WorldWideScience

Sample records for abiotic marine carbonates

  1. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  2. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  3. Experimental Evidence for Abiotic Sulfurization of Marine Dissolved Organic Matter

    Directory of Open Access Journals (Sweden)

    Anika M. Pohlabeln

    2017-11-01

    Full Text Available Dissolved organic sulfur (DOS is the largest pool of organic sulfur in the oceans, and as such it is an important component of the global sulfur cycle. DOS in the ocean is resistant against microbial degradation and turns over on a millennium time scale. However, sources and mechanisms behind its stability are largely unknown. Here, we hypothesize that in sulfate-reducing sediments sulfur is abiotically incorporated into dissolved organic matter (DOM and released to the ocean. We exposed natural seawater and the filtrate of a plankton culture to sulfidic conditions. Already after 1-h at 20°C, DOS concentrations had increased 4-fold in these experiments, and 14-fold after 4 weeks at 50°C, indicating that organic matter does not need long residence times in natural sulfidic environments to be affected by sulfurization. Molecular analysis via ultrahigh-resolution mass spectrometry showed that sulfur was covalently and unselectively bound to DOM. Experimentally produced and natural DOS from sediments were highly similar on a molecular and structural level. By combining our data with published benthic DOC fluxes we estimate that 30–200 Tg DOS are annually transported from anaerobic and sulfate reducing sediments to the oceans. Uncertainties in this first speculative assessment are large. However, this first attempt illustrates that benthic DOS flux is potentially one order of magnitude larger than that via rivers indicating that this could balance the estimated global net removal of refractory DOS.

  4. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    Science.gov (United States)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  5. Elucidating the Role of Carbon Sources on Abiotic and Biotic Release of Arsenic into Cambodian Aquifers

    Science.gov (United States)

    Koeneke, M.

    2017-12-01

    Arsenic (As) is a naturally occurring contaminant in Cambodia that has been contaminating well-water sources of millions of people. Commonly, studies look into the biotic factors that cause the arsenic to be released from aquifer sediments to groundwater. However, abiotic release of As from sediments, though little studied, may also play key roles in As contamination of well water. The goal of this research is to quantitatively compare organic-carbon mediated abiotic and biotic release of arsenic from sediments to groundwater. Batch anaerobic incubation experiments under abiotic (sodium azide used to immobilize microbes) and biotic conditions were conducted using Cambodian aquifer sediments, four different organic carbon sources (sodium lactate, sodium citrate, sodium oxalate, and humic acid), and six different carbon concentrations (0, 1, 2.5, 5, 10, 25mg C/L). Dissolved arsenic, iron(Fe), and manganese(Mn) concentrations in the treatments were measured 112 days . In addition, sediment and solution carbon solution was measured . Collectively, these show how different carbon sources, different carbon concentrations, and how abiotic and biotic factors impact the release of arsenic from Cambodian sediments into aquifers. Overall, an introduction of organic carbon to the soil increases the amount of As released from the sediment. The biotic + abiotic and abiotic conditions seemed to play a minimal role in the amount of As released. Dissolved species analysis showed us that 100% of the As was As(V), Our ICP-MS results vary due to the heterogeneity of samples, but when high levels are Fe are seen in solution, we also see high levels of As. We also see higher As concentrations when there is a smaller amount of Mn in solution.

  6. Benthic carbonate factories of the Phanerozoic

    NARCIS (Netherlands)

    Schlager, W.

    2003-01-01

    Marine carbonate precipitation occurs in three basic modes: abiotic (or quasi-abiotic), biotically induced, and biotically controlled. On a geologic scale, these precipitation modes combine to form three carbonate production systems, or "factories" in the benthic environment: (1) tropical

  7. Neoproterozoic marine carbonates and their paleoceanographic significance

    Science.gov (United States)

    Hood, Ashleigh van Smeerdijk; Wallace, Malcolm William

    2018-01-01

    The primary mineralogy of marine carbonate precipitates has been a crucial factor in constraining the major element composition of ancient oceans. Secular changes in Phanerozoic marine chemistry, including Mg/Ca, have been well-documented using the original carbonate mineralogy of ooids, marine cements and biominerals. However, the history of Precambrian seawater chemistry is not as well constrained, partially due to the prevalence of dolomitisation in the Precambrian geological record. The Neoproterozoic ( 1000 Ma to 541 Ma) record of primary carbonate mineralogy is documented here using a combination of literature data and new analysis of marine carbonate precipitates from the Otavi Fold Belt, Namibia, the Death Valley succession, USA and the Adelaide Fold Belt, Australia. These data suggest that the last 460 million years of the Proterozoic were dominated by aragonite and high-Mg calcite precipitation in shallow marine settings. In contrast, low-Mg calcite has only been recognised in a small number of formations. In addition to aragonite and calcite precipitation, marine dolomite precipitation was widespread in Neoproterozoic oceans, including mimetic (syn-sedimentary) dolomitisation and primary dolomite marine cementation. The combination of marine aragonite, high Mg-calcite and dolomite precipitation during the Neoproterozoic suggests extremely high seawater Mg/Ca conditions relative to Phanerozoic oceans. Marine dolomite precipitation may also be linked to widespread marine anoxia during this time.

  8. Chemical Oceanography and the Marine Carbon Cycle

    Science.gov (United States)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  9. Effects of solar radiation on the abiotic and bacterially mediated carbon flux in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Anesio, A.M.

    2000-05-01

    In this thesis, I studied some of the current aspects of organic matter photochemistry. I analyzed abiotic photo transformations of several types of dissolved (DOM) and particulate organic matter (POM). I also evaluated the effects of photo transformation of several types of DOM on bacteria. Finally, in a field experiment, I analyzed net effects of solar radiation on organic matter decomposition. DOM undergoes several transformations due to solar irradiation. One such transformation is photooxidation of organic matter into inorganic carbon. Results of this Thesis show that photooxidation is ubiquitous to all kinds of organic matter in both dissolved and particulate forms. The intensity of this process depends on several factors, including DOM composition, radiation type and time of exposure. Besides mineralization to inorganic carbon, DOM undergoes other chemical transformations due to UV radiation, with profound consequences to DOM availability for bacteria. Bioavailability was tested by measuring bacterial growth and respiration on irradiated and nonirradiated DOM from several types of humic matter and plant leachates. Irradiation of freshly-leached DOM often produced negative effects on bacteria, whereas irradiation of humic material was followed by stimulation of bacterial growth. The degree of stimulation seems to be related to the initial bioavailability of the DOM and to the capability of the DOM to produce hydrogen peroxide upon irradiation. Other factors also accounted for differences in bacterial response to photochemical modification of DOM, including length and type of irradiation exposure. The effects of solar radiation on litter decomposition were also evaluated using experiments that more closely mimic natural conditions. I could not observe differences between dry weight loss of leaves and culms exposed to solar radiation or kept in darkness, which may be explained by the fact that abiotic decomposition under solar radiation is counterbalanced by

  10. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David; Rysgaard, Søren

    2013-01-01

    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...... and CaCO3 precipitation. The net biological production could only explain 4 % of this sea-ice-driven CO2 uptake. Abiotic processes contributed to an air-sea CO2 uptake of 1.5 mmol m(-2) sea ice day(-1), and dissolution of CaCO3 increased the air-sea CO2 uptake by 36 % compared to a theoretical estimate...

  11. Marine sequestration of carbon in bacterial metabolites.

    Science.gov (United States)

    Lechtenfeld, Oliver J; Hertkorn, Norbert; Shen, Yuan; Witt, Matthias; Benner, Ronald

    2015-03-31

    Linking microbial metabolomics and carbon sequestration in the ocean via refractory organic molecules has been hampered by the chemical complexity of dissolved organic matter (DOM). Here, using bioassay experiments and ultra-high resolution metabolic profiling, we demonstrate that marine bacteria rapidly utilize simple organic molecules and produce exometabolites of remarkable molecular and structural diversity. Bacterial DOM is similar in chemical composition and structural complexity to naturally occurring DOM in sea water. An appreciable fraction of bacterial DOM has molecular and structural properties that are consistent with those of refractory molecules in the ocean, indicating a dominant role for bacteria in shaping the refractory nature of marine DOM. The rapid production of chemically complex and persistent molecules from simple biochemicals demonstrates a positive feedback between primary production and refractory DOM formation. It appears that carbon sequestration in diverse and structurally complex dissolved molecules that persist in the environment is largely driven by bacteria.

  12. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  13. Abiotic and biotic determinants of leaf carbon exchange capacity from tropical to high boreal biomes

    Science.gov (United States)

    Smith, N. G.; Dukes, J. S.

    2016-12-01

    Photosynthesis and respiration on land represent the two largest fluxes of carbon dioxide between the atmosphere and the Earth's surface. As such, the Earth System Models that are used to project climate change are high sensitive to these processes. Studies have found that much of this uncertainty is due to the formulation and parameterization of plant photosynthetic and respiratory capacity. Here, we quantified the abiotic and biotic factors that determine photosynthetic and respiratory capacity at large spatial scales. Specifically, we measured the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of Ribulose-1,5-bisphosphate regeneration (Jmax), and leaf dark respiration (Rd) in >600 individuals of 98 plant species from the tropical to high boreal biomes of Northern and Central America. We also measured a bevy of covariates including plant functional type, leaf nitrogen content, short- and long-term climate, leaf water potential, plant size, and leaf mass per area. We found that plant functional type and leaf nitrogen content were the primary determinants of Vcmax, Jmax, and Rd. Mean annual temperature and mean annual precipitation were not significant predictors of these rates. However, short-term climatic variables, specifically soil moisture and air temperature over the previous 25 days, were significant predictors and indicated that heat and soil moisture deficits combine to reduce photosynthetic capacity and increase respiratory capacity. Finally, these data were used as a model benchmarking tool for the Community Land Model version 4.5 (CLM 4.5). The benchmarking analyses determined errors in the leaf nitrogen allocation scheme of CLM 4.5. Under high leaf nitrogen levels within a plant type the model overestimated Vcmax and Jmax. This result suggested that plants were altering their nitrogen allocation patterns when leaf nitrogen levels were high, an effect that was not being captured by the model. These data, taken with models in mind

  14. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes.

    Science.gov (United States)

    Worden, Alexandra Z; Follows, Michael J; Giovannoni, Stephen J; Wilken, Susanne; Zimmerman, Amy E; Keeling, Patrick J

    2015-02-13

    The profound influence of marine plankton on the global carbon cycle has been recognized for decades, particularly for photosynthetic microbes that form the base of ocean food chains. However, a comprehensive model of the carbon cycle is challenged by unicellular eukaryotes (protists) having evolved complex behavioral strategies and organismal interactions that extend far beyond photosynthetic lifestyles. As is also true for multicellular eukaryotes, these strategies and their associated physiological changes are difficult to deduce from genome sequences or gene repertoires—a problem compounded by numerous unknown function proteins. Here, we explore protistan trophic modes in marine food webs and broader biogeochemical influences. We also evaluate approaches that could resolve their activities, link them to biotic and abiotic factors, and integrate them into an ecosystems biology framework. Copyright © 2015, American Association for the Advancement of Science.

  15. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora.

    Science.gov (United States)

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C Berny Mier Y; Mooney, Kailen A; Moreira, Xoaquín

    2018-01-12

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.

  16. Contribution of fish to the marine inorganic carbon cycle.

    Science.gov (United States)

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

  17. Marine atmospheric corrosion of carbon steels

    Directory of Open Access Journals (Sweden)

    Morcillo, Manuel

    2015-06-01

    Full Text Available Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a environmental conditions necessary for akaganeite formation; (b characterisation of akaganeite in the corrosion products formed; (c corrosion mechanisms of carbon steel in marine atmospheres; (d exfoliation of rust layers formed in highly aggressive marine atmospheres; (e long-term corrosion rate prediction; and (f behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camariñas, Galicia in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM/energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Mössbauer spectroscopy and SEM/μRaman spectroscopy.La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a condiciones ambientales necesarias para la formación de akaganeíta, (b caracterización de la akaganeíta en los productos de corrosión formados, (c mecanismos de corrosión del acero al carbono en atmósferas marinas, (d exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e predicción de la velocidad de corrosión a largo plazo, y (f comportamiento de aceros patinables. La

  18. Marine geochemistry ocean circulation, carbon cycle and climate change

    CERN Document Server

    Roy-Barman, Matthieu

    2016-01-01

    Marine geochemistry uses chemical elements and their isotopes to study how the ocean works. It brings quantitative answers to questions such as: What is the deep ocean mixing rate? How much atmospheric CO2 is pumped by the ocean? How fast are pollutants removed from the ocean? How do ecosystems react to the anthropogenic pressure? The book provides a simple introduction to the concepts (environmental chemistry, isotopes), the methods (field approach, remote sensing, modeling) and the applications (ocean circulation, carbon cycle, climate change) of marine geochemistry with a particular emphasis on isotopic tracers. Marine geochemistry is not an isolated discipline: numerous openings on physical oceanography, marine biology, climatology, geology, pollutions and ecology are proposed and provide a global vision of the ocean. It includes new topics based on ongoing research programs such as GEOTRACES, Global Carbon Project, Tara Ocean. It provides a complete outline for a course in marine geochemistry. To favor a...

  19. Development of a Model of Geophysical and Geochemical Controls on Abiotic Carbon Cycling on Earth-Like Planets

    Science.gov (United States)

    Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water

  20. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water.

    Science.gov (United States)

    Myers, Michelle A; Johnson, Nicholas W; Marin, Erick Zerecero; Pornwongthong, Peerapong; Liu, Yun; Gedalanga, Phillip B; Mahendra, Shaily

    2018-06-04

    1,4-Dioxane is a probable human carcinogen and an emerging contaminant that has been detected in surface water and groundwater resources. Many conventional water treatment technologies are not effective for the removal of 1,4-dioxane due to its high water solubility and chemical stability. Biological degradation is a potentially low-cost, energy-efficient approach to treat 1,4-dioxane-contaminated waters. Two bacterial strains, Pseudonocardia dioxanivorans CB1190 (CB1190) and Mycobacterium austroafricanum JOB5 (JOB5), have been previously demonstrated to break down 1,4-dioxane through metabolic and co-metabolic pathways, respectively. However, both CB1190 and JOB5 have been primarily studied in laboratory planktonic cultures, while most environmental microbes grow in biofilms on surfaces. Another treatment technology, adsorption, has not historically been considered an effective means of removing 1,4-dioxane due to the contaminant's low K oc and K ow values. We report that the granular activated carbon (GAC), Norit 1240, is an adsorbent with high affinity for 1,4-dioxane as well as physical dimensions conducive to attached bacterial growth. In abiotic batch reactor studies, 1,4-dioxane adsorption was reversible to a large extent. By bioaugmenting GAC with 1,4-dioxane-degrading microbes, the adsorption reversibility was minimized while achieving greater 1,4-dioxane removal when compared with abiotic GAC (95-98% reduction of initial 1,4-dioxane as compared to an 85-89% reduction of initial 1,4-dioxane, respectively). Bacterial attachment and viability was visualized using fluorescence microscopy and confirmed by amplification of taxonomic genes by quantitative polymerase chain reaction (qPCR) and an ATP assay. Filtered samples of industrial wastewater and contaminated groundwater were also tested in the bioaugmented GAC reactors. Both CB1190 and JOB5 demonstrated 1,4-dioxane removal greater than that of the abiotic adsorbent controls. This study suggests that

  1. Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton

    Science.gov (United States)

    Everaert, Gert; Deschutter, Yana; De Troch, Marleen; Janssen, Colin R.; De Schamphelaere, Karel

    2018-05-01

    The effect of multiple stressors on marine ecosystems remains poorly understood and most of the knowledge available is related to phytoplankton. To partly address this knowledge gap, we tested if combining multimodel inference with generalized additive modelling could quantify the relative contribution of environmental variables on the population dynamics of a zooplankton species in the Belgian part of the North Sea. Hence, we have quantified the relative contribution of oceanographic variables (e.g. water temperature, salinity, nutrient concentrations, and chlorophyll a concentrations) and anthropogenic chemicals (i.e. polychlorinated biphenyls) to the density of Acartia clausi. We found that models with water temperature and chlorophyll a concentration explained ca. 73% of the population density of the marine copepod. Multimodel inference in combination with regression-based models are a generic way to disentangle and quantify multiple stressor-induced changes in marine ecosystems. Future-oriented simulations of copepod densities suggested increased copepod densities under predicted environmental changes.

  2. Radiocarbon in marine dissolved organic carbon (DOC)

    NARCIS (Netherlands)

    Clercq, M. le; Plicht, J. van der; Meijer, H.A.J.; Baar, H.J.W. de

    Dissolved Organic Carbon (DOC) plays an important role in the ecology and carbon cycle in the ocean. Analytical problems with concentration and isotope ratio measurements have hindered its study. We have constructed a new analytical method based on supercritical oxidation for the determination of

  3. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Hunkeler, Daniel; Tuxen, Nina

    2014-01-01

    not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1...

  4. Substantial role of macroalgae in marine carbon sequestration

    KAUST Repository

    Krause-Jensen, Dorte; Duarte, Carlos M.

    2016-01-01

    Vegetated coastal habitats have been identified as important carbon sinks. In contrast to angiosperm-based habitats such as seagrass meadows, salt marshes and mangroves, marine macroalgae have largely been excluded from discussions of marine carbon sinks. Macroalgae are the dominant primary producers in the coastal zone, but they typically do not grow in habitats that are considered to accumulate large stocks of organic carbon. However, the presence of macroalgal carbon in the deep sea and sediments, where it is effectively sequestered from the atmosphere, has been reported. A synthesis of these data suggests that macroalgae could represent an important source of the carbon sequestered in marine sediments and the deep ocean. We propose two main modes for the transport of macroalgae to the deep ocean and sediments: macroalgal material drifting through submarine canyons, and the sinking of negatively buoyant macroalgal detritus. A rough estimate suggests that macroalgae could sequester about 173 TgC yr â '1 (with a range of 61-268 TgC yr â '1) globally. About 90% of this sequestration occurs through export to the deep sea, and the rest through burial in coastal sediments. This estimate exceeds that for carbon sequestered in angiosperm-based coastal habitats.

  5. Substantial role of macroalgae in marine carbon sequestration

    KAUST Repository

    Krause-Jensen, Dorte

    2016-09-12

    Vegetated coastal habitats have been identified as important carbon sinks. In contrast to angiosperm-based habitats such as seagrass meadows, salt marshes and mangroves, marine macroalgae have largely been excluded from discussions of marine carbon sinks. Macroalgae are the dominant primary producers in the coastal zone, but they typically do not grow in habitats that are considered to accumulate large stocks of organic carbon. However, the presence of macroalgal carbon in the deep sea and sediments, where it is effectively sequestered from the atmosphere, has been reported. A synthesis of these data suggests that macroalgae could represent an important source of the carbon sequestered in marine sediments and the deep ocean. We propose two main modes for the transport of macroalgae to the deep ocean and sediments: macroalgal material drifting through submarine canyons, and the sinking of negatively buoyant macroalgal detritus. A rough estimate suggests that macroalgae could sequester about 173 TgC yr â \\'1 (with a range of 61-268 TgC yr â \\'1) globally. About 90% of this sequestration occurs through export to the deep sea, and the rest through burial in coastal sediments. This estimate exceeds that for carbon sequestered in angiosperm-based coastal habitats.

  6. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  7. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY2009

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Wietsma, Thomas W.; Truex, Michael J.

    2010-03-31

    This report documents the progress made through FY 2009 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The study seeks also to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. In previous years the work was funded as two separate projects by various sponsors, all of whom received their funding from the U.S. Department of Energy (DOE). In FY2009, the projects were combined and funded by CH2MHill Plateau Remediation Corporation (CHPRC). Work in FY2009 was performed by staff at the Pacific Northwest National Laboratory (PNNL). Staff from the State University of New York at Cortland (SUNY–Cortland) contributed in previous years.

  8. Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year-old, Brazilian reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Tuomola, Leena; Niklasson, Terese [Evolutionary Biology Centre and Department of Limnology, Uppsala University, Norbyvaegen 20, S-752 36 Uppsala (Sweden); Castro e Silva, Edinaldo de [Departamento de Quimica, Universidade Federal de Mato Grosso (UFMT), Av. Fernando C. Costa/sn, 78 090-900 Cuiaba-MT (Brazil); Hylander, Lars D. [Department of Earth Sciences, Air, Water and Landscape Science, Uppsala University, Villavaegen 16, S-752 36 Uppsala (Sweden)], E-mail: Lars.Hylander@hyd.uu.se

    2008-02-01

    Time series on fish mercury (Hg) development are rare for hydroelectric reservoirs in the tropics. In the central-western part of Brazil, a hydroelectric reservoir, called Lago Manso, was completed in 1999 after that background levels of fish Hg concentrations had been determined. The development for the first 3 years was studied in 2002. The objective of the present study was to determine development of fish Hg concentrations for a second three-year period after flooding. The bioaccumulation factor and certain abiotic and biotic factors, possibly affecting the availability and accumulation of Hg, were also examined. The results show that Hg levels in fish from Lago Manso have increased more than five times compared to the background levels observed before construction of the reservoir. At the same time, dissolved organic carbon has increased while dissolved oxygen has decreased indicating enhanced bioavailability of Hg. In the reservoir, Salminus brasiliensis had in average a Hg content of 1.1 {mu}g g{sup -1} f.w., Pseudoplatystoma fasciatum 1.2, Serrasalmus marginatus/spilopleura 0.9, and Brycon hilarii 0.6 {mu}g g{sup -1} f.w. The average fish Hg contents were higher downstream, except for B. hilarii. In the reservoir, the average Hg content of each species was in 2005 always over the consumption limit (0.55 {mu}g total Hg g{sup -1} f.w.) recommended by WHO. Therefore, the people living around Lago Manso should be informed of the health effects of Hg, and fish consumption recommendations should be carried out. The accumulation of Hg varies widely between species as shown by the bioaccumulation factor which ranges between 5.08 and 5.59 log units. The observed variation is explained by differences in diet and trophic position with piscivorous fish exhibiting the highest mean Hg concentration, followed by carnivorous and omnivorous species. Carbon isotope analyses imply that trophic position is not the only cause of the observed differences in Hg levels between

  9. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  10. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    Science.gov (United States)

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required. © 2014 John Wiley & Sons Ltd.

  11. Marine Atmospheric Corrosion of Carbon Steel: A Review.

    Science.gov (United States)

    Alcántara, Jenifer; Fuente, Daniel de la; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-04-13

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter's great importance to human society. About half of the world's population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl - -rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors' opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary.

  12. Marine Atmospheric Corrosion of Carbon Steel: A Review

    Science.gov (United States)

    Alcántara, Jenifer; de la Fuente, Daniel; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-01-01

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter’s great importance to human society. About half of the world’s population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl−-rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors’ opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary. PMID:28772766

  13. Marine Atmospheric Corrosion of Carbon Steel: A Review

    OpenAIRE

    Alc?ntara, Jenifer; de la Fuente, Daniel; Chico, Bel?n; Simancas, Joaqu?n; D?az, Iv?n; Morcillo, Manuel

    2017-01-01

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter’s great importance to human society. About half of the world’s population lives in coastal regions and the industrialisation of developing countries tends to concentrate production pl...

  14. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  15. A carbon isotope budget for an anoxic marine sediment

    International Nuclear Information System (INIS)

    Boehme, S.E.; Blair, N.E.

    1991-01-01

    A carbon isotope budget has been determined for the coastal marine site, Cape Lookout Bight, NC. Isotope measurements of methane and σCO 2 fluxing out and buried in these sediments were applied to previously measured flux data (Martens et al., in press) to predict the isotopic composition of the incoming metabolizable organic matter. Methane leaves the sediment predominantly via ebullition with an isotopic composition of -60 per mil. Less than 2% of the methane produced is buried with an average diffusional flux value of -17 per mil and a burial value of +11 per mil. The isotope budget predicts a metabolizable organic carbon isotope signature of -19.3 per mil which is in excellent agreement with the measured total organic carbon value of -19.2 ± 0.3 per mil implying that the dominant remineralization processes have been identified

  16. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  17. Major role of marine vegetation on the oceanic carbon cycle

    Directory of Open Access Journals (Sweden)

    C. M. Duarte

    2005-01-01

    Full Text Available The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove forests to the global level and a top-down approach derived from considerations of global sediment balance and a compilation of the organic carbon content of vegeatated sediments. Up-scaling of individual burial estimates values yielded a total carbon burial in vegetated habitats of 111 Tmol C y-1. The total burial in unvegetated sediments was estimated to be 126 Tg C y-1, resulting in a bottom-up estimate of total burial in the ocean of about 244 Tg C y-1, two-fold higher than estimates of oceanic carbon burial that presently enter global carbon budgets. The organic carbon concentrations in vegetated marine sediments exceeds by 2 to 10-fold those in shelf/deltaic sediments. Top-down recalculation of ocean sediment budgets to account for these, previously neglected, organic-rich sediments, yields a top-down carbon burial estimate of 216 Tg C y-1, with vegetated coastal habitats contributing about 50%. Even though vegetated carbon burial contributes about half of the total carbon burial in the ocean, burial represents a small fraction of the net production of these ecosystems, estimated at about 3388 Tg C y-1, suggesting that bulk of the benthic net ecosystem production must support excess respiration in other compartments, such as unvegetated sediments and the coastal pelagic compartment. The total excess organic carbon available to be exported to the ocean is estimated at between 1126 to 3534 Tg C y-1, the bulk of which must be respired in the open ocean. Widespread loss of vegetated coastal habitats must have reduced carbon burial in the ocean by about 30 Tg C y-1, identifying the destruction of these ecosystems as an important loss of CO

  18. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.

    Science.gov (United States)

    Hofmann, Matthias; Schellnhuber, Hans-Joachim

    2009-03-03

    Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.

  19. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information......Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76 ºS to 79 ºN to hydrolyze a range of high...

  20. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  1. Valuing blue carbon: carbon sequestration benefits provided by the marine protected areas in Colombia.

    Directory of Open Access Journals (Sweden)

    Tatiana G Zarate-Barrera

    Full Text Available Marine protected areas are aimed to protect and conserve key ecosystems for the provision of a number of ecosystem services that are the basis for numerous economic activities. Among the several services that these areas provide, the capacity of sequestering (capturing and storing organic carbon is a regulating service, provided mainly by mangroves and seagrasses, that gains importance as alternatives for mitigating global warming become a priority in the international agenda. The objective of this study is to value the services associated with the capture and storage of oceanic carbon, known as Blue Carbon, provided by a new network of marine protected areas in Colombia. We approach the monetary value associated to these services through the simulation of a hypothetical market for oceanic carbon. To do that, we construct a benefit function that considers the capacity of mangroves and seagrasses for capturing and storing blue carbon, and simulate scenarios for the variation of key variables such as the market carbon price, the discount rate, the natural rate of loss of the ecosystems, and the expectations about the post-Kyoto negotiations. The results indicate that the expected benefits associated to carbon capture and storage provided by these ecosystems are substantial but highly dependent on the expectations in terms of the negotiations surrounding the extension of the Kyoto Protocol and the dynamics of the carbon credit's demand and supply. We also find that the natural loss rate of these ecosystems does not seem to have a significant effect on the annual value of the benefits. This approach constitutes one of the first attempts to value blue carbon as one of the services provided by conservation.

  2. Role of the marine biosphere in the global carbon cycle

    International Nuclear Information System (INIS)

    Longhurst, A.R.

    1991-01-01

    The geographical disequilibrium of our planet is due mainly to carbon sequestration by marine organisms over geological time. Changes in atmospheric CO 2 during interglacial-glacial transitions require biological sequestration of carbon in the oceans. Nutrient-limited export flux from new production in surface waters is the key process in this sequestrian. The most common model for export flux ignores potentially important nutrient sources and export mechanisms. Export flux occurs as a result of biological processes whose complexity appears not to be accommodated by the principal classes of simulation models, this being especially true for food webs dominated by single-celled protists whose trophic function is more dispersed than among the multicelled metazoa. The fashionable question concerning a hypothetical 'missing sink' for CO 2 emissions is unanswerable because of imprecision in our knowledge of critical flux rates. This question also diverts attention from more relevant studies of how the biological pump may be perturbed by climatic consequences of CO 2 emissions. Under available scenarios for climate change, such responses may seem more likely to reinforce, rather than mitigate, the rate of increase of atmospheric CO 2

  3. One carbon metabolism in SAR11 pelagic marine bacteria.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14C-labeled compounds to (14CO(2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT, trimethylamine (TMA, trimethylamine N-oxide (TMAO, and dimethylsulfoniopropionate (DMSP were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35% than of C1 compounds (2-6% into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2 in the upper ocean.

  4. Organic carbon burial in fjords: Terrestrial versus marine inputs

    Science.gov (United States)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.

    2016-10-01

    Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.

  5. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora

    OpenAIRE

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C. Berny Mier y; Mooney, Kailen A.; Moreira, Xoaquín

    2018-01-01

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any ...

  6. Carbon isotope effects associated with Fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation

    International Nuclear Information System (INIS)

    Ahad, Jason M.E.; Slater, Greg F.

    2008-01-01

    Hydrogen peroxide (H 2 O 2 )-mediated oxygenation to enhance subsurface aerobic biodegradation is a frequently employed remediation technique. However, it may be unclear whether observed organic contaminant mass loss is caused by biodegradation or chemical oxidation via hydroxyl radicals generated during catalyzed Fenton-like reactions. Compound-specific carbon isotope analysis has the potential to discriminate between these processes. Here we report laboratory experiments demonstrating no significant carbon isotope fractionation during Fenton-like hydroxyl radical oxidation of toluene. This implies that observation of significant isotopic fractionation of toluene at a site undergoing H 2 O 2 -mediated remediation would provide direct evidence of biodegradation. We applied this approach at a field site that had undergone 27 months of H 2 O 2 -mediated subsurface oxygenation. Despite substantial decreases (> 68%) in groundwater toluene concentrations carbon isotope signatures of toluene (δ 13 C tol ) showed no significant variation (mean = - 27.5 ±0.3 per mille, n = 13) over a range of concentrations from 11.1 to 669.0 mg L -1 . Given that aerobic degradation by ring attack has also been shown to result in no significant isotopic fractionation during degradation, at this site we were unable to discern the mechanism of degradation. However, such differentiation is possible at sites where aerobic degradation by methyl group attack results in significant isotopic fractionation

  7. Impact of volcanic eruptions on the marine carbon cycle

    Science.gov (United States)

    Segschneider, Joachim; Ulrike, Niemeier; Martin, Wiesner; Claudia, Timmreck

    2010-05-01

    The impact of volcanic eruptions on the marine carbon cycle is investigated for the example of the Pinatubo eruption with model simulations of the distribution of the ash cloud and deposition on the ocean surface and the impact of the nutrient addition from ash leachates on the oceanic biological production and hence biological carbon pump. Natural variations of aerosols, especially due to large-magnitude volcanic eruptions, are recognized as a significant climate forcing, altering the Earth's radiation balance and thus tending to cause global temperature changes. While the impact of such events on climate and the terrestrial biosphere is relatively well documented, scientific knowledge of their effects on marine ecosystems and consequent feedbacks to the atmosphere is still very limited. In the deep sea, subaerial eruptive events of global significance are commonly recorded as widespread ash layers, which were often found to be associated with increased abundances of planktic organisms. This has led to the hypothesis that the influx of volcanic ash may provide an external nutrient source for primary production (in particular through iron fertilization) in ocean surface waters. Recent laboratory experiments have demonstrated that pristine volcanic ash indeed releases significant amounts of macronutrients and bioactive trace metals (including phosphate, iron and silica) adsorbed to the surface of the ash particles. The release of these components most likely has its largest impact in ocean regions where their availability is crucial for the growth of oceanic biomass, which are the high-nutrient but low-productivity (low-iron) areas in the Pacific and the Southern Ocean. These in turn are neighbored by most of those subaerially active volcanoes that are capable of ejecting huge amounts of aerosols into the high-velocity stratospheric wind fields. The dispersal and fallout of ash thus has a high potential to induce globally significant, transient net CO2 removal from

  8. Lignin Contribution to the Global Carbon Pool: Investigating the Abiotic Modification of Lignin by Reactive Oxygen Species

    Science.gov (United States)

    Waggoner, Derek Charles

    largely on oxygen content. Additionally, results indicate that partially oxidized lignin could react further with ROS to generate compounds resembling condensed aromatic-like compounds, previously believed to be primarily pyrogenic in origin, as well as alicyclic compounds commonly observed in marine DOM.

  9. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance.

    Science.gov (United States)

    Cercado, Bibiana; Cházaro-Ruiz, Luis Felipe; Ruiz, Vianey; López-Prieto, Israel de Jesús; Buitrón, Germán; Razo-Flores, Elías

    2013-12-15

    Bioelectrochemical systems (BESs) are based on the catalytic activity of biofilm on electrodes, or the so-called bioelectrodes, to produce electricity and other valuable products. In order to increase bioanode performance, diverse electrode materials and modification methods have been implemented; however, the factors directly affecting performance are yet unclear. In this work carbon cloth electrodes were modified by thermal, chemical, and electrochemical oxidation to enhance oxygenated surface groups, to modify the electrode texture, and consequently the electron transfer rate and biofilm adhesion. The oxidized electrodes were physically, chemically, and electrochemically characterized, then bioanodes were formed at +0.1 V vs. Ag/AgCl using domestic wastewater amended with acetate. The bioanode performance was evaluated according to the current and charge generated. The efficacy of the treatments were in the order Thermal>Electrochemical>Untreated>Chemical oxidation. The maximum current observed with untreated electrode was 0.152±0.026 mA (380±92 mA m(-2)), and it was increased by 78% and 28% with thermal and electrochemical oxidized electrodes, respectively. Moreover, the volatile solids correlated significantly with the maximum current obtained, and the electrode texture was revealed as a critical factor for increasing the bioanode performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations

    Directory of Open Access Journals (Sweden)

    Silvania Avelar

    2017-05-01

    Full Text Available Abstract Background Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. Conclusions This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The

  11. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations.

    Science.gov (United States)

    Avelar, Silvania; van der Voort, Tessa S; Eglinton, Timothy I

    2017-12-01

    Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm-particularly over continental margins-could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of

  12. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    International Nuclear Information System (INIS)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-01-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m -3 , in agreement with previous literature data. The major mass of POC was found on the smallest particles (r 13 C/ 12 C of the small particles is close to the one expected (d 13 C = 26 +- 2 0 //sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols ( 13 C = -21 +- 2 0 / 00 ) for POC associated with sea-salt droplets transported to the marine atmosphere

  13. Major role of marine vegetation on the oceanic carbon cycle

    NARCIS (Netherlands)

    Duarte, C.M.; Middelburg, J.J.; Caraco, N.

    2005-01-01

    The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove

  14. Export from Seagrass Meadows Contributes to Marine Carbon Sequestration

    KAUST Repository

    Duarte, Carlos M.; Krause-Jensen, Dorte

    2017-01-01

    Seagrasses export a substantial portion of their primary production, both in particulate and dissolved organic form, but the fate of this export production remains unaccounted for in terms of seagrass carbon sequestration. Here we review available evidence on the fate of seagrass carbon export to conclude that this represents a significant contribution to carbon sequestration, both in sediments outside seagrass meadows and in the deep sea. The evidence presented implies that the contribution of seagrass meadows to carbon sequestration has been underestimated by only including carbon burial within seagrass sediments.

  15. Export from Seagrass Meadows Contributes to Marine Carbon Sequestration

    KAUST Repository

    Duarte, Carlos M.

    2017-01-17

    Seagrasses export a substantial portion of their primary production, both in particulate and dissolved organic form, but the fate of this export production remains unaccounted for in terms of seagrass carbon sequestration. Here we review available evidence on the fate of seagrass carbon export to conclude that this represents a significant contribution to carbon sequestration, both in sediments outside seagrass meadows and in the deep sea. The evidence presented implies that the contribution of seagrass meadows to carbon sequestration has been underestimated by only including carbon burial within seagrass sediments.

  16. Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis

    Science.gov (United States)

    Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M. C.; Prevot, A. S. H.; Jennings, S. G.; O'Dowd, C. D.

    2011-01-01

    Dual carbon isotope analysis has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides a conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80% organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of fossil-fuel origin. By contrast, for polluted air advecting out from Europe into the NE Atlantic, the source apportionment is 30% marine biogenic, 40% fossil fuel, and 30% continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  17. Estimating marine biogeochemical rates of the carbonate pH system—A Kalman filter tested

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Grégoire, M.

    2011-01-01

    Oxygen (O2), nitrate (NO3), dissolved inorganic carbon (DIC) or pCO2, and pH or total alkalinity (TA), are useful indices of marine chemical, physical and biological processes operating on varying time-scales. Although these properties are increasingly being monitored at high frequency, they have

  18. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere

    DEFF Research Database (Denmark)

    Parmentier, Frans-Jan W; Christensen, Torben R; Rysgaard, Søren

    2017-01-01

    The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often...

  19. Activated carbon derived from marine Posidonia Oceanica for electric energy storage

    Directory of Open Access Journals (Sweden)

    N. Boukmouche

    2014-07-01

    Full Text Available In this paper, the synthesis and characterization of activated carbon from marine Posidonia Oceanica were studied. The activated carbon was prepared by a simple process namely pyrolysis under inert atmosphere. The activated carbon can be used as electrodes for supercapacitor devices. X-ray diffraction result revealed a polycrystalline graphitic structure. While scanning electron microscope investigation showed a layered structure with micropores. The EDS analysis showed that the activated carbon contains the carbon element in high atomic percentage. Electrochemical impedance spectroscopy revealed a capacitive behavior (electrostatic phenomena. The specific capacity per unit area of the electrochemical double layer of activated carbon electrode in sulfuric acid electrolyte was 3.16 F cm−2. Cyclic voltammetry and galvanostatic chronopotentiometry demonstrated that the electrode has excellent electrochemical reversibility. It has been found that the surface capacitance was strongly related to the specific surface area and pore size.

  20. What do we really know about early diagenesis of non-marine carbonates?

    Science.gov (United States)

    De Boever, Eva; Brasier, Alexander T.; Foubert, Anneleen; Kele, Sándor

    2017-11-01

    Non-marine carbonate rocks including cave, spring, stream, calcrete and lacustrine-palustrine sediments, are susceptible to early diagenetic processes. These can profoundly alter the carbonate fabric and affect paleoclimatic proxies. This review integrates recent insights into diagenesis of non-marine carbonates and in particular the variety of early diagenetic processes, and presents a conceptual framework to address them. With ability to study at smaller and smaller scales, down to nanometers, one can now observe diagenesis taking place the moment initial precipitates have formed, and continuing thereafter. Diagenesis may affect whole rocks, but it typically starts in nano- and micro-environments. The potential for diagenetic alteration depends on the reactivity of the initial precipitate, commonly being metastable phases like vaterite, Ca-oxalates, hydrous Mg-carbonates and aragonite with regard to the ambient fluid. Furthermore, organic compounds commonly play a crucial role in hosting these early transformations. Processes like neomorphism (inversion and recrystallization), cementation and replacement generally result in an overall coarsening of the fabric and homogenization of the wide range of complex, primary microtextures. If early diagenetic modifications are completed in a short time span compared to the (annual to millennial) time scale of interest, then recorded paleoenvironmental signals and trends could still acceptably reflect original, depositional conditions. However, even compact, non-marine carbonate deposits may behave locally and temporarily as open systems to crystal-fluid exchange and overprinting of one or more geochemical proxies is not unexpected. Looking to the future, relatively few studies have examined the behaviour of promising geochemical records, such as clumped isotope thermometry and (non-conventional) stable isotopes, in well-constrained diagenetic settings. Ongoing and future in-vitro and in-situ experimental approaches will

  1. Potential impacts of black carbon on the marine microbial community

    NARCIS (Netherlands)

    Malits, A.; Cattaneo, R.; Sintes, E.; Gasol, J.M.; Herndl, G.J.; Weinbauer, M.G.

    2015-01-01

    Black carbon (BC) is the carbonaceous residue of the incomplete combustion of fossil fuels and biomass and encompasses a range of chemically heterogeneous substances from partly charred plant material to highly condensed soot aerosols. We addressed the potential role of BC aerosol deposition on

  2. Processes determining the marine alkalinity and carbonate saturation distributions

    OpenAIRE

    B. R. Carter; J. R. Toggweiler; R. M. Key; J. L. Sarmiento

    2014-01-01

    We introduce a composite tracer, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* also highlights riverine alkalinity plumes that are due to dissolved calcium carbonate from land. We estimate the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near ri...

  3. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    Science.gov (United States)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  4. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers

    Science.gov (United States)

    Riding, Robert

    2002-01-01

    Thin (mushrooms, and plumes. All can be interpreted as characteristics of attached bacterial communities, i.e., aggregates as microcolonies, originally embedded in a matrix of extracellular polymeric substances; channels as water conduits and/or uncolonized nutrient-poor spaces; external protuberances as localized growths; and plumes as surface streamers. Cryptic habitat favored pristine biofilm preservation by precluding disturbance and overgrowth, and suggests aphotic and anoxic conditions. These examples provide diagnostic morphologic criteria for wider recognition of biofilm in Phanerozoic and older carbonates.

  5. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments

    Science.gov (United States)

    Higgins, J. A.; Blättler, C. L.; Lundstrom, E. A.; Santiago-Ramos, D. P.; Akhtar, A. A.; Crüger Ahm, A.-S.; Bialik, O.; Holmden, C.; Bradbury, H.; Murray, S. T.; Swart, P. K.

    2018-01-01

    Shallow-water carbonate sediments constitute the bulk of sedimentary carbonates in the geologic record and are widely used archives of Earth's chemical and climatic history. One of the main limitations in interpreting the geochemistry of ancient carbonate sediments is the potential for post-depositional diagenetic alteration. In this study, we use paired measurements of calcium (44Ca/40Ca or δ44Ca) and magnesium (26Mg/24Mg or δ26Mg) isotope ratios in sedimentary carbonates and associated pore-fluids as a tool to understand the mineralogical and diagenetic history of Neogene shallow-water carbonate sediments from the Bahamas and southwest Australia. We find that the Ca and Mg isotopic composition of bulk carbonate sediments at these sites exhibits systematic stratigraphic variability that is related to both mineralogy and early marine diagenesis. The observed variability in bulk sediment Ca isotopes is best explained by changes in the extent and style of early marine diagenesis from one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the fluid (fluid-buffered) to one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the precursor sediment (sediment-buffered). Our results indicate that this process, together with variations in carbonate mineralogy (aragonite, calcite, and dolomite), plays a fundamental and underappreciated role in determining the regional and global stratigraphic expressions of geochemical tracers (δ13C, δ18O, major, minor, and trace elements) in shallow-water carbonate sediments in the geologic record. Our results also provide evidence that a large shallow-water carbonate sink that is enriched in 44Ca can explain the mismatch between the δ44/40Ca value of rivers and deep-sea carbonate sediments and call into question the hypothesis that the δ44/40Ca value of seawater depends on the mineralogy of primary carbonate precipitations (e.g. 'aragonite seas' and

  6. Processes determining the marine alkalinity and calcium carbonate saturation state distributions

    OpenAIRE

    Carter, B. R.; Toggweiler, J. R.; Key, R. M.; Sarmiento, J. L.

    2014-01-01

    We introduce a composite tracer for the marine system, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* is also affected by riverine alkalinity from dissolved terrestrial carbonate minerals. We estimate that the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near riv...

  7. Bacterioplankton: a sink for carbon in a coastal marine plankton community

    International Nuclear Information System (INIS)

    Ducklow, H.W.; Purdie, D.A.; Williams, P.J.LeB.; Davis, J.M.

    1986-01-01

    Recent determinations of high production rates (up to 30% of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a microbial loop that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14-labeled bacterioplankton for over 50 days. Only 2% of the label initially fixed from carbon-14-labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20% of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food

  8. Application of carbon isotope stratigraphy to late miocene shallow marine sediments, new zealand.

    Science.gov (United States)

    Loutit, T S; Kennett, J P

    1979-06-15

    A distinct (0.5 per mil) carbon-13/carbon-12 isotopic shift in the light direction has been identified in a shallow marine sedimentary sequence of Late Miocene age at Blind River, New Zealand, and correlated with a similar shift in Late Miocene Deep Sea Drilling Project sequences throughout the Indo-Pacific. A dated piston core provides an age for the shift of 6.2 +/- 0.1 million years. Correlations based on the carbon isotopic change require a revision of the previously established magnetostratigraphy at Blind River. The carbon shift at Blind River occurs between 6.2 and 6.3 +/- 0.1 million years before present. A new chronology provides an age for the evolutionary first appearance datum of Globorotalia conomiozea at 6.1 +/- 0.1 million years, the beginning of a distinct latest Miocene cooling event associated with the Kapitean stage at 6.2 +/- 0.1 million years, and the beginning of a distinct shallowing of water depths at 6.1 +/- 0.1 million years. The Miocene-Pliocene boundary as recognized in New Zealand is now dated at 5.3 +/- 0.1 million years. Extension of carbon isotope stratigraphy to other shallow Late Miocene sequences should provide an important datum for international correlation of Late Miocene shallow and deep marine sequences.

  9. Evaluation of thermal optical analysis method of elemental carbon for marine fuel exhaust.

    Science.gov (United States)

    Lappi, Maija K; Ristimäki, Jyrki M

    2017-12-01

    The awareness of black carbon (BC) as the second largest anthropogenic contributor in global warming and an ice melting enhancer has increased. Due to prospected increase in shipping especially in the Arctic reliability of BC emissions and their invented amounts from ships is gaining more attention. The International Maritime Organization (IMO) is actively working toward estimation of quantities and effects of BC especially in the Arctic. IMO has launched work toward constituting a definition for BC and agreeing appropriate methods for its determination from shipping emission sources. In our study we evaluated the suitability of elemental carbon (EC) analysis by a thermal-optical transmittance (TOT) method to marine exhausts and possible measures to overcome the analysis interferences related to the chemically complex emissions. The measures included drying with CaSO 4, evaporation at 40-180ºC, H 2 O treatment, and variation of the sampling method (in-stack and diluted) and its parameters (e.g., dilution ratio, Dr). A reevaluation of the nominal organic carbon (OC)/EC split point was made. Measurement of residual carbon after solvent extraction (TC-C SOF ) was used as a reference, and later also filter smoke number (FSN) measurement, which is dealt with in a forthcoming paper by the authors. Exhaust sources used for collecting the particle sample were mainly four-stroke marine engines operated with variable loads and marine fuels ranging from light to heavy fuel oils (LFO and HFO) with a sulfur content range of carbon (PyC) from OC, affecting the accuracy of EC determination. Thus, uncertainty remained regarding the EC results from HFO fuels. The work supports one part of the decision making in black carbon (BC) determination methodology. If regulations regarding BC emissions from marine engines will be implemented in the future, a well-defined and at best unequivocal method of BC determination is required for coherent and comparable emission inventories and

  10. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Science.gov (United States)

    Oschlies, A.

    2009-08-01

    The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere

  11. Carbon Stored on Seagrass Community in Marine Nature Tourism Park of Kotania Bay, Western Seram, Indonesia

    Directory of Open Access Journals (Sweden)

    Mintje Wawo

    2014-04-01

    Full Text Available Currently, the function of seagrass community as carbon storage has been discussed in line with “blue carbon” function of that seagrass has. Seagrass bed are a very valuable coastal ecosystem, however, seagrass bed is threatened if compared to other coastal ecosystems, such as mangroves and coral reefs. The threatened seagrass experienced also contributes to its capacity in absorbing CO2 emission from greenhouse gasses such as CO2 emission Temporal estimation shows that CO2 emission will increase in the coming decade. On the other side, efforts to decrease climate change can be influenced by the existence of seagrass. Informations about existence of seagrass as carbon storage are still very rare or limited. This study was aimed to estimate carbon storage on seagrass community in Marine Nature Tourism Park of Kotania Bay Area, Western Seram, Maluku Province. The quadrat transect method of 0.25 m2 for each plot was used to collect seagrass existence. The content of carbon in the sample of dry biomass of seagrass was analyzed in the laboratory using Walkley & Black method. The results showed that total carbon stored was higher in both Osi and Burung Islands of Kotania Bay than other studied areas (Buntal and Tatumbu Islands, Marsegu Island, Barnusang Peninsula, Loupessy and Tamanjaya Village. The average carbon stored in Kotania Bay waters was 2.385 Mg C ha-1, whereas the total of carbon stored was 2054.4967 Mg C.

  12. Study of carbon dioxide (CO sub 2 ) problems through marine science. Kaiyo kara mita nisankatanso mondai

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M [Japan Marine Science and Technology Center, Kanagawa (Japan)

    1990-09-01

    This paper reviews the researches relating to carbon dioxide circulation in oceans, and introduces the roles played by oceans in respect of the CO {sub 2} problem. Oceans occupy 70% of the globe {prime} s surface area, and contain 60 times as much of carbon as in the atmosphere. However, the amount of CO {sub 2} absorbed from the atmosphere into the oceans as has been estimated to date can not explain the carbon balance on earth. The exchange rate of CO {sub 2} between the atmosphere and the oceans was estimated from measurements of the partial pressure (PCO {sub 2}), and from behaviors of the radiocarbon ({sup 14} C). However, to raise the estimation accuracy, it is necessary to obtain data from the sea areas where observations are carried out only infrequently, and from the winter season during which the observation frequency is low. Identifying variations in organic and inorganic carbon amount generated by marine organisms is also important. Since more than 99.9% of carbon is present in the form of carbonate, it is required that its amount, and the amount of precipitation and dissolution per unit time be identified, and that CO {sub 2} removed from the carbon cycle be quantified. What is particularly required is the study of open-sea bottom deposits, and the coastal study with coral reefs as the main object. 40 refs., 30 figs., 11 tabs.

  13. Enhancement of orimulsion biodegradation through the addition of natural marine carbon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, L.M.; Toy, E.; Lapham, L.; Cherrier, J.; Chanton, J.P. [Florida State University, Tallahassee, FL (USA). Dept. of Oceanography

    2001-04-01

    Orimulsion is a bitumen-based heavy fuel that is a less expensive alternative to traditional fuel oils. However, because its density is intermediate between that of freshwater and seawater, in the event of a spill, the fuel could strand in the sediments. Previous work indicated that only 0.6 - 2.7% of the bitumen would degrade in long incubations of marine sediments. Various natural carbon substrates were added to stimulate the degradation of bitumen by native populations of benthic bacteria. The concentration and carbon isotopic signature of the respired carbon dioxide was measured to partition the substrates that supported bacterial respiration. It was found that the addition of seagrass and pinfish stimulated the degradation of bitumen by as much as 2 to 9-fold relative to incubations without these substrates. Biodegradation of bitumen may be enhanced by the addition of natural marine carbon substrates and may be a useful approach for bioremediation. Preadaption of the bacteria to bitumen did not significantly enhance their ability to degrade it. 13 refs., 5 figs., 2 tab.

  14. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer

    International Nuclear Information System (INIS)

    Copping, A.E.; Lorenzen, C.J.

    1980-01-01

    Adult female and stage V Calanus pacificus were fed 14 C-labeled phytoplankton in the laboratory in the form of monospecific cultures and natural populations. A carbon budget was constructed by following the 14 C activity and the specific activity, over 48 h, in the phytoplankton, copepod, dissolved organic, dissolved inorganic, and fecal carbon compartments. The average incorporation of carbon into the copepod's body was 45% of the phytoplankton carbon available. Of the phytoplankton carbon, 27% appeared as dissolved organic carbon, 24% as dissolved inorganic carbon, and 3 to 4% in the form of fecal pellets. All of the tracer was recovered at the end of the experiments. The specific activity of the phytoplankton compartment was constant throughout each experiment. The other compartments had initial specific activities of zero, or close to zero, and increased throughout the experiment. In most experiments, the copepod specific activity equalled that of the phytoplankton at the end of 48 h, while the dissolved organic carbon, dissolved inorganic carbon, and fecal specific activities remained well below that of the phytoplankton

  15. Organic carbon degradation in arctic marine sediments, Svalbard: A comparison of initial and terminal steps

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2006-01-01

    carbohydrate concentrations were comparable to those measured in more temperate sediments, and likely comprise a considerable fraction of porewater dissolved organic carbon. A comparison of dissolved carbohydrate inventories with hydrolysis and sulfate reduction rates suggests that the turnover of carbon......Degradation of marine organic matter under anoxic conditions involves microbial communities working in concert to remineralize complex substrates to CO2. In order to investigate the coupling between the initial and terminal steps of this sequence in permanently cold sediments, rates...... of extracellular enzymatic hydrolysis and sulfate reduction were measured in parallel cores collected from 5 fjords on the west and northwest coast of Svalbard, in the high Arctic. Inventories of total dissolved carbohydrates were also measured in order to evaluate their potential role in carbon turnover...

  16. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean

    DEFF Research Database (Denmark)

    Ploug, H.; Grossart, HP; Azam, F.

    1999-01-01

    aggregate in darkness, which yielded a turnover time of 8 to 9 d for the total organic carbon in aggregates. Thus, marine snow is not only a vehicle for vertical flux of organic matter; the aggregates are also hotspots of microbial respiration which cause a fast and efficient respiratory turnover...... of particulate organic carbon in the sea....

  17. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.

    Science.gov (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2011-11-01

    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    International Nuclear Information System (INIS)

    Schoeninger, M.J.; DeNiro, M.J.

    1984-01-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The delta 15 N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9 per mille more positive than those from animals that fed exclusively in the terrestrial environment: ranges for the two groups overlap by less than 1 per mille. Bone collagen delta 15 N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen delta 15 N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3 per mille difference in the delta 15 N values of their bone collagen. Results are given and discussed. (author)

  19. Lead isotopic composition of paleozoic and late proterozoic marine carbonate rocks in the vicinity of Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    Zartman, R.E.; Kwak, L.M.

    1993-01-01

    Paleozoic and Late Proterozoic marine carbonate rocks (limestones, dolomites, and their metamorphic equivalents) cropping out in the vicinity of Yucca Mountain contain lead with an isotopic composition strongly suggesting them to be a major source of the lead observed at Trench 14 in the carbonate phase of carbonate-silica veins and nearby surficial calcrete deposits. Six whole-rock samples of marine carbonate rocks yield 206 Pb/ 204 Pb = 19.21-29.06, 207 Pb/ 204 Pb = 15.74-16.01, and 208 Pb/ 204 Pb = 37.90-39.25, and leachate and residue fractions of the rocks reveal additional isotopic heterogeneity within individual samples. Two samples of eolian dust also have isotopic compositions lying along a 'carbonate' to 'silicate' mixing trend that appears to arise entirely from pedeogenic processes. The tendency for the marine carbonate rocks to evolve highly uranogenic, but not thorogenic, lead results in a distinctive isotopic composition that serves as a tracer in eolian dust and secondary carbonate minerals derived from the marine carbonate rocks

  20. Biological Carbon Dioxide Assimilation Process Using Marine Phytoplankton Tetraselmis suecica and Bivalve Perna viridis

    Directory of Open Access Journals (Sweden)

    Sirichai Dharmvanij

    2012-01-01

    Full Text Available The Biological CO2 assimilation process using marine phytoplankton and marine bivalve was evaluated by carbon assimilation of the green mussel Perna viridis fed with Tetraselmis suecica under laboratory condition. Incorporation of carbon dioxide into phytoplankton biomass was performed through aeration. The experiment consisted of three treatments i.e. mussels without feeding (Control, mussels fed with T. suecica cultured with air (Treatment 1: T-Air, and mussels fed with T. suecica cultured with 1.5% CO2 in air (Treatment 2: T-CO2. The results showed that growth of mussels in T-Air and T-CO2 was 22.4 ± 4.0 mg/individual/day and 28.9 ± 12.3 mg/individual/day, respectively, which was significantly higher than control (mussels without feeding. Growth of mussels in T-Air was significantly lower than in T-CO2. Carbon content in shell (15.59 ± 0.57 % D.W. and meat (38.28 ± 1.72 % D.W. of mussels fed with aerated T. suecica (T-Air was significantly higher than that found in mussels fed with 1.5% CO2 T. suecica (14.2 ± 0.47 and 36.61± 0.43 % D.W. in shell and in meat, respectively (p≤0.05. With T-Air, 1.95±0.27 and 9.36±1.24% of carbon from T. suecica cells was assimilated into shell and meat of the mussel, respectively, while in T-CO2 , carbon assimilation from T. suecica cells in shell and meat was 2.19±0.55 and 11.22±2.76% respectively.

  1. Chemical Composition of the Graphitic Black Carbon Fraction in Riverine and Marine Sediments at Submicron Scales using Carbon X-ray Spectromicroscopy

    International Nuclear Information System (INIS)

    Haberstroh, P.; Brandes, J.; Gelinas, Y.; Dickens, A.; Wirick, S.; Cody, G.

    2006-01-01

    The chemical composition of the graphitic black carbon (GBC) fraction of marine organic matter was explored in several marine and freshwater sedimentary environments along the west coast of North America and the Pacific Ocean. Analysis by carbon x-ray absorption near edge structure (C-XANES) spectroscopy and scanning transmission x-ray microscopy (STXM) show the GBC-fraction of Stillaguamish River surface sediments to be dominated by more highly-ordered and impure forms of graphite, together forming about 80% of the GBC, with a smaller percent of an aliphatic carbon component. Eel River Margin surface sediments had very little highly-ordered graphite, and were instead dominated by amorphous carbon and to a lesser extent, impure graphite. However, the GBC of surface sediments from the Washington State Slope and the Mexico Margin were composed almost solely of amorphous carbon. Pre-anthropogenic, highly-oxidized deep-sea sediments from the open Equatorial Pacific Ocean contained over half their GBC in different forms of graphite as well as highly-aliphatic carbon, low aromatic/highly-acidic aliphatic carbon, low aromatic/highly aliphatic carbon, and amorphous forms of carbon. Our results clearly show the impact of graphite and amorphous C phases in the BC fraction in modern riverine sediments and nearby marine shelf deposits. The pre-anthropogenic Equatorial Pacific GBC fraction is remarkable in the existence of highly-ordered graphite

  2. Comparison of marine macrophytes for their contributions to blue carbon sequestration.

    Science.gov (United States)

    Trevathan-Tackett, Stacey M; Kelleway, Jeffrey; Macreadie, Peter I; Beardall, John; Ralph, Peter; Bellgrove, Alecia

    2015-11-01

    Many marine ecosystems have the capacity for long-term storage of organic carbon (C) in what are termed "blue carbon" systems. While blue carbon systems (saltmarsh, mangrove, and seagrass) are efficient at long-term sequestration of organic carbon (C), much of their sequestered C may originate from other (allochthonous) habitats. Macroalgae, due to their high rates of production, fragmentation, and ability to be transported, would also appear to be able to make a significant contribution as C donors to blue C habitats. In order to assess the stability of macroalgal tissues and their likely contribution to long-term pools of C, we applied thermogravimetric analysis (TGA) to 14 taxa of marine macroalgae and coastal vascular plants. We assessed the structural complexity of multiple lineages of plant and tissue types with differing cell wall structures and found that decomposition dynamics varied significantly according to differences in cell wall structure and composition among taxonomic groups and tissue function (photosynthetic vs. attachment). Vascular plant tissues generally exhibited greater stability with a greater proportion of mass loss at temperatures > 300 degrees C (peak mass loss -320 degrees C) than macroalgae (peak mass loss between 175-300 degrees C), consistent with the lignocellulose matrix of vascular plants. Greater variation in thermogravimetric signatures within and among macroalgal taxa, relative to vascular plants, was also consistent with the diversity of cell wall structure and composition among groups. Significant degradation above 600 degrees C for some macroalgae, as well as some belowground seagrass tissues, is likely due to the presence of taxon-specific compounds. The results of this study highlight the importance of the lignocellulose matrix to the stability of vascular plant sources and the potentially significant role of refractory, taxon-specific compounds (carbonates, long-chain lipids, alginates, xylans, and sulfated

  3. Stable carbon isotope ratios of lipid biomarkers and their applications in the marine environment

    International Nuclear Information System (INIS)

    Tolosa, I.; Mora, S. de

    2001-01-01

    Studies on the distribution of lipid biomarkers in the environment help elucidate biogeochemical processes, but recent findings have significantly reduced the specificity of some biomarkers. The analytical development of Gas Chromatography-Combustion-IRMS (GC-C-IRMS) allows the determination of the δ 13 C of specific biomarkers, thereby improving the veracity of source apportionment. In this report, we present a brief description of the analytical approach for sample preparation and carbon isotope measurements of individual biomarkers. Selected examples of the applications in the use of GC-C-IRMS for biomarker source elucidation in the marine environment and potential applications to paleoclimatological studies are reviewed. (author)

  4. Estimation of carbonate concentration and characterization of marine sediments by Fourier transform infrared spectroscopy.

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Venkatachalapathy, R.

    its saturation horizon is shallower than that calcite [1]. Elements such as Ca2+ and Mg2+, in addition to their substantial contribution to marine sediments, are used biologically in vital cellular processes and in the mineralization of skeletons... such as ocean acidification on ecosystems. Thus, a rapid, cheap and non-destructive tool is required to investigate the distribution of CaCO3 in sediments for the understanding of the fate of biologically produced carbonate. 3    FTIR spectroscopy is one...

  5. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - With emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea

    Science.gov (United States)

    Diedrich, Cajus G.

    2009-01-01

    More than seventy-five vertebrate track-sites have been found in Central Europe in 243-246.5 m.y. old Triassic coastal intertidal to sabkha carbonates. In the western part of the very flat Triassic intracontinental Germanic Basin, the carbonate strata contain at least 22 laterally extensive track horizons (called megatracksites). In contrast, in the eastern part of the basin only six megatracksites extended to near the centre of the Basin during marine low stands. Marine ingression and the development of extensive coastal marine environments began during the Aegean (Anisian) stage. This incursion began in the region of the eastern Carpathian and Silesian gates and spread westward due to the development of a tectonically controlled intracratonic basin. The tectonic origin of this basin made it susceptible to tsunamis and submarine earthquakes, which constituted very dangerous hazards for coastal terrestrial and even marine reptiles. The shallow sea that spread across the Germanic Basin produced extensive tidal flats that at times formed extensive inter-peninsular bridges between the Rhenish and Bohemian Massifs. The presence of these inter-peninsular bridges explains the observed distribution and movement of reptiles along coastal Europe and the northern Tethys Seaway during the Middle Triassic epoch. Two small reptiles, probably Macrocnemus and Hescherleria, left millions of tracks and trackways known as Rhynchosauroides and Procolophonichnium in the Middle Triassic coastal intertidal zone. The great abundance of their tracks indicates that their trackmakers Macrocnemus and Hescherleria were permanent inhabitants of this environment. In sharp contrast, tracks of other large terrestrial reptiles are quite rare along the coastal margins of the Germanic Basin, for example the recently discovered archaeosaur tracks and trackways referable to Isochirotherium, which most probably were made by the carnivore Ticinosuchus. Smaller medium-sized predatory thecodont reptiles

  6. Assessment of Carbon Status in Marine Protected Area of Payung Island Waters, South Sumatera Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Anna Ida Sunaryo Purwiyanto

    2017-03-01

    Full Text Available CO2 is a greenhouse gas that receive more attention than the other gases because the properties of carbon easily deformed and diffuseed. Changes in the concentration of CO2 in the water will impact on changes in the amount of CO2 in the atmosphere that affect sea surface temperatures. It continuously will result in a change of marine capture fisheries. Payung Island is one of the important areas in South Sumatra that acts as the provider of the fishery. This because Payung Island is located in the mouth of Musi and Telang River covered by mangrove, has a very important ecological function. However, the condition of the carbon in the waters of the Payung Island has not explored further. This elementary study is to determine status on Payung Island waters as a sink or source of CO2. The study was conducted in June until August 2015. The research stages include surface water sampling, measurement of the CO2 in the atmosphere, the analysis of the concentration of Dissolved Inorganic Carbon (DIC and Total Alkalinity (TA, and partial pressure of carbon dioxide (pCO2 calculation.  Atmospheric CO2 were measured insitu, while the DIC and TA were analyzed using titration methods. Partial pressure of carbon dioxide (pCO2 obtained from the calculation using the software CO2Calc using data of  DIC, TA, nutrients and atmospheric CO2. The results showed that the content of DIC and TA on the Payung Island waters has similar distribution pattern  i.e. high in areas close to the river, and getting lower in the area which were closer to the sea. The comparisons between pCO2 atmosphere and pCO2 waters showed that Payung Island waters generally act as a carbon sink in area towards the sea but however, in the territorial waters adjacent to the river as a source of carbon.   Keywords: carbon, marine protected area, Payung Island waters

  7. Quantitative Analysis of Carbon Flow into Photosynthetic Products Functioning as Carbon Storage in the Marine Coccolithophore, Emiliania huxleyi.

    Science.gov (United States)

    Tsuji, Yoshinori; Yamazaki, Masatoshi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2015-08-01

    The bloom-forming coccolithophore Emiliania huxleyi (Haptophyta) is a dominant marine phytoplankton, cells of which are covered with calcareous plates (coccoliths). E. huxleyi produces unique lipids of C37-C40 long-chain ketones (alkenones) with two to four trans-unsaturated bonds, β-glucan (but not α-glucan) and acid polysaccharide (AP) associated with the morphogenesis of CaCO3 crystals in coccoliths. Despite such unique features, there is no detailed information on the patterns of carbon allocation into these compounds. Therefore, we performed quantitative estimation of carbon flow into various macromolecular products by conducting (14)C-radiotracer experiments using NaH(14)CO3 as a substrate. Photosynthetic (14)C incorporation into low molecular-mass compounds (LMC), extracellular AP, alkenones, and total lipids except alkenones was estimated to be 35, 13, 17, and 25 % of total (14)C fixation in logarithmic growth phase cells and 33, 19, 18, and 18 % in stationary growth phase cells, respectively. However, less than 1 % of (14)C was incorporated into β-glucan in both cells. (14)C-mannitol occupied ca. 5 % of total fixed (14)C as the most dominant LMC product. Levels of all (14)C compounds decreased in the dark. Therefore, alkenones and LMC (including mannitol), but not β-glucan, function in carbon/energy storage in E. huxleyi, irrespective of the growth phase. Compared with other algae, the low carbon flux into β-glucan is a unique feature of carbon metabolism in E. huxelyi.

  8. The role of low-temperature organic matter diagenesis in carbonate precipitation within a marine deposit

    International Nuclear Information System (INIS)

    Miyakawa, Kazuya; Ishii, Eiichi; Hirota, Akinari; Komatsu, Daisuke D.; Ikeya, Kosuke; Tsunogai, Urumu

    2017-01-01

    degradation of organic matter has proceeded too far for any more CO_2 to be produced. Thus, carbonate precipitation is initiated when pH rises due to microbial CO_2 reduction. The contrast between the occurrence of carbonate veins in the Koetoi and Wakkanai formations can be explained by our results, which can also be applied to general carbonate behavior in marine sedimentary rocks. - Highlights: • δ"1"3C – δD systematics of coexisting CH_4 and CO_2. • Extreme-"1"3C enrichment caused by microbial CO_2 reduction in a closed system. • Organic matter diagenesis plays an important role in carbonate precipitation.

  9. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria.

    Science.gov (United States)

    Borrero-Santiago, A R; DelValls, T A; Riba, I

    2016-09-01

    Carbon capture and storage (CCS) is one of the options to mitigate the negative effects of the climate change. However, this strategy may have associated some risks such as CO2 leakages due to an escape from the reservoir. In this context, marine bacteria have been underestimated. In order to figure out the gaps and the lack of knowledge, this work summarizes different studies related to the potential effects on the marine bacteria associated with an acidification caused by a CO2 leak from CSS. An improved integrated model for risk assessment is suggested as a tool based on the rapid responses of bacterial community. Moreover, this contribution proposes a strategy for laboratory protocols using Pseudomona stanieri (CECT7202) as a case of study and analyzes the response of the strain under different CO2 conditions. Results showed significant differences (p≤0.05) under six diluted enriched medium and differences about the days in the exponential growth phase. Dilution 1:10 (Marine Broth 2216 with seawater) was selected as an appropriate growth medium for CO2 toxicity test in batch cultures. This work provide an essential and a complete tool to understand and develop a management strategy to improve future works related to possible effects produced by potential CO2 leaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.

    Science.gov (United States)

    Bermont-Bouis, D; Janvier, M; Grimont, P A D; Dupont, I; Vallaeys, T

    2007-01-01

    In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.

  11. Evaluation and intercomparison of three-dimensional global marine carbon cycle models

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K., LLNL

    1998-07-01

    -Reimer, 1990; Sarmiento et al., 1992, Najjar et al., 1992). These twin needs for the development of marine carbon cycle models are expressed in two of the main elements of JGOFS SMP: (1) extrapolation and prediction, and (2) global and regional balances of carbon and related biologically-active substances. We propose to address these program elements through a coordinated, multi-investigator project to evaluate and intercompare several 3-D global marine carbon cycle models.

  12. Increased carbon uptake in marine sediment enabled by naturally occurring electrical conductors

    Science.gov (United States)

    Nielsen, M. E.; Cahoon, D. P.; Girguis, P. R.

    2011-12-01

    reveal that the majority of microbes in the sediment belong to the deltaproteobacteria or gammaproteobacteria classes, which have been previously implicated in EET in laboratory and field-based bioelectrochemical studies. These data force us to reconsider the role of EET and conductive minerals in organic carbon cycling -particularly in metaliferous sediments- and suggest that EET-enabled anaerobic metabolism may represent a significant contribution to marine carbon cycling.

  13. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism.

    Science.gov (United States)

    Matsuda, Yusuke; Hopkinson, Brian M; Nakajima, Kensuke; Dupont, Christopher L; Tsuji, Yoshinori

    2017-09-05

    Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO 2 fixation. The evolution of a CO 2 -concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO 2 ] aq in seawater relative to concentrations required by the CO 2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO 2 in water and a limited CO 2 formation rate from [Formula: see text] in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of [Formula: see text] through plasma-membrane type solute carrier (SLC) 4 family [Formula: see text] transporters and the other is more reliant on passive diffusion of CO 2 formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO 2 only in close proximity to RubisCO preventing unnecessary CO 2 leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal θ-CA indicates that the strategy to supply CO 2 to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are

  14. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  15. Badlands and the Carbon cycle: a significant source of petrogenic organic carbon in rivers and marine environments?

    Science.gov (United States)

    Copard, Yoann; Eyrolle-Boyer, Frederique; Radakovitch, Olivier; Poirel, Alain; Raimbault, Patrick; Lebouteiller, Caroline; Gairoard, Stéphanie; Di-Giovanni, Christian

    2016-04-01

    A key issue in the study of carbon biogeochemical cycle is to well constrain each carbon origin in term of fluxes between all C-reservoirs. From continental surfaces to oceans, rivers convey particulate organic carbon originate from the biomass (biospheric OC) and /or from the sedimentary rocks (petrogenic OC). Existence and importance of this petrogenic OC export to oceans was debated for several decades (see Copard et al., 2007 and ref.), but it is now assumed that 20% of the global carbon export to ocean has a geological origin (Galy et al., 2015). The main current challenge is to constrain the major contributors to this petrogenic OC flux. Amongst the expected sedimentary sources of petrogenic OC in rivers, sedimentary rocks forming badlands can be rightly considered as some viable candidates. Indeed these rocks show a strong erosion rate, may exceed 50 kt km-2 y-1 and in addition, shales, marls and argillaceous rocks, frequently forming badlands (see Nadal-Romero et al., 2011 for the Mediterranean area), contain a significant amount of petrogenic OC (frequently over 0.50 wt. %, Ronov and Yaroshevsky 1976). Our work illustrates the contribution of badlands, mainly distributed within the Durance catchment (a main tributary of the Rhône river), in the petrogenic OC export to the Mediterranean Sea. The approach is based on (i) the use of previous and new data on radiogenic carbon, (ii) bulk organic geochemistry (Rock-Eval pyrolysis), (iii) optical quantification of particulate OM (palynofacies), performed on suspended sediments from the Durance, the Rhône rivers and from small rivers draining the badlands. A mean erosion rate of badlands, previously calculated for instrumented catchments (SOERE Draix-Bléone, Graz et al., 2012) was also applied to the badlands disseminated within the Durance catchment. These different methodologies converge to a petrogenic contribution of the OC export to the Mediterranean Sea close to 30 %. Badlands from the Durance catchment

  16. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  17. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    Science.gov (United States)

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  18. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, A.

    2018-03-29

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

  19. A marine heatwave drives massive losses from the world's largest seagrass carbon stocks

    Science.gov (United States)

    Arias-Ortiz, A.; Serrano, O.; Masqué, P.; Lavery, P. S.; Mueller, U.; Kendrick, G. A.; Rozaimi, M.; Esteban, A.; Fourqurean, J. W.; Marbà, N.; Mateo, M. A.; Murray, K.; Rule, M. J.; Duarte, C. M.

    2018-04-01

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay's seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4-21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

  20. Study of the carbon and oxygen isotopic compositions in marine shells of Salvador-Bahia, Brazil

    International Nuclear Information System (INIS)

    Freitas, J.C.B. de.

    1977-01-01

    The carbon and oxygen isotopic composition of 68 samples of marine shells from the region of Salvador was determined. These samples are from points on the open coast and in the interior of the Todos os Santos Bay and they are composed in part by recent specimens and in part by old specimens taken from Quaternary sediments. The results for δ 18 O are in the range of -2,83per mille to + 1,21per mille (PDB) and for δ 13 C in the range of -3,10per mille to +2,63per mille (PDB). The reults for the recent shells from the interior of the Todos os Santos Bay show variations in the δ 13 C values associated to the dominance of organic matter in some regions. For the old samoles, gathered in te variations in the δ 13 C values was associated to the existence in points of that region of deposits of fluvio-lagunar sediments, originated during the last marine transgression. It was identified, for a few species with the same age and location, the effect of biological fractionations. Nevertheless, the observed dominant factor on the isotopic differentiation was the environmental fractionation. (Author) [pt

  1. Properties Variation of Carbon Fiber Reinforced Composite for Marine Current Turbine in Seawater

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available Turbine blade which are generally made of composite is a core device among components of tidal current power generator that converts the flow of tidal current into a turning force. Recent years, damages of composite turbine blades have been reported due to reasons like seawater degradation, lake of strength, manufacture etc. In this paper, water absorption, tensile, bending, longitudinal transverse shearing properties of carbon fiber reinforced plastic (CRP composite which would be applied to fabricate the marine current turbine blade has been investigated. Furthermore, the variations of properties with seawater immersion period were studied. The results indicated that the water absorption increased almost linearly at the beginning of immersion and then became stable. Tensile strength of specimen tended to decrease firstly and then recovered slightly. However, the longitudinal transverse shearing strength showed reverse variation trend comparing to tensile strength. And the bending property of specimens was depressed significantly. The properties variations in seawater shall be referenced to design and fabrication of composite marine current turbine blade.

  2. A validated dynamic model of the first marine molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Ovrum, E.; Dimopoulos, G.

    2012-01-01

    In this work we present a modular, dynamic and multi-dimensional model of a molten carbonate fuel cell (MCFC) onboard the offshore supply vessel “Viking Lady” serving as an auxiliary power unit. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the vessel. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the offshore supply vessel. The calibration process included parameter identification, sensitivity analysis to identify the critical model parameters, and iterative calibration of these to minimize the overall prediction error. The calibrated model has a low prediction error of 4% for the operating range of the cell, exhibiting at the same time a physically sound qualitative behavior in terms of thermodynamic heat transfer and electrochemical phenomena, both on steady-state and transient operation. The developed model is suitable for a wide range of studies covering the aspects of thermal efficiency, performance, operability, safety and endurance/degradation, which are necessary to introduce fuel cells in ships. The aim of this MCFC model is to aid to the introduction, design, concept approval and verification of environmentally friendly marine applications such as fuel cells, in a cost-effective, fast and safe manner. - Highlights: ► We model the first marine molten carbonate fuel cell auxiliary power unit. ► The model is distributed spatially and models both steady state and transients. ► The model is validated against experimental data. ► The paper illustrates how the model can be used in safety and reliability studies.

  3. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    Science.gov (United States)

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  4. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    International Nuclear Information System (INIS)

    Wijnbladh, Erik; Joensson, Bror Fredrik; Kumblad, Linda

    2006-01-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem

  5. Sm-Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages

    International Nuclear Information System (INIS)

    Shaw, H.F.; Wasserburg, G.J.

    1985-01-01

    This study explores the possibility of establishing Nd isotopic variations in seawater over geologic time. Calcite, aragonite and apatite are examined as possible phases recording seawater values of epsilonsubNd. Modern, biogenic and inorganically precipitated calcite and aragonite from marine environments were found to have Nd concentrations of from 0.2 to 70 ppb, showing that primary marine CaCO 3 contains little REE and that Nd/Ca is not greatly enhanced relative to seawater during carbonate precipitation. Very young marine limestone and dolomite containing no continental detritus have approx. 200 ppb Nd. All the carbonates are LREE enriched. Modern and very young Atlantic and Pacific carbonates have epsilonsub(Nd) in the range of shallow Atlantic and Pacific seawater respectively, implying that they derive their REE from local seawater. The Nd in well preserved carbonate fossils is 4 ppb, much greater than in their modern counterparts but like the high values found for carbonates in other studies. Results are also reported for apatite. They suggest that sedimentary apatite can be used to determine epsilonsub(Nd)(T) in ancient seawater. The seawater values so inferred range between -1.7 and -8.9 over the last 700 my and lie in the range of modern seawater, showing no evidence for drastic changes. (U.K.)

  6. Design of a supercritical carbon dioxide cooled reactor for marine applications

    International Nuclear Information System (INIS)

    Bollardiere, T. Paris de; Verchere, T.; Wilson, M.; O'Sullivan, P.; Heap, S.; Thompson, A.; Jewer, S.; Beeley, P.A.

    2009-01-01

    The reactor physics and thermal hydraulics aspects of a feasibility study conducted to assess the potential of a supercritical carbon dioxide (sCO2) cooled nuclear reactor for marine propulsion are presented. Supercritical carbon dioxide cycles have been proposed for next generation nuclear plants as such cycles take advantage of sCO2 property changes near the critical point which leads to improved plant efficiency over existing nuclear plant cycles at the same temperatures and pressures. Selecting two 192 MWth cores and a recompression Brayton cycle it was determined that a maximum power conversion efficiency of 47.5 % could be achieved. The core design employs TRISO particles in a graphite matrix forming a fuelled annulus in a prismatic graphite moderating block. The design of this plant has been modeled using WIMS/MONK (neutronics) and Flownex (plant thermal hydraulics and power conversion). Plant modeling found that the core remains within thermal safety limits in the event of a LOCA. The major limitation of the design was found to be the high xenon levels produced as a result of the high neutron flux required of a gas cooled reactor and the effect it has on the versatility of the plant to cope with changes in power demand. (author)

  7. A terrestrial Eocene stack: tying terrestrial lake ecology to marine carbon cycling through the Early Eocene Climatic Optimum

    Science.gov (United States)

    Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.

    2010-12-01

    The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.

  8. Simulated and observed trends in key variables of the Arctic marine carbon cycle

    Science.gov (United States)

    Goris, Nadine; Heinze, Christoph; Lauvset, Siv; Petrenko, Dmitry; Pozdnyakov, Dmitry; Schwinger, Jörg

    2013-04-01

    For the Arctic region, a thorough monitoring of the marine carbon cycle is important, as the general "polar amplification" of climate change also translates into the biogeochemical realm. As compared to the global ocean, the sink for human-produced CO2 is fairly small in the Arctic Ocean itself. Nevertheless, it is important to follow up this Arctic sink as a further control of the regional carbon budget and to record changes in the marine carbon cycle on the way towards a "blue Arctic". Since observations on the Arctic are rare, the EU FP7 MONARCH-A project tries to enable adequate descriptions of the status and evolution of the Arctic region Earth system components by generating time series of observation datasets and model hindcasts. In terms of the marine carbon cycle, this analysis focuses mainly on the key variables pCO2 and primary productivity. For oceanic pCO2, the comprehensive data-sets SOCAT and LDEO were combined, while measurements of atmospheric CO2 were collected from the GLOBALVIEW-CO2 data integration project. Monthly Primary Production fields were retrieved from the sensors MODIS and SeaWiFs. In order to get an overall picture of the behavior and trends of those key variables, in addition the physical-biogeochemical model MICOM-HAMOCC-M was employed. The investigation showed that both oceanic and atmospheric pCO2 are consistent variables which have a regular annual cycle and a similar behaviour all over the Arctic for both model and data. In contrast, primary production shows an irregular annual cycle in both range and form, varying over the Arctic. While a few well distributed measurement stations with continuous observations are sufficient to get a comprehensive picture for consistent variables like pCO2, it is relatively difficult and costly to get a comprehensive record of non-consistent variables. Since the provided data-set for primary production covers a relatively short time-scale, it was neither possible to confidently validate the model

  9. Abiotic methane formation during experimental serpentinization of olivine.

    Science.gov (United States)

    McCollom, Thomas M

    2016-12-06

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH 4 ). In many cases, the CH 4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH 4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH 4 synthesis have been observed. Here, the potential for abiotic formation of CH 4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13 C-labeled inorganic carbon source was used to unambiguously determine the origin of CH 4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH 4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH 4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH 4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH 4 was observed in one experiment performed under conditions that allowed an H 2 -rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH 4 .

  10. Petroleum geological features and exploration prospect of deep marine carbonate rocks in China onshore: A further discussion

    Directory of Open Access Journals (Sweden)

    Zhao Wenzhi

    2014-10-01

    Full Text Available Deep marine carbonate rocks have become one of the key targets of onshore oil and gas exploration and development for reserves replacement in China. Further geological researches of such rocks may practically facilitate the sustainable, steady and smooth development of the petroleum industry in the country. Therefore, through a deep investigation into the fundamental geological conditions of deep marine carbonate reservoirs, we found higher-than-expected resource potential therein, which may uncover large oil or gas fields. The findings were reflected in four aspects. Firstly, there are two kinds of hydrocarbon kitchens which were respectively formed by conventional source rocks and liquid hydrocarbons cracking that were detained in source rocks, and both of them can provide large-scale hydrocarbons. Secondly, as controlled by the bedding and interstratal karstification, as well as the burial and hydrothermal dolomitization, effective carbonate reservoirs may be extensively developed in the deep and ultra-deep strata. Thirdly, under the coupling action of progressive burial and annealing heating, some marine source rocks could form hydrocarbon accumulations spanning important tectonic phases, and large quantity of liquid hydrocarbons could be kept in late stage, contributing to rich oil and gas in such deep marine strata. Fourthly, large-scale uplifts were formed by the stacking of multi-episodic tectonism and oil and gas could be accumulated in three modes (i.e., stratoid large-area reservoir-forming mode of karst reservoirs in the slope area of uplift, back-flow type large-area reservoir-forming mode of buried hill weathered crust karst reservoirs, and wide-range reservoir-forming mode of reef-shoal reservoirs; groups of stratigraphic and lithologic traps were widely developed in the areas of periclinal structures of paleohighs and continental margins. In conclusion, deep marine carbonate strata in China onshore contain the conditions for

  11. Deposition of carbon nanotubes by a marine suspension feeder revealed by chemical and isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Shannon K., E-mail: hanna.shannonk@gmail.com [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States); Miller, Robert J. [Marine Science Institute, University of California, Santa Barbara, CA 93106 (United States); Lenihan, Hunter S. [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States)

    2014-08-30

    Highlights: • CNTs decrease the filtration rate of mussels by as much as 24%. • Metals in CNTs and their δ{sup 13}C can be used to quantify CNTs in biological samples. • Mussels exposed to CNTs deposit high concentrations of them in biodeposits. • CNTs accumulate mainly in gut tissue of mussels during exposure. - Abstract: Carbon nanotubes (CNTs) are one of the few truly novel nanomaterials and are being incorporated into a wide range of products, which will lead to environmental release and potential ecological impacts. We examined the toxicity of CNTs to marine mussels and the effect of mussels on CNT fate and transport by exposing mussels to 1, 2, or 3 mg CNTs l{sup −1} for four weeks and measuring mussel clearance rate, shell growth, and CNT accumulation in tissues and deposition in biodeposits. We used metal impurities and carbon stable isotope ratios of the CNTs as tracers of CNT accumulation. Mussels decreased clearance rate of phytoplankton by 24% compared with control animals when exposed to CNTs. However, mussel growth rate was unaffected by CNT concentrations up to 3 mg l{sup −1}. Based on metal concentrations and carbon stable isotope values, mussels deposited most CNTs in biodeposits, which contained >110 mg CNTs g{sup −1} dry weight, and accumulated about 1 mg CNTs g{sup −1} dry weight of tissue. We conclude that extremely high concentrations of CNTs are needed to illicit a toxic response in mussels but the ability of mussels to concentrate and deposit CNTs in feces and pseudofeces may impact infaunal organisms living in and around mussel beds.

  12. Complex carbon cycling processes and pathways in a tropical coastal marine environment (Saco do Mamangua, RJ - Brazil)

    Science.gov (United States)

    Giorgioni, M.; Jovane, L.; Millo, C.; Sawakuchi, H. O.; Bertassoli, D. J., Jr.; Gamba Romano, R.; Pellizari, V.; Castillo Franco, D.; Krusche, A. V.

    2016-12-01

    The Saco do Mamangua is a narrow and elongated gulf located along the southeastern coast of Brazil, in the state of Rio de Janeiro (RJ). It is surrounded by high relieves, which form a peculiar environment called riá, with little river input and limited water exchange with the Atlantic Ocean. These features make the Saco do Mamangua an ideal environment to study sedimentary carbon cycling under well-constrained boundary conditions in order to investigate if tropical coastal environments serve dominantly as potential carbon sinks or sources. In this work we integrate geochemical data from marine sediments and pore waters in the Saco do Mamangua with mapping of benthic microbial communities, in order to unravel the biogeochemical carbon cycling linked to the production of biogenic methane. Our results reveal that carbon cycling occurs in two parallel pathways. The Saco do Mamangua receives organic carbon both by surface runoff and by primary production in the water column. A large part of this organic carbon is buried within the sediment resulting in the production of biogenic methane, which gives rise to methane seepages at the sea floor. These methane seeps sustain methanotrophic microbial communities in the sediment pore water, but also escapes into the atmosphere by ebullition. Consequently, the sediments of Saco do Mamangua acts simultaneously as carbon sink and carbon source. Future work will allow us to accurately quantify the actual carbon fluxes and calculate the net carbon balance in the local environment.

  13. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene

    Science.gov (United States)

    Nielsen, S.G.; Mar-Gerrison, S.; Gannoun, A.; LaRowe, D.; Klemm, V.; Halliday, A.N.; Burton, K.W.; Hein, J.R.

    2009-01-01

    The first high resolution thallium (Tl) isotope records in two ferromanganese crusts (Fe-Mn crusts), CD29 and D11 from the Pacific Ocean are presented. The crusts record pronounced but systematic changes in 205Tl/203Tl that are unlikely to reflect diagenetic overprinting or changes in isotope fractionation between seawater and Fe-Mn crusts. It appears more likely that the Fe-Mn crusts track the Tl isotope composition of seawater over time. The present-day oceanic residence time of Tl is estimated to be about 20,000??yr, such that the isotopic composition should reflect ocean-wide events. New and published Os isotope data are used to construct age models for these crusts that are consistent with each other and significantly different from previous age models. Application of these age models reveals that the Tl isotope composition of seawater changed systematically between ~ 55??Ma and ~ 45??Ma. Using a simple box model it is shown that the present day Tl isotope composition of seawater depends almost exclusively on the ratio between the two principal output fluxes of marine Tl. These fluxes are the rate of removal of Tl from seawater via scavenging by authigenic Fe-Mn oxyhydroxide precipitation and the uptake rate of Tl during low temperature alteration of oceanic crust. It is highly unlikely that the latter has changed greatly. Therefore, assuming that the marine Tl budget has also not changed significantly during the Cenozoic, the low 205Tl/203Tl during the Paleocene is best explained by a more than four-fold higher sequestration of Tl by Fe-Mn oxyhydroxides compared with at the present day. The calculated Cenozoic Tl isotopic seawater curve displays a striking similarity to that of S, providing evidence that both systems may have responded to the same change in the marine environment. A plausible explanation is a marked and permanent increase in organic carbon export from ~ 55??Ma to ~ 45??Ma, which led to higher pyrite burial rates and a significantly reduced

  14. The inhibition of marine nitrification by ocean disposal of carbon dioxide

    International Nuclear Information System (INIS)

    Huesmann, M.H.; Skillman, A.D.; Crecelius, E.A.

    2002-01-01

    In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO 2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO 2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO 2 -induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO 2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO 2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the

  15. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  16. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and sensitivity to global change

    NARCIS (Netherlands)

    Krumins, V.; Gehlen, M.; Arndt, S.; Van Cappellen, P.; Regnier, P.

    2013-01-01

    We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC) and alkalinity (AT) from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation,

  17. Transfer of organic carbon through marine water columns to sediments – insights from stable and radiocarbon isotopes of lipid biomarkers

    OpenAIRE

    S. G. Wakeham; A. P. McNichol

    2014-01-01

    Compound-specific 13C and 14C compositions of diverse lipid biomarkers (fatty acids, alkenones, hydrocarbons, sterols and fatty alcohols) were measured in sinking particulate matter collected in sediment traps and from underlying surface sediments in the Black Sea, the Arabian Sea and the Ross Sea. The goal was to develop a multiparameter approach to constrain relative inputs of organic carbon (OC) from marine biomass, terrigenous vascular-plant and relict-kerogen sources. U...

  18. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle

    OpenAIRE

    Irmis, Randall B.; Whiteside, Jessica H.

    2011-01-01

    During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magn...

  19. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  20. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-09-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  1. Marine fouling release silicone/carbon nanotube nanocomposite coatings: on the importance of the nanotube dispersion state.

    Science.gov (United States)

    Beigbeder, Alexandre; Mincheva, Rosica; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Claes, Michael; Dubois, Philippe

    2010-05-01

    The present work reports on the influence of the dispersion quality of multiwall carbon nanotubes (MWCNTs) in a silicone matrix on the marine fouling-release performance of the resulting nanocomposite coatings. A first set of coatings filled with different nanofiller contents was prepared by the dilution of a silicone/MWCNTs masterbatch within a hydrosilylation-curing polydimethylsiloxane resin. The fouling-release properties of the nanocomposite coatings were studied through laboratory assays with the marine alga (seaweed) Ulva, a common fouling species. As reported previously (see Ref. [19]), the addition of a small (0.05%) amount of carbon nanotubes substantially improves the fouling-release properties of the silicone matrix. This paper shows that this improvement is dependent on the amount of filler, with a maximum obtained with 0.1 wt% of multiwall carbon nanotubes (MWCNTs). The method of dispersion of carbon nanotubes in the silicone matrix is also shown to significantly (p = 0.05) influence the fouling-release properties of the coatings. Dispersing 0.1% MWCNTs using the masterbatch approach yielded coatings with circa 40% improved fouling-release properties over those where MWCNTs were dispersed directly in the polymeric matrix. This improvement is directly related to the state of nanofiller dispersion within the cross-linked silicone coating.

  2. COMBINED EFFECTS OF OCEAN ACIDIFICATION, OCEAN WARMING AND OIL SPILL ON ASPECTS OF DEVELOPMENT OF MARINE INVERTEBRATES

    OpenAIRE

    Arnberg, maj

    2016-01-01

    Full version unavailable due to 3rd party copyright restrictions. For decades, humans have impacted marine ecosystems in a variety of ways including contamination by pollution, fishing, and physical destruction of habitats. Global change has, and will, lead to alterations in in a number of abiotic factors of our ocean in particular reduced oxygen saturation, salinity changes, elevated temperature (ocean warming or OW) and elevated carbon dioxide (ocean acidification or OA). Now and in the...

  3. Adaptation of benthic invertebrates to food sources along marine-terrestrial boundaries as indicated by carbon and nitrogen stable isotopes

    Science.gov (United States)

    Lange, G.; Haynert, K.; Dinter, T.; Scheu, S.; Kröncke, I.

    2018-01-01

    Frequent environmental changes and abiotic gradients of the Wadden Sea require appropriate adaptations of the local organisms and make it suitable for investigations on functional structure of macrozoobenthic communities from marine to terrestrial boundaries. To investigate community patterns and food use of the macrozoobenthos, a transect of 11 stations was sampled for species number, abundance and stable isotope values (δ13C and δ15N) of macrozoobenthos and for stable isotope values of potential food resources. The transect was located in the back-barrier system of the island of Spiekeroog (southern North Sea, Germany). Our results show that surface and subsurface deposit feeders, such as Peringia ulvae and different oligochaete species, dominated the community, which was poor in species, while species present at the transect stations reached high abundance. The only exception was the upper salt marsh with low abundances but higher species richness because of the presence of specialized semi-terrestrial and terrestrial taxa. The macrozoobenthos relied predominantly on marine resources irrespective of the locality in the intertidal zone, although δ13C values of the consumers decreased from - 14.1 ± 1.6‰ (tidal flats) to - 21.5 ± 2.4‰ (salt marsh). However, the ubiquitous polychaete Hediste diversicolor showed a δ15N enrichment of 2.8‰ (an increase of about one trophic level) from bare sediments to the first vegetated transect station, presumably due to switching from suspension or deposit feeding to predation on smaller invertebrates. Hence, we conclude that changes in feeding mode represent an important mechanism of adaptation to different Wadden Sea habitats.

  4. Why is the South Orkney Island shelf (the world's first high seas marine protected area) a carbon immobilization hotspot?

    Science.gov (United States)

    Barnes, David K A; Ireland, Louise; Hogg, Oliver T; Morley, Simon; Enderlein, Peter; Sands, Chester J

    2016-03-01

    The Southern Ocean archipelago, the South Orkney Islands (SOI), became the world's first entirely high seas marine protected area (MPA) in 2010. The SOI continental shelf (~44 000 km(2) ), was less than half covered by grounded ice sheet during glaciations, is biologically rich and a key area of both sea surface warming and sea-ice losses. Little was known of the carbon cycle there, but recent work showed it was a very important site of carbon immobilization (net annual carbon accumulation) by benthos, one of the few demonstrable negative feedbacks to climate change. Carbon immobilization by SOI bryozoans was higher, per species, unit area and ice-free day, than anywhere-else polar. Here, we investigate why carbon immobilization has been so high at SOI, and whether this is due to high density, longevity or high annual production in six study species of bryozoans (benthic suspension feeders). We compared benthic carbon immobilization across major regions around West Antarctica with sea-ice and primary production, from remotely sensed and directly sampled sources. Lowest carbon immobilization was at the northernmost study regions (South Georgia) and southernmost Amundsen Sea. However, data standardized for age and density showed that only SOI was anomalous (high). High immobilization at SOI was due to very high annual production of bryozoans (rather than high densities or longevity), which were 2x, 3x and 5x higher than on the Bellingshausen, South Georgia and Amundsen shelves, respectively. We found that carbon immobilization correlated to the duration (but not peak or integrated biomass) of phytoplankton blooms, both in directly sampled, local scale data and across regions using remote-sensed data. The long bloom at SOI seems to drive considerable carbon immobilization, but sea-ice losses across West Antarctica mean that significant carbon sinks and negative feedbacks to climate change could also develop in the Bellingshausen and Amundsen seas. © 2015 John Wiley

  5. Marine ecotoxicity of nitramines, transformation products of amine-based carbon capture technology.

    Science.gov (United States)

    Coutris, Claire; Macken, Ailbhe L; Collins, Andrew R; El Yamani, Naouale; Brooks, Steven J

    2015-09-15

    In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is emerging as the most advanced technology for post-combustion CO2 capture from exhaust gases of fossil fuel power plants. Despite amine solvent recycling during the capture process, degradation products are formed and released into the environment, among them aliphatic nitramines, for which the environmental impact is unknown. In this study, we determined the acute and chronic toxicity of two nitramines identified as important transformation products of amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite of bioassays. The results were then used to produce the first environmental risk assessment for the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1mg/L), 84% DNA damage was observed, whereas 100mg/L dimethylnitramine was required to cause 37% DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90% of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90% of the genotoxicity of ethanolnitramine. Fish exposed to >3mg/L ethanolnitramine had virtually no DNA

  6. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta

    International Nuclear Information System (INIS)

    Wei Liping; Thakkar, Megha; Chen Yuhong; Ntim, Susana Addo; Mitra, Somenath; Zhang Xueyan

    2010-01-01

    The multiwalled carbon nanotubes (MWNTs) are novel materials with many potential applications. The ecotoxicity of these materials is not well studied, but it is essential for environmental impact assessments. In this study a commercially available MWNT material was carboxylated by microwave assisted acid oxidation. This functionalized MWNT (f-MWNT) material was examined for toxicity effects using unicellular marine green alga Dunaliella tertiolecta. D. tertiolecta was exposed to f-MWNT which had been pre-equilibrated with culture media for 24 h. Substantial growth lag phase was observed at 5 and 10 mg L -1 f-MWNT, and the resulting 50% effective concentration (EC50) on 96-h growth was 0.82 ± 0.08 mg L -1 . During mid-exponential growth phase cytotoxicity was evidenced at 10 mg L -1 f-MWNT in 36% reduction in exponential growth rate, 88 mV more positive glutathione redox potential (indicative of oxidative stress), 5% and 22% reduction in photosystem II (PSII) quantum yield and functional cross section respectively, all relative to the control cultures. However, when the large f-MWNT aggregates in the media with 10 mg L -1 f-MWNT were removed by 0.2 μm filtration, D. tertiolecta did not show significant cytotoxicity effects in any of the above parameters. This suggests that the cytotoxicity effects originated predominately from the large f-MWNT aggregates. Analysis of the f-MWNT aggregation dynamics suggests active interaction between f-MWNT and algal cells or cell metabolites that promoted f-MWNT aggregation formation. The f-MWNT particles were also found absorbed on algal cell surface. The direct contact between f-MWNT and cell surface was likely responsible for reduced PSII functional cross section and oxidative stress during exponential growth.

  7. Tectonic and environmental factors controlling on the evolution of Oligo-Miocene shallow marine carbonate factories along a tropical SE Circum-Caribbean

    Science.gov (United States)

    Silva-Tamayo, J. C.; Lara, M. E.; Nana Yobo, L.; Erdal, Y. D.; Sanchez, J.; Zapata-Ramirez, P. A.

    2017-10-01

    The evolution of the Cenozoic Circum-Caribbean shallow marine carbonate factories and ecosystems has been for long attributed to major global climatic and environmental changes. Although temporal variations in the Cenozoic shallow marine carbonate factories in this region seem to follow global trends, the potential effects of regional processes, such tectonic activity and local environmental change, on the evolution of the shallow marine carbonate factories are not well established. Here we present detailed sedimentologic and stratigraphic information from Middle Oligocene - Middle Miocene (Chattian-Burdigalian) shallow marine carbonate successions of the Siamana Formation in the Cocinetas sub-basin, Alta Guajira Basin, Guajira Peninsula, northern Colombia. We document the potential effects of regional tectonics and local environmental deterioration on the evolution of the Oligocene-Miocene tropical shallow marine carbonate factories along the SE Circum-Caribbean. Our results show that mixed heterozoan-photozoan biotic associations dominated the shallow marine carbonate factories during the Chattian, while purely photozoan biotic associations constituted the primary carbonate factory during the Aquitanian-Burdigalian transition. The Chattian mixed heterozoan/photozoan biotic association is associated with the development of mixed carbonate/siliciclastic shelves along which detached patchy reef areas occur. The onset of the Aquitanian-Burdigalian purely photozoan biotic associations parallels the increase in coral diversity as well as the occurence of rimmed/detached carbonate platforms in the northern part of the basin. The development of the rimmed/detached platforms coincides with a time of increased basin subsidence and increased silicilcastic input along the southernmost part of the basin. A significant change in the carbonate factory occurs in the Late Burdigalian, when purely heterozoan (rodalgal) biotic associations constituted the main shallow marine

  8. Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade

    Directory of Open Access Journals (Sweden)

    Rabus Ralf

    2009-09-01

    Full Text Available Abstract Background In the present work the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis was studied at the level of metabolic fluxes. These two strains belong to the marine Roseobacter clade, a dominant bacterial group in various marine habitats, and represent surface-associated, biofilm-forming growth (P. gallaeciensis and symbiotic growth with eukaryotic algae (D. shibae. Based on information from recently sequenced genomes, a rich repertoire of pathways has been identified in the carbon core metabolism of these organisms, but little is known about the actual contribution of the various reactions in vivo. Results Using 13C labelling techniques in specifically designed experiments, it could be shown that glucose-grown cells of D. shibae catabolise the carbon source exclusively via the Entner-Doudoroff pathway, whereas alternative routes of glycolysis and the pentose phosphate pathway are obviously utilised for anabolic purposes only. Enzyme assays confirmed this flux pattern and link the lack of glycolytic flux to the absence of phosphofructokinase activity. The previously suggested formation of phosphoenolpyruvate from pyruvate during mixotrophic CO2 assimilation was found to be inactive under the conditions studied. Moreover, it could be shown that pyruvate carboxylase is involved in CO2 assimilation and that the cyclic respiratory mode of the TCA cycle is utilised. Interestingly, the use of intracellular pathways was highly similar for P. gallaeciensis. Conclusion The present study reveals the first insight into pathway utilisation within the Roseobacter group. Fluxes through major intracellular pathways of the central carbon metabolism, which are closely linked to the various important traits found for the Roseobacter clade, could be determined. The close similarity of fluxes between the two physiologically rather different species might provide the first indication of more general key properties among

  9. Carbon dioxide storage in marine sediments - dissolution, transport and hydrate formation kinetics from high-pressure experiments

    Science.gov (United States)

    Bigalke, N. K.; Savy, J. P.; Pansegrau, M.; Aloisi, G.; Kossel, E.; Haeckel, M.

    2009-12-01

    By satisfying thermodynamic framework conditions for CO2 hydrate formation, pressures and temperatures of the deep marine environment are unique assets for sequestering CO2 in clathrates below the seabed. However, feasibility and safety of this storage option require an accurate knowledge of the rate constants governing the speed of physicochemical reactions following the injection of the liquefied gas into the sediments. High-pressure experiments designed to simulate the deep marine environment open the possibility to obtain the required parameters for a wide range of oceanic conditions. In an effort to constrain mass transfer coefficients and transport rates of CO2 in(to) the pore water of marine sediments first experiments were targeted at quantifying the rate of CO2 uptake by de-ionized water and seawater across a two-phase interface. The nature of the interface was controlled by selecting p and T to conditions within and outside the hydrate stability field (HSF) while considering both liquid and gaseous CO2. Concentration increase and hydrate growth were monitored by Raman spectroscopy. The experiments revealed anomalously fast transport rates of dissolved CO2 at conditions both inside and outside the HSF. While future experiments will further elucidate kinetics of CO2 transport and hydrate formation, these first results could have major significance to safety-related issues in the discussion of carbon storage in the marine environment.

  10. Marine subsidies of island communities in the Gulf of California: evidence from stable carbon and nitrogen isotopes

    International Nuclear Information System (INIS)

    Anderson, W.B.; Polis, G.A.

    1998-01-01

    Coastal sites support larger (2 to > 100 x) populations of many consumers than inland sites on islands in the Gulf of California. Previous data suggested that subsidies of energy and nutrients from the ocean allowed large coastal populations. Stable carbon and nitrogen isotopes are frequently used to analyse diet composition of organisms: they are particularly useful to distinguish between diet sources with distinct isotopic signatures, such as marine and terrestrial diets. We analyzed the 13 C and 15 N concentrations of coastal versus inland spiders and scorpions to test the hypothesis that coastal individuals exhibited more strongly marine-based diets than inland individuals. Coastal spiders and scorpions were significantly more enriched in 13 C and 15 N than inland spiders and scorpions, suggesting that the coastal individuals consumed more marine-based foods than their inland counterparts. These patterns existed in both drought years and wet El Nino years. However, the marine influence was stronger in drought years when terrestrial productivity was nearly non-existent, than in wet years when terrestrial productivity increased by an order of magnitude. (au)

  11. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean

    DEFF Research Database (Denmark)

    Ploug, Helle; Grossart, Hans-Peter; Azam, F.

    1999-01-01

    Photosynthesis and respiration were measured in 1 to 6 mm large aggregates (marine snow) collected in the Southern Californian Eight, USA. The aggregates were freely sinking in a vertical flow system with an upward flow velocity which opposed the sinking velocity of individual aggregates during...... techniques. Both the respiration rate per aggregate volume and the bacterial densities decreased with increasing aggregate size. The respiration rates normalized to the number of bacteria in single aggregates were 7.4 to 70 fmol C cell(-1) d(-1). The aggregate community respired 433 to 984 ng C d(-1) per...... aggregate in darkness, which yielded a turnover time of 8 to 9 d for the total organic carbon in aggregates. Thus, marine snow is not only a vehicle for vertical flux of organic matter; the aggregates are also hotspots of microbial respiration which cause a fast and efficient respiratory turnover...

  12. Interannual variability in seagrass carbon and nitrogen stable isotopes from the Florida Keys National Marine Sanctuary, a preliminary study

    Science.gov (United States)

    Fourqurean, J. W.; Fourqurean, J. W.; Anderson, W. T.; Anderson, W. T.

    2001-12-01

    The shallow marine waters surrounding the southern tip of Florida provide an ideal environment for seagrasses, which are the most common benthic community in the region. Yet, these communities are susceptible to a variety of anthropogenic disturbances, especially changes in water quality caused by an increase the nutrient flux to the near shore environment. In order to better understand the carbon and nitrogen isotopic ratio in marine plants, an extensive times series analysis was constructed from quarterly sampling of Thalassia testudinum (the dominate species in the study area) from 1996 through 1998. Sites for study where selected from permanent stations within the Florida Keys National Marine Sanctuary (FKNMS), from both sides of the Florida Keys - two stations on the bay side and two stations on the reef side. These data will also help to constrain elements of the carbon and nitrogen cycles affecting this region. The data analyzed over the three year study period show unique cyclic trends associated with seasonal changes in primary productivity and potentially changes in the nitrogen and carbon pools. Additionally, the analysis of our time series indicates that isotope food web studies need to take into account spatial and temporal changes when evaluating trophic levels. The mean carbon and nitrogen isotope values of T. testudinum from all 4 stations vary respectively from -7.2 per mil to -10.41 and 1.1 per mil to 2.2 per mil (n = 48). However, certain stations displayed anonymously depleted nitrogen isotope values, values as low as -1.2 per mil. These values potentially indicated that biogeochmical processes like N fixation, ammonification and denitrification cause regional pattern in the isotopic composition of the source DIN. Both carbon and nitrogen isotopes displayed seasonal enrichment-depletion trends, with maximum enrichment occurring during the summer. The overall seasonal variation for carbon 13 from the different stations ranged from 1 per mil to

  13. Changes in Eocene-Miocene shallow marine carbonate factories along the tropical SE Circum-Caribbean responded to major regional and global environmental and tectonic events

    Science.gov (United States)

    Silva-Tamayo, Juan Carlos

    2015-04-01

    Changes in the factory of Cenozoic tropical marine carbonates have been for long attributed to major variations on climatic and environmental conditions. Although important changes on the factories of Cenozoic Caribbean carbonates seem to have followed global climatic and environmental changes, the regional impact of such changes on the factories of shallow marine carbonate along the Caribbean is not well established. Moreover, the influence of transpressional tectonics on the occurrence, distribution and stratigraphy of shallow marine carbonate factories along this area is far from being well understood. Here we report detailed stratigraphic, petrographic and Sr-isotope chemostratigraphic information of several Eocene-Miocene carbonate successions deposited along the equatorial/tropical SE Circum-Caribbean (Colombia and Panama) from which we further assess the influence of changing environmental conditions, transtentional tectonics and sea level change on the development of the shallow marine carbonate factories. Our results suggest that during the Eocene-early Oligocene interval, a period of predominant high atmospheric pCO2, coralline algae constitute the principal carbonate builders of shallow marine carbonate successions along the SE Circum-Caribbean. Detailed stratigraphic and paragenetic analyses suggest the developed of laterally continuous red algae calcareous build-ups along outer-rimmed carbonate platforms. The predominance of coralline red algae over corals on the shallow marine carbonate factories was likely related to high sea surface temperatures and high turbidity. The occurrence of such build-ups was likely controlled by pronounce changes in the basin paleotopography, i.e. the occurrence of basement highs and lows, resulting from local transpressional tectonics. The occurrence of these calcareous red algae dominated factories was also controlled by diachronic opening of different sedimentary basins along the SE Circum Caribbean resulting from

  14. Protection of the Abiotic Environment

    International Nuclear Information System (INIS)

    Michel, R.; Hutmacher, K. E.; Landfermann, H. H.

    2004-01-01

    Environmental protection against the dangers arising from ionizing radiation, radioactive materials, and other harmful substances is more than to avoid acute dangers or risks for humans or for non-human living organisms. To allow for a sustainable development the abiotic part of the environment must not be neglected in concepts of environmental protection. The environmental impact of some selected long-lived anthropogenic radionuclides is used to exemplify adverse effects for which a unified approach is needed. To this end, indicators are needed for the assessment of the human impact on the abiotic environment which allows to compare different human actions with respect to sustainability and to choose appropriate measures in the competition for a sustainable development. Such indicators have to account for the dynamics of the different environmental compartments. Using the long-lived radionuclides 14C, 36Cl, 85Kr, and 129I as examples, the importance to consider dynamical models and ecological lifetimes in quantifications of the human impact on the environment is emphasized. Particular problems arise from the natural occurrences and variability of radionuclides and other harmful substances. Suitable indicators for the assessment of human impact on the abiotic compartments air, water, and soil are discussed. (Author) 18 refs

  15. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    Science.gov (United States)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  16. Fish as major carbonate mud producers and missing components of the tropical carbonate factory

    Science.gov (United States)

    Perry, Chris T.; Salter, Michael A.; Harborne, Alastair R.; Crowley, Stephen F.; Jelks, Howard L.; Wilson, Rod W.

    2011-01-01

    Carbonate mud is a major constituent of recent marine carbonate sediments and of ancient limestones, which contain unique records of changes in ocean chemistry and climate shifts in the geological past. However, the origin of carbonate mud is controversial and often problematic to resolve. Here we show that tropical marine fish produce and excrete various forms of precipitated (nonskeletal) calcium carbonate from their guts ("low" and "high" Mg-calcite and aragonite), but that very fine-grained (mostly 4 mole % MgCO3) are their dominant excretory product. Crystallites from fish are morphologically diverse and species-specific, but all are unique relative to previously known biogenic and abiotic sources of carbonate within open marine systems. Using site specific fish biomass and carbonate excretion rate data we estimate that fish produce ~6.1 x 106 kg CaCO3/year across the Bahamian archipelago, all as mud-grade (the marine carbonate factories function both today and in the past.

  17. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    Science.gov (United States)

    Auer, Gerald; Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-04-01

    During the Miocene prominent oxygen isotope events (Mi-events) reflect major changes in glaciation, while carbonate isotope maxima (CM-events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high-resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long-term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi-events can now be recognized in the δ18O record and coincide with plankton-rich, siliceous, or phosphatic horizons in the lithology of the section.

  18. Carbon Nanostructure of Diesel Soot Particles Emitted from 2 and 4 Stroke Marine Engines Burning Different Fuels.

    Science.gov (United States)

    Lee, Won-Ju; Park, Seul-Hyun; Jang, Se-Hyun; Kim, Hwajin; Choi, Sung Kuk; Cho, Kwon-Hae; Cho, Ik-Soon; Lee, Sang-Min; Choi, Jae-Hyuk

    2018-03-01

    Diesel soot particles were sampled from 2-stroke and 4-stroke engines that burned two different fuels (Bunker A and C, respectively), and the effects of the engine and fuel types on the structural characteristics of the soot particle were analyzed. The carbon nanostructures of the sampled particles were characterized using various techniques. The results showed that the soot sample collected from the 4-stroke engine, which burned Bunker C, has a higher degree of order of the carbon nanostructure than the sample collected from the 2-stroke engine, which burned Bunker A. Furthermore, the difference in the exhaust gas temperatures originating from the different engine and fuel types can affect the nanostructure of the soot emitted from marine diesel engines.

  19. Study of some modern carbonated marine organisms, using U234/U238 activities and its uranium concentration

    International Nuclear Information System (INIS)

    Pregnolatto, Y.

    1975-01-01

    Several types of alive carbonated organisms of marine fluvial or mixed environment origin were analized in its concentrations of Uranium and about its activity ratio U 234 /U 238 . In the same way measurements were made from the water of these three types of environments. The results indicate that the mollusks shells show a very low concentration compared with corals. Its concentration varies from 0.04 to 0.33 ppm. Inside the limit of errors we can say that the several types of carbonated organisms show the same disequilibrium U 234 /U 238 which was found in associated waters. An analysis of a piece of wood from long time immersed in the sea water was made. The result indicates that there was a marked high in concentration of Uranium due to chelatation with organic matter. (C.D.G.) [pt

  20. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw.

    Science.gov (United States)

    Bereiter, Bernhard; Lüthi, Dieter; Siegrist, Michael; Schüpbach, Simon; Stocker, Thomas F; Fischer, Hubertus

    2012-06-19

    Important elements of natural climate variations during the last ice age are abrupt temperature increases over Greenland and related warming and cooling periods over Antarctica. Records from Antarctic ice cores have shown that the global carbon cycle also plays a role in these changes. The available data shows that atmospheric CO(2) follows closely temperatures reconstructed from Antarctic ice cores during these variations. Here, we present new high-resolution CO(2) data from Antarctic ice cores, which cover the period between 115,000 and 38,000 y before present. Our measurements show that also smaller Antarctic warming events have an imprint in CO(2) concentrations. Moreover, they indicate that during Marine Isotope Stage (MIS) 5, the peak of millennial CO(2) variations lags the onset of Dansgaard/Oeschger warmings by 250 ± 190 y. During MIS 3, this lag increases significantly to 870 ± 90 y. Considerations of the ocean circulation suggest that the millennial variability associated with the Atlantic Meridional Overturning Circulation (AMOC) undergoes a mode change from MIS 5 to MIS 4 and 3. Ocean carbon inventory estimates imply that during MIS 3 additional carbon is derived from an extended mass of carbon-enriched Antarctic Bottom Water. The absence of such a carbon-enriched water mass in the North Atlantic during MIS 5 can explain the smaller amount of carbon released to the atmosphere after the Antarctic temperature maximum and, hence, the shorter lag. Our new data provides further constraints for transient coupled carbon cycle-climate simulations during the entire last glacial cycle.

  1. Near-surface, marine seismic-reflection data defines potential hydrogeologic confinement bypass in a tertiary carbonate aquifer, southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.

    2012-01-01

    Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.

  2. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  3. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas.

    Science.gov (United States)

    Im, Sungoh; Lee, Ha-Nul; Jung, Hyun Shin; Yang, Sunghwan; Park, Eun-Jeong; Hwang, Mi Sook; Jeong, Won-Joong; Choi, Dong-Woog

    2017-06-01

    Pyropia tenera (Kjellman) are marine red algae that grow in the intertidal zone and lose more than 90% of water during hibernal low tides every day. In order to identify the desiccation response gene (DRG) in P. tenera, we generated 1,444,210 transcriptome sequences using the 454-FLX platform from the gametophyte under control and desiccation conditions. De novo assembly of the transcriptome reads generated 13,170 contigs, covering about 12 Mbp. We selected 1160 differentially expressed genes (DEGs) in response to desiccation stress based on reads per kilobase per million reads (RPKM) expression values. As shown in green higher plants, DEGs under desiccation are composed of two groups of genes for gene regulation networks and functional proteins for carbohydrate metabolism, membrane perturbation, compatible solutes, and specific proteins similar to higher plants. DEGs that show no significant homology with known sequences in public databases were selected as DRGs in P. tenera. PtDRG2 encodes a novel polypeptide of 159 amino acid residues locating chloroplast. When PtDRG2 was overexpressed in Chlamydomonas, the PtDRG2 confer mannitol and salt tolerance in transgenic cells. These results suggest that Pyropia may possess novel genes that differ from green plants, although the desiccation tolerance mechanism in red algae is similar to those of higher green plants. These transcriptome sequences will facilitate future studies to understand the common processes and novel mechanisms involved in desiccation stress tolerance in red algae.

  4. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment

    International Nuclear Information System (INIS)

    Ma Yuantai; Li Ying; Wang Fuhui

    2008-01-01

    The atmospheric corrosion performance of carbon steel exposed in Wanning area, which located in the south part of China with tropic marine environment characters, was studied at different exposure periods (up to 2 years). To investigate the effect of β-FeOOH on the corrosion behavior of carbon steel in high chloride ion environment, rust layer was analyzed by using infrared spectroscopy, scanning electron microscope, X-ray diffraction, and the rusted steel was measured by electrochemical impedance spectroscopy method. The weight loss test indicated that the corrosion rate of carbon steel sharply increased during 6 months' exposure and gradually reduced after longer exposure. The results of rust analysis revealed that the underlying corrosion performance of the carbon steel was dependent on the inherent properties of the rust layers formed under different conditions such as composition and structure. Among all the iron oxide, β-FeOOH exerted significant influence. The presence of a monolayer of the rust as well as β-FeOOH accelerated the corrosion process during the initial exposure stage. EIS data implied that β-FeOOH in the inner layer was gradually consumed and transformed to γ-Fe 2 O 3 in the wet-dry cycle, which was beneficial to protect the substrate and reduced the corrosion rate

  5. Microbially mediated carbonation of marine alkaline minerals : Potential for concrete crack healing

    NARCIS (Netherlands)

    Jonkers, H.M.; Palin, D.; Flink, P.J.; Thijssen, A.

    2013-01-01

    Concrete constructions in the marine environment suffer from chemical attack of sea salts which can induce damage to both the concrete matrix and embedded steel reinforcement. For example, ingress of sulfate and chloride ions can respectively result in detrimental ettringite formation and enhanced

  6. Abiotic and biotic drivers of biomass change in a Neotropical forest

    NARCIS (Netherlands)

    Sande, van der M.T.; Pena Claros, M.; Ascarrunz, Nataly; Arets, E.J.M.M.; Licona, J.C.; Toledo, Marisol; Poorter, L.

    2017-01-01

    Summary
    1. Tropical fores ts play an important role in the global carbon cycle, but the drivers of net forest biomass change (i.e. net carbon sequestration) are poorly understood. Here, we evaluate how abiotic factors (soil co nditions and disturbance) and biotic factors (forest structure,

  7. Geochemistry of Precambrian carbonates - 3-shelf seas and non-marine environments of the Archean

    Science.gov (United States)

    Veizer, Jan; Clayton, R. N.; Hinton, R. W.; Von Brunn, Victor; Mason, T. R.

    1990-01-01

    Samples from the Pangola and Ventersdorp Supergroups (Kaapvaal Craton, South Africa) and from the Fortescue and Hamersley Groups (Pilbara Block, Australia) were analyzed, using XRF, AAS, and isotope-analysis techniques to investigate the mineralogical, chemical, and isotopic features of these representatives of contemporary shelf carbonates (Pangola and Hamersley samples) and nonmarine carbonates (the Ventersdorp and Fortescue samples). Results show that, mineralogically, the shelf carbonates are almost exclusively dolostones, while the lacustrine facies are predominantly limestones. Geological, trace-element, and oxygen-isotope results of the shelf carbonates suggest that their original mineralogy may have been aragonite, and that the Pangola dolostones may represent a direct dolomitization product of this precursor. By contrast, the stabilization of the Hamersley carbonates may have involved an additional step of transformation of a metastable precursor into limestone.

  8. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we...... review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...... life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental...

  9. Impact of seawater carbonate chemistry on the calcification of marine bivalves

    Science.gov (United States)

    Thomsen, J.; Haynert, K.; Wegner, K. M.; Melzner, F.

    2015-07-01

    Bivalve calcification, particularly of the early larval stages, is highly sensitive to the change in ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32-] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the exact carbonate system component by which growth and calcification are affected it is necessary to utilize more complex carbonate chemistry manipulations. As single factors, pCO2 had no effects and [HCO3-] and pH had only limited effects on shell growth, while lowered [CO32-] strongly impacted calcification. Dissolved inorganic carbon (CT) limiting conditions led to strong reductions in calcification, despite high [CO32-], indicating that [HCO3-] rather than [CO32-] is the inorganic carbon source utilized for calcification by mytilid mussels. However, as the ratio [HCO3-] / [H+] is linearly correlated with [CO32-] it is not possible to differentiate between these under natural seawater conditions. An equivalent of about 80 μmol kg-1 [CO32-] is required to saturate inorganic carbon supply for calcification in bivalves. Below this threshold biomineralization rates rapidly decline. A comparison of literature data available for larvae and juvenile mussels and oysters originating from habitats differing substantially with respect to prevailing carbonate chemistry conditions revealed similar response curves. This suggests that the mechanisms which determine sensitivity of calcification in this group are highly conserved. The higher sensitivity of larval calcification seems to primarily result from the much higher relative calcification rates in early life stages. In order to reveal and understand the mechanisms that limit or facilitate adaptation to future ocean acidification, it is necessary to better

  10. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Directory of Open Access Journals (Sweden)

    Eleftheria eAntoniou

    2015-04-01

    Full Text Available Biosurfactants (BS are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on biosurfactant production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography (TLC and Fourier transform infrared spectroscopy (FT-IR. Results indicate that biosurfactant production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil implies that the BS producing microbes generate no more than the required amount of biosurfactants that enables biodegradation of the crude oil. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of crude oil has emerged as a promising substrate for BS production (by marine BS producers with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  11. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  12. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  13. High Variability in Cellular Stoichiometry of Carbon, Nitrogen, and Phosphorus Within Classes of Marine Eukaryotic Phytoplankton Under Sufficient Nutrient Conditions.

    Science.gov (United States)

    Garcia, Nathan S; Sexton, Julie; Riggins, Tracey; Brown, Jeff; Lomas, Michael W; Martiny, Adam C

    2018-01-01

    Current hypotheses suggest that cellular elemental stoichiometry of marine eukaryotic phytoplankton such as the ratios of cellular carbon:nitrogen:phosphorus (C:N:P) vary between phylogenetic groups. To investigate how phylogenetic structure, cell volume, growth rate, and temperature interact to affect the cellular elemental stoichiometry of marine eukaryotic phytoplankton, we examined the C:N:P composition in 30 isolates across 7 classes of marine phytoplankton that were grown with a sufficient supply of nutrients and nitrate as the nitrogen source. The isolates covered a wide range in cell volume (5 orders of magnitude), growth rate (temperature (2-24°C). Our analysis indicates that C:N:P is highly variable, with statistical model residuals accounting for over half of the total variance and no relationship between phylogeny and elemental stoichiometry. Furthermore, our data indicated that variability in C:P, N:P, and C:N within Bacillariophyceae (diatoms) was as high as that among all of the isolates that we examined. In addition, a linear statistical model identified a positive relationship between diatom cell volume and C:P and N:P. Among all of the isolates that we examined, the statistical model identified temperature as a significant factor, consistent with the temperature-dependent translation efficiency model, but temperature only explained 5% of the total statistical model variance. While some of our results support data from previous field studies, the high variability of elemental ratios within Bacillariophyceae contradicts previous work that suggests that this cosmopolitan group of microalgae has consistently low C:P and N:P ratios in comparison with other groups.

  14. Changes in the marine carbonate system of the western Arctic: patterns in a rescued data set

    Directory of Open Access Journals (Sweden)

    Lisa A. Miller

    2014-11-01

    Full Text Available A recently recovered and compiled set of inorganic carbon data collected in the Canadian Arctic since the 1970s has revealed substantial change, as well as variability, in the carbonate system of the Beaufort Sea and Canada Basin. Whereas the role of this area as a net atmospheric carbon sink has been confirmed, high pCO2 values in the upper halocline underscore the potential for CO2 outgassing as sea ice retreats and upwelling increases. In addition, increasing total inorganic carbon and decreasing alkalinity are increasing pCO2 and decreasing CaCO3 saturation states, such that undersaturation with respect to aragonite now occurs regularly in both deep waters and the upper halocline.

  15. Foraminiferal assemblages and organic carbon relationship in benthic marine ecosystem of Western Indian Continental Shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Nigam, R.

    that Ammobaculites agglutinans (d'Orbigny) and Ammonia spp have positive (direct) tendency towards organic carbon while miliolids (Quinqueloqulina spp, Spiroloculina spp and Triloculina spp Florilus-Nonion and Nonionella spp have negative (inverse) tendency...

  16. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, Ariane; Serrano, Oscar; Masqué , Pere; Lavery, P. S.; Mueller, U.; Kendrick, G. A.; Rozaimi, M.; Esteban, A.; Fourqurean, J. W.; Marbà , N.; Mateo, M. A.; Murray, K.; Rule, M. J.; Duarte, Carlos M.

    2018-01-01

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass

  17. Carbonate mineralogy and faunal relationship in tropical shallow water marine sediments: Cape Comorin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Nair, R.R.; Kidwai, R.M.; Rao, V.P.

    molluscs exceed other components, as on the eastern shelf between 10 and 40 m, the most abundant mineral is aragonite. Low-magnesium calcite does not appear to be related to depth or carbonate components...

  18. Impact of seawater carbonate chemistry on the calcification of marine bivalves

    OpenAIRE

    Thomsen Jörn; Haynert Kristin; Wegner K Mathias; Melzner Frank

    2015-01-01

    Bivalve calcification, particular of the early larval stages is highly sensitive to the change of ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32−] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the e...

  19. Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-04-01

    Full Text Available The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006: inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.

  20. Radiocarbon (14C) Constraints On The Fraction Of Refractory Dissolved Organic Carbon In Primary Marine Aerosol From The Northwest Atlantic

    Science.gov (United States)

    Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Long, M. S.; Frossard, A. A.; Kinsey, J. D.; Duplessis, P.; Chang, R.; Maben, J. R.; Lu, X.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Nearly all organic carbon in seawater is dissolved (DOC), with more than 95% considered refractory based on modeled average lifetimes ( 16,000 years) and characteristically old bulk radiocarbon (14C) ages (4000 - 6000 years) that exceed the timescales of overturning circulation. Although this refractory dissolved organic carbon (RDOC) is present throughout the oceans as a major reservoir of the global carbon cycle, its sources and sinks are poorly constrained. Recently, RDOC was proposed to be removed from the oceans through adsorption onto the surfaces of rising bubble plumes produced by breaking waves, ejection into the atmosphere via bubble bursting as a component of primary marine aerosol (PMA), and subsequent oxidation in the atmosphere. To test this mechanism, we used natural abundance 14C (5730 ± 40 yr half-life) to trace the fraction of RDOC in PMA produced in a high capacity generator at two biologically-productive and two oligotrophic hydrographic stations in the Northwest Atlantic Ocean during a research cruise aboard the R/V Endeavor (Sep - Oct 2016). The 14C signatures of PMA separately generated day and night from near-surface (5 m) and deep (2500 m) seawater were compared with corresponding 14C signatures in seawater of near-surface dissolved inorganic carbon (DIC, a proxy for recently produced organic matter), bulk deep DOC (a proxy for RDOC), and near-surface bulk DOC. Results constrain the selectivity of PMA formation from RDOC in natural mixtures of recently produced and refractory DOC. The implications of these results for PMA formation and RDOC biogeochemistry will be discussed.

  1. PBDE and PCB accumulation in benthos near marine wastewater outfalls: The role of sediment organic carbon

    International Nuclear Information System (INIS)

    Dinn, Pamela M.; Johannessen, Sophia C.; Ross, Peter S.; Macdonald, Robie W.; Whiticar, Michael J.; Lowe, Christopher J.; Roodselaar, Albert van

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation. - Highlights: ► Physical receiving environment affects PBDE bioaccumulation by benthic invertebrates. ► PBDE uptake is correlated with organic-carbon normalized sediment concentrations. ► PBDE and PCB congener uptake are governed by different properties. ► PBDE sediment quality guidelines may benefit by using organic carbon-normalized data. ► Enhanced wastewater treatment may mean increased benthic invertebrate PBDE bioaccumulation. - The physical receiving environment affects the accumulation of PBDEs by benthic invertebrates near submarine municipal outfalls, and uptake of PBDE congeners is governed by different properties than for PCB congeners.

  2. Instrumentation and analytical methods in carbon balance studies - inorganic components in a marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Skjelvan, I.; Johannessen, T.; Miller, L.; Stoll, M.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Substantial amounts of anthropogenic CO{sub 2} enters the atmosphere. The land biota acts as a sink for CO{sub 2}, with uncertain consequences. About 30% of the anthropogenic CO{sub 2} added to the atmosphere is absorbed by the ocean and how the ocean acts as a sink is central in understanding the carbon cycle. In their project the authors investigate the inorganic carbon in the ocean, especially total dissolved inorganic carbon, alkalinity, and partial pressure of CO{sub 2} (pCO{sub 2}) in surface ocean and atmosphere. To determine total dissolved inorganic carbon, coulometric analysis is used in which an exact amount of sea water is acidified and the amount of carbon extracted is determined by a coulometer. Alkalinity is determined by potentiometric titration. In the pCO{sub 2} measurement, a small amount of air is circulated in a large amount of sea water and when after some time the amount of CO{sub 2} in the air reflects the CO{sub 2} concentration in the water, the pCO{sub 2} in the gas phase is determined by infra-red detection. The atmospheric pCO{sub 2} is also determined, and the difference between the two partial pressures gives information about source or sink activities. Total carbon and alkalinity measurements are done on discrete samples taken from all depths in the ocean, but for partial pressure detection an underway system is used, which determines the pCO{sub 2} in the surface ocean continuously

  3. Stable carbon and nitrogen isotope variation in the northern lampfish and Neocalanus, marine survival rates of pink salmon, and meso-scale eddies in the Gulf of Alaska

    Science.gov (United States)

    Kline, Thomas C., Jr.

    2010-10-01

    Northern lampfish (NLF), Stenobrachius leucopsarus (Myctophidae), the dominant pelagic fish taxon of the subarctic North Pacific Ocean, were sampled opportunistically in MOCNESS tows made on continental slope waters of the Gulf of Alaska (GOA) as well as in deep areas of Prince William Sound (PWS) during 1997-2006. The overall mean whole-body lipid-corrected stable carbon isotope value of NLF from the GOA was -21.4 (SD = 0.7) whereas that from PWS was -19.5 (SD = 0.9). This pattern is similar to that observed for late feeding stage Neocalanus cristatus copepods thus confirming a mean cross-shelf carbon stable isotope gradient. As well, there was a statistically significant positive correlation between the considerable temporal variation in the monthly mean carbon stable isotope composition of GOA Neocalanus and GOA NLF ( r = 0.69, P food chain length whereas carbon stable isotopes reflect organic carbon production. The carbon stable isotope values of NLF, measured in May, were positively correlated to marine survival rate of PWS hatchery salmon cohorts entering the marine environment the same year ( r = 0.84, P < 0.001). The carbon stable isotope values for Neocalanus in May were also positively correlated to salmon marine survival ( r = 0.82, P < 0.001). Processes thus manifested through the carbon stable isotope value of biota from the continental slope more closely predicted marine survival rate than that of the salmon themselves. The incipient relationships suggested by the correlations are consistent with the hypothesis that exchange between coastal and oceanic waters in the study area is driven by meso-scale eddies. These eddies facilitate the occurrence of slope phytoplankton blooms as well as drive oceanic zooplankton subsidies into coastal waters. The strong as well as more significant correlations of salmon marine survival rate to NLF as well as slope Neocalanus carbon stable isotope values point to processes taking place at the slope (i.e., interactions

  4. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  5. Marine Red Staining of a Pennsylvanian Carbonate Slope: Environmental and Oceanographic Significance

    NARCIS (Netherlands)

    van der Kooij, B.; Immenhauser, A.M.; Steuber, T; Hagmaier, M.; Bahamonde, J.R.; Samankassou, E.; Merino Tomé, O.

    2007-01-01

    Red-stained platform facies are a common feature of many carbonate settings throughout the geological record. Although the mechanisms involved in red staining of subaerially exposed or argillaceous, peri-platforin limestones are reasonably well understood, the environmental and oceanographic

  6. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2011-07-01

    Full Text Available The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.

  7. Towards quantitave ecological risk assessment of elevated carbon dioxide levels in the marine environment

    NARCIS (Netherlands)

    Vries, de P.; Tamis, J.E.; Foekema, E.M.; Klok, T.C.; Murk, A.J.

    2013-01-01

    The environmental impact of elevated carbon dioxide (CO2) levels has become of more interest in recent years. This, in relation to globally rising CO2 levels and related considerations of geological CO2 storage as a mitigating measure. In the present study effect data from literature were collected

  8. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    Science.gov (United States)

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  9. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis.

    Science.gov (United States)

    Budge, S M; Wooller, M J; Springer, A M; Iverson, S J; McRoy, C P; Divoky, G J

    2008-08-01

    Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.

  10. Evaluation of carbon-14 (C14) levels of terrestrial and marine food products of the environment of the site of Cogema La Hague

    International Nuclear Information System (INIS)

    2006-04-01

    This evaluation has for object to inform about the levels in carbon 14 in the environment of the factories of La Hague. Two sectors were differentiated on one hand the terrestrial environment, and on the other hand the marine environment. The investigations concerned first and foremost food products stemming as the vegetable culture (vegetables) or individual breeding (milk, eggs) but also foodstuffs stemming from the local agriculture (cereal). In touch with the second sector, the marine environment, the sampling concerned the accessible products of the sea by all and those locally marketed (fishes, molluscs, shellfishes). The different results are presented in tables. (N.C.)

  11. Field-scale forward modelling of a shallow marine carbonate ramp: the Upper Jurassic Arab Formation (onshore Abu Dhabi - UAE)

    Science.gov (United States)

    Marchionda, Elisabetta; Deschamps, Rémy; Nader, Fadi H.; Ceriani, Andrea; Di Giulio, Andrea; Lawrence, David; Morad, Daniel J.

    2017-04-01

    The stratigraphic record of a carbonate system is the result of the interplay of several local and global factors that control the physical and the biological responses within a basin. Conceptual models cannot be detailed enough to take into account all the processes that control the deposition of sediments. The evaluation of the key controlling parameters on the sedimentation can be investigated with the use of stratigraphic forward models, that permit dynamic and quantitative simulations of the sedimentary basin infill. This work focuses on an onshore Abu Dhabi field (UAE) and it aims to provide a complete picture of the stratigraphic evolution of Upper Jurassic Arab Formation (Fm.). In this study, we started with the definition of the field-scale conceptual depositional model of the Formation, resulting from facies and well log analysis based on five wells. The Arab Fm. could be defined as a shallow marine carbonate ramp, that ranges from outer ramp deposits to supratidal/evaporitic facies association (from bottom to top). With the reconstruction of the sequence stratigraphic pattern and several paleofacies maps, it was possible to suggest multiple directions of progradations at local scale. Then, a 3D forward modelling tool has been used to i) identify and quantify the controlling parameters on geometries and facies distribution of the Arab Fm.; ii) predict the stratigraphic architecture of the Arab Fm.; and iii) integrate and validate the conceptual model. Numerous constraints were set during the different simulations and sensitivity analyses were performed testing the carbonate production, eustatic oscillations and transport parameters. To verify the geological consistency the 3D forward modelling has been calibrated with the available control points (five wells) in terms of thickness and facies distribution.

  12. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    Science.gov (United States)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  13. Satellite Evidence that E. huxleyi Phytoplankton Blooms Weaken Marine Carbon Sinks

    Science.gov (United States)

    Kondrik, D. V.; Pozdnyakov, D. V.; Johannessen, O. M.

    2018-01-01

    Phytoplankton blooms of the coccolithophore Emiliania huxleyi are known to produce CO2, causing less uptake of atmospheric CO2 by the ocean, but a global assessment of this phenomenon has so far not been quantified. Therefore, here we quantify the increase in CO2 partial pressure (ΔpCO2) at the ocean surface within E. huxleyi blooms for polar and subpolar seas using an 18 year ocean color time series (1998-2015). When normalized to pCO2 in the absence of bloom, the mean and maximum ΔpCO2 values within the bloom areas varied between 21.0%-43.3% and 31.6%-62.5%, respectively. These results might have appreciable implications for climatology, marine chemistry, and ecology.

  14. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes

    International Nuclear Information System (INIS)

    Benner, R.; Moran, M.A.; Hodson, R.E.

    1986-01-01

    The relative contributions of procaryotes and eucaryotes to the degradation of the lignin and polysaccharide components of lignocellulosic detritus in two marine and two freshwater wetland ecosystems were determined. Two independent methods - physical separation of bacteria from fungi and other eucaryotes by size fractionation, and antibiotic treatments - were used to estimate procaryotic and eucaryotic contributions to the degradation of [ 14 C-lignin]lignocelluloses and [ 13 C-polysaccharide]lignocelluloses in samples of water and decaying plant material from each environment. Both methods yielded similar results; bacteria were the predominant degraders of lignocellulose in each of the aquatic ecosystems. These results indicate a basic difference between the microbial degradation of lignocellulosic material in terrestrial and aquatic environments. Fungi have long been considered the predominant degraders of lignocellulose in terrestrial systems; our results indicate that in aquatic systems bacteria are the predominant degraders of lignocellulose

  15. Impact of polychaetes (Nereis spp. and Arenicola marina on carbon biogeochemistry in coastal marine sediments†

    Directory of Open Access Journals (Sweden)

    Kristensen Erik

    2001-10-01

    Full Text Available Known effects of bioturbation by common polychaetes (Nereis spp. and Arenicola marina in Northern European coastal waters on sediment carbon diagenesis is summarized and assessed. The physical impact of irrigation and reworking activity of the involved polychaete species is evaluated and related to their basic biology. Based on past and present experimental work, it is concluded that effects of bioturbation on carbon diagenesis from manipulated laboratory experiments cannot be directly extrapolated to in situ conditions. The 45–260% flux (e.g., CO2 release enhancement found in the laboratory is much higher than usually observed in the field (10–25%. Thus, the faunal induced enhancement of microbial carbon oxidation in natural sediments instead causes a reduction of the organic matter inventory rather than an increased release of CO2 across the sediment/water interface. The relative decrease in organic inventory (Gb/Gu is inversely related to the relative increase in microbial capacity for organic matter decay (kb/ku. The equilibrium is controlled by the balance between organic input (deposition of organic matter at the sediment surface and the intensity of bioturbation. Introduction of oxygen to subsurface sediment and removal of metabolites are considered the two most important underlying mechanisms for the stimulation of carbon oxidation by burrowing fauna. Introduction of oxygen to deep sediment layers of low microbial activity, either by downward irrigation transport of overlying oxic water or by upward reworking transport of sediment to the oxic water column will increase carbon oxidation of anaerobically refractory organic matter. It appears that the irrigation effect is larger than and to a higher degree dependent on animal density than the reworking effect. Enhancement of anaerobic carbon oxidation by removal of metabolites (reduced diffusion scale may cause a significant increase in total sediment metabolism. This is caused by three

  16. Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Rysgaard, S.; Christensen, P.B.; Sørensen, Martin Vinther

    2000-01-01

    Organic carbon mineralization was studied in a shallow-water (4 m), sandy sediment and 2 comparatively deep-water (150 and 300 m), soft sediments in Disko Bay, West Greenland. Benthic microalgae inhabiting the shallow-water locality significantly affected diurnal O-2 conditions within the surface...... is regulated primarily by the availability of organic matter and not by temperature. The shallow-water sediment contained a larger meiofauna population than the deep-water muddy sediments. Crustacean nauplia dominated the upper 9 mm while nematodes dominated below. A typical interstitial fauna of species...... layers of the sediment. Algal photosynthetic activity and nitrogen uptake reduced nitrogen effluxes and denitrification rates. Sulfate reduction was the most important pathway for carbon mineralization in the sediments of the shallow-water station. In contrast, high bottom-water NO3- concentrations...

  17. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    Directory of Open Access Journals (Sweden)

    Shiue-Lin eLi

    2015-02-01

    Full Text Available Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at + mV (vs. SHE at all pH ranges tested (from pH = 4 to 8, while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte equipped with carbon-felt electrodes. In both cases, when potentials of +630 or 130 mV (vs. SHE were applied, currents were consistently higher at +630 then at 0 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter not well known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.

  18. Evaluating Late Cretaceous OAEs and the influence of marine incursions on organic carbon burial in an expansive East Asian paleo-lake

    Science.gov (United States)

    Jones, Matthew M.; Ibarra, Daniel E.; Gao, Yuan; Sageman, Bradley B.; Selby, David; Chamberlain, C. Page; Graham, Stephan A.

    2018-02-01

    Expansive Late Cretaceous lacustrine deposits of East Asia offer unique stratigraphic records to better understand regional responses to global climate events, such as oceanic anoxic events (OAEs), and terrestrial organic carbon burial dynamics. This study presents bulk organic carbon isotopes (δ13Corg), elemental concentrations (XRF), and initial osmium ratios (187Os/188Os, Osi) from the Turonian-Coniacian Qingshankou Formation, a ∼5 Ma lacustrine mudstone succession in the Songliao Basin of northeast China. A notable δ13Corg excursion (∼ + 2.5‰) in organic carbon-lean Qingshankou Members 2-3 correlates to OAE3 in the Western Interior Basin (WIB) of North America within temporal uncertainty of high-precision age models. Decreases in carbon isotopic fractionation (Δ13C) through OAE3 in the WIB and Songliao Basin, suggest that significantly elevated global rates of organic carbon burial drew down pCO2, likely cooling climate. Despite this, Osi chemostratigraphy demonstrates no major changes in global volcanism or weathering trends through OAE3. Identification of OAE3 in a lake system is consistent with lacustrine records of other OAEs (e.g., Toarcian OAE), and underscores that terrestrial environments were sensitive to climate perturbations associated with OAEs. Additionally, the relatively radiogenic Osi chemostratigraphy and XRF data confirm that the Qingshankou Formation was deposited in a non-marine setting. Organic carbon-rich intervals preserve no compelling Osi evidence for marine incursions, an existing hypothesis for generating Member 1's prolific petroleum source rocks. Based on our results, we present a model for water column stratification and source rock deposition independent of marine incursions, detailing dominant biogeochemical cycles and lacustrine organic carbon burial mechanisms.

  19. Biotic and a-biotic Mn and Fe cycling in deep sediments across a gradient of sulfate reduction rates along the California margin

    Science.gov (United States)

    Schneider-Mor, A.; Steefel, C.; Maher, K.

    2011-12-01

    The coupling between the biological and a-biotic processes controlling trace metals in deep marine sediments are not well understood, although the fluxes of elements and trace metals across the sediment-water interface can be a major contribution to ocean water. Four marine sediment profiles (ODP leg 167 sites 1011, 1017, 1018 and 1020)were examined to evaluate and quantify the biotic and abiotic reaction networks and fluxes that occur in deep marine sediments. We compared biogeochemical processes across a gradient of sulfate reduction (SR) rates with the objective of studying the processes that control these rates and how they affect major elements as well as trace metal redistribution. The rates of sulfate reduction, methanogenesis and anaerobic methane oxidation (AMO) were constrained using a multicomponent reactive transport model (CrunchFlow). Constraints for the model include: sediment and pore water concentrations, as well as %CaCO3, %biogenic silica, wt% carbon and δ13C of total organic carbon (TOC), particulate organic matter (POC) and mineral associated carbon (MAC). The sites are distinguished by the depth of AMO: a shallow zone is observed at sites 1018 (9 to 19 meters composite depth (mcd)) and 1017 (19 to 30 mcd), while deeper zones occur at sites 1011 (56 to 76 mcd) and 1020 (101 to 116 mcd). Sulfate reduction rates at the shallow AMO sites are on the order 1x10-16 mol/L/yr, much faster than rates in the deeper zone sulfate reduction (1-3x10-17 mol/L/yr), as expected. The dissolved metal ion concentrations varied between the sites, with Fe (0.01-7 μM) and Mn (0.01-57 μM) concentrations highest at Site 1020 and lowest at site 1017. The highest Fe and Mn concentrations occurred at various depths, and were not directly correlated with the rates of sulfate reduction and the maximum alkalinity values. The main processes that control cycling of Fe are the production of sulfide from sulfate reduction and the distribution of Fe-oxides. The Mn distribution

  20. Abscisic Acid and Abiotic Stress Signaling

    OpenAIRE

    Tuteja, Narendra

    2007-01-01

    Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant ...

  1. Carbon cycling in a high-arctic marine ecosystem - Young Sound, NE Greenland

    Science.gov (United States)

    Rysgaard, Søren; Nielsen, Torkel Gissel

    2006-10-01

    Young Sound is a deep-sill fjord in NE Greenland (74°N). Sea ice usually begins to form in late September and gains a thickness of ∼1.5 m topped with 0-40 cm of snow before breaking up in mid-July the following year. Primary production starts in spring when sea ice algae begin to flourish at the ice-water interface. Most biomass accumulation occurs in the lower parts of the sea ice, but sea ice algae are observed throughout the sea ice matrix. However, sea ice algal primary production in the fjord is low and often contributes only a few percent of the annual phytoplankton production. Following the break-up of ice, the immediate increase in light penetration to the water column causes a steep increase in pelagic primary production. Usually, the bloom lasts until August-September when nutrients begin to limit production in surface waters and sea ice starts to form. The grazer community, dominated by copepods, soon takes advantage of the increased phytoplankton production, and on an annual basis their carbon demand (7-11 g C m -2) is similar to phytoplankton production (6-10 g C m -2). Furthermore, the carbon demand of pelagic bacteria amounts to 7-12 g C m -2 yr -1. Thus, the carbon demand of the heterotrophic plankton is approximately twice the estimated pelagic primary production, illustrating the importance of advected carbon from the Greenland Sea and from land in fuelling the ecosystem. In the shallow parts of the fjord (dominate primary production. As a minimum estimate, a total of 41 g C m -2 yr -1 is fixed by primary production, of which phytoplankton contributes 15%, sea ice algae dominated by polychaetes and bivalves exists in these shallow-water sediments (accounts for 17%. In deeper waters benthic mineralization is 40% lower than in shallow waters and megafauna, primarily brittle stars, accounts for 27% of the benthic mineralization. The carbon that escapes degradation is permanently accumulated in the sediment, and for the locality investigated a rate

  2. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile - Marine sources and diagenetic effects.

    Directory of Open Access Journals (Sweden)

    Friedrich Lucassen

    Full Text Available Seabird excrements (guano have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic

  3. The Intergovernmental Marine Bioenergy and Carbon Sequestration Protocol: Environmental and Political Risk Reduction of Global Carbon Management (The IMBECS Protocol Draft)

    Science.gov (United States)

    Hayes, M.

    2014-12-01

    The IMBECS Protocol concept employs large cultivation and biorefinery installations, within the five Subtropical Convergence Zones (STCZs), to support the production of commodities such as carbon negative biofuels, seafood, organic fertilizer, polymers and freshwater, as a flexible and cost effective means of Global Warming Mitigation (GWM) with the primary objective being the global scale replacement of fossil fuels (FF). This governance approach is categorically distinct from all other large scale GWM governance concepts. Yet, many of the current marine related GWM technologies are adaptable to this proposals. The IMBECS technology would be managed by an intergovernmentally sanctioned non-profit foundation which would have the following functions/mission: Synthesises relevant treaty language Performs R&D activities and purchases relevant patents Under intergovernmental commission, functions as the primary responsible international actorfor environmental standards, production quotas and operational integrity Licence technology to for-profit actors under strict production/environmental standards Enforce production and environmental standards along with production quotas Provide a high level of transparency to all stakeholders Provide legal defence The IMBECS Protocol is conceptually related to the work found in the following documents/links. This list is not exhaustive: Climate Change Geoengineering The Science and Politics of Global Climate Change: A guide to the debate IPCC Special Report on Renewable Energy and Climate Change Mitigation DoE Roadmap for Algae Biofuels PodEnergy Ocean Agronomy development leaders and progenitor of this proposal. Artificial Upwelling of Deep Seawater Using the Perpetual Salt Fountain for Cultivation of Ocean Desert NASAs' OMEGA study. Cool Planet; Land based version of a carbon negative biofuel concept. Cellana; Leading developer of algae based bioproducts. The State of World Fisheries and Aquaculture Mariculture: A global analysis

  4. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  5. Evaluation of the Marine Algae Gracilaria and its Activated Carbon for the Adsorption of Ni(II from Wastewater

    Directory of Open Access Journals (Sweden)

    A. Esmaeili

    2011-01-01

    Full Text Available The batch removal of Ni2+ from aqueous solution and wastewater using marine dried (MD red algae Gracilaria and its activated carbon (AC was studied. For these experiments, adsorption of Ni2+ was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+ removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+ removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models

  6. Earth, wind, and fire: Abiotic factors and the impacts of global environmental change on forest health

    Science.gov (United States)

    J.E. Lundquist; A.E. Camp; M.L. Tyrell; S.J. Seybold; P. Cannon; D.J. Lodge

    2011-01-01

    Trees do not just die; there is always a primary cause, and often contributing factors. Trees need adequate quantities of water, heat, light, nutrients, carbon dioxide, oxygen, and other abiotic resources to sustain life, growth, and reproduction. When these factors are deficient or excessive, they cause mortality. According to the concept of baseline mortality (...

  7. Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment.

    Science.gov (United States)

    Cho, Yeo-Myoung; Ghosh, Upal; Kennedy, Alan J; Grossman, Adam; Ray, Gary; Tomaszewski, Jeanne E; Smithenry, Dennis W; Bridges, Todd S; Luthy, Richard G

    2009-05-15

    We report results on the first field-scale application of activated carbon (AC) amendment to contaminated sediment for in-situ stabilization of polychlorinated biphenyls (PCBs). The test was performed on a tidal mud flat at South Basin, adjacent to the former Hunters Point Naval Shipyard, San Francisco Bay, CA. The major goals of the field study were to (1) assess scale up of the AC mixing technology using two available, large-scale devices, (2) validate the effectiveness of the AC amendment at the field scale, and (3) identify possible adverse effects of the remediation technology. Also, the test allowed comparison among monitoring tools, evaluation of longer-term effectiveness of AC amendment, and identification of field-related factors that confound the performance of in-situ biological assessments. Following background pretreatment measurements, we successfully incorporated AC into sediment to a nominal 30 cm depth during a single mixing event, as confirmed by total organic carbon and black carbon contents in the designated test plots. The measured AC dose averaged 2.0-3.2 wt% and varied depending on sampling locations and mixing equipment. AC amendment did not impact sediment resuspension or PCB release into the water column over the treatment plots, nor adversely impactthe existing macro benthic community composition, richness, or diversity. The PCB bioaccumulation in marine clams was reduced when exposed to sediment treated with 2% AC in comparison to the control plot Field-deployed semi permeable membrane devices and polyethylene devices showed about 50% reduction in PCB uptake in AC-treated sediment and similar reduction in estimated pore-water PCB concentration. This reduction was evident even after 13-month post-treatment with then 7 months of continuous exposure, indicating AC treatment efficacy was retained for an extended period. Aqueous equilibrium PCB concentrations and PCB desorption showed an AC-dose response. Field-exposed AC after 18 months

  8. Biological and Climate Controls on North Atlantic Marine Carbon Dynamics Over the Last Millennium: Insights From an Absolutely Dated Shell-Based Record From the North Icelandic Shelf

    Science.gov (United States)

    Reynolds, D. J.; Hall, I. R.; Scourse, J. D.; Richardson, C. A.; Wanamaker, A. D.; Butler, P. G.

    2017-12-01

    Given the rapid increase in atmospheric carbon dioxide concentrations (pCO2) over the industrial era, there is a pressing need to construct long-term records of natural carbon cycling prior to this perturbation and to develop a more robust understanding of the role the oceans play in the sequestration of atmospheric carbon. Here we reconstruct the past biological and climate controls on the carbon isotopic (δ13Cshell) composition of the North Icelandic shelf waters over the last millennium, derived from the shells of the long-lived marine bivalve mollusk Arctica islandica. Variability in the annually resolved δ13Cshell record is dominated by multidecadal variability with a negative trend (-0.003 ± 0.002‰ yr-1) over the industrial era (1800-2000 Common Era). This trend is consistent with the marine Suess effect brought about by the sequestration of isotopically light carbon (δ13C of CO2) derived from the burning of fossil fuels. Comparison of the δ13Cshell record with Contemporaneous proxy archives, over the last millennium, and instrumental data over the twentieth century, highlights that both biological (primary production) and physical environmental factors, such as relative shifts in the proportion of Subpolar Mode Waters and Arctic Intermediate Waters entrained onto the North Icelandic shelf, atmospheric circulation patterns associated with the winter North Atlantic Oscillation, and sea surface temperature and salinity of the subpolar gyre, are the likely mechanisms that contribute to natural variations in seawater δ13C variability on the North Icelandic shelf. Contrasting δ13C fractionation processes associated with these biological and physical mechanisms likely cause the attenuated marine Suess effect signal at this locality.

  9. Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export

    Science.gov (United States)

    Bar-Zeev, Edo; Avishay, Itamar; Bidle, Kay D; Berman-Frank, Ilana

    2013-01-01

    The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2–3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans. PMID:23887173

  10. Stable isotopes of carbon dioxide in the marine atmosphere along a hemispheric course from China to Antarctica

    Science.gov (United States)

    Chen, Qingqing; Zhu, Renbin; Xu, Hua

    2013-12-01

    During the 24th Chinese Antarctic Expedition, the air samples were collected at 10:00 and 22:00 (local time) along the track of ship “Xuelong” from Shanghai Harbor, China to Antarctica. Carbon dioxide (CO2) concentrations and its isotopic compositions were measured in these samples. Mean CO2 concentration at 22:00 (419.4 ± 27.1 ppmv) was higher than that at 10:00 (392.7 ± 20.0 ppmv), whereas δ13C-CO2 values at 22:00 (-8.58 ± 0.47‰) were lower than those at 10:00 (-8.23 ± 0.49‰), indicating that the 13C/12C ratio might be associated with the photosynthesis and respiration of terrestrial or marine organisms during the diurnal cycle. Overall the mean δ13C- and δ18O-CO2 were -8.39 ± 0.51‰ and 0.03 ± 1.39‰, respectively, from 30°N to 69°S, and the δ13C significantly negatively correlated with δ18O-CO2. A small but progressive increase in δ13C values with increasing latitudes southward was in good agreement with the expected trend. The enhanced CO2 concentrations occurred in the atmosphere close to Eurasia continent, Philippines, Malaysia and Indonesia, and the δ13C oscillations agreed well with anthropogenic pollution. In the range of 30°S-50°S, CO2 concentrations were generally low with relatively stable δ13C and δ18O values. In Antarctic Convergence Zone, a great difference of δ13C occurred between 10:00 and 22:00, and atmospheric CO2 was significantly depleted in 13C at 22:00. Our results indicated that the isotopic compositions of CO2 in the marine atmosphere might be a sensitive indicator for the strength of CO2 source and sink from the ocean.

  11. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling.

    Science.gov (United States)

    Lidbury, Ian D E A; Murrell, J Colin; Chen, Yin

    2015-03-01

    Bacteria of the marine Roseobacter clade are characterised by their ability to utilise a wide range of organic and inorganic compounds to support growth. Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are methylated amines (MA) and form part of the dissolved organic nitrogen pool, the second largest source of nitrogen after N2 gas, in the oceans. We investigated if the marine heterotrophic bacterium, Ruegeria pomeroyi DSS-3, could utilise TMA and TMAO as a supplementary energy source and whether this trait had any beneficial effect on growth. In R. pomeroyi, catabolism of TMA and TMAO resulted in the production of intracellular ATP which in turn helped to enhance growth rate and growth yield as well as enhancing cell survival during prolonged energy starvation. Furthermore, the simultaneous use of two different exogenous energy sources led to a greater enhancement of chemoorganoheterotrophic growth. The use of TMA and TMAO primarily as an energy source resulted in the remineralisation of nitrogen in the form of ammonium, which could cross feed into another bacterium. This study provides greater insight into the microbial metabolism of MAs in the marine environment and how it may affect both nutrient flow within marine surface waters and the flux of these climatically important compounds into the atmosphere.

  12. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration

    International Nuclear Information System (INIS)

    Dimopoulos, George G.; Stefanatos, Iason C.; Kakalis, Nikolaos M.P.

    2016-01-01

    Highlights: • Process modelling and optimisation of an integrated marine MCFC system. • Component-level and spatially distributed exergy analysis and balances. • Optimal simple cycle MCFC system with 45.5% overall exergy efficiency. • Optimal combined cycle MCFC system with 60% overall exergy efficiency. • Combined cycle MCFC system yields 30% CO_2 relative emissions reduction. - Abstract: In this paper we present the exergy analysis and design optimisation of an integrated molten carbonate fuel cell (MCFC) system for marine applications, considering waste heat recovery options for additional power production. High temperature fuel cells are attractive solutions for marine energy systems, as they can significantly reduce gaseous emissions, increase efficiency and facilitate the introduction of more environmentally-friendly fuels, like LNG and biofuels. We consider an already installed MCFC system onboard a sea-going vessel, which has many tightly integrated sub-systems and components: fuel delivery and pre-reforming, internal reforming sections, electrochemical conversion, catalytic burner, air supply and high temperature exhaust gas. The high temperature exhaust gasses offer significant potential for heat recovery that can be directed into both covering the system’s auxiliary heat requirements and power production. Therefore, an integrated systems approach is employed to accurately identify the true sources of losses in the various components and to optimise the overall system with respect to its energy efficiency, taking into account the various trade-offs and subject to several constraints. Here, we present a four-step approach: a. dynamic process models development of simple and combined-cycle MCFC system; b. MCFC components and system models calibration via onboard MCFC measurements; c. exergy analysis, and d. optimisation of the simple and combined-cycle systems with respect to their exergetic performance. Our methodology is based on the

  13. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    Science.gov (United States)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-08-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a

  14. Assessing the potential of amino acid δ13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    Science.gov (United States)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-01-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles, and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing biosynthetic origin of amino acid carbon skeletons, based on natural occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions; and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results underscore that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e. isoleucine, lysine, leucine and tyrosine), bacterial derived amino acids ranged from 10-15% in the sediment layers from the last 5000 years to 35% during the last glacial period. The larger bacterial fractions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to

  15. Evaluation of carbon-14 (C{sup 14}) levels of terrestrial and marine food products of the environment of the site of Cogema La Hague; Evaluation des niveaux de carbone-14 ({sup 14}C) des denrees alimentaires terrestres et marines de l'environnement du site de COGEMA - La Hague

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    This evaluation has for object to inform about the levels in carbon 14 in the environment of the factories of La Hague. Two sectors were differentiated on one hand the terrestrial environment, and on the other hand the marine environment. The investigations concerned first and foremost food products stemming as the vegetable culture (vegetables) or individual breeding (milk, eggs) but also foodstuffs stemming from the local agriculture (cereal). In touch with the second sector, the marine environment, the sampling concerned the accessible products of the sea by all and those locally marketed (fishes, molluscs, shellfishes). The different results are presented in tables. (N.C.)

  16. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be

  17. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    Science.gov (United States)

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. © 2015 SETAC.

  18. Abiotic drivers of Chihuahuan Desert plant communities

    Science.gov (United States)

    Laura Marie Ladwig

    2014-01-01

    Within grasslands, precipitation, fire, nitrogen (N) addition, and extreme temperatures influence community composition and ecosystem function. The differential influences of these abiotic factors on Chihuahuan Desert grassland communities was examined within the Sevilleta National Wildlife Refuge, located in central New Mexico, U.S.A. Although fire is a natural...

  19. Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2015-01-01

    Full Text Available Pterocladia capillacea, a red marine macroalgae, was tested for its ability to remove toxic hexavalent chromium from aqueous solution. A new activated carbon obtained from P. capillacea via acid dehydration was also investigated as an adsorbent for toxic chromium. The experiments were conducted to study the effect of important parameters such as pH, chromium concentration and adsorbent weight. Batch equilibrium tests at different pH conditions showed that at pH 1.0, a maximum chromium uptake was observed for both inactivated dried red alga P. capillacea and its activated carbon. The maximum sorption capacities for dried red alga and its activated carbon were about 12 and 66 mgg−1, respectively, as calculated by Langmuir model. The ability of inactivated red alga P. capillacea and developed activated carbon to remove chromium from synthetic sea water, natural sea water and wastewater was investigated as well. Different isotherm models were used to analyze the experimental data and the models parameters were evaluated. This study showed that the activated carbon developed from red alga P. capillacea is a promising activated carbon for removal of toxic chromium.

  20. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in marine zooplankton

    Energy Technology Data Exchange (ETDEWEB)

    Pomerleau, Corinne, E-mail: corinne.pomerleau@umanitoba.ca [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Greenland Institute of Natural Resources, Kivioq 2, Nuuk 3900, Greenland (Denmark); Stern, Gary A.; Pućko, Monika [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Foster, Karen L. [Foster Environmental, Peterborough, ON K9J 8L2 (Canada); Macdonald, Robie W. [Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2 (Canada); Fortier, Louis [Québec-Océan, Département de Biologie, Université Laval, Québec, QC G1V 0A6 (Canada)

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as “keystone” species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ{sup 15}N and lower δ{sup 13}C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. - Highlights: • Assessment of Pan-Arctic variability in zooplankton Hg concentrations • Increased exposure to Hg in the marine food chain of the southern Beaufort Sea • Zooplankton plays a central role in the Hg pathway within Arctic marine food webs.

  1. Biological and climate controls on North Atlantic marine carbon dynamics over the last millennium: Insights from an absolutely-dated shell based record from the North Icelandic Shelf

    Science.gov (United States)

    Hall, I. R.; Reynolds, D.; Scourse, J. D.; Richardson, C.; Wanamaker, A. D.; Butler, P. G.

    2017-12-01

    Given the rapid increase in atmospheric carbon dioxide concentrations (pCO2) over the industrial era there is a pressing need to construct longterm records of natural carbon cycling prior to this perturbation and to develop a more robust understanding of the role the oceans play in the sequestration of atmospheric carbon. Here we reconstruct the historical biological and climatic controls on the carbon isotopic (δ13C-shell) composition of the North Icelandic shelf waters over the last millennium derived from the shells of the long-lived marine bivalve mollusc Arctica islandica. Variability in the annually resolved δ13C-shell record is dominated by multi-decadal variability with a negative trend (-0.003±0.002‰yr-1) over the industrial era (1800-2000). This trend is consistent with the marine Suess effect brought about by the sequestration of isotopically light carbon (δ13C of CO2) derived from the burning of fossil fuels. Comparison of the δ13C-shell record with contemporary proxy archives, over the last millennium, and instrumental data over the 20th century, suggests that primary productivity and climate conditions over the sub-polar North Atlantic region played a vital role in driving inter-annual to multi-decadal scale variability in the δ13C-shell record. Our results highlight that relative shifts in the proportion of sub-polar mode waters and Arctic intermediate waters entrained onto the North Icelandic shelf, coupled with atmospheric circulation patterns associated with the winter North Atlantic Oscillation (wNAO), are the likely physical mechanisms that drive natural variations in seawater δ13C variability on the North Icelandic shelf.

  2. Marine botany. Second edition

    International Nuclear Information System (INIS)

    Dawes, C.J.

    1998-01-01

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identify similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses

  3. Resilience of cereal crops to abiotic stress: A review | Ahmad ...

    African Journals Online (AJOL)

    In the last century, conventional selection and breeding program proved to be highly effective in improving crops against abiotic stresses. Therefore, breeding for abiotic stress tolerance in crop plants should be given high research priority as abiotic stresses are the main factor negatively affecting crop growth and ...

  4. Safety aspects of genetically modified crops with abiotic stress tolerance

    NARCIS (Netherlands)

    Liang, C.; Prins, T.W.; Wiel, van de C.C.M.; Kok, E.J.

    2014-01-01

    Abiotic stress, such as drought, salinity, and temperature extremes, significantly reduce crop yields. Hence, development of abiotic stress-tolerant crops by modern biotechnology may contribute to global food security. Prior to introducing genetically modified crops with abiotic stress tolerance to

  5. Non-marine carbonate facies, facies models and palaeogeographies of the Purbeck Formation (Late Jurassic to Early Cretaceous) of Dorset (Southern England).

    Science.gov (United States)

    Gallois, Arnaud; Bosence, Dan; Burgess, Peter

    2015-04-01

    Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within

  6. Improving abiotic stress tolerance of quinoa

    DEFF Research Database (Denmark)

    Yang, Aizheng

    Global food security faces the challenges of rapid population growth and shortage of water resources. Drought, heat waves and soil salinity are becoming more frequent and extreme due to climatic changes in many regions of the world, and resulting in yield reduction of many crops. It is hypothesized...... that quinoa has the potential to grow under a range of abiotic stresses, tolerating levels regarded as stresses in other crop species. Therefore cultivation of quinoa (Chenopodium quinoa Willd.) could be an alternative option in such regions. Even though quinoa is more tolerant to abiotic stress than most...... other crops, its productivity declines under severe drought, high salt conditions and harsh climate conditions. Different management approaches including water-saving irrigation methods (such as deficit irrigation, DI and alternate root-zone drying irrigation, ARD), inoculating crop seeds with plant...

  7. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  8. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    Science.gov (United States)

    Summers, David P.

    2003-01-01

    One very important tool in the analysis of biogenic, and potentially biogenic, samples is the study of their stable isotope distributions. The isotope distribution of a sample depends on the process(es) that created it. One important application of the analysis of C & N stable isotope ratios has been in the determination of whether organic matter in a sample is of biological origin or was produced abiotically. For example, the delta C-13 of organic material found embedded in phosphate grains was cited as a critical part of the evidence for life in 3.8 billion year old samples. The importance of such analysis in establishing biogenicity was highlighted again by the role this issue played in the recent debate over the validity of what had been accepted as the Earth s earliest microfossils. These kinds of analysis imply a comparison with the fractionation that one would have seen if the organic material had been produced by alternative, abiotic, pathways. Could abiotic reactions account for the same level of fractionation? Additionally, since the fractionation can vary between different abiotic reactions, understanding their fractionations can be important in distinguishing what reactions may have been significant in the formation of different abiological samples (such as extraterrestrial samples). There is however, a scarcity of data on the fractionation of carbon and nitrogen by abiotic reactions. In order to interpret properly what the stable isotope ratios of samples tell us about their biotic or abiotic nature, more needs to be known about how abiotic reactions fractionate C and N. Carbon isotope fractionations have been studied for a few abiotic processes. These studies presumed the presence of a reducing atmosphere, focusing on reactions involving spark discharge, W photolysis of reducing gas mixtures, and cyanide polymerization in the presence of ammonia. They did find that the initial products showed a depletion in I3C with values in the range of a few per

  9. The elemental geochemistry of Lower Triassic shallow-marine carbonates from central Saudi Arabia: Implications for redox conditions in the immediate aftermath of the latest Permian mass extinction

    Science.gov (United States)

    Eltom, Hassan A.; Abdullatif, Osman M.; Babalola, Lamidi O.

    2018-03-01

    The southern margin of the Tethys Ocean was occupied by a broad, shallow continental shelf during the Permian-Triassic boundary interval, with the area of present-day Saudi Arabia located from 10° to 30° south of the paleo-equator. The strata deposited in modern Saudi Arabia in the aftermath of the latest Permian mass extinction (LPME) are dominated by oolitic microbialite limestone (OML), which are overlain by skeletal oolitic limestones (SOL) capped by dolostones and dolomitic limestones (DDL). This succession reflects changes in depositional setting, which can be potentially tied to redox conditions using redox sensitive trace elements and rare earth elements (REEs). Statistical analyses reveals that trace elements and REEs are associated with detrital material, and possibly with diagenetic minerals as well. Proxies such as the Y/Ho, Pr/Pr*, Smn/Ybn, Lan/Smn and Lan/Ybn ratios indicate that REEs do not record a seawater-like pattern, and cannot be used as redox indicator. The presence of a normal marine fauna implies oxic conditions during deposition of the DDL and SOL units. However, the OML unit, which represents the immediate aftermath of LPME, lacks both a normal marine fauna and reliable geochemical signals, making it difficult to infer redox conditions in the depositional environment. Similar to published data from sections that reflect shallow marine condition in the LPME of the Tethys Ocean, chemical index of alteration values are consistently high throughout the study succession, suggesting globally intense chemical weathering in the aftermath of the LPME. As a result, geochemical redox proxies in shallow marine carbonates of the Tethys Ocean are likely to be contaminated by detrital material that have been generated by chemical weathering, and thus, other methods are required to determine depositional redox conditions.

  10. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

    Science.gov (United States)

    Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong

    2017-09-01

    Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

  11. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies

    Directory of Open Access Journals (Sweden)

    A. Yool

    2013-10-01

    Full Text Available MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically driven change in the World Ocean (Yool et al., 2011. The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. However, due to anthropogenic activity, the atmospheric concentration of carbon dioxide (CO2 has significantly increased above its natural, inter-glacial background. As such, simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, requires that both organic and inorganic carbon be afforded a more complete representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter, as well as a simple benthic formulation and extended parameterizations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal spin-up simulation (1860–2005 is performed. The biogeochemical performance of the model is evaluated using a diverse range of observational data, and MEDUSA-2.0 is assessed relative to comparable models using output from the Coupled Model Intercomparison Project (CMIP5.

  12. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    Science.gov (United States)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  13. Methane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. biotic hydrocarbon formation

    Science.gov (United States)

    Shuai, Yanhua; Etiope, Giuseppe; Zhang, Shuichang; Douglas, Peter M. J.; Huang, Ling; Eiler, John M.

    2018-01-01

    Abiotic hydrocarbon gas, typically generated in serpentinized ultramafic rocks and crystalline shields, has important implications for the deep biosphere, petroleum systems, the carbon cycle and astrobiology. Distinguishing abiotic gas (produced by chemical reactions like Sabatier synthesis) from biotic gas (produced from degradation of organic matter or microbial activity) is sometimes challenging because their isotopic and molecular composition may overlap. Abiotic gas has been recognized in numerous locations on the Earth, although there are no confirmed instances where it is the dominant source of commercially valuable quantities in reservoir rocks. The deep hydrocarbon reservoirs of the Xujiaweizi Depression in the Songliao Basin (China) have been considered to host significant amounts of abiotic methane. Here we report methane clumped-isotope values (Δ18) and the isotopic composition of C1-C3 alkanes, CO2 and helium of five gas samples collected from those Xujiaweizi deep reservoirs. Some geochemical features of these samples resemble previously suggested identifiers of abiotic gas (13C-enriched CH4; decrease in 13C/12C ratio with increasing carbon number for the C1-C4 alkanes; abundant, apparently non-biogenic CO2; and mantle-derived helium). However, combining these constraints with new measurements of the clumped-isotope composition of methane and careful consideration of the geological context, suggests that the Xujiaweizi depression gas is dominantly, if not exclusively, thermogenic and derived from over-mature source rocks, i.e., from catagenesis of buried organic matter at high temperatures. Methane formation temperatures suggested by clumped-isotopes (167-213 °C) are lower than magmatic gas generation processes and consistent with the maturity of local source rocks. Also, there are no geological conditions (e.g., serpentinized ultramafic rocks) that may lead to high production of H2 and thus abiotic production of CH4 via CO2 reduction. We propose

  14. Carbon sequestration.

    Science.gov (United States)

    Lal, Rattan

    2008-02-27

    Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6PgCyr-1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.

  15. Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ

    NARCIS (Netherlands)

    Miyatake, T.; Moerdijk-Poortvliet, T.C.W.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    Carbon flow from benthic diatoms to heterotrophic bacterial was traced in an intertidal sediment for 5consecutive days. 13C-labeled bicarbonate was sprayed onto the sediment surface during low tide and 13C-labelincorporation in major carbon pools, intermediate metabolites, and biomarkers were

  16. Evaluation of Abiotic Resource LCIA Methods

    Directory of Open Access Journals (Sweden)

    Rodrigo A. F. Alvarenga

    2016-02-01

    Full Text Available In a life cycle assessment (LCA, the impacts on resources are evaluated at the area of protection (AoP with the same name, through life cycle impact assessment (LCIA methods. There are different LCIA methods available in literature that assesses abiotic resources, and the goal of this study was to propose recommendations for that impact category. We evaluated 19 different LCIA methods, through two criteria (scientific robustness and scope, divided into three assessment levels, i.e., resource accounting methods (RAM, midpoint, and endpoint. In order to support the assessment, we applied some LCIA methods to a case study of ethylene production. For RAM, the most suitable LCIA method was CEENE (Cumulative Exergy Extraction from the Natural Environment (but SED (Solar Energy Demand and ICEC (Industrial Cumulative Exergy Consumption/ECEC (Ecological Cumulative Exergy Consumption may also be recommended, while the midpoint level was ADP (Abiotic Depletion Potential, and the endpoint level was both the Recipe Endpoint and EPS2000 (Environmental Priority Strategies. We could notice that the assessment for the AoP Resources is not yet well established in the LCA community, since new LCIA methods (with different approaches and assessment frameworks are showing up, and this trend may continue in the future.

  17. Abscisic Acid and abiotic stress signaling.

    Science.gov (United States)

    Tuteja, Narendra

    2007-05-01

    Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis.

  18. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    OpenAIRE

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BS) are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop c...

  19. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    Science.gov (United States)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  20. Generation of RNA in abiotic conditions.

    Science.gov (United States)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  1. Glacial and tectonic influence on terrestrial organic carbon delivery to high latitude deep marine systems: IODP Site U1417, Surveyor Fan, Gulf of Alaska

    Science.gov (United States)

    Childress, L. B.; Ridgway, K. D.

    2014-12-01

    Glacial and tectonic processes on active margins are intrinsically coupled to the transport of sediment and associated organic carbon (OC). Glaciation/deglaciation and the formation of ice sheets can alter the quantity and composition of OC delivered to the marine environment. Over geologic time scales (>1 Ma), exhumation and mass wasting of sedimentary rock from uplifted accretionary wedges inject recycled OC (e.g. kerogen), along with modern OC into the marine environment. The sedimentary record of glacial and tectonic processes along the southern Alaska margin is particularly well preserved at Integrated Ocean Drilling Program (IODP) Site U1417. Lithofacies of Site U1417 can be divided into 3 sedimentary packages that we interpret as linked to the onset of tidewater glaciation along, and tectonic convergence of the Yakutat Terrane with, the continental margin of northwestern Canada and southern Alaska. Based on previous studies linking the development of the Cordilleran Ice Sheet and the movement of the Yakutat Terrane to the development of the Surveyor Fan System, we hypothesize biogeochemical variations in the deposited sediments as a result of changing provenance. Preservation of terrestrial OC that has been documented in sediments of the Alaskan continental shelf margin and sediment routing through the deep-sea Surveyor Channel from the Pleistocene to modern time implies a long-term conduit for this OC to reach the distal portion of the Surveyor Fan system. To correlate marine deposits with terrestrial formations, bulk geochemical and detailed biomarker analyses are used to delineate source material. Preliminary bulk OC content and stable carbon isotope analyses of the Yakataga, Poul Creek, and Kultheith Fms. reveal notable differences. Detailed biomarker analysis by pyrolysis-gas chromatograph-mass spectrometry has revealed further differences between the three primary formations. Using the biogeochemical fingerprints of the Yakataga, Poul Creek, and coal

  2. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Variability in connectivity patterns of fish with ontogenetic migrations: Modelling effects of abiotic and biotic factors

    Directory of Open Access Journals (Sweden)

    Susanne Eva Tanner

    2015-10-01

    Full Text Available Connectivity is a critical property of marine fish populations as it drives population replenishment, determines colonization patterns and the resilience of populations to harvest. Understanding connectivity patterns is particularly important in species that present ontogenetic migrations and segregated habitat use during their life history, such as marine species with estuarine nursery areas. Albeit challenging, fish movement can be estimated and quantified using different methodologies depending on the life history stages of interest (e.g. biophysical modelling, otolith chemistry, genetic markers. Relative contributions from estuarine nursery areas to the adult coastal populations were determined using otolith elemental composition and maximum likelihood estimation for four commercially important species (Dicentrarchus labrax, Plathichtys flesus, Solea senegalensis and Solea solea and showed high interannual variability. Here, the effects of abiotic and biotic factors on the observed variability in connectivity rates and extent between estuarine juvenile and coastal adult subpopulations are investigated using generalized linear models (GLM and generalized mixed models (GMM. Abiotic factors impacting both larval and juvenile life history stages are included in the models (e.g. wind force and direction, NAO, water temperature while biotic factors relative to the estuarine residency of juvenile fish are evaluated (e.g. juvenile density, food availability. Factors contributing most to the observed variability in connectivity rates are singled out and compared among species. General trends are identified and results area discussed in the general context of identifying potential management frameworks applicable to different life stages and which may prove useful for ontogenetically migrating species.

  4. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  5. Additional insights into the adaptation of cotton plants under abiotic ...

    African Journals Online (AJOL)

    Abiotic stress is the primary cause of crop losses worldwide. In addition to protein coding genes, microRNAs (miRNAs) have emerged as important players in plant stress responses. Though miRNAs are key in regulating many aspects of plant developmental plasticity under abiotic stresses, very few information are available ...

  6. Will marine productivity wane?

    Science.gov (United States)

    Laufkötter, Charlotte; Gruber, Nicolas

    2018-03-01

    If marine algae are impaired severely by global climate change, the resulting reduction in marine primary production would strongly affect marine life and the ocean's biological pump that sequesters substantial amounts of atmospheric carbon dioxide in the ocean's interior. Most studies, including the latest generation of Earth system models, project only moderate global decreases in biological production until 2100 (1, 2), suggesting that these concerns are unwarranted. But on page 1139 of this issue, Moore et al. (3) show that this conclusion might be shortsighted and that there may be much larger long-term changes in ocean productivity than previously appreciated.

  7. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment

    Directory of Open Access Journals (Sweden)

    R. G. J. Bellerby

    2008-11-01

    Full Text Available Changes to seawater inorganic carbon and nutrient concentrations in response to the deliberate CO2 perturbation of natural plankton assemblages were studied during the 2005 Pelagic Ecosystem CO2 Enrichment (PeECE III experiment. Inverse analysis of the temporal inorganic carbon dioxide system and nutrient variations was used to determine the net community stoichiometric uptake characteristics of a natural pelagic ecosystem perturbed over a range of pCO2 scenarios (350, 700 and 1050 μatm. Nutrient uptake showed no sensitivity to CO2 treatment. There was enhanced carbon production relative to nutrient consumption in the higher CO2 treatments which was positively correlated with the initial CO2 concentration. There was no significant calcification response to changing CO2 in Emiliania huxleyi by the peak of the bloom and all treatments exhibited low particulate inorganic carbon production (~15 μmol kg−1. With insignificant air-sea CO2 exchange across the treatments, the enhanced carbon uptake was due to increase organic carbon production. The inferred cumulative C:N:P stoichiometry of organic production increased with CO2 treatment from 1:6.3:121 to 1:7.1:144 to 1:8.25:168 at the height of the bloom. This study discusses how ocean acidification may incur modification to the stoichiometry of pelagic production and have consequences for ocean biogeochemical cycling.

  8. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    International Nuclear Information System (INIS)

    Rogers, Karyne M.

    2003-01-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature (δ 15 N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature (δ 13 C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months

  9. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Karyne M

    2003-07-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature ({delta}{sup 15}N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature ({delta}{sup 13}C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months.

  10. Transfer of 241Am and 237Pu from euphausiid moults to a carbonate-rich marine sediment

    International Nuclear Information System (INIS)

    Hargrave, B.T.

    1986-01-01

    Concentrations of 241 Am and 237 Pu adsorbed onto moulted exoskeletons from the euphausiid Meganyctiphanes norvegica decreased exponentially with 50% retention times of 3-7 d when moults were incubated in filtered seawater with small amounts of carbonate-rich sediment. Over 95% of sediment weight was present as -2 ) was greatest in the medium-fine sand fraction which had the highest carbonate content. These particles constituted -2 surface: atoms μm -3 in solution) was 10 3 -10 4 times higher than similar quotients for 241 Am and 237 Pu sorbed to surfaces of organic particles are transferred to sediments. (author)

  11. An Overview of Marine Biodiversity in United States Waters

    Science.gov (United States)

    Fautin, Daphne; Dalton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew; Sandifer, Paul; Sedberry, George; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise. PMID:20689852

  12. An overview of marine biodiversity in United States waters

    Science.gov (United States)

    Fautin, Daphne G.; Delton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew A.; Sandifer, Paul; Sedberry, George R.; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

  13. Biological processing of carbon dioxide. ; Photosynthetic function of plants, and carbon dioxide fixing function of marine organisms. Nisanka tanso no seibutsuteki shori. ; Shokubutsu no kogosei kino to kaiyo seibutsu no nisanka tanso kotei kino

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M [National Research Inst. for Pollution and Resources, Tsukuba (Japan)

    1991-02-15

    This paper describes photosynthetic function of plants, and CO {sub 2} fixing function of marine organisms. Among the photosythetic reaction systems, the C {sub 3} type reaction carries out CO {sub 2} fixation using the Calvin cycle, and takes out the carbon dioxide out of the system through enzymatic reactions of 3-phosphoglycerate {yields} fructose-6-phosphate. The C {sub 4} type reaction has a special cycle to supply CO {sub 2} to the Calvin cycle, i. e. C {sub 4} dicarboxylic acid cycle. The CAM type reaction enables the photosynthetic type to be converted according to variations in the growing environment. The majority of the surace agricultural crops are from C {sub 3} plants, of which yield may be increased when grown in a high CO {sub 2} atmosphere. On the one hand, gene engineering may make possible breeding of plants having high CO {sub 2} fixing capability. In the area of marine organisms, lime algae growing in clusters around coral reefs form and deposit CaCO {sub 3}. Reef creating corals have symbiotically in their stomach layer brown algae having photosynthetic function to build CaCO {sub 3} skeleton. The corals calcify algae quickly and in a large quantity, hence play an important role in fixing underwater CO {sub 2}. 2 tabs.

  14. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    NARCIS (Netherlands)

    Sweetman, A.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify short-term benthic carbon cycling and ecosystem functioning, we used stable-isotopically labeled algae as a deliberate tracer to quantify benthic respiration and C-flow over 48 h through macrofauna and bacteria in sediments collected from (1)

  15. Consumption and release of dissolved organic carbon by marine bacteria in a pulsed-substrate environment: from experiments to modelling.

    NARCIS (Netherlands)

    Eichinger, M.; Kooijman, S.A.L.M.; Sempere, R.; Poggiale, J.C.

    2009-01-01

    To investigate the effects of episodic occurrence of dissolved organic carbon(DOC) in the natural environment, bacterial degradation of labile DOC was studied under laboratory-controlled conditions followed by modelling. A single labile DOC compound was periodically added to the experimental culture

  16. The chromium isotopic composition of an Early to Middle Ordovician marine carbonate platform, eastern Precordillera, San Juan, Argentina

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Frei, Robert; Gilleaudeau, Geoffrey Jon

    A broad suite of redox proxy data suggest that despite ocean and atmosphere oxygenation in the late Neoproterozoic, euxinic conditions persisted in the global deep oceans until the at least Ordovician [1,2,3]. Major changes in the sulphur isotopic composition of carbonate associated sulphate and ...

  17. Natural sulfurization of carbohydrates in marine sediments : consequences for the chemical and carbon isotopic composition of sedimentary organic matter

    NARCIS (Netherlands)

    Dongen, B.E. van

    2003-01-01

    Carbohydrates make up the largest part of the organic matter in the biosphere and are used by living organism for many different reasons. They serve, among others, as carbon and energy source as well as metabolic intermediates. Carbohydrates are generally thought to be remineralized during early

  18. Effects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc.

    Science.gov (United States)

    Domenici, Paolo; Torres, Rodrigo; Manríquez, Patricio H

    2017-02-15

    Recent work has shown that the behaviour of marine organisms can be affected by elevated P CO 2 , although little is known about the effect of multiple stressors. We therefore investigated the effect of elevated P CO 2  and temperature on locomotion and behaviour during prey searching in the marine gastropod Concholepas concholepas , a predator characteristic of the southeastern Pacific coast. Movement duration, decision time, route finding and lateralization were measured using a T-maze tank with a prey positioned behind a barrier. Four treatments, representing present day and near-future scenarios of ocean acidification and warming were used in rearing the individuals for 6 months. Regardless of the treatment, no significant differences were found in relative and absolute lateralization before and after exposure for 6 months. However, relative lateralization was not repeatable for animals tested after 6 months at elevated P CO 2  at both experimental temperatures, whereas it was repeatable in individuals kept at the present day level of P CO 2 We suggest that these effects may be related to a behavioural malfunction caused by elevated P CO 2 Movement duration, decision time and route finding were not repeatable. However, movement duration and decision time increased and route finding decreased in elevated P CO 2  (at 15°C), suggesting that elevated P CO 2  has negative effects on the locomotor and sensory performance of C. concholepas in the presence of a prey odour, thereby decreasing their ability to forage efficiently. © 2017. Published by The Company of Biologists Ltd.

  19. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    Science.gov (United States)

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  20. Birth and demise of a Middle Jurassic isolated shallow-marine carbonate platform on a tilted fault block: Example from the Southern Iberian continental palaeomargin

    Science.gov (United States)

    Navarro, V.; Ruiz-Ortiz, P. A.; Molina, J. M.

    2012-08-01

    -thick succession composed of a basal slumped unit of micritic and peloidal limestones overlain by cross-bedded oolitic limestones represents the lowermost sequence. The superposition of a newer slumped unit of micritic and peloidal limestones on the cross-bedded oolitic limestones defines the lower part of the uppermost depositional sequence. Finally, the central sections are less thick and comprise a facies succession consisting almost entirely of oolitic limestones. Locally, oolitic limestones often show cross-bedding and prograding clinoforms. The cross-bedding has centrifugal directions around the perimeter outcrops of San Cristóbal hill, whereas in the centre palaeocurrents are highly variable. The sense of the palaeoslopes as deduced from slumps also fits with a centrifugal pattern. Finally, in the southwestern outcrops, the demise of the carbonate platform is marked by backstepping oolitic facies, the presence of lumachelle facies, and onlapping hemipelagic facies. All the data point to the birth, evolution, and drowning of an isolated shallow-water carbonate platform that developed on a tilted fault block. The fault-block tilting controlled the development of talus breccias in the southeastern part and of slumps in the northwest-dipping hangingwall ramp. In the shallowest environments produced by the tilting (uppermost part of the fault block), a shallow-marine carbonate platform developed. Carbonate production (mainly oolitic) kept up with relative sea-level fluctuations and extended the platform at least to the northwest, southeast, and southwest based on observable data. Finally, tectonics and sea-level fluctuations drowned this carbonate platform.

  1. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    Science.gov (United States)

    Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  2. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    Directory of Open Access Journals (Sweden)

    Paul G Matson

    Full Text Available Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor. Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only, tide (Cape Evans and New Harbor, and water mass properties (temperature and salinity during spring and early summer 2011. These collective observations showed that (1 pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007 and range of pH (Cape Evans: 0.090; Hut Point: 0.036, and (2 pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  3. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    KAUST Repository

    Savvides, Andreas

    2015-12-15

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  4. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    KAUST Repository

    Savvides, Andreas; Ali, Shawkat; Tester, Mark A.; Fotopoulos, Vasileios

    2015-01-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  5. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  6. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms: Particle-attached bacteria incorporating organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mayali, Xavier [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, Benjamin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mabery, Shalini [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, Peter K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    Here, we investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks.

  7. Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources

    International Nuclear Information System (INIS)

    Raven, J.A.; Johnston, A.M.

    1991-01-01

    Most of the marine phytoplankton species for which data are available are rate saturated for photosynthesis and probably for growth with inorganic C at normal seawater concentrations; 2 of the 17 species are not saturated. Photosynthesis in these two species can probably be explained by the 17 species not saturated. Photosynthesis in these two species can probably be explained by assuming that CO 2 reaches the site of its reaction with RUBISCO (ribulose bisphosphate carboxylase-oxygenase) by passive diffusion. The kinetics of CO 2 fixation by intact cells are explicable by RUBISCO kinetics typical of algae, and a CO 2 -saturated in vivo RUBISCO activity not more than twice the in vivo light- and inorganic-C-saturated rate of photosynthesis. For the other species, the high affinity in vivo for inorganic C could be other species, the high affinity in vivo for inorganic C could be explained by postulating active influx of inorganic C yielding a higher concentration of CO 2 available to RUBISCO during steady state photosynthesis than in the medium. Although such a higher concentration of internal CO 2 in cells with high affinity for inorganic C is found at low levels of external inorganic C, the situation is more equivocal at normal seawater concentrations. In theory, the occurrence of a CO 2 -concentrating mechanism rather than passive CO 2 entry could reduce the photon, N, Fe, Mn, and Mo costs of growth, but increase the Zn and Se costs. Thus far, data on costs are available only for photons and N; these data generally agree with the predicted lower costs for cells with high affinity for inorganic C

  8. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    Alshareef, Sahar

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses

  9. Origin of Abiotic Methane in Submarine Hydrothermal Systems

    Science.gov (United States)

    Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.

    2018-05-01

    Results of recent investigations into the chemical and isotopic composition of actively venting submarine hydrothermal fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.

  10. The Abiotic Depletion Potential: Background, Updates, and Future

    Directory of Open Access Journals (Sweden)

    Lauran van Oers

    2016-03-01

    Full Text Available Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA. The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters to include in the characterization model and which data to use. This article gives an overview of the problem definition and the choices that have been made when defining the abiotic depletion potentials (ADPs for a characterization model for abiotic resource depletion in LCA. Updates of the ADPs since 2002 are also briefly discussed. Finally, some possible new developments of the impact category of abiotic resource depletion are suggested, such as redefining the depletion problem as a dilution problem. This means taking the reserves in the environment and the economy into account in the reserve parameter and using leakage from the economy, instead of extraction rate, as a dilution parameter.

  11. Designing cooperatively folded abiotic uni- and multimolecular helix bundles

    Science.gov (United States)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan

    2018-01-01

    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  12. [Inhibitors of proteolytic enzymes under abiotic stresses in plants (review)].

    Science.gov (United States)

    Mosolov, V V; Valueva, T A

    2011-01-01

    Data on the role of proteolytic enzyme inhibitors in plant adaptation to various unfavorable environmental abiotic factors--water deficiency, salinization of soil, extreme temperatures, etc.--and also probable functions of proteinases inhibitors in natural plant senescense are considered.

  13. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  14. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  15. Abiotic stress miRNomes in the Triticeae

    OpenAIRE

    Alptekin, Burcu; Langridge, Peter; Budak, Hikmet

    2016-01-01

    The continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and tox...

  16. Chromophoric dissolved organic matter and microbial enzymatic activity. A biophysical approach to understand the marine carbon cycle.

    Science.gov (United States)

    Gonnelli, Margherita; Vestri, Stefano; Santinelli, Chiara

    2013-12-01

    This study reports the first information on extracellular enzymatic activity (EEA) combined with a study of DOM dynamics at the Arno River mouth. DOM dynamics was investigated from both a quantitative (dissolved organic carbon, DOC) and a qualitative (absorption and fluorescence of chromophoric DOM, CDOM) perspective. The data here reported highlight that the Arno River was an important source of both DOC and CDOM for this coastal area. CDOM optical properties suggested that terrestrial DOM did not undergo simple dilution at the river mouth but, other physical-chemical and biological processes were probably at work to change its molecular characteristics. This observation was further supported by the "potential" enzymatic activity of β-glucosidase (BG) and leucine aminopeptidase (LAP). Their Vmax values were markedly higher in the river water than in the seawater and their ratio suggested that most of the DOM used by microbes in the Arno River was polysaccharide-like, while in the seawater it was mainly protein-like. © 2013. Published by Elsevier B.V. All rights reserved.

  17. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    Science.gov (United States)

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  18. Marine ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Studies on marine ecology included marine pollution; distribution patterns of Pu and Am in the marine waters, sediments, and organisms of Bikini Atoll and the influence of physical, chemical, and biological factors on their movements through marine biogeochemical systems; transfer and dispersion of organic pollutants from an oil refinery through coastal waters; transfer of particulate pollutants, including sediments dispersed during construction of offshore power plants; and raft culture of the mangrove oysters

  19. Microbial decomposition of marine dissolved organic matter in cool oceanic crust

    Science.gov (United States)

    Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.

    2018-05-01

    Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.

  20. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  1. Orbital forcing on marine organic and carbonate production in the Indo-Pacific during the last 1.7 Myrs

    Science.gov (United States)

    Beaufort, L.; Bolton, C. T.; Mazur, J. C.; Gally, Y.

    2017-12-01

    The Western Pacific Warm Pool (WPWP) is a place of intense energy storage and redistribution … It is climatically relatively stable with, for example, little seasonality in sea surface temperature (SST). However, significant changes occur in the vertical structure of the upper ocean related to El Nino Southern Oscillation dynamics. These changes significantly impact the phytoplankton communities that are adapted to specific conditions in different layers of the photic zone, and are precisely recorded in the sediments by microfossils such as those produced by coccolithophores. Core MD97-2540 was retrieved on the Eauripik rise in the WPWP and covers, in 37 metres, a time interval spanning the last 1.7 million years (Myrs). Two samples were prepared (settling slide) every 5 cm. The entire coccolith assemblage was counted and identified automatically in each sample using the software SYRACO. Morphometric characteristics (length, thickness, mass…) were measured on every coccolith. Primary productivity (PP) was estimated using a transfer function based on the percentage of the species Florisphaera profunda. Changes in mass (M) of the dominant coccolithophore group, the Noelarhabdaceae (including Emilianiaand Gephyrocapsa), were studied. We also estimated the coccolithophore carbonate export production (CCEP). Those 3 parameters (PP, M and CCEP) show a significant imprint of precession and eccentricity of the Earth's orbit. In contrast to SST and planktic foraminiferal oxygen isotopes measured on the same samples, the coccolithophore parameters exhibit significant 400 kyr cyclicity, and the 100 kyr cycle is present prior to its appearance in the SST and oxygen isotope records 0.9 Myrs ago. This indicates direct forcing by insolation and seasonality on the WPWP, independent of global climatic variations. A discussion of the relationship between the Indian Monsoon and ENSO on orbital and longer timescales is enabled via comparisons with PP and CCEP measured at a similar

  2. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    Science.gov (United States)

    Sweetman, A.K.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal. ?? 2010 Author(s).

  3. Polyamines and abiotic stress in plants: A complex relationship

    Directory of Open Access Journals (Sweden)

    Rakesh eMinocha

    2014-05-01

    Full Text Available The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g. due to their ability to deal with oxidative radicals or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism. The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e. being a protector as well as a perpetrator of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

  4. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    Science.gov (United States)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  5. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  6. The Role of Silicon under Biotic and Abiotic Stress Conditions

    Directory of Open Access Journals (Sweden)

    İlkay YAVAŞ

    2017-06-01

    Full Text Available Biotic and abiotic stress factors can adversely affect the agricultural productivity leading to physiological and biochemical damage to crops. Therefore, the most effective way is to increase the resistance to stresses. Silicon plays a ro le in reducing the effects of abiotic and biotic stresses (drought, salt stress, disease and insect stress etc. on plants. Silicon is accumulated in the cell walls and intercellular spaces and thus it has beneficial effects on disease infestations in especially small grains. The application of silicon may reduce the effects of environmental stresses on plants while making effective use of plant nutrients such as nitrogen and phosphorous. Also, silicon may reduce the toxic effects of heavy metals in soil. I t may protect the foliage and increase light uptake and reduce respiration. Therefore, in this review, we discussed the effects of silicon on abiotic and biotic stresses in especially field crops.

  7. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    Directory of Open Access Journals (Sweden)

    Iniga Seraphina George

    2014-12-01

    Full Text Available Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research.

  8. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  9. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems

    DEFF Research Database (Denmark)

    Wohlfahrt, Georg; Anderson-Dunn, Margaret; Bahn, Michael

    2008-01-01

    The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002-2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE....... Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general...... pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem...

  10. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  11. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  12. Current trends in genetic manipulations to enhance abiotic and ...

    African Journals Online (AJOL)

    Hitherto, tolerant plants were mainly produced by classical breeding techniques. Success in breeding for better adapted varieties to abiotic and biotic stresses depends on the concerted efforts of various research domains including plant and cell physiology, molecular biology, genetics and breeding. However, such process ...

  13. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  14. Effect of plant growth hormones and abiotic stresses on germination ...

    African Journals Online (AJOL)

    Phosphatases are widely found in plants having intracellular and extracellular activities. Phosphatases are believed to be important for phosphorous scavenging and remobilization in plants, but its role in adaptation to abiotic stresses and growth hormones at germination level has not been critically evaluated. To address ...

  15. STRESS ECOLOGY IN FUCUS : ABIOTIC, BIOTIC AND GENETIC INTERACTIONS

    NARCIS (Netherlands)

    Wahl, Martin; Jormalainen, Veijo; Eriksson, Britas Klemens; Coyer, James A.; Molis, Markus; Schubert, Hendrik; Dethier, Megan; Karez, Rolf; Kruse, Inken; Lenz, Mark; Pearson, Gareth; Rohde, Sven; Wikstrom, Sofia A.; Olsen, Jeanine L.; Lesser, M

    2011-01-01

    Stress regimes defined as the synchronous or sequential action of abiotic and biotic stresses determine the performance and distribution of species. The natural patterns of stress to which species are more or less well adapted have recently started to shift and alter under the influence of global

  16. Resilience of cereal crops to abiotic stress: A review

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Key words: Cereal crops, abiotic stresses, food insecurity, molecular breeding, quantitative trait loci (QTLs), salinity, water stress. ... production of genetically modified (GM) crops, exo- genous use of osmo protectants etc. ... stressful environments is important to fulfill food demand of the ever-increasing world ...

  17. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  18. Influence of abiotic stresses on the winter wheat sprouting plants

    Czech Academy of Sciences Publication Activity Database

    Bláha, L.; Hnilička, F.; Kadlec, P.; Smrčková-Jankovská, P.; Macháčková, Ivana; Sychrová, E.; Kohout, Ladislav

    2008-01-01

    Roč. 3, č. 3 (2008), s. 389-390 ISSN 1125-4718. [Congress of the European Society for Agronomy /10./. 15.09.2008-19.09.2008, Bologna] R&D Projects: GA MZe QF3056 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506 Keywords : brassinosteroids * abiotic stress * emergency Subject RIV: CC - Organic Chemistry

  19. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  20. Abiotic Production of Methane in Terrestrial Planets

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  1. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  2. Marine Biomedicine

    Science.gov (United States)

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  3. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  4. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    International Nuclear Information System (INIS)

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-01-01

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O 2 ) or ozone (O 3 ) simultaneous to methane (CH 4 ) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O 2 and O 3 production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O 2 and O 3 buildup, caused by fast chemical production of these gases. This results in detectable abiotic O 3 and CH 4 features in the UV-visible, but no detectable abiotic O 2 features. Thus, simultaneous detection of O 3 and CH 4 by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O 2 and O 3 is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  5. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    Energy Technology Data Exchange (ETDEWEB)

    Domagal-Goldman, Shawn D. [Planetary Environments Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S., E-mail: shawn.goldman@nasa.gov [NASA Astrobiology Institute—Virtual Planetary Laboratory (United States)

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  6. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    Science.gov (United States)

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia.

  7. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zé licourt, Axel de; Colcombet, Jean; Hirt, Heribert

    2016-01-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses

  8. Kinetics of abiotic nitrous oxide production via oxidation of hydroxylamine by particulate metals in seawater

    Science.gov (United States)

    Cavazos, A. R.; Taillefert, M.; Glass, J. B.

    2016-12-01

    The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2­O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.

  9. Abiotic systems for the catalytic treatment of solvent-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N. [Univ. of Arizona, Tucson, AZ (United States)] [and others

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  10. The shifting influence of abiotic drivers during landslide succession in Puerto Rico

    Science.gov (United States)

    L. R. Walker; A. B. Shiels; P. J. Bellingham; A. D. Sparrow; N. Fetcher; F. H. Landau; D. J. Lodge

    2013-01-01

    Summary 1. Abiotic variables are critical drivers of succession in most primary seres, but how their influence on biota changes over time is rarely examined. Landslides provide good model systems for examining abiotic influences because they are spatially and temporally heterogeneous habitats with distinct abiotic and biotic gradients and post-landslide erosion. 2. In...

  11. Support media can steer methanogenesis in the presence of phenol through biotic and abiotic effects.

    Science.gov (United States)

    Poirier, Simon; Déjean, Sébastien; Chapleur, Olivier

    2018-09-01

    A wide variety of inhibitors can induce anaerobic digester disruption. To avoid performance losses, support media can be used to mitigate inhibitions. However, distinguishing the physico-chemical from the biological mechanisms of such strategies remains delicate. In this framework, the impact of 10  g/L of different types of zeolites and activated carbons (AC) on microbial community dynamics during anaerobic digestion of biowaste in the presence of 1.3 g/L of phenol was evaluated with 16 S rRNA gene sequencing. In the presence of AC, methanogenesis inhibition was rapidly removed due to a decrease of phenol concentration. This abiotic effect related to the physico-chemical properties of AC led to increased final CH4 and CO2 productions by 29-31% compared to digesters incubated without support. Interestingly, although zeolite did not adsorb phenol, final CH4 and CO2 production reached comparable levels as with AC. Nevertheless, compared to digesters incubated without support, methanogenesis lag phase duration was less reduced in the presence of zeolites (5 ± 1 days) than in the presence of activated carbons (12 ± 2 days). Both types of support induced biotic effects. AC and zeolite both allowed the preservation of the major representative archaeal genus of the non-inhibited ecosystem, Methanosarcina. By contrast, they distinctly shaped bacterial populations. OTUs belonging to class W5 became dominant at the expense of OTUs assigned to orders Clostridiales, Bacteroidales and Anaerolinales in the presence of AC. Zeolite enhanced the implantation of OTUs assigned to bacterial phylum Cloacimonetes. This study highlighted that supports can induce biotic and abiotic effects within digesters inhibited with phenol, showing potentialities to enhance anaerobic digestion stability under disrupting conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Monitoring of radioactivity in the marine environment

    International Nuclear Information System (INIS)

    Bologa, A.S.

    1992-01-01

    The necessity of radioactivity monitoring in the marine environment was imposed by the increasing development of nuclear power and its world-wide use in many different segments of economic and social life. Both natural and artificial radioactivity play an important role in marine ecology and human health. In this respect three major facts continue to prevail in Romania. The fallout, the presence of the Danube river and the expectations for future energy production. Spatial and temporal monitoring of marine radioactivity along the Romanian Black Sea shore has been systematically performed in the Romanian Marine Research Institute in close co-operation with the Institute of Meteorology and Hydrology since 1981. Marine emerged and submerged sediments, coastal and offshore sea water, macroalgae, in vertebrates and fish off the Danube mouths and/or along the coast are monitored for natural and artificial radioactivity by means of beta gross measurements and gamma spectrometry. Concentrations of radionuclides as K-40, Cs-134, Cs-137 in abiotic and biotic samples, environmental distributions coefficients and concentrations factors (CF), as well as experimentally-derived CFs in marine biota as radioecological bioindicators are assessed and stored for a national data base. (author) 3 tabs., 18 refs

  13. Radioactive monitoring of the marine environment

    International Nuclear Information System (INIS)

    Bologa, A. S.

    1991-01-01

    Radioactivity monitoring of marine environment was required by the development of nuclear power and the worldwide use of ionizing radiations in many different activities. Both natural and artificial radioactivity play an important role in marine ecology and human health. In respect of this, three major facts prevail, namely: the fallout, the proximity of Danube River and the future nuclear power production. Spatial and temporal monitoring of marine radioactivity along the Romanian Black Sea shore has been systematically performed in Romanian Marine Research Institute in close cooperation with Institute of Meteorology and Hydrology since 1981. Marine emerged and submerged sediments, coastal and offshore sea water, macroalgae, invertebrates and fish of Danube mouths and/or along the coast are monitored for natural and artificial radioactivity by means of gross beta measurements and gamma spectrometry. Concentrations of radionuclides such as: K-40, Cs-134 and Cs-137 in abiotic and biotic samples, environmental distribution coefficients and concentration factors (CFs) as well as experimentally derived CFs in marine biota as radioecological bioindicators are assessed and stored in a national data base. (author)

  14. Understanding marine microbes - Trends and future diections

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.

    conducted include microbial biogeochemical cycles (carbon, sulphur, nitrogen and phosphorous), diseases of marine plants and animals, biodegradation of crude oil and natural biopolymers, heterotrophic activities, free enzyme activities in sediments...

  15. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Marine Science

    African Journals Online (AJOL)

    between humans and the coastal and marine environment. ... The journal has a new and more modern layout, published online only, and the editorial .... the population structure of Platorchestia fayetta sp. nov. and their interaction with the.

  17. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the ... tidal height and amplitude can influence light penetra- ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia.

  18. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ... consist of special issues on major events or important thematic issues. ... of sources, including plant and animal by- products.

  19. Marine biotoxins

    National Research Council Canada - National Science Library

    2004-01-01

    ... (ciguatera fish poisoning). It discusses in detail the causative toxins produced by marine organisms, chemical structures and analytical methods, habitat and occurrence of the toxin-producing organisms, case studies and existing regulations...

  20. Marine Science

    African Journals Online (AJOL)

    pod diversity and distribution are important especially since studies on marine biodiversity are scarce .... Method II –. Zamoum &. Furla (2012) protocol. Method III. – Geist et al (2008) protocol ..... Public Library Of Science One 8: 51273.

  1. Marine pollution

    International Nuclear Information System (INIS)

    Clark, R.B.

    1992-01-01

    The effects of petroleum, waste materials, halogenated hydrocarbons, radioactivity and heat on the marine ecosystem, the fishing industry and human health are discussed using the example of the North Sea. (orig.) [de

  2. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form ... to optimize nucleic acid extraction protocols from marine gastropods, present an ...... Greenfield., Gomez E, Harvell CD, Sale PF, Edwards.

  3. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  4. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  5. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  6. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  7. Changes in biotic and abiotic processes following mangrove clearing

    Science.gov (United States)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  8. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    OpenAIRE

    Norio Narita; Takafumi Enomoto; Shigeyuki Masaoka; Nobuhiko Kusakabe

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet ...

  9. Wheat EST resources for functional genomics of abiotic stress

    Directory of Open Access Journals (Sweden)

    Links Matthew G

    2006-06-01

    Full Text Available Abstract Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets. Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in

  10. Climate sensitivity of marine energy

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversi...

  11. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    Science.gov (United States)

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  12. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    Science.gov (United States)

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R.; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  13. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    Directory of Open Access Journals (Sweden)

    Tatsuki Kunoh

    2016-06-01

    Full Text Available Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II to Fe(III and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II concentrations, Fe(III precipitates visibly formed immediately after addition of Fe(II to the medium, suggesting prompt abiotic oxidation of Fe(II to Fe(III. Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter, while those in the Fe(III medium were composed of large, aggregated particles (≥3 µm diameter with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved of Fe encrustation of the Leptothrix sheaths.

  14. Induction of abiotic stress tolerance in plants by endophytic microbes.

    Science.gov (United States)

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  15. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  16. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    Science.gov (United States)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  17. Late-Holocene marine radiocarbon reservoir correction (ΔR) for the west coast of South Africa

    CSIR Research Space (South Africa)

    Dewar, G

    2012-06-01

    Full Text Available In order to calibrate radiocarbon ages based on samples with a marine carbon component it is important to know the marine carbon reservoir correction or ΔR value. This study measured the ΔR on both known-age pre-bomb marine shells and paired marine...

  18. Fungal interactions reduce carbon use efficiency

    NARCIS (Netherlands)

    Maynard, Daniel S.; Crowther, Thomas W.; Bradford, Mark A.

    2017-01-01

    The efficiency by which fungi decompose organic matter contributes to the amount of carbon that is retained in biomass vs. lost to the atmosphere as respiration. This carbon use efficiency (CUE) is affected by various abiotic conditions, including temperature and nutrient availability.

  19. Bicarbonate uptake by marine Crenarchaeota

    NARCIS (Netherlands)

    Wuchter, C.; Schouten, S.; Boschker, H.T.S.; Sinninghe Damsté, J.S.

    2003-01-01

    Biphytanyl membrane lipids and 16S rRNA sequences derived from marine Crenarchaeota were detected in shallow North Sea surface water in February 2002. To investigate the carbon fixation mechanism of these uncultivated archaea in situ 13C bicarbonate tracer experiments were performed with this water

  20. Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ 13C pulse-chase method

    NARCIS (Netherlands)

    Miyatake, T.; Moerdijk-Poortvliet, T.C.W.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    Carbon flow from benthic diatoms to heterotrophic bacterial was traced in an intertidal sediment for 5 consecutive days. 13C-labeled bicarbonate was sprayed onto the sediment surface during low tide and 13C-label incorporation in major carbon pools, intermediate metabolites, and biomarkers were

  1. Taphonomic trade-offs in tropical marine death assemblages: Differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies

    Science.gov (United States)

    Kidwell, Susan M.; Best, Mairi M. R.; Kaufman, Darrell S.

    2005-09-01

    Radiocarbon-calibrated amino-acid racemization ages of individually dated bivalve mollusk shells from Caribbean reef, nonreefal carbonate, and siliciclastic sediments in Panama indicate that siliciclastic sands and muds contain significantly older shells (median 375 yr, range up to ˜5400 yr) than nearby carbonate seafloors (median 72 yr, range up to ˜2900 yr; maximum shell ages differ significantly at p < 0.02 using extreme-value statistics). The implied difference in shell loss rates is contrary to physicochemical expectations but is consistent with observed differences in shell condition (greater bioerosion and dissolution in carbonates). Higher rates of shell loss in carbonate sediments should lead to greater compositional bias in surviving skeletal material, resulting in taphonomic trade-offs: less time averaging but probably higher taxonomic bias in pure carbonate sediments, and lower bias but greater time averaging in siliciclastic sediments from humid-weathered accretionary arc terrains, which are a widespread setting of tropical sedimentation.

  2. OAE2 in marine sections at high northern palaeolatitudes?

    DEFF Research Database (Denmark)

    Lenniger, Marc; Pedersen, Gunver Krarup; Bjerrum, Christian J.

    oceanic anoxic events is the Cenomanian–Turonian boundary event (OAE2). The event is characterised by a major positive d13C excursion (ca. 2-4 ‰) in marine carbonate and both marine and terrestrial organic matter, which indicates that a major disturbance of the global carbon cycle occurred in the ocean...

  3. Microbial bioavailability regulates organic matter preservation in marine sediments

    NARCIS (Netherlands)

    Koho, K. A.; Nierop, K. G. J.; Moodley, L.; Middelburg, J. J.; Pozzato, L.; Soetaert, K.; van der Plicht, J.; Reichart, G-J.; Herndl, G.

    2013-01-01

    Burial of organic matter (OM) plays an important role in marine sediments, linking the short-term, biological carbon cycle with the long-term, geological subsurface cycle. It is well established that low-oxygen conditions promote organic carbon burial in marine sediments. However, the mechanism

  4. Depositional models of the shallow marine carbonates in the geochemical cycle. Busshitsu junkan ni okeru asaumi tansan'engan no taiseki model

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, T [Tohoku University, Sendai (Japan). Institute of Geology and Paleontology

    1993-06-15

    This paper summarizes depositional models of carbonates related to carbon circulation on the earth surface. The paper lists the following examples of modelling the Recent coral reefs: A model that divides coral reefs into several boxes corresponding to geographies, and estimates organic and inorganic carbon production in each box; and a model that discusses seawater flows to estimate fluxes of organic and inorganic carbons between the boxes and between the reefs and open seas. Carbon circulation in a time scale of the Quaternary may be described appropriately by the box model corresponding to the condition of deposition and dissolution of the carbonate rocks. Several examples of modelling oceans and coral reefs are described briefly. The paper lists a model by Berner et al. that notes migration of carbon, Ca, and Mg among five boxes of Ca-Mg silicate, ocean, atmosphere, calcite, and dolomite regarding the geochemical cycle during about 600 million years in the Phanerozoic era. It also explains a model developed from the former model. 39 refs., 1 fig.

  5. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.

    Science.gov (United States)

    Yun, Eun Ju; Yu, Sora; Kim, Sooah; Kim, Kyoung Heon

    2018-03-20

    Marine red macroalgae have received much attention as sustainable resources for producing bio-based products. Therefore, understanding the metabolic pathways of carbohydrates from red macroalgae, in fermentative microorganisms, is crucial for efficient bioconversion of the carbohydrates into bio-based products. Recently, the novel catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red macroalgae, was discovered in a marine bacterium, Vibrio sp. strain EJY3. However, the global metabolic network in response to AHG remains unclear. Here, the intracellular metabolites of EJY3 grown on AHG, glucose, or galactose were comparatively profiled using gas chromatography/time-of-flight mass spectrometry. The global metabolite profiling results revealed that the metabolic profile for AHG significantly differed from those for other common sugars. Specifically, the metabolic intermediate of the AHG pathway, 3,6-anhydrogalactonate, was detected during growth only in the presence of AHG; thus, the recently discovered key steps in AHG catabolism was found not to occur in the catabolism of other common sugars. Moreover, the levels of metabolic intermediates related to glycerolipid metabolism and valine biosynthesis were higher with AHG than those with other sugars. These comprehensive metabolomic analytical results for AHG in this marine bacterium can be used as the basis for having fermentative microbial strains to engineered to efficiently utilize AHG from macroalgal biomass. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Otters, Marine

    Science.gov (United States)

    Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.

    2009-01-01

    The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).

  7. Persistent Organic Pollutants in Biotic and Abiotic Components of Antarctic Pristine Environment

    Science.gov (United States)

    Bhardwaj, Laxmikant; Chauhan, Abhishek; Ranjan, Anuj; Jindal, Tanu

    2018-05-01

    Over the past decades, research in Antarctica has built a new understanding of Antarctica, its past, present and future. Human activities and long-range pollutants are increasing on the Antarctic continent. Research on persistent organic pollutants (POPs) has been carried out internationally by several countries having their permanent research stations to explain the impact of an ever increasing range of POPs in Antarctic ecosystem. POPs have been detected in Antarctica despite its geographical isolation and almost complete absence of human settlements. The presence of POPs in different abiotic (atmosphere, water bodies, sediments, soil, sea ice) and biotic components (mosses, lichens, krill, penguins, skua, etc.) in Antarctica has been studied and documented around for decades and has either been banned or strictly regulated but is still found in the environment. This review focuses on recent research pertaining to sources and occurrence of POPs in Antarctic lake water, soil, sediment, lichen, mosses and other Antarctic marine community. This review also proposes to summarize the current state of research on POPs in Antarctica environment and draw the earliest conclusions on possible significance of POPs in Antarctica based on presently available information from related Antarctic environment.

  8. Marine Battlefields

    DEFF Research Database (Denmark)

    Harðardóttir, Sara

    as they are an important food source for various marine animals. For both phytoand zooplankton predation is a major cause of mortality, and strategies for protection or avoidance are important for survival. Diatoms of the genera Nitzschia and Pseudo-nitzschia are known to produce a neuro-toxin, domoic acid (DA). Despite......Phytoplankton species are photosynthetic organisms found in most aquatic habitats. In the ocean, phytoplankton are tremendously important because they produce the energy that forms the base of the marine food web. Zooplankton feed on phytoplankton and mediate the energy to higher trophic levels...

  9. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Aquilonius, Karin

    2010-12-01

    mean for the Baltic Sea and slightly lower in Laxemar-Simpevarp. The sea level at Forsmark has since 2003 fluctuated between 0.6 m below and 1.3 m above the mean level, and the corresponding values for Laxemar-Simpevarp are 0.5 and 0.7 m. Due to the gentler slope of the coastline, the sea level fluctuations have a more marked effect in Forsmark, than in the Laxemar-Simpevarp landscape, exhibiting a steeper slope. In Forsmark the macrophyte vegetation in the photic zone is dominated by red algae and brown filamentous algae. In Laxemar-Simpevarp, the red algae community covers the largest area. The benthic biomass at the bottom sampling sites in Forsmark has been dominated by the Baltic mussel. In Laxemar-Simpevarp the sessile macro fauna attached to hard substrates is completely dominated by the blue mussel in terms of both biomass and abundance. Test fishing in Forsmark and Laxemar-Simpevarp show similar development as in other nearby coastal areas and herring and sprat are the dominant species in offshore areas at both sites. In the inner bays at the sites, perch and pike are the most frequent species. The biomass in Forsmark is dominated by the primary producers and is focused along the shoreline of the area. On average, the marine area in Forsmark shows a positive Net Ecosystem Production (NEP), although most of the area is heterotrophic. The coastal shallow basins tend to be autotrophic, whereas the more offshore basins are heterothropic. The largest carbon pool in all basins in Forsmark is the abiotic pools (i.e. sediment, DIC and DOC) followed by the macrophytes. The major carbon flux in the ecosystem is the advective flux caused by the movement of sea water. All biotic fluxes are small in comparison with the advective flux. The largest biotic flux is fixation of carbon by primary producers. On average 4% of the initially consumed carbon in the marine ecosystem food web is transferred to the top predators. For nitrogen, phosphorus and thorium, the major pool in

  10. Atmospheric corrosion of low carbon steel in a polar marine environment. Study of the effect of wind regime; Corrosion atmosferica del acero bajo en carbono en un ambiente marino polar. Estudio del efecto del regimen de vientos

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, S.; Chico, B.; Fuente, D. de la; Morcillo, M.

    2007-07-01

    The present work studies the atmospheric corrosion of carbon steel (UNE-EN 10130) in a sub-polar marine environment (Artigas Antarctic Scientific Base (BCAA), Uruguay) as a function of site atmospheric salinity and exposure time. A linear relationship is established between corrosion rate and airborne salinity deposition rate, valid in the deposition range encountered (125-225 mg Cl-l/m{sup 2}.d) and a bi logarithmic relationship established between corrosion and exposure time (1-4 years). Atmospheric salinity is related with the monthly wind speed average, based on the concept of the wind run. chloride ion deposition rates of less than 300 mg Cl-l/m{sup 2}.d are related with remote (oceanic) winds and coastal winds basically of speeds between 1-40 km/h, while higher deposition rates (300-700 mg Cl-/m{sup 2}.d) correspond to coastal marine winds of a certain persistence with speeds of between 41-80 km/h. (Author) 39 refs.

  11. Study of organic chlorine in soils and formation in biotic and abiotic conditions

    International Nuclear Information System (INIS)

    Osswald, Aurelie

    2016-01-01

    Chlorine has long been considered as the predominantly chlorine form present in the environment. However, recent studies have shown that chlorine is retained in the soil as an organic form and is formed by a natural process of chlorination mainly from the microbial activity of the soil still poorly documented. The aim of this study is to estimate the organic and inorganic forms of chlorine in contrasting soil and highlight the evolution of these forms according to certain environmental parameters or terms of incubations and to the activity of microorganisms. For this, the organo-mineral horizons of contrasting soil were studied (i) in situ: The amounts of chlorine and physico-chemical and microbiological parameters of soil were measured; (ii) in two experimental devices incubations under different conditions. Measurements of chlorine levels between the beginning and the end of the first experiment were measured by AOX analyzer. For the second experiment, the soil was previously enriched with Na 37 Cl and 37 Cl levels were measured by HR ICP MS. Soil samples from these incubations were analyzed by Xanes spectrometry to identify the speciation of chlorine forms in soils. Soil non-extractable organic chlorine contents represent almost all of the chlorine. The parameters that influence the distribution of chlorine contents in soils correspond to vegetation cover, pH, organic carbon content and quantities of microorganisms. The chlorine contents measured by AOX analyzer and by HR ICP MS highlight an organic chlorine formation over time in relation to the microorganisms in the soil. The measures carried out by HR ICP MS show also an organic chlorine formation in abiotic conditions. Conversely, XANES spectrometry measurements have shown any organic chlorine formation. In conclusion, the parameters that influence the distribution of chlorine contents in soils have been targeted. Similarly, the microbial origin of the chlorination process has been demonstrated, although a

  12. Abiotic nitrate reduction in the presence of steel material and hydrogen in cementitious environments

    International Nuclear Information System (INIS)

    Truche, L.; Berger, G.; Albrecht, A.

    2012-01-01

    Document available in extended abstract form only. Abiotic nitrate reduction induced by different electron donors represents a major reaction of interest in the context of disposal of nuclear waste containing such oxyanions (Honda et al., 2006; Katsounaros et al., 2009). These wastes are characterized, amongst others by the coexistence of oxyanions (nitrate, phosphate, sulfate...) and potentially reducing agents such as organic matter, native metals and hydrogen gas formed or from package material via radiolysis or anaerobic corrosion. In addition to the large number of reactants present in the waste itself, the medium-level long-lived (MAVL) waste concept is based on large masses of concrete and steel in part used for primary waste containers as well as armored cement over pack and engineered barrier; a concept that guarantees the mechanical stability of both the waste container and the waste cell. In this experimental study we evaluate the consequences of steel material (carbon steel and 316L stainless steel) from waste canisters and construction material (concrete and Callovo- Oxfordian argillite), as well as magnetite as their possible corrosion by-products, on the reduction of aqueous nitrate in the presence of hydrogen. A parametric study (0 2 ) - ] 2+ , Fe 2+ ) that can act as electron donors. This experimental study demonstrates that abiotic nitrate reduction induced by the combination of steel materials and hydrogen is a likely process under waste cell conditions, thus applicable to cases where nitrate-bearing waste (i.e. nuclear) is disposed in near-surface or in deep geological settings. Depending on the nature of the steel, the reaction may exhibit different kinetic features that would require dedicated assessment. An increase in nitrate concentrat ions above the steel saturation level of 10 mM (Fig. 1; beyond the range of the current study) may also have an influence on reaction processes and kinetics and thus influence nitrate reactivity. (authors)

  13. Sea surface temperature contributes to marine crocodylomorph evolution.

    Science.gov (United States)

    Martin, Jeremy E; Amiot, Romain; Lécuyer, Christophe; Benton, Michael J

    2014-08-18

    During the Mesozoic and Cenozoic, four distinct crocodylomorph lineages colonized the marine environment. They were conspicuously absent from high latitudes, which in the Mesozoic were occupied by warm-blooded ichthyosaurs and plesiosaurs. Despite a relatively well-constrained stratigraphic distribution, the varying diversities of marine crocodylomorphs are poorly understood, because their extinctions neither coincided with any major biological crises nor with the advent of potential competitors. Here we test the potential link between their evolutionary history in terms of taxic diversity and two abiotic factors, sea level variations and sea surface temperatures (SST). Excluding Metriorhynchoidea, which may have had a peculiar ecology, significant correlations obtained between generic diversity and estimated Tethyan SST suggest that water temperature was a driver of marine crocodylomorph diversity. Being most probably ectothermic reptiles, these lineages colonized the marine realm and diversified during warm periods, then declined or became extinct during cold intervals.

  14. Assessment of derelict soil quality: Abiotic, biotic and functional approaches.

    Science.gov (United States)

    Vincent, Quentin; Auclerc, Apolline; Beguiristain, Thierry; Leyval, Corinne

    2018-02-01

    The intensification and subsequent closing down of industrial activities during the last century has left behind large surfaces of derelict lands. Derelict soils have low fertility, can be contaminated, and many of them remain unused. However, with the increasing demand of soil surfaces, they might be considered as a resource, for example for non-food biomass production. The study of their physico-chemical properties and of their biodiversity and biological activity may provide indications for their potential re-use. The objective of our study was to investigate the quality of six derelict soils, considering abiotic, biotic, and functional parameters. We studied (i) the soil bacteria, fungi, meso- and macro-fauna and plant communities of six different derelict soils (two from coking plants, one from a settling pond, two constructed ones made from different substrates and remediated soil, and an inert waste storage one), and (ii) their decomposition function based on the decomposer trophic network, enzyme activities, mineralization activity, and organic pollutant degradation. Biodiversity levels in these soils were high, but all biotic parameters, except the mycorrhizal colonization level, discriminated them. Multivariate analysis showed that biotic parameters co-varied more with fertility proxies than with soil contamination parameters. Similarly, functional parameters significantly co-varied with abiotic parameters. Among functional parameters, macro-decomposer proportion, enzyme activity, average mineralization capacity, and microbial polycyclic aromatic hydrocarbon degraders were useful to discriminate the soils. We assessed their quality by combining abiotic, biotic, and functional parameters: the compost-amended constructed soil displayed the highest quality, while the settling pond soil and the contaminated constructed soil displayed the lowest. Although differences among the soils were highlighted, this study shows that derelict soils may provide a

  15. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments : Examples from the Clarion-Clipperton fracture zone

    NARCIS (Netherlands)

    Mogollon, J.M.|info:eu-repo/dai/nl/304823783; Mewes, Konstantin; Kasten, Sabine

    2016-01-01

    Extensive deep-sea sedimentary areas are characterized by low organic carbon contents and thus harbor suboxic sedimentary environments where secondary (autotrophic) redox cycling becomes important for microbial metabolic processes. Simulation results for three stations in the Eastern Equatorial

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from WECOMA in the Cordell Bank National Marine Sanctuary, Gulf of the Farallones National Marine Sanctuary and others from 2011-08-12 to 2011-08-30 (NCEI Accession 0157448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157448 includes Surface underway, chemical, meteorological and physical data collected from WECOMA in the Cordell Bank National Marine Sanctuary,...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank National Marine Sanctuary and others from 2007-07-25 to 2007-10-28 (NCEI Accession 0144352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144352 includes Surface underway data collected from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank...

  18. Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ 13C pulse-chase method

    OpenAIRE

    Miyatake, T.; Moerdijk-Poortvliet, T.C.W.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    Carbon flow from benthic diatoms to heterotrophic bacterial was traced in an intertidal sediment for 5 consecutive days. 13C-labeled bicarbonate was sprayed onto the sediment surface during low tide and 13C-label incorporation in major carbon pools, intermediate metabolites, and biomarkers were monitored. Phospholipid-derived fatty acid (PLFA) and ribosomal ribonucleic acid (rRNA) were used to identify the responsible members of the microbial community at class and family phylogenetic resolut...

  19. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  20. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  1. Contamination of short-chain chlorinated paraffins to the biotic and abiotic environments in the Bohai Sea.

    Science.gov (United States)

    Jiang, Wanyanhan; Huang, Tao; Chen, Han; Lian, Lulu; Liang, Xiaoxue; Jia, Chenhui; Gao, Hong; Mao, Xiaoxuan; Zhao, Yuan; Ma, Jianmin

    2018-02-01

    Short-chain chlorinated paraffins (SCCPs) have been produced and emitted intensively around the Bohai Sea, potentially causing risks to this unique ecosystem and one of primary fishery resources in China and busiest seaways in the world. Little is known about fate, cycling, and sources of SCCPs in the Bohai Sea biotic and abiotic environment. In this study, we combined a marine food web model with a comprehensive atmospheric transport-multiple phase exchange model to quantify SCCPs in the biotic and abiotic environment in the Bohai Sea. We performed multiple modeling scenario investigations to examine SCCP levels in water, sediment, and phytoplankton. We assessed numerically dry and wet depositions, biomagnification and bioaccumulation of SCCPs in the Bohai Sea marine food web. Results showed declining SCCP levels in water and sediment with increasing distance from the coastline, and so do dry and wet depositions. The net deposition overwhelmed the water-air exchange of SCCPs due to their current use in China, though the diffusive gas deposition fluctuated monthly subject to mean wind speed and temperature. A risk assessment manifests that SCCPs levels in the Bohai Sea fish species are at present not posing risks to the residents in the Bohai Sea Rim region. We identified that the SCCP emission sources in the south of the Bohai Sea made a primary contribution to its loadings to the seawater and fish contamination associated with the East Asian summer monsoon. In contrast, the SCCP emissions from the north and northwest regions of the Bohai Sea were major sources contributing to their loading and contamination to Bohai Sea food web during the wintertime, potentially driven by the East Asian winter monsoon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Marine Science

    African Journals Online (AJOL)

    Science. The journal has a new and more modern layout, published online only, and the editorial. Board was increased to include more disciplines pertaining to marine sciences. While important chal- lenges still lie ahead, we are steadily advancing our standard to increase visibility and dissemination throughout the global ...

  3. Marine Mammals.

    Science.gov (United States)

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  4. Marine Science

    African Journals Online (AJOL)

    Mauritius Marine Conservation Society through their. Abstract. While no populations of seals are resident in the tropical Indian Ocean, vagrant animals are occasionally sighted in the region. Here we detail two new sightings of pinnipeds in the Mascarene Islands (Mauritius, Reunion and Rodri- gues) since 1996 and review ...

  5. Marine Science

    African Journals Online (AJOL)

    J O U R N A L O F. Marine Science. Coral reefs of Mauritius in a changing global climate ..... in confined aquifers, and a lesser influence in uncon- fined systems. On the ... massive cloud cover during the critical months, some. 70% bleaching ...

  6. Marine Science

    African Journals Online (AJOL)

    Copy Editor Timothy Andrew. Published ... 2007; Zhou et al., 2009) and they play an important role in the ... At both sites, zonal variation in TMPB was evident with significantly higher C-biomass closer to ... ton is considered to be an essential parameter in eco- systems ...... logical significance of toxic marine dinoflagellates.

  7. Marine Science

    African Journals Online (AJOL)

    sustainable coastal development in the region, as well as contributing to the ... between humans and the coastal and marine environment. ... exploitation for timber, fuel wood, aquaculture, urban. Abstract. Given the high dependence of coastal communities on natural resources, mangrove conservation is a challenge in.

  8. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means ... USA/Norway ... The last couple of years have been a time of change for the Western Indian Ocean Journal of Marine.

  9. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  10. Marine Renewable Energy Seascape

    Directory of Open Access Journals (Sweden)

    Alistair G.L. Borthwick

    2016-03-01

    Full Text Available Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, legislation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.

  11. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin [ed.; Studsvik Nuclear AB (Sweden)

    2010-12-15

    mean for the Baltic Sea and slightly lower in Laxemar-Simpevarp. The sea level at Forsmark has since 2003 fluctuated between 0.6 m below and 1.3 m above the mean level, and the corresponding values for Laxemar-Simpevarp are 0.5 and 0.7 m. Due to the gentler slope of the coastline, the sea level fluctuations have a more marked effect in Forsmark, than in the Laxemar-Simpevarp landscape, exhibiting a steeper slope. In Forsmark the macrophyte vegetation in the photic zone is dominated by red algae and brown filamentous algae. In Laxemar-Simpevarp, the red algae community covers the largest area. The benthic biomass at the bottom sampling sites in Forsmark has been dominated by the Baltic mussel. In Laxemar-Simpevarp the sessile macro fauna attached to hard substrates is completely dominated by the blue mussel in terms of both biomass and abundance. Test fishing in Forsmark and Laxemar-Simpevarp show similar development as in other nearby coastal areas and herring and sprat are the dominant species in offshore areas at both sites. In the inner bays at the sites, perch and pike are the most frequent species. The biomass in Forsmark is dominated by the primary producers and is focused along the shoreline of the area. On average, the marine area in Forsmark shows a positive Net Ecosystem Production (NEP), although most of the area is heterotrophic. The coastal shallow basins tend to be autotrophic, whereas the more offshore basins are heterothropic. The largest carbon pool in all basins in Forsmark is the abiotic pools (i.e. sediment, DIC and DOC) followed by the macrophytes. The major carbon flux in the ecosystem is the advective flux caused by the movement of sea water. All biotic fluxes are small in comparison with the advective flux. The largest biotic flux is fixation of carbon by primary producers. On average 4% of the initially consumed carbon in the marine ecosystem food web is transferred to the top predators. For nitrogen, phosphorus and thorium, the major pool in

  12. Hydroxylated PCBs in abiotic environmental matrices. Precipitation and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Darling, C.; Alaee, M.; Campbell, L.; Pacepavicius, G.; Ueno, D.; Muir, D. [National Water Research Institute, Burlington, ON (Canada)

    2004-09-15

    Hydroxylated PCBs (OH-PCBs) are of great interest environmentally because of their potential thyroidogenic effects. OH-PCBs can compete with thyroxine for binding sites on transthyretin, one of the three main thyroid hormone transport proteins in mammals1. The chemical structures of some OH-PCBs with a para OH group and adjacent chlorine atoms, particularly 4-OH-CB109, 4- OH-CB146, and 4-OH-CB187, share a similar structure to the thyroid hormones (T3 and T4), which have a para OH with adjacent iodine atoms. A number of OH-PCBs have been identified in the blood of humans and biota during the last 5 to 10 years, however, reports on the identity, presence and levels of OH-PCBs are limited. This presentation describes preliminary studies on the presence of OH-PCBs in abiotic samples and comparisons of congener patterns with biological samples. We have previously shown that OHPCBs were present in lake trout from the Great Lakes and nearby large lakes as well as in nearshore environments. We hypothesized that some of the OH-PCB present in fish might be from abiotic formation in water or the atmosphere, or from microbial oxidation of PCBs and/or deconjugation of PCB metabolites in waste treatment plants.

  13. Progress and challenges for abiotic stress proteomics of crop plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Regulation of Translation Initiation under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Ana B. Castro-Sanz

    2013-02-01

    Full Text Available Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.

  15. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  16. Linking Species Traits to the Abiotic Template of Flowing Waters: Contrasting Eco physiologies Underlie Displacement of Zebra Mussels by Quagga Mussels in a Large River-Estuary

    Science.gov (United States)

    Casper, A. F.

    2005-05-01

    The St. Lawrence River-Estuary was the gateway of entry for dreissenids to North America and holds some of the oldest populations. The St. Lawrence also has four distinct physical-chemical water masses (a regional scale abiotic template) that both species inhabit. Despite their ecological similarities, quagga mussels are supplanting zebra mussels in much of their shared range. In order to try to better understand the changing distributions of these two species we compared glycogen, shell mass and tissue biomass in each of the water masses. This comparative physiological combined with experimental approaches (estuarine salinity experiments and reciprocal transplants) showed that while quagga mussels should dominate in most habitats, that abiotic/bioenergetic constraints in two regions (the Ottawa River plume and the freshwater-marine transition zone) might prevent them from dominating these locations. These findings are an example of how the interaction of landscape scale abiotic heterogeneity and a species-specific physiology can have strong impacts of distribution of biota large rivers.

  17. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas and its effects on marine biological calcification

    Directory of Open Access Journals (Sweden)

    J. B. Ries

    2010-09-01

    Full Text Available Synchronized transitions in the polymorph mineralogy of the major reef-building and sediment-producing calcareous marine organisms and abiotic CaCO3 precipitates (ooids, marine cements throughout Phanerozoic time are believed to have been caused by tectonically induced variations in the Mg/Ca ratio of seawater (molar Mg/Ca>2="aragonite seas", <2="calcite seas". Here, I assess the geological evidence in support of secular variation in seawater Mg/Ca and its effects on marine calcifiers, and review a series of recent experiments that investigate the effects of seawater Mg/Ca (1.0–5.2 on extant representatives of calcifying taxa that have experienced variations in this ionic ratio of seawater throughout the geologic past.

    Secular variation in seawater Mg/Ca is supported by synchronized secular variations in (1 the ionic composition of fluid inclusions in primary marine halite, (2 the mineralogies of late stage marine evaporites, abiogenic carbonates, and reef- and sediment-forming marine calcifiers, (3 the Mg/Ca ratios of fossil echinoderms, molluscs, rugose corals, and abiogenic carbonates, (4 global rates of tectonism that drive the exchange of Mg2+ and Ca2+ along zones of ocean crust production, and (5 additional proxies of seawater Mg/Ca including Sr/Mg ratios of abiogenic carbonates, Sr/Ca ratios of biogenic carbonates, and Br concentrations in marine halite.

    Laboratory experiments have revealed that aragonite-secreting bryopsidalean algae and scleractinian corals and calcite-secreting coccolithophores exhibit higher rates of calcification and growth in experimental seawaters formulated with seawater Mg/Ca ratios that favor their skeletal mineral. These results support the assertion that seawater Mg/Ca played an important role in determining which hypercalcifying marine organisms were the major reef-builders and sediment-producers throughout Earth history. The observation that primary

  18. Increased iron availability resulting from increased CO2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta).

    Science.gov (United States)

    Chen, Binbin; Zou, Dinghui; Yang, Yufeng

    2017-04-01

    Ocean acidification caused by rising CO 2 is predicted to increase the concentrations of dissolved species of Fe(II) and Fe(III), leading to the enhanced photosynthetic carbon sequestration in some algal species. In this study, the carbon and nitrogen metabolism in responses to increased iron availability under two CO 2 levels (390 μL L -1 and 1000 μL L -1 ), were investigated in the maricultivated macroalga Pyropia haitanensis (Rhodophyta). The results showed that, elevated CO 2 increased soluble carbonhydrate (SC) contents, resulting from enhanced photosynthesis and photosynthetic pigment synthesis in this algae, but declined its soluble protein (SP) contents, resulting in increased ratio of SC/SP. This enhanced photosynthesis performance and carbon accumulation was more significant under iron enrichment condition in seawater, with higher iron uptake rate at high CO 2 level. As a key essential biogenic element for algae, Fe-replete functionally contributed to P. haitanensis photosynthesis. Increased SC fundamentally provided carbon skeletons for nitrogen assimilation. The significant increase of carbon and nitrogen assimilation finally contributed to enhanced growth in this alga. This was also intuitively reflected by respiration that provided energy for cellular metabolism and algal growth. We propose that, in the predicted scenario of rising atmospheric CO 2 , P. haitanensis is capable to adjust its physiology by increasing its carbon and nitrogen metabolism to acclimate the acidified seawater, at the background of global climate change and simultaneously increased iron concentration due to decreased pH levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    /MS. Especially the acidic lakes are sources for trihalomethanes in agreement with laboratory studies on model compounds like catechol [3]. Other compounds that are formed are chloromethane, -butane, -hexane and heptane as well as monocyclic terpenes and furan derivatives. Additionally, there are different sulphur compounds such as thiophene derivatives, carbon disulfide and dimethyl sulfide. Western Australia offers a variety of hypersaline environments with various hydrogeochemical parameters that will help to understand the abiotic formation of different volatile organic compounds. The field of research includes the complex relationships between agriculture, secondary salinisation and particle formation from volatile organic compounds emitted from the salt lakes. [1] Williams, 2001, Hydrobiologia, 466, 329-337. [2] Junkermann et al., 2009, Atmos. Chem. Phys., 9, 6531-6539. [3] Huber et al., 2009, Environ. Sci. Technol., 43 (13), 4934-4939.

  20. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  1. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  2. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  3. Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels

    Directory of Open Access Journals (Sweden)

    Cherng-Yuan Lin

    2013-09-01

    Full Text Available Biodiesel produced from vegetable oils, animal fats and algae oil is a renewable, environmentally friendly and clean alternative fuel that reduces pollutants and greenhouse gas emissions in marine applications. This study investigates the influence of biodiesel blend on the characteristics of residual and distillate marine fuels. Adequate correlation equations are applied to calculate the fuel properties of the blended marine fuels with biodiesel. Residual marine fuel RMA has inferior fuel characteristics compared with distillate marine fuel DMA and biodiesel. The flash point of marine fuel RMA could be increased by 20% if blended with 20 vol% biodiesel. The sulfur content of residual marine fuel could meet the requirement of the 2008 MARPOL Annex VI Amendment by blending it with 23.0 vol% biodiesel. In addition, the kinematic viscosity of residual marine fuel could be reduced by 12.9% and the carbon residue by 23.6% if 20 vol% and 25 vol% biodiesel are used, respectively. Residual marine fuel blended with 20 vol% biodiesel decreases its lower heating value by 1.9%. Moreover, the fuel properties of residual marine fuel are found to improve more significantly with biodiesel blending than those of distillate marine fuel.

  4. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  5. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  6. Marine Science

    African Journals Online (AJOL)

    Details concerning the preparation and submission of .... The Mahonda sugar and alcohol factories are also located close ..... smelter in Kitimat Arm, British Columbia, Canada. Environmental ... carbons in soil microcosms: a review. Journal of.

  7. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  8. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  9. Marine Synechococcus Aggregation

    Science.gov (United States)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  10. Abiotic stress and antioxidant enzymes expression in sunflower leaf discs

    International Nuclear Information System (INIS)

    Yannarelli, G.G.; Azpilicueta, C.E.; Gallego, S.M.; Benavides, M.P.; Tomaro, M.L.

    2004-01-01

    Full text: Overproduction of reactive oxygen species (ROS) occur in plants under abiotic stress conditions. Although ROS act as mediators of oxidative damage, a signalling role for O 2 - and H 2 O 2 has been proposed. In the present work, the effect of cadmium (300 and 500 μM CdCl 2 ) or UVB radiation (30 KJ/m 2 ) on expression of Cu-Zn superoxide dismutase (sod3) and catalase (cat1 and cat3) was evaluated in sunflower (Helianthus annuus L.) leaf discs. Samples were collected at 0, 4, 8, 12 and 16 h of Cd treatments or white light recuperation after UVB treatment. RNA extractions and semiquantitative RT-PCR analysis were performed. Treatment of 300 μM Cd induced 6.4, 2.9 and 6 fold the expression of sod3, cat1 and cat3 over the controls, respectively, after 8 h of treatment, but 500 μM Cd showed lesser induction levels. Immediately after UVB irradiation, the mRNA of the three enzymes decreased. After 8 h of white light recovery, cat1 and cat3 were induced (1.9 and 3.5 fold, respectively) and the maximum sod3 expression was observed at 12 h (7 fold), respect to control. In conclusion, the balance between superoxide dismutase and peroxidases activities in cells is crucial for determining the steady-state level of O 2 - and H 2 O 2 . In our assay conditions, sod3, cat1 and cat3 were induced in response to abiotic stress at a late phase (8-12 h). The main induction of cat3 suggests that core-catalases of peroxisomes might play a key regulatory role in controlling H 2 O 2 level. (author)

  11. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  12. Combined effects of Corexit EC 9500A with secondary abiotic and biotic factors in the rotifer Brachionus plicatilis.

    Science.gov (United States)

    Williams, Michael B; Powell, Mickie L; Watts, Stephen A

    2016-10-01

    We examined lethality and behavioral effects of Corexit EC 9500A (C-9500A) exposure on the model marine zooplankton Brachionus plicatilis singularly and in combination with abiotic and biotic factors. C-9500A exposure at standard husbandry conditions (17.5ppt, 24°C, 200 rotifer*mL(-1) density) identified the 24h median lethal concentration, by Probit analysis, to be 107ppm for cultured B. plicatilis. Rotifers surviving exposure to higher concentrations (100 and 150ppm) exhibited a decreased swimming velocity and a reduced net to gross movement ratio. Significant interaction between C-9500A exposure and temperature or salinity was observed. Upper thermal range was reduced and maximal salinity stress was seen as ca. 25ppt. Increased or decreased nutritional availability over the exposure period did not significantly alter mortality of B. plicatilis populations at the concentrations tested. Results from this study may be useful for predicting possible outcomes on marine zooplankton following dispersant application under diverse natural conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Biotic and abiotic variables show little redundancy in explaining tree species distributions

    DEFF Research Database (Denmark)

    Meier, Elaine S.; Kienast, Felix; Pearman, Peter B.

    2010-01-01

    Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic var...

  14. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine.

    Science.gov (United States)

    Roatti, Benedetta; Perazzolli, Michele; Gessler, Cesare; Pertot, Ilaria

    2013-12-01

    Enhancement of plant defense through the application of resistance inducers seems a promising alternative to chemical fungicides for controlling crop diseases but the efficacy can be affected by abiotic factors in the field. Plants respond to abiotic stresses with hormonal signals that may interfere with the mechanisms of induced systemic resistance (ISR) to pathogens. In this study, we exposed grapevines to heat, drought, or both to investigate the effects of abiotic stresses on grapevine resistance induced by Trichoderma harzianum T39 (T39) to downy mildew. Whereas the efficacy of T39-induced resistance was not affected by exposure to heat or drought, it was significantly reduced by combined abiotic stresses. Decrease of leaf water potential and upregulation of heat-stress markers confirmed that plants reacted to abiotic stresses. Basal expression of defense-related genes and their upregulation during T39-induced resistance were attenuated by abiotic stresses, in agreement with the reduced efficacy of T39. The evidence reported here suggests that exposure of crops to abiotic stress should be carefully considered to optimize the use of resistance inducers, especially in view of future global climate changes. Expression analysis of ISR marker genes could be helpful to identify when plants are responding to abiotic stresses, in order to optimize treatments with resistance inducers in field.

  15. Oxygen dependency of neutrophilic Fe(II) oxidation by Leptothrix differs from abiotic reaction

    NARCIS (Netherlands)

    Vollrath, S.; Behrends, T.; Van Cappellen, P.

    2012-01-01

    Neutrophilic Fe(II) oxidizing microorganisms are found in many natural environments. It has been hypothesized that, at low oxygen concentrations, microbial iron oxidation is favored over abiotic oxidation. Here, we compare the kinetics of abiotic Fe(II) oxidation to oxidation in the presence of

  16. Effect of abiotic stress under light and dark conditions on carotenoid ...

    African Journals Online (AJOL)

    The aim of this study was to observe the effect of abiotic stress under light and dark conditions on pumpkin calluses carotenoid. Plant elicitors used to create abiotic stress in this study were Polyethylene Glycol 4000 for drought stress, Jasmonic Acid and Salicylic Acid for hormones stress and Murashige and Skoog Salt for ...

  17. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...... and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based...... on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic...

  18. Effects of soil abiotic factors on the plant morphology in an intertidal salt marsh, Yellow River Delta, China

    Science.gov (United States)

    Li, Shanze; Cui, Baoshan; Bai, Junhong; Xie, Tian; Yan, Jiaguo; Wang, Qing; Zhang, Shuyan

    2018-02-01

    Plant morphology plays important role in studying biogeography in many ecosystems. Suadea salsa, as a native plant community of northern China and an important habitat for diversity of waterbirds and macrobenthos, has often been overlooked. Nowadays, S. salsa community is facing great loss due to coastal reclamation activities and natural disturbances. To maintain and restore S. salsa community, it's important to address the plant morphology across marsh zones, as well as its relationships with local soil abiotic conditions. In our studied intertidal salt marsh, we found that less flood disturbance frequency, softer soil conditions, rich soil organic matter, total carbon and total nitrogen, lower water depth and water content, less species competition will benefit S. salsa plant in the morphology of high coverage, above-ground biomass, shoot height and leaf length. Lower soil porewater salinity will benefit the below-ground biomass of S. salsa. Thus, we recommend managers help alleviate soil abiotic stresses in the intertidal salt marshes, making the soil conditions more suitable for S. salsa growth and succession.

  19. Active Marine Station Metadata

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Active Marine Station Metadata is a daily metadata report for active marine bouy and C-MAN (Coastal Marine Automated Network) platforms from the National Data...

  20. Feeding in deep-sea demosponges: Influence of abiotic and biotic factors

    Science.gov (United States)

    Robertson, Leah M.; Hamel, Jean-François; Mercier, Annie

    2017-09-01

    In shallow benthic communities, sponges are widely recognized for their ability to contribute to food webs by cycling nutrients and mediating carbon fluxes through filter feeding. In comparison, little is known about filter feeding in deep-sea species and how it may be modulated by environmental conditions. Here, a rare opportunity to maintain live healthy deep-sea sponges for an extended period led to a preliminary experimental study of their feeding metrics. This work focused on demosponges collected from the continental slope of eastern Canada at 1000 m depth. Filtration rates (as clearance of phytoplankton cells) at holding temperature (6 °C) were positively correlated with food particle concentration, ranging on average from 18.8 to 160.6 cells ml-1 h-1 at nominal concentrations of 10,000-40,000 cells ml-1. Cell clearance was not significantly affected by decreasing seawater temperature, from 6 °C to 3 °C or 0 °C, although two of the sponges showed decreased filtration rates. Low pH ( 7.5) and the presence of a predatory sea star markedly depressed or inhibited feeding activity in all sponges tested. While performed under laboratory conditions on a limited number of specimens, this work highlights the possible sensitivity of deep-sea demosponges to various types and levels of biotic and abiotic factors, inferring a consequent vulnerability to natural and anthropogenic disturbances.

  1. Marine renewable energies. Stakes and technical solutions

    International Nuclear Information System (INIS)

    Lacroix, Olivier; Macadre, Laura-Mae

    2012-05-01

    Marine renewable energies are able to supply carbon free energy from various ocean resources (tides, waves, currents, winds, salinity and temperature gradients). This sector, currently at an early stage of deployment, has good prospects of development in the coming years. ENEA releases a report on marine renewable energies giving a transversal vision of the associated stakes and prospects of development. Technical and economic characteristics, maturity level and specificities of each marine energy are analyzed. French and European sources of funding, regulatory framework and potential environmental and social impacts are also reported

  2. Marine Sciences

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    PNL research in the marine sciences is focused on establishing a basic understanding of the mechanisms of stress and tolerance in marine organisms exposed to contaminants. Several environmental stressors had been investigated in earlier energy-related research. In a landmark study, for example, PNL had established that the severity of fish disease caused by the common infectious agent, Flexobacter columnaris, was seriously aggravated by thermal enhancement and certain ecological factors. Subsequent studies demonstrated that the primary immune response in fish, challenged by columnaris, could be permanently suppressed by comparatively low tritium exposures. The research has suggested that a potential exists for a significant biological impact when an aquatic stressor is added to an ambient background of other stressors, which may include heat, heavy metal ions, radiation or infectious microorganisms. More recently, PNL investigators have shown that in response to heavy metal contaminants, animals synthesize specific proteins (metallothioneins), which bind and sequester metals in the animals, thus decreasing metal mobility and effects. Companion studies with host-specific intracellular pathogens are being used to investigate the effects of heavy metals on the synthesis of immune proteins, which mitigate disease processes. The results of these studies aid in predicting the ecological effects of energy-related contaminants on valued fin and shellfish species

  3. Interdependence of specialization and biodiversity in Phanerozoic marine invertebrates.

    Science.gov (United States)

    Nürnberg, Sabine; Aberhan, Martin

    2015-03-17

    Studies of the dynamics of biodiversity often suggest that diversity has upper limits, but the complex interplay between ecological and evolutionary processes and the relative role of biotic and abiotic factors that set upper limits to diversity are poorly understood. Here we statistically assess the relationship between global biodiversity and the degree of habitat specialization of benthic marine invertebrates over the Phanerozoic eon. We show that variation in habitat specialization correlates positively with changes in global diversity, that is, times of high diversity coincide with more specialized faunas. We identify the diversity dynamics of specialists but not generalists, and origination rates but not extinction rates, as the main drivers of this ecological interdependence. Abiotic factors fail to show any significant relationship with specialization. Our findings suggest that the overall level of specialization and its fluctuations over evolutionary timescales are controlled by diversity-dependent processes--driven by interactions between organisms competing for finite resources.

  4. Stable carbon isotope ratios as indicators of marine versus terrestrial inputs to the diets of wild and captive tuatara (Sphenodon punctatus)

    International Nuclear Information System (INIS)

    Cree, A.; Cartland-Shaw, L.; Tyrrell, C.; Lyon, G.L.

    1999-01-01

    Stable carbon isotope analysis was used to examine feeding relationships of wild tuatara on Stephens Island and captive tuatara in New Zealand institutions. We first measured delta 13 C in three food items of wild tuatara. Pectoral muscle of fairy prions (a seabird eaten seasonally by tuatara) was significantly enriched in 13 C compared with whole bodies of wild insects (darkling beetles and tree weta). Values for delta 13 C in blood cells varied significantly among wild tuatara of different life-history stages. Male tuatara were more enriched in 13 C than were females or juveniles, suggesting that males prey more heavily on seabirds. Insect foods of captive tuatara varied dramatically in delta/sup 13/C; this is attributed to differential consumption of plant material derived from the C 3 and C 4 photosynthetic pathways. Blood cells from four different groups of captive tuatara differed significantly in delta 13 C. This was perhaps related to assimilation of insects with different delta 13 C values, and cannot be attributed to differences in seabird predation as captive tuatara do not have access to seabirds. For wild tuatara on Stephens Island, stable carbon isotope analysis provides support for the dietary information available from behavioural observations, gut analyses and measurements of plasma composition. (author). 47 refs., 1 tab., 2 figs

  5. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    Science.gov (United States)

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  6. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films.

    Science.gov (United States)

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Repouskou, Eftychia; Kroll, Kevin; Kolvenbach, Boris; Corvini, Philippe F-X; Fava, Fabio; Kalogerakis, Nicolas

    2017-01-01

    This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics.

  7. The K-PG boundary: how geological events lead to collapse of marine primary producers

    Science.gov (United States)

    Hir guillaume, Le; frederic, Fluteau; yves, Goddéris

    2017-04-01

    The cause(s) of Cretaceous/Paleogene (K-Pg) mass extinction event is a matter of debate since three decades. A first scenario connects the K-Pg crisis with the Chicxulub impact while the second scenario evokes the emplacement of the Deccan traps in India as the cause for the K-Pg biodiversity collapse. Pierazzo et al. (1998) estimated that the extraterrestrial bolide lead to an instantaneously CO2 degassing ranging from 880 Gt to 2,960 Gt into the atmosphere, together with a massive release of SO2 ranging from 150 to 460 Gt.. Self et al. (2006, 2008) and Chenet et al. (2009) suggested that the emplacement of the Deccan traps released 15,000 Gt to 35,000 Gt of CO2 and 6,800 Gt to 17,000 Gt of SO2 over a 250 kyr-long period (Schoene et al., 2015). To decipher and quantify the long term environmental consequences of both events, we tested different scenarios: a pulse-like magmatic degassing, a bolide impact, and a combination of both. To understand the environmental changes and quantify biodiversity responses, we improve GEOCLIM, a coupled climate-carbon numerical model, by implementing a biodiversity model in which marine species are described by specific death/born rates, sensitivity to abiotic factors (temperature, pH, dissolved O2, calcite saturation state) and feeding relationships, each of these characteristics is assigned randomly. Preliminary simulations accounting for the eruption of the Deccan traps show that successive cooling events (S-aerosols effect) combined with a progressive acidification of surface water (caused by CO2 and SO2 injections) cause a major collapse of the marine biomass. Additional simulations in which Chicxulub impact, different community structures of primary producers will be discussed.

  8. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films.

    Directory of Open Access Journals (Sweden)

    Evdokia Syranidou

    Full Text Available This study investigated the potential of bacterial-mediated polyethylene (PE degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE and natural (cellulose polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics.

  9. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae).

    Science.gov (United States)

    Pedersen, Sindre Andre; Våge, Vegard Thorset; Olsen, Anders Johny; Hammer, Karen Marie; Altin, Dag

    2014-01-01

    Ocean acidification poses an ongoing threat to marine organisms, and early life stages are believed to be particularly sensitive. The boreal calanoid copepod Calanus finmarchicus seasonally dominates the standing stock of zooplankton in the northern North Sea and North Atlantic, and due to its size and abundance is considered an ecological key species linking energy from primary producers to higher trophic levels. To examine whether the early stages of C. finmarchicus are particularly vulnerable to elevated levels of CO2, eggs and nauplii were subjected to different levels of CO2-acidified seawater for 1 wk. The first experiment, with eggs as the starting point, revealed no marked effect on hatching success, but a significant reduction in nauplii survival during incubation at 8800 ppm CO2. In addition, a significant decrease in ontogenetic development rate during incubation at 8800 ppm CO2 was observed in this experiment. In the second experiment, where third-stage nauplii represented the starting point, no significant effects on ontogenetic development and survival following exposure to pCO2 ≥ 7700 ppm were observed. Data suggest that the two first nauplii stages, which are fed endogenously, may be more vulnerable and therefore likely to represent the "bottleneck" for this species in a more acidic ocean. However, the absence of significant effects in the most sensitive stages during exposure to 2800 ppm CO2, a level that is well above worst-case scenario predictions for year 2300 (approximately 2000 ppm CO2), suggests that this species may be generally robust to direct effects of ocean acidification.

  10. Changes in abiotic influences on seed plants and ferns during 18 years of primary succession on Puerto Rican landslides

    Science.gov (United States)

    Lawrence R. Walker; Aaron B. Shiels; Peter J. Bellingham; Ashley D. Sparrow; Ned Fetcher; Fred H. Landau; Deborah J. Lodge

    2013-01-01

    Abiotic variables are critical drivers of succession in most primary seres, but how their influence on biota changes over time is rarely examined. Landslides provide good model systems for examining abiotic influences because they are spatially and temporally heterogeneous habitats with distinct abiotic and biotic gradients and post-landslide erosion. In an 18-year...

  11. Fuzzy-based failure mode and effect analysis (FMEA) of a hybrid molten carbonate fuel cell (MCFC) and gas turbine system for marine propulsion

    Science.gov (United States)

    Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun

    2017-10-01

    This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.

  12. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    Science.gov (United States)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    the phase area where the net degassing and continental growth rates are zero. Many of the parameter combinations result in one stable fixed point with a completely dry mantle that lacks continents altogether and a second stable fixed point with a continent coverage and mantle water concentration close to that of the present Earth. In addition, there is an unstable fixed point situated between the two. In general, the abiotic world has a larger zone of attraction for the fixed point with a dry mantle and no continents than the biotic world. Thus a biotic world is found to be more likely to develop continents and a have wet mantle. Furthermore, the biotic model is generally found to have a wetter mantle than an abiotic model with the same continent coverage. Through the effect of water on the mantle rheology, the biotic world would thus tend to be tectonically more active and have a more rapid long-term carbon silicate cycle. References: J. Kim, H. Dong, J. Seabaugh, S. W. Newell, D. D. Eberl, Science 303, 830-832, 2004 N. H. Sleep, D. K. Bird, E. Pope, Annu. Rev. Earth Planet. Sci. 40, 277-300, 2012 M. T. Rosing, D. K. Bird, N. H. Sleep, W. Glassley, F. Albarede, Paleo3 232, 90-113, 2006

  13. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  14. Comparative study of biogenic and abiotic iron-containing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cherkezova-Zheleva, Z., E-mail: zzhel@ic.bas.bg; Shopska, M., E-mail: shopska@ic.bas.bg; Paneva, D. [Bulgarian Academy of Sciences, Institute of Catalysis (Bulgaria); Kovacheva, D. [Bulgarian Academy of Sciences, Institute of General and Inorganic Chemistry (Bulgaria); Kadinov, G.; Mitov, I. [Bulgarian Academy of Sciences, Institute of Catalysis (Bulgaria)

    2016-12-15

    Series of iron-based biogenic materials prepared by cultivation of Leptothrix group of bacteria in different feeding media (Sphaerotilus-Leptothrix group of bacteria isolation medium, Adler, Lieske and silicon-iron-glucose-peptone) were studied. Control samples were obtained in the same conditions and procedures but the nutrition media were not infected with bacteria, i.e. they were sterile. Room and low temperature Mössbauer spectroscopy, powder X-ray diffraction (XRD), and infrared spectroscopy (IRS) were used to reveal the composition and physicochemical properties of biomass and respective control samples. Comparative analysis showed differences in their composition and dispersity of present phases. Sample composition included different ratio of nanodimensional iron oxyhydroxide and oxide phases. Relaxation phenomena such as superparamagnetism or collective magnetic excitation behaviour were registered for some of them. The experimental data showed that the biogenic materials were enriched in oxyhydroxides of high dispersion. Catalytic behaviour of a selected biomass and abiotic material were studied in the reaction of CO oxidation. In situ diffuse-reflectance (DR) IRS was used to monitor the phase transformations in the biomass and CO conversion.

  15. Comparison of U and Np uptake on biogenic and abiotic ferrihydrite by XAFS

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk-Baersch, Evelyn [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Schmeide, Katja [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Kvashnina, Kristina O.; Rossberg, Andre; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    XAS spectra of U and Np sorption biogenic ferrihydrite samples were compared to abiotic samples. The k{sup 3}-weighted χ-spectrum and its Fourier-transform of the studied biogenic ferrihydrite sample bears close resemblance to the bidentate edge-sharing innersphere sorption {sup 1}E complex, which is the main sorption species on abiotic ferrihydrite. Based on the shell fit analysis, the distances of the coordination shells U-O{sub eq}, U-O{sub ax}, and U-Fe are similar to those determined for abiotic ferrihydrite samples.

  16. Comparison of U and Np uptake on biogenic and abiotic ferrihydrite by XAFS

    International Nuclear Information System (INIS)

    Krawczyk-Baersch, Evelyn; Schmeide, Katja; Kvashnina, Kristina O.; Rossberg, Andre; Scheinost, Andreas C.

    2017-01-01

    XAS spectra of U and Np sorption biogenic ferrihydrite samples were compared to abiotic samples. The k 3 -weighted χ-spectrum and its Fourier-transform of the studied biogenic ferrihydrite sample bears close resemblance to the bidentate edge-sharing innersphere sorption 1 E complex, which is the main sorption species on abiotic ferrihydrite. Based on the shell fit analysis, the distances of the coordination shells U-O eq , U-O ax , and U-Fe are similar to those determined for abiotic ferrihydrite samples.

  17. Cultivation of Marine Sponges: From Sea to Cell

    NARCIS (Netherlands)

    Sipkema, D.

    2004-01-01

    Marine sponges are one of the richest natural sources of secondary metabolites with a potential pharmaceutical application. A plethora of chemical compounds, with widely varying carbon skeletons, possessing among other anticancer, antiviral, antibiotic, antiinflammatory and antimalaria activity has

  18. Copepods use chemical trails to find sinking marine snow aggregates

    DEFF Research Database (Denmark)

    Lombard, Fabien; Koski, Marja; Kiørboe, Thomas

    2013-01-01

    Copepods are major consumers of sinking marine particles and hence reduce the efficiency of the biological carbon pump. Their high abundance on marine snow suggests that they can detect sinking particles remotely. By means of laboratory observations, we show that the copepod Temora longicornis ca...

  19. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    Science.gov (United States)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  20. Compositions and methods for providing plants with tolerance to abiotic stress conditions

    KAUST Repository

    Hirt, Heribert; De Zelicourt, Axel; Saad, Maged

    2017-01-01

    It has been discovered that the desert endophytic bacterium SA187 SA187 can provide resistance or tolerance to abiotic stress conditions to seeds or plants. Compositions containing SA187 can be used to enhance plant development and yield under

  1. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    Directory of Open Access Journals (Sweden)

    Yuling Bai

    2018-06-01

    Full Text Available In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  2. Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Mihail KANTOR

    2018-03-01

    Full Text Available Originally from Africa, watermelon is a staple crop in South Carolina and rich source of important phytochemicals that promote human health. As a result of many years of domestication and selection for desired fruit quality, modern watermelon cultivars are susceptible to biotic and abiotic stress. The present review discusses how genetic selection and breeding combined with geospatial technologies (precision agriculture may help enhance watermelon varieties for resistance to biotic and abiotic stress. Gene loci identified and selected in undomesticated watermelon accessions are responsible for resistance to diseases, pests and abiotic stress. Vegetable breeding programs use traditional breeding methodologies and genomic tools to introduce gene loci conferring biotic or abiotic resistance into the genome background of elite watermelon cultivars. This continuous approach of collecting, evaluating and identifying useful genetic material is valuable for enhancing genetic diversity and tolerance and combined with precision agriculture could increase food security in the Southeast.

  3. Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales

    Science.gov (United States)

    Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...

  4. Overexpression of an abiotic-stress inducible plant protein in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... the universal stress hormone, is supplied in the culture ... various abiotic stress like water deficit, high salinity and low temperature or exogenous ... period in a plant growth chamber (NIPPON, LHP-100-RDS, Tokyo,. Japan).

  5. Abiotic production of iodine molecules in irradiated ice

    Science.gov (United States)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  6. Microbial Carbonate Precipitation by Synechococcus PCC8806, LS0519 and Synechocystis PCC6803 on Concrete Surfaces and in Low Saturation Solution

    Science.gov (United States)

    Zhu, T.; Lin, Y.; Dittrich, M.

    2015-12-01

    Microbial carbonate precipitation (MCP) by cyanobacteria has been recognized in a variety of environment such as freshwater, marine, cave, and even desert. Recently, their calcification potential has been tested in an emerging technology-- bioconcrete. This study is to explore the calcification by three cyanobacteria strains under different environmental conditions. Experiment A was carried out in 2mM NaHCO3 and 5mM CaCl2, with a cell concentration of 107 cells L-1. In experiment B, one side of the concrete surface was treated with bacteria and then immersed in the solution containing 0.4 mM NaHCO3 and 300 mM CaCl2. In experiment A, the pH of the abiotic condition remained constant around 8.55, while that of biotic conditions increased by 0.15 units in the presence of LS0519, and by 0.3 units in the presence of PCC8806 or PCC6803 within 8 hours. Over a period of 30 hours, PCC8806, LS0519 and PCC6803 removed 0.1, 0.12 and 0.2 mM calcium from the solution respectively. After 30 hours, the alkalinity of the solution decreased by 30 mg/L, 10 mg/L and 5 mg/L respectively in the presence of PCC6803, LS0519 and PCC8806. Under scanning electron microscopy (SEM), no precipitate was found in the abiotic condition, while calcium carbonate was associated by all the three strains. Among them, PCC6803 precipitated more carbonates. In experiment B, LS0519 and PCC8806 increased the pH with a value of 0.25, while PCC6803 increased the pH by 0.33 units. SEM shows LS0519 was less likely attached to the concrete surface. Neither did the precipitates on concrete surface differ from that in the abiotic condition. In comparison, PCC8806 and PCC6803 were closely associated with 8-μm porous precipitates. Cells were either found enclosed in precipitates or connecting two precipitates. In conclusion, all the three strains triggered the calcium carbonate precipitation. LS0519 has a little impact on the carbonate precipitation in the solution, but negligent influence on the concrete surface

  7. Pathways for degradation of plastic polymers floating in the marine environment.

    Science.gov (United States)

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

  8. Abiotic factors drives floristic variations of fern’s metacommunity in an Atlantic Forest remnant

    OpenAIRE

    L. E. N. Costa; R. P. Farias; A. C. P. Santiago; I. A. A. Silva; I. C. L. Barros

    2018-01-01

    Abstract We analyzed floristic variations in fern’s metacommunity at the local scale and their relationship with abiotic factors in an Atlantic Forest remnant of northeastern Brazil. Floristic and environmental variations were accessed on ten plots of 10 × 20 m. We performed cluster analyses, based on Bray-Curtis dissimilarity index to establish the floristic relationship. The influence of abiotic factors: luminosity, temperature, relative air humidity and relative soil moisture was evaluated...

  9. Importance of biotic and abiotic components in feedback between plants and soil

    OpenAIRE

    Hanzelková, Věra

    2017-01-01

    The plant-soil feedback affects the forming of a plant community. Plants affect their own species as well as other species. The plant-soil feedback can be both positive and negative. Plants affect soil, change its properties, and the soil affects the plants reciprocally. Soil components can be divided into biotic and abiotic ones. The abiotic component is represented by physical and chemical properties of the soil. The main properties are the soil structure, the soil moisture, the soil temper...

  10. Minerals Masquerading As Enzymes: Abiotic Oxidation Of Soil Organic Matter In An Iron-Rich Humid Tropical Forest Soil

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.

    2010-12-01

    Oxidative reactions play an important role in decomposing soil organic matter fractions that resist hydrolytic degradation, and fundamentally affect the cycling of recalcitrant soil carbon across ecosystems. Microbial extracellular oxidative enzymes (e.g. lignin peroxidases and laccases) have been assumed to provide a dominant role in catalyzing soil organic matter oxidation, while other potential oxidative mechanisms remain poorly explored. Here, we show that abiotic reactions mediated by the oxidation of ferrous iron (Fe(II)) could explain high potential oxidation rates in humid tropical forest soils, which often contain high concentrations of Fe(II) and experience rapid redox fluctuations between anaerobic and aerobic conditions. These abiotic reactions could provide an additional mechanism to explain high rates of decomposition in these ecosystems, despite frequent oxygen deficits. We sampled humid tropical forest soils in Puerto Rico, USA from various topographic positions, ranging from well-drained ridges to riparian valleys that experience broad fluctuations in redox potential. We measured oxidative activity by adding the model humic compound L-DOPA to soil slurries, followed by colorimetric measurements of the supernatant solution over time. Dilute hydrogen peroxide was added to a subset of slurries to measure peroxidative activity. We found that oxidative and peroxidative activity correlated positively with soil Fe(II) concentrations, counter to prevailing theory that low redox potential should suppress oxidative enzymes. Boiling or autoclaving sub-samples of soil slurries to denature any enzymes present typically increased peroxidative activity and did not eliminate oxidative activity, further suggesting the importance of an abiotic mechanism. We found substantial differences in the oxidation products of the L-DOPA substrate generated by our soil slurries in comparison with oxidation products generated by a purified enzyme (mushroom tyrosinase

  11. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress.

    Science.gov (United States)

    Khan, Sardar-Ali; Li, Meng-Zhan; Wang, Suo-Min; Yin, Hong-Ju

    2018-05-31

    Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.

  12. Marine viruses and global climate change

    NARCIS (Netherlands)

    Danovaro, R.; Corinaldesi, C.; Dell'Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A.

    2011-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface

  13. Biotic interactions reduce microbial carbon use efficiency

    Science.gov (United States)

    Bradford, M.; Maynard, D. S.

    2017-12-01

    The efficiency by which microbes decompose organic matter governs the amount of carbon that is retained in microbial biomass versus lost to the atmosphere as respiration. This carbon use efficiency (CUE) is affected by various abiotic conditions, such as temperature and nutrient availability. In biogeochemical model simulations, CUE is a key variable regulating how much soil carbon is stored or lost from ecosystems under simulated global changes, such as climate warming. Theoretically, the physiological costs of biotic interactions such as competition should likewise alter CUE, yet the direction and magnitude of these costs are untested. Here we conduct a microcosm experiment to quantify how competitive interactions among saprotrophic fungi alter growth, respiration, and CUE. Free-living decomposer fungi representing a broad range of traits and phylogenies were grown alone, in pairwise competition, and in multi-species (up to 15) communities. By combing culturing and stable carbon isotope approaches, we could resolve the amount of carbon substrate allocated to fungal biomass versus respiration, and so estimate CUE. By then comparing individual performance to community-level outcomes, we show that species interactions induce consistent declines in CUE, regardless of abiotic conditions. Pairwise competition lowers CUE by as much as 25%, with the magnitude of these costs equal to or greater than the observed variation across abiotic conditions. However, depending on the competitive network structure, increasing species richness led to consistent gains or declines in CUE. Our results suggest that the extent to which microbial-mediated carbon fluxes respond to environmental change may be influenced strongly by competitive interactions. As such, knowledge of abiotic conditions and community composition is necessary to confidently project CUE and hence ecosystem carbon dynamics.

  14. Ocean acidification and marine microorganisms: responses and consequences

    Directory of Open Access Journals (Sweden)

    Surajit Das

    2015-10-01

    Full Text Available Ocean acidification (OA is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.

  15. Quantifying Components of Soil Respiration and Their Response to Abiotic Factors in Two Typical Subtropical Forest Stands, Southwest China

    Science.gov (United States)

    Yu, Lei; Wang, Yujie; Wang, Yunqi; Sun, Suqi; Liu, Liziyuan

    2015-01-01

    Separating the components of soil respiration and understanding the roles of abiotic factors at a temporal scale among different forest types are critical issues in forest ecosystem carbon cycling. This study quantified the proportions of autotrophic (R A) and heterotrophic (R H) in total soil (R T) respiration using trenching and litter removal. Field studies were conducted in two typical subtropical forest stands (broadleaf and needle leaf mixed forest; bamboo forest) at Jinyun Mountain, near the Three Georges Reservoir in southwest China, during the growing season (Apr.–Sep.) from 2010 to 2012. The effects of air temperature (AT), soil temperature (ST) and soil moisture (SM) at 6cm depth, solar radiation (SR), pH on components of soil respiration were analyzed. Results show that: 1) SR, AT, and ST exhibited a similar temporal trend. The observed abiotic factors showed slight interannual variability for the two forest stands. 2) The contributions of R H and R A to R T for broadleaf and needle leaf mixed forest were 73.25% and 26.75%, respectively, while those for bamboo forest were 89.02% and 10.98%, respectively; soil respiration peaked from June to July. In both stands, CO2 released from the decomposition of soil organic matter (SOM), the strongest contributor to R T, accounted for over 63% of R H. 3) AT and ST were significantly positively correlated with R T and its components (psoil respiration. 4) Components of soil respiration were significantly different between two forest stands (psoil respiration and its components. PMID:25680112

  16. Biomineralization and the carbon isotope record

    International Nuclear Information System (INIS)

    Degens, E.T.; Ittekkot, V.; Kazmierczak, J.

    1986-01-01

    The advent of biomineralization at the turn of the Precambrian/Cambrian boundary has been a major event in the Earth's evolutionary history. With this there has been a major shift from abiotic to biotic formation of minerals such as phosphates and carbonates and, subsequently, silica. The dominant factor which effected this shift is a change in ocean's chemistry with respect to its Ca 2+ and mineral nutrient contents. Mechanism controlling the biotic mineral formation is different from that controlling the abiotic one in that the former is enzymically controlled. It is suggested that this difference is also manifested in the stable carbon isotope fractionation between the two processes and has implication for the interpretation of stable carbon isotope record. (Author)

  17. Marine animal stings or bites

    Science.gov (United States)

    Stings - marine animals; Bites - marine animals ... Things you can do to prevent a marine animal sting or bite include: Swim near a lifeguard. Observe posted signs that may warn of danger from jellyfish or other hazardous marine life. ...

  18. From fresh to marine waters

    DEFF Research Database (Denmark)

    Gonçalves-Araujo, Rafael; Stedmon, Colin; Heim, Birgit

    2015-01-01

    Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region...... demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation...

  19. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  20. MarineCadastre.gov

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MarineCadastre.gov is a marine information system that provides authoritative ocean data, offshore planning tools, and technical support to the offshore renewable...

  1. Marine Jurisdiction Boundaries

    Data.gov (United States)

    Department of Homeland Security — The NOAA Coastal Services Center's Marine Jurisdiction dataset was created to assist in marine spatial planning and offshore alternative energy sitting. This is a...

  2. Tsunamis and marine life

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.V.S.; Ingole, B.S.; Tang, D.; Satyanarayan, B.; Zhao, H.

    The 26 December 2004 tsunami in the Indian Ocean exerted far reaching temporal and spatial impacts on marine biota. Our synthesis was based on satellite data acquired by the Laboratory for Tropical Marine Environmental Dynamics (LED) of the South...

  3. Supermarket Marine Biology.

    Science.gov (United States)

    Colby, Jennifer A.; And Others

    1995-01-01

    Describes a survey used to determine the availability of intact marine vertebrates and live invertebrates in supermarkets. Results shows that local supermarkets frequently provide a variety of intact marine organisms suitable for demonstrations, experiments, or dissections. (ZWH)

  4. Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses

    International Nuclear Information System (INIS)

    Narayan, Om Prakash; Kumari, Nidhi; Rai, Lal Chand

    2010-01-01

    This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml -1 ), CuCl 2 (1 mM), UV-B (10 min), heat (47 o C), NaCl (6% w/v) and CdCl 2 (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.

  5. Seashore marine table quiz

    OpenAIRE

    Institute, Marine

    2013-01-01

    Develop an increasing awareness of plants and animals that live in local marine environments including the seashore, seas and oceans of Ireland. After learning all about the seashore and other marine related lessons, this quiz can be used to evaluate the student’s knowledge of the marine related living things and natural environments. The table quiz can be used as a guide, highlighting facts about the marine environment and some of the animals that live there.

  6. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  7. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    Science.gov (United States)

    Holm, Nils G; Neubeck, Anna

    2009-10-22

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  8. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    Directory of Open Access Journals (Sweden)

    Neubeck Anna

    2009-10-01

    Full Text Available Abstract Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  9. Long-term paradoxical aftermath of the Early Permian climatic warming in the Northern Hemisphere: biotic and abiotic aspects

    Science.gov (United States)

    Kossovaya, Olga

    2014-05-01

    Far distant influence of the climatic changes is rather variable and sometimes paradoxical. One of the examples is the flourish of the Photozoan association in the Northern Hemisphere during time of Southern Hemisphere glaciation (P2) and it following collapse in the interglacial phase. Modelling of the possible extrinsic factors using isotope data from the Urals has demonstrated the complex succession of abiotic changes including circulation changes and penetration of cold water from Northern Panthalassa. The invasion of cold water into the Uralian Basin led to disarray of the coastal circulation and rising of cold water via upwelling. It was resulted by change of biota and wide distribution of the heterozoan biota. The replacement took place both in carbonate ramp and reef facies. The depletion of δ18O during the early Artinskian was demonstrated by analyses of the biogenic carbonates from Belaya Gora (Most) section. This coincides with the previously known trend for d18O shown for low latitudes from the Sakmarian to early Artinskian with a minimum during the middle Artinskian and is in accordance with recent data from the South Urals. The heterochrony of the impact in the far-distant and discrete photozoan assemblages depends on their bathymetric and paleo-latitudinal position.

  10. Marine Education Knowledge Inventory.

    Science.gov (United States)

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  11. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  12. Chemical behavior of phthalates under abiotic conditions in landfills.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip N; Li, Yi; Appiah-Sefah, Gloria

    2013-01-01

    The phthalates comprise a family of phthalic acid esters that are used primarily as plasticizers in polymeric materials to impart flexibility during the manufacturing process and to the end product. It is estimated that the annual worldwide production of phthalate esters exceeds five million tons. Plasticizers are one of the most prominent classes of chemicals, but unfortunately, they possess endocrine-disrupting chemical properties. As endocrine-disrupting chemicals, plasticizers have produced adverse developmental and reproductive effects in mammalian animal models.Phthalates are easily transported into the environment during manufacture, disposal,and leaching from plastic materials, because they are not covalently bound to the plastics of which they are a component. Because of their fugitive nature and widespread use, the phthalates are commonly detected in air, water, sediment/soil, and biota, including human tissue. Large amounts of phthalic acid esters are often leached from the plastics that are dumped at municipal landfills.Phthalate esters undergo chemical changes when released into the environment.The primary processes by which they are transformed include hydrolysis, photolysis,and biodegradation. It is noteworthy that all of these degradation processes are greatly influenced by the local physical and chemical conditions. Hence, in the present review, we have sought to ascertain from the literature how the phthalate esters undergo transformation when they are released into lower landfill layers.Within the upper landfill layers, biodegradation prevails as the major degradation mechanism by which the phthalates are dissipated. Generally, biodegradation pathways for the phthalates consist of primary biodegradation from phthalate diesters to phthalate monoesters, then to phthalic acid, and ultimately biodegradation of phthalic acid to form C02 and/or CH4• We have noted that the phthalate esters are also degraded through abiotic means,which proceeds via

  13. Effect of abiotic and biotic stress factors analysis using machine learning methods in zebrafish.

    Science.gov (United States)

    Gutha, Rajasekar; Yarrappagaari, Suresh; Thopireddy, Lavanya; Reddy, Kesireddy Sathyavelu; Saddala, Rajeswara Reddy

    2018-03-01

    In order to understand the mechanisms underlying stress responses, meta-analysis of transcriptome is made to identify differentially expressed genes (DEGs) and their biological, molecular and cellular mechanisms in response to stressors. The present study is aimed at identifying the effect of abiotic and biotic stress factors, and it is found that several stress responsive genes are common for both abiotic and biotic stress factors in zebrafish. The meta-analysis of micro-array studies revealed that almost 4.7% i.e., 108 common DEGs are differentially regulated between abiotic and biotic stresses. This shows that there is a global coordination and fine-tuning of gene regulation in response to these two types of challenges. We also performed dimension reduction methods, principal component analysis, and partial least squares discriminant analysis which are able to segregate abiotic and biotic stresses into separate entities. The supervised machine learning model, recursive-support vector machine, could classify abiotic and biotic stresses with 100% accuracy using a subset of DEGs. Beside these methods, the random forests decision tree model classified five out of 8 stress conditions with high accuracy. Finally, Functional enrichment analysis revealed the different gene ontology terms, transcription factors and miRNAs factors in the regulation of stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2014-11-01

    Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors?

    Science.gov (United States)

    Clavijo McCormick, Andrea

    2016-12-01

    The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.

  16. Climate sensitivity of marine energy

    International Nuclear Information System (INIS)

    Harrison, G.P.; Wallace, A.R.

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversion: where the resource is constrained, production and economic performance may suffer; alternatively, stormier climates may create survival issues. Here, a relatively simple sensitivity study is used to quantify how changes in mean wind speed - as a proxy for wider climate change - influence wind and wave energy production and economics. (author)

  17. Relationships between biotic and abiotic factors and regeneration of chestnut oak, white oak, and northern red oak

    Science.gov (United States)

    Songlin Fei; Kim C. Steiner; James C. Finley; Marc E. McDill

    2003-01-01

    A series of substantial field surveys of 38 mixed-oak stands in central Pennsylvania were carried out during 1996-2000. All the stands were surveyed 1 year prior to harvest, and 16 stands have been surveyed 1 year after harvest. Three abiotic factors at stand scale, four abiotic factors at plot scale, and two biotic factors and one abiotic factor at subplot scale was...

  18. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ) such as the Marine nitrogen cycle The marine nitrogen cycle. ‘X’ and ‘Y’ are intra-cellular intermediates that do not accumulate in water column. (Source: Codispoti et al., 2001) Page 1 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  19. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  20. Factors controlling the compositional variations among the marine and non-marine black shales from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Baioumy, Hassan M. [Central Metallurgical R and D Institute, PO Box 87 Helwan, Cairo (Egypt); Ismael, Ismael S. [Faculty of Science, Suez Canal University, Suez (Egypt)

    2010-07-01

    Non-marine (Jurassic) and marine (Cretaceous) black shales from Egypt were subjected to mineralogical and geochemical analyses to examine the controlling factors of their compositional variations. Non-marine black shales are composed of kaolinite and quartz with traces of gypsum, illite, calcite, feldspars, and dolomite, while marine black shales from the Red Sea area are composed of smectite, kaolinite, quartz, calcite, and dolomite with traces of feldspars. Abu Tartur marine black shales are composed of smectite and quartz with traces of feldspars and gypsum. Non-marine black shales show considerably higher Nb, Ta, Hf, and Zr contents and Th/Yb ratios compared to the marine black shales. On the other hand, marine black shales show considerably higher Cr, V, and Zn contents with positive correlations between these elements and organic carbon (C{sub org.}){sub .} Red Sea black shales have higher Ni/Co, V/Cr, and U/Al ratios. Chondrite normalized values of the medium and heavy rare earth elements (MREEs and HREEs, respectively) are higher in the non-marine black shales compared to the marine black shales. Pyrite from non-marine black shales is characterized by high positive {delta}{sup 34}S isotope values (average of + 9.3 permille). Pyrite from Red Sea black shales has low negative {delta}{sup 34}S values (average of -16.7 permille), pyrite from black shales of the lower member of the Duwi Formation has positive {delta}{sup 34}S values (average of 5.8 permille), while pyrite from marine black shales of the middle member has negative {delta}{sup 34}S values (average of -0.83 permille). Source area composition, weathering conditions, depositional environments, and type of organic matter are considered to be the probable controlling factors of these variations. The more felsic constituents in the source area of non-marine black shales is responsible for the relatively high Nb, Ta, Hf, and Zr contents and Th/Yb ratio. Relatively high kaolinite contents and Chemical

  1. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  2. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions

    International Nuclear Information System (INIS)

    Józefczak, A.; Leszczyński, B.; Skumiel, A.; Hornowski, T.

    2016-01-01

    Magnetic nanoparticles show unique properties and find many applications because of the possibility to control their properties using magnetic field. Magnetic nanoparticles are usually synthesized chemically and modification of the particle surface is necessary. Another source of magnetic nanoparticles are various magnetotactic bacteria. These biogenic nanoparticles (magnetosomes) represent an attractive alternative to chemically synthesized iron oxide particles because of their unique characteristics and a high potential for biotechnological and biomedical applications. This work presents a comparison between acoustic properties of biogenic and abiotic magnetite nanoparticle suspensions. Experimental studies have shown the influence of a biological membrane on the ultrasound properties of magnetosomes suspension. Finally the heat effect in synthetic and biogenic magnetite nanoparticles is also discussed. The experimental study shows that magnetosomes present good heating efficiency. - Highlights: • A biogenic and abiotic magnetite nanoparticle suspensions are investigated. • A comparison between ultrasonic properties and heat effects is presented. • Magnetosomes and abiotic magnetite nanoparticles exhibit good heating efficiency.

  3. Abiotic factors drives floristic variations of fern's metacommunity in an Atlantic Forest remnant.

    Science.gov (United States)

    Costa, L E N; Farias, R P; Santiago, A C P; Silva, I A A; Barros, I C L

    2018-02-15

    We analyzed floristic variations in fern's metacommunity at the local scale and their relationship with abiotic factors in an Atlantic Forest remnant of northeastern Brazil. Floristic and environmental variations were accessed on ten plots of 10 × 20 m. We performed cluster analyses, based on Bray-Curtis dissimilarity index to establish the floristic relationship. The influence of abiotic factors: luminosity, temperature, relative air humidity and relative soil moisture was evaluated from a redundancy analysis. We found 24 species belonging to 20 genera and 12 families. The fern's flora showed high floristic heterogeneity (>75% for most of the plot's associations). The fern's metacommunity was structured along an abiotic gradient modulated by temperature, luminosity, and relative soil moisture.

  4. Abiotic factors drives floristic variations of fern’s metacommunity in an Atlantic Forest remnant

    Directory of Open Access Journals (Sweden)

    L. E. N. Costa

    2018-02-01

    Full Text Available Abstract We analyzed floristic variations in fern’s metacommunity at the local scale and their relationship with abiotic factors in an Atlantic Forest remnant of northeastern Brazil. Floristic and environmental variations were accessed on ten plots of 10 × 20 m. We performed cluster analyses, based on Bray-Curtis dissimilarity index to establish the floristic relationship. The influence of abiotic factors: luminosity, temperature, relative air humidity and relative soil moisture was evaluated from a redundancy analysis. We found 24 species belonging to 20 genera and 12 families. The fern’s flora showed high floristic heterogeneity (>75% for most of the plot’s associations. The fern’s metacommunity was structured along an abiotic gradient modulated by temperature, luminosity, and relative soil moisture.

  5. Cortex proliferation in the root is a protective mechanism against abiotic stress.

    Science.gov (United States)

    Cui, Hongchang

    2015-01-01

    Although as an organ the root plays a pivotal role in nutrient and water uptake as well anchorage, individual cell types function distinctly. Cortex is regarded as the least differentiated cell type in the root, but little is known about its role in plant growth and physiology. In recent studies, we found that cortex proliferation can be induced by oxidative stress. Since all types of abiotic stress lead to oxidative stress, this finding suggests a role for cortex in coping with abiotic stress. This hypothesis was tested in this study using the spy mutant, which has an extra layer of cortex in the root. Interestingly, the spy mutant was shown to be hypersensitive to salt and oxidizing reagent applied to the leaves, but it was as tolerant as the wild type to these compounds in the soil. This result lends support to the notion that cortex has a protective role against abiotic stress arising from the soil.

  6. New Environmentalconditions Responsible for the amount of mg Incorporated in Biogenic Carbonates

    Science.gov (United States)

    Zuddas, P.; Cherchi, A.; DeGiudici, G. B.; Buosi, C.

    2012-12-01

    The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. Several kinetic laboratory investigations have suggested that the temperature is kinetically responsible for the amount of Mg incorporated in both abiotic and biogenic calcites and that variation of kinetic reaction mechanism resulting from the temperature changes are correlated with the variable amount of Mg incorporated in calcites. These results explain why in present-day marine carbonates low-Mg calcite cements are mainly associated with cool water while high-Mg carbonates are dominantly found in warm-water environments. An apparent inverse relationship between the global average paleo-temperature and the Mg/Ca ratio is however observed in the past formed marine carbonate. This apparent contradiction has been interpreted as resulting from a possible changing in the relative seawater geochemical cycles of these cations. Recent monitoring of costal areas in presence of heavy metals and CO2 released from industrial polluted area reveals the presence of porcelanaceous miliolids infested by microscopic boring microflora (cyanobacteria, algae and fungi). Here, benthonic foraminifera have Mg/Ca molar ratio by one order of magnitude higher when compared to the average value of the same genus living under uncontaminated environments. A similar behaviour has been found for Zn, Cd and Pb. In these contaminated environments, temperature and average major seawater composition remain constant, while PCO2 partial pressure (estimated by pH and alkalinity using the ion pairing model) is 3-5 times higher than the average for the open sea nearby. Geochemical models predicts that CO2 increase is affecting carbonate saturation state of surface water in the twenty-first century indicating that calcareous organisms may have difficulty calcifying leading to production of weaker skeletons and greater vulnerability to erosion. The

  7. Protein metabolism in marine animals: the underlying mechanism of growth.

    Science.gov (United States)

    Fraser, Keiron P P; Rogers, Alex D

    2007-01-01

    Growth is a fundamental process within all marine organisms. In soft tissues, growth is primarily achieved by the synthesis and retention of proteins as protein growth. The protein pool (all the protein within the organism) is highly dynamic, with proteins constantly entering the pool via protein synthesis or being removed from the pool via protein degradation. Any net change in the size of the protein pool, positive or negative, is termed protein growth. The three inter-related processes of protein synthesis, degradation and growth are together termed protein metabolism. Measurement of protein metabolism is vital in helping us understand how biotic and abiotic factors affect growth and growth efficiency in marine animals. Recently, the developing fields of transcriptomics and proteomics have started to offer us a means of greatly increasing our knowledge of the underlying molecular control of protein metabolism. Transcriptomics may also allow us to detect subtle changes in gene expression associated with protein synthesis and degradation, which cannot be detected using classical methods. A large literature exists on protein metabolism in animals; however, this chapter concentrates on what we know of marine ectotherms; data from non-marine ectotherms and endotherms are only discussed when the data are of particular relevance. We first consider the techniques available to measure protein metabolism, their problems and what validation is required. Protein metabolism in marine organisms is highly sensitive to a wide variety of factors, including temperature, pollution, seasonality, nutrition, developmental stage, genetics, sexual maturation and moulting. We examine how these abiotic and biotic factors affect protein metabolism at the level of whole-animal (adult and larval), tissue and cellular protein metabolism. Available gene expression data, which help us understand the underlying control of protein metabolism, are also discussed. As protein metabolism appears to

  8. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Science.gov (United States)

    Schobben, Martin; van de Velde, Sebastiaan; Gliwa, Jana; Leda, Lucyna; Korn, Dieter; Struck, Ulrich; Vinzenz Ullmann, Clemens; Hairapetian, Vachik; Ghaderi, Abbas; Korte, Christoph; Newton, Robert J.; Poulton, Simon W.; Wignall, Paul B.

    2017-11-01

    Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian-Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-)sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the observed signal of carbon

  9. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Directory of Open Access Journals (Sweden)

    M. Schobben

    2017-11-01

    Full Text Available Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian–Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the

  10. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    Science.gov (United States)

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from WECOMA in the Gulf of the Farallones National Marine Sanctuary, Monterey Bay National Marine Sanctuary and others from 2011-08-12 to 2011-08-30 (NCEI Accession 0157458)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157458 includes biological, chemical, discrete sample, physical and profile data collected from WECOMA in the Gulf of the Farallones National Marine...

  13. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of); Choi, Ilhwan [Water Analysis and Research Center, K-water, 560 Sintanjin-ro, Daedeok-gu, Daejeon 307-711 (Korea, Republic of); Lee, Jung-Joon [Department of Biological Education, Daegu University, Gyungbuk 712-714 (Korea, Republic of); Hur, Jin, E-mail: jinhur@sejong.ac.kr [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of)

    2016-02-15

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L{sup −1}, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  14. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    International Nuclear Information System (INIS)

    He, Wei; Choi, Ilhwan; Lee, Jung-Joon; Hur, Jin

    2016-01-01

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L"−"1, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  15. Characterization and comparison of iron oxyhydroxide precipitates from biotic and abiotic groundwater treatments

    DEFF Research Database (Denmark)

    Arturi, Katarzyna R.; Bender Koch, Christian; Søgaard, Erik G.

    2017-01-01

    Removal of iron is an important step in groundwater treatment for drinking water production. It is performed to prevent organoleptic issues and clogging in water supply systems. Iron can be eliminated with a purely physico-chemical (abiotic) method or biotically with the help of iron......-oxidizing bacteria (FeOB). Each of the purification methods requires different operating conditions and results in formation of iron oxyhydroxide (FeOOH) precipitates. Knowledge about the differences in composition and properties of the biotic and abiotic precipitates is desirable from a technical, but also...

  16. Pre-mRNA splicing repression triggers abiotic stress signaling in plants

    KAUST Repository

    Ling, Yu

    2016-09-24

    Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A

  17. Pre-mRNA splicing repression triggers abiotic stress signaling in plants

    KAUST Repository

    Ling, Yu; Alshareef, Sahar; Butt, Haroon; Lozano-Juste, Jorge; Li, Lixin; Galal, Aya A.; Moustafa, Ahmed; Momin, Afaque Ahmad Imtiyaz; Tashkandi, Manal; Richardson, Dale N.; Fujii, Hiroaki; Arold, Stefan T.; Rodriguez, Pedro L.; Duque, Paula; Mahfouz, Magdy M.

    2016-01-01

    Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A

  18. Use of carbonates for biological and chemical synthesis

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  19. Temporal and vertical distributions of bacterioplankton at the Gray's Reef National Marine Sanctuary.

    Science.gov (United States)

    Lu, Xinxin; Sun, Shulei; Zhang, Yu-Qin; Hollibaugh, James T; Mou, Xiaozhen

    2015-02-01

    Large spatial scales and long-term shifts of bacterial community composition (BCC) in the open ocean can often be reliably predicted based on the dynamics of physical-chemical variables. The power of abiotic factors in shaping BCC on shorter time scales in shallow estuarine mixing zones is less clear. We examined the diurnal variation in BCC at different water depths in the spring and fall of 2011 at a station in the Gray's Reef National Marine Sanctuary (GRNMS). This site is located in the transition zone between the estuarine plume and continental shelf waters of the South Atlantic Bight. A total of 234,516 pyrotag sequences of bacterial 16S rRNA genes were recovered; they were taxonomically affiliated with >200 families of 23 bacterial phyla. Nonmetric multidimensional scaling analysis revealed significant differences in BCC between spring and fall samples, likely due to seasonality in the concentrations of dissolved organic carbon and nitrate plus nitrite. Within each diurnal sampling, BCC differed significantly by depth only in the spring and differed significantly between day and night only in the fall. The former variation largely tracked changes in light availability, while the latter was most correlated with concentrations of polyamines and chlorophyll a. Our results suggest that at the GRNMS, a coastal mixing zone, diurnal variation in BCC is attributable to the mixing of local and imported bacterioplankton rather than to bacterial growth in response to environmental changes. Our results also indicate that, like members of the Roseobacter clade, SAR11 bacteria may play an important role in processing dissolved organic material in coastal oceans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Marine Environmental History

    DEFF Research Database (Denmark)

    Poulsen, Bo

    2012-01-01

    human society and natural marine resources. Within this broad topic, several trends and objectives are discernable. The essay argue that the so-called material marine environmental history has its main focus on trying to reconstruct the presence, development and environmental impact of past fisheries......This essay provides an overview of recent trends in the historiography of marine environmental history, a sub-field of environmental history which has grown tremendously in scope and size over the last c. 15 years. The object of marine environmental history is the changing relationship between...... and whaling operations. This ambition often entails a reconstruction also of how marine life has changed over time. The time frame rages from Paleolithicum to the present era. The field of marine environmental history also includes a more culturally oriented environmental history, which mainly has come...

  1. Textura, materia orgánica y composición química elemental (C y N de sedimentos marinos superficiales de la zona Puerto Montt a Boca del Guafo (Norpatagonia chilena Grain size, total organic matter, organic carbon, inorganic carbon and organic nitrogen in surface marine sediments from Puerto Montt to Boca del Guafo (Chilean North Patagonia

    Directory of Open Access Journals (Sweden)

    Nelson Silva

    2010-01-01

    Full Text Available Se determinó la distribución horizontal de la textura, concentración de materia orgánica, carbono orgánico e inorgánico y nitrógeno orgánico, del sedimento en muestras superficiales, recolectadas entre Puerto Montt y Boca del Guafo, durante los cruceros CIMAR 10 Fiordos (2004, CIMAR 11 Fiordos (2005 y CIMAR 12 Fiordos (2006. La distribución superficial de las características químicas permitió identificar dos zonas: una norte, entre Puerto Montt y el grupo de islas Desertores-Apiao-Quehui-Lemuy con concentraciones, que en general fueron altas (MOT > 5%, C-org > 1,6%, C-inorg >0,4% y N-org > 0,2%, y una sur, entre dicho grupo de islas y la Boca del Guafo con concentraciones, en general, bajas (MOT 7,5%, C-org >2,4%, C-inorg >0,4% y N-org >0,2%. La textura de las muestras marinas fue arenosa y limo-arcillosa, siendo la presencia de grava escasa e inferior al 4% en algunas muestras. El sedimento terrígeno del borde de los ríos fue preferentemente arenoso. La procedencia del sedimento (marino versus terrígeno se infirió sobre la base de los valores de la relación C:N. Este resultó ser, mayoritariamente de origen marino, con la excepción de los fiordos continentales en que la componente terrígena fue importante.The horizontal distribution of the organic matter, organic and inorganic carbon, organic nitrogen content, and surface sediment texture was determined between Puerto Montt and Boca del Guafo using samples collected during the cruises CIMAR 10 Fiordos (2004, CIMAR 11 Fiordos (2005 and CIMAR 12 Fiordos (2006. Two zones were identified: the northern zone (from Puerto Montt to the Desertores-Apiao-Quehui-Lemuy island group had mostly high concentrations (TOM >5%; C-org >1.6%; C-inorg >0.4% and N-org > 0.2% the southern zone (from the same island group to Boca del Guafo had mostly low concentrations (TOM 7.5%, C-org > 2.4%, C-inorg > 0.4% and N-org > 0.2%. The texture of the marine sediments was mostly sand and silt + clay

  2. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Science.gov (United States)

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  3. Marine electrical practice

    CERN Document Server

    Watson, G O

    1991-01-01

    Marine Engineering Series: Marine Electrical Practice, Sixth Edition focuses on changes in the marine industry, including the application of programmable electronic systems, generators, and motors. The publication first ponders on insulation and temperature ratings of equipment, protection and discrimination, and AC generators. Discussions focus on construction, shaft-drive generators, effect of unbalanced loading, subtransient and transient reactance, protection discrimination, fault current, measurement of ambient air temperature, and basis of machine ratings. The text then examines AC switc

  4. Tropical rainforest response to marine sky brightening climate engineering

    Science.gov (United States)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  5. Tracking Early Jurassic marine (de)oxygenation

    Science.gov (United States)

    Them, T. R., II; Caruthers, A. H.; Gill, B. C.; Gröcke, D. R.; Marroquín, S. M.; Owens, J. D.

    2017-12-01

    It has been suggested that the carbon cycle was perturbed during the Toarcian OAE (T-OAE) as observed in the carbon isotope record, and more recently other elemental cycles (e.g., Hg, Mo, Os, S). The most widely accepted hypothesis focuses on the emplacement of the Karoo-Ferrar large igneous province, outgassing of greenhouse gases, and subsequent feedbacks in the Earth system, which caused severe environmental change and biological turnover. Feedbacks to elevated atmospheric pCO2 include enhanced weathering rates, dissociation of methane clathrates, increased terrestrial methanogenesis, and widespread marine anoxia. The sequence of events related to the development and duration of marine anoxia are not well constrained for this time interval due to a lack of open-ocean geochemical records. In order to reconstruct the timing of marine deoxygenation during the Early Jurassic T-OAE, we have utilized thallium isotopes, a novel geochemical proxy from multiple anoxic basins in North America and Germany. Three sites representing a basin transect from the Western Canada Sedimentary Basin, and one site from the South German Basin, were chosen to reconstruct the thallium isotopic composition (ɛ205Tl) of the ocean. The ɛ205Tl composition of sediments deposited under anoxic and euxinic water columns records the global seawater ɛ205Tl composition, a function of the amount of manganese oxides that are precipitated. Increased geographic extent of marine anoxia will cause a decrease in manganese oxide precipitation and perturb the thallium system. Importantly, the inputs of thallium are nearly identical, thus changes in these fluxes cannot drive the observed perturbation. Our new Early Jurassic ɛ205Tl records suggest that the onset of marine deoxygenation occurred concurrently with Karoo-Ferrar magmatism in the late Pliensbachian and continued until after the T-OAE. These new data support a Karoo-Ferrar trigger of the T-OAE. However, thallium isotopes also suggest that

  6. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  7. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals

    Science.gov (United States)

    Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate ...

  8. Variations in abiotic conditions of water quality of River Osun, Osun ...

    African Journals Online (AJOL)

    Otoigiakih

    Full Length Research Paper. Variations in abiotic conditions of water quality of River. Osun, Osun State, Nigeria. Farombi, A. G.1*, Adebayo, O. R.2, Olagunju E. O.1 and Oyekanmi A. M.2. 1Science Laboratory Technology Department, Faculty of Science, Osun State Polytechnic, Iree, Osun State, Nigeria. 2Applied Science ...

  9. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    Directory of Open Access Journals (Sweden)

    Kari Klanderud

    Full Text Available We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  10. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    Directory of Open Access Journals (Sweden)

    Viswanath eSankar

    2014-05-01

    Full Text Available Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.

  11. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage

    International Nuclear Information System (INIS)

    Vollenweider, P.; Guenthardt-Goerg, Madeleine S.

    2005-01-01

    Visible symptoms in the foliage of trees are recorded to monitor the effects of abiotic and biotic stress. Difficulties are reported in diagnosing the origin of stress. The present paper discusses several diagnostic criteria which are usable in different species for a better determination of the stress factor type. A new diagnosis scheme to differentiate between classes of abiotic and biotic stress factors is supplied. Abiotic stress generates gradients of symptoms. The symptom specificity is determined by the degree of interaction between the stress factor and plant defense system. Symptoms caused by abiotic stress and natural autumnal senescence can be morphologically different or undistinguishable according to the stress and plant species. With biotic stress, the class of parasitic is generally recognizable on the basis of the visible symptoms. Structurally and physiologically based explanations of the symptom morphology are still missing for many stress factors. - The morphology and distribution of visible stress symptoms in tree foliage provides diagnostic tools to identify plant defense responses and differentiate stress from natural senescence symptoms

  12. ROS-mediated abiotic stress-induced programmed cell death in plants

    NARCIS (Netherlands)

    Petrov, Veselin; Hille, Jacob; Mueller-Rober, Bernd; Gechev, Tsanko S.

    2015-01-01

    During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms

  13. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    Science.gov (United States)

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  14. Nitrogen fertility and abiotic stresses management in cotton crop: a review.

    Science.gov (United States)

    Khan, Aziz; Tan, Daniel Kean Yuen; Afridi, Muhammad Zahir; Luo, Honghai; Tung, Shahbaz Atta; Ajab, Mir; Fahad, Shah

    2017-06-01

    This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.

  15. Understanding the Interaction of Peptides and Proteins with Abiotic Surfaces: Towards Water-Free Biologics

    Science.gov (United States)

    2018-02-03

    engineering , materials, spectroscopy, laser techniques, chemical biology, computational chemistry, and nanoscience and nanotechnology . We have regular bi...water-free biologics” based on engineered abiotic/biotic interfaces. Using knowledge gained from studies in Aim 1, we aim to a) engineer peptides...universities. The research is highly interdisciplinary, covering many research areas in biology, chemistry, engineering , and physics. The

  16. Phytoplankton and some abiotic features of El-Bardawil Lake, Sinai ...

    African Journals Online (AJOL)

    Phytoplankton and some abiotic features of El-Bardawil Lake, Sinai, Egypt. H Touliabah, HM Safik, MM Gab-Allah, WD Taylor. Abstract. El-Bardawil Lake is a large coastal lagoon on the Mediterranean coast of Sinai, Egypt. Although it is shallow and oligotrophic, it is one of the most important lakes in Egypt as a source of ...

  17. Roots withstanding their environment : Exploiting root system architecture responses to abiotic stress to improve crop tolerance

    NARCIS (Netherlands)

    Koevoets, Iko T; Venema, Jan Henk; Elzenga, J Theo M; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as

  18. Potato crop growth as influenced by potato cyst nematodes (Globodera pallida) and abiotic factors

    NARCIS (Netherlands)

    Ruijter, de F.

    1998-01-01

    The objective of the research described in this thesis was to determine the major mechanisms by which potato cyst nematodes reduce potato crop growth and to explain interactions known to occur with cultivar and abiotic factors. Understanding of these interactions may lead to strategies that

  19. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco

    Czech Academy of Sciences Publication Activity Database

    Hyun, T.K.; Albacete, A.; van der Graaff, E.; Eom, S. H.; Großkinsky, D.K.; Böhm, H.; Janschek, U.; Rim, Y.; Ali, W.; Kim, S.Y.; Roitsch, Thomas

    2015-01-01

    Roč. 24, č. 4 (2015), s. 651-663 ISSN 0962-8819 Institutional support: RVO:67179843 Keywords : Abiotic stress * Biotic stress * Plant growth * AtPLAT1 gene * Tobacco Subject RIV: EH - Ecology, Behaviour Impact factor: 2.054, year: 2015

  20. Genetics and regulation of combined abiotic and biotic stress tolerance in tomato

    NARCIS (Netherlands)

    Kissoudis, C.

    2016-01-01

    Projections on the impact of climate change on agricultural productivity foresee prolonged and/or increased stress intensities and enlargement of a significant number of pathogens habitats. This significantly raises the occurrence probability of (new) abiotic and biotic stress combinations. With

  1. FATE OF PAH COMPOUNDS IN TWO SOIL TYPES: INFLUENCE OF VOLATILIZATION, ABIOTIC LOSS, AND BIOLOGICAL ACTIVITY

    Science.gov (United States)

    The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. Volatilization and abiotic and biotic fate of the PAHs were determined using two soils not p...

  2. Abiotic Hydrolysis of Fluorotelomer-Based Polymers as a Source of Perfluorocarboxylates at the Global Scale

    Science.gov (United States)

    Fluorotelomer-based polymers (FTPs) are the main product of the fluorotelomer industry. For nearly 10 years, whether FTPs degrade to form perfluorooctanoate (PFOA) and perfluorocarboxylate (PFCA) homologues has been vigorously contested. Here we show that circum-neutral abiotic h...

  3. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    Science.gov (United States)

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  4. Compositions and methods for providing plants with tolerance to abiotic stress conditions

    KAUST Repository

    Hirt, Heribert

    2017-07-27

    It has been discovered that the desert endophytic bacterium SA187 SA187 can provide resistance or tolerance to abiotic stress conditions to seeds or plants. Compositions containing SA187 can be used to enhance plant development and yield under environmental stress conditions.

  5. Utilizing genetic resources and precision agriculture to enhance resistance to biotic and abiotic stress in watermelon

    Science.gov (United States)

    Originally from Africa, watermelon is a staple crop in South Carolina and rich source of important phytochemicals that promote human health. As a result of many years of domestication and selection for desired fruit quality, modern watermelon cultivars are susceptible to biotic and abiotic stress. T...

  6. Surface physicochemistry and ionic strength affects eDNA's role in bacterial adhesion to abiotic surfaces

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Modrzynski, Jakub Jan

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent ...

  7. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  8. Characterizing Marine Soundscapes.

    Science.gov (United States)

    Erbe, Christine; McCauley, Robert; Gavrilov, Alexander

    2016-01-01

    The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats.

  9. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2017-08-01

    Full Text Available Isotopes of dissolved inorganic carbon (DIC are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE, a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less, DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL. Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells. Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water–rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings

  10. Coral Reef Functioning Along a Cross‐shelf Environmental Gradient: Abiotic and Biotic Drivers of Coral Reef Growth in the Red Sea

    KAUST Repository

    Roik, Anna

    2016-06-01

    Despite high temperature and salinity conditions that challenge reef growth in other oceans, the Red Sea maintains amongst the most biodiverse and productive coral reefs worldwide. It is therefore an important region for the exploration of coral reef functioning, and expected to contribute valuable insights towards the understanding of coral reefs in challenging environments. This dissertation assessed the baseline variability of in situ abiotic conditions (temperature, dissolved oxygen, pH, and total alkalinity, among others) in the central Red Sea and highlights these environmental regimes in a global context. Further, focus was directed on biotic factors (biofilm community dynamics, calcification and bioerosion), which underlie reef growth processes and are crucial for maintaining coral reef functioning and ecosystem services. Using full‐year data from an environmental cross‐shelf gradient, the dynamic interplay of abiotic and biotic factors was investigated. In situ observations demonstrate that central Red Sea coral reefs were highly variable on spatial, seasonal, and diel scales, and exhibited comparably high temperature, high salinity, and low dissolved oxygen levels, which on the one hand reflect future ocean predictions. Under these conditions epilithic bacterial and algal assemblages were mainly driven by variables (i.e., temperature, salinity, dissolved oxygen) which are predicted to change strongly in the progression of global climate change, implying an influential bottom up effect on reef‐building communities. On the other hand, measured alkalinity and other carbonate chemistry value were close to the estimates of preindustrial global ocean surface water and thus in favor of reef growth processes. Despite this beneficial carbonate chemistry, calcification and carbonate budgets in the reefs were not higher than in other coral reef regions. In this regard, seasonal calcification patterns suggest that summer temperatures may be exceeding the optima

  11. Diurnal and Seasonal Responses of High Frequency Chlorophyll Fluorescence and PRI Measurements to Abiotic Stress in Almonds

    Science.gov (United States)

    Bambach-Ortiz, N. E.; Paw U, K. T.

    2016-12-01

    Plants have evolved to efficiently utilize light to synthesize energy-rich carbon compounds, and at the same time, dissipate absorbed but excessive photon that would otherwise transfer excitation energy to potentially toxic reactive oxygen species (ROS). Nevertheless, even the most rapidly growing plants with the highest rates of photosynthesis only utilize about half of the light their leaves absorb during the hours of peak irradiance in sun-exposed habitats. Usually, that daily peak of irradiance coincides with high temperature and a high vapor pressure deficit, which are conditions related to plant stomata closure. Consequently, specially in water stressed environments, plants need to have mechanisms to dissipate most of absorbed photons. Plants avoid photo-oxidative damage of the photosynthetic apparatus due to the formation of ROS under excess light using different mechanisms in order to either lower the amount of ROS formation or detoxify already formed ROS. Photoinhibition is defined as a reduction in photosynthetic activity due largely to a sustained reduction in the photochemical efficiency of Photosystem II (PSII), which can be assessed by monitoring Chlorophyll a fluorescence (ChlF). Alternatively, monitoring abiotic stress effects upon photosynthetic activity and photoinhibition may be possible using high frequency spectral reflectance sensors. We aim to find the potential relationships between high frequency PRI and ChlF as indicators of photoinhibition and permanent photodamage at a seasonal scale. Preliminary results show that PRI responses are sensitive to photoinhibition, but provide a poor representation of permanent photodamage observed at a seasonal scale.

  12. Abiotic partitioning of clothianidin under simulated rice field conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Parikh, Sanjai J; Tjeerdema, Ronald S

    2015-10-01

    Clothianidin is registered for pre- and post-flood application in Californian rice fields for control of the rice seed midge, Cricotopus sylvestris, and the rice water weevil, Lissorhoptrus oryzophilus. The objective was to characterize air-water and soil-water partitioning of clothianidin under simulated Californian rice field conditions. Clothianidin was confirmed to be non-volatile (from water) via the gas purge method, as no loss from the aqueous phase was observed at 22 and 37 °C; an upper-limit KH value was calculated at 2.9 × 10(-11) Pa m(3) mol(-1) (20 °C). Soil-water partitioning was determined by the batch equilibrium method using four soils collected from rice fields in the Sacramento Valley, and sorption affinity (Kd ), sorbent capacity, desorption and organic-carbon-normalized distribution (Koc ) were determined. Values for pH, cation exchange capacity and organic matter content ranged from 4.5 to 6.6, from 5.9 to 37.9 and from 1.25 to 1.97% respectively. The log Koc values (22 and 37 °C) ranged from 2.6 to 2.7, while sorption capacity was low at 22 °C and decreased further at 37 °C. Hysteresis was observed in soils at both temperatures, suggesting that bound residues do not readily desorb. Soil-water and air-water partitioning will not significantly reduce offsite transport of clothianidin from flooded rice fields via drainage. © 2014 Society of Chemical Industry.

  13. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  14. ­Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis

    Directory of Open Access Journals (Sweden)

    Agustina Undabarrena

    2017-02-01

    Full Text Available Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes. Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes, oxidative stress (69 genes and antibiotic resistance (97 genes. This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2. Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.

  15. Where and What Is Pristine Marine Aerosol?

    Science.gov (United States)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter

  16. Marine Mammal Protection Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Mammal Protection Act (MMPA or Act) prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high seas,...

  17. Marine gamma spectrometric survey

    International Nuclear Information System (INIS)

    Kostoglodov, V.V.

    1979-01-01

    Presented are theoretical problems physical and geochemical prerequisites and possibilities of practical application of the method of continuous submarine gamma-spectrometric survey and radiometric survey destined for rapid study of the surface layer of marine sediments. Shown is high efficiency and advantages of this method in comparison with traditional and widely spread in marine geology methods of bottom sediments investigation

  18. Marine palynology in progress

    NARCIS (Netherlands)

    Manten, A.A.

    1966-01-01

    One of the things which the Second International Conference on Palynology (held in Utrecht, August 29-September 3, 1966) revealed, was the rapid expansion which marine palynological research has undergone in recent years. This was the main stimulus to organize this special issue of Marine

  19. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  20. Interactions Between Prokaryotes and Dissolved Organic Matter in Marine Waters

    DEFF Research Database (Denmark)

    Traving, Sachia Jo

    organic bound carbon equal in size to atmospheric carbon dioxide. Prokaryotes mediate the fate of a large part of marine DOM, which is their principal source of energy and substrate. However, a large fraction is also left behind in the water column persisting for millennia, and prokaryotes may hold...... the key to understanding the mechanisms controlling the cycling of DOM within marine waters. In the thesis presented here, the aim was to investigate the activity and composition of prokaryotes to determine their functional role in DOM utilization. The thesis incorporates a range of study systems...