds of transition to metabolically healthy were larger for obese individuals who performed higher volumes of exercise and/or experienced greater increases in fitness. Methods and results Metabolic syndrome components were measured in 332 adults (190 women, 142 men) before and after a supervised 14-week community-based exercise program designed to reduce cardiometabolic risk factors. Obese (body mass index ≥30 kg · m2) adults with two to four metabolic syndrome components were classified as MAO, whereas those with no or one component were classified as metabolically healthy but obese (MHO). After community exercise, 27/68 (40%) MAO individuals (Pmetabolically healthy, increasing the total number of MHO persons by 73% (from 37 to 64). Compared with the lowest quartiles of relative energy expenditure and change in fitness, participants in the highest quartiles were 11.6 (95% confidence interval: 2.1–65.4; Pexercise transitions MAO adults to metabolically healthy. MAO adults who engaged in higher volumes of exercise and experienced the greatest increase in fitness were significantly more likely to become metabolically healthy. Community exercise may be an effective model for primary prevention of cardiovascular disease. PMID:25120373

  15. Abnormal islet sphingolipid metabolism in type 1 diabetes.

    Science.gov (United States)

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P; Kaur, Simranjeet; Claessens, Laura A; Russell, Mark A; Mathews, Clayton E; Hanssen, Kristian F; Morgan, Noel G; Koeleman, Bobby P C; Roep, Bart O; Gerling, Ivan C; Pociot, Flemming; Dahl-Jørgensen, Knut; Buschard, Karsten

    2018-04-18

    Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. The RNA expression data is

  16. Relationships among smoking habits, airflow limitations, and metabolic abnormalities in school workers.

    Science.gov (United States)

    Horie, Masafumi; Noguchi, Satoshi; Tanaka, Wakae; Goto, Yasushi; Yoshihara, Hisanao; Kawakami, Masaki; Suzuki, Masaru; Sakamoto, Yoshio

    2013-01-01

    Chronic obstructive pulmonary disease is caused mainly by habitual smoking and is common among elderly individuals. It involves not only airflow limitation but also metabolic disorders, leading to increased cardiovascular morbidity and mortality. We evaluated relationships among smoking habits, airflow limitation, and metabolic abnormalities. Between 2001 and 2008, 15,324 school workers (9700 males, 5624 females; age: ≥ 30 years) underwent medical checkups, including blood tests and spirometry. They also responded to a questionnaire on smoking habits and medical history. Airflow limitation was more prevalent in current smokers than in ex-smokers and never-smokers in men and women. The frequency of hypertriglyceridemia was higher in current smokers in all age groups, and those of low high-density-lipoprotein cholesterolemia and diabetes mellitus were higher in current smokers in age groups ≥ 40 s in men, but not in women. There were significant differences in the frequencies of metabolic abnormalities between subjects with airflow limitations and those without in women, but not in men. Smoking index was an independent factor associated with increased frequencies of hypertriglyceridemia (OR 1.015; 95% CI: 1.012-1.018; psmoking cessation was an independent factor associated with a decreased frequency of hypertriglyceridemia (0.984; 0.975-0.994; p = 0.007). Habitual smoking causes high incidences of airflow limitation and metabolic abnormalities. Women, but not men, with airflow limitation had higher frequencies of metabolic abnormalities.

  17. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metabolic abnormalities associated with renal calculi in patients with horseshoe kidneys.

    Science.gov (United States)

    Raj, Ganesh V; Auge, Brian K; Assimos, Dean; Preminger, Glenn M

    2004-03-01

    Horseshoe kidneys are a complex anatomic variant of fused kidneys, with a 20% reported incidence of associated calculi. Anatomic causes such as high insertion of the ureter on the renal pelvis and obstruction of the ureteropelvic junction are thought to contribute to stone formation via impaired drainage, with urinary stasis, and an increased incidence of infection. In this multi-institutional study, we evaluated whether metabolic factors contributed to stone development in patients with horseshoe kidneys. A retrospective review of 37 patients with horseshoe kidneys was performed to determine if these patients had metabolic derangements that might have contributed to calculus formation. Stone compositions as well as 24-hour urine collections were examined. Specific data points of interest were total urine volume; urine pH; urine concentrations of calcium, sodium, uric acid, oxalate, and citrate; and number of abnormalities per patient per 24-hour urine collection. These data were compared with those of a group of 13 patients with stones in caliceal diverticula as well as 24 age-, race-, and sex-matched controls with stones in anatomically normal kidneys. Eleven (9 men and 2 women) of the 37 patients (30%) with renal calculi in horseshoe kidneys had complete metabolic evaluations available for review. All patients were noted to have at least one abnormality, with an average of 2.68 abnormalities per 24-hour urine collection (range 1-4). One patient had primary hyperparathyroidism and underwent a parathyroidectomy. Low urine volumes were noted in eight patients on at least one of the two specimens (range 350-1640 mL/day). Hypercalciuria, hyperoxaluria, hyperuricosuria, and hypocitraturia were noted in seven, three, six, and six patients, respectively. No patients were found to have gouty diathesis or developed cystine stones. Comparative metabolic analyses of patients with renal calculi in caliceal diverticula or normal kidneys revealed a distinct profile in patients

  19. Metabolic abnormalities and genitourinary tract anatomical alternations in patients with recurrent urolithiasis

    Directory of Open Access Journals (Sweden)

    John Neil

    2017-06-01

    Conclusions: 80% of patients with recurrent stone disease had some measure of metabolic abnormality to account for the disease. The use of two 24-hour urine samples significantly improved the detection rate of metabolic abnormalities compared to a single sample. The major limitation of this study was the small number of patients as well as the short study duration. [Arch Clin Exp Surg 2017; 6(2.000: 81-85

  20. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design.

    Science.gov (United States)

    Ley, Sylvia H; O'Connor, Deborah L; Retnakaran, Ravi; Hamilton, Jill K; Sermer, Mathew; Zinman, Bernard; Hanley, Anthony J

    2010-10-06

    Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may assist in the development of optimal prevention and intervention

  1. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design

    Directory of Open Access Journals (Sweden)

    Hamilton Jill K

    2010-10-01

    Full Text Available Abstract Background Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. Methods/Design The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. Discussion An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may

  2. Evaluation of regional metabolic abnormality and treatment effect in patients with narcolepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Yoon, In Young; Shin, Youn Kyung; Eo, Jae Sean; Won, Oh So; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    The aim of the present study was to evaluated regional metabolic abnormalities in untreated narcoleptic patients and the changes in regional cerebral metabolism after treatment with modafinil. Eight drug free narcoleptic patients (mean age of 17{+-}1 yr) participated in this study. Two [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) scans before and after a 2-week titrated modafinil treatment (target dose = 100{approx}400 mg/day). The PET data were analyzed by using statistical parametric mapping methods to identify the regional cerebral abnormalities compared with those of healthy young controls. In addition, treatment effect was evaluated by comparison between before and after treatment scan. In narcolepsy patients, a significant reduction of regional metabolism was demonstrated in the brain stem, bilateral hypothalamus, posterior thalamus, hippocampus, parahippocampal gyrus, and adjacent perihinal area on pretreatment scans compared with those of healthy subjects. The decrease glucose metabolism was also found in the occipital cortex and cerebellum. The patients could control daytime sleepiness after treatment. Posttreatment scan showed a significant increase in regional metabolism in the left hippocampus. This study demonstrated the metabolic abnormalities and the effect of modafinil treatment in narcoleptic patients in the sleep associated regions. This results could be helpful to understand the pathophysiology of the narcolepsy and treatment mechanism.

  3. Relation of metabolic syndrome with endometrial pathologies in patients with abnormal uterine bleeding.

    Science.gov (United States)

    Özdemir, Suna; Batmaz, Gonca; Ates, Seda; Celik, Cetin; Incesu, Feyzanur; Peru, Celalettin

    2015-01-01

    We aimed to investigate the association of metabolic syndrome and metabolic risk factors with endometrial hyperplasia and carcinoma among women with abnormal uterine bleeding (AUB). This study included 199 patients who had undergone endometrial curettage due to abnormal uterine bleeding. We divided the patients into two groups according to whether they had an abnormal (n = 53) or normal endometrium (n = 146). Waist circumference, blood pressure, fasting glucose and serum lipid levels were measured and statistically analyzed. The women in each group were matched with regard to mean age, gravidity, parity and menopausal status. We found increased prevalence of metabolic syndrome, diabetes, general and abdominal obesity, hypertension, elevated levels of glucose, total cholesterol and LDL-cholesterol and reduced levels of HDL-cholesterol among women with endometrial carcinoma and hyperplasia. These results were detected particularly in postmenopausal (>50 years) women compared to pre-menopausal cases (<50 years). All metabolic parameters were similar between hyperplasia and cancer groups. Metabolic syndrome and its components have been shown to have profound impacts on initiation and progession of endometrial pathology, particularly during post-menopausal period.

  4. Current concepts of metabolic abnormalities in HIV patients: focus on lipodystrophy.

    Science.gov (United States)

    Kolter, Donald P

    2003-12-01

    HIV infection is associated with a number of metabolic abnormalities, including lipodystrophy, a difficult-to-define disorder whose characteristics include hyperlipidemia, insulin resistance, and fat redistribution. Current data suggest that lipodystrophy is caused by multiple factors. Dual-nucleoside reverse transcriptase inhibitor therapy combined with protease inhibitor therapy has been shown to increase the risk of metabolic abnormalities, but susceptibility independent of drug effects has also been shown. While many of the treatments for the broad range of signs and symptoms of lipodystrophy bring about improvements in patient status, none have been demonstrated to bring about a return to baseline levels.

  5. The importance of sensitive screening for abnormal glucose metabolism in patients with IgA nephropathy.

    Science.gov (United States)

    Jia, Xiaoyuan; Pan, Xiaoxia; Xie, Jingyuan; Shen, Pingyan; Wang, Zhaohui; Li, Ya; Wang, Weiming; Chen, Nan

    2016-01-01

    To investigate the prevalence of abnormal glucose metabolism, insulin resistance (IR) and the related risk factors in IgA nephropathy (IgAN) patients. We analyzed oral glucose tolerance test (OGTT) and clinical data of 107 IgAN patients and 106 healthy controls. Glucose metabolism, homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin sensitivity index (ISI) of both groups were evaluated. The prevalence of abnormal glucose metabolism was significantly higher in the IgAN group than in the control group (41.12% vs. 9.43%, p glucose, fasting insulin, OGTT 2-hour blood glucose, OGTT 2-hour insulin, HOMA-IR, and lower ISI than healthy controls. Triglyceride (OR = 2.55), 24-hour urine protein excretion (OR = 1.39), and age (OR = 1.06) were independent risk factors for abnormal glucose metabolism in IgAN patients. BMI, eGFR, 24-hour urine protein excretion, triglyceride, fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, and OGTT 2-hour insulin were significantly higher in IgAN patients with IR than in IgAN patients without IR, while HDL and ISI were significantly lower. BMI, serum albumin, and 24-hour urine protein excretion were correlated factors of IR in IgAN patients. Our study highlighted that abnormal glucose metabolism was common in IgAN patients. Triglyceride and 24-hour urine protein excretion were significant risk factors for abnormal glucose metabolism. Therefore, sensitive screening for glucose metabolism status and timely intervention should be carried out in clinical work.

  6. Clinical features of male patients with alcoholic liver cirrhosis or hepatitis B cirrhosis complicated by abnormal glucose metabolism

    Directory of Open Access Journals (Sweden)

    CHEN Qidan

    2016-02-01

    Full Text Available ObjectiveTo investigate the clinical features of male patients with alcoholic liver cirrhosis (ALC or hepatitis B cirrhosis (HBC complicated by abnormal glucose metabolism. MethodsA total of 287 patients with liver cirrhosis who were admitted to Guangzhou Panyu Central Hospital from January 2008 to September 2013 were selected. Among these patients, 74 had ALC and were all male, including 54 with abnormal glucose metabolism; the other 213 had HBC, including 97 with abnormal glucose metabolism (69 male patients and 28 female patients. A controlled study was performed for the clinical data of ALC and HBC patients with abnormal glucose metabolism, to investigate the association of patients′ clinical manifestations with the indices for laboratory examination, insulin resistance index, incidence rate of abnormal glucose metabolism, and Child-Pugh class. The t-test was applied for comparison of continuous data between groups, the chi-square test was applied for comparison of categorical data between groups, and the Spearman rank correlation was applied for correlation analysis. ResultsCompared with HBC patients, ALC patients had significantly higher incidence rates of abnormal glucose metabolism (730% vs 32.4%, hepatogenous diabetes (35.1% vs 14.6%, fasting hypoglycemia (27.0% vs 10.3%, and impaired glucose tolerance (31.1% vs 14.1% (χ2=4.371, 3.274, 4.784, and 1.633, all P<0.05. The Spearman correlation analysis showed that in ALC and HBC patients, the incidence rate of abnormal glucose metabolism was positively correlated with Child-Pugh class (rs=0.41, P<005. Compared with the HBC patients with abnormal glucose metabolism, the ALC patients with abnormal glucose metabolism had a significantly higher incidence rate of Child-Pugh class A (χ2=7.520, P=0.001, and a significantly lower incidence rate of Child-Pugh class C (χ2=6.542, P=0.003. There were significant differences in the incidence rates of dim complexion, telangiectasia of the

  7. Correlations between abnormal iron metabolism and non-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Xu, Wu; Zhi, Yan; Yuan, Yongsheng; Zhang, Bingfeng; Shen, Yuting; Zhang, Hui; Zhang, Kezhong; Xu, Yun

    2018-07-01

    Despite a growing body of evidence suggests that abnormal iron metabolism plays an important role in the pathogenesis of Parkinson's disease (PD), few studies explored its role in non-motor symptoms (NMS) of PD. The present study aimed to investigate the relationship between abnormal iron metabolism and NMS of PD. Seventy PD patients and 64 healthy controls were consecutively recruited to compare serum iron, ceruloplasmin, ferritin, and transferrin levels. We evaluated five classic NMS, including depression, anxiety, pain, sleep disorder, and autonomic dysfunction in PD patients using the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), the short form of the McGill Pain Questionnaire, the Pittsburgh Sleep Quality Index and the Scale for Outcomes in Parkinson's disease for Autonomic Symptoms, respectively. Hierarchical multiple regression analysis was used to investigate the correlations between abnormal iron metabolism and NMS. No differences in serum ceruloplasmin and ferritin levels were examined between PD patients and healthy controls, but we observed significantly decreased serum iron levels and increased serum transferrin levels in PD patients in comparison with healthy controls. After eliminating confounding factors, HAMD scores and HAMA scores were both negatively correlated with serum iron levels and positively correlated with serum transferrin levels. In summary, abnormal iron metabolism might play a crucial role in the pathogenesis of depression and anxiety in PD. Serums levels of iron and transferrin could be peripheral markers for depression and anxiety in PD.

  8. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sung Min Han

    Full Text Available Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA, two motor neuron diseases that often include alterations in energy metabolism. We have shown that C. elegans and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP. Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the C. elegans VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, Vapb knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.

  9. Influence of abnormal glucose metabolism on coronary microvascular function after a recent myocardial infarction

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Høfsten, Dan E; Christophersen, Thomas B

    2009-01-01

    OBJECTIVES: This study sought to assess the association between abnormal glucose metabolism and abnormal coronary flow reserve (CFR) in patients with a recent acute myocardial infarction (AMI). BACKGROUND: Mortality and morbidity after AMI is high among patients with abnormal glucose metabolism, ...... (140 microg/kg/min) to obtain the hyperemic flow profiles. The CFR was defined as the ratio of hyperemic to baseline peak diastolic coronary flow velocities. RESULTS: Median CFR was 1.9 (interquartile range [IQR] 1.4 to 2.4], and 109 (60%) patients had a CFR...

  10. [Joint effect of birth weight and obesity measures on abnormal glucose metabolism at adulthood].

    Science.gov (United States)

    Xi, Bo; Cheng, Hong; Chen, Fangfang; Zhao, Xiaoyuan; Mi, Jie

    2016-01-01

    To investigate the joint effect of birth weight and each of obesity measures (body mass index (BMI) and waist circumference (WC)) on abnormal glucose metabolism (including diabetes) at adulthood. Using the historical cohort study design and the convenience sampling method, 1 921 infants who were born in Beijing Union Medical College Hospital from June 1948 to December 1954 were selected to do the follow-up in 1995 and 2001 respectively. Through Beijing Household Registration and Management System, they were invited to participate in this study. A total of 972 subjects (627 were followed up in 1995 and 345 were followed up in 2001) with complete information on genders, age, birth weight, family history of diabetes, BMI, WC, fasting plasma glucose (FPG) and 2-hour plasma glucose (2 h PG) met the study inclusion criteria at the follow-up visits. In the data analysis, they were divided into low, normal, and high birth weight, respectively. The ANOVA and Chi-squared tests were used to compare the differences in their characteristics by birth weight group. In addition, multiple binary Logistic regression model was used to investigate the single effect of birth weight, BMI, and waist circumference on abnormal glucose metabolism at adulthood. Stratification analysis was used to investigate the joint effect of birth weight and each of obesity measures (BMI and WC) on abnormal glucose metabolism. There were 972 subjects (males: 50.7%, mean age: (46.0±2.2) years) included in the final data analysis. The 2 h PG in low birth weight group was (7.6±3.2) mmol/L , which was higher than that in normal birth weight group (6.9±2.1) mmol/L and high birth weight group (6.4±1.3) mmol/L (F=3.88, P=0.021). After adjustment for genders, age, body length, gestation age, family history of diabetes, physical activity, smoking and alcohol consumption, and duration of follow-up, subjects with overweight and obesity at adulthood had 2.73 (95% confidence interval (CI) =2.06- 3.62) times risk

  11. Abnormal bone and mineral metabolism in kidney transplant patients--a review

    DEFF Research Database (Denmark)

    Sprague, S.M.; Belozeroff, V.; Danese, M.D.

    2008-01-01

    BACKGROUND/AIMS: Abnormal bone and mineral metabolism is common in patients with kidney failure and often persists after successful kidney transplant. METHODS: To better understand the natural history of this disease in transplant patients, we reviewed the literature by searching MEDLINE...... within 2 months. Low levels of 1,25(OH)2 vitamin D typically did not reach normal values until almost 18 months after transplant. CONCLUSION: This review provides evidence demonstrating that abnormal bone and mineral metabolism exists in patients after kidney transplant and suggests the need...... for English language articles published between January 1990 and October 2006 that contained Medical Subject Headings and key words related to secondary or persistent hyperparathyroidism and kidney transplant. RESULTS: Parathyroid hormone levels decreased significantly during the first 3 months after...

  12. Effect of dietary energy and polymorphisms in BRAP and GHRL on obesity and metabolic traits.

    Science.gov (United States)

    Imaizumi, Takahiro; Ando, Masahiko; Nakatochi, Masahiro; Yasuda, Yoshinari; Honda, Hiroyuki; Kuwatsuka, Yachiyo; Kato, Sawako; Kondo, Takaaki; Iwata, Masamitsu; Nakashima, Toru; Yasui, Hiroshi; Takamatsu, Hideki; Okajima, Hiroshi; Yoshida, Yasuko; Maruyama, Shoichi

    Obesity, a risk factor for all-cause and cardiovascular mortality, is a major health concerns among middle-aged men. The aim of this study was to investigate a possible association of dietary habits and obesity related single nucleotide polymorphisms (SNPs) with obesity and metabolic abnormalities. We conducted a retrospective cohort study using annual health examination data of 5112 male workers, obtained between 2007 and 2011. Average dietary energy was estimated using electronically collected meal purchase data from cafeteria. We examined 8 SNPs related to obesity: GHRL rs696217, PPARG rs1175544, ADIPOQ rs2241766, ADIPOQ rs1501299, PPARD rs2016520, APOA5 rs662799, BRAP rs3782886, and ITGB2 rs235326. We also examined whether SNPs that were shown to associate with obesity affect other metabolic abnormalities such as blood pressure (BP), glucose, and lipid profile. Average dietary energy significantly associated with increased abdominal circumference (AC) and body mass index (BMI). The odds ratios (ORs) of overweight and obesity also increased. The major allele of rs696217 significantly increased BMI and an increased OR with obesity, while the minor allele of rs3782886 was associated with significantly decreased AC and the decreased ORs with overweight and obesity. The minor allele of rs3782886 was also associated with significantly decreased systolic BP (SBP), triglyceride (TG), high-density lipoprotein (HDL), and fasting blood sugar (FBS), while rs696217 was not associated with other metabolic abnormalities. Average dietary energy in lunch, rs3782886, and rs696217 were associated with obesity, and rs3782886 was associated with other metabolic abnormalities. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  13. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    Science.gov (United States)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  14. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities.

    Directory of Open Access Journals (Sweden)

    Jae Hyun Park

    Full Text Available Thirty-six VLBW infants who underwent F-18 fluorodeoxyglucose (F-18 FDG brain PET and MRI were prospectively enrolled, while infants with evidence of parenchymal brain injury on MRI were excluded. The regional glucose metabolic ratio and asymmetry index were calculated. The asymmetry index more than 10% (right > left asymmetry or less than -10% (left > right asymmetry were defined as abnormal. Regional cerebral glucose metabolism were compared between right and left cerebral hemispheres, and between the following subgroups: multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, and low-grade intraventricular hemorrhage.In the individual analysis, 21 (58.3% of 36 VLBW infants exhibited asymmetric cerebral glucose metabolism. Fifteen infants (41.7% exhibited right > left asymmetry, while six (16.7% exhibited left > right asymmetry. In the regional analysis, right > left asymmetry was more extensive than left > right asymmetry. The metabolic ratio in the right frontal, temporal, and occipital cortices and right thalamus were significantly higher than those in the corresponding left regions. In the subgroup analyses, the cerebral glucose metabolism in infants with multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, or low-grade intraventricular hemorrhage were significantly lower than those in infants without these.VLBW infants without structural abnormalities have asymmetry of cerebral glucose metabolism. Decreased cerebral glucose metabolism are noted in infants with neurodevelopmental risk factors. F-18 FDG PET could show microstructural abnormalities not detected by MRI in VLBW infants.

  15. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Lee, C W; Lee, J H; Kim, J J; Park, S W; Hong, M K; Kim, S T; Lim, T H; Park, S J

    1999-04-01

    Using proton magnetic resonance spectroscopy, we investigated cerebral metabolism and its determinants in congestive heart failure (CHF), and the effects of cardiac transplantation on these measurements. Few data are available about cerebral metabolism in CHF. Fifty patients with CHF (ejection fraction OGM) and parietal white matter (PWM). Absolute levels of the metabolites (N-acetylaspartate, creatine, choline, myo-inositol) were calculated. In PWM only creatine level was significantly lower in CHF than in control subjects, but in OGM all four metabolite levels were decreased in CHF. The creatine level was independently correlated with half-recovery time and duration of heart failure symptoms in PWM (r = -0.56, p OGM (r = 0.58, p < 0.05). Cerebral metabolic abnormalities were improved after successful cardiac transplantation. This study shows that cerebral metabolism is abnormally deranged in advanced CHF and it may serve as a potential marker of the disease severity.

  16. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling

    International Nuclear Information System (INIS)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-01-01

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.

  17. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities

    Directory of Open Access Journals (Sweden)

    Toshinari Takamura

    2017-07-01

    Interpretation: Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective marker against obesity-associated metabolic abnormalities.

  18. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    Science.gov (United States)

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective

  19. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Li

    2016-10-01

    Full Text Available Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg, fluoxetine (20 mg/kg and pioglitazone (10 mg/kg were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy.

  20. Metabolic abnormalities in Williams-Beuren syndrome.

    Science.gov (United States)

    Palacios-Verdú, María Gabriela; Segura-Puimedon, Maria; Borralleras, Cristina; Flores, Raquel; Del Campo, Miguel; Campuzano, Victoria; Pérez-Jurado, Luis Alberto

    2015-04-01

    Williams-Beuren syndrome (WBS, OMIM-194050) is a neurodevelopmental disorder with multisystemic manifestations caused by a 1.55-1.83 Mb deletion at 7q11.23 including 26-28 genes. Reported endocrine and metabolic abnormalities include transient hypercalcaemia of infancy, subclinical hypothyroidism in ∼ 30% of children and impaired glucose tolerance in ∼ 75% of adult individuals. The purpose of this study was to further study metabolic alterations in patients with WBS, as well as in several mouse models, to establish potential candidate genes. We analysed several metabolic parameters in a cohort of 154 individuals with WBS (data available from 69 to 151 cases per parameter), as well as in several mouse models with complete and partial deletions of the orthologous WBS locus, and searched for causative genes and potential modifiers. Triglyceride plasma levels were significantly decreased in individuals with WBS while cholesterol levels were slightly decreased compared with controls. Hyperbilirubinemia, mostly unconjugated, was found in 18.3% of WBS cases and correlated with subclinical hypothyroidism and hypotriglyceridemia, suggesting common pathogenic mechanisms. Haploinsufficiency at MLXIPL and increased penetrance for hypomorphic alleles at the UGT1A1 gene promoter might underlie the lipid and bilirubin alterations. Other disturbances included increased protein and iron levels, as well as the known subclinical hypothyroidism and glucose intolerance. Our results show that several unreported biochemical alterations, related to haploinsufficiency for specific genes at 7q11.23, are relatively common in WBS. The early diagnosis, follow-up and management of these metabolic disturbances could prevent long-term complications in this disorder. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  2. THE ROLE OF NUTRIGENOMICS IN CORRECTION OF METABOLIC ABNORMALITIES

    Directory of Open Access Journals (Sweden)

    I. V. Misnikova

    2015-01-01

    Full Text Available In some patients, diet and increased physical exercise are not effective enough to prevent the development of type 2 diabetes mellitus. At present, a  new approach is proposed to elaborate the diet with consideration of specific need of an individual. Food components can cause changes in metabolism through their influence on activity of certain genes that subsequently influence human proteome and metabolome. It is assumed that nutrients may influence methylation of deoxyribonucleic acid. A number of studies established an interaction between some foods and genes associated with obesity and type 2 diabetes mellitus. Diet recommendations based on presence of certain gene polymorphisms have been developed. The spectrum of gene polymorphisms that is necessary to assess in individuals with metabolic abnormalities or with high risk of their development has been also defined.

  3. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats.

    Science.gov (United States)

    Liu, Chih-Wei; Tsai, Hung-Cheng; Huang, Chia-Chang; Tsai, Chang-Youh; Su, Yen-Bo; Lin, Ming-Wei; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Li, Tzu-Hao; Huang, Shiang-Fen; Yang, Ying-Ying; Hou, Ming-Chih; Lin, Han-Chieh; Lee, Fa-Yauh; Lee, Shou-Dong

    2018-05-01

    In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.

  4. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    International Nuclear Information System (INIS)

    Nam, H. Y.; Seo, G. T.; Lee, J. S.; Kim, S. C.; Kim, I. J.; Kim, Y. K.; Jeon, S. M.

    2007-01-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography

  5. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Seo, G. T.; Lee, J. S.; Kim, S. C.; Kim, I. J.; Kim, Y. K.; Jeon, S. M. [Pusan National University Hospital, Pusan (Korea, Republic of)

    2007-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography.

  6. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    Directory of Open Access Journals (Sweden)

    Seong-Jong Lee

    2015-01-01

    Full Text Available The medicinal plants Artemisia iwayomogi (A. iwayomogi and Curcuma longa (C. longa radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM. In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg or curcumin (50 mg/kg. Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides, glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα. The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model.

  7. Astrocytes and energy metabolism.

    Science.gov (United States)

    Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko

    2011-05-01

    Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.

  8. Inhibition of Endothelial p53 Improves Metabolic Abnormalities Related to Dietary Obesity

    Directory of Open Access Journals (Sweden)

    Masataka Yokoyama

    2014-06-01

    Full Text Available Accumulating evidence has suggested a role for p53 activation in various age-associated conditions. Here, we identified a crucial role of endothelial p53 activation in the regulation of glucose homeostasis. Endothelial expression of p53 was markedly upregulated when mice were fed a high-calorie diet. Disruption of endothelial p53 activation improved dietary inactivation of endothelial nitric oxide synthase that upregulated the expression of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation, compared with control littermates. Conversely, upregulation of endothelial p53 caused metabolic abnormalities. These results indicate that inhibition of endothelial p53 could be a novel therapeutic target to block the vicious cycle of cardiovascular and metabolic abnormalities associated with obesity.

  9. The effect of enzymes upon metabolism, storage, and release of carbohydrates in normal and abnormal endometria.

    Science.gov (United States)

    Hughes, E C

    1976-07-01

    This paper presents preliminary data concerning the relationship of various components of glandular epithelium and effect of enzymes on metabolism, storage, and release of certain substances in normal and abnormal endometria. Activity of these endometrial enzymes has been compared between two groups: 252 patients with normal menstrual histories and 156 patients, all over the age of 40, with abnormal uterine bleeding. Material was obtained by endometrial biopsy or curettage. In the pathologic classification of the group of 156, 30 patients had secretory endometria, 88 patients had endometria classified as proliferative, 24 were classified as endometrial hyperplasia, and 14 were classified as adenocarcinoma. All tissue was studied by histologic, histochemical, and biochemical methods. Glycogen synthetase activity caused synthesis of glucose to glycogen, increasing in amount until midcycle, when glycogen phosphorylase activity caused the breakdown to glucose during the regressive stage of endometrial activity. This normal cyclic activity did not occur in the abnormal endometria, where activity of both enzymes continued at low constant tempo. Only the I form of glycogen synthetase increased as the tissue became more hyperplastic. With the constant glycogen content and the increased activity of both the TPN isocitric dehydrogenase and glucose-6-phosphate dehydrogenase in the hyperplastic and cancerous endometria, tissue energy was created, resulting in abnormal cell proliferation. These altered biochemical and cellular activities may be the basis for malignant cell growth.

  10. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    Science.gov (United States)

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. [Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family].

    Science.gov (United States)

    Wang, Rui; Chang, Yong-sheng; Fang, Fu-de

    2009-12-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.

  12. Epilepsy and astrocyte energy metabolism.

    Science.gov (United States)

    Boison, Detlev; Steinhäuser, Christian

    2018-06-01

    Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.

  13. Abnormal Transmethylation/Transsulfuration Metabolism and DNA Hypomethylation among Parents of Children with Autism

    Science.gov (United States)

    James, S. Jill; Melnyk, Stepan; Jernigan, Stefanie; Hubanks, Amanda; Rose, Shannon; Gaylor, David W.

    2008-01-01

    An integrated metabolic profile reflects the combined influence of genetic, epigenetic, and environmental factors that affect the candidate pathway of interest. Recent evidence suggests that some autistic children may have reduced detoxification capacity and may be under chronic oxidative stress. Based on reports of abnormal methionine and…

  14. Clustered metabolic abnormalities blunt regression of hypertensive left ventricular hypertrophy: the LIFE study

    DEFF Research Database (Denmark)

    de Simone, G; Okin, P M; Gerdts, E

    2009-01-01

    BACKGROUND AND AIMS: Clusters of metabolic abnormalities resembling phenotypes of metabolic syndrome predicted outcome in the LIFE study, independently of single risk markers, including obesity, diabetes and baseline ECG left ventricular hypertrophy (LVH). We examined whether clusters of two......-duration product (CP) over 5 years was assessed using a quadratic polynomial contrast, adjusting for age, sex, prevalent cardiovascular disease and treatment arm (losartan or atenolol). At baseline, despite similar blood pressures, CP was greater in the presence than in the absence of MetAb (p

  15. Association of neural tube defects in children of mothers with MTHFR 677TT genotype and abnormal carbohydrate metabolism risk: a case-control study.

    Science.gov (United States)

    Cadenas-Benitez, N M; Yanes-Sosa, F; Gonzalez-Meneses, A; Cerrillos, L; Acosta, D; Praena-Fernandez, J M; Neth, O; Gomez de Terreros, I; Ybot-González, P

    2014-03-26

    Abnormalities in maternal folate and carbohydrate metabolism have both been shown to induce neural tube defects (NTD) in humans and animal models. However, the relationship between these two factors in the development of NTDs remains unclear. Data from mothers of children with spina bifida seen at the Unidad de Espina Bífida del Hospital Infantil Virgen del Rocío (case group) were compared to mothers of healthy children with no NTD (control group) who were randomly selected from patients seen at the outpatient ward in the same hospital. There were 25 individuals in the case group and 41 in the control group. Analysis of genotypes for the methylenetetrahydrofolate reductase (MTHFR) 677CT polymorphism in women with or without risk factors for abnormal carbohydrate metabolism revealed that mothers who were homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism were more likely to have offspring with spina bifida and high levels of homocysteine, compared to the control group. The increased incidence of NTDs in mothers homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism stresses the need for careful metabolic screening in pregnant women, and, if necessary, determination of the MTHFR 677CT genotype in those mothers at risk of developing abnormal carbohydrate metabolism.

  16. Cerebral blood flow and metabolic abnormalities in Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2001-01-01

    In this review I summarize observations of PET and SPECT studies about cerebral blood flow and metabolic abnormalities in Alzheimer's disease (AD). In very early AD flow or metabolism reduces first in the posterior cingulate gyrus and precuneus. This reduction may arise from functional deafferentation caused by primary neural degeneration in the remote area of the entorhinal cortex that is the first to be pathologically affected in AD. Then medial temporal structures and parietotemporal association cortex show flow or metabolic reduction as disease processes. The reason why flow or metabolism in medial temporal structures shows delay in starting to reduce in spite of the earliest pathological affection remains to be elucidated. It is likely that anterior cingulate gyrus is functionally involved, since attention is the first non-memory domain to be affected, before deficits in language and visuospatial functions. However few reports have described involvement in the anterior cingulate gyrus. Relationship between cerebral blood flow or metabolism and apolipoprotein E (APOE) genotype has been investigated. Especially, the APOEε4 allele has been reported to increase risk and to lower onset age as a function of the inherited dose of the ε4 allele. Reduction of flow or metabolism in the posterior cingulate gyrus and precuneus has been reported even in presymptomatic nondemented subjects who were cognitively normal and had at least a single ε4 allele. On the contrary the relation of ε4 allele to the progression rate of AD has been controversial from neuroimaging approaches. PET and SPECT imaging has become to be quite useful for assessing therapeutical effects of newly introduced treatment for AD. Recent investigations observed significant regional flow increase after donepezil hydrochloride treatment. Most of these observations have been made by applying computer assisted analysis of three-dimensional stereotactic surface projection or statistical parametric mapping

  17. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    International Nuclear Information System (INIS)

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-01-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities

  18. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    International Nuclear Information System (INIS)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-01-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH 4 Cl x 100 g body wt -1 x day -1 . Epitrochlearis muscles were incubated with L-[1- 14 C]-valine and L-[1- 14 C]leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain α-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain α-keto acid dehydrogenase

  19. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  20. Mineral Metabolic Abnormalities and Mortality in Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Masanori Abe

    2013-03-01

    Full Text Available The survival rate of dialysis patients, as determined by risk factors such as hypertension, nutritional status, and chronic inflammation, is lower than that of the general population. In addition, disorders of bone mineral metabolism are independently related to mortality and morbidity associated with cardiovascular disease and fracture in dialysis patients. Hyperphosphatemia is an important risk factor of, not only secondary hyperparathyroidism, but also cardiovascular disease. On the other hand, the risk of death reportedly increases with an increase in adjusted serum calcium level, while calcium levels below the recommended target are not associated with a worsened outcome. Thus, the significance of target levels of serum calcium in dialysis patients is debatable. The consensus on determining optimal parathyroid function in dialysis patients, however, is yet to be established. Therefore, the contribution of phosphorus and calcium levels to prognosis is perhaps more significant. Elevated fibroblast growth factor 23 levels have also been shown to be associated with cardiovascular events and death. In this review, we examine the associations between mineral metabolic abnormalities including serum phosphorus, calcium, and parathyroid hormone and mortality in dialysis patients.

  1. Energy Metabolism Impairment in Migraine.

    Science.gov (United States)

    Cevoli, Sabina; Favoni, Valentina; Cortelli, Pietro

    2018-06-22

    Migraine is a common disabling neurological disorder which is characterised by recurring headache associated with a variety of sensory and autonomic symptoms. The pathophysiology of migraine remains not entirely understood, although many mechanisms involving the central and peripheral nervous system are now becoming clear. In particular, it is widely accepted that migraine is associated with energy metabolic impairment of the brain. The purpose of this review is to present an update overview of the energy metabolism involvement in the migraine pathophysiology. Several biochemical, morphological and magnetic resonance spectroscopy studies have confirmed the presence of energy production deficiency together with an increment of energy consumption in migraine patients. An increment of energy demand over a certain threshold create metabolic and biochemical preconditions for the onset of the migraine attack. The defect of oxidative energy metabolism in migraine is generalized. It remains to be determined if the mitochondrial deficit in migraine is primary or secondary. Riboflavin and Co-Enzyme Q10, both physiologically implicated in mitochondrial respiratory chain functioning, are effective in migraine prophylaxis, supporting the hypothesis that improving brain energy metabolism may reduce the susceptibility to migraine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-07-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillstions and disruptions in tokamaks is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (author)

  3. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T [St. Jude Children' s Research Hospital, Memphis, TN (United States); Indelicato, D [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Boop, F [Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States)

    2014-06-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  4. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T; Indelicato, D; Boop, F

    2014-01-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  5. Energy metabolism in BPH/2J genetically hypertensive mice.

    Science.gov (United States)

    Jackson, Kristy L; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-05-01

    Recent evidence indicates that genetic hypertension in BPH/2J mice is sympathetically mediated, but these mice also have lower body weight (BW) and elevated locomotor activity compared with BPN/3J normotensive mice, suggestive of metabolic abnormalities. The aim of the present study was to determine whether hypertension in BPH/2J mice is associated with metabolic differences. Whole-body metabolic and cardiovascular parameters were measured over 24 h by indirect calorimetry and radiotelemetry respectively, in conscious young (10-13 weeks) and older (22-23 weeks) BPH/2J, normotensive BPN/3J and C57Bl6 mice. Blood pressure (BP) was greater in BPH/2J compared with both normotensive strains at both ages (PBPH/2J compared with BPN/3J mice (PBPH/2J and normotensive mice when adjusted for activity (P>0.1) suggesting differences in this relationship are not responsible for hypertension. EchoMRI revealed that percentage body composition was comparable in BPN/3J and BPH/2J mice (P>0.1) and both strains gained weight similarly with age (P=0.3). Taken together, the present findings indicate that hypertension in BPH/2J mice does not appear to be related to altered energy metabolism.

  6. Abnormalities in Human Brain Creatine Metabolism in Gulf War Illness Probed with MRS

    Science.gov (United States)

    2014-12-01

    TYPE Final 3. DATES COVERED 30 Sep 2012 - 29 Sep 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Abnormalities in Human Brain Creatine Metabolism in...levels of total creatine (tCr) in veterans with Gulf War Illness have been observed in prior studies. The goal of this research is to estimate amounts and

  7. The number of metabolic abnormalities associated with the risk of gallstones in a non-diabetic population.

    Directory of Open Access Journals (Sweden)

    Chung-Hung Tsai

    Full Text Available AIM: To evaluate whether metabolic syndrome is associated with gallstones, independent of hepatitis C infection or chronic kidney disease (CKD, in a non-diabetic population. MATERIALS AND METHODS: A total of 8,188 Chinese adult participants that underwent a self-motivated health examination were recruited into the final analysis after excluding the subjects who had a history of cholecystectomy, diabetes mellitus, or were currently using antihypertensive or lipid-lowering agents. Gallstones were defined by the presence of strong intraluminal echoes that were gravity-dependent or that attenuated ultrasound transmission. RESULTS: A total of 447 subjects (5.5% had gallstones, with 239 (5.1% men and 208 (6.0% women. After adjusting for age, gender, obesity, education level, and lifestyle factors, included current smoking, alcohol drinking, regular exercise, hepatitis B, hepatitis C, and CKD, there was a positive association between metabolic syndrome and gallstones. Moreover, as compared to subjects without metabolic abnormalities, subjects with one, two, and three or more suffered from a 35, 40, and 59% higher risk of gallstones, respectively. CONCLUSIONS: Non-diabetic subjects with metabolic syndrome had a higher risk of gallstones independent of hepatitis C or CKD, and a dose-dependent effect of metabolic abnormalities also exists.

  8. Evolution of Metabolic Abnormalities in Alcoholic Patients during Withdrawal

    Directory of Open Access Journals (Sweden)

    X. Vandemergel

    2015-01-01

    Full Text Available Chronic alcohol intoxication is accompanied by metabolic abnormalities. Evolution during the early withdrawal period has been poorly investigated. The aim of this study was to determine the evolution of metabolic parameters during alcohol withdrawal. Patients and Methods. Thirty-three patients admitted in our department for alcohol withdrawal were prospectively included. Results. Baseline hypophosphatemia was found in 24% of cases. FEPO4 was reduced from 14.2 ± 9% at baseline to 7.3 ± 4.2% at day 3 (Pnl, respectively. No correlation was found between the sodium and CPK levels (P=0.75 nor between the CPK level and the amount of alcohol ingested (rs = 0.084, P=0.097. Baseline urate level was elevated and returned to normal after three days. Baseline magnesium concentration was normal and stable over time. Conclusion. Chronic alcohol intoxication was accompanied by phosphaturia, rapidly reversible after alcohol withdrawal and inversely correlated with albuminemia, slight hyponatremia, low levels of 25 hydroxy vitamin D, elevated CPK level in about 30% of women, and hyperuricemia with rapid normalization.

  9. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-01-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillations and disruptions in tokamak is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during the current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (orig.)

  10. Microglia energy metabolism in metabolic disorder

    NARCIS (Netherlands)

    Kalsbeek, Martin J. T.; Mulder, Laurie; Yi, Chun-Xia

    2016-01-01

    Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This

  11. High-sugar intake does not exacerbate metabolic abnormalities or cardiac dysfunction in genetic cardiomyopathy.

    Science.gov (United States)

    Hecker, Peter A; Galvao, Tatiana F; O'Shea, Karen M; Brown, Bethany H; Henderson, Reney; Riggle, Heather; Gupte, Sachin A; Stanley, William C

    2012-05-01

    A high-sugar intake increases heart disease risk in humans. In animals, sugar intake accelerates heart failure development by increased reactive oxygen species (ROS). Glucose-6-phosphate dehydrogenase (G6PD) can fuel ROS production by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH) for superoxide generation by NADPH oxidase. Conversely, G6PD also facilitates ROS scavenging using the glutathione pathway. We hypothesized that a high-sugar intake would increase flux through G6PD to increase myocardial NADPH and ROS and accelerate cardiac dysfunction and death. Six-week-old TO-2 hamsters, a non-hypertensive model of genetic cardiomyopathy caused by a δ-sarcoglycan mutation, were fed a long-term diet of high starch or high sugar (57% of energy from sucrose plus fructose). After 24 wk, the δ-sarcoglycan-deficient animals displayed expected decreases in survival and cardiac function associated with cardiomyopathy (ejection fraction: control 68.7 ± 4.5%, TO-2 starch 46.1 ± 3.7%, P sugar 58.0 ± 4.2%, NS, versus TO-2 starch or control; median survival: TO-2 starch 278 d, TO-2 sugar 318 d, P = 0.133). Although the high-sugar intake was expected to exacerbate cardiomyopathy, surprisingly, there was no further decrease in ejection fraction or survival with high sugar compared with starch in cardiomyopathic animals. Cardiomyopathic animals had systemic and cardiac metabolic abnormalities (increased serum lipids and glucose and decreased myocardial oxidative enzymes) that were unaffected by diet. The high-sugar intake increased myocardial superoxide, but NADPH and lipid peroxidation were unaffected. A sugar-enriched diet did not exacerbate ventricular function, metabolic abnormalities, or survival in heart failure despite an increase in superoxide production. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Abnormal metabolic network activity in REM sleep behavior disorder.

    Science.gov (United States)

    Holtbernd, Florian; Gagnon, Jean-François; Postuma, Ron B; Ma, Yilong; Tang, Chris C; Feigin, Andrew; Dhawan, Vijay; Vendette, Mélanie; Soucy, Jean-Paul; Eidelberg, David; Montplaisir, Jacques

    2014-02-18

    To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 ± 9.4 years old) and 10 healthy volunteers (62.7 ± 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 ± 4.8 years old) and 17 healthy volunteers (66.6 ± 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 ± 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome.

  13. The Severity of Fatty Liver Disease Relating to Metabolic Abnormalities Independently Predicts Coronary Calcification

    International Nuclear Information System (INIS)

    Lee, Ying-Hsiang; Wu, Yih-Jer; Liu, Chuan-Chuan; Hou, Charles Jia-Yin; Yeh, Hung-I.; Tsai, Cheng-Ho; Shih, Shou-Chuan; Hung, Chung-Lieh

    2011-01-01

    Background. Nonalcoholic fatty liver disease (NAFLD) is one of the metabolic disorders presented in liver. The relationship between severity of NAFLD and coronary atherosclerotic burden remains largely unknown. Methods and Materials. We analyzed subjects undergoing coronary calcium score evaluation by computed tomography (MDCT) and fatty liver assessment using abdominal ultrasonography. Framingham risk score (FRS) and metabolic risk score (MRS) were obtained in all subjects. A graded, semiquantitative score was established to quantify the severity of NAFLD. Multivariate logistic regression analysis was used to depict the association between NAFLD and calcium score. Results. Of all, 342 participants (female: 22.5%, mean age: 48.7 ± 7.0 years) met the sufficient information rendering detailed analysis. The severity of NAFLD was positively associated with MRS (X 2 = 6.12, trend P < 0.001) and FRS (X 2 = 5.88, trend P < 0.001). After multivariable adjustment for clinical variables and life styles, the existence of moderate to severe NAFLD was independently associated with abnormal calcium score (P < 0.05). Conclusion. The severity of NAFLD correlated well with metabolic abnormality and was independently predict coronary calcification beyond clinical factors. Our data suggests that NAFLD based on ultrasonogram could positively reflect the burden of coronary calcification

  14. Metabolic, Reproductive, and Neurologic Abnormalities in Agpat1-Null Mice.

    Science.gov (United States)

    Agarwal, Anil K; Tunison, Katie; Dalal, Jasbir S; Nagamma, Sneha S; Hamra, F Kent; Sankella, Shireesha; Shao, Xinli; Auchus, Richard J; Garg, Abhimanyu

    2017-11-01

    Defects in the biosynthesis of phospholipids and neutral lipids are associated with cell membrane dysfunction, disrupted energy metabolism, and diseases including lipodystrophy. In these pathways, the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) enzymes transfer a fatty acid to the sn-2 carbon of sn-1-acylglycerol-3-phosphate (lysophosphatidic acid) to form sn-1, 2-acylglycerol-3-phosphate [phosphatidic acid (PA)]. PA is a precursor for key phospholipids and diacylglycerol. AGPAT1 and AGPAT2 are highly homologous isoenzymes that are both expressed in adipocytes. Genetic defects in AGPAT2 cause congenital generalized lipodystrophy, indicating that AGPAT1 cannot compensate for loss of AGPAT2 in adipocytes. To further explore the physiology of AGPAT1, we characterized a loss-of-function mouse model (Agpat1-/-). The majority of Agpat1-/- mice died before weaning and had low body weight and low plasma glucose levels, independent of plasma insulin and glucagon levels, with reduced percentage of body fat but not generalized lipodystrophy. These mice also had decreased hepatic messenger RNA expression of Igf-1 and Foxo1, suggesting a decrease in gluconeogenesis. In male mice, sperm development was impaired, with a late meiotic arrest near the onset of round spermatid production, and gonadotropins were elevated. Female mice showed oligoanovulation yet retained responsiveness to gonadotropins. Agpat1-/- mice also demonstrated abnormal hippocampal neuron development and developed audiogenic seizures. In summary, Agpat1-/- mice developed widespread disturbances of metabolism, sperm development, and neurologic function resulting from disrupted phospholipid homeostasis. AGPAT1 appears to serve important functions in the physiology of multiple organ systems. The Agpat1-deficient mouse provides an important model in which to study the contribution of phospholipid and triacylglycerol synthesis to physiology and diseases. Copyright © 2017 Endocrine Society.

  15. Atrioventricular conduction abnormality and hyperchloremic metabolic acidosis in toluene sniffing

    Directory of Open Access Journals (Sweden)

    Jian-Hsiung Tsao

    2011-10-01

    Full Text Available Toluene is an aromatic hydrocarbon with widespread industrial use as an organic solvent. As a result of the euphoric effect and availability of these substances, inhalation of toluene-based products is popular among young adults and children. Chronic or acute exposure is known to cause acid–base and electrolyte disorders, and to be toxic to the nervous and hematopoietic systems. We report a 38-year-old man who suffered from general muscular weakness of all extremities after toluene sniffing, which was complicated with hypokalemic paralysis, atrioventricular conduction abnormality, and normal anion gap hyperchloremic metabolic acidosis. Renal function, serum potassium and acid–base status normalized within 3 days after aggressive potassium chloride and intravenous fluid replacement. Electrocardiography showed regression of first-degree atrioventricular block. Exposure to toluene can lead to cardiac arrhythmias and sudden sniffing death syndrome. Tachyarrhythmia is the classical manifestation of toluene cardiotoxicity. Atrioventricular conduction abnormalities have been rarely mentioned in the literature. Knowledge of the toxicology and medical complications associated with toluene sniffing is essential for clinical management of these patients.

  16. The energy metabolism of megacities

    International Nuclear Information System (INIS)

    Facchini, Angelo; Kennedy, Chris; Stewart, Iain; Mele, Renata

    2017-01-01

    Highlights: • Energy metabolism leads to a better management of energy use in megacities. • Insights on strategies to improve energy efficiency and reduce resource consumption. • We find a regionalization of energy flows and sectoral energy use. • Scaling law for energy Vs density suggests strategies for compact cities planning. • Supports development of models to reduce GHG emissions and increase resilience. - Abstract: Due to their sheer size and complexity, megacities are extreme examples in which both negative and positive aspects of urbanization co-exist and are amplified. Especially in emerging countries they are becoming the dominant paradigm of the future urbanization, representing a sustainability challenge both from the point of view of energy and resource consumption, and from the point of view of climate change adaptation and mitigation. In this paper we compare the energy metabolism in 27 of the world’s megacities including details of mobile and stationary energy consumption patterns, fuels used, as well as end-use patterns and electricity generation mix. Our results show that per capita total energy consumption scales with urban population density according to a power law characterized by the universal −3/4 scaling, pointing out that compact cities are more energy efficient with respect to dispersed cities. By comparing energy sources and sectoral end use, also focusing on electricity use and generation source, we found a significant regionalization of energy metabolism, and we discuss the implication for resilience, infrastructure planning, GHG emissions, and policies for infrastructure decarbonization. The comparison of the energy metabolism can lead to a more appropriate management of energy use patterns and electricity generation mix in megacities, giving insights on strategies to improve urban energy efficiency and reducing environmental pressure of megacities.

  17. Metabolomic changes in patients with chronic obstructive pulmonary disease with abnormal Savda syndrome.

    Science.gov (United States)

    Xu, Wei-Fang; Upur, Halmurat; Wu, Yu-Hua; Mamtimin, Batur; Yang, Jian; Ga, Yong-Juan; You, Li

    2015-02-01

    The aim of this study was to determine the metabolic biomarkers for abnormal Savda syndrome in patients with chronic obstructive pulmonary disease (COPD). Based on Traditional Uyghur Medicine (TUM) theory, a total of 103 patients with COPD were classified into abnormal Savda and non-abnormal Savda syndrome groups and 52 healthy volunteers acted as the control group. Blood samples from the three groups were analyzed using nuclear magnetic resonance (NMR) spectroscopy combined with orthogonal projection to latent structure-discriminant analysis. NMR tests showed that the regional distributions of the patients with COPD with abnormal Savda syndrome, those with non-abnormal Savda syndrome and the control group were completely separate (P>0.05). The patients with COPD with abnormal Savda syndrome exhibited relatively low levels of amino acids, glycoproteins and unsaturated lipids (PAbnormal Savda syndrome was one of the main types of syndrome among the patients with COPD; increased age, a longer duration of illness and a higher disease severity were characteristic of this type of syndrome. In addition, the present study provided biochemical evidence for the TUM theory-based classification of patients with COPD; these biomarkers can be used in the clinic for the diagnosis of COPD with abnormal Savda syndrome. The study also demonstrated that the plasma metabolic disorder in patients with COPD with abnormal Savda syndrome was more serious than that in the control and COPD with non-abnormal Savda syndrome groups. The plasma metabolic disorder was also associated with a low immune function of the body and endocrine and energy metabolism disorders.

  18. Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima.

    Science.gov (United States)

    Jarouliya, Urmila; Zacharia, J Anish; Kumar, Pravin; Bisen, P S; Prasad, G B K S

    2012-03-01

    Diabetes mellitus is a metabolic disorder characterized by hyperglycaemia. Several natural products have been isolated and identified to restore the complications of diabetes. Spirulina maxima is naturally occurring fresh water cyanobacterium, enriched with proteins and essential nutrients. The aim of the study was to determine whether S. maxima could serve as a therapeutic agent to correct metabolic abnormalities induced by excessive fructose administration in Wistar rats. Oral administration of 10 per cent fructose solution to Wistar rats (n = 5 in each group) for 30 days resulted in hyperglycaemia and hyperlipidaemia. Aqueous suspension of S. maxima (5 or 10%) was also administered orally once daily for 30 days. The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration. Significant (Pmaxima aquous extract. Co-administration of S. maxima extract (5 or 10% aqueous) with 10 per cent fructose solution offered a significant protection against fructose induced metabolic abnormalities in Wistar rats. The present findings showed that S. maxima exhibited anti-hyperglycaemic, anti-hyperlipidaemic and hepatoprotective activity in rats fed with fructose. Further studies are needed to understand the mechanisms.

  19. Energy metabolism in the liver.

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  20. Metabolic Abnormalities Are Common among South American Hispanics Subjects with Normal Weight or Excess Body Weight: The CRONICAS Cohort Study.

    Science.gov (United States)

    Benziger, Catherine P; Bernabé-Ortiz, Antonio; Gilman, Robert H; Checkley, William; Smeeth, Liam; Málaga, Germán; Miranda, J Jaime

    2015-01-01

    We aimed to characterize metabolic status by body mass index (BMI) status. The CRONICAS longitudinal study was performed in an age-and-sex stratified random sample of participants aged 35 years or older in four Peruvian settings: Lima (Peru's capital, costal urban, highly urbanized), urban and rural Puno (both high-altitude), and Tumbes (costal semirural). Data from the baseline study, conducted in 2010, was used. Individuals were classified by BMI as normal weight (18.5-24.9 kg/m2), overweight (25.0-29.9 kg/m2), and obese (≥30 kg/m2), and as metabolically healthy (0-1 metabolic abnormality) or metabolically unhealthy (≥2 abnormalities). Abnormalities included individual components of the metabolic syndrome, high-sensitivity C-reactive protein, and insulin resistance. A total of 3088 (age 55.6±12.6 years, 51.3% females) had all measurements. Of these, 890 (28.8%), 1361 (44.1%) and 837 (27.1%) were normal weight, overweight and obese, respectively. Overall, 19.0% of normal weight in contrast to 54.9% of overweight and 77.7% of obese individuals had ≥3 risk factors (poverweight and 3.9% of obese individuals were metabolically healthy and, compared to Lima, the rural and urban sites in Puno were more likely to have a metabolically healthier profile. Most Peruvians with overweight and obesity have additional risk factors for cardiovascular disease, as well as a majority of those with a healthy weight. Prevention programs aimed at individuals with a normal BMI, and those who are overweight and obese, are urgently needed, such as screening for elevated fasting cholesterol and glucose.

  1. The prevalence of abnormal metabolic parameters in obese and overweight children.

    Science.gov (United States)

    Salvatore, Deborah; Satnick, Ava; Abell, Rebecca; Messina, Catherine R; Chawla, Anupama

    2014-09-01

    This retrospective study aimed to determine the prevalence of abnormal metabolic parameters in obese children and its correlation to the degree of obesity determined by body mass index (BMI). In total, 101 children seen at the Pediatric Gastroenterology Obesity Clinic at Stony Brook Children's University Hospital were enrolled in the study. The degree of obesity was characterized according to the following formula: (patient's BMI/BMI at 95th percentile) × 100%, with class I obesity >100%-120%, class II obesity >120%-140%, and class III obesity >140%. A set of metabolic parameters was evaluated in these patients. Frequency distributions of all study variables were examined using the χ(2) test of independence. Mean differences among the obesity classes and continuous measures were examined using 1-way analysis of variance. Within our study population, we found that 80% of our obese children had a low high-density lipoprotein (HDL) cholesterol level, 58% had elevated fasting insulin levels, and 32% had an elevated alanine aminotransferase (ALT) level. Class II obese children had a 2-fold higher ALT value when compared with class I children (P = .036). Fasting insulin, ALT, HDL cholesterol, and triglyceride levels trended with class of obesity. Obese children in classes II and III are at higher risk for developing abnormal laboratory values. We recommend obese children be further classified to reflect the severity of the obesity since this has predictive significance for comorbidities. Obesity classes I, II, and III could help serve as a screening tool to help communicate risk assessment. © 2013 American Society for Parenteral and Enteral Nutrition.

  2. Serotonergic dysfunctions and abnormal iron metabolism: Relevant to mental fatigue of Parkinson disease.

    Science.gov (United States)

    Zuo, Li-Jun; Yu, Shu-Yang; Hu, Yang; Wang, Fang; Piao, Ying-Shan; Lian, Teng-Hong; Yu, Qiu-Jin; Wang, Rui-Dan; Li, Li-Xia; Guo, Peng; Du, Yang; Zhu, Rong-Yan; Jin, Zhao; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yong-Jun; Zhang, Wei

    2016-12-21

    Fatigue is a very common non-motor symptom in Parkinson disease (PD) patients. It included physical fatigue and mental fatigue. The potential mechanisms of mental fatigue involving serotonergic dysfunction and abnormal iron metabolism are still unknown. Therefore, we evaluated the fatigue symptoms, classified PD patients into fatigue group and non-fatigue group, and detected the levels of serotonin, iron and related proteins in CSF and serum. In CSF, 5-HT level is significantly decreased and the levels of iron and transferrin are dramatically increased in fatigue group. In fatigue group, mental fatigue score is negatively correlated with 5-HT level in CSF, and positively correlated with the scores of depression and excessive daytime sleepiness, and disease duration, also, mental fatigue is positively correlated with the levels of iron and transferrin in CSF. Transferrin level is negatively correlated with 5-HT level in CSF. In serum, the levels of 5-HT and transferrin are markedly decreased in fatigue group; mental fatigue score exhibits a negative correlation with 5-HT level. Thus serotonin dysfunction in both central and peripheral systems may be correlated with mental fatigue through abnormal iron metabolism. Depression, excessive daytime sleepiness and disease duration were the risk factors for mental fatigue of PD.

  3. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    Science.gov (United States)

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  4. The exploration of the changes in bone metabolism in patients with abnormal thyroid function

    International Nuclear Information System (INIS)

    Chu Shaolin; Li Xiaohong; Lei Qiufang; Ye Peihong; Chai Luhua

    2001-01-01

    To explore the changes in bone metabolism with abnormal thyroid function, BGP and PTH in 91 patients with hyperthyroidism, 37 patients with hypothyroidism, 51 controls, were measured by means of IRMA, calcaneus heel bone density (BMD) was measured by means of 241 Am single photon absorptiometry. BGP levels in hyperthyroidism were significantly higher than those in controls (P < 0.001). BGP levels in hypothyroidism were significantly lower than those in controls (P < 0.001). PTH levels in hyperthyroidism were a little lower than those in controls (P < 0.05). PTH levels in hypothyroidism were significantly higher than those in controls (P < 0.001). The measurement of BMD showed that the prevalence rates of osteoporosis (OP) in hyperthyroidism and hypothyroidism were significantly higher than those in controls. In hyperthyroidism and hypothyroidism groups the age of OP tends to be younger. The patients with hyperthyroidism over 55 years of age were all suffered from OP. The changes in BGP and PTH were earlier than BMD, so BGP and PTH can be used as sensitive indicator of the changes in bone metabolism with abnormal thyroid function, especially for curative effect observations

  5. Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Walker Mark

    2010-11-01

    Full Text Available Abstract Background Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity. Methods This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m2 recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained. Results Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32] and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86] than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]. A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]. Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance. Conclusion A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that

  6. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    Science.gov (United States)

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  7. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine.

    Science.gov (United States)

    Villa, Roberto Federico; Ferrari, Federica; Bagini, Laura; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2017-07-15

    Alterations in mitochondrial functions have been hypothesized to participate in the pathogenesis of depression, because brain bioenergetic abnormalities have been detected in depressed patients by neuroimaging in vivo studies. However, this hypothesis is not clearly demonstrated in experimental studies: some suggest that antidepressants are inhibitors of mitochondrial metabolism, while others observe the opposite. In this study, the effects of 21-day treatment with desipramine (15 mg/kg) and fluoxetine (10 mg/kg) were examined on the energy metabolism of rat hippocampus, evaluating the catalytic activity of regulatory enzymes of mitochondrial energy-yielding metabolic pathways. Because of the micro-heterogeneity of brain mitochondria, we have distinguished between (a) non-synaptic mitochondria (FM) of neuronal perikaryon (post-synaptic compartment) and (b) intra-synaptic light (LM) and heavy (HM) mitochondria (pre-synaptic compartment). Desipramine and fluoxetine changed the catalytic activity of specific enzymes in the different types of mitochondria: (a) in FM, both drugs enhanced cytochrome oxidase and glutamate dehydrogenase, (b) in LM, the overall bioenergetics was unaffected and (c) in HM only desipramine increased malate dehydrogenase and decreased the activities of Electron Transport Chain Complexes. These results integrate the pharmacodynamic features of desipramine and fluoxetine at subcellular level, overcoming the previous conflicting data about the effects of antidepressants on brain energy metabolism, mainly referred to whole brain homogenates or to bulk of cerebral mitochondria. With the differentiation in non-synaptic and intra-synaptic mitochondria, this study demonstrates that desipramine and fluoxetine lead to adjustments in the mitochondrial bioenergetics respect to the energy requirements of pre- and post-synaptic compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  9. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine): a PET-FDG study

    International Nuclear Information System (INIS)

    Brunetti, A.; Berg, G.; Di Chiro, G.

    1989-01-01

    Brain glucose metabolism was evaluated in four patients with acquired immunodeficiency syndrome (AIDS) dementia complex using [ 18 F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) scans at the beginning of therapy with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine), and later in the course of therapy. In two patients, baseline, large focal cortical abnormalities of glucose utilization were reversed during the course of therapy. In the other two patients, the initial PET study did not reveal pronounced focal alterations, while the post-treatment scans showed markedly increased cortical glucose metabolism. The improved cortical glucose utilization was accompanied in all patients by immunologic and neurologic improvement. PET-FDG studies can detect cortical metabolic abnormalities associated with AIDS dementia complex, and may be used to monitor the metabolic improvement in response to AZT treatment

  10. Cerebral blood flow and metabolic abnormalities in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi [National Center of Neurology and Psychiatry, Kodaira, Tokyo (Japan). National Center Hospital for Mental, Nervous, and Muscular Disorders

    2001-04-01

    In this review I summarize observations of PET and SPECT studies about cerebral blood flow and metabolic abnormalities in Alzheimer's disease (AD). In very early AD flow or metabolism reduces first in the posterior cingulate gyrus and precuneus. This reduction may arise from functional deafferentation caused by primary neural degeneration in the remote area of the entorhinal cortex that is the first to be pathologically affected in AD. Then medial temporal structures and parietotemporal association cortex show flow or metabolic reduction as disease processes. The reason why flow or metabolism in medial temporal structures shows delay in starting to reduce in spite of the earliest pathological affection remains to be elucidated. It is likely that anterior cingulate gyrus is functionally involved, since attention is the first non-memory domain to be affected, before deficits in language and visuospatial functions. However few reports have described involvement in the anterior cingulate gyrus. Relationship between cerebral blood flow or metabolism and apolipoprotein E (APOE) genotype has been investigated. Especially, the APOE{epsilon}4 allele has been reported to increase risk and to lower onset age as a function of the inherited dose of the {epsilon}4 allele. Reduction of flow or metabolism in the posterior cingulate gyrus and precuneus has been reported even in presymptomatic nondemented subjects who were cognitively normal and had at least a single {epsilon}4 allele. On the contrary the relation of {epsilon}4 allele to the progression rate of AD has been controversial from neuroimaging approaches. PET and SPECT imaging has become to be quite useful for assessing therapeutical effects of newly introduced treatment for AD. Recent investigations observed significant regional flow increase after donepezil hydrochloride treatment. Most of these observations have been made by applying computer assisted analysis of three-dimensional stereotactic surface projection

  11. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice

    Science.gov (United States)

    Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.

    2013-12-01

    Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.

  12. Influence of anaesthesia on energy metabolism in surgery

    Directory of Open Access Journals (Sweden)

    Prigorodov М.V.

    2013-03-01

    Full Text Available The purpose of the article is to establish adequacy of protection of energy metabolism in a patient under anaes-thesiology in cholecystectomy from mini-access. Material et methods: 122 patients subjected to cholecystectomy from mini access have been surveyed. Among them 92 patients have got intravenous general anaesthesia with AVL, 30 patients have got prolonged epidural anaesthesia on spontaneous breath with insufflations of oxygen through an obverse mask with sedatations. Monitoring of energy-plastic metabolism has been carried out in all patients. Results: Groups of patients have been compared by anthropometrical data, traumatic interventions. In both groups of patients loss of energy to traumatic to an operation stage has insignificantly increased, but after the anaesthesia termination in the group of patients with intravenous anaesthesia loss of energy continued to rise, and in the group of patients with prolonged epidural blockade it has returned to the initial level. After the anaesthesia termination the energy metabolism became essential higher in the first group of patients in comparison with the second one (p <0,01. The energy-plastic metabolism increased in the first group of patients and decreased in the second. PEA during cholecystectomy from mini access provided a stable condition of energy and energy-plastic metabolism. The conclusion: The inspection of 122 patients subjected to cholecystectomy from mini access has established the following data: PEA on spontaneous breath with insufflations of oxygen through an obverse mask in comparison with intravenous general anaesthesia and AVL allows keeping on an optimum level of energy and energy-plastic metabolism.

  13. Insulin resistance and endocrine-metabolic abnormalities in polycystic ovarian syndrome: Comparison between obese and non-obese PCOS patients.

    Science.gov (United States)

    Layegh, Parvin; Mousavi, Zohreh; Farrokh Tehrani, Donya; Parizadeh, Seyed Mohammad Reza; Khajedaluee, Mohammad

    2016-04-01

    Insulin resistance has an important role in pathophysiology of polycystic ovarian syndrome (PCOS). Yet there are certain controversies regarding the presence of insulin resistance in non-obese patients. The aim was to compare the insulin resistance and various endocrine and metabolic abnormalities in obese and non-obese PCOS women. In this cross-sectional study which was performed from 2007-2010, 115 PCOS patients, aged 16-45 years were enrolled. Seventy patients were obese (BMI ≥25) and 45 patients were non-obese (BMI 2.3) between two groups (p=0.357). Waist circumference (pPCOS patients. There was no significant difference in total testosterone (p=0.634) and androstenedione (p=0.736) between groups whereas Dehydroepiandrotendione sulfate (DHEAS) was significantly higher in non-obese PCOS women (p=0.018). There was no case of fatty liver and metabolic syndrome in non-obese patients, whereas they were seen in 31.3% and 39.4% of obese PCOS women, respectively. Our study showed that metabolic abnormalities are more prevalent in obese PCOS women, but adrenal axis activity that is reflected in higher levels of DHEAS was more commonly pronounced in our non-obese PCOS patients.

  14. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves; Magistretti, Pierre J.; Barros, L. Felipe

    2016-01-01

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  15. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  16. Abnormal metabolism of glycogen phosphate as a cause for Lafora disease.

    Science.gov (United States)

    Tagliabracci, Vincent S; Girard, Jean Marie; Segvich, Dyann; Meyer, Catalina; Turnbull, Julie; Zhao, Xiaochu; Minassian, Berge A; Depaoli-Roach, Anna A; Roach, Peter J

    2008-12-05

    Lafora disease is a progressive myoclonus epilepsy with onset in the teenage years followed by neurodegeneration and death within 10 years. A characteristic is the widespread formation of poorly branched, insoluble glycogen-like polymers (polyglucosan) known as Lafora bodies, which accumulate in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual specificity protein phosphatase family that is able to release the small amount of covalent phosphate normally present in glycogen. In studies of Epm2a(-/-) mice that lack laforin, we observed a progressive change in the properties and structure of glycogen that paralleled the formation of Lafora bodies. At three months, glycogen metabolism remained essentially normal, even though the phosphorylation of glycogen has increased 4-fold and causes altered physical properties of the polysaccharide. By 9 months, the glycogen has overaccumulated by 3-fold, has become somewhat more phosphorylated, but, more notably, is now poorly branched, is insoluble in water, and has acquired an abnormal morphology visible by electron microscopy. These glycogen molecules have a tendency to aggregate and can be recovered in the pellet after low speed centrifugation of tissue extracts. The aggregation requires the phosphorylation of glycogen. The aggregrated glycogen sequesters glycogen synthase but not other glycogen metabolizing enzymes. We propose that laforin functions to suppress excessive glycogen phosphorylation and is an essential component of the metabolism of normally structured glycogen.

  17. Effects of nutritional education on weight change and metabolic abnormalities among patients with schizophrenia in Japan: A randomized controlled trial.

    Science.gov (United States)

    Sugawara, Norio; Sagae, Toyoaki; Yasui-Furukori, Norio; Yamazaki, Manabu; Shimoda, Kazutaka; Mori, Takao; Sugai, Takuro; Matsuda, Hiroshi; Suzuki, Yutaro; Ozeki, Yuji; Okamoto, Kurefu; Someya, Toshiyuki

    2018-02-01

    Patients with schizophrenia have a higher prevalence of metabolic syndrome (MetS) than the general population. Minimizing weight gain and metabolic abnormalities in a population with an already high prevalence of obesity is of clinical and social importance. This randomized controlled trial investigated the effect of monthly nutritional education on weight change and metabolic abnormalities among patients with schizophrenia in Japan. From July 2014 to December 2014, we recruited 265 obese patients who had a DSM-IV diagnosis of schizophrenia or schizoaffective disorder. Participants were randomly assigned to a standard care (A), doctor's weight loss advice (B), or an individual nutritional education group (C) for 12 months. The prevalence of MetS and body weight were measured at baseline and 12 months. After the 12-month treatment, 189 patients were evaluated, and the prevalence of MetS based on the ATP III-A definition in groups A, B, and C was 68.9%, 67.2%, and 47.5%, respectively. Group C showed increased weight loss (3.2 ± 4.5 kg) over the 12-month study period, and the change in weight differed significantly from that of group A; additionally, 26.2% of the participants in group C lost 7% or more of their initial weight, compared with 8.2% of those in group A. Individual nutrition education provided by a dietitian was highly successful in reducing obesity in patients with schizophrenia and could be the first choice to address both weight gain and metabolic abnormalities induced by antipsychotic medications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease.

    Science.gov (United States)

    Siew, Edward D; Ikizler, Talat Alp

    2010-01-01

    Insulin resistance (IR), the reciprocal of insulin sensitivity is a known complication of advanced chronic kidney disease (CKD) and is associated with a number of metabolic derangements. The complex metabolic abnormalities observed in CKD such as vitamin D deficiency, obesity, metabolic acidosis, inflammation, and accumulation of "uremic toxins" are believed to contribute to the etiology of IR and acquired defects in the insulin-receptor signaling pathway in this patient population. Only a few investigations have explored the validity of commonly used assessment methods in comparison to gold standard hyperinsulinemic hyperglycemic clamp technique in CKD patients. An important consequence of insulin resistance is its role in the pathogenesis of protein energy wasting, a state of metabolic derangement characterized by loss of somatic and visceral protein stores not entirely accounted for by inadequate nutrient intake. In the general population, insulin resistance has been associated with accelerated protein catabolism. Among end-stage renal disease (ESRD) patients, enhanced muscle protein breakdown has been observed in patients with Type II diabetes compared to ESRD patients without diabetes. In the absence of diabetes mellitus (DM) or severe obesity, insulin resistance is detectable in dialysis patients and strongly associated with increased muscle protein breakdown, primarily mediated by the ubiquitin-proteasome pathway. Recent epidemiological data indicate a survival advantage and better nutritional status in insulin-free Type II DM patients treated with insulin sensitizer thiazolidinediones. Given the high prevalence of protein energy wasting in ESRD and its unequivocal association with adverse clinical outcomes, insulin resistance may represent an important modifiable target for intervention in the ESRD population.

  19. Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis

    DEFF Research Database (Denmark)

    Høfsten, Dan E; Løgstrup, Brian B; Møller, Jacob E

    2009-01-01

    tolerance test before discharge. LV function was assessed using echocardiographic measurements (LV end-diastolic volume, LV end-systolic volume, LV ejection fraction, restrictive diastolic filling pattern, early transmitral flow velocity to early diastolic mitral annular velocity ratio [E/e'], and left...... atrial volume index) and by measuring plasma N-terminal pro-B-type natriuretic peptide levels. RESULTS: After adjustment for age and gender, a linear relationship between the degree of abnormal glucose metabolism was observed for each marker of LV dysfunction (p(trend)

  20. Pathophysiology and molecular basis of selected metabolic abnormalities in Huntington's disease.

    Science.gov (United States)

    Krzysztoń-Russjan, Jolanta

    2016-12-30

    Huntington's disease (HD) is an incurable, devastating neurodegenerative disease with a known genetic background and autosomally dominant inheritance pattern. HTT gene mutation (mHTT) is associated with polymorphic fragment elongation above 35 repeats of the CAG triplet. The mHTT product is an altered protein with a poly-Q elongated fragment, with the highest expression determined in the central nervous system (CNS) and with differentiated expression outside the CNS. A drastic loss of striatal and deeper layers of the cerebral cortex neurons was determined in the CNS, but muscle and body weight mass loss with dysfunction of many organs was also observed. HD symptoms include neurological disturbances, such as choreal movements with dystonia, speech and swallowing impairments, and additionally a variety of psychiatric and behavioral symptoms with cognitive decline have been described. They are the result of disturbances of several cellular pathways related to signal transmission, mitochondrial dysfunction and energy metabolism impairment shown by gene and protein expression and alteration of their functions. Impairment of energy processes demonstrated by a decrease of ATP production and increase of oxidative stress markers was determined in- and outside of the CNS in glycolysis, the Krebs cycle and the electron transport chain. A correlation between the increase of energy metabolism impairment level and the increase in number of CAG repeats in HTT has often been described. The energy metabolism study is an initial stage of sensitive biomarkers and a new therapeutic investigative option for early application in order to inhibit pathological processes in HD. Identification of pathological changes outside the CNS requires a reevaluation of diagnostic and therapeutic rules in HD.

  1. Sperm shape abnormalities induced by energy-related hydrocarbons and industrial chemicals. Progress report, January 1-June 30, 1979

    International Nuclear Information System (INIS)

    Wyrobek, A.J.

    1979-01-01

    Using existing and new biological screening and testing systems, the presence of carcinogenic, mutagenic, teratogenic and physiologic or metabolically toxic agents associated with coal and oil shale extraction, conversion or utilization was identified. The purpose of the study is to further develop and apply the detection of morphologically abnormal mammalian sperm as a rapid, simple, quantitative assay of the pathologic response of the male gonad to toxic agents associated with the recovery, process stream, and emission of nonnuclear sources of energy, with primary attention to substances from in situ coal gasification and in situ oil-shale extraction. Changes in mouse sperm head dimensions following low dose x-ray exposure have been compiled and analyzed

  2. Neonatal seizures: the overlap between diagnosis of metabolic disorders and structural abnormalities. Case report

    Directory of Open Access Journals (Sweden)

    Freitas Alessandra

    2003-01-01

    Full Text Available Inborn metabolic errors (IME and cortical developmental malformations are uncommon etiologies of neonatal seizures, however they may represent treatable causes of refractory epilepsy and for this reason must be considered as possible etiological factors. This case report aims to demonstrate the importance of neuroimaging studies in one patient with neonatal seizures, even when there are clues pointing to a metabolic disorder. CASE REPORT: A previously healthy 14 day-old child started presenting reiterated focal motor seizures (FMS which evolved to status epilepticus. Exams showed high serum levels of ammonia and no other abnormalities. A metabolic investigation was conducted with normal results. During follow-up, the patient presented developmental delay and left side hemiparesia. Seizures remained controlled with anti-epileptic drugs for four months, followed by relapse with repetitive FMS on the left side. Temporary improvement was obtained with anti-epileptic drug adjustment. At the age of 6 months, during a new episode of status epilepticus, high ammonia levels were detected. Other metabolic exams remained normal. The child was referred to a video-electroencephalographic monitoring and continuous epileptiform discharges were recorded over the right parasagittal and midline regions, with predominance over the posterior quadrant. A new neuroimaging study was performed and displayed a malformation of cortical development. Our case illustrates that because newborns are prone to present metabolic disarrangement, an unbalance such as hyperammonemia may be a consequence of acute events and conduct to a misdiagnosis of IME.

  3. Effect of Strain Restored Energy on Abnormal Grain Growth in Mg Alloy Simulated by Phase Field Methods

    Science.gov (United States)

    Wu, Yan; Huang, Yuan-yuan

    2018-03-01

    Abnormal grain growth of single phase AZ31 Mg alloy in the spatio-temporal process has been simulated by phase field models, and the influencing factors of abnormal grain growth are studied in order to find the ways to control secondary recrystallization in the microstructure. The study aims to find out the mechanisms for abnormal grain growth in real alloys. It is shown from the simulated results that the abnormal grain growth can be controlled by the strain restored energy. Secondary recrystallization after an annealing treatment can be induced if there are grains of a certain orientation in the microstructure with local high restored energy. However, if the value of the local restored energy at a certain grain orientation is not greater than 1.1E 0, there may be no abnormal grain growth in the microstructure.

  4. Cellular energy metabolism in T-lymphocytes.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Sawitzki, Birgit; Hoff, Paula; Buttgereit, Frank

    2015-01-01

    Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.

  5. Metabolic abnormalities in cachexia and anorexia.

    Science.gov (United States)

    Tisdale, M J

    2000-10-01

    An increased glucose requirement by many solid tumors produces an increased metabolic demand on the liver, resulting in an increased energy expenditure. In addition, several cytokines and tumor catabolic products have been suggested as being responsible for the depletion of adipose tissue and skeletal-muscle mass in cachexia. A sulphated glycoprotein of molecular mass 24 kDa, produced by cachexia-inducing tumors and present in the urine of cancer patients actively losing weight, has been shown to be capable of inducing direct muscle catabolism in vitro and a state of cachexia in vivo, with specific loss of the non-fat carcass mass. In vitro studies have shown the bioactivity of this proteolysis-inducing factor to be attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid. Preliminary clinical studies have shown that eicosapentaenoic acid stabilizes body weight and protein and fat reserves in patients with pancreatic carcinoma. Further trials are required to confirm the efficacy of eicosapentaenoic acid and to determine the anticachectic activity in other types of cancer.

  6. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  7. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  8. Hypothalamic control of energy and glucose metabolism.

    Science.gov (United States)

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  9. Pareto optimality in organelle energy metabolism analysis.

    Science.gov (United States)

    Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe

    2013-01-01

    In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

  10. Prevalence and predictors of metabolic abnormalities in Chinese women with PCOS: a cross- sectional study

    Science.gov (United States)

    2014-01-01

    Background Polycystic ovary syndrome (PCOS) is a common condition estimated to affect 5.61% of Chinese women of reproductive age, but little is known about the prevalence and predictors in Chinese PCOS patients. This study aimed to determine the prevalence and predictors of the metabolic abnormalities in Chinese women with and without PCOS. Methods A large-scale national epidemiological investigation was conducted in reproductive age women (19 to 45 years) across China. 833 reproductive aged PCOS women, who participated in the healthcare screening, were recruited from ten provinces in China. Clinical history, ultrasonographic exam (ovarian follicle), hormonal and metabolic parameters were the main outcome measures. Results The prevalence of metabolic syndrome (MetS) as compared in PCOS and non-PCOS women from community were 18.2% vs 14.7%, and IR (insulin resistance) were 14.2% vs 9.3% (p PCOS than in non-PCOS groups. Using multivariate logistic regression, central obesity and FAI were risk factors, while SHBG was a protective factor on the occurrence of Mets and IR in PCOS women (OR: 1.132, 1.105 and 0.995). Conclusions The risk factors of the metabolic syndrome and insulin resistance were BMI and FAI for PCOS women, respectively. The decrease of SHBG level was also a risk factor for insulin resistance in both PCOS and metabolic disturbance. PMID:25223276

  11. Statefinder diagnostic for cosmology with the abnormally weighting energy hypothesis

    International Nuclear Information System (INIS)

    Liu Daojun; Liu Weizhong

    2008-01-01

    In this paper, we apply the statefinder diagnostic to the cosmology with the abnormally weighting energy hypothesis (AWE cosmology), in which dark energy in the observational (ordinary matter) frame results from the violation of the weak equivalence principle by pressureless matter. It is found that there exist closed loops in the statefinder plane, which is an interesting characteristic of the evolution trajectories of statefinder parameters and can be used to distinguish AWE cosmology from other cosmological models

  12. Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation

    Science.gov (United States)

    He, Jintian; Dong, Li; Xu, Wen; Bai, Kaiwen; Lu, Changhui; Wu, Yanan; Huang, Qiang; Zhang, Lili; Wang, Tian

    2015-01-01

    Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P insulin in the serum, higher (P insulin, HOMA-IR, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the serum, and the concentrations of TG and NEFA in the liver, and increased (P insulin signal transduction pathway and hepatic lipogenic pathway (including transcription factors and nuclear factors) was significantly (P insulin resistance and abnormal lipid metabolism in IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets. PMID:26317832

  13. Pathophysiology and molecular basis of selected metabolic abnormalities in Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Jolanta Krzysztoń-Russjan

    2016-12-01

    Full Text Available Huntington’s disease (HD is an incurable, devastating neurodegenerative disease with a known genetic background and autosomally dominant inheritance pattern. HTT gene mutation (mHTT is associated with polymorphic fragment elongation above 35 repeats of the CAG triplet. The mHTT product is an altered protein with a poly-Q elongated fragment, with the highest expression determined in the central nervous system (CNS and with differentiated expression outside the CNS. A drastic loss of striatal and deeper layers of the cerebral cortex neurons was determined in the CNS, but muscle and body weight mass loss with dysfunction of many organs was also observed. HD symptoms include neurological disturbances, such as choreal movements with dystonia, speech and swallowing impairments, and additionally a variety of psychiatric and behavioral symptoms with cognitive decline have been described.They are the result of disturbances of several cellular pathways related to signal transmission, mitochondrial dysfunction and energy metabolism impairment shown by gene and protein expression and alteration of their functions. Impairment of energy processes demonstrated by a decrease of ATP production and increase of oxidative stress markers was determined in- and outside of the CNS in glycolysis, the Krebs cycle and the electron transport chain. A correlation between the increase of energy metabolism impairment level and the increase in number of CAG repeats in HTT has often been described. The energy metabolism study is an initial stage of sensitive biomarkers and a new therapeutic investigative option for early application in order to inhibit pathological processes in HD.Identification of pathological changes outside the CNS requires a reevaluation of diagnostic and therapeutic rules in HD.

  14. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  15. Morphological and glucose metabolism abnormalities in alcoholic Korsakoff's syndrome: group comparisons and individual analyses.

    Directory of Open Access Journals (Sweden)

    Anne-Lise Pitel

    Full Text Available BACKGROUND: Gray matter volume studies have been limited to few brain regions of interest, and white matter and glucose metabolism have received limited research attention in Korsakoff's syndrome (KS. Because of the lack of brain biomarkers, KS was found to be underdiagnosed in postmortem studies. METHODOLOGY/PRINCIPAL FINDINGS: Nine consecutively selected patients with KS and 22 matched controls underwent both structural magnetic resonance imaging and (18F-fluorodeoxyglucose positron emission tomography examinations. Using a whole-brain analysis, the between-group comparisons of gray matter and white matter density and relative glucose uptake between patients with KS and controls showed the involvement of both the frontocerebellar and the Papez circuits, including morphological abnormalities in their nodes and connection tracts and probably resulting hypometabolism. The direct comparison of the regional distribution and degree of gray matter hypodensity and hypometabolism within the KS group indicated very consistent gray matter distribution of both abnormalities, with a single area of significant difference in the middle cingulate cortex showing greater hypometabolism than hypodensity. Finally, the analysis of the variability in the individual patterns of brain abnormalities within our sample of KS patients revealed that the middle cingulate cortex was the only brain region showing significant GM hypodensity and hypometabolism in each of our 9 KS patients. CONCLUSIONS/SIGNIFICANCE: These results indicate widespread brain abnormalities in KS including both gray and white matter damage mainly involving two brain networks, namely, the fronto-cerebellar circuit and the Papez circuit. Furthermore, our findings suggest that the middle cingulate cortex may play a key role in the pathophysiology of KS and could be considered as a potential in vivo brain biomarker.

  16. Abnormalities in biomarkers of mineral and bone metabolism in kidney donors.

    Science.gov (United States)

    Kasiske, Bertram L; Kumar, Rajiv; Kimmel, Paul L; Pesavento, Todd E; Kalil, Roberto S; Kraus, Edward S; Rabb, Hamid; Posselt, Andrew M; Anderson-Haag, Teresa L; Steffes, Michael W; Israni, Ajay K; Snyder, Jon J; Singh, Ravinder J; Weir, Matthew R

    2016-10-01

    Previous studies have suggested that kidney donors may have abnormalities of mineral and bone metabolism typically seen in chronic kidney disease. This may have important implications for the skeletal health of living kidney donors and for our understanding of the pathogenesis of long-term mineral and bone disorders in chronic kidney disease. In this prospective study, 182 of 203 kidney donors and 173 of 201 paired normal controls had markers of mineral and bone metabolism measured before and at 6 and 36 months after donation (ALTOLD Study). Donors had significantly higher serum concentrations of intact parathyroid hormone (24.6% and 19.5%) and fibroblast growth factor-23 (9.5% and 8.4%) at 6 and 36 months, respectively, as compared to healthy controls, and significantly reduced tubular phosphate reabsorption (-7.0% and -5.0%) and serum phosphate concentrations (-6.4% and -2.3%). Serum 1,25-dihydroxyvitamin D3 concentrations were significantly lower (-17.1% and -12.6%), while 25-hydroxyvitamin D (21.4% and 19.4%) concentrations were significantly higher in donors compared to controls. Moreover, significantly higher concentrations of the bone resorption markers, carboxyterminal cross-linking telopeptide of bone collagen (30.1% and 13.8%) and aminoterminal cross-linking telopeptide of bone collagen (14.2% and 13.0%), and the bone formation markers, osteocalcin (26.3% and 2.7%) and procollagen type I N-terminal propeptide (24.3% and 8.9%), were observed in donors. Thus, kidney donation alters serum markers of bone metabolism that could reflect impaired bone health. Additional long-term studies that include assessment of skeletal architecture and integrity are warranted in kidney donors. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Weight Management, Energy Metabolism, and Endocrine Hor¬mones- Review Article

    OpenAIRE

    Seyed-Ali MOSTAFAVI; Saeed HOSSEINI

    2015-01-01

    Energy expenditure is determined by basal metabolic rate, physical activity, and Thermic Effect of Foods (TEF). Some endocrine hormones have role in basal metabolism and hence in human energy expenditure. And some foods pose more thermic effects on the total body energy expenditure and therefore can influence body weight. This review was performed to discuss factors which may affect body metabolism and body weight. Latest medical databases and nutrition and metabolism books were reviewed. We ...

  18. Construction and analysis of the model of energy metabolism in E. coli.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Genome-scale models of metabolism have only been analyzed with the constraint-based modelling philosophy and there have been several genome-scale gene-protein-reaction models. But research on the modelling for energy metabolism of organisms just began in recent years and research on metabolic weighted complex network are rare in literature. We have made three research based on the complete model of E. coli's energy metabolism. We first constructed a metabolic weighted network using the rates of free energy consumption within metabolic reactions as the weights. We then analyzed some structural characters of the metabolic weighted network that we constructed. We found that the distribution of the weight values was uneven, that most of the weight values were zero while reactions with abstract large weight values were rare and that the relationship between w (weight values and v (flux values was not of linear correlation. At last, we have done some research on the equilibrium of free energy for the energy metabolism system of E. coli. We found that E(out (free energy rate input from the environment can meet the demand of E(ch(in (free energy rate dissipated by chemical process and that chemical process plays a great role in the dissipation of free energy in cells. By these research and to a certain extend, we can understand more about the energy metabolism of E. coli.

  19. Conservative treatment of bone tissue metabolic disorders among patients with vitamin D-dependent rickets type II with genetic abnormality of type I collagen formation

    Directory of Open Access Journals (Sweden)

    S.M. Martsyniak

    2017-08-01

    Full Text Available Background. The purpose of the article is to determine the effect of conservative therapy on genetically caused disorders of bone tissue metabolism in patients with vitamin D-dependent rickets type II and genetic abnormality of type I collagen formation (VDDR(COL1. Materials and methods. At the premises of consulting and outpatient department of SI “Institute of Traumatology and Orthopaedics of the NAMS of Ukraine”, 13 patients having VDDR type II and genetic damage of type I collagen formation were examined and treated. The medical treatment was conducted in four stages. The first stage included full examination of patients (calcium and phosphorus levels in the blood serum and their urinary excretion, as well as determination of calcidiol and calcitriol serum levels, indicators of parathyroid hormone and osteocalcin, and a marker of bone formation P1NP and osteoresorption b-CTx. At this stage, children were obligated to undergo a genetic test to detect changes (polymorphism in alleles of receptors to vitamin D and type I collagen. Besides genetic tests, examinations at the other stages were conducted in full. Results. The study has shown the following. The genetically caused abnormality of reception to vitamin D results into substantial accumulation of vitamin D active metabolite in the blood serum. When combined with gene­tic abnormality of type I collagen formation, it significantly affected bone formation and destruction processes that causes development of osteomalacia (parathormone — vitamin D — osteocalcin system. The comprehensive study of vitamin D metabolism and biochemical vitals of bone tissue in patients having VDDR (COL1 brought us to understanding of some issues related to pathogenesis and nature of osteomalacia and, in future, osteoporotic changes on different levels, ensured us to express these changes by corresponding indices in the biochemical research and, finally, to develop appropriate schemes for the treatment of

  20. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats.

    Science.gov (United States)

    Lu, Xiaofang; Wang, Yuefen; Liu, Chunyan; Wang, Yangang

    2017-01-01

    In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive

  1. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats.

    Directory of Open Access Journals (Sweden)

    Xiaofang Lu

    Full Text Available In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the

  2. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  3. Severity of psychosis syndrome and change of metabolic abnormality in chronic schizophrenia patients: severe negative syndrome may be related to a distinct lipid pathophysiology.

    Science.gov (United States)

    Chen, S-F; Hu, T-M; Lan, T-H; Chiu, H-J; Sheen, L-Y; Loh, E-W

    2014-03-01

    Metabolic abnormality is common among schizophrenia patients. Some metabolic traits were found associated with subgroups of schizophrenia patients. We examined a possible relationship between metabolic abnormality and psychosis profile in schizophrenia patients. Three hundred and seventy-two chronic schizophrenia patients treated with antipsychotics for more than 2 years were assessed with the Positive and Negative Syndrome Scale. A set of metabolic traits was measured at scheduled checkpoints between October 2004 and September 2006. Multiple regressions adjusted for sex showed negative correlations between body mass index (BMI) and total score and all subscales; triglycerides (TG) was negatively correlated with total score and negative syndrome, while HDLC was positively correlated with negative syndrome. When sex interaction was concerned, total score was negatively correlated with BMI but not with others; negative syndrome was negatively correlated with BMI and positively with HDLC. No metabolic traits were correlated with positive syndrome or general psychopathology. Loss of body weight is a serious health problem in schizophrenia patients with severe psychosis syndrome, especially the negative syndrome. Schizophrenia patients with severe negative syndrome may have a distinct lipid pathophysiology in comparison with those who were less severe in the domain. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Metabolic regulation of neuronal plasticity by the energy sensor AMPK.

    Directory of Open Access Journals (Sweden)

    Wyatt B Potter

    Full Text Available Long Term Potentiation (LTP is a leading candidate mechanism for learning and memory and is also thought to play a role in the progression of seizures to intractable epilepsy. Maintenance of LTP requires RNA transcription, protein translation and signaling through the mammalian Target of Rapamycin (mTOR pathway. In peripheral tissue, the energy sensor AMP-activated Protein Kinase (AMPK negatively regulates the mTOR cascade upon glycolytic inhibition and cellular energy stress. We recently demonstrated that the glycolytic inhibitor 2-deoxy-D-glucose (2DG alters plasticity to retard epileptogenesis in the kindling model of epilepsy. Reduced kindling progression was associated with increased recruitment of the nuclear metabolic sensor CtBP to NRSF at the BDNF promoter. Given that energy metabolism controls mTOR through AMPK in peripheral tissue and the role of mTOR in LTP in neurons, we asked whether energy metabolism and AMPK control LTP. Using a combination of biochemical approaches and field-recordings in mouse hippocampal slices, we show that the master regulator of energy homeostasis, AMPK couples energy metabolism to LTP expression. Administration of the glycolytic inhibitor 2-deoxy-D-glucose (2DG or the mitochondrial toxin and anti-Type II Diabetes drug, metformin, or AMP mimetic AICAR results in activation of AMPK, repression of the mTOR pathway and prevents maintenance of Late-Phase LTP (L-LTP. Inhibition of AMPK by either compound-C or the ATP mimetic ara-A rescues the suppression of L-LTP by energy stress. We also show that enhanced LTP via AMPK inhibition requires mTOR signaling. These results directly link energy metabolism to plasticity in the mammalian brain and demonstrate that AMPK is a modulator of LTP. Our work opens up the possibility of using modulators of energy metabolism to control neuronal plasticity in diseases and conditions of aberrant plasticity such as epilepsy.

  5. Preliminary observations on high energy phosphates and metabolic pathway and transporter potentials in extensor carpi radialis brevis and trapezius muscles of women with work-related myalgia.

    Science.gov (United States)

    Green, Howard J; Ranney, Don; Burnett, Margaret; Galvin, Patti; Kyle, Natasha; Lounsbury, David; Ouyang, Jing; Smith, Ian C; Stewart, Riley; Tick, Heather; Tupling, A Russell

    2014-11-01

    This study compared both the extensor carpi radialis brevis (ECRB) and the trapezius (TRAP) muscles of women with work-related myalgia (WRM) with healthy controls (CON) to determine whether abnormalities existed in cellular energy status and the potentials of the various metabolic pathways and segments involved in energy production and substrate transport. For both the ECRB (CON, n = 6-9; WRM, n = 13) and the TRAP (CON, n = 6-7; WRM, n = 10), no differences (P > 0.05) were found for the concentrations (in millimoles per kilogram of dry mass) of ATP, PCr, lactate, and glycogen. Similarly, with one exception, the maximal activities (in moles per milligram of protein per hour) of mitochondrial enzymes representative of the citric acid cycle (CAC), the electron transport chain (ETC), and β-oxidation, as well as the cytosolic enzymes involved in high energy phosphate transfer, glycogenolysis, glycolysis, lactate oxidation, and glucose phosphorylation were not different (P > 0.05). The glucose transporters GLUT1 and GLUT4, and the monocarboxylate transporters MCT1 and MCT4, were also normal in WRM. It is concluded that, in general, abnormalities in the resting energy and substrate state, the potential of the different metabolic pathways and segments, as well as the glucose and monocarboxylate transporters do not appear to be involved in the cellular pathophysiology of WRM.

  6. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  7. Variants of Insulin-Signaling Inhibitor Genes in Type 2 Diabetes and Related Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Carlo de Lorenzo

    2013-01-01

    Full Text Available Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.

  8. Late Antiretroviral Therapy (ART) Initiation Is Associated with Long-Term Persistence of Systemic Inflammation and Metabolic Abnormalities

    Science.gov (United States)

    Ghislain, Mathilde; Bastard, Jean-Philippe; Meyer, Laurence; Capeau, Jacqueline; Fellahi, Soraya; Gérard, Laurence; May, Thierry; Simon, Anne; Vigouroux, Corinne; Goujard, Cécile

    2015-01-01

    Objectives HIV-induced immunodeficiency is associated with metabolic abnormalities and systemic inflammation. We investigated the effect of antiretroviral therapy (ART) on restoration of insulin sensitivity, markers of immune activation and inflammation. Methods Immunological, metabolic and inflammatory status was assessed at antiretroviral therapy initiation and three years later in 208 patients from the ANRS-COPANA cohort. Patients were compared according to their pre-ART CD4+ cell count (group 1: ≤ 200/mm3, n = 66 vs. group 2: > 200/mm3, n = 142). Results Median CD4+ cell count increased in both groups after 3 years of successful ART but remained significantly lower in group 1 than in group 2 (404 vs 572 cells/mm3). Triglyceride and insulin levels were higher or tended to be higher in group 1 than in group 2 at ART initiation (median: 1.32 vs 0.97 mmol/l, p = 0.04 and 7.6 vs 6.8 IU, p = 0.09, respectively) and remained higher after three years of ART (1.42 vs 1.16 mmol/L, p = 0.0009 and 8.9 vs 7.2 IU, p = 0.01). After adjustment for individual characteristics and antiretroviral therapy regimens (protease inhibitor (PI), zidovudine), insulin levels remained significantly higher in patients with low baseline CD4+ cell count. Baseline IL-6, sCD14 and sTNFR2 levels were higher in group 1 than in group 2. Most biomarkers of immune activation/inflammation declined during ART, but IL-6 and hsCRP levels remained higher in patients with low baseline CD4+ cell count than in the other patients (median are respectively 1.4 vs 1.1 pg/ml, p = 0.03 and 2.1 vs 1.3 mg/ml, p = 0.07). Conclusion After three years of successful ART, low pretreatment CD4+ T cell count remained associated with elevated insulin, triglyceride, IL-6 and hsCRP levels. These persistent metabolic and inflammatory abnormalities could contribute to an increased risk of cardiovascular and metabolic disease. PMID:26636578

  9. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho......-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain...

  10. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease.

    Science.gov (United States)

    van der Veen, Jelske N; Kennelly, John P; Wan, Sereana; Vance, Jean E; Vance, Dennis E; Jacobs, René L

    2017-09-01

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in all mammalian cell membranes. In the 1950s, Eugene Kennedy and co-workers performed groundbreaking research that established the general outline of many of the pathways of phospholipid biosynthesis. In recent years, the importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been demonstrated in numerous dietary studies and knockout animal models. The purpose of this review is to highlight the unappreciated impact of phospholipid metabolism on health and disease. Abnormally high, and abnormally low, cellular PC/PE molar ratios in various tissues can influence energy metabolism and have been linked to disease progression. For example, inhibition of hepatic PC synthesis impairs very low density lipoprotein secretion and changes in hepatic phospholipid composition have been linked to fatty liver disease and impaired liver regeneration after surgery. The relative abundance of PC and PE regulates the size and dynamics of lipid droplets. In mitochondria, changes in the PC/PE molar ratio affect energy production. We highlight data showing that changes in the PC and/or PE content of various tissues are implicated in metabolic disorders such as atherosclerosis, insulin resistance and obesity. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Prevalence of type 2 diabetes mellitus and other abnormalities of carbohydrate metabolism depending on diagnostic criteria

    Directory of Open Access Journals (Sweden)

    Alexander Vasil'evich Dreval'

    2010-03-01

    Full Text Available Aim. To assess current criteria for type 2 diabetes mellitus. Materials and methods. This screening study involving 2,368 residents of two municipal districts of the Moscow region was designed to elucidate differencesin the prevalence of abnormalities of carbohydrate metabolism depending on diagnostic criteria (WHO and ADA. Results. The prevalence of early disorders of carbohydrate metabolism and DM2 among the adult population of Moscow region is 17,1 and 7,2 respectivelyusing WHO criteria and 40,0 and 5,9% by ADA criteria. Conclusion. Refusal to undergo OGTT during screening decreases detectability of early metabolic disorders by 28,8 and 6,1% using WHO and ADAcriteria respectively. When screening is aimed to diagnose DM2 alone, OGTT can be omitted in subjects with fasting plasma glucose level below4,7 mmol/l. If it is aimed to diagnose both DM2 and impaired glucose tolerance, OGTT is not needed in subjects with fasting plasma glucose levelbelow 4,2 mmol/l. The use of ?combined? diagnostic criteria (i.e. OGTT according to ADA, but not WHO significantly increases the prevalence ofmetabolic disorders from 24,9 to 48,8%.

  12. Investigation on Abnormal Iron Metabolism and Related Inflammation in Parkinson Disease Patients with Probable RBD

    Science.gov (United States)

    Hu, Yang; Yu, Shu-Yang; Zuo, Li-Jun; Piao, Ying-Shan; Cao, Chen-Jie; Wang, Fang; Chen, Ze-Jie; Du, Yang; Lian, Teng-Hong; Liu, Gai-Fen; Wang, Ya-Jie; Chan, Piu; Chen, Sheng-Di; Wang, Xiao-Min; Zhang, Wei

    2015-01-01

    Objective To investigate potential mechanisms involving abnormal iron metabolism and related inflammation in Parkinson disease (PD) patients with probable rapid eye movement sleep behavior disorder (PRBD). Methods Total 210 PD patients and 31 controls were consecutively recruited. PD patients were evaluated by RBD Screening Questionnaire (RBDSQ) and classified into PRBD and probable no RBD (NPRBD) groups. Demographics information were recorded and clinical symptoms were evaluated by series of rating scales. Levels of iron and related proteins and inflammatory factors in cerebrospinal fluid (CSF) and serum were detected. Comparisons among control, NPRBD and PRBD groups and correlation analyses between RBDSQ score and levels of above factors were performed. Results (1)The frequency of PRBD in PD patients is 31.90%. (2)PRBD group has longer disease duration, more advanced disease stage, severer motor symptoms and more non-motor symptoms than NPRBD group. (3)In CSF, levels of iron, transferrin, NO and IL–1β in PRBD group are prominently increased. RBDSQ score is positively correlated with the levels of iron, transferrin, NO and IL–1β in PD group. Iron level is positively correlated with the levels of NO and IL–1β in PD group. (4)In serum, transferrin level is prominently decreased in PRBD group. PGE2 level in PRBD group is drastically enhanced. RBDSQ score exhibits a positive correlation with PGE2 level in PD group. Conclusions PRBD is common in PD patients. PRBD group has severer motor symptoms and more non-motor symptoms. Excessive iron in brain resulted from abnormal iron metabolism in central and peripheral systems is correlated with PRBD through neuroinflammation. PMID:26431210

  13. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.

    Science.gov (United States)

    Zwingmann, Claudia; Leibfritz, Dieter; Hazell, Alan S

    2003-06-01

    A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.

  14. Abnormal myocardial free fatty acid utilization deteriorates with morphological changes in the hypertensive heart

    International Nuclear Information System (INIS)

    Nakayama, Hiroyuki; Morozumi, Takakazu; Nanto, Shinsuke

    2001-01-01

    The left ventricle's morphological adaptation to high blood pressure is classified into 4 patterns based on mass and wall thickness. The geometric changes caused by maladaptation to pressure overload possibly relate to progression of contractile dysfunction with abnormal energy metabolism. The present study assessed whether the geometric adaptation of the left ventricle (LV) to high blood pressure relates to changes in myocardial energy metabolism, especially free fatty acid (FFA) utilization. Thirty-five patients with essential hypertension underwent echocardiography and dual isotopes myocardial scintigraphy using iodine-123 labeled 15-p-iodophenyl-3-(R,S)-methylpentadecanoic acid (BMIPP, an analogue of a FFA) and thallium-201 (Tl-201). Systolic (endocardial fractional shortening; %FS) and diastolic indices (the ratio of early to atrial filling waves; E/A) of LV function were also assessed. Quantitative myocardial BMIPP uptake was evaluated by the BMIPP/Tl-201 myocardial uptake ratio (B/T). The subjects were divided into 4 groups based on LV mass and wall thickness: concentric hypertrophy (CH), eccentric hypertrophy (EH), concentric remodeling (CR), and normal geometry (N). The %FS was lower in the EH group than in the other groups. The mitral E/A ratio in the CH group was lowest. B/T was significantly decreased in the EH group compared with the N group (p<0.05). B/T correlated with the mitral E/A ratio significantly (p<0.05, r=0.42), whereas there was no relationship between %FS and B/T. These results indicate that the geometric changes occurring in hypertensive hearts strongly correlate with alternations in cardiac function and with abnormal myocardial FFA metabolism, and that the latter is associated with diastolic abnormality, but not with systolic function. (author)

  15. Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus).

    Science.gov (United States)

    Zhang, Jiliang; Sun, Ping; Yang, Fan; Kong, Tao; Zhang, Ruichen

    2016-06-01

    Tributyltin (TBT) can induce obesogen response. However, little is known about the adverse effects of TBT on food intake and energy metabolism. The present study was designed to investigate the effects of TBT, at environmental concentrations of 2.44 and 24.4 ng/L (1 and 10 ng/L as Sn), on feeding and energy metabolism in goldfish (Carassius auratus). After exposure for 54 d, TBT increased the weight gain and food intake in fish. The patterns of brain neuropeptide genes expression were in line with potential orexigenic effects, with increased expression of neuropeptide Y and apelin, and decreased expression of pro-opiomelanocortin, ghrelin, cocaine and amphetamine-regulated transcript, and corticotropin-releasing factor. Interestingly, the energy metabolism indicators (oxygen consumption, ammonia exertion and swimming activity) and the serum thyroid hormones were all significantly increased at the 2.44 ng/L TBT group in fish. However, no changes of energy metabolism indicators or a decrease of thyroid hormones was found at the 24.4 ng/L TBT group, which indicated a complex disrupting effect on metabolism of TBT. In short, TBT can alter feeding and energy metabolism in fish, which might promote the obesogenic responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Energy metabolism and nutritional status in hospitalized patients with lung cancer.

    Science.gov (United States)

    Takemura, Yumi; Sasaki, Masaya; Goto, Kenichi; Takaoka, Azusa; Ohi, Akiko; Kurihara, Mika; Nakanishi, Naoko; Nakano, Yasutaka; Hanaoka, Jun

    2016-09-01

    This study aimed to investigate the energy metabolism of patients with lung cancer and the relationship between energy metabolism and proinflammatory cytokines. Twenty-eight patients with lung cancer and 18 healthy controls were enrolled in this study. The nutritional status upon admission was analyzed using nutritional screening tools and laboratory tests. The resting energy expenditure and respiratory quotient were measured using indirect calorimetry, and the predicted resting energy expenditure was calculated using the Harris-Benedict equation. Energy expenditure was increased in patients with advanced stage disease, and there were positive correlations between measured resting energy expenditure/body weight and interleukin-6 levels and between measured resting energy expenditure/predicted resting energy expenditure and interleukin-6 levels. There were significant relationships between body mass index and plasma leptin or acylated ghrelin levels. However, the level of appetite controlling hormones did not affect dietary intake. There was a negative correlation between plasma interleukin-6 levels and dietary intake, suggesting that interleukin-6 plays a role in reducing dietary intake. These results indicate that energy expenditure changes significantly with lung cancer stage and that plasma interleukin-6 levels affect energy metabolism and dietary intake. Thus, nutritional management that considers the changes in energy metabolism is important in patients with lung cancer.

  17. Evaluation of glucose metabolic abnormality in postlingually deaf patients using F-18-FDG positron emission tomography and statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Oh, Seung Ha; Kim, Chong Sun; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2000-07-01

    We have previously reported the prognostic relevance of cross-modal cortical plasticity in prelingual deaf patients revealed by F-18-FDG PET and SPM analysis. In this study, we investigated metabolic abnormality in postlingual deaf patients, whose clinical features are different from prelingual deafness. Nine postlingual deaf patients (age: 30.5 {+-}14.0) were performed on F-18-FDG brain PET. We compared their PET images with those of age-matched 20 normal controls (age: 27.1 {+-}8.6), and performed correlation analysis to investigate the relationship between glucose metabolism and deaf duration using SPM99. Glucose metabolism of deaf patients was significantly (p<0.05, corrected) decreased in both anterior cingulate, inferior frontal cortices, and superior temporal cortices, and left hippocampus. Metabolism in both superior temporal cortices and association area in inferior parietal cortices showed significant (p<0.01, uncorrected) positive correlation with deaf duration. Decreased metabolism in hippocampus accompanied with hypometabolism in auditory related areas can be explained by recent finding of anatomical connectivity between them, and may be the evidence indicating their functional connectivity. Metabolism recovery in auditory cortex after long deaf duration suggests that cortical plasticity takes place also in postlingual deafness.

  18. Evaluation of glucose metabolic abnormality in postlingually deaf patients using F-18-FDG positron emission tomography and statistical parametric mapping

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Oh, Seung Ha; Kim, Chong Sun; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul

    2000-01-01

    We have previously reported the prognostic relevance of cross-modal cortical plasticity in prelingual deaf patients revealed by F-18-FDG PET and SPM analysis. In this study, we investigated metabolic abnormality in postlingual deaf patients, whose clinical features are different from prelingual deafness. Nine postlingual deaf patients (age: 30.5 ±14.0) were performed on F-18-FDG brain PET. We compared their PET images with those of age-matched 20 normal controls (age: 27.1 ±8.6), and performed correlation analysis to investigate the relationship between glucose metabolism and deaf duration using SPM99. Glucose metabolism of deaf patients was significantly (p<0.05, corrected) decreased in both anterior cingulate, inferior frontal cortices, and superior temporal cortices, and left hippocampus. Metabolism in both superior temporal cortices and association area in inferior parietal cortices showed significant (p<0.01, uncorrected) positive correlation with deaf duration. Decreased metabolism in hippocampus accompanied with hypometabolism in auditory related areas can be explained by recent finding of anatomical connectivity between them, and may be the evidence indicating their functional connectivity. Metabolism recovery in auditory cortex after long deaf duration suggests that cortical plasticity takes place also in postlingual deafness

  19. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    OpenAIRE

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Author Summary Muscles consume metabolic energy to generate movement. Performing a movement over a long period of time or at a high intensity strains the respiratory and cardiovascular systems that need to replenish the energy reserves in muscle. Furthermore, consuming and replenishing metabolic energy involves biochemical reactions with byproducts that cause muscle fatigue. These biochemical reactions also produce heat that increases body temperature, potentially causing central fatigue. A m...

  20. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    Science.gov (United States)

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  1. Environmental effects on energy metabolism and 86Rb elimination rates of fishes

    International Nuclear Information System (INIS)

    Peters, E.L.

    1994-01-01

    Relationships between energy metabolism and the turnover rates of number of important chemical and radiological elements (particularly the Group IA alkali metals: K, Rb, and Cs) have been observed in fishes. Using response surface statistics and fractional factorial ANOVA, the author examined the relative influences of temperature, salinity, food intake rate, mass, and their first order interactions on routine energy metabolism and 86 Rb elimination rates. Routine metabolic rates were increased primarily by increased temperature and salinity, with a strong body mass effect and a significant effect of food intake. 86 Rb elimination rates were increased primarily by increased temperature and salinity. There were no interactive effects between mass and either temperature or salinity for either routine energy metabolism or 86 Rb elimination rates. There was a significant interaction effect between temperature and salinity on routine energy metabolism rates, but not on 86 Rb elimination. The authors also observed a relationship between routine energy metabolism and 86 Rb elimination rates that may possibly be exploited as a means of estimating energy metabolic rates of fishes in the field. The statistical techniques used in this experiment have broad potential applications in assessing the contributions of combinations of environmental variables on contaminant kinetics, as well as in multiple toxicity testing, in that they greatly simplify experimental designs compared with traditional full-factorial methods

  2. RAS signalling in energy metabolism and rare human diseases.

    Science.gov (United States)

    Dard, L; Bellance, N; Lacombe, D; Rossignol, R

    2018-05-08

    The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Islet transplantation in diabetic rats normalizes basal and exercise-induced energy metabolism

    NARCIS (Netherlands)

    Houwing, Harmina; Benthem, L.; Suylichem, P.T.R. van; Leest, J. van der; Strubbe, J.H.; Steffens, A.B.

    Transplantation of islets of Langerhans in diabetic rats normalizes resting glucose and insulin levels, but it remains unclear whether islet transplantation restores resting and exercise-induced energy metabolism. Therefore, we compared energy metabolism in islet transplanted rats with energy

  4. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  5. Abnormally large energy spread of electron beams extracted from plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1976-07-01

    Intense electron beams extracted from DUOPLASMATRON-plasma cathodes show a high degree of modulation in intensity and an abnormally large energy spread; these facts cannot be explained simply by the temperature of the plasma electrons and the discharge structure. However, an analysis of the discharge stability behaviour and the interaction of source- and extracted beam-plasma leads to an explanation for the observed effects.

  6. Abnormal myocardial free fatty acid utilization deteriorates with morphological changes in the hypertensive heart

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hiroyuki; Morozumi, Takakazu; Nanto, Shinsuke [Kansai Rosai Hospital, Amagasaki, Hyogo (Japan)] (and others)

    2001-09-01

    The left ventricle's morphological adaptation to high blood pressure is classified into 4 patterns based on mass and wall thickness. The geometric changes caused by maladaptation to pressure overload possibly relate to progression of contractile dysfunction with abnormal energy metabolism. The present study assessed whether the geometric adaptation of the left ventricle (LV) to high blood pressure relates to changes in myocardial energy metabolism, especially free fatty acid (FFA) utilization. Thirty-five patients with essential hypertension underwent echocardiography and dual isotopes myocardial scintigraphy using iodine-123 labeled 15-p-iodophenyl-3-(R,S)-methylpentadecanoic acid (BMIPP, an analogue of a FFA) and thallium-201 (Tl-201). Systolic (endocardial fractional shortening; %FS) and diastolic indices (the ratio of early to atrial filling waves; E/A) of LV function were also assessed. Quantitative myocardial BMIPP uptake was evaluated by the BMIPP/Tl-201 myocardial uptake ratio (B/T). The subjects were divided into 4 groups based on LV mass and wall thickness: concentric hypertrophy (CH), eccentric hypertrophy (EH), concentric remodeling (CR), and normal geometry (N). The %FS was lower in the EH group than in the other groups. The mitral E/A ratio in the CH group was lowest. B/T was significantly decreased in the EH group compared with the N group (p<0.05). B/T correlated with the mitral E/A ratio significantly (p<0.05, r=0.42), whereas there was no relationship between %FS and B/T. These results indicate that the geometric changes occurring in hypertensive hearts strongly correlate with alternations in cardiac function and with abnormal myocardial FFA metabolism, and that the latter is associated with diastolic abnormality, but not with systolic function. (author)

  7. Fatty acids in energy metabolism of the central nervous system.

    Science.gov (United States)

    Panov, Alexander; Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

  8. A Giant Ureteral Stone without Underlying Anatomic or Metabolic Abnormalities: A Case Report

    Directory of Open Access Journals (Sweden)

    Selcuk Sarikaya

    2013-01-01

    Full Text Available A 28-year old man presented with left flank pain and dysuria. Plain abdominal film and computed tomography showed a left giant ureteral stone measuring 11.5 cm causing ureteral obstruction and other stones 2.5 cm in size in the lower pole of ipsilateral kidney and 7 mm in size in distal part of right ureter. A left ureterolithotomy was performed and then a double J stent was inserted into the ureter. The patient was discharged from the hospital 4 days postoperatively with no complications. Stone analysis was consistent with magnesium ammonium phosphate and calcium oxalate. Underlying anatomic or metabolic abnormalities were not detected. One month after surgery, right ureteral stone passed spontaneously, left renal stone moved to distal ureter, and it was removed by ureterolithotomy. Control intravenous urography and cystography demonstrated unobstructed bilateral ureter and the absence of vesicoureteral reflux.

  9. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    OpenAIRE

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pha...

  10. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age. The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched, Day 10-Day 20 (pre-weaning-enriched, and Day 25-Day 60 (adolescence/adulthood-enriched. Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty

  11. Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C-ι

    Science.gov (United States)

    Sajan, Mini P.; Nimal, Sonali; Mastorides, Stephen; Acevedo-Duncan, Mildred; Kahn, C. Ronald; Fields, Alan P.; Braun, Ursula; Leitges, Michael; Farese, Robert V.

    2013-01-01

    Excessive activity of hepatic atypical protein kinase (aPKC) is proposed to play a critical role in mediating lipid and carbohydrate abnormalities in obesity, the metabolic syndrome, and type 2 diabetes mellitus. In previous studies of rodent models of obesity and type 2 diabetes mellitus, adenoviral-mediated expression of kinase-inactive aPKC rapidly reversed or markedly improved most if not all metabolic abnormalities. Here, we examined effects of 2 newly developed small-molecule PKC-ι/λ inhibitors. We used the mouse model of heterozygous muscle-specific knockout of PKC-λ, in which partial deficiency of muscle PKC-λ impairs glucose transport in muscle and thereby causes glucose intolerance and hyperinsulinemia, which, via hepatic aPKC activation, leads to abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. One inhibitor, 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)], binds to the substrate-binding site of PKC-λ/ι, but not other PKCs. The other inhibitor, aurothiomalate, binds to cysteine residues in the PBl-binding domains of aPKC-λ/ι/ζ and inhibits scaffolding. Treatment with either inhibitor for 7 days inhibited aPKC, but not Akt, in liver and concomitantly improved insulin signaling to Akt and aPKC in muscle and adipocytes. Moreover, both inhibitors diminished excessive expression of hepatic, aPKC-dependent lipogenic, proinflammatory, and gluconeogenic factors; and this was accompanied by reversal or marked improvements in hyperglycemia, hyperinsulinemia, abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. Our findings highlight the pathogenetic importance of insulin signaling to hepatic PKC-ι in obesity, the metabolic syndrome, and type 2 diabetes mellitus and suggest that 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)] and aurothiomalate or similar agents that

  12. Thermodynamics of the living organisms. Allometric relationship between the total metabolic energy, chemical energy and body temperature in mammals

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    The study present relationship between the total metabolic energy (ETME(c), J) derived as a function of body chemical energy (Gchem, J) and absolute temperature (Tb, K) in mammals: ETME(c) =Gchem (Tb/Tn). In formula the temperature Tn =2.73K appears normalization temperature. The calculated total metabolic energy ETME(c) differs negligible from the total metabolic energy ETME(J), received as a product between the basal metabolic rate (Pm, J/s) and the lifespan (Tls, s) of mammals: ETME = Pm×Tls. The physical nature and biological mean of the normalization temperature (Tn, K) is unclear. It is made the hypothesis that the kTn energy (where k= 1.3806×10-23 J/K -Boltzmann constant) presents energy of excitation states (modes) in biomolecules and body structures that could be in equilibrium with chemical energy accumulated in body. This means that the accumulated chemical energy allows trough all body molecules and structures to propagate excitations states with kTn energy with wavelength in the rage of width of biological membranes. The accumulated in biomolecules chemical energy maintains spread of the excited states through biomolecules without loss of energy.

  13. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    Science.gov (United States)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  14. Brain Ceramide Metabolism in the Control of Energy Balance

    Directory of Open Access Journals (Sweden)

    Céline Cruciani-Guglielmacci

    2017-10-01

    Full Text Available The regulation of energy balance by the central nervous system (CNS is a key actor of energy homeostasis in mammals, and deregulations of the fine mechanisms of nutrient sensing in the brain could lead to several metabolic diseases such as obesity and type 2 diabetes (T2D. Indeed, while neuronal activity primarily relies on glucose (lactate, pyruvate, the brain expresses at high level enzymes responsible for the transport, utilization and storage of lipids. It has been demonstrated that discrete neuronal networks in the hypothalamus have the ability to detect variation of circulating long chain fatty acids (FA to regulate food intake and peripheral glucose metabolism. During a chronic lipid excess situation, this physiological lipid sensing is impaired contributing to type 2 diabetes in predisposed subjects. Recently, different studies suggested that ceramides levels could be involved in the regulation of energy balance in both hypothalamic and extra-hypothalamic areas. Moreover, under lipotoxic conditions, these ceramides could play a role in the dysregulation of glucose homeostasis. In this review we aimed at describing the potential role of ceramides metabolism in the brain in the physiological and pathophysiological control of energy balance.

  15. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Type 2 diabetes and pre-diabetic abnormalities in patients with bipolar disorders

    DEFF Research Database (Denmark)

    Leopold, Karolina; Reif, Andreas; Haack, Sarah

    2016-01-01

    BACKGROUND: Abnormalities in the glucose metabolism cause nervous and organic damage and are a cardiovascular risk factor. They could be a main cause for the increased morbidity and mortality rates found in patients with bipolar disorders. The exact prevalence of diabetes and pre-diabetic...... quality were assessed. RESULTS: Diabetes mellitus was found in 7% of the patients, pre-diabetic abnormalities in 27%. The group of patients with abnormalities in the glucose metabolism had significantly lower quality of life and global functioning. Higher BMI, leptin, triglycerides and CRP levels...

  17. Metabolic Abnormalities Detected in Phase II Evaluation of Doxycycline in Dogs with Multicentric B-Cell Lymphoma.

    Science.gov (United States)

    Hume, Kelly R; Sylvester, Skylar R; Borlle, Lucia; Balkman, Cheryl E; McCleary-Wheeler, Angela L; Pulvino, Mary; Casulo, Carla; Zhao, Jiyong

    2018-01-01

    Doxycycline has antiproliferative effects in human lymphoma cells and in murine xenografts. We hypothesized that doxycycline would decrease canine lymphoma cell viability and prospectively evaluated its clinical tolerability in client-owned dogs with spontaneous, nodal, multicentric, substage a, B-cell lymphoma, not previously treated with chemotherapy. Treatment duration ranged from 1 to 8 weeks (median and mean, 3 weeks). Dogs were treated with either 10 ( n  = 6) or 7.5 ( n  = 7) mg/kg by mouth twice daily. One dog had a stable disease for 6 weeks. No complete or partial tumor responses were observed. Five dogs developed grade 3 and/or 4 metabolic abnormalities suggestive of hepatopathy with elevations in bilirubin, ALT, ALP, and/or AST. To evaluate the absorption of oral doxycycline in our study population, serum concentrations in 10 treated dogs were determined using liquid chromatography tandem mass spectrometry. Serum levels were variable and ranged from 3.6 to 16.6 µg/ml (median, 7.6 µg/ml; mean, 8.8 µg/ml). To evaluate the effect of doxycycline on canine lymphoma cell viability in vitro , trypan blue exclusion assay was performed on canine B-cell lymphoma cell lines (17-71 and CLBL) and primary B-cell lymphoma cells from the nodal tissue of four dogs. A doxycycline concentration of 6 µg/ml decreased canine lymphoma cell viability by 80%, compared to matched, untreated, control cells (mixed model analysis, p  canine lymphoma, combination therapy may be worthwhile if future research determines that doxycycline can alter cell survival pathways in canine lymphoma cells. Due to the potential for metabolic abnormalities, close monitoring is recommended with the use of this drug in tumor-bearing dogs. Additional research is needed to assess the tolerability of chronic doxycycline therapy.

  18. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Science.gov (United States)

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  19. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Elena Lima-Cabello

    2016-01-01

    Full Text Available Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome.

  20. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    Science.gov (United States)

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-03-11

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.

  1. NMR (1H and 13C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    International Nuclear Information System (INIS)

    Bag, Swarnendu; Banerjee, Deb Ranjan; Basak, Amit; Das, Amit Kumar; Pal, Mousumi; Banerjee, Rita; Paul, Ranjan Rashmi; Chatterjee, Jyotirmoy

    2015-01-01

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using 1 H and 13 C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ( 1 H and 13 C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate

  2. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    Science.gov (United States)

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Hanumantra, Rao Balaji Raghavendran; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-05-01

    The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.

  4. Effect of hemoglobin and immunization status on energy metabolism of weanling pigs.

    Science.gov (United States)

    Gentry, J L; Swinkels, J W; Lindemann, M D; Schrama, J W

    1997-04-01

    We investigated the effect of (Hb) and immunization status on energy metabolism of newly weaned pigs. An additional focus of the study was to determine the development of circadian rhythms as evidenced by heat production patterns. Twenty-four 4-wk-old crossbred weanling barrows were placed into groups of three based on weight and litter origin, and the groups were allotted to one of four treatments. Treatments were arranged as a 2 x 2 factorial. The factors included 1) Hb status (low vs high) and 2) immunization status (antigen vs placebo). Hemoglobin status was obtained by injecting 3-d-old barrows with 100 (low) or 200 mg (high) of Fe. At 4 wk, initial blood Hb concentrations were 6.0 mM for the low group and 7.8 mM for the high group. Energy metabolism was measured using two weekly total energy and nitrogen balance collections. Energy intake and retention were higher (P Energy metabolism was not affected (P > .10) by immunization status, and heat production was not affected (P > .10) by either Hb or immunization status. Total heat production (HTOT) increased (P light period compared with the dark period over the total experimental period but a decrease (P dark period was approximately half of that measured during the light period. In conclusion, Hb status affected energy metabolism; pigs having a high Hb status had a higher energy retention. Immunization status had minimal effects on energy metabolism and heat production. Additionally, the diurnal circadian rhythm seen in older pigs had not been established by 2 wk after weaning.

  5. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  6. Unknown and abnormal accumulation in the chest in bone scintigraphy

    International Nuclear Information System (INIS)

    Maruyama, Toshiaki; Takeuchi, Masashi; Tokunaga, Koji; Maeda, Yoichi; Hasegawa, Kazuhiko.

    1979-01-01

    In scintigraphies of forty patients with hemiplegia following appoplexia, focal abnormal accumulations in the chest region were seen in bone scintigraphies of four patients. These hot accumulations could be neither rib fracture, rib metastases, nor abnormal calcium accumulation. A mechanism of these accumulation remains to undicided. We believe that this phenomena is related to abnormal bone metabolism in hemiplegial condition. (author)

  7. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  8. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma.

    Science.gov (United States)

    Tech, Katherine; Deshmukh, Mohanish; Gershon, Timothy R

    2015-01-28

    Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including Hexokinase 2 (Hk2) and Pyruvate kinase M2 (PkM2) configure energy metabolism to support growth. In these non-malignant cells, expression of Hk2 and PkM2 is driven by transcriptional regulators that are typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive Hk2 and PkM2 in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the "metabolic transformation" that is a hallmark of cancer is not specifically limited to cancer. Rather, metabolic transformation represents a co-opting of developmental programs integral to physiologic growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic transformation may nevertheless present ideal targets for novel anti-tumor therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Toxic metabolic syndrome associated with HAART

    DEFF Research Database (Denmark)

    Haugaard, Steen B

    2006-01-01

    (HAART) may encounter the HIV-associated lipodystrophy syndrome (HALS), which attenuates patient compliance to this treatment. HALS is characterised by impaired glucose and lipid metabolism and other risk factors for cardiovascular disease. This review depicts the metabolic abnormalities associated...... with HAART by describing the key cell and organ systems that are involved, emphasising the role of insulin resistance. An opinion on the remedies available to treat the metabolic abnormalities and phenotype of HALS is provided....

  10. [Modifications in myocardial energy metabolism in diabetic patients

    Science.gov (United States)

    Grynberg, A

    2001-11-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimétazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  11. Therapeutic Approaches Using Riboflavin in Mitochondrial Energy Metabolism Disorders.

    Science.gov (United States)

    Henriques, Bárbara J; Lucas, Tânia G; Gomes, Cláudio M

    2016-01-01

    Riboflavin, or vitamin B2, plays an important role in the cell as biological precursor of FAD and FMN, two important flavin cofactors which are essential for the structure and function of flavoproteins. Riboflavin has been used in therapeutic approaches of various inborn errors of metabolism, notably in metabolic disorders resulting either from defects in proteins involved in riboflavin metabolism and transport or from defects in flavoenzymes. The scope of this review is to provide an updated perspective of clinical cases in which riboflavin was used as a potential therapeutic agent in disorders affecting mitochondrial energy metabolism. In particular, we discuss available mechanistic insights on the role of riboflavin as a pharmacological chaperone for the recovery of misfolded metabolic flavoenzymes.

  12. Studies on growth, nitrogen and energy metabolism in rats

    DEFF Research Database (Denmark)

    Thorbek, G; Chwalibog, André; Eggum, B O

    1982-01-01

    Feed intake, growth, nitrogen retention and energy metabolism were measured in 12 male Wistar rats fed ad lib. for 14 weeks with non-purified diets. The feed intake increased rapidly in 4 weeks time from 16 g/d to 25 g/d, and then it was constant in the following 10 weeks. In relation to metabolic...

  13. The "selfish brain" hypothesis for metabolic abnormalities in bipolar disorder and schizophrenia A hipótese do "cérebro egoísta" para alterações metabólicas no transtorno bipolar e na esquizofrenia

    Directory of Open Access Journals (Sweden)

    Rodrigo Barbachan Mansur

    2012-09-01

    Full Text Available Metabolic abnormalities are frequent in patients with schizophrenia and bipolar disorder (BD, leading to a high prevalence of diabetes and metabolic syndrome in this population. Moreover, mortality rates among patients are higher than in the general population, especially due to cardiovascular diseases. Several neurobiological systems involved in energy metabolism have been shown to be altered in both illnesses; however, the cause of metabolic abnormalities and how they relate to schizophrenia and BD pathophysiology are still largely unknown. The "selfish brain" theory is a recent paradigm postulating that, in order to maintain its own energy supply stable, the brain modulates energy metabolism in the periphery by regulation of both allocation and intake of nutrients. We hypothesize that the metabolic alterations observed in these disorders are a result of an inefficient regulation of the brain energy supply and its compensatory mechanisms. The selfish brain theory can also expand our understanding of stress adaptation and neuroprogression in schizophrenia and BD, and, overall, can have important clinical implications for both illnesses.Alterações metabólicas são frequentes em pacientes com esquizofrenia e transtorno bipolar (TB, levando a uma alta prevalência de diabetes e síndrome metabólica nessa população. Além disso, as taxas de mortalidade entre pacientes são mais altas do que na população geral, especialmente em decorrência de doenças cardiovasculares. Vários sistemas neurobiológicos envolvidos no metabolismo energético têm demonstrado alterações nas duas doenças; no entanto, a causa das alterações metabólicas e a forma como elas se relacionam com a fisiopatologia da esquizofrenia e do TB ainda são arenas em grande parte desconhecidas. A teoria do "cérebro egoísta" é um paradigma recente que postula que, para manter estável seu próprio fornecimento de energia, o cérebro modula o metabolismo da energia na

  14. Sex differences of human cortical blood flow and energy metabolism.

    Science.gov (United States)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  15. Cellular energy metabolism maintains young status in old queen honey bees (Apis mellifera).

    Science.gov (United States)

    Lu, Cheng-Yen; Qiu, Jiantai Timothy; Hsu, Chin-Yuan

    2018-05-02

    Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β-oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees. © 2018 Wiley Periodicals, Inc.

  16. Circulating follistatin in relation to energy metabolism

    DEFF Research Database (Denmark)

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-01-01

    a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated...

  17. Bedside Evaluation of Cerebral Energy Metabolism in Severe Community-Acquired Bacterial Meningitis

    DEFF Research Database (Denmark)

    Rom Poulsen, Frantz; Schulz, Mette; Jacobsen, Anne

    2015-01-01

    BACKGROUND: Mortality and morbidity have remained high in bacterial meningitis. Impairment of cerebral energy metabolism probably contributes to unfavorable outcome. Intracerebral microdialysis is routinely used to monitor cerebral energy metabolism, and recent experimental studies indicate...... that this technique may separate ischemia and non-ischemic mitochondrial dysfunction. The present study is a retrospective interpretation of biochemical data obtained in a series of patients with severe community-acquired meningitis. METHODS: Cerebral energy metabolism was monitored in 15 patients with severe...... community-acquired meningitis utilizing intracerebral microdialysis and bedside biochemical analysis. According to previous studies, cerebral ischemia was defined as lactate/pyruvate (LP) ratio >30 with intracerebral pyruvate level

  18. Metabolic sensing neurons and the control of energy homeostasis.

    Science.gov (United States)

    Levin, Barry E

    2006-11-30

    The brain and periphery carry on a constant conversation; the periphery informs the brain about its metabolic needs and the brain provides for these needs through its control of somatomotor, autonomic and neurohumoral pathways involved in energy intake, expenditure and storage. Metabolic sensing neurons are the integrators of a variety of metabolic, humoral and neural inputs from the periphery. Such neurons, originally called "glucosensing", also respond to fatty acids, hormones and metabolites from the periphery. They are integrated within neural pathways involved in the regulation of energy homeostasis. Unlike most neurons, they utilize glucose and other metabolites as signaling molecules to regulate their membrane potential and firing rate. For glucosensing neurons, glucokinase acts as the rate-limiting step in glucosensing while the pathways that mediate responses to metabolites like lactate, ketone bodies and fatty acids are less well characterized. Many metabolic sensing neurons also respond to insulin and leptin and other peripheral hormones and receive neural inputs from peripheral organs. Each set of afferent signals arrives with different temporal profiles and by different routes and these inputs are summated at the level of the membrane potential to produce a given neural firing pattern. In some obese individuals, the relative sensitivity of metabolic sensing neurons to various peripheral inputs is genetically reduced. This may provide one mechanism underlying their propensity to become obese when exposed to diets high in fat and caloric density. Thus, metabolic sensing neurons may provide a potential therapeutic target for the treatment of obesity.

  19. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities.

    Science.gov (United States)

    Quintana, Anita M; Yu, Hung-Chun; Brebner, Alison; Pupavac, Mihaela; Geiger, Elizabeth A; Watson, Abigail; Castro, Victoria L; Cheung, Warren; Chen, Shu-Huang; Watkins, David; Pastinen, Tomi; Skovby, Flemming; Appel, Bruce; Rosenblatt, David S; Shaikh, Tamim H

    2017-08-01

    CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Meena K. Sakharkar

    2013-01-01

    Full Text Available PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.

  1. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  2. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    International Nuclear Information System (INIS)

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3 C/C ) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3 C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3 C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms

  3. Mitochondrial uncoupling proteins and energy metabolism

    Directory of Open Access Journals (Sweden)

    Rosa Anna Busiello

    2015-02-01

    Full Text Available Understanding the metabolic factors that contribute to energy metabolism (EM is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1, which was the first in this family to be discovered, the reactions catalyzed by its homologue UCP3 and the physiological role remain under debate.This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.

  4. Effects of photoperiod on energy metabolism and thermogenesis in ...

    African Journals Online (AJOL)

    The plasticity in energy intake, basal metabolic rate (BMR) and nonshivering thermogenesis (NST) was very important for the regulations in energy balance and thermogenesis in Melano-bellied oriental vole exposed to different photoperiod. Change in brown adipose tissue (BAT) cytochrome c oxidase (COX) activity and ...

  5. Performance and Energy Metabolism by Broiler Chickens Fed Maize ...

    African Journals Online (AJOL)

    Studies were conducted to evaluate the effect of replacing maize grain with different dietary levels of maize and millet offals on performance and energy metabolism in broiler chickens. Proximate composition and metabolizable energy (ME) values were determined. Feeding trial was also conducted to comparemaize and ...

  6. Abnormal islet sphingolipid metabolism in type 1 diabetes

    DEFF Research Database (Denmark)

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P

    2018-01-01

    AIMS/HYPOTHESIS: Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis....... Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we...... diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1...

  7. Basal Metabolic Rate and Energy Expenditure of Rural Farmers in ...

    African Journals Online (AJOL)

    Measurement of basal metabolic rate (BMR) provides an important baseline for the determination of an individual's total energy requirement. The study sought to establish human energy expenditure of rural farmers in Magubike village in Tanzania, through determination of BMR, physical activity level (PAL) and total energy ...

  8. Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids.

    Science.gov (United States)

    Gallagher, Austin J; Skubel, Rachel A; Pethybridge, Heidi R; Hammerschlag, Neil

    2017-01-01

    Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species ( n  = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations.

  9. LKB1 promotes metabolic flexibility in response to energy stress.

    Science.gov (United States)

    Parker, Seth J; Svensson, Robert U; Divakaruni, Ajit S; Lefebvre, Austin E; Murphy, Anne N; Shaw, Reuben J; Metallo, Christian M

    2017-09-01

    The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13 C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth. Copyright © 2016. Published by Elsevier Inc.

  10. Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake

    Science.gov (United States)

    Nabuurs, C I; Choe, C U; Veltien, A; Kan, H E; van Loon, L J C; Rodenburg, R J T; Matschke, J; Wieringa, B; Kemp, G J; Isbrandt, D; Heerschap, A

    2013-01-01

    Creatine (Cr) plays an important role in muscle energy homeostasis by its participation in the ATP–phosphocreatine phosphoryl exchange reaction mediated by creatine kinase. Given that the consequences of Cr depletion are incompletely understood, we assessed the morphological, metabolic and functional consequences of systemic depletion on skeletal muscle in a mouse model with deficiency of l-arginine:glycine amidinotransferase (AGAT−/−), which catalyses the first step of Cr biosynthesis. In vivo magnetic resonance spectroscopy showed a near-complete absence of Cr and phosphocreatine in resting hindlimb muscle of AGAT−/− mice. Compared with wild-type, the inorganic phosphate/β-ATP ratio was increased fourfold, while ATP levels were reduced by nearly half. Activities of proton-pumping respiratory chain enzymes were reduced, whereas F1F0-ATPase activity and overall mitochondrial content were increased. The Cr-deficient AGAT−/− mice had a reduced grip strength and suffered from severe muscle atrophy. Electron microscopy revealed increased amounts of intramyocellular lipid droplets and crystal formation within mitochondria of AGAT−/− muscle fibres. Ischaemia resulted in exacerbation of the decrease of pH and increased glycolytic ATP synthesis. Oral Cr administration led to rapid accumulation in skeletal muscle (faster than in brain) and reversed all the muscle abnormalities, revealing that the condition of the AGAT−/− mice can be switched between Cr deficient and normal simply by dietary manipulation. Systemic creatine depletion results in mitochondrial dysfunction and intracellular energy deficiency, as well as structural and physiological abnormalities. The consequences of AGAT deficiency are more pronounced than those of muscle-specific creatine kinase deficiency, which suggests a multifaceted involvement of creatine in muscle energy homeostasis in addition to its role in the phosphocreatine–creatine kinase system. PMID:23129796

  11. THE RELEVANCE OF METABOLIC PHENOTYPES OF OBESITY IN CHILDHOOD AND ADOLESCENCE

    Directory of Open Access Journals (Sweden)

    S. I. Malyavskaya

    2015-01-01

    Full Text Available Rationale: The study  on  specifics of metabolic phenotypes of obesity in children and adolescents seems be highly relevant for a comprehensive assessment  of causal and  pathophysiological  roles of obesity in the  atherogenesis. Aim: To identify particulars of metabolic  phenotypes of obesity in the  population of the  school children in the  city of Arkhangelsk. Materials and methods: We examined 102 patients aged from 10 to 15 years with obesity, abdominal type (boys, 44.6%, girls, 55.4%. According to the results of a comprehensive clinical and laboratory assessments, the patients  were divided  into  the  group  of metabolically  healthy obese   (children  and  adolescents  with  obesity, but without any metabolic abnormalities and the group of metabolically unhealthy obese (having at least 1 metabolic abnormality. The list of metabolic abnormalities  included  high triglyceride levels, low levels of high density lipoprotein  cholesterol (HDL-C, high blood pressure, impaired fasting glucose, increased  C-reactive protein  levels. Results: The  group  comparison   showed  that  the  mean levels  of  all studied   parameters  of  pro-atherogenic  metabolic  abnormalities  were significantly higher  in the  patients  with  metabolically  active obesity (the mean triglyceride levels in the groups of metabolically active and metabolically healthy obesity were 1.31 vs 0.74 mmol/L, glucose levels, 4.92  vs 4.54  mmol/L,  C-reactive protein,  3.15  vs 2.30 mg/mL, systolic and diastolic blood pressure, 118.97 vs 110.23 mmHg and 72.90 vs 68.58 mmHg, respectively; p < 0.001, with the  exclusion of the   mean level of anti-atherogenic HDL-C, which was lower (1.27 vs 1.49 mmol/L; p < 0.001. Also, in addition to abdominal obesity, 21.43% of school children with metabolically active obesity had ≥ 2 atherogenic factors, as well as some pro-inflammatory abnormalities (C-reactive protein levels were

  12. Normal or abnormal isospin-fractionation as a qualitative probe of nuclear symmetry energy at supradensities

    International Nuclear Information System (INIS)

    Guo, Wenmei; Yong, Gaochan; Wang, Yongjia; Li, Qingfeng; Zhang, Hongfei; Zuo, Wei

    2014-01-01

    Within two different frameworks of isospin-dependent transport model, effect of nuclear symmetry energy at supradensities on the isospin-fractionation (IsoF) was investigated. With positive/negative symmetry potential at supradensities (i.e., values of symmetry energy increase/decrease with density above saturation density), for energetic nucleons, the value of neutron to proton ratio of free nucleons is larger/smaller than that of bound nucleon fragments. Compared with extensively studied quantitative observables of nuclear symmetry energy, the normal or abnormal isospin-fractionation of energetic nucleons can be a qualitative probe of nuclear symmetry energy at supradensities

  13. Normal and abnormal lipid and lipoprotein metabolism

    African Journals Online (AJOL)

    2009-03-20

    Mar 20, 2009 ... This article focuses on lipid and lipoprotein metabolism and introduces a range of genetic ... spherical structures that are suspended in the plasma and whose ..... atherosclerosis. Table II suggests a simple classification of.

  14. Metabolic Abnormalities Detected in Phase II Evaluation of Doxycycline in Dogs with Multicentric B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Kelly R. Hume

    2018-02-01

    Full Text Available Doxycycline has antiproliferative effects in human lymphoma cells and in murine xenografts. We hypothesized that doxycycline would decrease canine lymphoma cell viability and prospectively evaluated its clinical tolerability in client-owned dogs with spontaneous, nodal, multicentric, substage a, B-cell lymphoma, not previously treated with chemotherapy. Treatment duration ranged from 1 to 8 weeks (median and mean, 3 weeks. Dogs were treated with either 10 (n = 6 or 7.5 (n = 7 mg/kg by mouth twice daily. One dog had a stable disease for 6 weeks. No complete or partial tumor responses were observed. Five dogs developed grade 3 and/or 4 metabolic abnormalities suggestive of hepatopathy with elevations in bilirubin, ALT, ALP, and/or AST. To evaluate the absorption of oral doxycycline in our study population, serum concentrations in 10 treated dogs were determined using liquid chromatography tandem mass spectrometry. Serum levels were variable and ranged from 3.6 to 16.6 µg/ml (median, 7.6 µg/ml; mean, 8.8 µg/ml. To evaluate the effect of doxycycline on canine lymphoma cell viability in vitro, trypan blue exclusion assay was performed on canine B-cell lymphoma cell lines (17-71 and CLBL and primary B-cell lymphoma cells from the nodal tissue of four dogs. A doxycycline concentration of 6 µg/ml decreased canine lymphoma cell viability by 80%, compared to matched, untreated, control cells (mixed model analysis, p < 0.0001; Wilcoxon signed rank test, p = 0.0313. Although the short-term administration of oral doxycycline is not associated with the remission of canine lymphoma, combination therapy may be worthwhile if future research determines that doxycycline can alter cell survival pathways in canine lymphoma cells. Due to the potential for metabolic abnormalities, close monitoring is recommended with the use of this drug in tumor-bearing dogs. Additional research is needed to assess the tolerability of chronic

  15. A community-based survey for different abnormal glucose metabolism among pregnant women in a random household study (SAUDI-DM)

    Science.gov (United States)

    Al-Rubeaan, Khalid; Al-Manaa, Hamad A; Khoja, Tawfik A; Youssef, Amira M; Al-Sharqawi, Ahmad H; Siddiqui, Khalid; Ahmad, Najlaa A

    2014-01-01

    Objective To assess the prevalence and risk factors of gestational diabetes mellitus (GDM) in a population known to have a high prevalence of abnormal glucose metabolism. Methods A household random population-based cross-sectional study of 13 627 women in the childbearing age, who were subjected to fasting plasma glucose if they were not known to have been diagnosed before with any type of diabetes. GDM cases were diagnosed using the International Association of Diabetes and Pregnancy Study Group (IAPSG) criteria. Results The overall GDM prevalence was 36.6%, categorised into 32.4% new cases and 4.2% known cases. Another 3.6% had preconception type 1 or 2 diabetes. GDM cases were older and had a significantly higher body mass index, in addition to a higher rate of macrocosmic baby and history of GDM. Monthly income, educational level, living in urban areas and smoking were not found to be significantly different between normal and GDM cases. The most important and significant risk factors for GDM were history of GDM, macrosomic baby, obesity and age >30 years. However, hypertension, low high-density lipoprotein, family history of diabetes and increased triglycerides did not show any significant effect on GDM prevalence in this cohort. Conclusions This society is facing a real burden of abnormal glucose metabolism during pregnancy, where almost half of the pregnant women are subjected to maternal and neonatal complications. Early screening of pregnant women, especially those at a high risk for GDM, is mandatory to identify and manage those cases. PMID:25138813

  16. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    Science.gov (United States)

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    Science.gov (United States)

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  18. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  19. The influence of abnormal thyroid function on sex hormones and bone metabolism in female patients

    International Nuclear Information System (INIS)

    Li Xiaohong; Chu Shaolin; Lei Qiufang; Ye Peihong; Chai Luhua

    2001-01-01

    Objectives: To explore the influence of hyperthyroidism and hypothyroidism on sex hormones and bone metabolism in female patients. Method: A single photon bone absorptiometry was used to measure calcareous bone mineral density (BMD) in 91 female patients with hyperthyroidism, and 37 female patients with hypothyroidism caused by Hashimoto's thyroiditis and 51 healthy female subjects with euthyroid. In addition the serum levels of BGP and PTH were determined by means of IRMA. Serum levels of FSH and E 2 were determined by RIA. Results: Serum levels of FSH , E 2 and BGP in hyperthyroidism group were significantly higher than those in control group. The serum levels of PTH were slightly lower than that in control group (P 2 and BGP were significantly lower than those in control group. The assessment of BMD showed that the prevalence rate of osteoporosis (OP) both in hyperthyroidism groups and in hypothyroidism groups was significantly higher than control group. The peak bone density in young and middle-aged female was decreased, and OP was more common in over 60-year-aged female with hypothyroidism. Conclusions: Female patients with abnormal thyroid function are often associated with abnormality of sex hormones. It leads to increasing the incidence of OP. The attack age of OP tends to be younger, especially aged patients with lymphocytic hypothyroidism increases more markedly. Therefore, BMD should be measured in all female patients with a variety of thyroid diseases

  20. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies.

    Science.gov (United States)

    Greene, Amanda E; Todorova, Mariana T; Seyfried, Thomas N

    2003-08-01

    Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.

  1. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process

    Directory of Open Access Journals (Sweden)

    Alexandre Vallée

    2017-11-01

    Full Text Available Fibrosis is characterized by fibroblast proliferation and fibroblast differentiation into myofibroblasts, which generate a relaxation-free contraction mechanism associated with excessive collagen synthesis in the extracellular matrix, which promotes irreversible tissue retraction evolving towards fibrosis. From a thermodynamic point of view, the mechanisms leading to fibrosis are irreversible processes that can occur through changing the entropy production rate. The thermodynamic behaviors of metabolic enzymes involved in fibrosis are modified by the dysregulation of both transforming growth factor β (TGF-β signaling and the canonical WNT/β-catenin pathway, leading to aerobic glycolysis, called the Warburg effect. Molecular signaling pathways leading to fibrosis are considered dissipative structures that exchange energy or matter with their environment far from the thermodynamic equilibrium. The myofibroblastic cells arise from exergonic processes by switching the core metabolism from oxidative phosphorylation to glycolysis, which generates energy and reprograms cellular energy metabolism to induce the process of myofibroblast differentiation. Circadian rhythms are far-from-equilibrium thermodynamic processes. They directly participate in regulating the TGF-β and WNT/β-catenin pathways involved in energetic dysregulation and enabling fibrosis. The present review focusses on the thermodynamic implications of the reprogramming of cellular energy metabolism, leading to fibroblast differentiation into myofibroblasts through the positive interplay between TGF-β and WNT/β-catenin pathways underlying in fibrosis.

  2. NMR ({sup 1}H and {sup 13}C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Swarnendu, E-mail: Swarna.bag@gmail.com [School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Banerjee, Deb Ranjan, E-mail: debranjan2@gmail.com [Department of Chemistry, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Basak, Amit, E-mail: absk@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Das, Amit Kumar, E-mail: amitk@hijli.iitkgp.ernet.in [Department of Biotechnology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Pal, Mousumi, E-mail: drmpal62@gmail.com [Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal (India); Banerjee, Rita, E-mail: ritabanerjee@outlook.com [Department of Science and Technology, New Mehrauli Road, New Delhi 110016 (India); Paul, Ranjan Rashmi, E-mail: dr_rsspaul@yahoo.co.in [Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal (India); Chatterjee, Jyotirmoy, E-mail: jchatterjee.iitkgp@gmail.com [School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India)

    2015-04-17

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.

  3. Imaging mass spectrometry visualizes ceramides and the pathogenesis of dorfman-chanarin syndrome due to ceramide metabolic abnormality in the skin.

    Directory of Open Access Journals (Sweden)

    Naoko Goto-Inoue

    Full Text Available Imaging mass spectrometry (IMS is a useful cutting edge technology used to investigate the distribution of biomolecules such as drugs and metabolites, as well as to identify molecular species in tissues and cells without labeling. To protect against excess water loss that is essential for survival in a terrestrial environment, mammalian skin possesses a competent permeability barrier in the stratum corneum (SC, the outermost layer of the epidermis. The key lipids constituting this barrier in the SC are the ceramides (Cers comprising of a heterogeneous molecular species. Alterations in Cer composition have been reported in several skin diseases that display abnormalities in the epidermal permeability barrier function. Not only the amounts of different Cers, but also their localizations are critical for the barrier function. We have employed our new imaging system, capable of high-lateral-resolution IMS with an atmospheric-pressure ionization source, to directly visualize the distribution of Cers. Moreover, we show an ichthyotic disease pathogenesis due to abnormal Cer metabolism in Dorfman-Chanarin syndrome, a neutral lipid storage disorder with ichthyosis in human skin, demonstrating that IMS is a novel diagnostic approach for assessing lipid abnormalities in clinical setting, as well as for investigating physiological roles of lipids in cells/tissues.

  4. Metabolic changes in cancer: beyond the Warburg effect

    Institute of Scientific and Technical Information of China (English)

    Weihua Wu; Shimin Zhao

    2013-01-01

    Altered metabolism is one of the hallmarks of cancer cells.The best-known metabolic abnormality in cancer cells is the Warburg effect,which demonstrates an increased glycolysis even in the presence of oxygen.However,tumor-related metabolic abnormalities are not limited to altered balance between glucose fermentation and oxidative phosphorylation.Key tumor genes such as p53 and c-myc are found to be master regulators of metabolism.Metabolic enzymes such as succinate dehydrogenase,fumarate hydratase,pyruvate kinase,and isocitrate dehydrogenase mutations or expressing level alterations are all linked to tumorigenesis.In this review,we introduce some of the cancer-associated metabolic disorders and current understanding of their molecular tumorigenic mechanisms.

  5. Electrocardiographic left ventricular hypertrophy without echocardiographic abnormalities evaluated by myocardial perfusion and fatty acid metabolic imaging

    International Nuclear Information System (INIS)

    Narita, Michihiro; Kurihara, Tadashi

    2000-01-01

    The pathophysiologic process in patients with electrocardiographic left ventricular hypertrophy with ST, T changes but without echocardiographic abnormalities was investigated by myocardial perfusion imaging and fatty acid metabolic imaging. Exercise stress 99m Tc-methoxy-isobutyl isonitrile (MIBI) imaging and rest 123 I-beta-methyl-p-iodophenyl pentadecanoic acid (BMIPP) imaging were performed in 59 patients with electrocardiographic hypertrophy including 29 without apparent cause including hypertension and echocardiographic hypertrophy, and 30 with essential hypertension. Coronary angiography was performed in 6 patients without hypertension and 4 with hypertension and biopsy specimens were obtained from the left ventricular apex from 6 patients without hypertension. Myocardial perfusion and 123 I-BMIPP images were classified into 3 types: normal, increased accumulation of the isotope at the left ventricular apex (high uptake) and defect. Transient perfusion abnormality and apical defect observed by 123 I-BMIPP imaging were more frequent in patients without hypertension than in patients with hypertension (32% vs. 17%, p=0.04671 in perfusion; 62% vs. 30%, p=0.0236 in 123 I-BMIPP). Eighteen normotensive patients with apical defect by 123 I-BMIPP imaging included 3 of 10 patients with normal perfusion at exercise, 6 of 10 patients with high uptake and 9 of 9 patients with perfusion defect. The defect size revealed by 123 I-BMIPP imaging was greater than that of the perfusion abnormality. Coronary stenoses were not observed and myocardial specimens showed myocardial disarray with hypertrophy. Moreover, 9 patients with hypertension and apical defects by 123 I-BMIPP showed 3 different types of perfusion. Many patients without hypertension show a pathologic process similar to hypertrophic cardiomyopathy. Perfusion and 123 I-BMIPP imaging are useful for the identification of these patients. (author)

  6. Device for diagnoising abnormalities of equipments

    International Nuclear Information System (INIS)

    Nakano, Hiroshi.

    1986-01-01

    Purpose: To measure the collision energy easily and at high accuracy by applying impact shocks at known collision energy from a simulated acoustic wave generator and using the generated acoustic signal as reference data. Constitution: A plurality of acoustic detectors are attached to the surface of a nuclear reactor pressure vessel. These acoustic detectors are connected respectively to an abnormality diagnosis device for equipments. Then, when metal obstacles collide against the inner surface of the reactor pressure vessel, acoustic signals generated upon collision are detected by the acoustic detectors and acoustic information thus obtained from the acoustic detectors determines the colliding position of the metal obstacles by means of the abnormality diagnosis device and then the collision energy is measured. In this case, by applying impact shocks at known collision energy near the colliding position of metal obstacles determined by the abnormality diagnosis device, collision energy can be determined at a higher accuracy. (Kawakami, Y.)

  7. Metabolic profile at first-time schizophrenia diagnosis: a population-based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Horsdal HT

    2017-02-01

    Full Text Available Henriette Thisted Horsdal,1,2 Michael Eriksen Benros,2,3 Ole Köhler-Forsberg,2–4 Jesper Krogh,3 Christiane Gasse1,2,5 1National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, 2The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, 3Faculty of Health Sciences, Mental Health Centre Copenhagen, University of Copenhagen, Copenhagen, 4Psychosis Research Unit, Aarhus University Hospital, Risskov, 5Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark Objective: Schizophrenia and/or antipsychotic drug use are associated with metabolic abnormalities; however, knowledge regarding metabolic status and physician’s monitoring of metabolic status at first schizophrenia diagnosis is sparse. We assessed the prevalence of monitoring for metabolic blood abnormalities and characterized the metabolic profiles in people with a first-time schizophrenia diagnosis. Methods: This is a population-based cross-sectional study including all adults born in Denmark after January 1, 1955, with their first schizophrenia diagnosis between 2000 and 2012 in the Central Denmark Region. Information on metabolic parameters was obtained from a clinical laboratory information system. Associations were calculated using Wilcoxon rank-sum tests, chi-square tests, logistic regression, and Spearman’s correlation coefficients. Results: A total of 2,452 people with a first-time schizophrenia diagnosis were identified, of whom 1,040 (42.4% were monitored for metabolic abnormalities. Among those monitored, 58.4% had an abnormal lipid profile and 13.8% had an abnormal glucose profile. People who had previously filled prescription(s for antipsychotic drugs were more likely to present an abnormal lipid measure (65.7% vs 46.8%, P<0.001 and abnormal glucose profile (16.4% vs 10.1%, P=0.01. Conclusion: Metabolic abnormalities are common at first

  8. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Lavery, Gareth G

    2012-07-01

    Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA

  9. Association Between Energy Balance and Metabolic Hormone Suppression During Ultraendurance Exercise.

    Science.gov (United States)

    Geesmann, Bjoern; Gibbs, Jenna C; Mester, Joachim; Koehler, Karsten

    2017-08-01

    Ultraendurance athletes often accumulate an energy deficit when engaging in ultraendurance exercise, and on completion of the exercise, they exhibit endocrine changes that are reminiscent of starvation. However, it remains unclear whether these endocrine changes are a result of the exercise per se or secondary to the energy deficit and, more important, whether these changes can be attenuated by increased dietary intake. The goal of the study was to assess the relationship between changes in key metabolic hormones after ultraendurance exercise and measures of energy balance. Metabolic hormones, as well as energy intake and expenditure, were assessed in 14 well-trained male cyclists who completed a 1230-km ultraendurance cycling event. After completion of the event, serum testosterone (-67% ± 18%), insulin-like growth factor-1 (IGF-1) (-45% ± 8%), and leptin (-79% ± 9%) were significantly suppressed (P deficit to a 3593-kcal surplus. The marked suppression of testosterone, IGF-1, and leptin after ultraendurance exercise is comparable to changes occurring during acute starvation. The suppression of IGF-1, but not that of other metabolic hormones, was strongly associated with the magnitude of the energy deficit, indicating that athletes who attained a greater energy deficit exhibited a more pronounced drop in IGF-1. Future studies are needed to determine whether increased dietary intake can attenuate the endocrine response to ultraendurance exercise.

  10. Cerebral FDG-PET scanning abnormalities in optimally treated HIV patients

    DEFF Research Database (Denmark)

    Andersen, Ase B; Law, Ian; Krabbe, Karen S

    2010-01-01

    with no history of virological failure, a CD4 count above 200 x 106 cells/l and no other co-morbidities. The distribution of the regional cerebral metabolic rate of glucose metabolism was measured using fluorine-18-flourodeoxyglucose positron emission tomography (FDG-PET) scanning. The PET scans were evaluated...... in the relative metabolic rate of glucose. Compared to healthy subjects, the patients with abnormal FDG-PET scanning results had a shorter history of known HIV infection, fewer years on antiretroviral therapy and higher levels of circulating TNF alpha and IL-6 (p = 0.08). CONCLUSION: A large proportion...... of optimally treated HIV patients exhibit cerebral FDG-PET scanning abnormalities and elevated TNF alpha and IL-6 levels, which may indicate imminent neuronal damage. The neuroprotective effect of early ARV treatment should be considered in future prospective follow-up studies....

  11. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease.

    Science.gov (United States)

    Smith, Reuben L; Soeters, Maarten R; Wüst, Rob C I; Houtkooper, Riekelt H

    2018-04-24

    The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage and utilization, dependent on availability and requirement is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways which is regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors like dietary composition and feeding frequency, exercise training, and use of pharmacological compounds influence metabolic flexibility and will be discussed here. Lastly, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.

  12. Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.

    Science.gov (United States)

    Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo

    2015-04-20

    Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.

  13. Unsuspected glucose abnormalities in patients with coronary artery ...

    African Journals Online (AJOL)

    HbA1c), the American Diabetic Association (ADA) score and measures of the metabolic syndrome (waist circumference, high-density lipoprotein (HDL), and triglycerides) in predicting an initial diagnosis of diabetes mellitus or abnormal ...

  14. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators.

    Science.gov (United States)

    Roa, Juan; Tena-Sempere, Manuel

    2014-11-01

    It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Prevention of Fetal Congenital Malformations with Allowance for the Pharmacogenetic Features of the Metabolism of Antiepileptic Drugs and Hereditary Abnormalities in the Folate Cycle

    Directory of Open Access Journals (Sweden)

    D. V. Dmitrenko

    2014-01-01

    Full Text Available Fetal congenital malformations are among the most dangerous complications of pregnancy in women with epilepsy taking antiepileptic drugs. Valproic acid and phenobarbital have the greatest risk of teratogenic effects. Insights into the current mechanisms of teratogenic effect of antiepileptic drugs, pharmacogenetic features of the metabolism of valproates and hereditary abnormalities in the folate cycle enables prevention of fetal congenital malformations. 

  16. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A comparison of extension and severity of perfusion, glucose metabolism and wall motion abnormalities in recent myocardial infarction on patients with and without revascularization

    International Nuclear Information System (INIS)

    Gonzalez, P.; Massardo, T.; Coll, C.; Redondo, F.; Jofre, J.; Redondo, F.; Sierralta, P.; Humeres, P.; Yovanovich, J.; Chamorro, H.

    2002-01-01

    Aim: To compare the extension and severity in perfusion, glucose metabolism and contractility abnormalities in recent myocardial infarction, assessed by different imaging modalities, and to evaluate these functional parameters in patients with and without revascularization (REV). Materials and methods: We assessed 49 patients with a first MI (58 ±12 years; 82 % males) using 1) [Tl201] rest SPECT, 2) [Tl201] redistribution (red) SPECT, 3) [F18]FDG SPECT and 4) 2D echocardiograms at a mean of 9.2 days, range: 1-24; 29 (59%) patients had been REV by means of PTCA or CABG and 20 (41%) underwent only medical therapy. All had angiogram. Images were analyzed blindly, employing the same polar map which included 17 segments in the four sets of studies. Both, the number of segments involved and their severity (normal, mild, moderate or markedly abnormal) using a semiquantitative score from 1 to 4 were tabulated. Results: In the total group (n=833 segments), the abnormal segments in echo were 302 (36%), in Tl rest 231 (28%), in Tl red 223 (26%) and in FDG 202 (24%), (p<0.001 echo vs all other). Regarding severity score, the median (s.d.) values were: 2.6 (0.5); 2.9 (0.9); 2.8 (1.2) and 2.9 (1.2), respectively (p<0.01 echo vs all other). In REV patients (n=493), the lesion size was 154 segments (31%), 116 (23%), 112 (23%) and 100 (20%), respectively. In those without REV (n=340) the number of abnormal segments were 148 (44%), 115 (34%), 111 (33%) and 102 (30%) respectively (p<0.004, REV vs no REV). McNemar, Student t tests were used in the comparisons. Conclusion: In recent MI, echo abnormalities were bigger in size (up to 13%) than the perfusion and metabolic defects, but less severe (down to 10%) compared to radionuclide procedures, possibly due to stunning. Non REV patients presented with greater extension (up to 11%) and more severity (up to 22%) than REV ones in any of the imaging modalities, explained by therapy effect. Both, echo and radionuclide techniques appear

  18. A comparison of extension and severity of perfusion, glucose metabolism and wall motion abnormalities in recent myocardial infarction on patients with and without revascularization

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P [Department of Nuclear Medicine of the University of Chile Clinical Hospital (Chile); Department of Nuclear Medicine of Santa Maria Clinic (Chile); Massardo, T; Coll, C; Redondo, F; Jofre, J; Sierralta, P [Department of Nuclear Medicine of the University of Chile Clinical Hospital (Chile); Humeres, P [Department of Nuclear Medicine of Santa Maria Clinic (Chile); Yovanovich, J [Cardiovascular Center of the University of Chile Clinical Hospital (Chile); Chamorro, H [Cardiovascular Center of Santa Maria Clinic, Santiago (Chile)

    2002-09-01

    Aim: To compare the extension and severity in perfusion, glucose metabolism and contractility abnormalities in recent myocardial infarction, assessed by different imaging modalities, and to evaluate these functional parameters in patients with and without revascularization (REV). Materials and methods: We assessed 49 patients with a first MI (58 {+-}12 years; 82 % males) using 1) [Tl201] rest SPECT, 2) [Tl201] redistribution (red) SPECT, 3) [F18]FDG SPECT and 4) 2D echocardiograms at a mean of 9.2 days, range: 1-24; 29 (59%) patients had been REV by means of PTCA or CABG and 20 (41%) underwent only medical therapy. All had angiogram. Images were analyzed blindly, employing the same polar map which included 17 segments in the four sets of studies. Both, the number of segments involved and their severity (normal, mild, moderate or markedly abnormal) using a semiquantitative score from 1 to 4 were tabulated. Results: In the total group (n=833 segments), the abnormal segments in echo were 302 (36%), in Tl rest 231 (28%), in Tl red 223 (26%) and in FDG 202 (24%), (p<0.001 echo vs all other). Regarding severity score, the median (s.d.) values were: 2.6 (0.5); 2.9 (0.9); 2.8 (1.2) and 2.9 (1.2), respectively (p<0.01 echo vs all other). In REV patients (n=493), the lesion size was 154 segments (31%), 116 (23%), 112 (23%) and 100 (20%), respectively. In those without REV (n=340) the number of abnormal segments were 148 (44%), 115 (34%), 111 (33%) and 102 (30%) respectively (p<0.004, REV vs no REV). McNemar, Student t tests were used in the comparisons. Conclusion: In recent MI, echo abnormalities were bigger in size (up to 13%) than the perfusion and metabolic defects, but less severe (down to 10%) compared to radionuclide procedures, possibly due to stunning. Non REV patients presented with greater extension (up to 11%) and more severity (up to 22%) than REV ones in any of the imaging modalities, explained by therapy effect. Both, echo and radionuclide techniques appear

  19. 31P-magnetic resonance spectroscopy: Impaired energy metabolism in latent hyperthyroidism

    International Nuclear Information System (INIS)

    Theissen, P.; Kaldewey, S.; Moka, D.; Bunke, J.; Voth, E.; Schicha, H.

    1993-01-01

    31 Phosphorous magnetic resonance spectroscopy allows an in vivo examination of energy metabolism. The present study was designed to evaluate whether in patients with latent hyperthyroidism alterations of muscle energy metabolism could be found similar to those observed in patients with overt hyperthyroidism. In 10 patients with overt hyperthyroidism before therapy and 20 with latent hyperthyroidism (also without therapy) and in 24 healthy volunteers magnetic resonance spectroscopy of the calf muscle was performed within a 1.5-Tesla magnet. Muscle concentrations of phosphocreatine, inorganic phosphate, and ATP were quantified compared to an external standard solution of K 2 HPO 4 . In the patients with overt hyperthyroidism and with latent hyperthyroidism a significant decrease of phosphocreatine was found. Further, the ATP concentration in patients with latent and manifest hyperthyroidism tended towards lower values. There were no significant differences in the decrease of phosphocreatine and ATP between both patient groups. Therefore, this study for the first time shows that alterations of energy metabolism in latent hyperthyroidism can be measured and that they are similar to those observed in overt hyperthyroidism. (orig.) [de

  20. Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation.

    Science.gov (United States)

    Alaverdashvili, Mariam; Caine, Sally; Li, Xue; Hackett, Mark J; Bradley, Michael P; Nichol, Helen; Paterson, Phyllis G

    2018-02-03

    Protein-energy malnutrition (PEM) pre-existing at stroke onset is believed to worsen functional outcome, yet the underlying mechanisms are not fully understood. Since brain inflammation is an important modulator of neurological recovery after stroke, we explored the impact of PEM on neuroinflammation in the acute period in relation to stroke-initiated sensori-motor abnormalities. Adult rats were fed a low-protein (LP) or normal protein (NP) diet for 28 days before inducing photothrombotic stroke (St) in the forelimb region of the motor cortex or sham surgery; the diets continued for 3 days after the stroke. Protein-energy status was assessed by a combination of body weight, food intake, serum acute phase proteins and corticosterone, and liver lipid content. Deficits in motor function were evaluated in the horizontal ladder walking and cylinder tasks at 3 days after stroke. The glial response and brain elemental signature were investigated by immunohistochemistry and micro-X-ray fluorescence imaging, respectively. The LP-fed rats reduced food intake, resulting in PEM. Pre-existing PEM augmented stroke-induced abnormalities in forelimb placement accuracy on the ladder; LP-St rats made more errors (29 ± 8%) than the NP-St rats (15 ± 3%; P < 0.05). This was accompanied by attenuated astrogliosis in the peri-infarct area by 18% and reduced microglia activation by up to 41 and 21% in the peri-infarct area and the infarct rim, respectively (P < 0.05). The LP diet altered the cortical Zn, Ca, and Cl signatures (P < 0.05). Our data suggest that proactive treatment of pre-existing PEM could be essential for optimal post-stroke recovery.

  1. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris

    Directory of Open Access Journals (Sweden)

    Kseniya P. Vereshchagina

    2016-11-01

    Full Text Available Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase and parameters of energy metabolism (content of glucose, glycogen, ATP, ADP, AMP and lactate. Amphipods from a freshwater population were more sensitive to the thermal challenge, showing higher mortality during acute and gradual temperature change compared to their counterparts from a saline lake. A more thermotolerant population from a saline lake had high activity of antioxidant enzymes. The energy limitations of the freshwater population (indicated by low baseline glucose levels, downward shift of the critical temperature of aerobic metabolism and inability to maintain steady-state ATP levels during warming was observed, possibly reflecting a trade-off between the energy demands for osmoregulation under the hypo-osmotic condition of a freshwater environment and protection against temperature stress.

  2. High energy reactions in normal metabolism and ageing of animals

    International Nuclear Information System (INIS)

    Avdonina, E.N.; Nesmeyanov, N.

    1983-01-01

    Processes involving reactions on highly excited states are thought to be of great importance for normal metabolism and aging. Excess energy of the organism is transferred to result in the formation of highly excited states of macromolecules. UV, visible light or ionizing radiation created partially by the organism itself can change metabolic process rates. According to the authors, aging is associated with the defects of macromolecules owing to high energy processes. Gerontological changes in biological materials result from the elimination of low molecular weight molecules and from the formation of unsaturated compounds. Crosslinking of the compounds, accumulation of collagen and connective tissues, the energetic overload of the organism are listed as important features of aging. (V.N.)

  3. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    Science.gov (United States)

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  4. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  5. Within-day energy deficiency and metabolic perturbation in male endurance athletes

    DEFF Research Database (Denmark)

    Torstveit, Monica K; Fahrenholtz, Ida Lysdahl; Stenqvist, Thomas B

    2018-01-01

    ) or normal RMR (RMRratio> 0.90, n=11). Despite no observed differences in 24-hour EB or EA between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8 - 21.8] hours vs. 10.8 [2.5 - 16.4], P=0.023), and had larger single-hour energy deficits compared......Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance (WDEB) in male athletes with suppressed and normal resting metabolic rate (RMR) and explore if within...... to subjects with normal RMR (3265 ± 1963 kcal vs. -1340 ± 2439, P=0.023). Larger single-hour energy deficits were associated with higher cortisol levels (r = -0.499, P=0.004) and a lower testosterone:cortisol ratio (r = 0.431, P=0.015), but no associations with T3or fasting blood glucose were observed...

  6. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism.

    Science.gov (United States)

    Goforth, Paulette B; Myers, Martin G

    The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.

  7. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    Science.gov (United States)

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  8. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    Science.gov (United States)

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  9. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    Science.gov (United States)

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  10. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    International Nuclear Information System (INIS)

    Wisnowski, Jessica L.; Ceschin, Rafael C.; Choi, So Young; Schmithorst, Vincent J.; Painter, Michael J.; Nelson, Marvin D.; Blueml, Stefan; Panigrahy, Ashok

    2015-01-01

    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  11. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Ceschin, Rafael C. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA (United States); Choi, So Young [University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States)

    2015-05-01

    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  12. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    OpenAIRE

    Park, Weon Wook; Suh, Kuen Tak; Kim, Jeung Il; Ku, Ja Gyung; Lee, Hong Seok; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Lee, Jung Sub

    2008-01-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with ...

  13. Rewiring AMPK and Mitochondrial Retrograde Signaling for Metabolic Control of Aging and Histone Acetylation in Respiratory-Defective Cells

    Directory of Open Access Journals (Sweden)

    R. Magnus N. Friis

    2014-04-01

    Full Text Available Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ0 yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA availability, we sought interventions that suppress this ρ0 phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG response and the AMPK (Snf1 pathway prevents abnormal histone deacetylation in ρ0 cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ0 cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ0 cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.

  14. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  15. Ophthalmologic Findings in Patients with Neuro-metabolic Disorders.

    Science.gov (United States)

    Jafari, Narjes; Golnik, Karl; Shahriari, Mansoor; Karimzadeh, Parvaneh; Jabbehdari, Sayena

    2018-01-01

    We aimed to present the ophthalmic manifestations of neuro-metabolic disorders. Patients who were diagnosed with neuro-metabolic disorders in the Neurology Department of Mofid Pediatric Hospital in Tehran, Iran, between 2004 and 2014 were included in this study. Disorders were confirmed using clinical findings, neuroimaging, laboratory data, and genomic analyses. All enrolled patients were assessed for ophthalmological abnormalities. A total of 213 patients with 34 different neuro-metabolic disorders were included. Ophthalmological abnormalities were observed in 33.5% of patients. Abnormal findings in the anterior segment included Kayser-Fleischer rings, congenital or secondary cataracts, and lens dislocation into the anterior chamber. Posterior segment (i.e., retina, vitreous body, and optic nerve) evaluation revealed retinitis pigmentosa, cherry-red spots, and optic atrophy. In addition, strabismus, nystagmus, and lack of fixation were noted during external examination. Ophthalmological examination and assessment is essential in patients that may exhibit neuro-metabolic disorders.

  16. Sex Differences in Energy Metabolism Need to Be Considered with Lifestyle Modifications in Humans

    Directory of Open Access Journals (Sweden)

    Betty N. Wu

    2011-01-01

    Full Text Available Women have a higher proportion of body fat compared to men. However, women consume fewer kilojoules per kilogram lean mass and burn fat more preferentially during exercise compared with men. During gestation, women store even greater amounts of fat that cannot be solely attributed to increased energy intake. These observations suggest that the relationship between kilojoules consumed and kilojoules utilised is different in men and women. The reason for these sex differences in energy metabolism is not known; however, it may relate to sex steroids, differences in insulin resistance, or metabolic effects of other hormones such as leptin. When considering lifestyle modifications, sex differences in energy metabolism should be considered. Moreover, elucidating the regulatory role of hormones in energy homeostasis is important for understanding the pathogenesis of obesity and perhaps in the future may lead to ways to reduce body fat with less energy restriction.

  17. Endocrine Abnormalities in Patients with Chronic Kidney Disease.

    Science.gov (United States)

    Kuczera, Piotr; Adamczak, Marcin; Wiecek, Andrzej

    2015-01-01

    In patients with chronic kidney disease the alterations of the endocrine system may arise from several causes. The kidney is the site of degradation as well as synthesis of many different hormones. Moreover, a number of concomitant pathological conditions such as inflammation, metabolic acidosis and malnutrition may participate in the pathogenesis of endocrine abnormalities in this group of patients. The most pronounced endocrine abnormalities in patients with chronic kidney disease are the deficiencies of: calcitriol, testosterone, insulin-like growth factor and, erythropoietin (EPO). Additionally accumulation of several hormones, such as: prolactin, growth hormone and insulin frequently also occur. The clinical consequences of the abovementioned endocrine abnormalities are among others: anemia, infertility and bone diseases.

  18. Energy Metabolism and Human Dosimetry of Tritium

    International Nuclear Information System (INIS)

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A.

    2005-01-01

    In the frame of current revision of human dosimetry of 14 C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic 14 C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings

  19. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Benjamin S Mantell

    Full Text Available The contribution of natural killer T (NKT cells to the pathogenesis of metabolic abnormalities of obesity is controversial. While the combined genetic deletion of NKT and CD8(+ T-cells improves glucose tolerance and reduces inflammation, interpretation of these data have been complicated by the recent observation that the deletion of CD8(+ T-cells alone reduces obesity-induced inflammation and metabolic dysregulation, leaving the issue of the metabolic effects of NKT cell depletion unresolved. To address this question, CD1d null mice (CD1d(-/-, which lack NKT cells but have a full complement of CD8(+ T-cells, and littermate wild type controls (WT on a pure C57BL/6J background were exposed to a high fat diet, and glucose intolerance, insulin resistance, dyslipidemia, inflammation, and obesity were assessed. Food intake (15.5±4.3 vs 15.3±1.8 kcal/mouse/day, weight gain (21.8±1.8 vs 22.8±1.4 g and fat mass (18.6±1.9 vs 19.5±2.1 g were similar in CD1d(-/- and WT, respectively. As would be expected from these data, metabolic rate (3.0±0.1 vs 2.9±0.2 ml O(2/g/h and activity (21.6±4.3 vs 18.5±2.6 beam breaks/min were unchanged by NKT cell depletion. Furthermore, the degree of insulin resistance, glucose intolerance, liver steatosis, and adipose and liver inflammatory marker expression (TNFα, IL-6, IL-10, IFN-γ, MCP-1, MIP1α induced by high fat feeding in CD1d(-/- were not different from WT. We conclude that deletion of NKT cells, in the absence of alterations in the CD8(+ T-cell population, is insufficient to protect against the development of the metabolic abnormalities of diet-induced obesity.

  20. The role of energy & fatty acid metabolism in obesity and insulin resistance

    NARCIS (Netherlands)

    Heemskerk, Mattijs Maria

    2015-01-01

    In today’s world, more people die from complications of overweight than from underweight. But not all individuals are equally prone to develop metabolic complications, such as obesity and insulin resistance. This thesis focuses on the differences in the energy and fatty acid metabolism that play a

  1. Special report on abnormal climate in 2010

    International Nuclear Information System (INIS)

    2010-12-01

    This reports on abnormal climate in 2010 with impact on the each field. It is comprised of four chapters, which deal with Introduction with purpose of publish and background, current situation and cause of abnormal climate in 2010 on abnormal climate around the world and Korea, Action and impact against abnormal climate in 2010 to agriculture, industry and energy, prevention of disasters, forest, fishery products, environment and health, Evaluation and policy proposal. It also has an appendix about occurrence and damage on abnormal climate of the world in 2010 and media reports on abnormal climate in Korea in 2010.

  2. Report on abnormal climate in 2011

    International Nuclear Information System (INIS)

    2011-12-01

    This paper reports of impact on abnormal climate in 2011. It has Introduction with purpose and background of publish and summary of this report. The cause and current state on abnormal climate of the world and Korea in 2011, Measurement and impact against abnormal climate in 2011 to agriculture, land and maritime, industry and energy, prevention of disasters, environment and health, assessment and advice on the policy. It lists the appendix about occurrence and damage on abnormal climate of the world and Korea in 2011 and media report data.

  3. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  4. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kayo [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Hartman, Philip S. [Biology Department, Texas Christian University, Fort Worth, TX 76129 (United States); Ishii, Takamasa [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Suda, Hitoshi [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Akatsuka, Akira [Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Shoyama, Tetsuji [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Miyazawa, Masaki [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Ishii, Naoaki, E-mail: nishii@is.icc.u-tokai.ac.jp [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan)

    2011-01-21

    Research highlights: {yields} Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. {yields} Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. {yields} fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. {yields} Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  5. Cerebral ketone body metabolism.

    Science.gov (United States)

    Morris, A A M

    2005-01-01

    Ketone bodies (KBs) are an important source of energy for the brain. During the neonatal period, they are also precursors for the synthesis of lipids (especially cholesterol) and amino acids. The rate of cerebral KB metabolism depends primarily on the concentration in blood; high concentrations occur during fasting and on a high-fat diet. Cerebral KB metabolism is also regulated by the permeability of the blood-brain barrier (BBB), which depends on the abundance of monocarboxylic acid transporters (MCT1). The BBB's permeability to KBs increases with fasting in humans. In rats, permeability increases during the suckling period, but human neonates have not been studied. Monocarboxylic acid transporters are also present in the plasma membranes of neurons and glia but their role in regulating KB metabolism is uncertain. Finally, the rate of cerebral KB metabolism depends on the activities of the relevant enzymes in brain. The activities vary with age in rats, but reliable results are not available for humans. Cerebral KB metabolism in humans differs from that in the rat in several respects. During fasting, for example, KBs supply more of the brain's energy in humans than in the rat. Conversely, KBs are probably used more extensively in the brain of suckling rats than in human neonates. These differences complicate the interpretation of rodent studies. Most patients with inborn errors of ketogenesis develop normally, suggesting that the only essential role for KBs is as an alternative fuel during illness or prolonged fasting. On the other hand, in HMG-CoA lyase deficiency, imaging generally shows asymptomatic white-matter abnormalities. The ability of KBs to act as an alternative fuel explains the effectiveness of the ketogenic diet in GLUT1 deficiency, but its effectiveness in epilepsy remains unexplained.

  6. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.

    Science.gov (United States)

    Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman

    2012-05-09

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.

  7. Expression changes of hippocampal energy metabolism enzymes contribute to behavioural abnormalities during chronic morphine treatment

    Institute of Scientific and Technical Information of China (English)

    Xiao-Lan Chen; Jing-Gen Liu; Gang Lu; Ying-Xia Gong; Liang-Cai Zhao; Jie Chen; Zhi-Qiang Chi; Yi-Ming Yang; Zhong Chen; Qing-lin Li

    2007-01-01

    Dependence and impairment of learning and memory are two well-established features caused by abused drugs such as opioids. The hippocampus is an important region associated with both drug dependence and learning and memory. However, the molecular events in hippocampus following exposure to abused drugs such as opioids are not well understood. Here we examined the effect of chronic morphine treatment on hippocampal protein expression by proteomic analyses. We found that chronic exposure of mice to morphine for 10 days produced robust morphine withdrawal jumping and memory impairment, and also resulted in a significant downregulation of hippocampal protein levels of three metabolic enzymes, including Fe-S protein 1 of NADH dehydrogenase, dihydrolipoamide acetyltransferase or E2 component of the pyruvate dehydrogenase complex and lactate dehydrogenase 2. Further real-time quantitative PCR analyses confirmed that the levels of the corresponding mRNAs were also remarkably reduced. Consistent with these findings, lower ATP levels and an impaired ability to convert glucose into ATP were also observed in the hippocampus of chronically treated mice. Opioid antagonist naltrexone administrated concomitantly with morphine significantly suppressed morphine withdrawal jumping and reversed the downregulation of these proteins. Acute exposure to morphine also produced robust morphine withdrawal jumping and significant memory impairment, but failed to decrease the expression of these three proteins. Intrahippocampal injection of D-glucose before morphine administration significantly enhanced ATP levels and suppressed morphine withdrawal jumping and memory impairment in acute morphine-treated but not in chronic morphine-treated mice. Intraperitoneal injection of high dose of D-glucose shows a similar effect on morphine-induced withdrawal jumping as the central treatment. Taken together, our results suggest that reduced expression of the three metabolic enzymes in the hippocampus as

  8. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet

    Directory of Open Access Journals (Sweden)

    Seyfried B

    2009-09-01

    Full Text Available Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect, malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  9. Experimental ocean acidification alters the allocation of metabolic energy.

    Science.gov (United States)

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  10. A possible relationship between gluconeogenesis and glycogen metabolism in rabbits during myocardial ischemia

    Directory of Open Access Journals (Sweden)

    RAQUEL R. DE AGUIAR

    2017-08-01

    Full Text Available ABSTRACT Ischemia is responsible for many metabolic abnormalities in the heart, causing changes in organ function. One of modifications occurring in the ischemic cell is changing from aerobic to anaerobic metabolism. This change causes the predominance of the use of carbohydrates as an energy substrate instead of lipids. In this case, the glycogen is essential to the maintenance of heart energy intake, being an important reserve to resist the stress caused by hypoxia, using glycolysis and lactic acid fermentation. In order to study the glucose anaerobic pathways utilization and understand the metabolic adaptations, New Zealand white rabbits were subjected to ischemia caused by Inflow occlusion technique. The animals were monitored during surgery by pH and lactate levels. Transcription analysis of the pyruvate kinase, lactate dehydrogenase and phosphoenolpyruvate carboxykinase enzymes were performed by qRT-PCR, and glycogen quantification was determined enzymatically. Pyruvate kinase transcription increased during ischemia, followed by glycogen consumption content. The gluconeogenesis increased in control and ischemia moments, suggesting a relationship between gluconeogenesis and glycogen metabolism. This result shows the significant contribution of these substrates in the organ energy supply and demonstrates the capacity of the heart to adapt the metabolism after this injury, sustaining the homeostasis during short-term myocardial ischemia.

  11. Effects of photoperiod on energy metabolism and thermogenesis in ...

    African Journals Online (AJOL)

    Administrator

    2010-12-27

    Dec 27, 2010 ... levels, the responses of this species were studied in different photoperiods. Experiment data ... thermogenesis. Key words: Melano-bellied oriental vole, photoperiod, energy metabolism, brown adipose tissue, cytochrome c .... Folin phenol method with bovine serum albumin as standard (Lowry et al., 1951).

  12. Glucose metabolism in obese and lean adolescents with polycystic ovary syndrome.

    Science.gov (United States)

    Poomthavorn, Preamrudee; Chaya, Weerapong; Mahachoklertwattana, Pat; Sukprasert, Matchuporn; Weerakiet, Sawaek

    2013-01-01

    Data on glucose metabolism in Asian adolescents with polycystic ovary syndrome (PCOS) are limited. Glucose metabolism assessment using an oral glucose tolerance test (OGTT) in obese and lean Thai adolescents with PCOS, and a comparison between the two groups were done. Thirty-one patients (19 obese, 12 lean) were enrolled. Their median (range) age was 14.9 (11.0-21.0) years. Eighteen patients had abnormal glucose metabolism (13 hyperinsulinemia, 4 impaired glucose tolerance, and 1 diabetes). Compared between obese [median (range) BMI Z-score, 1.6 (1.2-2.6)] and lean [median (range) BMI Z-score, 0.1 (-1.4 to 0.6)] patients, the frequencies of each abnormal OGTT category, areas under the curves of glucose and insulin levels, and insulinogenic index were not different; however, insulin resistance was greater in the obese group. In conclusion, a high proportion of our adolescents with PCOS had abnormal glucose metabolism. Therefore, OGTT should be performed in adolescents with PCOS for the early detection of abnormal glucose metabolism.

  13. The Role of Energy Metabolism in Cutaneous Sulfur Mustard Injury

    National Research Council Canada - National Science Library

    Martens, M. E

    2006-01-01

    .... Our research has shown that inhibition of energy metabolism and depletion of energy stores are a significant consequence of HD exposure and that this inhibition is severe enough to be a determining factor in both cell survival and repair of HD-induced damage. In this paper we present an overview of our results and conclusions to date and briefly discuss their implications.

  14. Rice bran water extract attenuates pancreatic abnormalities in high ...

    African Journals Online (AJOL)

    105 on pancreatic abnormalities in high-fat diet (HFD)-induced obese rats. Methods: Male ... initiation of these metabolic disturbances [2]. Under physiological ..... injury in the zucker diabetic fatty rat fed a chronic high- fat diet. Pancreas 2014 ...

  15. Lymphocytes Mitochondrial Physiology as Biomarker of Energy Metabolism during Fasted and Fed Conditions

    Directory of Open Access Journals (Sweden)

    Erika Cortez

    2012-01-01

    Full Text Available Mitochondria are central coordinators of energy metabolism, and changes of their physiology have long been associated with metabolic disorders. Thus, observations of energy dynamics in different cell types are of utmost importance. Therefore, tools with quick and easy handling are needed for consistent evaluations of such interventions. In this paper, our main hypothesis is that during different nutritional situations lymphocytes mitochondrial physiology could be associated with the metabolism of other cell types, such as cardiomyocytes, and consequently be used as metabolic biomarker. Blood lymphocytes and heart muscle fibers were obtained from both fed and 24 h-fasted mice, and mitochondrial analysis was assessed by high-resolution respirometry and western blotting. Carbohydrate-linked oxidation and fatty acid oxidation were significantly higher after fasting. Carnitine palmitoil transferase 1 and uncouple protein 2 contents were increased in the fasted group, while the glucose transporters 1 and 4 and the ratio phosphorylated AMP-activated protein kinase/AMPK did not change between groups. In summary, under a nutritional status modification, mitochondria demonstrated earlier adaptive capacity than other metabolic sensors such as glucose transporters and AMPK, suggesting the accuracy of mitochondria physiology of lymphocytes as biomarker for metabolic changes.

  16. Cofilin/Twinstar phosphorylation levels increase in response to impaired coenzyme a metabolism.

    Directory of Open Access Journals (Sweden)

    Katarzyna Siudeja

    Full Text Available Coenzyme A (CoA is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK, which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture--a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics.

  17. Toward a unified description of dark energy and dark matter from the abnormally weighting energy hypothesis

    International Nuclear Information System (INIS)

    Fuezfa, A.; Alimi, J.-M.

    2007-01-01

    The abnormally weighting energy hypothesis consists of assuming that the dark sector of cosmology violates the weak equivalence principle (WEP) on cosmological scales, which implies a violation of the strong equivalence principle for ordinary matter. In this paper, dark energy is shown to result from the violation of WEP by pressureless (dark) matter. This allows us to build a new cosmological framework in which general relativity is satisfied at low scales, as WEP violation depends on the ratio of the ordinary matter over dark matter densities, but at large scales, we obtain a general relativity-like theory with a different value of the gravitational coupling. This explanation is formulated in terms of a tensor-scalar theory of gravitation without WEP for which there exists a revisited convergence mechanism toward general relativity. The consequent dark energy mechanism build upon the anomalous gravity of dark matter (i) does not require any violation of the strong energy condition p 2 /3, (ii) offers a natural way out of the coincidence problem thanks to the nonminimal couplings to gravitation, (iii) accounts fairly for supernovae data from various simple couplings and with density parameters very close to the ones of the concordance model ΛCDM, and therefore suggests an explanation to its remarkable adequacy. Finally, (iv) this mechanism ends up in the future with an Einstein-de Sitter expansion regime once the attractor is reached

  18. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    Science.gov (United States)

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  19. Lower aerobic capacity was associated with abnormal intramuscular energetics in patients with metabolic syndrome

    International Nuclear Information System (INIS)

    Yokota, Takashi; Kinugawa, Shintaro; Okita, Koichi

    2011-01-01

    Lower aerobic capacity is a strong and independent predictor of cardiovascular morbidity and mortality in patients with metabolic syndrome (MetS). However, the mechanisms are not fully elucidated. We tested the hypothesis that skeletal muscle dysfunction could contribute to the lower aerobic capacity in MetS patients. The incremental exercise tests with cycle ergometer were performed in 12 male patients with MetS with no habitual exercise and 11 age-, sex- and activity-matched control subjects to assess the aerobic capacity. We performed 31 phosphorus-magnetic resonance spectroscopy (MRS) to assess the high-energy phosphate metabolism in skeletal muscle during aerobic exercise. Proton-MRS was also performed to measure intramyocellular lipid (IMCL) content. Peak oxygen uptake (peak VO 2 ; 34.1±6.2 vs. 41.4±8.4 ml kg -1 min -1 , P -1 min -1 , P 2 (r=-0.64) and AT (r=-0.60), respectively. IMCL content was threefold higher in MetS and was inversely correlated with peak VO 2 (r=-0.47) and AT (r=-0.52), respectively. Moreover, there was a positive correlation between IMCL content and PCr loss (r=0.64). These results suggested that lean-body aerobic capacity in MetS patients was lower compared with activity-matched healthy subjects, which might be due to the reduced intramuscular fatty acid oxidative metabolism. (author)

  20. Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments

    International Nuclear Information System (INIS)

    Ahn, Jonghoon; Cho, Soolyeon

    2017-01-01

    Highlights: •Integrated energy control model improves thermal comfort and mitigates an increase of energy consumption. •Communication between heating and cooling, thermal comfort, and decision making models optimizes energy supply. •PMV model effectively rectifies set-point temperature to reduce thermal dissatisfaction in various conditions. •Five-step decision making model properly responds to abnormal situations derived from human anti-logic or common sense. •Integrated model can be extended for managing risks caused by fire or disasters. -- Abstract: In spite of the remarkable development of technology, most studies for building energy controls to evaluate or estimate the energy performance have not accurately reflected actual building’s energy consumption patterns. For this issue, several techniques, such as simulation and calibration, comprehensive survey system, smart metering, and commissioning, have been attempted. However, in most studies, some factors in thermal systems derived from occupant behavior were perceived as fixed objects, and the factors were converted into simple numbers as parts of inputs into simulation templates. There was lack of studies on considerations that unpredictable responses derived from human anti-logic or common sense could deteriorate energy efficiency in theoretical analyses even though the systems were properly operated. This research proposes integrated energy supply models based on artificial intelligence responding to anti-logic or common sense that can reduce machine’s energy saving effects. By use of design scenarios assuming some unusual situations, a decision making model determines the extent to which the cause of the abnormal situations are associated with the occupant behavior. After the five-step phases in the decision making model, the actual outputs of the energy supply model for the buildings are determined, and the reciprocal communication between the thermal and decision making models mitigates

  1. KUDESAN EFFICACY IN ADOLESCENTS WITH METABOLIC SYNDROME

    Directory of Open Access Journals (Sweden)

    M.B. Kolesnikova

    2011-01-01

    Full Text Available Metabolic abnormalities in metabolic syndrome affect the functioning of practically all organs and systems, and most seriously — cardio-vascular system. Cardio-vascular abnormalities in metabolic syndrome manifest as arterial hypertension, Riley-Day syndrome and endothelial dysfunction that can lead to decrease of adaptive and reserve capabilities. Co-enzyme Q10 possesses cardioprotective,  stress-protective and anti-ischaemic activity. Clinical study performed on 40 children aged 10 to 17 years with constitutive obesity, complicated metabolic syndrome, has proven validity of co-enzyme Q10 treatment in patients with metabolic syndrome. The use of co-enzyme Q10 15 mg/day during 30 days has lead to improvement of psycho-emotional condition, decrease in anxiety complaints, sleep improvement, decrease in asthenic syndrome symptoms, improvement in electrophysiological heart indices Key words: metabolic syndrome, co-enzyme Q10. (Voprosy sovremennoi pediatrii — Current Pediatrics. — 2011; 10 (5: 102–106.

  2. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    DEFF Research Database (Denmark)

    Jansen, S W; Akintola, A A; Roelfsema, F

    2015-01-01

    hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring...... of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis...... may favour longevity without altering energy metabolism....

  3. Comparison of the metabolic energy cost of overground and treadmill walking in older adults.

    Science.gov (United States)

    Berryman, Nicolas; Gayda, Mathieu; Nigam, Anil; Juneau, Martin; Bherer, Louis; Bosquet, Laurent

    2012-05-01

    We assessed whether the metabolic energy cost of walking was higher when measured overground or on a treadmill in a population of healthy older adults. We also assessed the association between the two testing modes. Participants (n = 20, 14 men and 6 women aged between 65 and 83 years of age) were randomly divided into two groups. Half of them went through the overground-treadmill sequence while the other half did the opposite order. A familiarization visit was held for each participant prior to the actual testing. For both modes of testing, five walking speeds were experimented (0.67, 0.89, 1.11, 1.33 and 1.67 m s(-1)). Oxygen uptake was monitored for all walking speeds. We found a significant difference between treadmill and track metabolic energy cost of walking, whatever the walking speed. The results show that walking on the treadmill requires more metabolic energy than walking overground for all experimental speeds (P < 0.05). The association between both measures was low to moderate (0.17 < ICC < 0.65), and the standard error of measurement represented 6.9-15.7% of the average value. These data indicate that metabolic energy cost of walking results from a treadmill test does not necessarily apply in daily overground activities. Interventions aiming at reducing the metabolic energy cost of walking should be assessed with the same mode as it was proposed during the intervention. If the treadmill mode is necessary for any purposes, functional overground walking tests should be implemented to obtain a more complete and specific evaluation.

  4. Dietary Energy Source in Dairy Cows in Early Lactation: Metabolites and Metabolic Hormones

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Brand, van den H.; Graat, E.A.M.; Dijkstra, J.; Jorritsma, R.; Decuypere, M.P.; Tamminga, S.; Kemp, B.

    2007-01-01

    Negative energy balance-related metabolic disorders suggest that the balance between available lipogenic and glucogenic nutrients is important. The objectives of this study were to compare the effects of a glucogenic or a lipogenic diet on liver triacylglycerides (TAG), metabolites, and metabolic

  5. Resting and exercise energy metabolism in weight-reduced adults with severe obesity.

    Science.gov (United States)

    Hames, Kazanna C; Coen, Paul M; King, Wendy C; Anthony, Steven J; Stefanovic-Racic, Maja; Toledo, Frederico G S; Lowery, Jolene B; Helbling, Nicole L; Dubé, John J; DeLany, James P; Jakicic, John M; Goodpaster, Bret H

    2016-06-01

    To determine effects of physical activity (PA) with diet-induced weight loss on energy metabolism in adults with severe obesity. Adults with severe obesity (n = 11) were studied across 6 months of intervention, then compared with controls with less severe obesity (n = 7) or normal weight (n = 9). Indirect calorimetry measured energy metabolism during exercise and rest. Markers of muscle oxidation were determined by immunohistochemistry. Data were presented as medians. The intervention induced 7% weight loss (P = 0.001) and increased vigorous PA by 24 min/wk (P = 0.02). During exercise, energy expenditure decreased, efficiency increased (P ≤ 0.03), and fatty acid oxidation (FAO) did not change. Succinate dehydrogenase increased (P = 0.001), but fiber type remained the same. Post-intervention subjects' resting metabolism remained similar to controls. Efficiency was lower in post-intervention subjects compared with normal-weight controls exercising at 25 W (P ≤ 0.002) and compared with all controls exercising at 60% VO2peak (P ≤ 0.019). Resting and exercise FAO of post-intervention subjects remained similar to adults with less severe obesity. Succinate dehydrogenase and fiber type were similar across all body weight statuses. While metabolic adaptations to PA during weight loss occur in adults with severe obesity, FAO does not change. Resulting FAO during rest and exercise remains similar to adults with less severe obesity. © 2016 The Obesity Society.

  6. Correlations between cerebral glucose metabolism and neuropsychological test performance in nonalcoholic cirrhotics.

    Science.gov (United States)

    Lockwood, Alan H; Weissenborn, Karin; Bokemeyer, Martin; Tietge, U; Burchert, Wolfgang

    2002-03-01

    Many cirrhotics have abnormal neuropsychological test scores. To define the anatomical-physiological basis for encephalopathy in nonalcoholic cirrhotics, we performed resting-state fluorodeoxyglucose positron emission tomographic scans and administered a neuropsychological test battery to 18 patients and 10 controls. Statistical parametric mapping correlated changes in regional glucose metabolism with performance on the individual tests and a composite battery score. In patients without overt encephalopathy, poor performance correlated with reductions in metabolism in the anterior cingulate. In all patients, poor performance on the battery was positively correlated (p glucose metabolism in bifrontal and biparietal regions of the cerebral cortex and negatively correlated with metabolism in hippocampal, lingual, and fusiform gyri and the posterior putamen. Similar patterns of abnormal metabolism were found when comparing the patients to 10 controls. Metabolic abnormalities in the anterior attention system and association cortices mediating executive and integrative function form the pathophysiological basis for mild hepatic encephalopathy.

  7. Amelioration of Abnormalities Associated with the Metabolic Syndrome by Spinacia oleracea (Spinach) Consumption and Aerobic Exercise in Rats.

    Science.gov (United States)

    Panda, Vandana; Mistry, Kinjal; Sudhamani, S; Nandave, Mukesh; Ojha, Shreesh Kumar

    2017-01-01

    The present study evaluates the protective effects of an antioxidant-rich extract of Spinacea oleracea (NAOE) in abnormalities associated with the metabolic syndrome (MetS) in rats. HPTLC of NAOE revealed the presence of 13 total antioxidants, 14 flavonoids, and 10 phenolic acids. Rats administered with fructose (20%  w / v ) in drinking water for 45 days to induce abnormalities of MetS received NAOE (200 and 400 mg/kg, po), the standard drug gemfibrozil (60 mg/kg, po), aerobic exercise (AE), and a combination of NAOE 400 mg/kg and AE (NAOEAE) daily for 45 days. All treatments significantly altered the lipid profile and attenuated the fructose-elevated levels of uric acid, C-reactive protein, homocysteine, and marker enzymes (AST, LDH, and CK-MB) in serum and malondialdehyde in the heart and restored the fructose-depleted levels of glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase). A significant decrease in blood glucose and insulin levels decreased insulin resistance, and improved glucose tolerance was observed in the treatment animals when compared with the fructose-fed animals. The best mitigation of MetS was shown by the NAOEAE treatment indicating that regular exercise along with adequate consumption of antioxidant-rich foods such as spinach in diet can help control MetS.

  8. Amelioration of Abnormalities Associated with the Metabolic Syndrome by Spinacia oleracea (Spinach Consumption and Aerobic Exercise in Rats

    Directory of Open Access Journals (Sweden)

    Vandana Panda

    2017-01-01

    Full Text Available The present study evaluates the protective effects of an antioxidant-rich extract of Spinacea oleracea (NAOE in abnormalities associated with the metabolic syndrome (MetS in rats. HPTLC of NAOE revealed the presence of 13 total antioxidants, 14 flavonoids, and 10 phenolic acids. Rats administered with fructose (20% w/v in drinking water for 45 days to induce abnormalities of MetS received NAOE (200 and 400 mg/kg, po, the standard drug gemfibrozil (60 mg/kg, po, aerobic exercise (AE, and a combination of NAOE 400 mg/kg and AE (NAOEAE daily for 45 days. All treatments significantly altered the lipid profile and attenuated the fructose-elevated levels of uric acid, C-reactive protein, homocysteine, and marker enzymes (AST, LDH, and CK-MB in serum and malondialdehyde in the heart and restored the fructose-depleted levels of glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. A significant decrease in blood glucose and insulin levels decreased insulin resistance, and improved glucose tolerance was observed in the treatment animals when compared with the fructose-fed animals. The best mitigation of MetS was shown by the NAOEAE treatment indicating that regular exercise along with adequate consumption of antioxidant-rich foods such as spinach in diet can help control MetS.

  9. In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments.

    Science.gov (United States)

    Silva, Lourival A; Vinaud, Marina C; Castro, Ana Maria; Cravo, Pedro Vítor L; Bezerra, José Clecildo B

    2015-01-01

    Leishmaniasis is a complex disease that affects mammals and is caused by approximately 20 distinct protozoa from the genus Leishmania. Leishmaniasis is an endemic disease that exerts a large socioeconomic impact on poor and developing countries. The current treatment for leishmaniasis is complex, expensive, and poorly efficacious. Thus, there is an urgent need to develop more selective, less expensive new drugs. The energy metabolism pathways of Leishmania include several interesting targets for specific inhibitors. In the present study, we sought to establish which energy metabolism enzymes in Leishmania could be targets for inhibitors that have already been approved for the treatment of other diseases. We were able to identify 94 genes and 93 Leishmania energy metabolism targets. Using each gene's designation as a search criterion in the TriTrypDB database, we located the predicted peptide sequences, which in turn were used to interrogate the DrugBank, Therapeutic Target Database (TTD), and PubChem databases. We identified 44 putative targets of which 11 are predicted to be amenable to inhibition by drugs which have already been approved for use in humans for 11 of these targets. We propose that these drugs should be experimentally tested and potentially used in the treatment of leishmaniasis.

  10. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    Science.gov (United States)

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  11. Sex differences of human cortical blood flow and energy metabolism

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders

    2017-01-01

    cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral...... cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy...... turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity....

  12. Disrupted Bone Metabolism in Long-Term Bedridden Patients.

    Science.gov (United States)

    Eimori, Keiko; Endo, Naoto; Uchiyama, Seiji; Takahashi, Yoshinori; Kawashima, Hiroyuki; Watanabe, Kei

    2016-01-01

    Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism. This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH) vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years. Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients.

  13. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Science.gov (United States)

    Santos, Daniel M V; Katzmarzyk, Peter T; Diego, Vincent P; Souza, Michele C; Chaves, Raquel N; Blangero, John; Maia, José A R

    2013-01-01

    Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (pmetabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  14. Citrate Defines a Regulatory Link Between Energy Metabolism and the Liver Hormone Hepcidin

    OpenAIRE

    Ladeira Courelas da Silva, Ana Rita

    2017-01-01

    Iron plays a critical role as an oxygen carrier in hemoglobin as well as a constituent of iron-sulfur clusters. Increasing evidence suggests that mechanisms maintaining iron homeostasis cross-talk to intermediary metabolism. The liver hormone hepcidin is the key regulator of systemic iron metabolism. Hepcidin transcriptional control is linked to the nutrient-sensing mTOR pathway, proliferative signals, gluconeogenic responses during starvation and hormones that modulate energy metabolism. The...

  15. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  16. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    Science.gov (United States)

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  17. Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain.

    Directory of Open Access Journals (Sweden)

    Erwin van Vliet

    Full Text Available Intrauterine Growth Restriction (IUGR due to placental insufficiency occurs in 5-10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development.At gestation day 25, IUGR was induced in two New Zealand rabbits by 40-50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR.IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino acid levels, fatty acid profiles and oxidative stress

  18. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea

    Science.gov (United States)

    McGlynn, Shawn E.

    2017-01-01

    Anaerobic methane oxidation in archaea is often presented to operate via a pathway of “reverse methanogenesis”. However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens—in addition to unique terminal reductases—biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing “reverse” thermodynamic potentials. PMID:28321009

  19. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos.

    Science.gov (United States)

    Sommer, Felix; Ståhlman, Marcus; Ilkayeva, Olga; Arnemo, Jon M; Kindberg, Jonas; Josefsson, Johan; Newgard, Christopher B; Fröbert, Ole; Bäckhed, Fredrik

    2016-02-23

    Hibernation is an adaptation that helps many animals to conserve energy during food shortage in winter. Brown bears double their fat depots during summer and use these stored lipids during hibernation. Although bears seasonally become obese, they remain metabolically healthy. We analyzed the microbiota of free-ranging brown bears during their active phase and hibernation. Compared to the active phase, hibernation microbiota had reduced diversity, reduced levels of Firmicutes and Actinobacteria, and increased levels of Bacteroidetes. Several metabolites involved in lipid metabolism, including triglycerides, cholesterol, and bile acids, were also affected by hibernation. Transplantation of the bear microbiota from summer and winter to germ-free mice transferred some of the seasonal metabolic features and demonstrated that the summer microbiota promoted adiposity without impairing glucose tolerance, suggesting that seasonal variation in the microbiota may contribute to host energy metabolism in the hibernating brown bear. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity

    Directory of Open Access Journals (Sweden)

    Joseph F. Cavallari

    2017-09-01

    Full Text Available Obesity is associated with increased risk of developing metabolic diseases such as type 2 diabetes. The origins of obesity are multi-factorial, but ultimately rooted in increased host energy accumulation or retention. The gut microbiota has been implicated in control of host energy balance and nutrient extraction from dietary sources. The microbiota also impacts host immune status and dysbiosis-related inflammation can augment insulin resistance, independently of obesity. Advances in microbial metagenomic analyses and directly manipulating bacterial-host models of obesity have contributed to our understanding of the relationship between gut bacteria and metabolic disease. Foodborne, or drug-mediated perturbations to the gut microbiota can increase metabolic inflammation, insulin resistance, and dysglycemia. There is now some evidence that specific bacterial species can influence obesity and related metabolic defects such as insulin sensitivity. Components of bacteria are sufficient to impact obesity-related changes in metabolism. In fact, different microbial components derived from the bacterial cell wall can increase or decrease insulin resistance. Improving our understanding of the how components of the microbiota alter host metabolism is positioned to aid in the development of dietary interventions, avoiding triggers of dysbiosis, and generating novel therapeutic strategies to combat increasing rates of obesity and diabetes.

  1. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    OpenAIRE

    Ghalandari; Hosseini-Esfahani; Mirmiran

    2015-01-01

    Context Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. E...

  2. Genetic modulation of energy metabolism in birds through mitochondrial function

    NARCIS (Netherlands)

    Tieleman, B. Irene; Versteegh, Maaike A.; Fries, Anthony; Helm, Barbara; Dingemanse, Niels J.; Gibbs, H. Lisle; Williams, Joseph B.

    2009-01-01

    Despite their central importance for the evolution of physiological variation, the genetic mechanisms that determine energy expenditure in animals have largely remained unstudied. We used quantitative genetics to confirm that both mass-specific and whole-organism basal metabolic rate (BMR) were

  3. Congenital and Neurological Abnormalities in Infants with Phenylketonuria

    Science.gov (United States)

    Johnson, Charles F.; And Others

    1978-01-01

    Examined was the occurrence of congenital and neurological abnormalities in 150 children with phenylketonuria (PKU--a metabolic disorder which may result in mental retardation) age 1 year or older, who have been treated with a restricted phenylalanine diet, according to the protocol used in a nation-wide longitudinal collaborative study.…

  4. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  5. Energy Metabolism in the Liver

    OpenAIRE

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, p...

  6. Report to Congress on abnormal occurrences

    International Nuclear Information System (INIS)

    1993-06-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health and safety and requires a quarterly report of such events to be made to Congress. This report covers the period January through March 1993. There is one abnormal occurrence at a nuclear power plant disposed in this report that involved a steam generator tube rupture at Palo Verde Unit 2, and none for fuel cycle facilities. Three abnormal occurrences involving medical misadminstrations (two therapeutic and one diagnostic) at NRC-licensed facilities are also discussed in this report. No abnormal occurrences were reported by NRC's Agreement States. The report also contains information updating previously reported abnormal occurrences

  7. Renal abnormalities in congenital chloride diarrhea

    International Nuclear Information System (INIS)

    Al-Hamad, Nadia M.; Al-Eisa, Amal A.

    2004-01-01

    Congenital chloride diarrhea CLD is a rare autosomal recessive disorder caused by a defect in the chloride/ bicarbonate exchange in the ileum and colon. It is characterized by watery diarrhea, abdominal distension, hypochloremic hypokalemic metabolic alkalosis with high fecal content of chloride >90 mmol/l. We report 3 patients with CLD associated with various renal abnormalities including chronic renal failure secondary to renal hypoplasia, nephrocalcinosis and congenital nephrotic syndrome. (author)

  8. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.

  9. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  10. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis.

    Science.gov (United States)

    Karl, J Philip; Margolis, Lee M; Murphy, Nancy E; Carrigan, Christopher T; Castellani, John W; Madslien, Elisabeth H; Teien, Hilde-Kristin; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-09-01

    Military training studies provide unique insight into metabolic responses to extreme physiologic stress induced by multiple stressor environments, and the impacts of nutrition in mediating these responses. Advances in metabolomics have provided new approaches for extending current understanding of factors modulating dynamic metabolic responses in these environments. In this study, whole-body metabolic responses to strenuous military training were explored in relation to energy balance and macronutrient intake by performing nontargeted global metabolite profiling on plasma collected from 25 male soldiers before and after completing a 4-day, 51-km cross-country ski march that produced high total daily energy expenditures (25.4 MJ/day [SD 2.3]) and severe energy deficits (13.6 MJ/day [SD 2.5]). Of 737 identified metabolites, 478 changed during the training. Increases in 88% of the free fatty acids and 91% of the acylcarnitines, and decreases in 88% of the mono- and diacylglycerols detected within lipid metabolism pathways were observed. Smaller increases in 75% of the tricarboxylic acid cycle intermediates, and 50% of the branched-chain amino acid metabolites detected were also observed. Changes in multiple metabolites related to lipid metabolism were correlated with body mass loss and energy balance, but not with energy and macronutrient intakes or energy expenditure. These findings are consistent with an increase in energy metabolism, lipolysis, fatty acid oxidation, ketogenesis, and branched-chain amino acid catabolism during strenuous military training. The magnitude of the energy deficit induced by undereating relative to high energy expenditure, rather than macronutrient intake, appeared to drive these changes, particularly within lipid metabolism pathways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature.

    Science.gov (United States)

    Zhou, Qian; Zhang, Chunlei; Cheng, Shunchang; Wei, Baodong; Liu, Xiuying; Ji, Shujuan

    2014-12-01

    Low-temperature storage and transport of blueberries is widely practiced in commercial blueberry production. In this research, the storage life of blueberries was extended at low temperature, but fruit stored for 30 d at 0°C pitted after 2d at room-temperature. Fruit cellular structure and physiological parameters accompanying pitting in blueberries were changed. The objective of this research was to characterise properties of energy metabolism accompanying pitting in blueberries during storage, including adenosine phosphates and mitochondrial enzymes involved in stress responses. Physiological and metabolic disorders, changes in cell ultrastructure, energy content and ATPase enzyme activity were observed in pitting blueberries. Energy shortages and increased activity of phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were observed in fruit kept at shelf life. The results suggested that sufficient available energy status and a stable enzymatic system in blueberries collectively contribute to improve chilling tolerance, thereby alleviating pitting and maintaining quality of blueberry fruit in long-term cold storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Within-Day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes.

    Science.gov (United States)

    Torstveit, Monica Klungland; Fahrenholtz, Ida; Stenqvist, Thomas B; Sylta, Øystein; Melin, Anna

    2018-06-26

    Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMR ratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMR ratio   0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8-21.8] hr vs. 10.8 [2.5-16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. -1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = -.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.

  13. Hypothalamic energy metabolism is impaired by doxorubicin independently of inflammation in non-tumour-bearing rats.

    Science.gov (United States)

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2015-08-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothalamus. The DOXO group exhibited a decreased body weight (p hypothalamus is a central organ that regulates a great number of functions, such as food intake, temperature and energy expenditure, among others. Doxorubicin can lead to deep anorexia and metabolic chaos; thus, we observed the effect of this chemotherapeutic drug on the inflammation and metabolism in rats after the administration of doxorubicin in order to understand the central effect in the hypothalamus. Drug treatment by doxorubicin is used as a cancer therapy; however the use of this drug may cause harmful alterations to the metabolism. Thus, further investigations are needed on the impact of drug therapy over the long term. Copyright © 2015 John Wiley & Sons, Ltd.

  14. LGR4 and its role in intestinal protection and energy metabolism

    Directory of Open Access Journals (Sweden)

    Ziru eLi

    2015-08-01

    Full Text Available Leucine-rich repeat-containing G protein-coupled receptors (LGRs were identified by the unique nature of their long leucine-rich repeat extracellular domains. Distinct from classical G protein-coupled receptors which act via G proteins, LGR4 functions mainly through Wnt/β-catenin signaling to regulate cell proliferation, differentiation, and adult stem cell homeostasis. LGR4 is widely expressed in tissues ranging from the reproductive system, urinary system, sensory organs, digestive system, and the central nervous system, indicating LGR4 may have multiple functions in development. Here we focus on the digestive system by reviewing its effects on crypt cells differentiation and stem cells maintenance, which are important for cell regeneration after injury. Through effects on Wnt/β-catenin signaling and cell proliferation, LGR4 and its endogenous ligands, R-spondins, are involved in colon tumorigenesis. LGR4 also contributes to regulation of energy metabolism, including food intake, energy expenditure and lipid metabolism, as well as pancreatic β-cell proliferation and insulin secretion. This review summarizes the identification of LGR4, its endogenous ligand, ligand-receptor binding and intracellular signaling. Physiological functions include intestinal development and energy metabolism. The potential effects of LGR4 and its ligand in the treatment of inflammatory bowel disease, chemoradiotherapy induced gut damage, colorectal cancer and diabetes are also discussed.

  15. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect [v1; ref status: indexed, http://f1000r.es/a0

    Directory of Open Access Journals (Sweden)

    Halina Witkiewicz

    2013-01-01

    Full Text Available Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect. Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis, gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in

  16. Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina

    International Nuclear Information System (INIS)

    Recalde, Marina; Ramos-Martin, Jesús

    2012-01-01

    The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990–2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations. -- Highlights: ► We analyze Argentinean energy consumption and social metabolism using MuSIASEM.

  17. Hypothalamic control of energy metabolism via the autonomic nervous system

    NARCIS (Netherlands)

    Kalsbeek, A.; Bruinstroop, E.; Yi, C. X.; Klieverik, L. P.; La Fleur, S. E.; Fliers, E.

    2010-01-01

    The hypothalamic control of hepatic glucose production is an evident aspect of energy homeostasis. In addition to the control of glucose metabolism by the circadian timing system, the hypothalamus also serves as a key relay center for (humoral) feedback information from the periphery, with the

  18. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.

    Science.gov (United States)

    Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve

    2015-05-01

    Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

  19. The SCFA receptor GPR43 and energy metabolism

    Directory of Open Access Journals (Sweden)

    Ikuo eKimura

    2014-06-01

    Full Text Available Free fatty acids (FFAs are essential nutrients and act as signaling molecules in various cellular processes via binding with FFA receptors. Of these receptors, GPR43 is activated by short chain fatty acids (SCFAs; e.g., acetate, propionate, and butyrate. During feeding, SCFAs are produced by microbial fermentation of dietary fiber in the gut, and these SCFAs become important energy sources for the host. The gut microbiota affects nutrient acquisition and energy regulation of the host and can influence the development of obesity, insulin resistance, and diabetes. Recently, GPR43 has been reported to regulate host energy homeostasis in the gastrointestinal tract and adipose tissues. Hence, GPR43 is also thought to be a potential drug target for metabolic disorders, such as obesity and diabetes. In this review, we summarize the identification, structure, and activities of GPR43, with a focus on host energy regulation, and present an essential overview of our current understanding of its physiological roles in host energy regulation that is mediated by gut microbiota. We also discuss the potential for GPR43 as a therapeutic target.

  20. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  1. Interplay Between Diet, Gut Microbiota, Immune Cells and Energy Metabolism in Obesity Development

    DEFF Research Database (Denmark)

    Danneskiold-Samsøe, Niels Banhos

    Obesity and associated metabolic disorders such as type 2 diabetes are major causes of morbidity and mortality globally. A major contributor to development of the obesity pandemic has been the increasing intake of energy dense diets, consisting of dietary fats combined with high-glycemic carbohyd......Obesity and associated metabolic disorders such as type 2 diabetes are major causes of morbidity and mortality globally. A major contributor to development of the obesity pandemic has been the increasing intake of energy dense diets, consisting of dietary fats combined with high......-glycemic carbohydrates such as refined grains and sugars. The lack of sufficient therapeutic options for obesity, and the inability of most individuals to reduce energy intake or increase expenditure highlight the importance of understanding its underlying biological mechanisms. Obesity is associated with low...... in glucose intolerance without inflammatory changes in visceral fat or the liver, but with changes to the gut microbiota. Finally we find that fat cell specific activity of cyclooxygenase-2, an enzyme important for metabolism of fat, decreases body fat mass and increases insulin sensitivity associated...

  2. TREATMENT OF METABOLIC ALTERATIONS IN POLYCYSTIC OVARY SYNDROME.

    Science.gov (United States)

    Păvăleanu, Ioana; Gafiţanu, D; Popovici, Diana; Duceac, Letiţia Doina; Păvăleanu, Maricica

    2016-01-01

    Polycystic ovary syndrome is a common endocrinopathy characterized by oligo ovulation or anovulation, signs of androgen excess and multiple small ovarian cysts. It includes various metabolic abnormalities: insulin resistance, hyperinsulinemia, impaired glucose tolerance, visceral obesity, inflammation and endothelial dysfunction, hypertension and dyslipidemia. All these metabolic abnormalities have long-term implications. Treatment should be individualized and must not address a single sign or symptom. Studies are still needed to determine the benefits and the associated risks of the medication now available to practitioners.

  3. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia.

    Directory of Open Access Journals (Sweden)

    Michael Berney

    Full Text Available Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their

  4. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms.

    Science.gov (United States)

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study.

  5. Left globus pallidus abnormality in never-medicated patients with schizophrenia

    International Nuclear Information System (INIS)

    Early, T.S.; Reiman, E.M.; Raichle, M.E.; Spitznagel, E.L.

    1987-01-01

    Schizophrenia is a severe psychiatric disorder characterized by onset in young adulthood, the occurrence of hallucinations and delusions, and the development of enduring psychosocial disability. The pathophysiology of this disorder remains unknown. Studies of cerebral blood flow and metabolism designed to identify brain abnormalities in schizophrenia have been limited by inadequate methods of anatomical localization and the possibility of persistent medication effects. The authors have now used positron emission tomography and a validated method of anatomical localization in an attempt to identify abnormalities of regional cerebral blood flow in newly diagnosed never-medicated patients with schizophrenia. An exploratory study of 5 patients and 10 normal control subjects identified abnormally high blood flow in the left globus pallidus of patients with schizophrenia. A replication study of 5 additional patients and 10 additional control subjects confirmed this finding. No other abnormalities were found

  6. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective.

    Science.gov (United States)

    Massucci, Francesco A; DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Castillo, Isaac Perez; Marinari, Enzo; De Martino, Andrea

    2013-10-10

    The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange.

  7. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective

    Science.gov (United States)

    2013-01-01

    Background The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange. PMID:24112710

  8. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    Science.gov (United States)

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO

  9. Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental

    International Nuclear Information System (INIS)

    Davis, D.W.

    1987-01-01

    Regional brain glucose utilization (rCMRglc) was measured in rats during steady-state levels of intravenous anesthesia to determine if alterations in brain function due to anesthesia could provide information on the mechanisms of anesthesia. Intravenous anesthetics from three different chemical classes were studied: etomidate, ketamine and thiopental. All rCMRglc experiments were conducted in freely moving rats in isolation chambers, with the use of [6- 14 C] glucose and guantitative autoradiography. Etomidate caused a rostral-to-caudal gradient of depression of rCMRglc. The four doses of etomidate did not differ in their effects on energy metabolism. Sub-anesthetic (5 mg kg -1 ) and anesthetic (30 mg kg -1 ) doses of ketamine produced markedly different patterns of behavior. Brain energy metabolism during the sub-anesthetic dose was stimulated in most regions, while the anesthetic dose selectively stimulated the hippocampus, leaving most brain regions unaffected. Thiopental produced a dose-dependent reduction of rCMRglc in all gray matter regions. No brain region was selectively affected. Comparison of the drug-specific alterations of cerebral energy metabolism suggests these anesthetics do not act through a common mechanism. The hypothesis that each acts by binding to specific cell membrane receptors is consistent with these observations

  10. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    Science.gov (United States)

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  11. Erosion and redeposition of divertor and wall materials during abnormal events

    International Nuclear Information System (INIS)

    Hassanein, A.

    1990-09-01

    High energy deposition to in-vessel components of fusion reactors is expected to occur during abnormal operating conditions. This high energy dump in short times may result in very high surface temperatures and can cause severe erosion as a result of melting and vaporization of these components. One abnormal operating condition results from plasma disruptions where the plasma loses confinement and dumps its energy on reactor components. Another abnormal condition occurs when a neutral beam used in heating the plasma shines through the vacuum vessel to parts of the wall with no plasma present in the chamber. A third abnormal event that results in high energy deposition is caused by the runaway electrons to chamber components following a disruption. The failure of these components under the expected high heat loads can severely limit the operation of the fusion device. The redeposition of the eroded materials from these abnormal events over the first wall and other components may cause additional problems. Such problems are associated with tritium accumulation in the freshly deposited materials, charge exchange sputtering and additional impurity sources, and material compatibility issues

  12. Cerebral FDG-PET scanning abnormalities in optimally treated HIV patients

    DEFF Research Database (Denmark)

    Andersen, Åse Bengård; Law, Ian; Krabbe, Karen Suarez

    2010-01-01

    The long-term neurological consequences of HIV infection and treatment are not yet completely understood. In this study we examined the prevalence of cerebral metabolic abnormalities among a cohort of neurologically intact HIV patients with fully suppressed HIV viral loads. Concomitant analyses...

  13. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    Science.gov (United States)

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  14. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

    Science.gov (United States)

    Yaseen, Mohammad A; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A; Boas, David A

    2013-02-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

  15. Prevalence of Metabolic Syndrome and Its Individual Components Among Midwestern University Students.

    Science.gov (United States)

    Yahia, Najat; Brown, Carrie A; Snyder, Ericka; Cumper, Stephanie; Langolf, Andrea; Trayer, Chelsey; Green, Chelsea

    2017-08-01

    Michigan has the 17th highest adult obesity rate in the United States. Among college-aged adults between 18 and 25 years old, the rate of obesity was 11.6%. Obesity is a key precedent for the development of metabolic syndrome. Accordingly, the purpose of this study was to examine the prevalence of metabolic syndrome and its individual components among a sample of students at Central Michigan University. A cross-sectional survey was conducted among 462 students, aged 18-25 years, in Spring 2015 and Fall/Spring 2016 semesters. Students were recruited throughout the campus via flyers, in-class, and Blackboard announcements. Biochemical, anthropometric, and blood pressure measurements were taken for all students. Prevalence of metabolic syndrome was estimated based on the National Cholesterol Education Program's Adult Treatment Panel III guidelines. Multivariable analysis was used to assess the prevalence of metabolic risk components. To explore the association between metabolic risk factors and lifestyle behaviors, students filled out a validated online questionnaire related to their eating habits, physical activity, and sleep patterns. Metabolic syndrome was not prevalent in our sample. However, about one-third of the students had at least one metabolic abnormality, and 6.0% had two metabolic abnormalities. The most common metabolic abnormalities were low HDL-cholesterol levels (22.0%) and high waist circumference (12.6%), and elevated serum triglyceride (5.8%). Adjusting for other factors, excess adiposity and high visceral fat scores were associated with increased risk of metabolic risk factors, whereas healthy lifestyle practices such as daily breakfast consumption, eating three meals a day, being active, and not smoking were associated with lower risks for MetS. Given the adverse consequences of undiagnosed metabolic abnormalities, efforts to identify and manage MetS among asymptomatic college students, particularly women, is essential and warrants further

  16. Regulation of lipid metabolism by energy availability: a role for the central nervous system.

    Science.gov (United States)

    Nogueiras, R; López, M; Diéguez, C

    2010-03-01

    The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.

  17. GH and IGF1: roles in energy metabolism of long-living GH mutant mice.

    Science.gov (United States)

    Brown-Borg, Holly M; Bartke, Andrzej

    2012-06-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.

  18. Environmental physiology: effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation

    International Nuclear Information System (INIS)

    Sacher, G.A.; Rosenberg, R.S.; Duffy, P.H.; Obermeyer, W.; Russell, J.J.

    1979-01-01

    This section contains a summary of research on the effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation. So far, mice have been exposed to fast neutron-gamma radiation or to the chemical effluents of an atmospheric pressure experimental fluidized-bed combustor. The physiological parameters measured included: O 2 consumption; CO 2 production; motor activity; and deep body temperatures

  19. Effects of reducing dietary crude protein and metabolic energy in ...

    African Journals Online (AJOL)

    The objective of this experiment was to determine the effects of a pure reduction in the dietary crude protein (CP) and metabolic energy (ME) contents on growth performance, nutrient digestibility, blood profile, faecal microflora and odour gas emission in weaned pigs. A total of 80 weaned piglets ((Landrace × Yorkshire) ...

  20. Indicators for metabolic disturbances in anovulatory women with polycystic ovary syndrome diagnosed according to the Rotterdam consensus criteria

    NARCIS (Netherlands)

    Goverde, A. J.; van Koert, A. J. B.; Eijkemans, M. J.; Knauff, E. A. H.; Westerveld, H. E.; Fauser, B. C. J. M.; Broekmans, F. J.

    Polycystic ovary syndrome (PCOS) is associated with metabolic abnormalities. It is debated whether all women with PCOS should be screened for metabolic abnormalities as these may vary with PCOS phenotype, age and ethnicity. The aims of this study were to assess the prevalence of metabolic

  1. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    Science.gov (United States)

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  2. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  3. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  4. Brain 18F-FDG PET Metabolic Abnormalities in Patients with Long-Lasting Macrophagic Myofascitis.

    Science.gov (United States)

    Van Der Gucht, Axel; Aoun Sebaiti, Mehdi; Guedj, Eric; Aouizerate, Jessie; Yara, Sabrina; Gherardi, Romain K; Evangelista, Eva; Chalaye, Julia; Cottereau, Anne-Ségolène; Verger, Antoine; Bachoud-Levi, Anne-Catherine; Abulizi, Mukedaisi; Itti, Emmanuel; Authier, François-Jérôme

    2017-03-01

    The aim of this study was to characterize brain metabolic abnormalities in patients with macrophagic myofascitis (MMF) and the relationship with cognitive dysfunction through the use of PET with 18 F-FDG. Methods: 18 F-FDG PET brain imaging and a comprehensive battery of neuropsychological tests were performed in 100 consecutive MMF patients (age [mean ± SD], 45.9 ± 12 y; 74% women). Images were analyzed with statistical parametric mapping (SPM12). Through the use of analysis of covariance, all 18 F-FDG PET brain images of MMF patients were compared with those of a reference population of 44 healthy subjects similar in age (45.4 ± 16 y; P = 0.87) and sex (73% women; P = 0.88). The neuropsychological assessment identified 4 categories of patients: those with no significant cognitive impairment ( n = 42), those with frontal subcortical (FSC) dysfunction ( n = 29), those with Papez circuit dysfunction ( n = 22), and those with callosal disconnection ( n = 7). Results: In comparison with healthy subjects, the whole population of patients with MMF exhibited a spatial pattern of cerebral glucose hypometabolism ( P glucose hypometabolism that was most marked in MMF patients with FSC dysfunction. Further studies are needed to determine whether this pattern could represent a diagnostic biomarker of MMF in patients with chronic fatigue syndrome and cognitive dysfunction. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    Directory of Open Access Journals (Sweden)

    Kyle H. Elliott

    2013-04-01

    Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia. Because BMR and daily energy expenditure (DEE are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4 and triiodothyronine (T3 with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR. RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.

  6. Prevalence of the metabolic syndrome among employees in Northeast China

    NARCIS (Netherlands)

    Wang, X; Yang, Fang; Bots, Michiel L.; Guo, Wei Ying; Zhao, Bing; Hoes, Arno W.; Vaartjes, Ilonca

    2015-01-01

    Background: The metabolic syndrome is a clustering of metabolic abnormalities and has been associated with increased risk of type 2 diabetes mellitus and cardiovascular disease. This study aimed to estimate the prevalence of the metabolic syndrome among employees in Northeast China. Methods:

  7. In vivo measurements of cerebral metabolic abnormalities by proton spectroscopy after a transient ischemic attack revealing an internal carotid stenosis > 70%

    International Nuclear Information System (INIS)

    Giroud, M.; Becker, F.; Lemesle, M.; Walker, P.; Guy, F.; Martin, D.; Baudouin, N.; Brunotte, F.; Dumas, R.

    1996-01-01

    Aims: The aim of this work is to look for cerebral metabolic abnormalities within the first 3 days after a transient ischemic attack revealing an internal carotid stenosis > 70 %. Methods: Five patients with a transient ischemic attack lasting between 30 and 180 minutes, affecting sensory and motor brachio-facial territory, with or without aphasia. Were studied. A CT-scan, an EEG, a cervical Doppler ultrasound, a standard arteriography, a magnetic resonance imaging and a proton spectroscopy were performed within the cerebral area affected by the transient ischemic attack. We measured 2 markers: N-acetyl-aspartate, the marker of the neuronal mass, and lactate, the marker of anaerobe metabolism. In each case, a contralateral internal stenosis was diagnosed by cervical Doppler ultrasound and standard arteriography. No cerebral infarction was observed. Results: With the affected cerebral area defined according to clinical and EEG features, proton spectroscopy showed a significant rise of lactate, without any change in N-acetyl-aspartate levels. Conclusions: Within the first 3 days after a transient ischemic attack, there is a significant risk of lactate inside the affected cerebral area. This change may reflect a localized and transient hypoperfusion, but long enough to induce a rise of lactate but not sufficient to produce a cerebral infarct. This area is probably at risk to induce cerebral infarct. This data lead us to study the metabolic change induced by the asymptomatic internal carotid stenosis. (authors). 18 refs

  8. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J.; Petit, Jean-Marie

    2016-01-01

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs

  9. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Arai, Takeshi; Kim, Hyoun-ju; Hirako, Satoshi; Nakasatomi, Maki; Chiba, Hiroshige; Matsumoto, Akiyo

    2013-01-01

    We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets - LSO, FO2.5, FO12.5 or FO25 - containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Catalonia's energy metabolism: Using the MuSIASEM approach at different scales

    International Nuclear Information System (INIS)

    Ramos-Martin, Jesus; Canellas-Bolta, Silvia; Giampietro, Mario; Gamboa, Gonzalo

    2009-01-01

    This paper applies the so-called Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM), based on Georgescu-Roegen's fund-flow model, to the Spanish region of Catalonia. It arrives to the conclusion that within the context of the end of cheap oil, the current development model of the Catalan economy, based on the growth of low-productivity sectors such as services and construction, must be changed. The change is needed not only because of the increasing scarcity of affordable energy and the increasing environmental impact of present development, but also because of the aging population. Moreover, the situation experienced by Catalonia is similar to that of other European countries and many other developed countries. This implies that we can expect a wave of major structural changes in the economy of developed countries worldwide. To make things more challenging, according to current trends, the energy intensity and exosomatic energy metabolism of Catalonia will keep increasing in the near future. To avoid a reduction in the standard of living of Catalans due to a reduction in the available energy it is important that the Government of Catalonia implement major adjustments and conservation efforts in both the household and paid-work sectors.

  11. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Directory of Open Access Journals (Sweden)

    Daniel M V Santos

    Full Text Available Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001 for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  12. An Integrative Approach to Energy Carbon and Redox Metabolism In Cyanobacterium Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ross Overbeek

    2003-06-30

    The main objectives for the first year were to produce a detailed metabolic reconstruction of synechocystis sp.pcc6803 especially in interrelated arrears of photosynthesis respiration and central carbon metabolism to support a more complete understanding and modeling of this organism. Additionally, IG, Inc. provided detailed bioinformatic analysis of selected functional systems related to carbon and energy generation and utilization, and of the corresponding pathways functional roles and individual genes to support wet lab experiments by collaborators.

  13. Energy metabolism of overweight women before, during and after weight reduction, assessed by indirect calorimetry

    NARCIS (Netherlands)

    Groot, de C.P.G.M.

    1988-01-01

    Previous studies had suggested that periods of low energy intake evoke compensatory adaptations in energy metabolism, which retard weight loss, and promote weight regain when energy intake returns to normal. The aim of this thesis was to investigate whether a slimming (low-energy) diet based on

  14. Body size, body composition, and metabolic profile explain higher energy expenditure in overweight children

    Science.gov (United States)

    Lower relative rates of energy expenditure (EE), increased energetic efficiency, and altered fuel utilization purportedly associated with obesity have not been demonstrated indisputably in overweight children. We hypothesized that differences in energy metabolism between nonoverweight and overweight...

  15. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  16. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  17. A20 modulates lipid metabolism and energy production to promote liver regeneration.

    Directory of Open Access Journals (Sweden)

    Scott M Damrauer

    2011-03-01

    Full Text Available Liver regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-κB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice.We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20 and rAd.βgalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-κB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV.This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid metabolism, and down-regulated inflammation. These findings

  18. Hypothalamic Energy Metabolism Is Impaired By Doxorubicin Independently Of Inflammation In Non-tumour-bearing Rats.

    OpenAIRE

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2016-01-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothala...

  19. HIV and antiretroviral therapy: lipid abnormalities and associated cardiovascular risk in HIV-infected patients.

    Science.gov (United States)

    Kotler, Donald P

    2008-09-01

    It has been demonstrated that patients on highly active antiretroviral therapy are at increased risk for developing metabolic abnormalities that include elevated levels of serum triglycerides and low-density lipoprotein cholesterol and reduced levels of high-density lipoprotein cholesterol. This dyslipidemia is similar to that seen in the metabolic syndrome, raising the concern that highly active antiretroviral therapy also potentially increases the risk for cardiovascular complications. This paper reviews the contribution of both HIV infection and the different components of highly active antiretroviral therapy to dyslipidemia and the role of these abnormalities toward increasing the risk of cardiovascular disease in HIV-infected patients; therapeutic strategies to manage these risks are also considered.

  20. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders

  1. Recently Discovered Adipokines and Cardio-Metabolic Comorbidities in Childhood Obesity

    Directory of Open Access Journals (Sweden)

    Gloria Maria Barraco

    2014-10-01

    Full Text Available White adipose tissue (WAT asset, in terms of cell number, fat storage capacity and endocrine function, is largely determined in early stages of life and is pivotal for shaping the WAT pro-inflammatory behavior. WAT derived adipokines have been shown to play a main role in several cardio-metabolic abnormalities of obesity. This review focuses on the most recently identified adipokines, namely adipocyte-fatty acid-binding protein, chemerin, fibroblast growth factor-21, lipocalin-2, omentin-1 and vaspin; their role in the pathogenesis of obesity and associated cardio-metabolic abnormalities; and on their adaptive response to body weight change. Evidence consistently suggests a pathogenic role for A-FABP, chemerin and FGF-21. Nevertheless, large population studies are needed to verify whether they can be useful to predict the risk of cardio-metabolic abnormalities in adulthood and/or monitor the clinical response to therapeutic interventions.

  2. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism.

    Science.gov (United States)

    Jansen, S W; Akintola, A A; Roelfsema, F; van der Spoel, E; Cobbaert, C M; Ballieux, B E; Egri, P; Kvarta-Papp, Z; Gereben, B; Fekete, C; Slagboom, P E; van der Grond, J; Demeneix, B A; Pijl, H; Westendorp, R G J; van Heemst, D

    2015-06-19

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism.

  3. Report to Congress on abnormal occurrences

    International Nuclear Information System (INIS)

    1990-10-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from April 1 through June 30, 1990. The report discusses six abnormal occurrences, none involving a nuclear power plant. There were five abnormal occurrences at NRC licensees: (1) deficiencies in brachytherapy program; (2) a radiation overexposure of a radiographer; (3) a medical diagnostic misadministration; (4) administration of iodine-131 to a lactating female with subsequent uptake by her infant; and (5) a medical therapy misadministration. An Agreement State (Arizona) reported an abnormal occurrence involving a medical diagnostic misadministration. The report also contains information that updates a previously reported occurrence

  4. White matter microstructure and cognitive decline in metabolic syndrome: a review of diffusion tensor imaging.

    Science.gov (United States)

    Alfaro, Freddy J; Gavrieli, Anna; Saade-Lemus, Patricia; Lioutas, Vasileios-Arsenios; Upadhyay, Jagriti; Novak, Vera

    2018-01-01

    Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Basal metabolic rate in relation to body composition and daily energy expenditure in the field vole, Microtus agrestis

    NARCIS (Netherlands)

    Meerlo, P; Bolle, L; Visser, GH; Masman, D; Daan, S

    1997-01-01

    Basal metabolic rate in the field vole (Microtus agrestis) was studied in relation to body composition and daily energy expenditure in the field Daily energy expenditure was measured by means of doubly labelled water ((D2O)-O-18). In the same individuals, basal metabolic rate was subsequently

  6. Impact of hypothalamic reactive oxygen species in the control of energy metabolism and food intake

    Directory of Open Access Journals (Sweden)

    Anne eDrougard

    2015-02-01

    Full Text Available Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC and agouti-related protein (AgRP/neuropeptide Y (NPY neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,..., neurotransmitters and nutrients (glucose, lipids,.... The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes.In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  7. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake.

    Science.gov (United States)

    Drougard, Anne; Fournel, Audren; Valet, Philippe; Knauf, Claude

    2015-01-01

    Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  8. Practicing Tai Chi had lower energy metabolism than walking but similar health benefits in terms of aerobic fitness, resting energy expenditure, body composition and self-perceived physical health.

    Science.gov (United States)

    Hui, Stanley Sai-Chuen; Xie, Yao Jie; Woo, Jean; Kwok, Timothy Chi-Yui

    2016-08-01

    To examine the effects of Tai Chi and walking training on aerobic fitness, resting energy expenditure (REE), body composition, and quality of life; as well as analyzing the energy metabolism during exercises, to determine which one had better advantage in improving health status. Three hundred seventy-four middle-aged Chinese subjects who were recruited from nine geographic areas in Sha Tin were randomized into Tai Chi, walking, or control groups at area level. The 12-week (45min per day, 5days per week) Tai Chi or brisk walking training were conducted in respective intervention groups. Measures were performed at baseline and end of trial. Another 30 subjects were recruited to compare the energy metabolism between practicing Tai Chi and walking. The between-group difference of VO2max was 3.3ml/min/kg for Tai Chi vs. control and 3.7ml/min/kg for walking vs. control (both Pwalking. Regarding to energy metabolism test, the self-paced walking produced approximately 46% higher metabolic costs than Tai Chi. Practicing Tai Chi consumes a smaller amount of energy metabolism but similar health benefits as self-paced brisk walking. Copyright © 2016. Published by Elsevier Ltd.

  9. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    Science.gov (United States)

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-10-29

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.

  10. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  11. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    Science.gov (United States)

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  12. Frequency of feeding, weight reduction and energy metabolism.

    Science.gov (United States)

    Verboeket-van de Venne, W P; Westerterp, K R

    1993-01-01

    A study was conducted to investigate the effect of feeding frequency on the rate and composition of weight loss and 24 h energy metabolism in moderately obese women on a 1000 kcal/day diet. During four consecutive weeks fourteen female adults (age 20-58 years, BMI 25.4-34.9 kg/m2) restricted their food intake to 1000 kcal/day. Seven subjects consumed the diet in two meals daily (gorging pattern), the others consumed the diet in three to five meals (nibbling pattern). Body mass and body composition, obtained by deuterium dilution, were measured at the start of the experiment and after two and four weeks of dieting. Sleeping metabolic rate (SMR) was measured at the same time intervals using a respiration chamber. At the end of the experiment 24 h energy expenditure (24 h EE) and diet-induced thermogenesis (DIT) were assessed by a 36 h stay in the respiration chamber. There was no significant effect of the feeding frequency on the rate of weight loss, fat mass loss or fat-free mass loss. Furthermore, fat mass and fat-free mass contributed equally to weight loss in subjects on both gorging and nibbling diet. Feeding frequency had no significant effect on SMR after two or four weeks of dieting. The decrease in SMR after four weeks was significantly greater in subjects on the nibbling diet. 24 h EE and DIT were not significantly different between the two feeding regimens.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A PET study of cerebellar metabolism in normal and abnormal states

    International Nuclear Information System (INIS)

    Kushner, M.; Alavi, A.; Chawluk, J.; Silver, F.; Dann, R.; Rosen, M.; Reivich, M.

    1985-01-01

    The authors studied cerebellar metabolism under varying conditions of sensory stimulation. Cerebellar glucose consumption was measured by positron emission scanning and 18F-fluorodeoxyglucose in 64 subjects. Cerebellar metabolism relative to the whole brain (CM), and the asymmetry of metabolism between the cerebellar hemispheres (CA) was determined. The lowest CM occurred with maximal sensory deprivation, eyes and ears closed, (CM=96%, n=6). CM increased nonsignificantly with visual stimulation (CM=99%,n=17) and was highest for auditory stimulation (CM=104%,n=10,p<.05). CA was unaffected by sensory input. Under ambient conditions the CM values were 101%, 113% and 135% respectively for young controls (n=9, age=22), old controls (n=8, age=61) and Alzheimer patients (SDAT, n=14, age=69). This difference was significant for SDAT vs young and old controls and was nearly significant for young vs old controls

  14. Metabolic anatomy of paraneoplastic cerebellar degeneration

    International Nuclear Information System (INIS)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-01-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis

  15. Endocrine and metabolic aspects of the Wolfram syndrome.

    Science.gov (United States)

    Boutzios, Georgios; Livadas, Sarantis; Marinakis, Evangelos; Opie, Nicole; Economou, Frangiskos; Diamanti-Kandarakis, Evanthia

    2011-08-01

    Wolfram syndrome (WS), also known as DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy and Deafness), is a neurodegenerative disease with autosomal recessive inheritance with incomplete penetrance. DIDMOAD is a very rare disease with an estimated prevalence of 1 in 770,000 and it is believed to occur in 1 of 150 patients with juvenile-onset insulin-dependent diabetes mellitus. Additionally, WS may also present with different endocrine and metabolic abnormalities such as anterior and posterior pituitary gland dysfunction. This mini-review summarizes the variable presentation of WS and the need of screening for other metabolic and hormonal abnormalities, coexisting in this rare syndrome.

  16. Energy metabolism and inflammation in brain aging and Alzheimer's disease.

    Science.gov (United States)

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-11-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A review of some metabolic changes in protein-energy malnutrition.

    Science.gov (United States)

    Akuyam, S A

    2007-06-01

    Protein-energy malnutrition (PEM) is a major public health problem in the tropical and subtropical regions of the world and often arises during protein and / or energy deficit due to nutritional inadequacy, infections and poor socio-economic and environmental conditions. It is the most common nutritional disorder affecting children in developing countries and the third most common disease of childhood in such countries. PEM has a lasting effect on immune functions, growth and development of children, learning ability, social adjustment, work efficiency and productivity of labour. It seems that many deaths from PEM occur as a result of outdated clinical practices and that improving these practices reduces the rate of morbidity and mortality. This paper reviews various metabolic changes in protein-energy malnutrition (PEM). It gives an overview of the theoretical basis for the understanding of the biochemical derangements in PEM. It aims at stimulating the paediatricians and clinical chemists to read more on the recent advances in this broad subject with the view to improving the understanding of the current laboratory investigation of PEM. This review demonstrates that the metabolic changes in PEM include water and electrolytes imbalance, amino acids and proteins deficiencies, carbohydrates and energy deficiencies, hypolipidaemias, hypolipoproteinaemias, hormonal imbalance, deficiency of anti-oxidant vitamins and enzymes, depression of cell-mediated immune complexes and decrease in amino acids and trace elements in skin and hair. The review therefore suggests that assessment of these conditions in PEM patients could improve the management of this group of patients and hence reduce the rate of morbidity and mortality from PEM.

  18. Differential regulation of metabolic parameters by energy deficit and hunger.

    Science.gov (United States)

    Kitka, Tamás; Tuza, Sebestyén; Varga, Balázs; Horváth, Csilla; Kovács, Péter

    2015-10-01

    Hypocaloric diet decreases both energy expenditure (EE) and respiratory exchange rate (RER), affecting the efficacy of dieting inversely. Energy deficit and hunger may be modulated separately both in human and animal studies by drug treatment or food restriction. Thus it is important to separate the effects of energy deficit and hunger on EE and RER. Three parallel and analogous experiments were performed using three pharmacologically distinct anorectic drugs: rimonabant, sibutramine and tramadol. Metabolic parameters of vehicle- and drug-treated and pair-fed diet-induced obese mice from the three experiments underwent common statistical analysis to identify effects independent of the mechanisms of action. Diet-induced obesity (DIO) test of tramadol was also performed to examine its anti-obesity efficacy. RER was decreased similarly by drug treatments and paired feeding throughout the experiment irrespective of the cause of reduced food intake. Contrarily, during the passive phase, EE was decreased more by paired feeding than by both vehicle and drug treatment irrespective of the drug used. In the active phase, EE was influenced by the pharmacological mechanisms of action. Tramadol decreased body weight in the DIO test. Our results suggest that RER is mainly affected by the actual state of energy balance; conversely, EE is rather influenced by hunger. Therefore, pharmacological medications that decrease hunger may enhance the efficacy of a hypocaloric diet by maintaining metabolic rate. Furthermore, our results yield the proposal that effects of anorectic drugs on EE and RER should be determined compared to vehicle and pair-fed groups, respectively, in animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Report to Congress on abnormal occurrences, October--December 1992

    International Nuclear Information System (INIS)

    1993-03-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from October 1 through December 31, 1992. There are two abnormal occurrences at nuclear power plants and six abnormal occurrences involving medical misadministration (all therapeutic) at NRC-licensed facilities discussed in this report. No abnormal occurrences were reported by the NRC's Agreement States. The report also contains information updating three previously reported abnormal occurrences

  20. Report to congress on abnormal occurrences: January--March 1992

    International Nuclear Information System (INIS)

    1992-07-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to congress. This report covers the period from January 1 through March 31, 1992. The abnormal occurrences involving medical therapy misadministrations at NRC-licensed facilities are discussed in this report. There were no abnormal occurrences at a nuclear power plant, and none were reported by NRC's Agreement States. The report also contains information updating some previously reported abnormal occurrences

  1. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans

    NARCIS (Netherlands)

    Timmers, Silvie; Konings, Ellen; Bilet, Lena; Houtkooper, Riekelt H.; Weijer, van de Tineke; Hoeks, Joris; Krieken, van der Sophie; Ryu, Dongryeol; Kersten, Sander; Moonen-Kornips, Esther; Goossens, Gijs H.; Hesselink, Matthijs K.; Kunz, Iris; Schrauwen-Hinderling, Vera B.; Blaak, Ellen E.; Auwerx, Johan; Schrauwen, Patrick

    2011-01-01

    Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized

  2. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    Science.gov (United States)

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera , detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  3. Change in energy metabolism of in vitro produced embryos: an alternative to make them more cryoresistant?

    Directory of Open Access Journals (Sweden)

    Luzia Renata Oliveira Dias

    2017-08-01

    Full Text Available For the development of in vitro produced (IVP as well as in vivo produced bovine embryos, it is extremely important that their energy metabolism works properly because the embryo must be able to metabolize energy substrates that are necessary for producing energy. Lipids play an important role in early embryonic development, acting as source of energy for oocytes and embryos. However, it is known that oocytes and embryos, mainly IVP, accumulate large amounts of lipids in the cytoplasm. Although they are extremely important in embryonic development, lipids have been associated with the reduced survival of bovine embryos following cryopreservation. There is evidence that at least four different categories of lipids affect embryo survival after cryopreservation, including triglycerides (TAG, free fatty acids, cholesterol and phospholipids. Thus, many studies are being conducted to improve the resistance of IVP embryos to the cryopreservation process by reducing the concentration or removing the source of serum from the medium or by reducing oocyte/embryo lipids using mechanical or chemical means. Regarding the use of delipidating agents that reduce the uptake and synthesis of fatty acids (FA by cells, substances such as phenazine ethosulfate (PES, forskolin, L-carnitine and isomers of conjugated linoleic acid (CLA have been utilized. This review aims to address important issues related to embryonic energy metabolism, the importance of lipid metabolism and its relation to the cryopreservation of IVP bovine embryos by summarizing the latest research in this field.

  4. Hormonal contraception in obesity, the metabolic syndrome, and diabetes

    DEFF Research Database (Denmark)

    Skouby, S.O.

    2010-01-01

    The rate of obesity worldwide is currently at epidemic proportions. As part of obesity, the metabolic syndrome describes a clustering of metabolic abnormalities that increase the cardiovascular and diabetes risk. In particular, women from developing countries have diabetes in the reproductive age...... diabetes, hormonal contraception should therefore be part of the highly needed preconception care and metabolic control...

  5. Hormonal Contraception in obestiy, the metabolic syndrome, and diabetes

    DEFF Research Database (Denmark)

    Skouby, Sven O.

    2010-01-01

    The rate of obesity worldwide is currently at epidemic proportions. As part of obesity, the metabolic syndrome describes a clustering of metabolic abnormalities that increase the cardiovascular and diabetes risk. In particular, women from developing countries have diabetes in the reproductive age...... diabetes, hormonal contraception should therefore be part of the highly needed preconception care and metabolic control...

  6. Are barriers to physical activity similar for adults with and without abnormal glucose metabolism?

    Science.gov (United States)

    Hume, Clare; Dunstan, David; Salmon, Jo; Healy, Genevieve; Andrianopoulos, Nick; Owen, Neville

    2010-01-01

    The purpose of this study was to examine perceived barriers to physical activity among adults with and without abnormal glucose metabolism (AGM), and whether barriers varied according to physical activity status. The 1999 to 2000 Australian Diabetes, Obesity, and Lifestyle Study (AusDiab) was a population-based cross-sectional study among adults aged > or =25 years. AGM was identified through an oral glucose tolerance test. The previous week's physical activity and individual, social, and environmental barriers to physical activity were self-reported. Logistic regression analyses examined differences in barriers to physical activity between those with and without AGM, and for those with and without AGM who did and did not meet the minimum recommendation of 150 minutes/week of moderate-to-vigorous intensity physical activity. Of the 7088 participants (47.5 +/- 12.7 years; 46% male), 18.5% had AGM. Approximately 47.5% of those with AGM met the physical activity recommendation, compared to 54.7% of those without AGM (P barriers to physical activity included lack of time, other priorities, and being tired. Following adjustment for sociodemographic and behavioral factors, there were few differences in barriers to physical activity between those with and without AGM, even after stratifying according to physical activity. Adults with AGM report similar barriers to physical activity, as do those without AGM. Programs for those with AGM can therefore focus on the known generic adult-reported barriers to physical activity.

  7. Free fatty acid receptors and their role in regulation of energy metabolism.

    Science.gov (United States)

    Hara, Takafumi; Kimura, Ikuo; Inoue, Daisuke; Ichimura, Atsuhiko; Hirasawa, Akira

    2013-01-01

    The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

  8. Teaching Energy Metabolism Using Scientific Articles: Implementation of a Virtual Learning Environment for Medical Students

    Science.gov (United States)

    de Espindola, Marina Bazzo; El-Bacha, Tatiana; Giannella, Tais Rabetti; Struchiner, Miriam; da Silva, Wagner S.; Da Poian, Andrea T.

    2010-01-01

    This work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as…

  9. Enzymes of energy metabolism in hatchlings of amazonian freshwater turtles (Testudines, Podocnemididae

    Directory of Open Access Journals (Sweden)

    WP. Duncan

    Full Text Available The metabolic profiles of selected tissues were analyzed in hatchlings of the Amazonian freshwater turtles Podocnemis expansa, P. unifilis and P. sextuberculata. Metabolic design in these species was judged based on the key enzymes of energy metabolism, with special emphasis on carbohydrate, lipid, amino acid and ketone body metabolism. All species showed a high glycolytic potential in all sampled tissues. Based on low levels of hexokinase, glycogen may be an important fuel for these species. The high lactate dehydrogenase activity in the liver may play a significant role in carbohydrate catabolism, possibly during diving. Oxidative metabolism in P. sextuberculata appears to be designed for the use of lipids, amino acids and ketone bodies. The maximal activities of 3-hydroxyacyl-CoA dehydrogenase, malate dehydrogenase, glutamine dehydrogenase, alanine aminotransferase and succinyl-CoA keto transferase display high aerobic potential, especially in muscle and liver tissues of this species. Although amino acids and ketone bodies may be important fuels for oxidative metabolism, carbohydrates and lipids are the major fuels used by P. expansa and P. unifilis. Our results are consistent with the food habits and lifestyle of Amazonian freshwater turtles. The metabolic design, based on enzyme activities, suggests that hatchlings of P. unifilis and P. expansa are predominately herbivorous, whereas P. sextuberculata rely on a mixed diet of animal matter and vegetation.

  10. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  11. Metabolic consequences of stress during childhood and adolescence.

    Science.gov (United States)

    Pervanidou, Panagiota; Chrousos, George P

    2012-05-01

    Stress, that is, the state of threatened or perceived as threatened homeostasis, is associated with activation of the stress system, mainly comprised by the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous systems. The stress system normally functions in a circadian manner and interacts with other systems to regulate a variety of behavioral, endocrine, metabolic, immune, and cardiovascular functions. However, the experience of acute intense physical or emotional stress, as well as of chronic stress, may lead to the development of or may exacerbate several psychologic and somatic conditions, including anxiety disorders, depression, obesity, and the metabolic syndrome. In chronically stressed individuals, both behavioral and neuroendocrine mechanisms promote obesity and metabolic abnormalities: unhealthy lifestyles in conjunction with dysregulation of the stress system and increased secretion of cortisol, catecholamines, and interleukin-6, with concurrently elevated insulin concentrations, lead to development of central obesity, insulin resistance, and the metabolic syndrome. Fetal life, childhood, and adolescence are particularly vulnerable periods of life to the effects of intense acute or chronic stress. Similarly, these life stages are crucial for the later development of behavioral, metabolic, and immune abnormalities. Developing brain structures and functions related to stress regulation, such as the amygdala, the hippocampus, and the mesocorticolimbic system, are more vulnerable to the effects of stress compared with mature structures in adults. Moreover, chronic alterations in cortisol secretion in children may affect the timing of puberty, final stature, and body composition, as well as cause early-onset obesity, metabolic syndrome, and type 2 diabetes mellitus. The understanding of stress mechanisms leading to metabolic abnormalities in early life may lead to more effective prevention and intervention strategies of obesity

  12. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism

    DEFF Research Database (Denmark)

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J

    2016-01-01

    implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role...... homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been...

  13. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind

  14. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans

    NARCIS (Netherlands)

    Timmers, Silvie; Konings, Ellen; Bilet, Lena; Houtkooper, Riekelt H.; van de Weijer, Tineke; Goossens, Gijs H.; Hoeks, Joris; van der Krieken, Sophie; Ryu, Dongryeol; Kersten, Sander; Moonen-Kornips, Esther; Hesselink, Matthijs K. C.; Kunz, Iris; Schrauwen-Hinderling, Vera B.; Blaak, Ellen E.; Auwerx, Johan; Schrauwen, Patrick

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind

  15. [Metabolic abnormalities in polycystic ovary syndrome women: obese and non obese].

    Science.gov (United States)

    Romano, Lucas Gabriel Maltoni; Bedoschi, Giuliano; Melo, Anderson Sanches; Albuquerque, Felipe Oliveira de; Rosa e Silva, Ana Carolina Japur de Sá; Ferriani, Rui Alberto; Navarro, Paula Andrea

    2011-06-01

    To compare the metabolic characteristics of obese and non-obese young women with polycystic ovary syndrome (POS) from the Brazilian Southeast. This was a cross-sectional study conducted on 218 women of reproductive age with a diagnosis of POS--90 non-obese women (BMI between 18.5 and 29.9 kg/m²), and 128 obese patients (BMI > 30 kg/m²) selected at the time of diagnosis. The frequency of insulin resistance (IR), glucose intolerance (GI), metabolic syndrome (MetS) and type 2 diabetes mellitus (DM2) and mean values of total cholesterol (TC), triglycerides (TG), high-density (HDL) and low-density lipoproteins (LDL), were compared between obese and non-obese patients with POS. The two groups were also compared in terms of clinical and hormonal characteristics (follicle stimulating hormone, prolactin, thyroid stimulating hormone, total testosterone, dihydroepiandrostenedione sulfate, and 17-hydroxyprogesterone). Statistical analysis was performed using the SAS 9.0 software. Quantitative variables were compared by the Student's t-test (data with normal distribution) or by the Mann-Whitney test (non-parametric distribution). Qualitative variables were compared by the Fisher test. The level of significance was set at 5% (p women with POS have a higher frequency of IR, GI and MS than non-obese. However, the occurrence of metabolic disorders is elevated also in the non-obese patients, suggesting that the presence of the syndrome may favor the development of metabolic comorbidities with potential medium- and long-term repercussions.

  16. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism

    Directory of Open Access Journals (Sweden)

    Teresa G. Valencak

    2017-08-01

    Full Text Available Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli, depending on the developmental stage and activity of the organism. The most common functional subunits of adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose biology have become clearer in the recent past, much less is known about sex-specific differences in regulation and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands. Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic disorders. Keywords: Body fatness, Adipose tissue, Sex-specific differences, Adipokines, Adipocytes, Obesity, Energy metabolism

  17. Comparison of Various Indices of Energy Metabolism in Recumbent and Healthy Dairy Cows

    OpenAIRE

    Guyot, Hugues; Detilleux, Johann; Lebreton, Pascal; Garnier, Catherine; Bonvoisin, Marie; Rollin, Frederic; Sandersen, Charlotte

    2017-01-01

    Background Downer cow syndrome (DCS) is often diagnosed in dairy cattle during the early post-partum period. The etiology of this condition is not completely understood, as it can be related to the energetic or electrolyte metabolism, as well as to infectious diseases or to trauma. Hypothesis/Objectives The aim of this study is to compare energy metabolism and insulin sensitivity indices and various biochemical parameters between recumbent and healthy dairy cows. Animals A prospective study h...

  18. Report on Congress on abnormal occurrences

    International Nuclear Information System (INIS)

    1991-06-01

    Section 208 of the energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from January 1 through March 31, 1991. The report discusses six abnormal occurrences, none of which involved a nuclear power plant. Five of the events occurred at NRC-licensed facilities: one involved a significant degradation of plant safety at a nuclear fuel cycle facility, one involved a medical diagnostic misadministration, and three involved medical therapy misadministrations. An Agreement State (Arizona) reported one abnormal occurrence that involved medical therapy misadministrations

  19. Report to Congress on abnormal occurrences, July--September 1992

    International Nuclear Information System (INIS)

    1992-12-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from July 1 through September 30, 1992. There were no abnormal occurrences at a nuclear power plant. Two abnormal occurrences involving medical misadministrations (both therapeutic) and one involving overexposure of a radiographer at NRC-licensed facilities were discussed in this report. In addition, another abnormal occurrence was reported by an NRC Agreement State. The report also contains information updating a previously reported abnormal occurrence

  20. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    OpenAIRE

    Mart?n-Jim?nez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; Gonz?lez, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework t...

  1. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat

    Directory of Open Access Journals (Sweden)

    Xingxia Geng

    2018-01-01

    Full Text Available Cytoplasmic male sterility (CMS where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH-dehydrogenase and adenosine-triphosphate (ATP synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  2. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat.

    Science.gov (United States)

    Geng, Xingxia; Ye, Jiali; Yang, Xuetong; Li, Sha; Zhang, Lingli; Song, Xiyue

    2018-01-23

    Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  3. Prevalence of the metabolic syndrome among patients with type 2 ...

    African Journals Online (AJOL)

    DM), there is a multiple set of risk factors that commonly appear together forming what is now known as the 'Metabolic Syndrome' (MS). This 'clustering' of metabolic abnormalities that occur in the same individual appear to confer substantial ...

  4. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage

    International Nuclear Information System (INIS)

    Shiga, Tohru; Matsuyama, Tetsuaki; Kageyama, Hiroyuki; Kohno, Tomoya; Tamaki, Nagara; Ikoma, Katsunori; Isoyama, Hirotaka; Katoh, Chietsugu; Kuge, Yuji; Terae, Satoshi

    2006-01-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. However, some patients have severe brain dysfunction but display no abnormalities on magnetic resonance imaging (MRI). There have been some reports of hypometabolism even in such patients. The purpose of this study was to investigate the relationship between metabolic abnormality and loss of neuronal integrity in TBI patients with some symptoms but without MRI abnormalities. The study population comprised ten patients with TBI and ten normal volunteers. All of the patients were examined at least 1 year after the injury. 15 O-labelled gas PET and [ 11 C]flumazenil (FMZ) positron emission tomography (PET) were carried out. The cerebral metabolic rate of oxygen (CMRO 2 ) and binding potential (BP) images of FMZ were calculated. Axial T2WI, T2*WI and FLAIR images were obtained. Coronal images were added in some cases. All of the patients had normal MRI findings, and all showed areas with abnormally low CMRO 2 . Low uptake on BP images was observed in six patients (60%). No lesions that showed low uptake on BP images were without low CMRO 2 . On the other hand, there were 14 lesions with low CMRO 2 but without BP abnormalities. These results indicate that there are metabolic abnormalities in TBI patients with some symptoms after brain injury but without abnormalities on MRI. Some of the hypometabolic lesions showed low BP, indicating a loss of neuronal integrity. Thus, FMZ PET may have potential to distinguish hypometabolism caused by neuronal loss from that caused by other factors. (orig.)

  5. Metabolic syndrome as a risk factor for neurological disorders.

    Science.gov (United States)

    Farooqui, Akhlaq A; Farooqui, Tahira; Panza, Francesco; Frisardi, Vincenza

    2012-03-01

    The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point,' resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer's disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer's disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer's disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders. © Springer Basel AG 2011

  6. Visceral metabolism and efficiency of energy use by ruminants

    Directory of Open Access Journals (Sweden)

    Kozloski Gilberto Vilmar

    2001-01-01

    Full Text Available The visceral system (liver and portal-drained viscera represents an interface between diet and the animal, and it acts as the main site of regulation of nutrients that are used for maintenance, growth, lactation, reproduction, and physical activities of animals. However the functions carried out by visceral organs have, however, a significant energetic cost and are influenced by a variety of factors, such as the level of feed intake and diet composition, among others. As a result, variable quantities of substances are metabolized by them and, thus, the pattern and the quantity of nutrients available to the peripheral tissues can be quite different from those absorbed at the intestinal lumen. Probably, the major source of variation in the efficiency of utilization of metabolizable energy among feeds is associated mainly with visceral metabolism and it is unlikely that the ratio ketogenic/glucogenic of absorbed substances has determinant effect under physiological conditions.

  7. Effect of chronic renal failure with metabolic acidosis on alanine metabolism in isolated liver cells

    NARCIS (Netherlands)

    Cano, N.; Sturm, J. M.; Meijer, A. J.; El-Mir, M. Y.; Novaretti, R.; Reynier, J. P.; Leverve, X. M.

    2004-01-01

    Background Et aims: Decreased ureagenesis and gluconeogenesis from atanine have been reported during chronic renal failure in rat. This study addressed the respective roles of plasma-membrane transport and intracellular metabolism in these abnormalities of alanine pathways. Methods: In hepatocytes

  8. Altered carbon dioxide metabolism and creatine abnormalities in rett syndrome

    NARCIS (Netherlands)

    Halbach, Nicky S J; Smeets, Eric E J; Bierau, Jörgen; Keularts, Irene M L W; Plasqui, Guy; Julu, Peter O O; Engerström, Ingegerd Witt; Bakker, Jaap A.; Curfs, Leopold M G

    2012-01-01

    Despite their good appetite, many females with Rett syndrome (RTT) meet the criteria for moderate to severe malnutrition. Although feeding difficulties may play a part in this, other constitutional factors such as altered metabolic processes are suspected. Irregular breathing is a common clinical

  9. Association between abnormal myocardial fatty acid metabolism and cardiac-derived death among patients undergoing hemodialysis: results from a cohort study in Japan.

    Science.gov (United States)

    Moroi, Masao; Tamaki, Nagara; Nishimura, Masato; Haze, Kazuo; Nishimura, Tsunehiko; Kusano, Eiji; Akiba, Takashi; Sugimoto, Tokuichiro; Hase, Hiroki; Hara, Kazuhiro; Nakata, Tomoaki; Kumita, Shinichiro; Nagai, Yoji; Hashimoto, Akiyoshi; Momose, Mitsuru; Miyakoda, Keiko; Hasebe, Naoyuki; Kikuchi, Kenjiro

    2013-03-01

    Detecting myocardial ischemia in hemodialysis patients is crucial given the high incidence of silent ischemia and the high cardiovascular mortality rates. Abnormal myocardial fatty acid metabolism as determined by imaging with (123)I-labeled BMIPP (β-methyl iodophenyl-pentadecanoic acid) might be associated with cardiac-derived death in hemodialysis patients. Prospective observational study. Asymptomatic hemodialysis patients with one or more cardiovascular risk factors, but without known coronary artery disease, were followed up for 3 years at 48 Japanese hospitals (406 men, 271 women; mean age, 64 years). Baseline BMIPP summed scores semiquantified using a 17-segment 5-point system (normal, 0; absent, 4). Cardiac-derived death, including cardiac and sudden death. HRs were estimated using a Cox model for associations between BMIPP summed scores and cardiac-derived death, adjusting for potential confounders of age, sex, body mass index, dialysis duration, and cardiovascular risk factors. Rates of all-cause mortality and cardiac-derived death were 18.5% and 6.8%, respectively. Cardiac-derived death (acute myocardial infarction [n = 10], congestive heart failure [n = 13], arrhythmia [n = 2], valvular heart disease [n = 1], and sudden death [n = 20]) accounted for 36.8% of all-cause deaths. Cardiac-derived death (n = 46) was associated with age, history of heart failure, and BMIPP summed scores of 4 or higher (HR, 2.9; P death-free survival rates were 95.7%, 90.6%, and 78.8% when BMIPP summed scores were 3 or lower, 4-8, and 9 or higher, respectively. BMIPP summed score also was a predictor of all-cause death (HR, 1.6; P = 0.009). Sudden death of unknown cause was considered to have been cardiac derived, although a coronary origin was not confirmed. Abnormal myocardial fatty acid metabolism is associated with cardiac-derived death in hemodialysis patients. BMIPP single-proton emission computed tomography appears clinically useful for predicting cardiac-derived death

  10. Report to Congress on abnormal occurrences, July--September 1988

    International Nuclear Information System (INIS)

    1989-01-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from July 1 to September 30, 1988. For this reporting period, there were no abnormal occurrences at nuclear power plants licensed to operate. There were two abnormal occurrences under other NRC-issued licenses: multiple medical therapy misadministrations at a single hospital and a medical diagnostic misadministration. There was one abnormal occurrence reported by an Agreement State (Texas) involving a medical diagnostic misadministration. The report also contains information updating some previously reported abnormal occurrences

  11. Metabolic substrate use and the turnover of endogenous energy reserves in broad-tailed hummingbirds (Selasphorus platycercus).

    Science.gov (United States)

    Carleton, Scott A; Bakken, Bradley Hartman; Del Rio, Carlos Martínez

    2006-07-01

    We fed broad-tailed hummingbirds (Selasphorus platycercus) diets of contrasting carbon isotope composition and measured changes in the delta(13)C of expired breath through time. By measuring the delta(13)C in the breath of fed and fasted birds we were able to quantify the fraction of metabolism fueled by assimilated sugars and endogenous energy reserves. These measurements also allowed us to estimate the fractional turnover of carbon in the hummingbirds' energy reserves. When hummingbirds were feeding, they fueled their metabolism largely ( approximately 90%) with assimilated sugars. The rate of carbon isotope incorporation into the energy reserves of hummingbirds was higher when birds were gaining as opposed to losing body mass. The average residence time of a carbon atom in the hummingbirds' energy reserves ranged from 1 to 2 days.

  12. Aspects of Energy Metabolism in Mangalitsa Pigs Exposed at Thermic Neutral Temperature

    Directory of Open Access Journals (Sweden)

    Monica Pârvu

    2011-10-01

    Full Text Available The studies aimed the energy metabolism determination in Mangalitsa pigs exposed at thermic neutral temperature, compared to Large White pigs. The experimental period was between 80 and 100 kg liveweight. The animals had free access to standard, isoprotein and isocalory diets, with 13.5% crude protein (CP and 3100 kcal/kg metabolizable energy. Feed intake was measured on a daily basis. The energy-protein balance was calculated on the basis of comparative slaughter made at the beginning and end of the experiment. The metabolizable energy (MEc was estimated by chemical analysis (feed and excreta using mathematical modelling and the Whittemore’s formula. The metabolizable energy utilization efficiency was 0.61 at Large White and 0.53 at Mangalitsa.

  13. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    Science.gov (United States)

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Adipose energy stores, physical work, and the metabolic syndrome: lessons from hummingbirds.

    Science.gov (United States)

    Hargrove, James L

    2005-12-13

    Hummingbirds and other nectar-feeding, migratory birds possess unusual adaptive traits that offer important lessons concerning obesity, diabetes and the metabolic syndrome. Hummingbirds consume a high sugar diet and have fasting glucose levels that would be severely hyperglycemic in humans, yet these nectar-fed birds recover most glucose that is filtered into the urine. Hummingbirds accumulate over 40% body fat shortly before migrations in the spring and autumn. Despite hyperglycemia and seasonally elevated body fat, the birds are not known to become diabetic in the sense of developing polyuria (glucosuria), polydipsia and polyphagia. The tiny (3-4 g) Ruby-throated hummingbird has among the highest mass-specific metabolic rates known, and loses most of its stored fat in 20 h by flying up to 600 miles across the Gulf of Mexico. During the breeding season, it becomes lean and maintains an extremely accurate energy balance. In addition, hummingbirds can quickly enter torpor and reduce resting metabolic rates by 10-fold. Thus, hummingbirds are wonderful examples of the adaptive nature of fat tissue, and may offer lessons concerning prevention of metabolic syndrome in humans.

  15. Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Andersen, Vibe H; Andersen, Jens V

    2017-01-01

    by glutamate was significantly lower in brain mitochondria from GDH KO mice and synaptosomes were not able to increase their respiration upon an elevated energy demand. The role of GDH for metabolism of glutamine and the respiratory capacity underscore the importance of GDH for neurons particularly during...

  16. Is myocardial fatty acid metabolism different between hypertrophic cardiomyopathy and hypertensive hypertrophy?

    International Nuclear Information System (INIS)

    Narita, Michihiro; Kurihara, Tadashi; Usami, Masahisa; Honda, Minoru

    1994-01-01

    To investigate characteristics of fatty acid metabolism in hypertrophic cardiomyopathy (HCM), we performed myocardial imaging with 123 I-iodophenyl-3-methylpentadecanoic acid (BMIPP) in 24 HCM patients, 13 patients with hypertensive hypertrophy (HT) and 10 normal subjects. Rest myocardial imaging with 123 I-BMIPP was obtained at 20 minutes and 3 hours after 123 I-BMIPP injection. Rest 201 Tl imaging was also performed. In addition to ordinary tomography, whole body imaging was performed to calculate %Uptake (percentage of cardiac uptake of the isotope to total injected dose). As global indexes of fatty acid metabolism, we calculated two parameters; Uptake Ratio (%Uptake of 123 I-BMIPP normalized by myocardial perfusion) and WOR (percent reduction of myocardial 123 I-BMIPP within 3 hours). Regional abnormality was evaluated by visual assessment of ordinary tomograms and by BMIPP/Tl map. BMIPP/Tl map was made from Bull's-eye maps of 123 I-BMIPP and 201 Tl, and it represented 123 I-BMIPP uptake normalized by myocardial perfusion of each pixel which constructed the image. %Uptake of 123 I-BMIPP was not different among three groups. Uptake Ratio was significantly (p HT (1.03±0.08)>HCM (0.87±0.09). WOR of 123 I-BMIPP was accerelated in HCM (12.7±4.7%) and HT (10.2±2.9%) compared with normal (5.1±3.1%) (p 123 I-BMIPP distribution was found in 17 of 24 patients (71%) including 3 patients with equivocal abnormality. In HT patients, only equivocal abnormality was observed in 23%. In BMIPP/Tl map, abnormality was observed in 92% of HCM and 8% of HT. Although global myocardial fatty acid metabolism was equally disturbed both in HCM and HT, regional abnormality of fatty acid metabolism was observed preferetially in HCM. This indicated myocardial fatty acid metabolism was not identical between HCM and HT. (author)

  17. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Zhaojun; Tsurugi, Kunio

    2006-04-01

    The energy-metabolism oscillation in aerobic chemostat cultures of yeast is a periodic change of the respiro-fermentative and respiratory phase. In the respiro-fermentative phase, the NADH level was kept high and respiration was suppressed, and glucose was anabolized into trehalose and glycogen at a rate comparable to that of catabolism. On the transition to the respiratory phase, cAMP levels increased triggering the breakdown of storage carbohydrates and the increased influx of glucose into the glycolytic pathway activated production of glycerol and ethanol consuming NADH. The resulting increase in the NAD(+)/NADH ratio stimulated respiration in combination with a decrease in the level of ATP, which was consumed mainly in the formation of biomass accompanying budding, and the accumulated ethanol and glycerol were gradually degraded by respiration via NAD(+)-dependent oxidation to acetate and the respiratory phase ceased after the recovery of NADH and ATP levels. However, the mRNA levels of both synthetic and degradative enzymes of storage carbohydrates were increased around the early respiro-fermentative phase, when storage carbohydrates are being synthesized, suggesting that the synthetic enzymes were expressed directly as active forms while the degradative enzymes were activated late by cAMP. In summary, the energy-metabolism oscillation is basically regulated by a feedback loop of oxido-reductive reactions of energy metabolism mediated by metabolites like NADH and ATP, and is modulated by metabolism of storage carbohydrates in combination of post-translational and transcriptional regulation of the related enzymes. A potential mechanism of energy-metabolism oscillation is proposed.

  18. Exercising for Life? Energy Metabolism, Body Composition, and Longevity in Mice Exercising at Different Intensities

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Daan, Serge; Garland, Theodore; Visser, G. Henk; Garland Jr., Theodore

    2010-01-01

    Studies that have found a positive influence of moderate, non-exhaustive exercise on life expectancy contradict the rate-of-living theory, which predicts that high energy expenditure in exercising animals should shorten life. We investigated effects of exercise on energy metabolism and life span in

  19. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems.

    Science.gov (United States)

    Windman, Todd; Zolotova, Natalya; Schwandner, Florian; Shock, Everett L

    2007-12-01

    Formate, a simple organic acid known to support chemotrophic hyperthermophiles, is found in hot springs of varying temperature and pH. However, it is not yet known how metabolic strategies that use formate could contribute to primary productivity in hydrothermal ecosystems. In an effort to provide a quantitative framework for assessing the role of formate metabolism, concentration data for dissolved formate and many other solutes in samples from Yellowstone hot springs were used, together with data for coexisting gas compositions, to evaluate the overall Gibbs energy for many reactions involving formate oxidation or reduction. The result is the first rigorous thermodynamic assessment of reactions involving formate oxidation to bicarbonate and reduction to methane coupled with various forms of iron, nitrogen, sulfur, hydrogen, and oxygen for hydrothermal ecosystems. We conclude that there are a limited number of reactions that can yield energy through formate reduction, in contrast to numerous formate oxidation reactions that can yield abundant energy for chemosynthetic microorganisms. Because the energy yields are so high, these results challenge the notion that hydrogen is the primary energy source of chemosynthetic microbes in hydrothermal ecosystems.

  20. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Bang-Hung Yang; Tsung-Szu Yeh; Tung-Ping Su; Jyh-Cheng Chen; Ren-Shyan Liu

    2004-01-01

    =95). Significantly negative correlation was demonstrated in superior temporal gyms of right temporal lobe (corrected p = 0.003, voxel size 113). Significantly positive correlation between PIQ and rCMRglc was shown in posterior lobe of cerebellum (corrected p < 0.001, voxel size =244). There was no significantly negative correlation between PIQ and rCMRglc. Conclusions: This study provided neuroimaging evidence of cerebral metabolic abnormalities which was related to cognition function impairment in temporal lobe epilepsy patient. All lesions were located with ipislateral hemisphere but outside the seizure foci. This may suggest that cognition impairment is not directly related to seizure foci but may be related with remoting areas. The epilepsy patients whose seizures will prove to be refractory should be identified as early as possible, and thus the need for new prognostic factors of intractable epilepsy is evident. Since multiple seizure foci indicated poor prognosis, quantification of Brodmann area 4, 32, 18 and cerebellum in FDG PET images may be a prognostic factor. (authors)

  1. Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals

    Science.gov (United States)

    Rial, Sabri Ahmed; Karelis, Antony D.; Bergeron, Karl-F.; Mounier, Catherine

    2016-01-01

    Obesity and associated metabolic complications, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), are in constant increase around the world. While most obese patients show several metabolic and biometric abnormalities and comorbidities, a subgroup of patients representing 3% to 57% of obese adults, depending on the diagnosis criteria, remains metabolically healthy. Among many other factors, the gut microbiota is now identified as a determining factor in the pathogenesis of metabolically unhealthy obese (MUHO) individuals and in obesity-related diseases such as endotoxemia, intestinal and systemic inflammation, as well as insulin resistance. Interestingly, recent studies suggest that an optimal healthy-like gut microbiota structure may contribute to the metabolically healthy obese (MHO) phenotype. Here, we describe how dietary medium chain triglycerides (MCT), previously found to promote lipid catabolism, energy expenditure and weight loss, can ameliorate metabolic health via their capacity to improve both intestinal ecosystem and permeability. MCT-enriched diets could therefore be used to manage metabolic diseases through modification of gut microbiota. PMID:27187452

  2. Report to Congress on abnormal occurrences, April--June 1989

    International Nuclear Information System (INIS)

    1989-10-01

    The Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. For this reporting period, there was one abnormal occurrence at nuclear power plants licensed to operate involving significant deficiencies in management controls at Slurry Nuclear Power Station. There was one abnormal occurrence under other NRC-issued licenses; the event involved a medical therapy misadministration. One other abnormal occurrence, involving industrial radiography overexposures, was reported by an Agreement State (Texas). 40 refs

  3. Disrupted Bone Metabolism in Long-Term Bedridden Patients.

    Directory of Open Access Journals (Sweden)

    Keiko Eimori

    Full Text Available Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism.This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged <30 years at baseline.The bone mineral density was reduced (0.58±0.19 g/cm3, and the osteocalcin (13.9±12.4 ng/mL and urine N-terminal telopeptide (NTX levels (146.9±134.0 mM BCE/mM creatinine were greater than the cutoff value for predicting fracture. Among the bone metabolism markers studied, osteocalcin and NTX were negatively associated with the bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years.Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients.

  4. The metabolic syndrome: prevalence, CHD risk, and treatment.

    Science.gov (United States)

    Sarti, Cinzia; Gallagher, John

    2006-01-01

    An increased risk of coronary heart disease (CHD) morbidity and mortality is associated with the metabolic syndrome, a condition characterized by the concomitant presence of several abnormalities, including abdominal obesity, dyslipidemia, hypertension, insulin resistance (with or without glucose intolerance or diabetes), microalbuminuria, prothrombotic, and proinflammatory states. Estimates of the prevalence of the metabolic syndrome indicate that this condition is now common and likely to increase dramatically over the coming decades, in parallel with greater rates of obesity and Type 2 diabetes. Risk factors for the metabolic syndrome are already present in obese children and adolescents. Thus, identifying and treating all affected individuals promptly and optimally are critical to ensure that this potentially challenging healthcare burden is minimized. Here, we review the prevalence of the metabolic syndrome, dyslipidemias, and CHD risk. Although changes in lifestyle are fundamental to reducing many of the CHD risk factors associated with the metabolic syndrome, pharmacologic interventions also play an important role. Retrospective subanalyses of the effects of statins on coronary event rates and lipid levels in patients with the metabolic syndrome included in clinical trials indicate that these agents are beneficial in correcting the extensive lipid abnormalities that are frequently present in these individuals. However, the optimal management of metabolic syndrome dyslipidemia will depend on the outcomes of future prospective clinical trials. This review examines the underlying causes and prevalence of the metabolic syndrome and its impact on CHD morbidity and mortality and discusses the role of statins in optimizing its management.

  5. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism.

    Science.gov (United States)

    Suchacki, Karla J; Cawthorn, William P

    2018-01-01

    The last decade has seen a resurgence in the study of bone marrow adipose tissue (BMAT) across diverse fields such as metabolism, haematopoiesis, skeletal biology and cancer. Herein, we review the most recent developments of BMAT research in both humans and rodents, including the distinct nature of BMAT; the autocrine, paracrine and endocrine interactions between BMAT and various tissues, both in physiological and pathological scenarios; how these interactions might impact energy metabolism; and the most recent technological advances to quantify BMAT. Though still dwarfed by research into white and brown adipose tissues, BMAT is now recognised as endocrine organ and is attracting increasing attention from biomedical researchers around the globe. We are beginning to learn the importance of BMAT both within and beyond the bone, allowing us to better appreciate the role of BMAT in normal physiology and disease.

  6. Does family history of metabolic syndrome affect the metabolic profile phenotype in young healthy individuals?

    Science.gov (United States)

    Lipińska, Anna; Koczaj-Bremer, Magdalena; Jankowski, Krzysztof; Kaźmierczak, Agnieszka; Ciurzyński, Michał; Ou-Pokrzewińska, Aisha; Mikocka, Ewelina; Lewandowski, Zbigniew; Demkow, Urszula; Pruszczyk, Piotr

    2014-01-01

    Early identification of high-risk individuals is key for the prevention of cardiovascular disease (CVD). The aim of this study was to assess the potential impact of a family history of metabolic syndrome (fhMetS) on the risk of metabolic disorders (abnormal body mass, lipid profile, glucose metabolism, insulin resistance, and blood pressure) in healthy young individuals. We studied CVD risk factors in 90 healthy volunteers, aged 27-39 years; of these, 78 had fhMetS and 12 were without fhMetS (control group). Fasting serum lipids, glucose, and insulin levels were assayed, and anthropometric parameters and blood pressure using, an ambulatory blood pressure monitoring system, were measured. Nutritional and physical activity habits were assessed. Despite similar nutritional and physical activity habits, abnormal body mass was found in 53.2% of the fhMetS participants and 46.1% of the control participants (p = 0.54). The occurrence of obesity was 19.4% and 0%, respectively (p = 0.69). Compared to the control participants, fhMetS was associated with significantly higher total cholesterol (5.46 mmol/L vs. 4.69 mmol/L, p family history of MetS.

  7. Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease

    Science.gov (United States)

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-01-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981

  8. NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

    Science.gov (United States)

    Cantó, Carles; Menzies, Keir; Auwerx, Johan

    2015-01-01

    NAD+ has emerged as a vital cofactor that can rewire metabolism, activate sirtuins and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD+ metabolism revived interest in NAD+ boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD+ metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited. PMID:26118927

  9. Inherited lipodystrophies and the metabolic syndrome

    NARCIS (Netherlands)

    Monajemi, Houshang; Stroes, Erik; Hegele, Robert A.; Fliers, Eric

    2007-01-01

    Lipodystrophies represent a heterogeneous group of diseases characterized by an abnormal subcutaneous fat distribution, the extent of which can vary from localized, to partial, to generalized lipoatrophy. Whereas partial and generalized lipodystrophies are each associated with metabolic

  10. Pre-diabetes and the metabolic syndrome

    African Journals Online (AJOL)

    which is termed impaired fasting glycaemia. (IFG), or an abnormal ... Insulin resistance is a feature common to ... fast patients are given a standard dose ... Different criteria for the diagnosis of the metabolic syndrome ... drug therapy for high.

  11. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Directory of Open Access Journals (Sweden)

    Jia Li

    2016-01-01

    Full Text Available Higher protein meals increase satiety and the thermic effect of feeding (TEF in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume and quantity (10%, 20%, or 30% of energy from protein on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab, TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03. While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05, protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  12. Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    van Beek, J.H.G.M.; Supandi, F.B.; Gavai, Anand; de Graaf, A.A.; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  13. Simulating the physiology of athletes during endurance sports events: Modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    Beek, J.H.G.M. van; Supandi, F.; Gavai, A.K.; Graaf, A.A. de; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  14. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Meera Shah

    2016-08-01

    Full Text Available The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.

  15. ATP5B and ETFB metabolic markers in children with congenital hydronephrosis.

    Science.gov (United States)

    Zhao, Qi; Yang, Yi; Wang, Changlin; Hou, Ying; Chen, Hui

    2016-12-01

    Congenital obstructive nephropathy is the primary cause of chronic renal failure in children. Disorders of mitochondrial energy metabolism may be a primary factor underlying tubular cell apoptosis in hydronephrosis. The β-F1-ATPase (ATP5B) and electron transfer flavoprotein β subunit (ETFB) metabolic markers are involved in mitochondrial energy metabolism in other diseases. The aim of the present study was to evaluate whether ATP5B and ETFB are represented in the hydronephrotic kidney, and whether they are associated with the progression of hydronephrosis. The cohort examined consisted of 20 children with hydronephrosis, graded III and IV using the Society for Fetal Urology grading system, and a control group consisting of 20 patients with nephroblastoma. Reverse transcription‑quantitative polymerase chain reaction and immunoblot analyses were used to investigate the differential expression of genes and proteins in the two groups. The gene and protein expression levels of ATP5B and ETFB were upregulated in the hydronephrosis group. Correlation analyses revealed negative correlations between ATP5B, ETFB protein and split renal function (SRF). Receiver‑operator curve analysis found a diagnostic profile of the ETFB protein in identifying children with hydronephrosis with abnormal SRF (hydronephrosis and require further detailed investigation.

  16. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    International Nuclear Information System (INIS)

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  17. Report to Congress on abnormal occurrences, April--June 1988

    International Nuclear Information System (INIS)

    1988-12-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from April 1 to June 30, 1988. For this reporting period, there were no abnormal occurrences at nuclear power plants licensed to operate. There were two abnormal occurrences at other NRC licensees: a significant breakdown in management and procedural controls at a medical facility and a medical diagnostic misadministration. There was one abnormal occurrence reported by an Agreement State (Texas) involving radioactive material released during a transportation accident. The report also contains information updating some previously reported abnormal occurrences

  18. Metabolic Effects of Berries with Structurally Diverse Anthocyanins

    Directory of Open Access Journals (Sweden)

    John Overall

    2017-02-01

    Full Text Available Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins, black raspberry (acylated mono-glycosylated cyanidins, blackcurrant (mono- and di-glycosylated cyanidins and delphinidins, maqui berry (di-glycosylated delphinidins, Concord grape (acylated mono-glycosylated delphinidins and petunidins, and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health.

  19. MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligo.

    Science.gov (United States)

    Sahoo, Anupama; Lee, Bongyong; Boniface, Katia; Seneschal, Julien; Sahoo, Sanjaya K; Seki, Tatsuya; Wang, Chunyan; Das, Soumen; Han, Xianlin; Steppie, Michael; Seal, Sudipta; Taieb, Alain; Perera, Ranjan J

    2017-09-01

    Vitiligo is a common chronic skin disorder characterized by loss of epidermal melanocytes and progressive depigmentation. Vitiligo has complex immune, genetic, environmental, and biochemical causes, but the exact molecular mechanisms of vitiligo development and progression, particularly those related to metabolic control, are poorly understood. In this study we characterized the human vitiligo cell line PIG3V and the normal human melanocyte line HEM-l by RNA sequencing, targeted metabolomics, and shotgun lipidomics. Melanocyte-enriched microRNA-211, a known metabolic switch in nonpigmented melanoma cells, was severely down-regulated in vitiligo cell line PIG3V and skin biopsy samples from vitiligo patients, whereas its predicted targets PPARGC1A, RRM2, and TAOK1 were reciprocally up-regulated. microRNA-211 binds to PGC1-α 3' untranslated region locus and represses it. Although mitochondrial numbers were constant, mitochondrial complexes I, II, and IV and respiratory responses were defective in vitiligo cells. Nanoparticle-coated microRNA-211 partially augmented the oxygen consumption rate in PIG3V cells. The lower oxygen consumption rate, changes in lipid and metabolite profiles, and increased reactive oxygen species production observed in vitiligo cells appear to be partly due to abnormal regulation of microRNA-211 and its target genes. These genes represent potential biomarkers and therapeutic targets in human vitiligo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. [The lipid metabolism abnormality in patients administered with olanzapine].

    Science.gov (United States)

    Amano, Taku; Hosaka, Shigetoshi; Takami, Hiroshi; Sugiyama, Chie; Oda, Kazue; Morikawa, Ryuichi

    2012-11-01

    The atypical antipsychotic medication olanzapine is a useful agent in acute and maintenance treatment of schizophrenia and related disorders. It has beneficial effects on both positive and negative symptoms, an early onset of antipsychotic action and a favourable side effect profile. On the other hand, olanzapine has many reports of causing weight gain, glucose metabolism disturbances and lipidosis. We carried out blood tests (leptin, adiponectin, remnant-like lipoprotein cholesterol (RLP-C), total cholesterol, HbA1C, 75-OGTT and etc.) on patients with schizophrenia who had taken olanzapine. As a result, leptin, neutral lipid and RLP-C were significantly correlated by BMI. (The average blood test data and BMI revealed a normal range). Most analysis results of the lipoprotein fraction by a polyacrylamide-gel-electrophoresis method were normal patterns. Furthermore, the serum insulin concentrations from 75 g glucose tolerance (75 g-OGTT) 30 minutes later, in one third of patients receiving olanzapine, registered more than 100 microU/ml. The mechanism of the insulin secretion rise by olannzapine is unknown. Olanzapine may impair glucose tolerance due in part to increased insulin resistance. These findings do not necessarily imply that olanzapine is directly associated with a risk of impairment of weight gain, glucose metabolism disturbances and lipidosis. These results suggest that it is useful to promote diet cure and exercise therapy with patients with high BMI levels.

  1. PET studies of brain energy metabolism in a model of subcortical dementia: progressive supranuclear Palsy

    International Nuclear Information System (INIS)

    Blin, J.; Baron, J.C.; Cambon, H.

    1988-01-01

    In 41 patients with clinically determined Progressive Supranuclear Palsy, a model of degenerative subcortical dementia, alterations in regional brain energy metabolism with respect to control subjects have been investigated using positron computed tomography and correlated to clinical and neuropsychological scores. A generalized significant reduction in brain metabolism was found, which predominated in the prefrontal cortex in accordance with, and statistically correlated to, the frontal neuropsychological score

  2. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Qiaojun Lou

    2017-07-01

    Full Text Available Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs between deep rooting and shallow rooting varieties (H vs. L were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA, we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  3. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.).

    Science.gov (United States)

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  4. ANALYSIS OF ABNORMALITIES IN COMMON CAROTID ARTERY IMAGES USING MULTIWAVELETS

    Directory of Open Access Journals (Sweden)

    R Nandakumar

    2016-11-01

    Full Text Available According to the report given by World Health Organization, by 2030 almost 23.6 million people will die from cardiovascular diseases (CVD, mostly from heart disease and stroke. The main objective of this work is to develop a classifier for the diagnosis of abnormal Common Carotid Arteries (CCA. This paper proposes a new approach for the analysis of abnormalities in longitudinal B-mode ultrasound CCA images using multiwavelets. Analysis is done using HM and GHM multiwavelets at various levels of decomposition. Energy values of the coefficients of approximation, horizontal, vertical and diagonal details are calculated and plotted for different levels. Plots of energy values show high correlation with the abnormalities of CCA and offer the possibility of improved diagnosis of CVD. It is clear that the energy values can be used as an index of individual atherosclerosis and to develop a cost effective system for cardiovascular risk assessment at an early stage.

  5. GH and IGF1: Roles in Energy Metabolism of Long-Living GH Mutant Mice

    OpenAIRE

    Brown-Borg, Holly M.; Bartke, Andrzej

    2012-01-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of t...

  6. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou

    Directory of Open Access Journals (Sweden)

    Ron Moen

    1998-03-01

    Full Text Available We added antler growth and mineral metabolism modules to a previously developed energetics model for ruminants to simulate energy and mineral balance of male and female caribou throughout an annual cycle. Body watet, fat, protein, and ash are monitored on a daily time step, and energy costs associated with reproduction and body mass changes are simulated. In order to simulate antler growth, we had to predict calcium and phosphorus metabolism as it is affected by antler growth, gestation, and lactation. We used data on dietary digestibility, protein, calcium and phosphorus content, and seasonal patterns in body mass to predict the energy, nitrogen, calcium, and phosphorus balances of a "generic" male and female caribou. Antler growth in males increased energy requirements during antler growth by 8 to 16%, depending on the efficiency with which energy was used for antler growth. Female energy requirements for antler growth were proportionately much smaller because of the smaller size of female antlers. Protein requirements for antler growth in both males and females were met by forage intake. Calcium and phosphorus must be resorbed from bone during peak antler growth in males, when > 25 g/day of calcium and > 12 g/day of phosphorus are being deposited in antlers. Females are capable of meeting calcium needs during antler growth without bone resorption, but phosphorus was resorbed from bone during the final stages of antler mineralization. After energy, phosphorus was most likely to limit growth of antlers for both males and females in our simulations. Input parameters can be easily changed to represent caribou from specific geographic regions in which dietary nutrient content or body mass patterns differ from those in our "generic" caribou. The model can be used to quantitatively analyze the evolutionary basis for development of antlers in female caribou, and the relationship between body mass and antler size in the Cervidae.

  7. Report to Congress on abnormal occurrences, July--September 1991

    International Nuclear Information System (INIS)

    1991-12-01

    Section 108 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health and safety and requires a quarterly report of such events to be made to Congress. This report covers the period July through September 1991. The report discusses two abnormal occurrences at NRC-licensed facilities, neither involving a nuclear power plant. One involved radiation exposures to members of the public from a lost radioactive source and the other involved a medical diagnostic midadministration. The Agreement States reported no abnormal occurrences. The report also contains information that updates some previously reported abnormal occurrences

  8. The effects of home oxygen therapy on energy metabolism in patients with COPD

    Science.gov (United States)

    Kırıcı Berber, Nurcan; Yetkin, Özkan; Kılıç, Talat; Berber, Ilhami; Özgel, Mehmet

    2018-01-01

    Background COPD is preventable and treatable and is characterized by completely nonreversible airflow obstruction. In this study, we aimed to investigate the effect of long-term oxygen therapy on patients with stage 4 COPD who were followed up and treated at the polyclinic or clinic service. We evaluated the effects of oxygen therapy on energy metabolism and physical activity in patients with COPD. Methods Nineteen patients with COPD (16 male/3 female), treated with oxygen therapy for the first time, were included in this study. Analysis of arterial blood gases and pulmonary function test was performed. Metabolic Holter device (SenseWear® Armband) was placed pre- and post-oxygen therapy on the patients’ arm for at least 3 days. This device captures Holter data in a digitized electronic system, and the daily average value was calculated from the data. Results Post-oxygen treatment showed a significant increase in energy expenditure by patients with COPD (pretreatment, 1,497±596 joule; posttreatment, 2,977±5,985 joule; P=0.044). Moreover, number of steps during walking (pretreatment, 2,056±256; posttreatment, 2,120±195; P=0.03), resting (pretreatment, 6.36±3.31 hours; posttreatment, 3.47±2.19 hours; P<0.03), and sleeping (pretreatment, 4.23±2.13 hours; posttreatment, 2.33±1.42 hours; P<0.00) showed significant differences. Increased daily energy expenditure in patients with respiratory failure was detected with long-term oxygen therapy. In addition, the immobility of patients decreased and duration of physical activity increased in patients with COPD. Conclusion In this study, positive effects of long-term oxygen therapy have been demonstrated with respect to energy metabolism and physical activity of patients with COPD. Thus, we recommend that medication adherence and long-term oxygen therapy should begin early in patients with COPD.

  9. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  10. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  11. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens

    NARCIS (Netherlands)

    Apeldoorn, E.J.; Schrama, J.W.; Mashaly, M.M.; Parmentier, H.K.

    1999-01-01

    The effect of melatonin and lighting schedule on energy metabolism in broiler chickens was studied. Eight groups of six female broiler chickens each were assigned to a continuous lighting schedule [23 h light (L):1 h darkness (D)] or an intermittent lighting schedule (1L:3D), and were fed a diet

  12. Experience in the modular teaching of the integrated course of metabolism and energy

    Institute of Scientific and Technical Information of China (English)

    Jian HUANG; Qian LI; Xue-mei TONG; Rong YANG; Ping ZHANG

    2015-01-01

    The teaching of eight-year clinical medicine program of Shanghai Jiao Tong University School of Medicine was reformed since 2009 to replace the traditional teaching model with modular teaching. As one of reformed courses,the metabolism and energy course combines biochemistry and physiology related knowledge points and endeavors to overcome shortcomings of traditional basic medical knowledge education,such as simple learning contents,isolation between basic medicine and clinical medicine,simple teaching methods of teachers,and passive learning methods of students. After 6 years of teaching practice,the new teaching model has been recognized by both teachers and students and the teaching quality improves comprehensively,but there are still some shortcomings that need to be overcome. This paper summarizes the gain and loss of the modular teaching of integrated course of metabolism and energy,so as to provide reference for extending the reform of modular teaching and further improving the teaching quality.

  13. Report to Congress on abnormal occurrences, January--March 1978

    International Nuclear Information System (INIS)

    1978-01-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. The report, the twelfth in the series, covers the period from January 1 to March 31, 1978. The following incidents or events in that time period were determined by the Commission to be significant and reportable: (1) There was one abnormal occurrence at the 68 nuclear power plants licensed to operate. The event involved insulation failures in containment electrical penetrations. (2) There were no abnormal occurrences at fuel cycle facilities (other than nuclear power plants). (3) There were no abnormal occurrences at other license facilities. (4) There was one abnormal occurrence reported by an Agreement State Licensee. The event involved an overexposure of a radiographer. The report also contains information updating previously reported abnormal occurrences

  14. Adipose energy stores, physical work, and the metabolic syndrome: lessons from hummingbirds

    Directory of Open Access Journals (Sweden)

    Hargrove James L

    2005-12-01

    Full Text Available Abstract Hummingbirds and other nectar-feeding, migratory birds possess unusual adaptive traits that offer important lessons concerning obesity, diabetes and the metabolic syndrome. Hummingbirds consume a high sugar diet and have fasting glucose levels that would be severely hyperglycemic in humans, yet these nectar-fed birds recover most glucose that is filtered into the urine. Hummingbirds accumulate over 40% body fat shortly before migrations in the spring and autumn. Despite hyperglycemia and seasonally elevated body fat, the birds are not known to become diabetic in the sense of developing polyuria (glucosuria, polydipsia and polyphagia. The tiny (3–4 g Ruby-throated hummingbird has among the highest mass-specific metabolic rates known, and loses most of its stored fat in 20 h by flying up to 600 miles across the Gulf of Mexico. During the breeding season, it becomes lean and maintains an extremely accurate energy balance. In addition, hummingbirds can quickly enter torpor and reduce resting metabolic rates by 10-fold. Thus, hummingbirds are wonderful examples of the adaptive nature of fat tissue, and may offer lessons concerning prevention of metabolic syndrome in humans.

  15. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation.

    Science.gov (United States)

    Blundell, John E; Caudwell, Phillipa; Gibbons, Catherine; Hopkins, Mark; Naslund, Erik; King, Neil; Finlayson, Graham

    2012-09-01

    A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy". However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

  16. Physical activity and sedentary behavior in metabolically healthy obese young women

    Science.gov (United States)

    Studies of physical activity (PA) and sedentary behavior (SB) in metabolically healthy obese (MHO) have been limited to postmenopausal white women. We sought to determine whether PA and SB differ between MHO and metabolically abnormal obese (MAO), in young black and white women....

  17. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Fukuyama, Yuto; Omae, Kimiho; Yoneda, Yasuko; Yoshida, Takashi; Sako, Yoshihiko

    2018-05-04

    Carboxydothermus species are some of the most studied thermophilic carboxydotrophs. Their varied carboxydotrophic growth properties suggest distinct strategies for energy conservation via CO metabolism. In this study, we used comparative genome analysis of the genus Carboxydothermus to show variations in the CO dehydrogenase/energy-converting hydrogenase gene cluster, which is responsible for CO metabolism with H 2 production (hydrogenogenic CO metabolism). Indeed, ability or inability to produce H 2 with CO oxidation is explained by the presence or absence of this gene cluster in C. hydrogenoformans , C. islandicus , and C. ferrireducens Interestingly, despite its hydrogenogenic CO metabolism, C. pertinax lacks the Ni-CO dehydrogenase catalytic subunit (CooS-I) and its transcriptional regulator encoding genes in this gene cluster probably due to inversion. Transcriptional analysis in C. pertinax showed that the Ni-CO dehydrogenase gene ( cooS-II ) and distantly encoded energy-converting hydrogenase related genes were remarkably upregulated under 100% CO. In addition, when thiosulfate was available as a terminal electron acceptor under 100% CO, C. pertinax maximum cell density and maximum specific growth rate were 3.1-fold and 1.5-fold higher, respectively, than when thiosulfate was absent. The amount of H 2 produced was only 63% of the consumed CO, less than expected according to hydrogenogenic CO oxidation: CO + H 2 O → CO 2 + H 2 Accordingly, C. pertinax would couple CO oxidation by Ni-CO dehydrogenase-II with simultaneous reduction of not only H 2 O but thiosulfate when grown under 100% CO. IMPORTANCE Anaerobic hydrogenogenic carboxydotrophs are thought to fill a vital niche with scavenging potentially toxic CO and producing H 2 as available energy source for thermophilic microbes. This hydrogenogenic carboxydotrophy relies on a Ni-CO dehydrogenase/energy-converting hydrogenase gene cluster. This feature is thought to be as common to these organisms. However

  18. Report to Congress on abnormal occurrences, January--March 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report, the eighth in the series, covers the period from January 1 to March 31, 1977. The NRC has determined that during this period: there were no abnormal occurrences at the 63 nuclear power plants licensed to operate; there were no abnormal occurrences at fuel cycle facilities (other than nuclear power plants); and there was one abnormal occurrence at other licensee facilities. The event involved an inadvertent radiation exposure to two painters while working in an area where industrial radiography was being performed. This report also contains information updating previously reported abnormal occurrences

  19. Brain abnormalities in murderers indicated by positron emission tomography.

    Science.gov (United States)

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  20. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    Science.gov (United States)

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  1. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses.

    Science.gov (United States)

    Li, Jia; Armstrong, Cheryl L H; Campbell, Wayne W

    2016-01-26

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  2. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    International Nuclear Information System (INIS)

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-01-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions

  3. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-12-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions.

  4. Altered energy metabolism in an irradiated population of lizards at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nagy, K.A.; Medica, P.A.

    1985-01-01

    Field metabolic rates (via doubly labeled water), body compartmentalization of energy stores, and energy assimilation efficiencies were measured to assess all avenues of energy utilization in Uta stansburiana living in a low-level γ-irradiated plot in Rock Valley, Nevada. Comparison of energy budgets for radiation-sterilized females with those of nonirradiated control lizards revealed several substantial differences. Sterile females were heavier, mainly because they had extraordinarily large energy (fat) storage depots. Sterile females had much lower rates of energy expenditure via respiration and lower rates of energy intake by feeding. These differences are interpreted as indirect responses to radiation-induced sterility. There is little evidence of direct radiation effects on physiological functions other than reproduction

  5. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.

    Directory of Open Access Journals (Sweden)

    Fang Xie

    Full Text Available To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD or high-fat, high-sucrose and high-salt diets (HFSSD relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG, insulin, free fatty acids (FFA, homeostasis model assessment-insulin resistance index (HOMA-IR, thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF as well as unmyelinated fibers (UMF in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension and prediabetic conditions (impaired fasting glucose could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.

  6. High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

    Science.gov (United States)

    Hou, Jun-Feng; Jiao, Kai; Costigan, Michael; Chen, Jun

    2013-01-01

    To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals. PMID:23451227

  7. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*.

    Science.gov (United States)

    Carrer, Michele; Liu, Ning; Grueter, Chad E; Williams, Andrew H; Frisard, Madlyn I; Hulver, Matthew W; Bassel-Duby, Rhonda; Olson, Eric N

    2012-09-18

    Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1β gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1β. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome.

  8. Obstructive sleep apnea and energy balance regulation: A systematic review.

    Science.gov (United States)

    Shechter, Ari

    2017-08-01

    Obesity and obstructive sleep apnea (OSA) have a reciprocal relationship. Sleep disruptions characteristic of OSA may promote behavioral, metabolic, and/or hormonal changes favoring weight gain and/or difficulty losing weight. The regulation of energy balance (EB), i.e., the relationship between energy intake (EI) and energy expenditure (EE), is complex and multi-factorial, involving food intake, hormonal regulation of hunger/satiety/appetite, and EE via metabolism and physical activity (PA). The current systematic review describes the literature on how OSA affects EB-related parameters. OSA is associated with a hormonal profile characterized by abnormally high leptin and ghrelin levels, which may encourage excess EI. Data on actual measures of food intake are lacking, and not sufficient to make conclusions. Resting metabolic rate appears elevated in OSA vs. Findings on PA are inconsistent, but may indicate a negative relationship with OSA severity that is modulated by daytime sleepiness and body weight. A speculative explanation for the positive EB in OSA is that the increased EE via metabolism induces an overcompensation in the drive for hunger/food intake, which is larger in magnitude than the rise in EI required to re-establish EB. Understanding how OSA affects EB-related parameters can help improve weight loss efforts in these patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation.

    Science.gov (United States)

    Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.

  10. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice

    Science.gov (United States)

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia – before severe fat loss – in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34–42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition. PMID:25457061

  11. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation

    Directory of Open Access Journals (Sweden)

    John E. Blundell

    2012-09-01

    Full Text Available A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that “the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy”. However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM, fat mass (FM], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate, but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

  12. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism.

  13. Fibrillin abnormalities and prognosis in Marfan syndrome and related disorders

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, T.; Furthmayr, H.; Francke, U.; Gasner, C. [Stanford Univ. Medical Center, CA (United States)

    1995-08-28

    Marfan syndrome (MFS), a multisystem autosomal-dominant disorder, is characterized by mutations of the fibrillin-1 (FBN1) gene and by abnormal patterns of synthesis, secretion, and matrix deposition of the fibrillin protein. To determine the sensitivity and specificity of fibrillin protein abnormalities in the diagnosis of MFS, we studied dermal fibroblasts from 57 patients with classical MFS, 15 with equivocal MFS, 8 with single-organ manifestations, and 16 with other connective tissue disorders including homocystinuria and Ehlers-Danlos syndrome. Abnormal fibrillin metabolism was identified in 70 samples that were classified into four different groups based on quantitation of fibrillin synthesis and matrix deposition. Significant correlations were found for phenotypic features including arachnodactyly, striae distensae, cardiovascular manifestations, and fibrillin groups II and IV, which included 70% of the MFS patients. In addition, these two groups were associated with shortened {open_quotes}event-free{close_quotes} survival and more severe cardiovascular complications than groups I and III. The latter included most of the equivocal MFS/single manifestation patients with fibrillin abnormalities. Our results indicate that fibrillin defects at the protein level per se are not specific for MFS, but that the drastically reduced fibrillin deposition, caused by a dominant-negative effect of abnormal fibrillin molecules in individuals defined as groups II and IV, is of prognostic and possibly diagnostic significance. 25 refs., 3 figs., 6 tabs.

  14. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    Science.gov (United States)

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  15. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism.

    Science.gov (United States)

    Shah, Meera; Su, Dan; Scheliga, Judith S; Pluskal, Tomáš; Boronat, Susanna; Motamedchaboki, Khatereh; Campos, Alexandre Rosa; Qi, Feng; Hidalgo, Elena; Yanagida, Mitsuhiro; Wolf, Dieter A

    2016-08-16

    The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    Science.gov (United States)

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Report to Congress on abnormal occurrences, October--December 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence of an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health and safety and requires a quarterly report of such events to be made to Congress. This report covers the period October through December 1991. Five abnormal occurrences at NRC-licensed facilities are discussed in this report. None of these occurrences involved a nuclear power plant. Four involved medical therapy misadministrations and one involved a medical diagnostic misadministration. The NRC's Agreement States reported three abnormal occurrences. Two involved exposures of non-radiation workers and one involved a medical therapy misadministration. The report also contains information that updates some previously reported abnormal occurrences

  18. Report to Congress on abnormal occurrences, April--June 1992

    International Nuclear Information System (INIS)

    1992-09-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from April 1 through June 30, 1992. Five abnormal occurrences are discussed in this report. One involved an extended loss of high-head safety injection capability at the Shearon Harris Nuclear Power Plant. The other four involved medical misadministrations (three therapeutic and one diagnostic) at NRC-licensed facilities. No abnormal occurrences were reported by NRC's Agreement States. The report also contains information updating a previously reported abnormal occurrence

  19. Report to Congress on abnormal occurrences, October-December 1987

    International Nuclear Information System (INIS)

    1988-03-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from October 1 to December 31, 1987. The report states that for this reporting period, these was one abnormal occurrence at the NRC licensees; the item involved the suspension of license of an oil and gas well tracer company for noncompliance with NRC regulatory requirements. There were no abnormal occurrences report by the Agreement States. The report also contains information updating some previously reported abnormal occurrences

  20. The energy metabolism of Fasciola hepatica during its development in the final host

    NARCIS (Netherlands)

    Tielens, A.G.M.; Heuvel, J.M. van den; Bergh, S.G. van den

    1984-01-01

    Mature liver flukes, Fasciola hepatica, of different ages were isolated from the bile ducts of experimentally infected rats. Their energy metabolism was studied during aerobic incubation with [6-14C]glucose. The results showed that the aerobic potentials of the parenchymal liver flukes are not lost

  1. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    Science.gov (United States)

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. © 2015 Society for Endocrinology.

  2. Treatments for Biomedical Abnormalities Associated with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Richard Eugene Frye

    2014-06-01

    Full Text Available Recent studies point to the effectiveness of novel treatments that address physiological abnormalities associated with autism spectrum disorder (ASD. This is significant because safe and effective treatments for ASD remain limited. These physiological abnormalities as well as studies addressing treatments of these abnormalities are reviewed in this article. Treatments commonly used to treat mitochondrial disease have been found to improve both core and associated ASD symptoms. Double-blind, placebo-controlled studies have investigated L-carnitine and a multivitamin containing B vitamins, antioxidants, vitamin E, and coenzyme Q10 while non-blinded studies have investigated ubiquinol. Controlled and uncontrolled studies using folinic acid, a reduced form of folate, have reported marked improvements in core and associated ASD symptoms in some children with ASD and folate related pathways abnormities. Treatments that could address redox metabolism abnormalities include methylcobalamin with and without folinic acid in open-label studies and vitamin C and N-acetyl-L-cysteine in double-blind, placebo-controlled studies. These studies have reported improved core and associated symptoms with these treatments. Lastly, both open-label and double-blind, placebo-controlled studies have reported improvement in core and associated ASD symptoms with tetrahydrobiopterin. Overall, these treatments were generally well tolerated without significant adverse effects for most children, although we review the reported adverse effects in detail. This review provides evidence for potential safe and effective treatments for core and associated symptoms of ASD that target underlying known physiological abnormalities associated with ASD. Further research is needed to define subgroups of children with ASD in which these treatments may be most effective as well as confirm their efficacy in double-blind, placebo-controlled, large-scale multicenter studies.

  3. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats.

    Science.gov (United States)

    Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be

  4. Structural changes in the liver in metabolic syndrome

    Directory of Open Access Journals (Sweden)

    D. V. Vasendin

    2015-01-01

    Full Text Available Scientifically proven close relationship of nonalcoholic fatty liver disease with development of metabolic syndrome and its individual components involves the conclusion that the target organ in metabolic symptom, even regardless of the severity of obesity, the liver occupies a dominant position, as the body undergoes the first characteristic of non-alcoholic fatty liver disease changes, involving violation of metabolism in the body. Dislipoproteinemia plays an important role in the formation of metabolic syndrome in obesity and other obesity-associated diseases. Altered liver function are the root cause of violations of processes of lipid metabolism and, consequently, abnormal functioning of the liver may be a separate, additional and independent risk factor for development of dyslipidemia and obesity as the main component of the metabolic syndrome.

  5. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  6. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc; Magistretti, Pierre J.; Allaman, Igor

    2013-01-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  7. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  8. Management of Dyslipidemia in Patients with Hypertension, Diabetes, and Metabolic Syndrome.

    Science.gov (United States)

    Srikanth, Sundararajan; Deedwania, Prakash

    2016-10-01

    The purpose of this review is to discuss dyslipidemia in the various common clinical conditions including hypertension, diabetes mellitus, and metabolic syndrome and review the current therapeutic strategy in these settings. Dyslipidemias are common in patients with hypertension, diabetes mellitus, and metabolic syndrome. Epidemiologic studies have shown a strong correlation between serum lipid levels and risk of atherosclerotic cardiovascular disease. Multifactorial intervention strategies aimed at controlling lipids, blood pressure, and blood glucose simultaneously achieve maximal reductions in cardiovascular risk. Dyslipidemia and metabolic abnormalities are strongly associated with atherosclerosis and worse cardiovascular outcomes. While pharmacotherapy with statins has been proven to be beneficial for dyslipidemia, lifestyle modification emphasizing weight loss and regular exercise is an essential component of the interventional strategy. The common thread underlying atherosclerosis and metabolic abnormalities is endothelial dysfunction. Improved understanding of the role of endothelium in health and disease can potentially lead to novel therapies that may preempt development of atherosclerosis and its complications.

  9. Rethinking Energy in Parkinsonian Motor Symptoms: A Potential Role for Neural Metabolic Deficits

    Directory of Open Access Journals (Sweden)

    Shinichi eAmano

    2015-01-01

    Full Text Available Parkinson’s disease (PD is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of dopaminergic neurons in the substantia nigra pars compacta, in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1 neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD, (2 motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state, and (3 improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD.

  10. Metabolic pancreatitis: Etiopathogenesis and management

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2013-01-01

    Full Text Available Acute pancreatitis is a medical emergency. Alcohol and gallstones are the most common etiologies accounting for 60%-75% cases. Other important causes include postendoscopic retrograde cholangiopancreatography procedure, abdominal trauma, drug toxicity, various infections, autoimmune, ischemia, and hereditary causes. In about 15% of cases the cause remains unknown (idiopathic pancreatitis. Metabolic conditions giving rise to pancreatitis are less common, accounting for 5%-10% cases. The causes include hypertriglyceridemia, hypercalcemia, diabetes mellitus, porphyria, and Wilson′s disease. The episodes of pancreatitis tend to be more severe. In cases of metabolic pancreatitis, over and above the standard routine management of pancreatitis, careful management of the underlying metabolic abnormalities is of paramount importance. If not treated properly, it leads to recurrent life-threatening bouts of acute pancreatitis. We hereby review the pathogenesis and management of various causes of metabolic pancreatitis.

  11. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  12. Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization.

    Science.gov (United States)

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-01-01

    Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.

  13. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.

    Science.gov (United States)

    Epstein, Tamir; Xu, Liping; Gillies, Robert J; Gatenby, Robert A

    2014-01-01

    Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but slow-responding aerobic metabolism

  14. Genome scale metabolic modeling of cancer

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2017-01-01

    of metabolism which allows simulation and hypotheses testing of metabolic strategies. It has successfully been applied to many microorganisms and is now used to study cancer metabolism. Generic models of human metabolism have been reconstructed based on the existence of metabolic genes in the human genome......Cancer cells reprogram metabolism to support rapid proliferation and survival. Energy metabolism is particularly important for growth and genes encoding enzymes involved in energy metabolism are frequently altered in cancer cells. A genome scale metabolic model (GEM) is a mathematical formalization...

  15. Report to Congress on abnormal occurrences, July--September 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from July 1 to September 30, 1989. For this reporting period, there were five abnormal occurrences. One abnormal occurrence took place at a licensed nuclear power plant and involved significant deficiencies associated with the containment recirculation sump at the Trojan facility. The other four abnormal occurrences took place under other NRC-issued licenses: the first involved a medical diagnostic misadministration; the second involved a medical therapy misadministration; the third involved a radiation overexposure of a radiographer; and the fourth involved a significant breakdown and careless disregard of the radiation safety program at three of a licensee's manufacturing facilities. The Agreement States reported no abnormal occurrences during the reporting period. The report also contains information that updates some previously reported abnormal occurrences. 17 refs

  16. Report to Congress on abnormal occurrences, July-September 1986

    International Nuclear Information System (INIS)

    1987-04-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from July 1 to September 30, 1986. The report states that for this reporting period, there were four abnormal occurrences at the nuclear power plants licensed to operate. The events were (1) a differential pressure switch problem in safety systems at LaSalle facility, (2) abnormal cooldown and depressurization transient at Catawba Unit 2, (3) significant safeguards deficiencies at Wolf Creek and Fort St. Vrain, and (4) significant deficiencies in access controls at River Bend Station. There was one abnormal occurrence at the other NRC licensees; it involved a therapeutic medical misadministration. There was one abnormal occurrence reported by an Agreement State; it involved a therapeutic medical misadministration. The report also contains information updating some previously reported abnormal occurrences

  17. Report to Congress on abnormal occurrences, April--June 1978

    International Nuclear Information System (INIS)

    1978-01-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report, the thirteenth in the series, covers the period from April 1 to June 30, 1978. The following incidents or events in that period were determined by the Commission to be significant and reportable: (1) There were two abnormal occurrences at the 69 nuclear power plants licensed to operate. One involved a generic concern pertaining to fuel assembly control rod guide tube integrity. The second involved an overexposure of two radiation protection technicians. (2) There were no abnormal occurrences at fuel cycle facilities (other than nuclear power plants). (3) There were no abnormal occurrences at other licensee facilities. (4) There was one abnormal occurrence reported by an agreement state. The event involved willful violations of regulations and subsequent termination of a license. This report also contains information updating previously reported abnormal occurrences

  18. Prevalence of lipodystrophy and metabolic syndrome among HIV positive individuals on Highly Active Anti-Retroviral treatment in Jimma, South West Ethiopia.

    Science.gov (United States)

    Berhane, Tsegay; Yami, Alemishet; Alemseged, Fessahaye; Yemane, Tilahun; Hamza, Leja; Kassim, Mehedi; Deribe, Kebede

    2012-01-01

    Use of highly active antiretroviral therapy has led to significant reductions in morbidity and mortality rates. However, these agents had also given rise to the metabolic and morphologic abnormalities which are modifiable risk factors for cardiovascular diseases. Evidences elsewhere indicate growing in prevalence of these problems but studies are lacking in Ethiopia. This study was conducted to determine the prevalence of HIV-associated lipodystrophy and metabolic syndrome in patients taking highly active antiretroviral therapy. A cross-sectional study was conducted in 2010 on a sample of 313 patients taking highly active antiretroviral therapy in Jimma University specialized hospital. Structured questionnaire was used to assess patients' sociodemographic characteristics and clinical manifestations of metabolic abnormalities. Checklists were used for reviewing charts about clinical manifestations of metabolic abnormalities and immunologic profile of patients. Data was cleaned, entered in and analyzed using SPSS for windows version 16.0. Metabolic syndrome was detected in 21.1% and HIV-lipodystrophy was detected 12.1% of patients. The factors found to be independently associated with metabolic syndrome were taking the antiretroviral therapy for more than 12 months (AOR=4.2; 95% CI=1.24-14.23) and female sex (AOR=2.30; 95% CI=1.0-5.27) and the factor found to be independently associated with HIV-lipodystrophy was taking the antiretroviral therapy (AOR=3.59; 95% CI=1.03-12.54) for more than 12 months. Metabolic abnormalities were relatively common in the study population. The problems were higher among those who took anti-retroviral treatment for longer duration. Therefore, regular screening for and taking action against the metabolic abnormalities is mandatory.

  19. Dietary diversity score is associated with cardiovascular risk factors and serum adiponectin concentrations in patients with metabolic syndrome.

    Science.gov (United States)

    Farhangi, Mahdieh Abbasalizad; Jahangiry, Leila

    2018-04-17

    Metabolic syndrome is associated with cardio-metabolic risk factors and lipid abnormalities. Previous studies evaluated the dietary habits and nutrient intakes among patients with metabolic syndrome; however the association between metabolic risk factors and adiponectin with dietary diversity score (DDS) in patients with metabolic syndrome has not been evaluated yet. Therefore the aim of the current study was to evaluate these relationships among patients with metabolic syndrome. One hundred sixty patients with metabolic syndrome were recruited in the study. The anthropometric parameters including weight, height, waist circumference and hip circumference were measured. Serum adiponectin concentration was measured by enzyme- linked immunosorbent assay method (ELISA). Lipid profile and fasting serum glucose concentrations (FSG) were also measured with enzymatic colorimetric methods. Blood pressure was also measured and DDS was calculated using the data obtained from food frequency questionnaire (FFQ). Subjects in lower DDS categorizes had significantly lower energy and fiber intake; whereas mean protein intake of subjects in the highest quartile was significantly higher than second quartile. Higher prevalence of obesity was also observed in the top quartiles (P metabolic syndrome components among patients in lower DDS quartiles was significantly higher (P metabolic syndrome. However, for further confirming the findings, more studies are warranted.

  20. Changes in the carbohydrate-energy metabolism with radiation-induced intestine syndrome

    International Nuclear Information System (INIS)

    Kendysh, I.N.; Grozdov, S.P.

    1981-01-01

    A local exposure of the rat abdomen in a dose of 3.6 cC/kg decreases the oxygen uptake, oxidation of glucose and fatty acids, glucose tolerance and insulin resistance, and also causes a trend toward lactic acidosis. These changes in the carbohydrate-energy metabolism are normalized with the administration of insulin and dichloracetate, and they may be interpreted as consequences of a shock provoked by a massive predominant injury to the intestine [ru

  1. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates.

    Science.gov (United States)

    Elia, M; Cummings, J H

    2007-12-01

    The energy values of carbohydrates continue to be debated. This is because of the use of different energy systems, for example, combustible, digestible, metabolizable, and so on. Furthermore, ingested macronutrients may not be fully available to tissues, and the tissues themselves may not be able fully to oxidize substrates made available to them. Therefore, for certain carbohydrates, the discrepancies between combustible energy (cEI), digestible energy (DE), metabolizable energy (ME) and net metabolizable energy (NME) may be considerable. Three food energy systems are in use in food tables and for food labelling in different world regions based on selective interpretation of the digestive physiology and metabolism of food carbohydrates. This is clearly unsatisfactory and confusing to the consumer. While it has been suggested that an enormous amount of work would have to be undertaken to change the current ME system into an NME system, the additional changes may not be as great as anticipated. In experimental work, carbohydrate is high in the macronutrient hierarchy of satiation. However, studies of eating behaviour indicate that it does not unconditionally depend on the oxidation of one nutrient, and argue against the operation of a simple carbohydrate oxidation or storage model of feeding behaviour to the exclusion of other macronutrients. The site, rate and extent of carbohydrate digestion in, and absorption from the gut are key to understanding the many roles of carbohydrate, although the concept of digestibility has different meanings. Within the nutrition community, the characteristic patterns of digestion that occur in the small (upper) vs large (lower) bowel are known to impact in contrasting ways on metabolism, while in the discussion of the energy value of foods, digestibility is defined as the proportion of combustible energy that is absorbed over the entire length of the gastrointestinal tract. Carbohydrates that reach the large bowel are fermented to

  2. Comparison Between Cerebral Tissue Oxygen Tension and Energy Metabolism in Experimental Subdural Hematoma

    DEFF Research Database (Denmark)

    Nielsen, Troels Halfeld; Engell, Susanne I; Johnsen, Rikke Aagaard

    2011-01-01

    BACKGROUND: An experimental swine model (n = 7) simulating an acute subdural hematoma (ASDH) was employed (1) to explore the relation between the brain tissue oxygenation (PbtO(2)) and the regional cerebral energy metabolism as obtained by microdialysis, and (2) to define the lowest level of PbtO(2...

  3. Biochemical markers of psoriasis as a metabolic disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Gerkowicz

    2012-07-01

    Full Text Available Psoriasis is a chronic immune mediated inflammatory skin disease with a population prevalence of 2–3%. In recent years, psoriasis has been recognized as a systemic disease associated with metabolic syndrome or its components such as: obesity, insulin resistance, hypertension and atherogenic dyslipidemia. Many bioactive substances have appeared to be related to metabolic syndrome. Based on current literature, we here discuss the possible role of adiponectin, leptin, ghrelin, resistin, inflammatory cytokines, plasminogen activator inhibitor 1, uric acid, C-reactive protein and lipid abnormalities in psoriasis and in metabolic syndrome.

  4. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism

    OpenAIRE

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemys?aw; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, s...

  5. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de [Department of Morphology, Federal University of Espírito Santo (Brazil); Brandão, Poliane A.A.; Carneiro, Maria T.W.D. [Department of Chemistry, Federal University of Espírito Santo (Brazil); Zicker, Marina C. [Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais (Brazil); Ferreira, Adaliene V.M. [Department of Basic Nursing, Nursing School, Federal University of Minas Gerais (Brazil); Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M. [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Santos-Silva, Ana Paula [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Miranda-Alves, Leandro [Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Silva, Ian V. [Department of Morphology, Federal University of Espírito Santo (Brazil); Graceli, Jones B., E-mail: jbgraceli@gmail.com [Department of Morphology, Federal University of Espírito Santo (Brazil)

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may

  6. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    International Nuclear Information System (INIS)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de; Brandão, Poliane A.A.; Carneiro, Maria T.W.D.; Zicker, Marina C.; Ferreira, Adaliene V.M.; Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M.; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V.; Graceli, Jones B.

    2017-01-01

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may

  7. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production.

    Science.gov (United States)

    Marques, Maria Angela M; Berrêdo-Pinho, Marcia; Rosa, Thabatta L S A; Pujari, Venugopal; Lemes, Robertha M R; Lery, Leticia M S; Silva, Carlos Adriano M; Guimarães, Ana Carolina R; Atella, Georgia C; Wheat, William H; Brennan, Patrick J; Crick, Dean C; Belisle, John T; Pessolani, Maria Cristina V

    2015-12-01

    Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-(14)C]cholesterol or [26-(14)C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the

  8. Correlation of glucose metabolism in brain cells and brain morphological changes with clinical typing in children with cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    Qiongxiang Zhai; Huixian Qiao; Jiqing Liu

    2006-01-01

    BACKGROUND:It is widely known that fluorino-18-fluorodeoxyglucose positron emission tomography(18F-FDG PET)is commonly used to evaluate and diagnose epilepsy;however,whether it is beneficial to understand functional metabolism of bra in cells so as to reflect injured site and degree of brain cells or not should be studied further.OBJECTIVE:To evaluate the correlation between glucose metabolism and clinical typling as well as the conelation between active function of brain cells and degree of brain injury among children with cerbral palsy with 18F-FDG PET and MRI and compare the results of them.DESIGN:Case analysis.SETTING:Department of Pediatrics,People's Hospital of Guangdong Province.PARTICIPANTS:A total of 31 children with cerebral palsy were selected from Out-patient Clinic and In-patient Department of People's Hospital of Guangdong Province from July 2001 to August 2004.Based on clinical criteria of cerebral palsy,patients were classified into spasm(n=10),gradual movement(n=4),mixed type(n =13)and ataxia(n=4).There were 18 boys and 13 girls aged from 10 months to 4 years.All of them were met the diagnostic criteria of cerebral palsy and all parents of them were told the facts.Exclusion cdteria:Patients who had cerebral palsy caused by genetic metabolism disease were excluded.METHODS:①All children accepted MRI examination after hospitalization with Philips Acs NT 15T superconductling magnetic resonance scanner.②All children were fasted for 4 hours.And then,PET image of brain was collected based on T+EID type.If obvious hypermetabolism or hypometabolism region successively occurred on two layers, the image was regarded as abnormality. ③Different correlations of various abnormal greups of MRI and vadous types of cerebral palsy with PET image were compared and analyzed with Erusal-Willas rank sum test.MAIN OUTCOME MEASURES:①Results of 18F-FDG PET;②Results of MRI examination;③Correlation of variously abnormal groups of MRI and various types of cerebral

  9. Report to Congress on abnormal occurrences, April--June 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report, the ninth in the series, covers the period from April 1 to June 30, 1977. The NRC has determined that during this period: there were two abnormal occurrences at the 64 nuclear power plants licensed to operate, one involved a breach of a plant's physical security system and the other involved degraded fuel rods; there were no abnormal occurrences at fuel cycle facilities (other than nuclear power plants); and there were two abnormal occurrences at other licensee facilities, one involved improper radioactive source handling procedures and the other involved overexposure of two radiographers. Information updating previously reported abnormal occurrences is also included

  10. Report to Congress on abnormal occurrences, January--March 1989

    International Nuclear Information System (INIS)

    1989-08-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health and safety and requires a Quarterly report of such events to be made to Congress. This report covers the period January 1 to March 31, 1989. For this reporting period, there were two abnormal occurrences at nuclear power plants licensed to operate. The first had generic implications and involved a plug failure resulting in a steam generator tube leak at North Anna Unit 1. The second involved a steam generator tube rupture at McGuire Unit 1. There were three abnormal occurrences under other NRC-issued licenses. Two involved medical therapy misadministrations and one involved a medical diagnostic misadministration. There were no abnormal occurrences reported by the Agreement States. The report also contains information updating some previously reported abnormal occurrences

  11. Magnetic Resonance Spectroscopic Imaging of Tumor Metabolic Markers for Cancer Diagnosis, Metabolic Phenotyping, and Characterization of Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Qiuhong He

    2004-01-01

    Full Text Available Cancer cells display heterogeneous genetic characteristics, depending on the tumor dynamic microenvironment. Abnormal tumor vasculature and poor tissue oxygenation generate a fraction of hypoxic tumor cells that have selective advantages in metastasis and invasion and often resist chemo- and radiation therapies. The genetic alterations acquired by tumors modify their biochemical pathways, which results in abnormal tumor metabolism. An elevation in glycolysis known as the “Warburg effect” and changes in lipid synthesis and oxidation occur. Magnetic resonance spectroscopy (MRS has been used to study tumor metabolism in preclinical animal models and in clinical research on human breast, brain, and prostate cancers. This technique can identify specific genetic and metabolic changes that occur in malignant tumors. Therefore, the metabolic markers, detectable by MRS, not only provide information on biochemical changes but also define different metabolic tumor phenotypes. When combined with the contrast-enhanced Magnetic Resonance Imaging (MRI, which has a high sensitivity for cancer diagnosis, in vivo magnetic resonance spectroscopic imaging (MRSI improves the diagnostic specificity of malignant human cancers and is becoming an important clinical tool for cancer management and care. This article reviews the MRSI techniques as molecular imaging methods to detect and quantify metabolic changes in various tumor tissue types, especially in extracranial tumor tissues that contain high concentrations of fat. MRI/MRSI methods have been used to characterize tumor microenvironments in terms of blood volume and vessel permeability. Measurements of tissue oxygenation and glycolytic rates by MRS also are described to illustrate the capability of the MR technology in probing molecular information non-invasively in tumor tissues and its important potential for studying molecular mechanisms of human cancers in physiological conditions.

  12. Acetate formation in the energy metabolism of parasitic helminths and protists.

    Science.gov (United States)

    Tielens, Aloysius G M; van Grinsven, Koen W A; Henze, Katrin; van Hellemond, Jaap J; Martin, William

    2010-03-15

    Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation. (c) 2010 Australian Society for Parasitology

  13. Brain energy metabolism and blood flow differences in healthy aging

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors......, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions...

  14. Prevalence of metabolic syndrome and risks of abnormal serum alanine aminotransferase in Hispanics: a population-based study.

    Directory of Open Access Journals (Sweden)

    Jen-Jung Pan

    Full Text Available Study the prevalence of metabolic syndrome (MS and risk factors for and association with elevated alanine aminotransferase (ALT as markers of hepatic injury in a large Hispanic health disparity cohort with high rates of obesity.Analysis of data from a prospective cross-sectional population based study. From 2004-7, we randomly recruited 2000 community participants to the Cameron County Hispanic Cohort collecting extensive socioeconomic, clinical and laboratory data. We excluded 153 subjects due to critical missing data. Pearson chi-square tests and Student's t-tests were used for categorical and continuous variable analysis, respectively. Logistic regression analysis was performed to determine the risk factors for elevated ALT.The mean age of the cohort was 45 years and 67% were females. The majority of the cohort was either overweight (32.4% or obese (50.7%. Almost half (43.7% had MS and nearly one-third diabetes. Elevated ALT level was more prevalent in males than females. Obesity was a strong risk for abnormal ALT in both genders. Hypertriglyceridemia, hypercholesterolemia and young age were risks for elevated ALT in males only, whereas increased fasting plasma glucose was associated with elevated ALT in females only.We identified high prevalence of MS and markers of liver injury in this large Mexican American cohort with gender differences in prevalence and risk factors, with younger males at greatest risk.

  15. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder.

    Science.gov (United States)

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M; Sellgren, Carl M; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-06-01

    Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD.

  16. Excess of nerve growth factor in the ovary causes a polycystic ovary-like syndrome in mice, which closely resembles both reproductive and metabolic aspects of the human syndrome.

    Science.gov (United States)

    Wilson, Jenny L; Chen, Weiyi; Dissen, Gregory A; Ojeda, Sergio R; Cowley, Michael A; Garcia-Rudaz, Cecilia; Enriori, Pablo J

    2014-11-01

    Polycystic ovarian syndrome (PCOS), the most common female endocrine disorder of unknown etiology, is characterized by reproductive abnormalities and associated metabolic conditions comprising insulin resistance, type 2 diabetes mellitus, and dyslipidemia. We previously reported that transgenic overexpression of nerve growth factor (NGF), a marker of sympathetic hyperactivity, directed to the ovary by the mouse 17α-hydroxylase/C17-20 lyase promoter (17NF mice), results in ovarian abnormalities similar to those seen in PCOS women. To investigate whether ovarian overproduction of NGF also induces common metabolic alterations of PCOS, we assessed glucose homeostasis by glucose tolerance test, plasma insulin levels, and body composition by dual-energy x-ray absorptiometry scan in young female 17NF mice and wild-type mice. 17NF mice exhibited increased body weight and alterations in body fat distribution with a greater accumulation of visceral fat compared with sc fat (P ovary may suffice to cause both reproductive and metabolic alterations characteristic of PCOS and support the hypothesis that sympathetic hyperactivity may contribute to the development and/or progression of PCOS.

  17. Effects of an energy-dense diet and nicotinic acid supplementation on production and metabolic variables of primiparous or multiparous cows in periparturient period.

    Science.gov (United States)

    Tienken, Reka; Kersten, Susanne; Frahm, Jana; Meyer, Ulrich; Locher, Lena; Rehage, Jürgen; Huber, Korinna; Kenéz, Ákos; Sauerwein, Helga; Mielenz, Manfred; Dänicke, Sven

    2015-01-01

    It is well observed that feeding energy-dense diets in dairy cows during the dry period can cause metabolic imbalances after parturition. Especially dairy cows with high body condition score (BCS) and fed an energy-dense diet were prone to develop production diseases due to metabolic disturbances postpartum. An experiment was conducted to determine the effects of an energy-dense diet and nicotinic acid (NA) on production and metabolic variables of primiparous and multiparous cows in late pregnancy and early lactation which were not pre-selected for high BCS. Thirty-six multiparous and 20 primiparous German Holstein cows with equal body conditions were fed with energy-dense (60% concentrate/40% roughage mixture; HC group) or adequate (30% concentrate/70% roughage mixture; LC group) diets prepartum. After parturition, concentrate proportion was dropped to 30% for all HC and LC groups and was increased to 50% within 16 days for LC and within 24 days for HC cows. In addition, half of the cows per group received 24 g NA supplement per day and cow aimed to attenuate the lipid mobilisation postpartum. Feeding energy-dense diets to late-pregnant dairy cows elevated the dry matter (p metabolic deviation postpartum as the effects of prepartum concentrate feeding were not carried over into postpartum period. Multiparous cows responded more profoundly to energy-dense feeding prepartum compared with primiparous cows, and parity-related differences in the transition from late pregnancy to lactation were obvious pre- and postpartum. The supplementation with 24 g NA did not reveal any effect on energy metabolism. This study clearly showed that energy-dense feeding prepartum did not result in metabolic imbalances postpartum in multiparous and primiparous cows not selected for high BCS. A genetic predisposition for an anabolic metabolic status as indicated by high BCS may be crucial for developing production diseases at the onset of lactation.

  18. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  19. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana.

    Science.gov (United States)

    Huarancca Reyes, Thais; Scartazza, Andrea; Lu, Yu; Yamaguchi, Junji; Guglielminetti, Lorenzo

    2016-08-01

    Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Abnormal brain glucose metabolism and depressive mood in patients with pre-dialytic chronic kidney disease: SPM analysis of F-18 FDG positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Sung Min; Song, Sang Heon; Kim, Seong Jang; Kim, Ji Hoon; Kwak, Ihm Soo; Kim, In Ju; Kim, Yong Ki [Pusan National University Hospital, Pusan (Korea, Republic of)

    2007-07-01

    The aim of this study was to investigate the relationship between depressive mood and pre-dialytic CKD, to localize and quantify depressive mood -related lesions in pre-dialytic CKD patients through statistical parametric mapping (SPM) analysis of brain positron emission tomography (PET), and to examine the usefulness of brain PET for early detection and proper treatment of depressive mood. Twenty one patients with stage 5 CKD and 22 healthy volunteers were analyzed by depressive mood assessment and statistical parametric mapping (SPM) analysis of 18F-FDG PET. Depressive mood assessment was done by Beck Depression Inventory (BDI) and Hamilton Depression Rating Scale (HDRS). The largest clusters were areas including precentral gyrus, prefrontal cortex, and anterior cingulated cortex of left hemisphere. Other clusters were left transverse temporal gyrus, left superior temporal gyrus, right prefrontal cortex, right dorsolateral prefrontal cortex (BA 46, 44), right inferior frontal gyrus, right inferior parietal lobule, left angular gyrus. In addition, correlation was found between hypometabolized areas and HDRS scores of CKD patients in right prefrontal cortex (BA 11) and right anterior cingulated gyrus (BA 24). In conclusion, this study demonstrated specific depressive mood-related abnormal metabolic lesion. Interestingly, in CKD patients with severe depressive mood, cerebral metabolism was similar to that of MDD.