WorldWideScience

Sample records for aberrant eukaryotic signal

  1. Engineering key components in a synthetic eukaryotic signal transduction pathway.

    Science.gov (United States)

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways.

  2. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    Science.gov (United States)

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research.

  3. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    Science.gov (United States)

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  4. Aberrant WNT/β-catenin signaling in parathyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Åkerström Göran

    2010-11-01

    Full Text Available Abstract Background Parathyroid carcinoma (PC is a very rare malignancy with a high tendency to recur locally, and recurrent disease is difficult to eradicate. In most western European countries and United States, these malignant neoplasms cause less than 1% of the cases with primary hyperparathyroidism, whereas incidence as high as 5% have been reported from Italy, Japan, and India. The molecular etiology of PC is poorly understood. Results The APC (adenomatous polyposis coli tumor suppressor gene was inactivated by DNA methylation in five analyzed PCs, as determined by RT-PCR, Western blotting, and quantitative bisulfite pyrosequencing analyses. This was accompanied by accumulation of stabilized active nonphosphorylated β-catenin, strongly suggesting aberrant activation of the WNT/β-catenin signaling pathway in these tumors. Treatment of a primary PC cell culture with the DNA hypomethylating agent 5-aza-2'-deoxycytidine (decitabine, Dacogen(r induced APC expression, reduced active nonphosphorylated β-catenin, inhibited cell growth, and caused apoptosis. Conclusion Aberrant WNT/β-catenin signaling by lost expression and DNA methylation of APC, and accumulation of active nonphosphorylated β-catenin was observed in the analyzed PCs. We suggest that adjuvant epigenetic therapy should be considered as an additional option in the treatment of patients with recurrent or metastatic parathyroid carcinoma.

  5. Engineering key components in a synthetic eukaryotic signal transduction pathway

    OpenAIRE

    Antunes, Mauricio S; Kevin J Morey; Tewari-Singh, Neera; Bowen, Tessa A.; Smith, J. Jeff; Webb, Colleen T.; Hellinga, Homme W.; Medford, June I.

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparent...

  6. On eukaryotic intelligence: signaling system's guidance in the evolution of multicellular organization.

    Science.gov (United States)

    Marijuán, Pedro C; del Moral, Raquel; Navarro, Jorge

    2013-10-01

    Communication with the environment is an essential characteristic of the living cell, even more when considering the origins and evolution of multicellularity. A number of changes and tinkering inventions were necessary in the evolutionary transition between prokaryotic and eukaryotic cells, which finally made possible the appearance of genuine multicellular organisms. In the study of this process, however, the transformations experimented by signaling systems themselves have been rarely object of analysis, obscured by other more conspicuous biological traits: incorporation of mitochondria, segregated nucleus, introns/exons, flagellum, membrane systems, etc. Herein a discussion of the main avenues of change from prokaryotic to eukaryotic signaling systems and a review of the signaling resources and strategies underlying multicellularity will be attempted. In the expansion of prokaryotic signaling systems, four main systemic resources were incorporated: molecular tools for detection of solutes, molecular tools for detection of solvent (Donnan effect), the apparatuses of cell-cycle control, and the combined system endocytosis/cytoskeleton. The multiple kinds of enlarged, mixed pathways that emerged made possible the eukaryotic revolution in morphological and physiological complexity. The massive incorporation of processing resources of electro-molecular nature, derived from the osmotic tools counteracting the Donnan effect, made also possible the organization of a computational tissue with huge information processing capabilities: the nervous system. In the central nervous systems of vertebrates, and particularly in humans, neurons have achieved both the highest level of molecular-signaling complexity and the highest degree of information-processing adaptability. Theoretically, it can be argued that there has been an accelerated pace of evolutionary change in eukaryotic signaling systems, beyond the other general novelties introduced by eukaryotic cells in their

  7. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction

    DEFF Research Database (Denmark)

    Persson, Tobias; Yde, Christina W.; Rasmussen, Jakob Ewald

    2007-01-01

    Densely functionalised pyrazole carboxamides and carboxylic acids were synthesised in an expedient manner through saponification and transamidation, respectively, of ester-functionalised pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole...

  8. Mapping paths: new approaches to dissect eukaryotic signaling circuitry [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Nebibe Mutlu

    2016-07-01

    Full Text Available Eukaryotic cells are precisely “wired” to coordinate changes in external and intracellular signals with corresponding adjustments in the output of complex and often interconnected signaling pathways. These pathways are critical in understanding cellular growth and function, and several experimental trends are emerging with applicability toward more fully describing the composition and topology of eukaryotic signaling networks. In particular, recent studies have implemented CRISPR/Cas-based screens in mouse and human cell lines for genes involved in various cell growth and disease phenotypes. Proteomic methods using mass spectrometry have enabled quantitative and dynamic profiling of protein interactions, revealing previously undiscovered complexes and allele-specific protein interactions. Methods for the single-cell study of protein localization and gene expression have been integrated with computational analyses to provide insight into cell signaling in yeast and metazoans. In this review, we present an overview of exemplary studies using the above approaches, relevant for the analysis of cell signaling and indeed, more broadly, for many modern biological applications.

  9. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  10. Aberrant Hedgehog Signaling and Clinical Outcome in Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Winnie W. Lo

    2014-01-01

    Full Text Available Despite the importance of Hedgehog signaling in bone development, the relationship between Hedgehog pathway expression and osteosarcoma clinical characteristics and outcome has not been investigated. In this study of 43 high-grade human osteosarcoma samples, we detected high expression levels of the Hedgehog ligand gene, IHH, and target genes, PTCH1 and GLI1, in most samples. Further analysis in tumors of patients with localized disease at diagnosis identified coexpression of IHH and PTCH1 exclusively in large tumors. Higher levels of IHH were observed more frequently in males and patients with higher levels of GLI1 were more responsive to chemotherapy. Subgroup analysis by tumor size and IHH expression indicated that the well-known association between survival and tumor size was further refined when IHH levels were taken into consideration.

  11. Aberrant splicing in maize rough endosperm3 reveals a conserved role for U12 splicing in eukaryotic multicellular development

    Science.gov (United States)

    Barbazuk, W. Brad

    2017-01-01

    RNA splicing of U12-type introns functions in human cell differentiation, but it is not known whether this class of introns has a similar role in plants. The maize ROUGH ENDOSPERM3 (RGH3) protein is orthologous to the human splicing factor, ZRSR2. ZRSR2 mutations are associated with myelodysplastic syndrome (MDS) and cause U12 splicing defects. Maize rgh3 mutants have aberrant endosperm cell differentiation and proliferation. We found that most U12-type introns are retained or misspliced in rgh3. Genes affected in rgh3 and ZRSR2 mutants identify cell cycle and protein glycosylation as common pathways disrupted. Transcripts with retained U12-type introns can be found in polysomes, suggesting that splicing efficiency can alter protein isoforms. The rgh3 mutant protein disrupts colocalization with a known ZRSR2-interacting protein, U2AF2. These results indicate conserved function for RGH3/ZRSR2 in U12 splicing and a deeply conserved role for the minor spliceosome to promote cell differentiation from stem cells to terminal fates. PMID:28242684

  12. Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms.

    Science.gov (United States)

    Delage, Elise; Puyaubert, Juliette; Zachowski, Alain; Ruelland, Eric

    2013-01-01

    Phosphoinositides are minor constituents of eukaryotic membranes but participate in a wide range of cellular processes. The most abundant and best characterized phosphoinositide species are phosphatidylinositol 4,5-bisphosphate (PI(4,5)P₂) and its main precursor, phosphatidylinositol 4-phosphate (PI4P). PI4P and PI(4,5)P₂ regulate various structural and developmental functions but are also centrally involved in a plethora of signal transduction pathways in all eukaryotic models. They are not only precursors of second messengers but also directly interact with many protein effectors, thus regulating their localisation and/or activity. Furthermore, the discovery of independent PI(4,5)P₂ signalling functions in the nucleus of mammalian cells have open a new perspective in the field. Striking similarities between mammalian, yeast and higher plant phosphoinositide signalling are noticeable, revealing early appearance and evolutionary conservation of this intracellular language. However, major differences have also been highlighted over the years, suggesting that organisms may have evolved different PI4P and PI(4,5)P₂ functions over the course of eukaryotic diversification. Comparative studies of the different eukaryotic models is thus crucial for a comprehensive view of this fascinating signalling system. The present review aims to emphasize convergences and divergences between eukaryotic kingdoms in the mechanisms underlying PI4P and PI(4,5)P₂ roles in signal transduction, in response to extracellular stimuli.

  13. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia.

    Science.gov (United States)

    Johnson, Jacque-Lynne F; Leroux, Michel R

    2010-08-01

    An exciting discovery of the new millennium is that primary cilia, organelles found on most eukaryotic cells, play crucial roles in vertebrate development by modulating Hedgehog, Wnt and PDGF signaling. Analysis of the literature and sequence databases reveals that the ancient signal transduction pathway, which uses cGMP in eukaryotes or related cyclic di-GMP in bacteria, exists in virtually all eukaryotes. However, many eukaryotes that secondarily lost cilia during evolution, including flowering plants, slime molds and most fungi, lack otherwise evolutionarily conserved cGMP signaling components. Based on this intriguing phylogenetic distribution, the presence of cGMP signaling proteins within cilia, and the indispensable roles that cGMP plays in transducing environmental signals in divergent ciliated cells (e.g. vertebrate photoreceptors and Caenorhabditis elegans sensory neurons), we propose that cGMP signaling has a strong ciliary basis. cAMP signaling, also inherent to bacteria and crucial for cilium-dependent olfaction, similarly appears to have widespread usage in diverse cilia. Thus, we argue here that both cyclic nucleotides play essential and potentially ubiquitous roles in modulating ciliary functions.

  14. FIST: a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Borziak, Kirill [ORNL; Jouline, Igor B [ORNL

    2007-01-01

    Motivation: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initi-ated with regions of signal transduction proteins where no known domains can be identified by current domain models. Results: Using profile searches followed by multiple sequence alignment, structure prediction, and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Remote similarity to a known ligand-binding fold and chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.

  15. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren;

    1997-01-01

    We have developed a new method for the identication of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs signicantly better than previous prediction schemes, and can easily be applied to genome-w......-wide data sets. Discrimination between cleaved signal peptides and uncleaved N-terminal signal-anchor sequences is also possible, though with lower precision....

  16. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model

    Science.gov (United States)

    Sethna, Ferzin; Feng, Wei; Ding, Qi; Robison, Alfred J.; Feng, Yue; Wang, Hongbing

    2017-01-01

    Fragile X syndrome (FXS), caused by the loss of functional FMRP, is a leading cause of autism. Neurons lacking FMRP show aberrant mRNA translation and intracellular signalling. Here, we identify that, in Fmr1 knockout neurons, type 1 adenylyl cyclase (Adcy1) mRNA translation is enhanced, leading to excessive production of ADCY1 protein and insensitivity to neuronal stimulation. Genetic reduction of Adcy1 normalizes the aberrant ERK1/2- and PI3K-mediated signalling, attenuates excessive protein synthesis and corrects dendritic spine abnormality in Fmr1 knockout mice. Genetic reduction of Adcy1 also ameliorates autism-related symptoms including repetitive behaviour, defective social interaction and audiogenic seizures. Moreover, peripheral administration of NB001, an experimental compound that preferentially suppresses ADCY1 activity over other ADCY subtypes, attenuates the behavioural abnormalities in Fmr1 knockout mice. These results demonstrate a connection between the elevated Adcy1 translation and abnormal ERK1/2 signalling and behavioural symptoms in FXS. PMID:28218269

  17. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.

    Science.gov (United States)

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-06-01

    The etiopathogenetic mechanisms leading to pigment loss in vitiligo are not fully understood. Notch signaling is required for development and maintenance of melanocyte lineage and acts as a key component among keratinocyte-melanocyte interactions. The current study aimed to investigate the possible role of Notch signaling and its effect on the whole melanocyte lineage in vitiligo and correlating it with the different clinicopathologic parameters. Using immunohistochemical technique, Notch-1 expression was evaluated in 50 lesional and 20 perilesional biopsies of patients with vitiligo in comparison with 20 normal skin biopsies as a control group. Lesional biopsies were stained with human melanoma black-45 and tyrosinase-related protein-2 to demonstrate the melanocyte lineage. Membranous and/or nuclear expression of Notch-1 was in favor of control and perilesional skin, whereas cytoplasmic expression appeared only in vitiliginous lesions (P vitiligo were associated with mild to moderate Notch-1 intensity, whereas generalized vitiligo was associated with strong intensity of expression (P = .02). In conclusion, Notch-1 signaling is inactivated in vitiligo with consequent loss of epidermal and/or follicular active melanocytes. Aberrant Notch signaling in vitiliginous white hair and acral and segmental vitiligo may be the cause of their treatment resistance.

  18. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma.

    Science.gov (United States)

    Xie, Fang; Xu, Xiaoping; Xu, Angao; Liu, Cuiping; Liang, Fenfen; Xue, Minmin; Bai, Lan

    2014-03-01

    Sonic hedgehog (Shh) signaling has been extensively studied and is implicated in various inflammatory diseases and malignant tumors. We summarized the clinicopathological features and performed immunohistochemistry assays to examine expression of Shh signaling proteins in 10 normal mucosa, 32 gallbladder carcinoma (GBC), and 95 chronic cholecystitis (CC) specimens. The CC specimens were classified into three groups according to degree of inflammation. Compared with normal mucosa, CC, and GBC specimens exhibited increased expression of Shh. The immunoreactive score of Shh in the GBC group was higher than that in the mild to moderate CC groups but lower than that in the severe CC group (P cholecystitis to malignant tumors. Compared with CC specimens, GBC specimens showed higher cytoplasmic and membranous expression for Ptch (P < .05). Gli1 staining showed cytoplasmic expression of Gli1 in both CC (60% for mild, 77% for moderate, and 84% for severe) and GBC specimens (97%). Nuclear expression of Gli1 was detected in 16% of severe CC specimens with moderate to poor atypical hyperplasia, and in 62.5% of GBC specimens. Shh expression strongly correlated with expression of Ptch and Gli1. Furthermore, patients with strongly positive Gli1 staining had significantly lower survival rates than those with weakly positive staining. Our data indicate that the Shh signaling pathway is aberrantly activated in CC and GBC, and altered Shh signaling may be involved in the course of development from CC to gallbladder carcinogenesis.

  19. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation.

    Science.gov (United States)

    Katoh, Y; Katoh, M

    2009-09-01

    Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.

  20. Phospho-specific flow cytometry identifies aberrant signaling in indolent B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Blix Egil S

    2012-10-01

    -induced phosphorylation of signaling proteins in distinct cell populations can be used to identify aberrant signaling pathways.

  1. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    Science.gov (United States)

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding.

  2. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Sherri; Rennoll; Gregory; Yochum

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers(CRCs).These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements(WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene(MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review,we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis,novel strategies can be developed to treat individuals suffering from this disease.

  3. Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome.

    Science.gov (United States)

    Xu, Xiaoping; Su, Juan; Li, Ran; Wang, Yadong; Zeng, Di; Wu, Baoping

    2016-04-01

    The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps.

  4. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  5. TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus.

    Science.gov (United States)

    Matsuda, Taito; Murao, Naoya; Katano, Yuki; Juliandi, Berry; Kohyama, Jun; Akira, Shizuo; Kawai, Taro; Nakashima, Kinichi

    2015-01-01

    Pathological conditions such as epilepsy cause misregulation of adult neural stem/progenitor populations in the adult hippocampus in mice, and the resulting abnormal neurogenesis leads to impairment in learning and memory. However, how animals cope with abnormal neurogenesis remains unknown. Here we show that microglia in the mouse hippocampus attenuate convulsive seizure-mediated aberrant neurogenesis through the activation of Toll-like receptor 9 (TLR9), an innate immune sensor known to recognize microbial DNA and trigger inflammatory responses. We found that microglia sense self-DNA from degenerating neurons following seizure, and secrete tumour necrosis factor-α, resulting in attenuation of aberrant neurogenesis. Furthermore, TLR9 deficiency exacerbated seizure-induced cognitive decline and recurrent seizure severity. Our findings thus suggest the existence of bidirectional communication between the innate immune and nervous systems for the maintenance of adult brain integrity.

  6. Aberrant JAK/STAT Signaling Suppresses TFF1 and TFF2 through Epigenetic Silencing of GATA6 in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Cheng-Shyong Wu

    2016-09-01

    Full Text Available Aberrant Janus kinase (JAK/signal transducer and activator of transcription (STAT signaling is crucial to the development of gastric cancer. In this study, we examined the role of STAT3 in the expression and methylation of its targets in gastric cancer patients. Results from RNA sequencing identified an inverse correlation between the expression of STAT3 and GATA6 in 23 pairs of gastric cancer patient samples. We discovered that the expression of GATA6 is epigenetically silenced through promoter methylation in gastric cancer cell lines. Interestingly, the inhibition of STAT3 using a novel STAT3 inhibitor restored the expression of GATA6 and its targets, trefoil factors 1 and 2 (TFF1/2. Moreover, disruption of STAT3 binding to GATA6 promoter by small hairpin RNA restored GATA6 expression in AGS cells. A clinically significant correlation was also observed between the expression of GATA6 and TFF1/2 among tissue samples from 60 gastric cancer patients. Finally, bisulfite pyrosequencing revealed GATA6 methylation in 65% (39/60 of the patients, and those with higher GATA6 methylation tended to have shorter overall survival. In conclusion, we demonstrated that aberrant JAK/STAT signaling suppresses TFF1/2 partially through the epigenetic silencing of GATA6. Therapeutic intervention of STAT3 in reversing the epigenetic status of GATA6 could benefit the treatment of gastric cancer and is worthy of further investigation.

  7. Blunted sympathoinhibitory responses in obesity-related hypertension are due to aberrant central but not peripheral signalling mechanisms.

    Science.gov (United States)

    How, Jackie M Y; Wardak, Suhail A; Ameer, Shaik I; Davey, Rachel A; Sartor, Daniela M

    2014-04-01

    The gut hormone cholecystokinin (CCK) acts at subdiaphragmatic vagal afferents to induce renal and splanchnic sympathoinhibition and vasodilatation, via reflex inhibition of a subclass of cardiovascular-controlling neurons in the rostroventrolateral medulla (RVLM). These sympathoinhibitory and vasodilator responses are blunted in obese, hypertensive rats and our aim in the present study was to determine whether this is attributable to (i) altered sensitivity of presympathetic vasomotor RVLM neurons, and (ii) aberrant peripheral or central signalling mechanisms. Using a diet-induced obesity model, male Sprague-Dawley rats exhibited either an obesity-prone (OP) or obesity-resistant (OR) phenotype when placed on a medium high fat diet for 13-15 weeks; control animals were placed on a low fat diet. OP animals had elevated resting arterial pressure compared to OR/control animals (P obesity-related hypertension are due to alterations in RVLM neuronal responses, resulting from aberrant central but not peripheral signalling mechanisms. In obesity, blunted sympathoinhibitory mechanisms may lead to increased regional vascular resistance and contribute to the development of hypertension.

  8. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells.

    OpenAIRE

    von Heijne, G

    1984-01-01

    A statistical analysis of the distribution of charged residues in the N-terminal region of 39 prokaryotic and 134 eukaryotic signal sequences reveals a remarkable similarity between the two samples, both in terms of net charge and in terms of the position of charged residues within the N-terminal region, and suggests that the formyl group on Metf is not removed in prokaryotic signal sequences.

  9. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism.

    Directory of Open Access Journals (Sweden)

    Erik Södersten

    2014-09-01

    Full Text Available Polycomb group (PcG proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq in combination with expression analysis by RNA-sequencing (RNA-seq showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.

  10. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  11. Brg1 loss attenuates aberrant wnt-signalling and prevents wnt-dependent tumourigenesis in the murine small intestine.

    Directory of Open Access Journals (Sweden)

    Aliaksei Z Holik

    2014-07-01

    Full Text Available Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance.

  12. Breakdown of phylogenetic signal: a survey of microsatellite densities in 454 shotgun sequences from 154 non model eukaryote species.

    Directory of Open Access Journals (Sweden)

    Emese Meglécz

    Full Text Available Microsatellites are ubiquitous in Eukaryotic genomes. A more complete understanding of their origin and spread can be gained from a comparison of their distribution within a phylogenetic context. Although information for model species is accumulating rapidly, it is insufficient due to a lack of species depth, thus intragroup variation is necessarily ignored. As such, apparent differences between groups may be overinflated and generalizations cannot be inferred until an analysis of the variation that exists within groups has been conducted. In this study, we examined microsatellite coverage and motif patterns from 454 shotgun sequences of 154 Eukaryote species from eight distantly related phyla (Cnidaria, Arthropoda, Onychophora, Bryozoa, Mollusca, Echinodermata, Chordata and Streptophyta to test if a consistent phylogenetic pattern emerges from the microsatellite composition of these species. It is clear from our results that data from model species provide incomplete information regarding the existing microsatellite variability within the Eukaryotes. A very strong heterogeneity of microsatellite composition was found within most phyla, classes and even orders. Autocorrelation analyses indicated that while microsatellite contents of species within clades more recent than 200 Mya tend to be similar, the autocorrelation breaks down and becomes negative or non-significant with increasing divergence time. Therefore, the age of the taxon seems to be a primary factor in degrading the phylogenetic pattern present among related groups. The most recent classes or orders of Chordates still retain the pattern of their common ancestor. However, within older groups, such as classes of Arthropods, the phylogenetic pattern has been scrambled by the long independent evolution of the lineages.

  13. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin

    KAUST Repository

    Burki, Fabien

    2012-05-16

    The transition from endosymbiont to organelle in eukaryotic cells involves the transfer of significant numbers of genes to the host genomes, a process known as endosymbiotic gene transfer (EGT). In the case of plastid organelles, EGTs have been shown to leave a footprint in the nuclear genome that can be indicative of ancient photosynthetic activity in present-day plastid-lacking organisms, or even hint at the existence of cryptic plastids. Here,we evaluated the impact of EGTon eukaryote genomes by reanalyzing the recently published EST dataset for Chromera velia, an interesting test case of a photosynthetic alga closely related to apicomplexan parasites. Previously, 513 genes were reported to originate from red and green algae in a 1:1 ratio. In contrast, by manually inspecting newly generated trees indicating putative algal ancestry, we recovered only 51 genes congruent with EGT, of which 23 and 9 were of red and green algal origin, respectively,whereas 19 were ambiguous regarding the algal provenance.Our approach also uncovered 109 genes that branched within a monocot angiosperm clade, most likely representing a contamination. We emphasize the lack of congruence and the subjectivity resulting from independent phylogenomic screens for EGT, which appear to call for extreme caution when drawing conclusions for major evolutionary events. 2012 The Author(s).

  14. Ectopic activation of Wnt/β-catenin signaling in lens fiber cells results in cataract formation and aberrant fiber cell differentiation.

    Directory of Open Access Journals (Sweden)

    Barbora Antosova

    Full Text Available The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.

  15. Aberrant Cytoplasm Localization and Protein Stability of SIRT1 is Regulated by PI3K/IGF-1R Signaling in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Byles, Laura K. Chmilewski, Joyce Wang, Lijia Zhu, Lora W. Forman, Douglas V. Faller, Yan Dai

    2010-01-01

    Full Text Available SIRT1, an NAD-dependent histone/protein deacetylase, has classically been thought of as a nuclear protein. In this study, we demonstrate that SIRT1 is mainly localized in the nucleus of normal cells, but is predominantly localized in the cytoplasm of the cancer / transformed cells we tested. We found this predominant cytoplasmic localization of SIRT1 is regulated by elevated mitotic activity and PI3K/IGF-1R signaling in cancer cells. We show that aberrant cytoplasmic localization of SIRT1 is due to increased protein stability and is regulated by PI3K/IGF-1R signaling. In addition, we determined that SIRT1 is required for PI3K-mediated cancer cell growth. Our study represents the first identification that aberrant cytoplasm localization is one of the specific alternations to SIRT1 that occur in cancer cells, and PI3K/IGF-1R signaling plays an important role in the regulation of cytoplasmic SIRT1 stability. Our findings suggest that the over-expressed cytoplasmic SIRT1 in cancer cells may greatly contribute to its cancer-specific function by working downstream of the PI3K/IGF-1R signaling pathway.

  16. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    Science.gov (United States)

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-08-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.

  17. Phase aberration effects in elastography.

    Science.gov (United States)

    Varghese, T; Bilgen, M; Ophir, J

    2001-06-01

    In sonography, phase aberration plays a role in the corruption of sonograms. Phase aberration does not have a significant impact on elastography, if statistically similar phase errors are present in both the pre- and postcompression signals. However, if the phase errors are present in only one of the pre- or postcompression signal pairs, the precision of the strain estimation process will be reduced. In some cases, increased phase errors may occur only in the postcompression signal due to changes in the tissue structure with the applied compression. Phase-aberration effects increase with applied strain and may be viewed as an image quality derating factor, much like frequency-dependent attenuation or undesired lateral tissue motion. In this paper, we present a theoretical and simulation study of the effects of phase aberration on the elastographic strain-estimation process, using the strain filter approach.

  18. Aberrant expression of proteins involved in signal transduction and DNA repair pathways in lung cancer and their association with clinical parameters.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available BACKGROUND: Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues. METHODOLOGY/ PRINCIPAL FINDINGS: We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA assay. The results showed that 18 molecules were significantly different (p<0.05 by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery. CONCLUSIONS/ SIGNIFICANCE: Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers.

  19. Blocking Modification of Eukaryotic Initiation 5A2 Antagonizes Cervical Carcinoma via Inhibition of RhoA/ROCK Signal Transduction Pathway.

    Science.gov (United States)

    Liu, Xiaojun; Chen, Dong; Liu, Jiamei; Chu, Zhangtao; Liu, Dongli

    2016-09-07

    Cervical carcinoma is one of the leading causes of cancer-related death for female worldwide. Eukaryotic initiation factor 5A2 belongs to the eukaryotic initiation factor 5A family and is proposed to be a key factor involved in the development of diverse cancers. In the current study, a series of in vivo and in vitro investigations were performed to characterize the role of eukaryotic initiation factor 5A2 in oncogenesis and metastasis of cervical carcinoma. The expression status of eukaryotic initiation factor 5A2 in 15 cervical carcinoma patients was quantified. Then, the effect of eukaryotic initiation factor 5A2 knockdown on in vivo tumorigenicity ability, cell proliferation, cell cycle distribution, and cell mobility of HeLa cells was measured. To uncover the mechanism driving the function of eukaryotic initiation factor 5A2 in cervical carcinoma, expression of members within RhoA/ROCK pathway was detected, and the results were further verified with an RhoA overexpression modification. The level of eukaryotic initiation factor 5A2 in cervical carcinoma samples was significantly higher than that in paired paratumor tissues (P ROCK I, and ROCK II were downregulated. The above-mentioned changes in eukaryotic initiation factor 5A2 knockdown cells were alleviated by the overexpression of RhoA. The major findings outlined in the current study confirmed the potential of eukaryotic initiation factor 5A2 as a promising prognosis predictor and therapeutic target for cervical carcinoma treatment. Also, our data inferred that eukaryotic initiation factor 5A2 might function in carcinogenesis of cervical carcinoma through an RhoA/ROCK-dependent manner.

  20. A phase IIa randomized, double-blind trial of erlotinib in inhibiting epidermal growth factor receptor signaling in aberrant crypt foci of the colorectum.

    Science.gov (United States)

    Gillen, Daniel L; Meyskens, Frank L; Morgan, Timothy R; Zell, Jason A; Carroll, Robert; Benya, Richard; Chen, Wen-Pin; Mo, Allen; Tucker, Chris; Bhattacharya, Asmita; Huang, Zhiliang; Arcilla, Myra; Wong, Vanessa; Chung, Jinah; Gonzalez, Rachel; Rodriguez, Luz Maria; Szabo, Eva; Rosenberg, Daniel W; Lipkin, Steven M

    2015-03-01

    Colorectal cancer progresses through multiple distinct stages that are potentially amenable to chemopreventative intervention. Epidermal growth factor receptor (EGFR) inhibitors are efficacious in advanced tumors including colorectal cancer. There is significant evidence that EGFR also plays important roles in colorectal cancer initiation, and that EGFR inhibitors block tumorigenesis. We performed a double-blind randomized clinical trial to test whether the EGFR inhibitor erlotinib given for up to 30 days had an acceptable safety and efficacy profile to reduce EGFR signaling biomarkers in colorectal aberrant crypt foci (ACF), a subset of which progress to colorectal cancer, and normal rectal tissue. A total of 45 patients were randomized to one of three erlotinib doses (25, 50, and 100 mg) with randomization stratified by nonsteroidal anti-inflammatory drug (NSAID) use. There were no unanticipated adverse events with erlotinib therapy. Erlotinib was detected in both normal rectal mucosa and ACFs. Colorectal ACF phosphorylated ERK (pERK), phosphorylated EGFR (pEGFR), and total EGFR signaling changes from baseline were modest and there was no dose response. Overall, this trial did not meet is primary efficacy endpoint. Colorectal EGFR signaling inhibition by erlotinib is therefore likely insufficient to merit further studies without additional prescreening stratification or potentially longer duration of use.

  1. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  2. Eukaryotic vs. prokaryotic chemosensory systems.

    Science.gov (United States)

    Sbarbati, Andrea; Merigo, Flavia; Osculati, Francesco

    2010-04-01

    In the last decades, microbiologists demonstrated that microorganisms possess chemosensory capabilities and communicate with each other via chemical signals. In parallel, it was demonstrated that solitary eukaryotic chemosensory cells are diffusely located on the mucosae of digestive and respiratory apparatuses. It is now evident that on the mucosal surfaces of vertebrates, two chemoreceptorial systems (i.e. eukaryotic and prokaryotic) coexist in a common microenvironment. To date, it is not known if the two chemosensory systems reciprocally interact and compete for detection of chemical cues. This appears to be a fruitful field of study and future researches must consider that the mucosal epithelia possess more chemosensory capabilities than previously supposed.

  3. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    damage signalling in low- and high-grade human gliomas, and analyze the sources of such endogenous genotoxic stress. Based on analyses of human glioblastoma multiforme (GBM) cell lines, normal astrocytes and clinical specimens from grade II astrocytomas (n=41) and grade IV GBM (n=60), we conclude......, initially limiting cell proliferation (low Ki-67 index) and selecting for mutations of p53 and likely other genes that allow escape (higher Ki-67 index) from the checkpoint and facilitate tumor progression. Overall, these results support the potential role of the DDR machinery as a barrier to gliomagenesis...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development....

  4. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors.

    Science.gov (United States)

    Hamada, Kozo; Terauchi, Akiko; Nakamura, Kyoko; Higo, Takayasu; Nukina, Nobuyuki; Matsumoto, Nagisa; Hisatsune, Chihiro; Nakamura, Takeshi; Mikoshiba, Katsuhiko

    2014-09-23

    The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.

  5. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem.

    Science.gov (United States)

    Lee, Byeong-ha; Johnston, Robyn; Yang, Yan; Gallavotti, Andrea; Kojima, Mikiko; Travençolo, Bruno A N; Costa, Luciano da F; Sakakibara, Hitoshi; Jackson, David

    2009-05-01

    One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.

  6. Studies of aberrant phyllotaxy1 Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem1[W][OA

    Science.gov (United States)

    Lee, Byeong-ha; Johnston, Robyn; Yang, Yan; Gallavotti, Andrea; Kojima, Mikiko; Travençolo, Bruno A.N.; Costa, Luciano da F.; Sakakibara, Hitoshi; Jackson, David

    2009-01-01

    One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants. PMID:19321707

  7. Adipocytes from New Zealand Obese Mice Exhibit Aberrant Proinflammatory Reactivity to the Stress Signal Heat Shock Protein 60

    Directory of Open Access Journals (Sweden)

    Tina Märker

    2014-01-01

    Full Text Available Adipocytes release immune mediators that contribute to diabetes-associated inflammatory processes. As the stress protein heat shock protein 60 (Hsp60 induces proinflammatory adipocyte activities, we hypothesized that adipocytes of diabetes-predisposed mice exhibit an increased proinflammatory reactivity to Hsp60. Preadipocytes and mature adipocytes from nonobese diabetic (NOD, New Zealand obese (NZO, and C57BL/6J mice were analyzed for Hsp60 binding, Hsp60-activated signaling pathways, and Hsp60-induced release of the chemokine CXCL-1 (KC, interleukin 6 (IL-6, and macrophage chemoattractant protein-1 (MCP-1. Hsp60 showed specific binding to (pre-adipocytes of NOD, NZO, and C57BL/6J mice. Hsp60 binding involved conserved binding structure(s and Hsp60 epitopes and was strongest to NZO mouse-derived mature adipocytes. Hsp60 exposure induced KC, IL-6, and MCP-1 release from (pre-adipocytes of all mouse strains with a pronounced increase of IL-6 release from NZO mouse-derived adipocytes. Compared to NOD and C57BL/6J mouse derived cells, Hsp60-induced formation of IL-6, KC, and MCP-1 from NZO mouse-derived (pre-adipocytes strongly depended on NFκB-activation. Increased Hsp60 binding and Hsp60-induced IL-6 release by mature adipocytes of NZO mice suggest that enhanced adipocyte reactivity to the stress signal Hsp60 contributes to inflammatory processes underlying diabetes associated with obesity and insulin resistance.

  8. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling.

    Directory of Open Access Journals (Sweden)

    Georg Kern

    Full Text Available Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506 induced TGF-β-like effects, manifested by increased expression of NAD(PH-oxidase 4 (Nox4, transgelin, tropomyosin 1, and procollagen α1(V mRNA after three days. The macrolide mTOR inhibitor rapamycin had similar effects, while cyclosporine A did not induce fibrose-related genes. Concentration dependence curves were sigmoid, where mRNA expression was induced already at low nanomolar levels of tacrolimus, and reached saturation at 100-300 nM. The effects were independent of extracellular TGF-β as confirmed by the use of neutralizing antibodies, and thus most likely caused by aberrant TGF-β receptor signaling, where binding of tacrolimus to the regulatory FKBP12 protein results in a "leaky" TGF-β receptor. The myofibroblast marker α-smooth muscle actin was neither induced by tacrolimus nor by TGF-β1, indicating an incomplete activation of TK-173 fibroblasts under culture conditions. Tacrolimus- and TGF-β1-induced Nox4 protein upregulation was confirmed by Western blotting, and was accompanied by a rise in intracellular H2O2 concentration. Si-RNA mediated knock-down of Nox4 expression prevented up-regulation of procollagen α1(V mRNA in tacrolimus-treated cells, but induced procollagen α1(V expression in control cells. Nox4 knock-down had no significant effect on the other genes tested. TGF-β is a key molecule in fibrosis, and the constant activation of aberrant receptor signaling by tacrolimus might contribute to the long-term development of interstitial kidney fibrosis in immunosuppressed patients. Nox4 levels possibly play a regulatory role in these processes.

  9. Inhibition of p300 histone acetyltransferase activity in palate mesenchyme cells attenuates Wnt signaling via aberrant E-cadherin expression.

    Science.gov (United States)

    Warner, Dennis R; Smith, Scott C; Smolenkova, Irina A; Pisano, M Michele; Greene, Robert M

    2016-03-01

    p300 is a multifunctional transcriptional coactivator that interacts with numerous transcription factors and exhibits protein/histone acetyltransferase activity. Loss of p300 function in humans and in mice leads to craniofacial defects. In this study, we demonstrated that inhibition of p300 histone acetyltransferase activity with the compound, C646, altered the expression of several genes, including Cdh1 (E-cadherin) in mouse maxillary mesenchyme cells, which are the cells that give rise to the secondary palate. The increased expression of plasma membrane-bound E-cadherin was associated with reduced cytosolic β-catenin, that led to attenuated signaling through the canonical Wnt pathway. Furthermore, C646 reduced both cell proliferation and the migratory ability of these cells. These results suggest that p300 histone acetyltransferase activity is critical for Wnt-dependent palate mesenchymal cell proliferation and migration, both processes that play a significant role in morphogenesis of the palate.

  10. 骨肉瘤重要信号通路的遗传学研究%Genetic aberrations of key signaling pathways in human osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    周文雅; 王国文; 郝梦泽; 杜晓玲; 杨蕴; 杨吉龙

    2015-01-01

    number change pattern,then the samples were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify the altered pathways in the osteosarcoma.To validate the aberrations of these key pathways,the alterations of VEGF pathway were selected to confirm by the methods of fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in formalin-fixed and paraffin-embedded (FFPE) osteosarcoma archival tissues.Results The KEEG analysis of aCGH data identified 33 genetically altered pathways in osteosarcomas.Among them 20 pathways were identified genetic amplifications,such as VEGF and mTOR signaling pathways.Thirteen pathways were genetic deletions,such as Wnt and Hedgehog signaling pathways.The genetic aberrations of cell-cell-matrix pathway such as CAMs,Adherens junction and Tight junction pathways implied the genetically alterations of these pathways which are associated with the tumor invasion and metastasis.Validation the aberrations of VEGF pathway showed that VEGFA gene was significantly amplified.The positive protein expression of VEGFA had a significant association with microvessel density (MVD).Conclusion There are genetic aberrations which involved the component genes of VEGF,mTOR,CAMs,Adherens junction,Wnt,Hedgehog and other 26 signaling pathways.The alterations of these pathways which are significantly associated with tumor invasion,metastasis and progression suggest that the genetic aberrations of these key pathways might contribute to the tumorigenesis and progression in human osteosarcoma,and provide molecular genetic evidence for targeted therapy.

  11. TrkB reduction exacerbates Alzheimer's disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice.

    Science.gov (United States)

    Devi, L; Ohno, M

    2015-05-05

    Accumulating evidence shows that brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) significantly decrease early in Alzheimer's disease (AD). However, it remains unclear whether BDNF/TrkB reductions may be mechanistically involved in the pathogenesis of AD. To address this question, we generated 5XFAD transgenic mice with heterozygous TrkB knockout (TrkB(+/-)·5XFAD), and tested the effects of TrkB reduction on AD-like features in this mouse model during an incipient stage that shows only modest amyloid-β (Aβ) pathology and retains normal mnemonic function. TrkB(+/-) reduction exacerbated memory declines in 5XFAD mice at 4-5 months of age as assessed by the hippocampus-dependent spontaneous alternation Y-maze task, while the memory performance was not affected in TrkB(+/-) mice. Meanwhile, TrkB(+/-)·5XFAD mice were normal in nest building, a widely used measure for social behavior, suggesting the memory-specific aggravation of AD-associated behavioral impairments. We found no difference between TrkB(+/-)·5XFAD and 5XFAD control mice in cerebral plaque loads, Aβ concentrations including total Aβ42 and soluble oligomers and β-amyloidogenic processing of amyloid precursor protein. Interestingly, reductions in hippocampal expression of AMPA/NMDA glutamate receptor subunits as well as impaired signaling pathways downstream to TrkB such as CREB (cAMP response element-binding protein) and Akt/GSK-3β (glycogen synthase kinase-3β) were observed in TrkB(+/-)·5XFAD mice but not in 5XFAD mice. Among these signaling aberrations, only Akt/GSK-3β dysfunction occurred in TrkB(+/-) mice, while others were synergistic consequences between TrkB reduction and subthreshold levels of Aβ in TrkB(+/-)·5XFAD mice. Collectively, our results indicate that reduced TrkB does not affect β-amyloidosis but exacerbates the manifestation of hippocampal mnemonic and signaling dysfunctions in early AD.

  12. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  13. Chicago aberration correction work.

    Science.gov (United States)

    Beck, V D

    2012-12-01

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system.

  14. Chicago aberration correction work

    Energy Technology Data Exchange (ETDEWEB)

    Beck, V.D., E-mail: vnlbeck@earthlink.net [1 Hobby Drive, Ridgefield, CT 06877-01922 (United States)

    2012-12-15

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system. -- Highlights: Black-Right-Pointing-Pointer Crewe and his group made significant advances in aberration correction and reduction. Black-Right-Pointing-Pointer A deeper understanding of the quadrupole octopole corrector was developed. Black-Right-Pointing-Pointer A scheme to correct spherical aberration using hexapoles was developed. Black-Right-Pointing-Pointer Chromatic aberration was corrected using a uniform field mirror.

  15. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  16. Aberration Corrected Emittance Exchange

    CERN Document Server

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  17. Immunodetection of Murine Lymphotoxins in Eukaryotic Cells.

    Science.gov (United States)

    Boitchenko, Veronika E.; Korobko, Vyacheslav G.; Prassolov, Vladimir S.; Kravchenko, Vladimir V.; Kuimov, Alexander N.; Turetskaya, Regina L.; Kuprash, Dmitry V.; Nedospasov, Sergei A.

    2000-10-01

    Lymphotoxins alpha and beta (LTalpha and LTbeta) are members of tumor necrosis factor superfamily. LT heterotrimers exist on the surface of lymphocytes and signal through LTbeta receptor while soluble LTalpha homotrimer can signal through TNF receptors p55 and p75. LT-, as well as TNF-mediated signaling are important for the organogenesis and maintenance of microarchitecture of secondary lymphoid organs in mice and has been implicated in the mechanism of certain inflammatory syndromes in humans. In this study we describe the generation of eukaryotic expression plasmids encoding murine LTalpha and LTbeta genes and a prokaryotic expression construct for murine LTalpha. Using recombinant proteins expressed by these vectors as tools for antisera selection, we produced and characterized several polyclonal antibodies capable of detecting LT proteins in eukaryotic cells.

  18. 3H-labelling of myo-inositol at L-C1 minimizes aberrant 3H in nucleotides

    DEFF Research Database (Denmark)

    Christensen, Søren; Jensen, Annelie Kolbjørn; Simonsen, L.O.

    2002-01-01

    aberrant K3H-labelling, inositol phosphate signalling, (3H)myo-inositol labelling, myo-inositol metabolism......aberrant K3H-labelling, inositol phosphate signalling, (3H)myo-inositol labelling, myo-inositol metabolism...

  19. Expanding the eukaryotic genetic code

    Science.gov (United States)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  20. Expanding the eukaryotic genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Endosymbiosis and Eukaryotic Cell Evolution.

    Science.gov (United States)

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics.

  2. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.

    2014-11-21

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  3. Analysis of miRNA profiles identified miR-196a as a crucial mediator of aberrant PI3K/AKT signaling in lung cancer cells.

    Science.gov (United States)

    Guerriero, Ilaria; D'Angelo, Daniela; Pallante, Pierlorenzo; Santos, Mafalda; Scrima, Marianna; Malanga, Donatella; De Marco, Carmela; Ravo, Maria; Weisz, Alessandro; Laudanna, Carmelo; Ceccarelli, Michele; Falco, Geppino; Rizzuto, Antonia; Viglietto, Giuseppe

    2016-11-17

    Hyperactivation of the PI3K/AKT pathway is observed in most human cancer including lung carcinomas. Here we have investigated the role of miRNAs as downstream targets of activated PI3K/AKT signaling in Non Small Cell Lung Cancer (NSCLC). To this aim, miRNA profiling was performed in human lung epithelial cells (BEAS-2B) expressing active AKT1 (BEAS-AKT1-E17K), active PI3KCA (BEAS-PIK3CA-E545K) or with silenced PTEN (BEAS-shPTEN).Twenty-four differentially expressed miRNAs common to BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells were identified through this analysis, with miR-196a being the most consistently up-regulated miRNA. Interestingly, miR-196a was significantly overexpressed also in human NSCLC-derived cell lines (n=11) and primary lung cancer samples (n=28).By manipulating the expression of miR-196a in BEAS-2B and NCI-H460 cells, we obtained compelling evidence that this miRNA acts downstream the PI3K/AKT pathway, mediating some of the proliferative, pro-migratory and tumorigenic activity that this pathway exerts in lung epithelial cells, possibly through the regulation of FoxO1, CDKN1B (hereafter p27) and HOXA9.

  4. Evolutionary origin of eukaryotic cells.

    Science.gov (United States)

    Kostianovsky, M

    2000-01-01

    This article reviews literature on the transition from rudimentary prokaryotic life to eukaryotes. An overview of the differences between these organisms and theories of eukaryogenesis are reviewed. Various methods of investigating the transformation from prokaryotes to eukaryotes are elaborated, including the fossil, the molecular and living records, and examples are given. Lastly, the recent molecular studies and the impact on phylogenetic classification for the tree of life, based on molecular evolution, are discussed.

  5. Bacterial scaffolds assemble novel higher-order complexes to reengineer eukaryotic cell processes.

    Science.gov (United States)

    Lesser, Cammie F; Leong, John M

    2011-07-05

    Many microbial pathogens use specialized secretion systems to inject proteins referred to as effectors directly into eukaryotic host cells. These effectors directly target various eukaryotic signaling pathways and cellular processes, often by mimicking the activity of host cell proteins. Effectors of pathogenic Escherichia coli and Salmonella typhimurium can also act as molecular scaffolds that not only recruit but also directly regulate the activity and localization of multiple eukaryotic proteins. By assembling and localizing disparate signaling pathways, the bacteria can reengineer host cell processes to generate novel processes not previously observed in eukaryotic cells.

  6. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2008-07-01

    Full Text Available Abstract Background Chlamydiae are obligate intracellular bacteria of protists, invertebrates and vertebrates, but have not been found to date in photosynthetic eukaryotes (algae and embryophytes. Genes of putative chlamydial origin, however, are present in significant numbers in sequenced genomes of photosynthetic eukaryotes. It has been suggested that such genes were acquired by an ancient horizontal gene transfer from Chlamydiae to the ancestor of photosynthetic eukaryotes. To further test this hypothesis, an extensive search for proteins of chlamydial origin was performed using several recently sequenced algal genomes and EST databases, and the proteins subjected to phylogenetic analyses. Results A total of 39 proteins of chlamydial origin were retrieved from the photosynthetic eukaryotes analyzed and their identity verified through phylogenetic analyses. The distribution of the chlamydial proteins among four groups of photosynthetic eukaryotes (Viridiplantae, Rhodoplantae, Glaucoplantae, Bacillariophyta was complex suggesting multiple acquisitions and losses. Evidence is presented that all except one of the chlamydial genes originated from an ancient endosymbiosis of a chlamydial bacterium into the ancestor of the Plantae before their divergence into Viridiplantae, Rhodoplantae and Glaucoplantae, i.e. more than 1.1 BYA. The chlamydial proteins subsequently spread through secondary plastid endosymbioses to other eukaryotes. Of 20 chlamydial proteins recovered from the genomes of two Bacillariophyta, 10 were of rhodoplant, and 10 of viridiplant origin suggesting that they were acquired by two different secondary endosymbioses. Phylogenetic analyses of concatenated sequences demonstrated that the viridiplant secondary endosymbiosis likely occurred before the divergence of Chlorophyta and Streptophyta. Conclusion We identified 39 proteins of chlamydial origin in photosynthetic eukaryotes signaling an ancient invasion of the ancestor of the

  7. Aberration Correction in Electron Microscopy

    CERN Document Server

    Rose, Harald H

    2005-01-01

    The resolution of conventional electron microscopes is limited by spherical and chromatic aberrations. Both defects are unavoidable in the case of static rotationally symmetric electromagnetic fields (Scherzer theorem). Multipole correctors and electron mirrros have been designed and built, which compensate for these aberrations. The principles of correction will be demonstrated for the tetrode mirror, the quadrupole-octopole corrector and the hexapole corrector. Electron mirrors require a magnetic beam separator free of second-order aberrations. The multipole correctors are highly symmetric telescopic systems compensating for the defects of the objective lens. The hexapole corrector has the most simple structure yet eliminates only the spherical aberration, whereas the mirror and the quadrupole-octopole corrector are able to correct for both aberrations. Chromatic correction is achieved in the latter corrector by cossed electric and magnetic quadrupoles acting as first-order Wien filters. Micrographs obtaine...

  8. Camera processing with chromatic aberration.

    Science.gov (United States)

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  9. Alternative splicing: a pivotal step between eukaryotic transcription and translation.

    Science.gov (United States)

    Kornblihtt, Alberto R; Schor, Ignacio E; Alló, Mariano; Dujardin, Gwendal; Petrillo, Ezequiel; Muñoz, Manuel J

    2013-03-01

    Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.

  10. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  11. What Entamoeba histolytica and Giardia lamblia tell us about the evolution of eukaryotic diversity

    Indian Academy of Sciences (India)

    J Samuelson

    2002-11-01

    Entamoeba histolytica and Giardia lamblia are microaerophilic protists, which have long been considered models of ancient pre-mitochondriate eukaryotes. As transitional eukaryotes, amoebae and giardia appeared to lack organelles of higher eukaryotes and to depend upon energy metabolism appropriate for anaerobic conditions, early in the history of the planet. However, our studies have shown that amoebae and giardia contain splicoeosomal introns, ras-family signal-transduction proteins, ATP-binding casettes (ABC)-family drug transporters, Golgi, and a mitochondrion-derived organelle (amoebae only). These results suggest that most of the organelles of higher eukaryotes were present in the common ancestor of all eukaryotes, and so dispute the notion of transitional eukaryotic forms. In addition, phylogenetic studies suggest many of the genes encoding the fermentation enzymes of amoebae and giardia derive from prokaryotes by lateral gene transfer (LGT). While LGT has recently been shown to be an important determinant of prokaryotic evolution, this is the first time that LGT has been shown to be an important determinant of eukaryotic evolution. Further, amoebae contain cyst wall-associated lectins, which resemble, but are distinct from lectins in the walls of insects (convergent evolution). Giardia have a novel microtubule-associated structure which tethers together pairs of nuclei during cell division. It appears then that amoebae and giardia tell us less about the origins of eukaryotes and more about the origins of eukaryotic diversity.

  12. Aberrant Glycosylation as Biomarker for Cancer: Focus on CD43

    Directory of Open Access Journals (Sweden)

    Franca Maria Tuccillo

    2014-01-01

    Full Text Available Glycosylation is a posttranslational modification of proteins playing a major role in cell signalling, immune recognition, and cell-cell interaction because of their glycan branches conferring structure variability and binding specificity to lectin ligands. Aberrant expression of glycan structures as well as occurrence of truncated structures, precursors, or novel structures of glycan may affect ligand-receptor interactions and thus interfere with regulation of cell adhesion, migration, and proliferation. Indeed, aberrant glycosylation represents a hallmark of cancer, reflecting cancer-specific changes in glycan biosynthesis pathways such as the altered expression of glycosyltransferases and glycosidases. Most studies have been carried out to identify changes in serum glycan structures. In most cancers, fucosylation and sialylation are significantly modified. Thus, aberrations in glycan structures can be used as targets to improve existing serum cancer biomarkers. The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. In this review, we discuss the aberrant protein glycosylation associated with human cancer and the identification of protein glycoforms as cancer biomarkers. In particular, we will focus on the aberrant CD43 glycosylation as cancer biomarker and the potential to exploit the UN1 monoclonal antibody (UN1 mAb to identify aberrant CD43 glycoforms.

  13. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

    Directory of Open Access Journals (Sweden)

    Turk Vito

    2009-11-01

    Full Text Available Abstract Background The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea. Results We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity. Conclusion This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future

  14. Eukaryotic protein domains as functional units of cellular evolution

    DEFF Research Database (Denmark)

    Jin, Jing; Xie, Xueying; Chen, Chen;

    2009-01-01

    domain compositions and functional properties, termed "domain clubs," which we use to compare multiple eukaryotic proteomes. This analysis shows that different domain types can take distinct evolutionary trajectories, which correlate with the conservation, gain, expansion, or decay of particular...... of different domain types to assess the molecular compartment occupied by each domain. This reveals that specific subsets of domains demarcate particular cellular processes, such as growth factor signaling, chromatin remodeling, apoptotic and inflammatory responses, or vesicular trafficking. We suggest...

  15. Open Questions on the Origin of Eukaryotes.

    Science.gov (United States)

    López-García, Purificación; Moreira, David

    2015-11-01

    Despite recent progress, the origin of the eukaryotic cell remains enigmatic. It is now known that the last eukaryotic common ancestor was complex and that endosymbiosis played a crucial role in eukaryogenesis at least via the acquisition of the alphaproteobacterial ancestor of mitochondria. However, the nature of the mitochondrial host is controversial, although the recent discovery of an archaeal lineage phylogenetically close to eukaryotes reinforces models proposing archaea-derived hosts. We argue that, in addition to improved phylogenomic analyses with more comprehensive taxon sampling to pinpoint the closest prokaryotic relatives of eukaryotes, determining plausible mechanisms and selective forces at the origin of key eukaryotic features, such as the nucleus or the bacterial-like eukaryotic membrane system, is essential to constrain existing models.

  16. Aberration compensation and resolution improvement of focus modulation microscopy

    Science.gov (United States)

    Zheng, Juanjuan; Gao, Peng; Shao, Xiaopeng

    2017-01-01

    Confocal laser scanning microscopy (CLSM) has wide applications in biological research and medical diagnosis. However, the spatial resolution and signal to noise ratio (SNR) of CLSM is reduced in the presence of an aberration. Here we improve the pupil-segmentation method to measure and compensate for aberrations in focus modulation CLSM (FM-CLSM), which uses Gaussian-type and doughnut-like foci to scan a sample in sequence. As a result, FM-CLSM can provide images with a high resolution and a high SNR for biomedical or industrial applications.

  17. Eukaryotic diversity in historical soil samples

    NARCIS (Netherlands)

    Moon-van der Staay, S.Y.; Tzeneva, V.A.; Staay, van der G.W.M.; Vos, de W.M.; Smidt, H.; Hackstein, J.H.P.

    2006-01-01

    The eukaryotic biodiversity in historical air-dried samples of Dutch agricultural soil has been assessed by random sequencing of an 18S rRNA gene library and by denaturing gradient gel electrophoresis. Representatives of nearly all taxa of eukaryotic soil microbes could be identified, demonstrating

  18. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes.

    Science.gov (United States)

    Vega-Cabrera, Luz A; Pardo-López, Liliana

    2017-02-01

    Membrane remodeling processes in eukaryotes, such as those involved in endocytosis and intracellular trafficking, are mediated by a large number of structural, accessory and regulatory proteins. These processes occur in all cell types, enabling the exchange of signals and/or nutrients with the external medium and with neighboring cells; likewise, they are required for the intracellular trafficking of various cargo molecules between organelles, as well as the recycling of these structures. Recent studies have demonstrated that some elements of the molecular machinery involved in regulating and mediating endocytosis in eukaryotic cells are also present in some bacteria, where they participate in processes such as cell division, sporulation and signal transduction. However, the mechanism whereby this prokaryotic machinery carries out such functions has barely begun to be elucidated. This review summarizes recent information about the cytoskeletal and membrane-organizing proteins for which bacterial homologs have been identified; given their known functions, they may be considered to be part of an ancestral membrane organization system that first emerged in prokaryotes and which further evolved into the more complex regulatory networks operating in eukaryotes. © 2017 IUBMB Life, 69(2):55-62, 2017.

  19. Using geometric algebra to study optical aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, J.; Ziock, H.

    1997-05-01

    This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.

  20. Phase Aberrations in Diffraction Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  1. Bacterial proteins pinpoint a single eukaryotic root.

    Science.gov (United States)

    Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B Franz; Eliáš, Marek

    2015-02-17

    The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between "Unikonta" and "Bikonta," with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.

  2. The eukaryotic fossil record in deep time

    Science.gov (United States)

    Butterfield, N.

    2011-12-01

    Eukaryotic organisms are defining constituents of the Phanerozoic biosphere, but they also extend well back into the Proterozoic record, primarily in the form of microscopic body fossils. Criteria for identifying pre-Ediacaran eukaryotes include large cell size, morphologically complex cell walls and/or the recognition of diagnostically eukaryotic cell division patterns. The oldest unambiguous eukaryote currently on record is an acanthomorphic acritarch (Tappania) from the Palaeoproterozoic Semri Group of central India. Older candidate eukaryotes are difficult to distinguish from giant bacteria, prokaryotic colonies or diagenetic artefacts. In younger Meso- and Neoproterozoic strata, the challenge is to recognize particular grades and clades of eukaryotes, and to document their macro-evolutionary expression. Distinctive unicellular forms include mid-Neoproterozoic testate amoebae and phosphate biomineralizing 'scale-microfossils' comparable to an extant green alga. There is also a significant record of seaweeds, possible fungi and problematica from this interval, documenting multiple independent experiments in eukaryotic multicellularity. Taxonomically resolved forms include a bangiacean red alga and probable vaucheriacean chromalveolate algae from the late Mesoproterozoic, and populations of hydrodictyacean and siphonocladalean green algae of mid Neoproterozoic age. Despite this phylogenetic breadth, however, or arguments from molecular clocks, there is no convincing evidence for pre-Ediacaran metazoans or metaphytes. The conspicuously incomplete nature of the Proterozoic record makes it difficult to resolve larger-scale ecological and evolutionary patterns. Even so, both body fossils and biomarker data point to a pre-Ediacaran biosphere dominated overwhelming by prokaryotes. Contemporaneous eukaryotes appear to be limited to conspicuously shallow water environments, and exhibit fundamentally lower levels of morphological diversity and evolutionary turnover than

  3. Complementing the Eukaryotic Protein Interactome.

    Directory of Open Access Journals (Sweden)

    Robert Pesch

    Full Text Available Protein interaction networks are important for the understanding of regulatory mechanisms, for the explanation of experimental data and for the prediction of protein functions. Unfortunately, most interaction data is available only for model organisms. As a possible remedy, the transfer of interactions to organisms of interest is common practice, but it is not clear when interactions can be transferred from one organism to another and, thus, the confidence in the derived interactions is low. Here, we propose to use a rich set of features to train Random Forests in order to score transferred interactions. We evaluated the transfer from a range of eukaryotic organisms to S. cerevisiae using orthologs. Directly transferred interactions to S. cerevisiae are on average only 24% consistent with the current S. cerevisiae interaction network. By using commonly applied filter approaches the transfer precision can be improved, but at the cost of a large decrease in the number of transferred interactions. Our Random Forest approach uses various features derived from both the target and the source network as well as the ortholog annotations to assign confidence values to transferred interactions. Thereby, we could increase the average transfer consistency to 85%, while still transferring almost 70% of all correctly transferable interactions. We tested our approach for the transfer of interactions to other species and showed that our approach outperforms competing methods for the transfer of interactions to species where no experimental knowledge is available. Finally, we applied our predictor to score transferred interactions to 83 targets species and we were able to extend the available interactome of B. taurus, M. musculus and G. gallus with over 40,000 interactions each. Our transferred interaction networks are publicly available via our web interface, which allows to inspect and download transferred interaction sets of different sizes, for various

  4. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  5. [Highest level of division in the organism classification. 1. Prokaryotes and eukaryotes].

    Science.gov (United States)

    Shatalkin, A I

    2004-01-01

    The works on the general classification of all organisms are considered as a convenient opportunity to sum up numerous data obtained in organic world studying. The present stage is characterized by rapid development of the molecular reconstructions that have already caused considerable changes in our classification practice. These changes look especially impressive at studying the organism cellular structure. The great massive of new data allow us to compare Prokaryotes and Eukaryotes on the nucleic acids and especially proteins whose number in Eukaryote cell approaches to several thousands. Basing on the structure of macromolecules one can hypothesize with great certainty about Prokaryote or Eukaryotes origin. The article presents the detailed characteristic of Prokaryotes or Eukaryotes with the emphasis placed on the comparative analysis of biological macromolecules. Among specially considered cellular structures and processes are cell wall, intracellular components, cellular cycle, nucleus, DNA compactness, replication, genome organization, transcription, posttranscriptional modifications, introns, ribosomes and translation, cytoskeleton, mitosis, cytokinesis, cellular organelles, intracellular membranes systems, modes of nutrition, sexual condition. The macromolecular analysis let to carry out the homology of structures and to find out some new connections. It was shown that typology considered as a search for morphological patterns within the biodiversity structure has almost exhausted the subject. It was directed mostly to distinguishing "main" group in contrast with intermediate and aberrant ones, which were considered as minor phenomenon. At present due to macromolecules systematics it is able to estimate the whole diversity of forms including typologically transitive.

  6. Eukaryotes dominate new production in the Sargasso Sea

    Science.gov (United States)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Casey, J. R.; Sigman, D. M.

    2010-12-01

    also explain a large observed 15N/14N difference between sinking and suspended particulate N in the Sargasso Sea: sinking flux 15N/14N is consistent with fecal pellets produced by zooplankton that have preferentially consumed eukaryotic phytoplankton, without the need for an unrealistically large 15N/14N increase associated with the passage of this phytoplankton biomass through the zooplankton gut. Our isotope data imply that more than two thirds of the Sargasso Sea sinking flux derives from eukaryotic phytoplankton biomass, making the contribution of eukaryotes to export disproportionately larger than their contribution to total phytoplankton biomass. This finding is important for the operation of the biological pump, and for interpretation of paleoenvironmental signals preserved in the marine sediment record. Our novel methodology offers a direct and quantitative approach to address these and other fundamental questions regarding upper-ocean N and C cycling.

  7. Crystal structure of the eukaryotic ribosome.

    Science.gov (United States)

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.

  8. Eukaryotic diversity in historical soil samples.

    Science.gov (United States)

    Moon-van der Staay, Seung Yeo; Tzeneva, Vesela A; van der Staay, Georg W M; de Vos, Willem M; Smidt, Hauke; Hackstein, Johannes H P

    2006-09-01

    The eukaryotic biodiversity in historical air-dried samples of Dutch agricultural soil has been assessed by random sequencing of an 18S rRNA gene library and by denaturing gradient gel electrophoresis. Representatives of nearly all taxa of eukaryotic soil microbes could be identified, demonstrating that it is possible to study eukaryotic microbiota in samples from soil archives that have been stored for more than 30 years at room temperature. In a pilot study, 41 sequences were retrieved that could be assigned to fungi and a variety of aerobic and anaerobic protists such as cercozoans, ciliates, xanthophytes (stramenopiles), heteroloboseans, and amoebozoans. A PCR-denaturing gradient gel electrophoresis analysis of samples collected between 1950 and 1975 revealed significant changes in the composition of the eukaryotic microbiota.

  9. Non-coding RNAs: the architects of eukaryotic complexity.

    Science.gov (United States)

    Mattick, J S

    2001-11-01

    Around 98% of all transcriptional output in humans is non-coding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.

  10. Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus.

    Science.gov (United States)

    Bell, Philip John Livingstone

    2006-11-07

    The origin of the eukaryotic cell cycle, including mitosis, meiosis, and sex are as yet unresolved aspects of the evolution of the eukaryotes. The wide phylogenetic distribution of both mitosis and meiosis suggest that these processes are integrally related to the origin of the earliest eukaryotic cells. According to the viral eukaryogenesis (VE) hypothesis, the eukaryotes are a composite of three phylogenetically unrelated organisms: a viral lysogen that evolved into the nucleus, an archaeal cell that evolved into the eukaryotic cytoplasm, and an alpha-proteobacterium that evolved into the mitochondria. In the extended VE hypothesis presented here, the eukaryotic cell cycle arises as a consequence of the derivation of the nucleus from a lysogenic DNA virus.

  11. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  12. Chromosome aberrations induced by zebularine in triticale.

    Science.gov (United States)

    Ma, Xuhui; Wang, Qing; Wang, Yanzhi; Ma, Jieyun; Wu, Nan; Ni, Shuang; Luo, Tengxiao; Zhuang, Lifang; Chu, Chenggen; Cho, Seong-Woo; Tsujimoto, Hisashi; Qi, Zengjun

    2016-07-01

    Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0-12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat-rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation.

  13. Atom lens without chromatic aberrations

    CERN Document Server

    Efremov, Maxim A; Schleich, Wolfgang P

    2012-01-01

    We propose a lens for atoms with reduced chromatic aberrations and calculate its focal length and spot size. In our scheme a two-level atom interacts with a near-resonant standing light wave formed by two running waves of slightly different wave vectors, and a far-detuned running wave propagating perpendicular to the standing wave. We show that within the Raman-Nath approximation and for an adiabatically slow atom-light interaction, the phase acquired by the atom is independent of the incident atomic velocity.

  14. Chromatic aberration measurement for transmission interferometric testing.

    Science.gov (United States)

    Seong, Kibyung; Greivenkamp, John E

    2008-12-10

    A method of chromatic aberration measurement is described based on the transmitted wavefront of an optical element obtained from a Mach-Zehnder interferometer. The chromatic aberration is derived from transmitted wavefronts measured at five different wavelengths. Reverse ray tracing is used to remove induced aberrations associated with the interferometer from the measurement. In the interferometer, the wavefront transmitted through the sample is tested against a plano reference, allowing for the absolute determination of the wavefront radius of curvature. The chromatic aberrations of a singlet and a doublet have been measured.

  15. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  16. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  17. Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes?

    Directory of Open Access Journals (Sweden)

    Poole Anthony M

    2006-12-01

    Full Text Available Abstract Martin & Koonin recently proposed that the eukaryote nucleus evolved as a quality control mechanism to prevent ribosome readthrough into introns. In their scenario, the bacterial ancestor of mitochondria was resident in an archaeal cell, and group II introns (carried by the fledgling mitochondrion inserted into coding regions in the archaeal host genome. They suggest that if transcription and translation were coupled, and because splicing is expected to have been slower than translation, the effect of insertion would have been ribosome readthrough into introns, resulting in production of aberrant proteins. The emergence of the nuclear compartment would thus have served to separate transcription and splicing from translation, thereby alleviating this problem. In this article, I argue that Martin & Koonin's model is not compatible with current knowledge. The model requires that group II introns would spread aggressively through an archaeal genome. It is well known that selfish elements can spread through an outbreeding sexual population despite a substantial fitness cost to the host. The same is not true for asexual lineages however, where both theory and observation argue that such elements will be under pressure to reduce proliferation, and may be lost completely. The recent introduction of group II introns into archaea by horizontal transfer provides a natural test case with which to evaluate Martin & Koonin's model. The distribution and behaviour of these introns fits prior theoretical expectations, not the scenario of aggressive proliferation advocated by Martin & Koonin. I therefore conclude that the mitochondrial seed hypothesis for the origin of eukaryote introns, on which their model is based, better explains the early expansion of introns in eukaryotes. The mitochondrial seed hypothesis has the capacity to separate the origin of eukaryotes from the origin of introns, leaving open the possibility that the cell that engulfed the

  18. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  19. Aberrations of Gradient-Index Lenses.

    Science.gov (United States)

    Matthews, A. L.

    Available from UMI in association with The British Library. In this thesis, the primary aberrations of lenses with a radial focussing gradient-of-index are analysed. Such a lens has a refractive index profile which decreases continuously and radially outward from the optical axis, so that the surfaces of constant refractive index are circular cylinders which are coaxial with the optical axis. Current applications of these lenses include photocopiers, medical endoscopes, telecommunications systems and compact disc systems. Closed formulae for the primary wavefront aberrations for a gradient-index lens with curved or plane entry and exit faces are obtained from the differential equations of such a lens to assess the primary transverse ray aberrations that it introduces. Identical expressions are then obtained by using the difference in optical path length produced between two rays by the lens. This duplication of the derivations of the primary wavefront aberrations acts as a confirmation of the validity of the expressions. One advantage of these equations is that the contributions due to the primary spherical aberration, coma, astigmatism, field curvature and distortion can be assessed individually. A Fortran 77 program has been written to calculate each of these individual contributions, the total primary wavefront aberrations and the primary transverse ray aberrations. Further confirmation of the validity of the expressions is obtained by using this program to show that the coma and distortion were both zero for fully symmetric systems working at unit magnification. The program is then used to assess the primary wavefront aberrations for a gradient-index lens which is currently of interest to the telecommunications industry. These results are compared with values obtained using a finite ray-tracing program for the total wavefront aberrations. This shows that the primary wavefront aberrations are the completely dominant contribution to the total wavefront

  20. Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells

    Science.gov (United States)

    Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...

  1. Aberrantly methylated DNA as a biomarker in breast cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per;

    2013-01-01

    hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients......Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA...... into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential...

  2. Aberration coefficients of curved holographic optical elements

    Science.gov (United States)

    Verboven, P. E.; Lagasse, P. E.

    1986-11-01

    A general formula is derived that gives all aberration terms of holographic optical elements on substrates of any shape. The spherical substrate shape and the planar substrate shape are treated as important special cases. A numerical example illustrates the need of including higher-order aberrations.

  3. Psychometric Characteristics of the Aberrant Behavior Checklist.

    Science.gov (United States)

    Aman, Michael G.; And Others

    1985-01-01

    Information is presented on the psychometric characteristics of the Aberrant Behavior Checklist, a measure of psychotropic drug effects. Internal consistency and test-retest reliability of the checklist appeared very good. Interrater reliability was generally in the moderate range. In general, validity was established for most Aberrant Behavior…

  4. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  5. Optimum aberration coefficients for recording high-resolution off-axis holograms in a Cs-corrected TEM

    Energy Technology Data Exchange (ETDEWEB)

    Linck, Martin, E-mail: linck@ceos-gmbh.de [CEOS GmbH, Englerstr. 28, D-69126 Heidelberg (Germany)

    2013-01-15

    Amongst the impressive improvements in high-resolution electron microscopy, the Cs-corrector also has significantly enhanced the capabilities of off-axis electron holography. Recently, it has been shown that the signal above noise in the reconstructable phase can be significantly improved by combining holography and hardware aberration correction. Additionally, with a spherical aberration close to zero, the traditional optimum focus for recording high-resolution holograms ('Lichte's defocus') has become less stringent and both, defocus and spherical aberration, can be selected freely within a certain range. This new degree of freedom can be used to improve the signal resolution in the holographically reconstructed object wave locally, e.g. at the atomic positions. A brute force simulation study for an aberration corrected 200 kV TEM is performed to determine optimum values for defocus and spherical aberration for best possible signal to noise in the reconstructed atomic phase signals. Compared to the optimum aberrations for conventional phase contrast imaging (NCSI), which produce 'bright atoms' in the image intensity, the resulting optimum values of defocus and spherical aberration for off-axis holography enable 'black atom contrast' in the hologram. However, they can significantly enhance the local signal resolution at the atomic positions. At the same time, the benefits of hardware aberration correction for high-resolution off-axis holography are preserved. It turns out that the optimum is depending on the object and its thickness and therefore not universal. -- Highlights: Black-Right-Pointing-Pointer Optimized aberration parameters for high-resolution off-axis holography. Black-Right-Pointing-Pointer Simulation and analysis of noise in high-resolution off-axis holograms. Black-Right-Pointing-Pointer Improving signal resolution in the holographically reconstructed phase shift. Black-Right-Pointing-Pointer Comparison of &apos

  6. Higher-Order Aberrations in Myopic Eyes

    Directory of Open Access Journals (Sweden)

    Farid Karimian

    2010-01-01

    Full Text Available Purpose: To evaluate the correlation between refractive error and higher-order aberrations (HOAs in patients with myopic astigmatism. Methods: HOAs were measured using the Zywave II aberrometer over a 6 mm pupil. Correlations between HOAs and myopia, astigmatism, and age were analyzed. Results: One hundred and twenty-six eyes of 63 subjects with mean age of 26.4±5.9 years were studied. Mean spherical equivalent refractive error and refractive astigmatism were -4.94±1.63 D and 0.96±1.06 D, respectively. The most common higher-order aberration was primary horizontal trefoil with mean value of 0.069±0.152 μm followed by spherical aberration (-0.064±0.130 μm and primary vertical coma (-0.038±0.148 μm. As the order of aberration increased from third to fifth, its contribution to total HOA decreased: 53.9% for third order, 31.9% for fourth order, and 14.2% for fifth order aberrations. Significant correlations were observed between spherical equivalent refractive error and primary horizontal coma (R=0.231, P=0.022, and root mean square (RMS of spherical aberration (R=0.213, P=0.031; between astigmatism and RMS of total HOA (R=0.251, P=0.032, RMS of fourth order aberration (R=0.35, P<0.001, and primary horizontal coma (R=0.314, P=0.004. Spherical aberration (R=0.214, P=0.034 and secondary vertical coma (R=0.203, P=0.031 significantly increased with age. Conclusion: Primary horizontal trefoil, spherical aberration and primary vertical coma are the predominant higher-order aberrations in eyes with myopic astigmatism.

  7. Eukaryotic membrane protein overproduction in Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Chan, Ka Wai; Slotboom, Dirk Jan; Floyd, Suzanne; O’Connor, Rosemary; Monné, Magnus

    2005-01-01

    Eukaryotic membrane proteins play many vital roles in the cell and are important drug targets. Approximately 25% of all genes identified in the genome are known to encode membrane proteins, but the vast majority have no assigned function. Although the generation of structures of soluble proteins has

  8. Evidence for a Minimal Eukaryotic Phosphoproteome?

    NARCIS (Netherlands)

    Diks, Sander H.; Parikh, Kaushal; van der Sijde, Marijke; Joore, Jos; Ritsema, Tita; Peppelenbosch, Maikel P.

    2007-01-01

    Background. Reversible phosphorylation catalysed by kinases is probably the most important regulatory mechanism in eukaryotes. Methodology/Principal Findings. We studied the in vitro phosphorylation of peptide arrays exhibiting the majority of PhosphoBase-deposited protein sequences, by factors in c

  9. Analysis of the Aberration in Directly-writing Atom Lithography

    Institute of Scientific and Technical Information of China (English)

    LI Chuanwen; CAI Weiquan; WANG Yuzhu

    2000-01-01

    After deriving the approximation solution which describes the motion of neutral atoms in an optical standing wave field with large detuning, the spherical aberration and the chromatic aberration are analyzed and possible methods to reduce these aberrations are discussed.

  10. Eukaryotic diversity at pH extremes.

    Science.gov (United States)

    Amaral-Zettler, Linda A

    2012-01-01

    Extremely acidic (pH 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations.

  11. Eukaryotic diversity at pH extremes

    Directory of Open Access Journals (Sweden)

    Linda A. Amaral-Zettler

    2013-01-01

    Full Text Available Extremely acidic (pH<3 and extremely alkaline (pH>9 environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from 7 diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA gene. A total of 946 Operational Taxonomic Units (OTUs were recovered at a 6% cut-off level (94% similarity across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity Percentage Analysis (SIMPER followed by Indicator OTU Analysis (IOA and Non-metric Multidimensional Scaling (NMDS were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain’s Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments respectively present good models for understanding adaptation and should be targeted for future investigations.

  12. Image-based EUVL aberration metrology

    Science.gov (United States)

    Fenger, Germain Louis

    A significant factor in the degradation of nanolithographic image fidelity is optical wavefront aberration. As resolution of nanolithography systems increases, effects of wavefront aberrations on aerial image become more influential. The tolerance of such aberrations is governed by the requirements of features that are being imaged, often requiring lenses that can be corrected with a high degree of accuracy and precision. Resolution of lithographic systems is driven by scaling wavelength down and numerical aperture (NA) up. However, aberrations are also affected from the changes in wavelength and NA. Reduction in wavelength or increase in NA result in greater impact of aberrations, where the latter shows a quadratic dependence. Current demands in semiconductor manufacturing are constantly pushing lithographic systems to operate at the diffraction limit; hence, prompting a need to reduce all degrading effects on image properties to achieve maximum performance. Therefore, the need for highly accurate in-situ aberration measurement and correction is paramount. In this work, an approach has been developed in which several targets including phase wheel, phase disk, phase edges, and binary structures are used to generate optical images to detect and monitor aberrations in extreme ultraviolet (EUV) lithographic systems. The benefit of using printed patterns as opposed to other techniques is that the lithography system is tested under standard operating conditions. Mathematical models in conjunction with iterative lithographic simulations are used to determine pupil phase wavefront errors and describe them as combinations of Zernike polynomials.

  13. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  14. On aberration in gravitational lensing

    CERN Document Server

    Sereno, M

    2008-01-01

    It is known that a relative translational motion between the deflector and the observer affects gravitational lensing. In this paper, a lens equation is obtained to describe such effects on actual lensing observables. Results can be easily interpreted in terms of aberration of light-rays. Both radial and transverse motions with relativistic velocities are considered. The lens equation is derived by first considering geodesic motion of photons in the rest-frame Schwarzschild spacetime of the lens, and, then, light-ray detection in the moving observer's frame. Due to the transverse motion images are displaced and distorted in the observer's celestial sphere, whereas the radial velocity along the line of sight causes an effective re-scaling of the lens mass. The Einstein ring is distorted to an ellipse whereas the caustics in the source plane are still point-like. Either for null transverse motion or up to linear order in velocities, the critical curve is still a circle with its radius corrected by a factor (1+z...

  15. Aberrant Signaling through the HER2-ERK1/2 Pathway is Predictive of Reduced Disease-Free and Overall Survival in Early Stage Non-Small Cell Lung Cancer (NSCLC) Patients.

    Science.gov (United States)

    Scrima, Marianna; Zito Marino, Federica; Oliveira, Duarte Mendes; Marinaro, Cinzia; La Mantia, Elvira; Rocco, Gaetano; De Marco, Carmela; Malanga, Donatella; De Rosa, Nicla; Rizzuto, Antonia; Botti, Gerardo; Franco, Renato; Zoppoli, Pietro; Viglietto, Giuseppe

    2017-01-01

    Background: Purpose of this study was to evaluate the contribution of the Extracellular-regulated protein kinase (ERK)-1/2 pathway to oncogenic signaling elicited by the tyrosine kinase receptor HER2 in Non-Small Cell Lung Cancer (NSCLC) and to assess the prognostic value of these oncoproteins in NSCLC patients. Methods: Immunohistochemistry was performed to determine expression and activation of HER2 and ERK1/2 (detected by phosphorylation of Y1248 and T202/Y204, respectively) using Tissue Micro Arrays (TMA) containing matched normal and neoplastic tissues from 132 NSCLC patients. Survival analysis was carried out using the Kaplan-Meier method. Univariate and multivariate analysis were used to evaluate the prognostic value of pERK1/2, pHER2 and a combination thereof with clinical-pathological parameters such as age, lymph node status (N), size (T), stage (TNM) and grade. Results: We found that HER2 was overexpressed in 33/120 (27%) and activated in 41/114 (36%) cases; ERK1/2 was activated in 44/102 (43%) cases. A direct association was found between pERK1/2 and pHER2 (23/41; p=0.038). In addition, patients positive for pERK1/2 and for both pHER2 and pERK1/2 showed significantly worse overall survival (OS) and disease-free survival (DFS) compared with negative patients. Univariate and multivariate analysis of patients' survival revealed that positivity for pHER2-pERK1/2 and for pERK1/2 alone were independent prognostic factors of poor survival in NSCLC patients. In particular, this association was significantly important for DFS in stage I+II patients. Conclusion: This study provides evidence that activated ERK1/2 and/or the combined activation of HER2 and ERK1/2 are good indicators of poor prognosis in NSCLC patients, not only in unselected patients but also in early stage disease.

  16. Aberration correction for time-domain ultrasound diffraction tomography.

    Science.gov (United States)

    Mast, T Douglas

    2002-07-01

    Extensions of a time-domain diffraction tomography method, which reconstructs spatially dependent sound speed variations from far-field time-domain acoustic scattering measurements, are presented and analyzed. The resulting reconstructions are quantitative images with applications including ultrasonic mammography, and can also be considered candidate solutions to the time-domain inverse scattering problem. Here, the linearized time-domain inverse scattering problem is shown to have no general solution for finite signal bandwidth. However, an approximate solution to the linearized problem is constructed using a simple delay-and-sum method analogous to "gold standard" ultrasonic beamforming. The form of this solution suggests that the full nonlinear inverse scattering problem can be approximated by applying appropriate angle- and space-dependent time shifts to the time-domain scattering data; this analogy leads to a general approach to aberration correction. Two related methods for aberration correction are presented: one in which delays are computed from estimates of the medium using an efficient straight-ray approximation, and one in which delays are applied directly to a time-dependent linearized reconstruction. Numerical results indicate that these correction methods achieve substantial quality improvements for imaging of large scatterers. The parametric range of applicability for the time-domain diffraction tomography method is increased by about a factor of 2 by aberration correction.

  17. Spatially incoherent illumination interferometry: a PSF almost insensitive to aberrations

    CERN Document Server

    Xiao, Peng; Boccara, A Claude

    2016-01-01

    We show that with spatially incoherent illumination, the point spread function width of an imaging interferometer like that used in full-field optical coherence tomography (FFOCT) is almost insensitive to aberrations that mostly induce a reduction of the signal level without broadening. This is demonstrated by comparison with traditional scanning OCT and wide-field OCT with spatially coherent illuminations. Theoretical analysis, numerical calculation as well as experimental results are provided to show this specific merit of incoherent illumination in full-field OCT. To the best of our knowledge, this is the first time that such result has been demonstrated.

  18. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  19. Flow cytometric detection of aberrant chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Lucas, J.; Yu, L.C.; Langlois, R.

    1983-05-11

    This report describes the quantification of chromosomal aberrations by flow cytometry. Both homogeneously and heterogeneously occurring chromosome aberrations were studied. Homogeneously occurring aberrations were noted in chromosomes isolated from human colon carcinoma (LoVo) cells, stained with Hoechst 33258 and chromomycin A3 and analyzed using dual beam flow cytometry. The resulting bivariate flow karyotype showed a homogeneously occurring marker chromosome of intermediate size. Heterogeneously occurring aberrations were quantified by slit-scan flow cytometry in chromosomes isolated from control and irradiated Chinese hamster cells and stained with propidium iodide. Heterogeneously occurring dicentric chromosomes were detected by their shapes (two centrometers). The frequencies of such chromosomes estimated by slit-scan flow cytometry correlated well with the frequencies determined by visual microscopy.

  20. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  1. Statistical characteristics of eukaryotic intron database

    Institute of Scientific and Technical Information of China (English)

    HE Miao; LI Jidong; ZHANG Shanghong

    2006-01-01

    A database called eukaryotic intron database (EID) was developed based on the data from GenBank.Studies on the statistical characteristics of EID show that there were 103,848 genes,478,484 introns,and 582,332 exons,with an average of 4.61 introns and 5.61 exons per gene.Introns of 40-120 nt in length were abundant in the database.Results of the statistical analysis on the data from nine model species showed that in eukaryotes,higher species do not necessarily have more introns or exons in a gene than lower species.Furthermore,characteristics of EID,such as intron phase,distribution of different splice sites,and the relationship between genome size and intron proportion or intron density,have been studied.

  2. Sensing Phase Aberrations behind Lyot Coronagraphs

    Science.gov (United States)

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  3. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  4. Individual eye model based on wavefront aberration

    Science.gov (United States)

    Guo, Huanqing; Wang, Zhaoqi; Zhao, Qiuling; Quan, Wei; Wang, Yan

    2005-03-01

    Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore, the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There are four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software-ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.

  5. Eukaryotic Mismatch Repair in Relation to DNA Replication.

    Science.gov (United States)

    Kunkel, Thomas A; Erie, Dorothy A

    2015-01-01

    Three processes act in series to accurately replicate the eukaryotic nuclear genome. The major replicative DNA polymerases strongly prevent mismatch formation, occasional mismatches that do form are proofread during replication, and rare mismatches that escape proofreading are corrected by mismatch repair (MMR). This review focuses on MMR in light of increasing knowledge about nuclear DNA replication enzymology and the rate and specificity with which mismatches are generated during leading- and lagging-strand replication. We consider differences in MMR efficiency in relation to mismatch recognition, signaling to direct MMR to the nascent strand, mismatch removal, and the timing of MMR. These studies are refining our understanding of relationships between generating and repairing replication errors to achieve accurate replication of both DNA strands of the nuclear genome.

  6. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    OpenAIRE

    Thiergart, T.; Landan, G; Schenk, M.; Dagan, T.; Martin, W F

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the a...

  7. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  8. Aberrant signal transduction and protein expression in acute myeloid leukemia

    NARCIS (Netherlands)

    Schepers, Hein

    2007-01-01

    Het proces van hematopoiese voorziet het lichaam van miljarden bloedcellen per dag. Het is een strak geregisseerd proces. Acute myeloide leukemie (AML) is een afwijking in de bloedcelontwikkeling. Behandeling van deze en andere vormen van leukemie is veelal gebaseerd op het principe van de geprogram

  9. Aberrant AR Signaling as a Function of Declining Androgen

    Science.gov (United States)

    2005-03-01

    CAG are associated with diseases such as Huntington disease and spinal and bulbar muscular atro- phy, which is commonly called Kennedy’s disease . This...Sequence variation and size ranges of CAG repeats in the Machado-Joseph disease , spinocerebellar ataxia type I and androgen receptor genes. Hutm. Mot...Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and should not be

  10. Complex archaea that bridge the gap between prokaryotes and eukaryotes.

    Science.gov (United States)

    Spang, Anja; Saw, Jimmy H; Jørgensen, Steffen L; Zaremba-Niedzwiedzka, Katarzyna; Martijn, Joran; Lind, Anders E; van Eijk, Roel; Schleper, Christa; Guy, Lionel; Ettema, Thijs J G

    2015-05-14

    The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.

  11. An epigenetic toolkit allows for diverse genome architectures in eukaryotes.

    Science.gov (United States)

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2015-12-01

    Genome architecture varies considerably among eukaryotes in terms of both size and structure (e.g. distribution of sequences within the genome, elimination of DNA during formation of somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes are only possible due to the well-developed epigenetic toolkit, which probably existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a means of navigating the genomic conflict that arose from the expansion of transposable elements within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes, such as DNA elimination, genome rearrangements, and adaptive changes to genome architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to the diversity of eukaryotes observed today.

  12. The ATM kinase signaling induced by the low-energy {beta}-particles emitted by {sup 33}P is essential for the suppression of chromosome aberrations and is greater than that induced by the energetic {beta}-particles emitted by {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    White, Jason S.; Yue Ning [Department of Radiation Oncology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 (United States); Hu Jing [Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 (United States); Bakkenist, Christopher J., E-mail: bakkenistcj@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 (United States); Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 (United States)

    2011-03-15

    Ataxia-telangiectasia mutated (ATM) encodes a nuclear serine/threonine protein kinase whose activity is increased in cells exposed to low doses of ionizing radiation (IR). Here we examine ATM kinase activation in cells exposed to either {sup 32}P- or {sup 33}P-orthophosphate under conditions typically employed in metabolic labelling experiments. We calculate that the absorbed dose of IR delivered to a 5 cm x 5 cm monolayer of cells incubated in 2 ml media containing 1 mCi of the high-energy (1.70 MeV) {beta}-particle emitter {sup 32}P-orthophosphate for 30 min is {approx}1 Gy IR. The absorbed dose of IR following an otherwise identical exposure to the low-energy (0.24 MeV) {beta}-particle emitter {sup 33}P-orthophosphate is {approx}0.18 Gy IR. We show that low-energy {beta}-particles emitted by {sup 33}P induce a greater number of ionizing radiation-induced foci (IRIF) and greater ATM kinase signaling than energetic {beta}-particles emitted by {sup 32}P. Hence, we demonstrate that it is inappropriate to use {sup 33}P-orthophosphate as a negative control for {sup 32}P-orthophosphate in experiments investigating DNA damage responses to DNA double-strand breaks (DSBs). Significantly, we show that ATM accumulates in the chromatin fraction when ATM kinase activity is inhibited during exposure to either radionuclide. Finally, we also show that chromosome aberrations accumulate in cells when ATM kinase activity is inhibited during exposure to {approx}0.36 Gy {beta}-particles emitted by {sup 33}P. We therefore propose that direct cellular exposure to {sup 33}P-orthophosphate is an excellent means to induce and label the IR-induced, ATM kinase-dependent phosphoproteome.

  13. A simulation study comparing aberration detection algorithms for syndromic surveillance

    Directory of Open Access Journals (Sweden)

    Painter Ian

    2007-03-01

    Full Text Available Abstract Background The usefulness of syndromic surveillance for early outbreak detection depends in part on effective statistical aberration detection. However, few published studies have compared different detection algorithms on identical data. In the largest simulation study conducted to date, we compared the performance of six aberration detection algorithms on simulated outbreaks superimposed on authentic syndromic surveillance data. Methods We compared three control-chart-based statistics, two exponential weighted moving averages, and a generalized linear model. We simulated 310 unique outbreak signals, and added these to actual daily counts of four syndromes monitored by Public Health – Seattle and King County's syndromic surveillance system. We compared the sensitivity of the six algorithms at detecting these simulated outbreaks at a fixed alert rate of 0.01. Results Stratified by baseline or by outbreak distribution, duration, or size, the generalized linear model was more sensitive than the other algorithms and detected 54% (95% CI = 52%–56% of the simulated epidemics when run at an alert rate of 0.01. However, all of the algorithms had poor sensitivity, particularly for outbreaks that did not begin with a surge of cases. Conclusion When tested on county-level data aggregated across age groups, these algorithms often did not perform well in detecting signals other than large, rapid increases in case counts relative to baseline levels.

  14. Prokaryotes Versus Eukaryotes: Who is Hosting Whom?

    Science.gov (United States)

    Tellez, Guillermo

    2014-01-01

    Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals' actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a "forgotten organ," functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short-chain fatty acids), a process, which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system. Despite these important effects, the mechanisms by which the gut microbial community influences the host's biology remain almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes, which encourage us to postulate: who is hosting whom?

  15. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  16. Expression of eukaryotic polypeptides in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  17. Amplification and characterization of eukaryotic structural genes.

    Science.gov (United States)

    Maniatis, T; Efstratiadis, A; Sim, G K; Kafatos, F

    1978-05-01

    An approach to the study of eukaryotic structural genes which are differentially expressed during development is described. This approach involves the isolation and amplification of mRNA sequences by in vitro conversion of mRNA to double-stranded cDNA followed by molecular cloning in bacterial plasmids. This procedure provides highly specific hybridization probes that can be used to identify genes and their contiguous DNA sequences in genomic DNA, and to detect specific RNA transcripts during development. The nature of the method allows the isolation of individual mRNA sequences from a complex population of molecules at different stages of development.

  18. Aberrant Force Processing in Schizophrenia.

    Science.gov (United States)

    Martinelli, Cristina; Rigoli, Francesco; Shergill, Sukhwinder S

    2016-07-06

    Initially considered as mere side effects of antipsychotic medication, there is now evidence that motor and somatosensory disturbances precede the onset of the illness and can be found in drug-naive patients. However, research on the topic is scarce. Here, we were interested in assessing the accuracy of the neural signal in detecting parametric variations of force linked to a voluntary motor act and a received tactile sensation, either self-generated or externally generated. Patients with a diagnosis of schizophrenia and healthy controls underwent functional magnetic resonance imaging while asked to press, or abstain from pressing, a lever in order to match a visual target force. Forces, exerted and received, varied on 10 levels from 0.5 N to 5 N in 0.5 N increments. Healthy participants revealed a positive correlation between force and activity in contralateral primary somatosensory area (S1) when performing a movement as well as when receiving a tactile sensation but only when this was externally, and not self-, generated. Patients showed evidence of altered force signaling in both motor and tactile conditions, as well as increased correlation with force when tactile sensation was self-generated. Findings are interpreted in line with accounts of predictive and sensory integration mechanisms and point toward alterations in the encoding of parametric forces in the motor and somatosensory domain in patients affected by schizophrenia.

  19. Asgard archaea illuminate the origin of eukaryotic cellular complexity.

    Science.gov (United States)

    Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F; Saw, Jimmy H; Bäckström, Disa; Juzokaite, Lina; Vancaester, Emmelien; Seitz, Kiley W; Anantharaman, Karthik; Starnawski, Piotr; Kjeldsen, Kasper U; Stott, Matthew B; Nunoura, Takuro; Banfield, Jillian F; Schramm, Andreas; Baker, Brett J; Spang, Anja; Ettema, Thijs J G

    2017-01-19

    The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.

  20. Secreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum.

    Science.gov (United States)

    Chen, Zhi-hui; Schaap, Pauline

    2016-01-01

    Cyclic di-GMP (c-di-GMP) is currently recognized as the most widely used intracellular signal molecule in prokaryotes, but roles in eukaryotes were only recently discovered. In the social amoeba Dictyostelium discoideum, c-di-GMP, produced by a prokaryote-type diguanylate cyclase, induces the differentiation of stalk cells, thereby enabling the formation of spore-bearing fruiting bodies. In this review, we summarize the currently known mechanisms that control the major life cycle transitions of Dictyostelium and focus particularly on the role of c-di-GMP in stalk formation. Stalk cell differentiation has characteristics of autophagic cell death, a process that also occurs in higher eukaryotes. We discuss the respective roles of c-di-GMP and of another signal molecule, differentiation-inducing factor 1, in autophagic cell death in vitro and in stalk formation in vivo.

  1. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  2. Dyneins across eukaryotes: a comparative genomic analysis.

    Science.gov (United States)

    Wickstead, Bill; Gull, Keith

    2007-12-01

    Dyneins are large minus-end-directed microtubule motors. Each dynein contains at least one dynein heavy chain (DHC) and a variable number of intermediate chains (IC), light intermediate chains (LIC) and light chains (LC). Here, we used genome sequence data from 24 diverse eukaryotes to assess the distribution of DHCs, ICs, LICs and LCs across Eukaryota. Phylogenetic inference identified nine DHC families (two cytoplasmic and seven axonemal) and six IC families (one cytoplasmic). We confirm that dyneins have been lost from higher plants and show that this is most likely because of a single loss of cytoplasmic dynein 1 from the ancestor of Rhodophyta and Viridiplantae, followed by lineage-specific losses of other families. Independent losses in Entamoeba mean that at least three extant eukaryotic lineages are entirely devoid of dyneins. Cytoplasmic dynein 2 is associated with intraflagellar transport (IFT), but in two chromalveolate organisms, we find an IFT footprint without the retrograde motor. The distribution of one family of outer-arm dyneins accounts for 2-headed or 3-headed outer-arm ultrastructures observed in different organisms. One diatom species builds motile axonemes without any inner-arm dyneins (IAD), and the unexpected conservation of IAD I1 in non-flagellate algae and LC8 (DYNLL1/2) in all lineages reveals a surprising fluidity to dynein function.

  3. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  4. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    Science.gov (United States)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  5. Strong eukaryotic IRESs have weak secondary structure.

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.

  6. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells.

    Science.gov (United States)

    Cox, Christopher R; Coburn, Phillip S; Gilmore, Michael S

    2005-02-01

    The cytolysin is a novel, two-peptide lytic toxin produced by some strains of Enterococcus faecalis. It is toxic in animal models of enterococcal infection, and associated with acutely terminal outcome in human infection. The cytolysin exerts activity against a broad spectrum of cell types including a wide range of gram positive bacteria, eukaryotic cells such as human, bovine and horse erythrocytes, retinal cells, polymorphonuclear leukocytes, and human intestinal epithelial cells. The cytolysin likely originated as a bacteriocin involved with niche control in the complex microbial ecologies associated with eukaryotic hosts. However, additional anti-eukaryotic activities may have been selected for as enterococci adapted to eukaryotic cell predation in water or soil ecologies. Cytolytic activity requires two unique peptides that possess modifications characteristic of the lantibiotic bacteriocins, and these peptides are broadly similar in size to most cationic eukaryotic defensins. Expression of the cytolysin is tightly controlled by a novel mode of gene regulation in which the smaller peptide signals high-level expression of the cytolysin gene cluster. This complex regulation of cytolysin expression may have evolved to balance defense against eukaryotic predators with stealth.

  7. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology

    Indian Academy of Sciences (India)

    Swarna Gowri Thota; Rashna Bhandari

    2015-09-01

    Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.

  8. Determination and inference of eukaryotic transcription factor sequence specificity.

    Science.gov (United States)

    Weirauch, Matthew T; Yang, Ally; Albu, Mihai; Cote, Atina G; Montenegro-Montero, Alejandro; Drewe, Philipp; Najafabadi, Hamed S; Lambert, Samuel A; Mann, Ishminder; Cook, Kate; Zheng, Hong; Goity, Alejandra; van Bakel, Harm; Lozano, Jean-Claude; Galli, Mary; Lewsey, Mathew G; Huang, Eryong; Mukherjee, Tuhin; Chen, Xiaoting; Reece-Hoyes, John S; Govindarajan, Sridhar; Shaulsky, Gad; Walhout, Albertha J M; Bouget, François-Yves; Ratsch, Gunnar; Larrondo, Luis F; Ecker, Joseph R; Hughes, Timothy R

    2014-09-11

    Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.

  9. Piplartine induces genotoxicity in eukaryotic but not in prokaryotic model systems.

    Science.gov (United States)

    Bezerra, Daniel P; Vasconcellos, Marne C; Machado, Miriana S; Villela, Izabel V; Rosa, Renato M; Moura, Dinara J; Pessoa, Cláudia; Moraes, Manoel O; Silveira, Edilberto R; Lima, Mary Anne S; Aquino, Nayara C; Henriques, João Antonio P; Saffi, Jenifer; Costa-Lotufo, Letícia V

    2009-01-01

    Piplartine {5,6-dihydro-1-[(2E)-1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propen-1-yl]-2(1H)-pyridinone} is an alkamide present in Piper species that exhibits promising anticancer properties. It was previously shown that piplartine is mutagenic in yeast and cultured mammalian cells. This study was performed to increase the knowledge on the mutagenic potential of piplartine using the Salmonella/microsome assay, V79 cell micronucleus and chromosome aberration assays, and mouse bone-marrow micronucleus tests. Piplartine was isolated from the roots of Piper tuberculatum. This extracted compound was unable to induce a mutagenic response in any Salmonella typhimurium strain either in the presence or absence of metabolic activation. Piplartine showed mutagenic effects in V79 cells, as there was an increased frequency of aberrant cells and micronuclei formation. In addition, piplartine administered at 50mg/kg did not induce micronucleus formation in vivo, but a dose of 100mg/kg induced an increase in the levels of micronucleus polychromatic erythrocytes (MNPCEs). Overall, these results provide further support that piplartine induces in vivo and in vitro mutagenicity in eukaryotic models.

  10. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution.

    Science.gov (United States)

    Linkeviciute, Viktorija; Rackham, Owen J L; Gough, Julian; Oates, Matt E; Fang, Hai

    2015-12-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of 'architecture plasticity potential' - the capacity to form distinct domain architectures - both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution.

  11. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes

    OpenAIRE

    2008-01-01

    Abstract Background Chlamydiae are obligate intracellular bacteria of protists, invertebrates and vertebrates, but have not been found to date in photosynthetic eukaryotes (algae and embryophytes). Genes of putative chlamydial origin, however, are present in significant numbers in sequenced genomes of photosynthetic eukaryotes. It has been suggested that such genes were acquired by an ancient horizontal gene transfer from Chlamydiae to the ancestor of photosynthetic eukaryotes. To further tes...

  12. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    Science.gov (United States)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  13. Direct estimation of aberrating delays in pulse-echo imaging systems.

    Science.gov (United States)

    Rachlin, D

    1990-07-01

    Nearfield fluctuations in wave propagation velocity and system timing errors are among the sources of focusing aberrations in pulse-echo imaging systems. For situations in which the source of these errors can be modeled by a stationary phase aberrator placed in front of the transmitter and receiver aperture, appropriate electronic delays might be applied to the signals associated with each array element in order to restore the system to focus. A method is described and evaluated for estimating the set of aberrating delays in a linear array utilizing data from a single two-dimensional scan. The underlying principle is analogous to that of phase closure used for one-way passive interferometry and readily generalizes to two-dimensional arrays. Although the following theory is developed in the context of acoustic imaging, the general approach is applicable to other pulse-echo systems, such as radar.

  14. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    Science.gov (United States)

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  15. Simultaneous suppression of scattering and aberration for ultra-high resolution imaging deep within scattering media

    CERN Document Server

    Kang, Sungsam; Kang, Pilsung; Yang, Taeseok D; Ahn, Joonmo; Song, Kyungdeok; Choi, Wonshik

    2016-01-01

    Thick biological tissues give rise to not only the scattering of incoming light waves, but also aberrations of the remaining unscattered waves. Due to the inability of existing optical imaging methodologies to overcome both of these problems simultaneously, imaging depth at the sub- micron spatial resolution has remained extremely shallow. Here we present an experimental approach for identifying and eliminating aberrations even in the presence of strong multiple light scattering. For time-gated complex-field maps of reflected waves taken over various illumination channels, we identify two sets of aberration correction maps, one for the illumination path and one for the reflection path, that can preferentially accumulate the unscattered signal waves over the multiple-scattered waves. By performing closed-loop optimization for forward and phase- conjugation processes, we demonstrated a spatial resolution of 600 nm up to the unprecedented imaging depth of 7 scattering mean free paths.

  16. SURF imaging beams in an aberrative medium: generation and post-processing enhancement

    CERN Document Server

    Nasholm, Sven Peter; 10.1109/TUFFC.2012.2494

    2013-01-01

    This paper presents numerical simulations of dual-frequency second-order ultrasound field (SURF) reverberation suppression transmit-pulse complexes. Such propagation was previously studied in a homogeneous medium. Here instead the propagation path includes a strongly aberrating body-wall modeled by a sequence of delay-screens. The applied SURF transmit pulse complexes each consist of a high-frequency imaging 3.5 MHz pulse combined with a low-frequency 0.5 MHz sound speed manipulation pulse. Furthermore, the feasibility of two signal post-processing methods are investigated using the aberrated transmit SURF beams. These methods are previously shown to adjust the depth of maximum SURF reverberation suppression within a homogeneous medium. The request of the study arises because imaging situations where reverberation suppression is useful are also likely to produce pulse wave-front distortion (aberration). Such distortions could potentially produce time-delays that cancel the accumulated propagation time-delay n...

  17. Anti-forensics of chromatic aberration

    Science.gov (United States)

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  18. Assessing the construct validity of aberrant salience.

    Science.gov (United States)

    Schmidt, Kristin; Roiser, Jonathan P

    2009-01-01

    We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT). The "aberrant salience" measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance (LIrr), attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a LIrr task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for approximately 75% of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated "Introvertive Anhedonia" schizotypy, replicating our previous finding. LIrr loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of LIrr and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  19. Optical advantages of astigmatic aberration corrected heliostats

    Science.gov (United States)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  20. [Aberrant pancreas with a double intestinal location].

    Science.gov (United States)

    Yenon, K; Lethurgie, C; Bokobza, B

    2005-01-01

    The authors report one exceptional case of aberrant pancreas with a double intestinal location (jejunum and Meckel's diverticulum) in a thirty-year-old patient. Digestive haemorrhage and the abdominal colic were the revealing clinical signs. The enteroscopy guided by the enteroscanner, was the indicated complementary investigation for the preoperative diagnosis. The research of other locations during the operation should be systematic.

  1. Functional Analysis and Treatment of Aberrant Behavior.

    Science.gov (United States)

    Mace, F. Charles; And Others

    1991-01-01

    This article reviews general classes of variables which help to maintain aberrant behavior including attention seeking, sensory and perceptual consequences, and access to materials or activities. Suggestions for a methodology providing a comprehensive functional analysis are offered which include descriptive analysis, hypothesis forming,…

  2. The correction of electron lens aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  3. Prenatal hydronephrosis caused by aberrant renal vessels

    DEFF Research Database (Denmark)

    Lenz, K; Thorup, Jørgen Mogens; Rabol, A;

    1996-01-01

    With routine use of obstetric ultrasonography, fetal low-grade hydronephrosis is commonly detected, but may resolve spontaneously after birth. Two cases are presented to illustrate that in some cases such findings can express intermittent hydronephrosis caused by aberrant renal vessels. Renal...

  4. Arsenic transport in prokaryotes and eukaryotic microbes.

    Science.gov (United States)

    Rosen, Barry P; Tamás, Markus J

    2010-01-01

    Aquaporins (AQPs) and aquaglyceroporins facilitate transport of a broad spectrum of substrates such as water, glycerol and other small uncharged solutes. More recently, AQPs ave also been shown to facilitate diffusion of metalloids such as arsenic (As) and antimony (Sb). At neutral pH, the trivalent forms of these metalloids are structurally similar to glycerol and hence they can enter cells through AQPs. As- and Sb-containing compounds are toxic to cells, yet both metalloids are used as chemotherapeutic agents for treating acute promyelocytic leukemia and diseases caused by protozoan parasites. In this chapter, we will review the role of AQPs and other proteins in metalloid transport in prokaryotes and eukaryotic microbes.

  5. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  6. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV

    Science.gov (United States)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max.; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-01

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed Cc/Cs corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  7. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    Science.gov (United States)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  8. Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy.

    Science.gov (United States)

    Wu, Yicong; Li, Xingde

    2010-10-27

    The influence of chromatic aberration of an objective lens in two-photon fluorescence (TPF) endospectroscopy of scattering media has been systematically investigated through both experiments and numerical simulations. Experiments were carried out on a uniform 3D scattering gelatin phantom embedded with TiO(2) granules (to mimic tissue scattering) and fluorescein-tagged polystyrene beads. It was found that fluorescence spectral intensity and lineshape varied as a function of depth when measured with a gradient-index (GRIN) lens which has severe chromatic aberration. The spectral distortion caused by the chromatic aberration became diminishing as the imaging depth increased. Ray tracing analysis and Monte Carlo simulations were carried out to study the interplay of chromatic aberration and scattering in the depth-resolved TPF spectra. The simulation results suggest that the collected fluorescence signals from deeper layers included more out-of-focus photons that experienced a few or multiple scatterings, which diminish the influence of chromatic aberration on the measured TPF spectra. The simulated collection efficiencies of TPF at different wavelengths and depths can be used to properly recover the true depth-resolved TPF spectra of a relatively uniform scattering medium.

  9. Soil eukaryotic functional diversity, a metatranscriptomic approach.

    Science.gov (United States)

    Bailly, Julie; Fraissinet-Tachet, Laurence; Verner, Marie-Christine; Debaud, Jean-Claude; Lemaire, Marc; Wésolowski-Louvel, Micheline; Marmeisse, Roland

    2007-11-01

    To appreciate the functional diversity of communities of soil eukaryotic micro-organisms we evaluated an experimental approach based on the construction and screening of a cDNA library using polyadenylated mRNA extracted from a forest soil. Such a library contains genes that are expressed by each of the different organisms forming the community and represents its metatranscriptome. The diversity of the organisms that contributed to this library was evaluated by sequencing a portion of the 18S rDNA gene amplified from either soil DNA or reverse-transcribed RNA. More than 70% of the sequences were from fungi and unicellular eukaryotes (protists) while the other most represented group was the metazoa. Calculation of richness estimators suggested that more than 180 species could be present in the soil samples studied. Sequencing of 119 cDNA identified genes with no homologues in databases (32%) and genes coding proteins involved in different biochemical and cellular processes. Surprisingly, the taxonomic distribution of the cDNA and of the 18S rDNA genes did not coincide, with a marked under-representation of the protists among the cDNA. Specific genes from such an environmental cDNA library could be isolated by expression in a heterologous microbial host, Saccharomyces cerevisiae. This is illustrated by the functional complementation of a histidine auxotrophic yeast mutant by two cDNA originating possibly from an ascomycete and a basidiomycete fungal species. Study of the metatranscriptome has the potential to uncover adaptations of whole microbial communities to local environmental conditions. It also gives access to an abundant source of genes of biotechnological interest.

  10. Eukaryotic protein production in designed storage organelles

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-01-01

    Full Text Available Abstract Background Protein bodies (PBs are natural endoplasmic reticulum (ER or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein γ zein (Zera is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. Results Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. Conclusion The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.

  11. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin.

    Science.gov (United States)

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic "lineages" have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a dialect

  12. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  13. Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes.

    Science.gov (United States)

    Yabuki, Akinori; Toyofuku, Takashi; Takishita, Kiyotaka

    2014-07-01

    Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome-walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein-coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally.

  14. Conservation and divergence of DNA methylation in eukaryotes: new insights from single base-resolution DNA methylomes.

    Science.gov (United States)

    Su, Zhixi; Han, Leng; Zhao, Zhongming

    2011-02-01

    DNA methylation is one of the most important heritable epigenetic modifications of the genome and is involved in the regulation of many cellular processes. Aberrant DNA methylation has been frequently reported to influence gene expression and subsequently cause various human diseases, including cancer. Recent rapid advances in next-generation sequencing technologies have enabled investigators to profile genome methylation patterns at single-base resolution. Remarkably, more than 20 eukaryotic methylomes have been generated thus far, with a majority published since November 2009. Analysis of this vast amount of data has dramatically enriched our knowledge of biological function, conservation and divergence of DNA methylation in eukaryotes. Even so, many specific functions of DNA methylation and their underlying regulatory systems still remain unknown to us. Here, we briefly introduce current approaches for DNA methylation profiling and then systematically review the features of whole genome DNA methylation patterns in eight animals, six plants and five fungi. Our systematic comparison provides new insights into the conservation and divergence of DNA methylation in eukaryotes and their regulation of gene expression. This work aims to summarize the current state of available methylome data and features informatively.

  15. Eukaryotic association module in phage WO genomes from Wolbachia

    Science.gov (United States)

    Bordenstein, Sarah R.; Bordenstein, Seth R.

    2016-01-01

    Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia. PMID:27727237

  16. Causes and consequences of eukaryotization through mutualistic endosymbiosis and compartmentalization

    NARCIS (Netherlands)

    Hengeveld, R.; Fedonkin, M.A.

    2004-01-01

    This paper reviews and extends ideas of eukaryotization by endosymbiosis. These ideas are put within an historical context of processes that may have led up to eukaryotization and those that seem to have resulted from this process. Our starting point for considering the emergence and development of

  17. Molecular paleontology and complexity in the last eukaryotic common ancestor.

    Science.gov (United States)

    Koumandou, V Lila; Wickstead, Bill; Ginger, Michael L; van der Giezen, Mark; Dacks, Joel B; Field, Mark C

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.

  18. Mutational consequences of aberrant ion channels in neurological disorders.

    Science.gov (United States)

    Kumar, Dhiraj; Ambasta, Rashmi K; Kumar, Pravir

    2014-11-01

    Neurological channelopathies are attributed to aberrant ion channels affecting CNS, PNS, cardiac, and skeletal muscles. To maintain the homeostasis of excitable tissues, functional ion channels are necessary to rely electrical signals, whereas any malfunctioning serves as an intrinsic factor to develop neurological channelopathies. Molecular basis of these disease is studied based on genetic and biophysical approaches, e.g., loci positional cloning, whereas pathogenesis and bio-behavioral analysis revealed the dependency on genetic mutations and inter-current triggering factors. Although electrophysiological studies revealed the possible mechanisms of diseases, analytical study of ion channels remained unsettled and therefore underlying mechanism in channelopathies is necessary for better clinical application. Herein, we demonstrated (i) structural and functional role of various ion channels (Na(+), K(+), Ca(2+),Cl(-)), (ii) pathophysiology involved in the onset of their associated channelopathies, and (iii) comparative sequence and phylogenetic analysis of diversified sodium, potassium, calcium, and chloride ion channel subtypes.

  19. Energetics and genetics across the prokaryote-eukaryote divide

    Directory of Open Access Journals (Sweden)

    Lane Nick

    2011-06-01

    Full Text Available Abstract Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by

  20. Assessing the construct validity of aberrant salience

    Directory of Open Access Journals (Sweden)

    Kristin Schmidt

    2009-12-01

    Full Text Available We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT. The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance, attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a learned irrelevance task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ~75% percent of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. Learned irrelevance loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of learned irrelevance and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  1. Cosmological parameter estimation: impact of CMB aberration

    CERN Document Server

    Catena, Riccardo

    2012-01-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a_lm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l=1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fidu...

  2. Ubiquitin Signaling: Extreme Conservation as a Source of Diversity

    Directory of Open Access Journals (Sweden)

    Alice Zuin

    2014-07-01

    Full Text Available Around 2 × 103–2.5 × 103 million years ago, a unicellular organism with radically novel features, ancestor of all eukaryotes, dwelt the earth. This organism, commonly referred as the last eukaryotic common ancestor, contained in its proteome the same functionally capable ubiquitin molecule that all eukaryotic species contain today. The fact that ubiquitin protein has virtually not changed during all eukaryotic evolution contrasts with the high expansion of the ubiquitin system, constituted by hundreds of enzymes, ubiquitin-interacting proteins, protein complexes, and cofactors. Interestingly, the simplest genetic arrangement encoding a fully-equipped ubiquitin signaling system is constituted by five genes organized in an operon-like cluster, and is found in archaea. How did ubiquitin achieve the status of central element in eukaryotic physiology? We analyze here the features of the ubiquitin molecule and the network that it conforms, and propose notions to explain the complexity of the ubiquitin signaling system in eukaryotic cells.

  3. Targeting FGFR Signaling in Cancer.

    Science.gov (United States)

    Touat, Mehdi; Ileana, Ecaterina; Postel-Vinay, Sophie; André, Fabrice; Soria, Jean-Charles

    2015-06-15

    The fibroblast growth factor signaling pathway (FGFR signaling) is an evolutionary conserved signaling cascade that regulates several basic biologic processes, including tissue development, angiogenesis, and tissue regeneration. Substantial evidence indicates that aberrant FGFR signaling is involved in the pathogenesis of cancer. Recent developments of deep sequencing technologies have allowed the discovery of frequent molecular alterations in components of FGFR signaling among several solid tumor types. Moreover, compelling preclinical models have demonstrated the oncogenic potential of these aberrations in driving tumor growth, promoting angiogenesis, and conferring resistance mechanisms to anticancer therapies. Recently, the field of FGFR targeting has exponentially progressed thanks to the development of novel agents inhibiting FGFs or FGFRs, which had manageable safety profiles in early-phase trials. Promising treatment efficacy has been observed in different types of malignancies, particularly in tumors harboring aberrant FGFR signaling, thus offering novel therapeutic opportunities in the era of precision medicine. The most exciting challenges now focus on selecting patients who are most likely to benefit from these agents, increasing the efficacy of therapies with the development of novel potent compounds and combination strategies, and overcoming toxicities associated with FGFR inhibitors. After examination of the basic and translational research studies that validated the oncogenic potential of aberrant FGFR signaling, this review focuses on recent data from clinical trials evaluating FGFR targeting therapies and discusses the challenges and perspectives for the development of these agents.

  4. [Familial, structural aberration of the Y chromosome with fertility disorders].

    Science.gov (United States)

    Gall, H; Schmid, M; Schmidtke, J; Schempp, W; Weber, L

    1985-11-01

    Cytogenetic studies on a patient with Klinefelter's syndrome revealed an inherited, structural aberration of the Y-chromosome which has not been described before. The aberrant Y-chromosome was characterized by eight different banding methods. The value of individual staining techniques in studies on Y-heterochromatin aberrations is emphasized. Analysis of the cytogenetic studies (banding methods, restriction endonuclease of DNA, and measurement of the length of the Y-chromosome) permits an interpretation to be made on how the aberrant Y-chromosome originated. The functions of the Y-chromosome are discussed. The decrease in fertility (cryptozoospermia) in the two brothers with the same aberrant Y-chromosome was striking.

  5. An investigation into eukaryotic pseudouridine synthases.

    Science.gov (United States)

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  6. Eukaryotic versus prokaryotic marine picoplankton ecology.

    Science.gov (United States)

    Massana, Ramon; Logares, Ramiro

    2013-05-01

    Marine microorganisms contribute markedly to global biomass and ecosystem function. They include a diverse collection of organisms differing in cell size and in evolutionary history. In particular, microbes within the picoplankton are similar in size but belong to two drastically different cellular plans, the prokaryotes and the eukaryotes. Compared with larger organisms, prokaryotes and picoeukaryotes share ecological features, such as high specific activity, large and constant abundances, and high dispersal potential. Still, there are some aspects where their different cell organization influences their ecological performance. First, prokaryotes have a huge metabolic versatility and are involved in all biogeochemical cycles, whereas picoeukaryotes are metabolically less flexible but can exploit diverse predatory life strategies due to their phagocytic capacity. Second, sexual reproduction is absent in prokaryotes but may be present in picoeukaryotes, thus determining different evolutionary diversification dynamics and making species limits clearer in picoeukaryotes. Finally, it is plausible that picoeukaryotes are less flexible to enter a reversible state of low metabolic activity, thus picoeukaryote assemblages may have fewer rare species and may be less resilient to environmental change. In summary, lumping together pico-sized microbes may be convenient for some ecological studies, but it is also important to keep in mind their differences.

  7. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  8. DING proteins; novel members of a prokaryotic phosphate-binding protein superfamily which extends into the eukaryotic kingdom.

    Science.gov (United States)

    Berna, Anne; Bernier, François; Chabrière, Eric; Perera, Tekla; Scott, Ken

    2008-01-01

    PstS proteins are the cell-bound phosphate-binding elements of the ubiquitous bacterial ABC phosphate uptake mechanisms. Primary and tertiary structures, characteristic of pstS proteins, are conserved in proteins, which are expressed in secretory operons and induced by phosphate deprivation, in Pseudomonas species. There are two subsets of these proteins; AP proteins, which are alkaline phosphatases, and DING proteins, named for their N-terminal sequence, which are phosphate-binding proteins. Both form elements of a proposed phosphate-scavenging system in pseudomonads. DING proteins have also been isolated from many eukaryotic sources, and are associated with both normal and pathological functions in mammals. Their phosphate-binding function suggests a role in biomineralization, but the ability to bind other ligands may be related to signal transduction in eukaryotes. Though it has been claimed that all such proteins may originate from pseudomonads, many eukaryotic DING proteins have unique features which are incompatible with a bacterial origin.

  9. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  10. Radiotherapeutical chromosomal aberrations in laryngeal cancer patients

    Directory of Open Access Journals (Sweden)

    Stošić-Divjak Svetlana L.

    2009-01-01

    Full Text Available Introduction. The authors present the results of cytogenetic analysis of 21 patients with laryngeal carcinomas diagnosed and treated in the period 1995-2000 at the Institute of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia and Clinical Center of Novi Sad. Material and methods. The patients were specially monitored and the material was analyzed at the Institute of Human Genetics of the School of Medicine in Belgrade as well as in the Laboratory for Radiological Protection of the Institute of Occupational and Radiological Health 'Dr Dragomir Karajovic' in Belgrade. Results. The incidence of chromosomal aberrations and incidence of exchange of material between sister chromatids were observed in the preparation of the metaphasic lymphocyte chromosomes of the peripheral blood obtained in the culture. Structural aberrations were found on the chromosomes in the form of breakups, rings, translocations and dicentrics as early as after a single exposure of patients to tumor radiation dose of 2 Gy in the field sized 5x7. Out of the total number of 35 cultivated blood samples obtained from 13 patients, 21 were successfully cultivated and they were proved to contain chromosomal aberrations. Some of the peripheral blood samples failed to show cell growth in vitro due to the lethal cell damages in vivo. Discussion.. We have consluded that the number of structural aberrations cannot be used as a biological measure of the absorbed ionizing radiation dose. The presence of aberrations per se is indicative of the mutagenic effect of the ionizing radiation, which was also confirmed in our series on the original model by cultivation of the peripheral blood lymphocytes in the culture of the cells of the volunteer donors upon in vitro radiation. Using the method of bromdeoxyuridylreductase, the increased incidence of SCE as a mutagenic effect was registered. Conclusion. It has been concluded that the increase of absorbed radiation dose in

  11. Chromatic variation of aberration: the role of induced aberrations and raytrace direction

    Science.gov (United States)

    Berner, A.; Nobis, T.; Shafer, D.; Gross, H.

    2015-09-01

    The design and optimization process of an optical system contains several first order steps. The definition of the appropriate lens type and the fixation of the raytrace direction are some of them. The latter can be understood as a hidden assumption rather than an aware design step. This is usually followed by the determination of the paraxial lens layout calculated for the primary wavelength. It is obvious, that for this primary wavelength the paraxial calculations are independent of raytrace direction. Today, most of the lens designs are specified not to work only for one wavelength, but in a certain wavelength range. Considering such rays of other wavelengths, one can observe that depending on the direction there will already occur differences in the first order chromatic aberrations and additionally in the chromatic variation of the third-order aberrations. The reason for this effect are induced aberrations emerging from one surface to the following surfaces by perturbed ray heights and ray angles. It can be shown, that the total amount of surface-resolved first order chromatic aberrations and the chromatic variation of the five primary aberrations can be split into an intrinsic part and an induced part. The intrinsic part is independent of the raytrace direction whereas the induced part is not.

  12. Nodal aberration theory for wild-filed asymmetric optical systems

    Science.gov (United States)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  13. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  14. Rooting the eukaryote tree by using a derived gene fusion.

    Science.gov (United States)

    Stechmann, Alexandra; Cavalier-Smith, Thomas

    2002-07-05

    Single-gene trees have failed to locate the root of the eukaryote tree because of systematic biases in sequence evolution. Structural genetic data should yield more reliable insights into deep phylogenetic relationships. We searched major protist groups for the presence or absence of a gene fusion in order to locate the root of the eukaryote tree. In striking contrast to previous molecular studies, we show that all eukaryote groups ancestrally with two cilia (bikonts) are evolutionarily derived. The root lies between bikonts and opisthokonts (animals, Fungi, Choanozoa). Amoebozoa either diverged even earlier or are sister of bikonts or (less likely) opisthokonts.

  15. Errors in confocal fluorescence ratiometric imaging microscopy due to chromatic aberration.

    Science.gov (United States)

    Lin, Yuxiang; Gmitro, Arthur F

    2011-01-01

    Confocal fluorescence ratiometric imaging is an optical technique used to measure a variety of important biological parameters. A small amount of chromatic aberration in the microscope system can introduce a variation in the signal ratio dependent on the fluorophore concentration gradient along the optical axis and lead to bias in the measurement. We present a theoretical model of this effect. Experimental results and simulations clearly demonstrate that this error can be significant and should not be ignored.

  16. Detection of chromosome aberrations in interphase nuclei using fluorescence in situ hybridization technique.

    OpenAIRE

    1993-01-01

    We report here several experiences of interphase cytogenetics, using fluorescence in situ hybridization (FISH) technique, for the detection of chromosome aberrations. FISH, using alpha satellite specific probes of 18, X, Y chromosomes, was done in interphase nuclei from peripheral blood of patients with Edwards' syndrome, Klinefelter's syndrome and Turner's syndrome with healthy male and female controls, respectively. The distributions of fluorescent signals in 100 interphase nuclei were well...

  17. Wavefront aberrations of x-ray dynamical diffraction beams.

    Science.gov (United States)

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  18. Chromosomal aberrations in ISS crew members

    Science.gov (United States)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  19. Aberrations in Fresnel Lenses and Mirrors

    Science.gov (United States)

    Gregory, Don

    1999-01-01

    The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.

  20. Membranes, energetics, and evolution across the prokaryote-eukaryote divide

    Science.gov (United States)

    Lynch, Michael; Marinov, Georgi K

    2017-01-01

    The evolution of the eukaryotic cell marked a profound moment in Earth’s history, with most of the visible biota coming to rely on intracellular membrane-bound organelles. It has been suggested that this evolutionary transition was critically dependent on the movement of ATP synthesis from the cell surface to mitochondrial membranes and the resultant boost to the energetic capacity of eukaryotic cells. However, contrary to this hypothesis, numerous lines of evidence suggest that eukaryotes are no more bioenergetically efficient than prokaryotes. Thus, although the origin of the mitochondrion was a key event in evolutionary history, there is no reason to think membrane bioenergetics played a direct, causal role in the transition from prokaryotes to eukaryotes and the subsequent explosive diversification of cellular and organismal complexity. DOI: http://dx.doi.org/10.7554/eLife.20437.001 PMID:28300533

  1. The structure and function of the eukaryotic ribosome.

    Science.gov (United States)

    Wilson, Daniel N; Doudna Cate, Jamie H

    2012-05-01

    Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.

  2. Giant viruses and the origin of modern eukaryotes.

    Science.gov (United States)

    Forterre, Patrick; Gaïa, Morgan

    2016-06-01

    Several authors have suggested that viruses from the NucleoCytoplasmic Large DNA Viruses group (NCLDV) have played an important role in the origin of modern eukaryotes. Notably, the viral eukaryogenesis theory posits that the nucleus originated from an ancient NCLDV-related virus. Focusing on the viral factory instead of the virion adds credit to this hypothesis, but also suggests alternative scenarios. Beside a role in the emergence of the nucleus, ancient NCLDV may have provided new genes and/or chromosomes to the proto-eukaryotic lineage. Phylogenetic analyses suggest that NCLDV informational proteins, related to those of Archaea and Eukarya, were either recruited by ancient NCLDV from proto-eukaryotes and/or transferred to proto-eukaryotes, in agreement with the antiquity of NCLDV and their possible role in eukaryogenesis.

  3. Construction and expression of recombined human AFP eukaryotic expression vector

    Institute of Scientific and Technical Information of China (English)

    Li-Wang Zhang; Yang-Lin Pan; Stephen M Festein; Jun Ren; Liang Zhang; Hong-Mei Zhang; Bin Jin; Bo-Rong Pan; Xiao-Ming Si; Yan-Jun Zhang; Zhong-Hua Wang

    2003-01-01

    AIM: To construct a recombined human AFP eukaryotic expression vector for the purpose of gene therapy and target therapy of hepatocellular carcinoma (HCC).METHODS: The full length AFP-cDNA of prokaryotic vector was digested, and subcloned to the multi-clony sites of the eukaryotic vector. The constructed vector was confirmed by enzymes digestion and electrophoresis, and the product expressed was detected by electrochemiluminescence and immunofluorescence methods.RESULTS: The full length AFP-cDNA successfully cloned to the eukaryotic vector through electrophoresis, 0.9723 IU/ml AFP antigen was detected in the supernatant of AFPCHO by electrochemiluminescence method. Compared with the control groups, the differences were significant (P<0.05).AFP antigen molecule was observed in the plasma of AFPCHO by immunofluorescence staining.CONCLUSION: The recombined human AFP eukaryotic expression vector can express in CHO cell line. It provides experimental data for gene therapy and target therapy of hepatocellular carcinoma.

  4. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms fo

  5. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  6. The eukaryotic Pso2/Snm1/Artemis proteins and their function as genomic and cellular caretakers

    Directory of Open Access Journals (Sweden)

    D. Bonatto

    2005-03-01

    Full Text Available DNA double-strand breaks (DSBs represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(DJ recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(DJ recombination and in other cellular metabolic reactions are discussed.

  7. A statistical anomaly indicates symbiotic origins of eukaryotic membranes.

    Science.gov (United States)

    Bansal, Suneyna; Mittal, Aditya

    2015-04-01

    Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite-the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson's paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the "third front" (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins.

  8. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    Science.gov (United States)

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  9. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  10. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  11. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Science.gov (United States)

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  12. Crystal structure of eukaryotic ribosome and its complexes with inhibitors.

    Science.gov (United States)

    Yusupova, Gulnara; Yusupov, Marat

    2017-03-19

    A high-resolution structure of the eukaryotic ribosome has been determined and has led to increased interest in studying protein biosynthesis and regulation of biosynthesis in cells. The functional complexes of the ribosome crystals obtained from bacteria and yeast have permitted researchers to identify the precise residue positions in different states of ribosome function. This knowledge, together with electron microscopy studies, enhances our understanding of how basic ribosome processes, including mRNA decoding, peptide bond formation, mRNA, and tRNA translocation and cotranslational transport of the nascent peptide, are regulated. In this review, we discuss the crystal structure of the entire 80S ribosome from yeast, which reveals its eukaryotic-specific features, and application of X-ray crystallography of the 80S ribosome for investigation of the binding mode for distinct compounds known to inhibit or modulate the protein-translation function of the ribosome. We also refer to a challenging aspect of the structural study of ribosomes, from higher eukaryotes, where the structures of major distinctive features of higher eukaryote ribosome-the high-eukaryote-specific long ribosomal RNA segments (about 1MDa)-remain unresolved. Presently, the structures of the major part of these high-eukaryotic expansion ribosomal RNA segments still remain unresolved.This article is part of the themed issue 'Perspectives on the ribosome'.

  13. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  14. Aberration measurement from specific photolithographic images: a different approach.

    Science.gov (United States)

    Nomura, H; Tawarayama, K; Kohno, T

    2000-03-01

    Techniques for measurement of higher-order aberrations of a projection optical system in photolithographic exposure tools have been established. Even-type and odd-type aberrations are independently obtained from printed grating patterns on a wafer by three-beam interference under highly coherent illumination. Even-type aberrations, i.e., spherical aberration and astigmatism, are derived from the best focus positions of vertical, horizontal, and oblique grating patterns by an optical microscope. Odd-type aberrations, i.e., coma and three-foil, are obtained by detection of relative shifts of a fine grating pattern to a large pattern by an overlay inspection tool. Quantitative diagnosis of lens aberrations with a krypton fluoride (KrF) excimer laser scanner is demonstrated.

  15. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes.

    Science.gov (United States)

    Huang, Yi; Greene, Eriko; Murray Stewart, Tracy; Goodwin, Andrew C; Baylin, Stephen B; Woster, Patrick M; Casero, Robert A

    2007-05-08

    Epigenetic chromatin modification is a major regulator of eukaryotic gene expression, and aberrant epigenetic silencing of gene expression contributes to tumorigenesis. Histone modifications include acetylation, phosphorylation, and methylation, resulting in a combination of histone marks known collectively as the histone code. The chromatin marks at a given promoter determine, in part, whether specific promoters are in an open/active conformation or closed/repressed conformation. Dimethyl-lysine 4 histone H3 (H3K4me2) is a transcription-activating chromatin mark at gene promoters, and demethylation of this mark by the lysine-specific demethylase 1 (LSD1), a homologue of polyamine oxidases, may broadly repress gene expression. We now report that novel biguanide and bisguanidine polyamine analogues are potent inhibitors of LSD1. These analogues inhibit LSD1 in human colon carcinoma cells and affect a reexpression of multiple, aberrantly silenced genes important in the development of colon cancer, including members of the secreted frizzle-related proteins (SFRPs) and the GATA family of transcription factors. Furthermore, we demonstrate by chromatin immunoprecipitation analysis that the reexpression is concurrent with increased H3K4me2 and acetyl-H3K9 marks, decreased H3K9me1 and H3K9me2 repressive marks. We thus define important new agents for reversing aberrant repression of gene transcription.

  16. MetWAMer: eukaryotic translation initiation site prediction

    Directory of Open Access Journals (Sweden)

    Brendel Volker

    2008-09-01

    Full Text Available Abstract Background Translation initiation site (TIS identification is an important aspect of the gene annotation process, requisite for the accurate delineation of protein sequences from transcript data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-processing gene structure annotations generated by external computational programs and/or pipelines, or directly integrated into gene structure prediction software implementations. Results MetWAMer currently implements five distinct methods for TIS prediction, the most accurate of which is a routine that combines weighted, signal-based translation initiation site scores and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our program implements clustering capabilities through use of the k-medoids algorithm, thereby enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based indexing method for parameter set lookup can be used with good results in data sets exhibiting moderate levels of 5'-complete coverage. Conclusion We demonstrate that improvements in statistically-based models for TIS prediction can be achieved by taking the class of each potential start-methionine into account pending certain testing conditions, and that our perceptron-based model is suitable for the TIS identification task. MetWAMer represents a well-documented, extensible, and freely available software system that can be readily re-trained for differing target applications and/or extended with existing and novel TIS prediction methods, to support further research efforts in this area.

  17. Calibration and removal of lateral chromatic aberration in images

    OpenAIRE

    Mallon, John; Whelan, Paul F.

    2007-01-01

    This paper addresses the problem of compensating for lateral chromatic aberration in digital images through colour plane realignment. Two main contributions are made: the derivation of a model for lateral chromatic aberration in images, and the subsequent calibration of this model from a single view of a chess pattern. These advances lead to a practical and accurate alternative for the compensation of lateral chromatic aberrations. Experimental results validate the proposed models and calibra...

  18. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  19. Cellular origin of prognostic chromosomal aberrations in AML patients

    DEFF Research Database (Denmark)

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.;

    2015-01-01

    karyotype have demonstrated the presence of prognostic driver aberrations (that is, NPM1, FLT3-ITD and FLT3-TKD) in committed HPCs but not in multipotent HSCs. However, the HSC populations lacking the prognostic driver aberrations contained preleukemic clones harboring a series of recurrent molecular...... aberrations that were present in the fully transformed committed HPCs together with the prognostic driver aberration. Adding to this vast heterogeneity and complexity of AML genomes and their clonal evolution, a recent study of a murine AML model demonstrated that t(9;11) AML originating from HSCs responded...

  20. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  1. A proposal for the holographic correction of incoherent aberrations by tilted reference waves

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: Falk.Roeder@Triebenberg.de; Lubk, Axel

    2015-05-15

    The recently derived general transfer theory for off-axis electron holography provides a new approach for reconstructing the electron wave beyond the conventional sideband information limit. Limited ensemble coherence of the electron beam between object and reference area leads to an attenuation of spatial frequencies of the object exit wave in the presence of aberrations of the objective lens. Concerted tilts of the reference wave under the condition of an invariant object exit wave are proposed to diminish the aberration impact on spatial frequencies even beyond the sideband information limit allowing its transfer with maximum possible contrast. In addition to the theoretical considerations outlined in detail, an experimental proof-of-principle is presented. A fully controlled tilt of the reference wave, however, remains as a promising task for the future. The use of a hologram series with varying reference wave tilt is considered for linearly synthesizing an effective aperture for the transfer into the sideband with broader bandwidth compared to conventional off-axis electron holography allowing us to correct the incoherent aberrations in transmission electron microscopy. Furthermore, tilting a reference wave with respect to a plane wave is expected to be an alternative way for measuring the coherent and incoherent aberrations of a transmission electron microscope. The capability of tilting the reference wave is expected to be beneficial for improving the signal-to-noise ratio in dark-field off-axis electron holography as well. - Highlights: • We examine the use of tilted reference waves in off-axis electron holography. • Generalized holographic transfer theory reveals a selective filtering effect. • We propose the correction of incoherent aberrations by series acquisitions. • For a proof-of-principle, we employ a crystal for tilting the reference wave.

  2. Linking sub-cellular biomarkers to embryo aberrations in the benthic amphipod Monoporeia affinis.

    Science.gov (United States)

    Reutgard, Martin; Furuhagen, Sara

    2016-04-01

    To adequately assess and monitor environmental status in the aquatic environment a broad approach is needed that integrates physical variables, chemical analyses and biological effects at different levels of the biological organization. Embryo aberrations in the Baltic Sea key species Monoporeia affinis can be induced by both metals and organic substances as well as by hypoxia, increasing temperatures and malnutrition. This amphipod has therefore been used for more than three decades as a biological effect indicator in monitoring and assessment of chemical pollution and environmental stress. However, little is known about the sub-cellular mechanisms underlying embryo aberrations. An improved mechanistic understanding may open up the possibility of including sub-cellular alterations as sensitive warning signals of stress-induced embryo aberrations. In the present study, M. affinis was exposed in microcosms to 4 different sediments from the Baltic Sea. After 88-95 days of exposure, survival and fecundity were determined as well as the frequency and type of embryo aberrations. Moreover, oxygen radical absorption capacity (ORAC) was assayed as a proxy for antioxidant defense, thiobarbituric acid reactive substances (TBARS) level as a measure of lipid peroxidation and acetylcholinesterase (AChE) activity as an indicator of neurotoxicity. The results show that AChE and ORAC can be linked to the frequency of malformed embryos and arrested embryo development. The occurrence of dead broods was significantly associated with elevated TBARS levels. It can be concluded that these sub-cellular biomarkers are indicative of effects that could affect Darwinian fitness and that oxidative stress is a likely mechanism in the development of aberrant embryos in M. affinis.

  3. Predation and eukaryote cell origins: a coevolutionary perspective.

    Science.gov (United States)

    Cavalier-Smith, T

    2009-02-01

    Cells are of only two kinds: bacteria, with DNA segregated by surface membrane motors, dating back approximately 3.5Gy; and eukaryotes, which evolved from bacteria, possibly as recently as 800-850My ago. The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria, one or two centrioles and cilia. Conversion of bacteria (=prokaryotes) into a eukaryote involved approximately 60 major innovations. Numerous contradictory ideas about eukaryogenesis fail to explain fundamental features of eukaryotic cell biology or conflict with phylogeny. Data are best explained by the intracellular coevolutionary theory, with three basic tenets: (1) the eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy; (2) phagocytosis internalised DNA-membrane attachments, unavoidably disrupting bacterial division; recovery entailed the evolution of the nucleus and mitotic cycle; (3) the symbiogenetic origin of mitochondria immediately followed the perfection of phagotrophy and intracellular digestion, contributing greater energy efficiency and group II introns as precursors of spliceosomal introns. Eukaryotes plus their archaebacterial sisters form the clade neomura, which evolved from a radically modified derivative of an actinobacterial posibacterium that had replaced the ancestral eubacterial murein peptidoglycan by N-linked glycoproteins, radically modified its DNA-handling enzymes, and evolved cotranslational protein secretion, but not the isoprenoid-ether lipids of archaebacteria. I focus on this phylogenetic background and on explaining how in response to novel phagotrophic selective pressures and ensuing genome internalisation this prekaryote evolved efficient digestion of prey proteins by retrotranslocation and 26S proteasomes, then internal digestion by phagocytosis, lysosomes, and peroxisomes, and eukaryotic vesicle trafficking and intracellular compartmentation.

  4. Involvement of Aberrant Glycosylation in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Eiji Miyoshi

    2010-01-01

    Full Text Available Glycosylation is one of the most common posttranslational modification reactions and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharides structures are associated with many physiological and pathological events, including cell growth, migration and differentiation, and tumor invasion. Therefore, functional glycomics, which is a comprehensive study of the structures and functions of glycans, is attracting the increasing attention of scientists in various fields of life science. In cases of thyroid cancer, the biological characters and prognosis are completely different in each type of histopathology, and their oligosaccharide structures as well as the expression of glycosyltransferases are also different. In this review, we summarized our previous papers on oligosaccharides and thyroid cancers and discussed a possible function of oligosaccharides in the carcinogenesis in thyroid cancer.

  5. Aberrant angiogenesis: The gateway to diabetic complications

    Directory of Open Access Journals (Sweden)

    Sunil K Kota

    2012-01-01

    Full Text Available Diabetes Mellitus is a metabolic cum vascular syndrome with resultant abnormalities in both micro- and macrovasculature. The adverse long-term effects of diabetes mellitus have been described to involve many organ systems. Apart from hyperglycemia, abnormalities of angiogenesis may cause or contribute toward many of the clinical manifestations of diabetes. These are implicated in the pathogenesis of vascular abnormalities of the retina, kidneys, and fetus, impaired wound healing, increased risk of rejection of transplanted organs, and impaired formation of coronary collaterals. A perplexing feature of the aberrant angiogenesis is that excessive and insufficient angiogenesis can occur in different organs in the same individual. The current article hereby reviews the molecular mechanisms including abnormalities in growth factors, cytokines, and metabolic derangements, clinical implications, and therapeutic options of dealing with abnormal angiogenesis in diabetes.

  6. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    model to investigate the role of telomerase in AML, we were able to translate the observed effect into human AML patients and identify specific genes involved, which also predict survival patterns in AML patients. During these studies we have applied methods for investigating differentially expressed......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...

  7. Censusing marine eukaryotic diversity in the twenty-first century.

    Science.gov (United States)

    Leray, Matthieu; Knowlton, Nancy

    2016-09-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems.This article is part of the themed issue 'From DNA barcodes to biomes'.

  8. The Sec translocon mediated protein transport in prokaryotes and eukaryotes.

    Science.gov (United States)

    Denks, Kärt; Vogt, Andreas; Sachelaru, Ilie; Petriman, Narcis-Adrian; Kudva, Renuka; Koch, Hans-Georg

    2014-01-01

    Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.

  9. Censusing marine eukaryotic diversity in the twenty-first century

    Science.gov (United States)

    Knowlton, Nancy

    2016-01-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481783

  10. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  11. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    Science.gov (United States)

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  12. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Development Drugs Against Cancer

    Directory of Open Access Journals (Sweden)

    Andreia eVasconcelos-dos-Santos

    2015-06-01

    Full Text Available Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway (HBP is a branch of glucose metabolism that produces UDP-GlcNAc, and its derivatives, UDP-GalNAc and CMP-Neu5Ac, donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.

  13. Effect of chromatic aberration on atomic-resolved spherical aberration corrected STEM images.

    Science.gov (United States)

    Kuramochi, Koji; Yamazaki, Takashi; Kotaka, Yasutoshi; Ohtsuka, Masahiro; Hashimoto, Iwao; Watanabe, Kazuto

    2009-12-01

    The effect of the chromatic aberration (C(c)) coefficient in a spherical aberration (C(s))- corrected electromagnetic lens on high-resolution high-angle annular dark field (HAADF) scanning transmission electron microscope (STEM) images is explored in detail. A new method for precise determination of the C(c) coefficient is demonstrated, requiring measurement of an atomic-resolution one-frame through-focal HAADF STEM image. This method is robust with respect to instrumental drift, sample thickness, all lens parameters except C(c), and experimental noise. It is also demonstrated that semi-quantitative structural analysis on the nanometer scale can be achieved by comparing experimental C(s)- corrected HAADF STEM images with their corresponding simulated images when the effects of the C(c) coefficient and spatial incoherence are included.

  14. Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice.

    Science.gov (United States)

    Kikuchihara, Yoh; Abe, Hajime; Tanaka, Takeshi; Kato, Mizuho; Wang, Liyun; Ikarashi, Yoshiaki; Yoshida, Toshinori; Shibutani, Makoto

    2015-05-04

    We previously found persistent aberration of hippocampal adult neurogenesis, along with brain manganese (Mn) accumulation, in mouse offspring after developmental exposure to 800-ppm dietary Mn. Reduction of parvalbumin (Pvalb)(+) γ-aminobutyric acid (GABA)-ergic interneurons in the hilus of the dentate gyrus along with promoter region hypermethylation are thought to be responsible for this aberrant neurogenesis. The present study was conducted to examine the relationship between the induction of aberrant neurogenesis and brain Mn accumulation after oral Mn exposure as well as the responsible mechanism in young adult animals. We used two groups of mice with 28- or 56-day exposure periods to oral MnCl2·xH2O at 800 ppm as Mn, a dose sufficient to lead to aberrant neurogenesis after developmental exposure. A third group of mice received intravenous injections of Mn at 5-mg/kg body weight once weekly for 28 days. The 28-day oral Mn exposure did not cause aberrations in neurogenesis. In contrast, 56-day oral exposure caused aberrations in neurogenesis suggestive of reductions in type 2b and type 3 progenitor cells and immature granule cells in the dentate subgranular zone. Brain Mn accumulation in 56-day exposed cases, as well as in directly Mn-injected cases occurred in parallel with reduction of Pvalb(+) GABAergic interneurons in the dentate hilus, suggesting that this may be responsible for aberrant neurogenesis. For reduction of Pvalb(+) interneurons, suppression of brain-derived neurotrophic factor-mediated signaling of mature granule cells may occur via suppression of c-Fos-mediated neuronal plasticity due to direct Mn-toxicity rather than promoter region hypermethylation of Pvalb.

  15. Phosphatidylinositol-3-kinase pathway aberrations in gastric and colorectal cancer: meta-analysis, co-occurrence and ethnic variation.

    Science.gov (United States)

    Chong, Mei-Ling; Loh, Marie; Thakkar, Bhavin; Pang, Brendan; Iacopetta, Barry; Soong, Richie

    2014-03-01

    Inhibition of the phosphatidylinositol-3-kinase (PI3K) signaling pathway is a cancer treatment strategy that has entered into clinical trials. We performed a meta-analysis on the frequency of prominent genetic (PIK3CA mutation, PIK3CA amplification and PTEN deletion) and protein expression (high PI3K, PTEN loss and high pAkt) aberrations in the PI3K pathway in gastric cancer (GC) and colorectal cancer (CRC). We also performed laboratory analysis to investigate the co-occurrence of these aberrations. The meta-analysis indicated that East Asian and Caucasian GC patients differ significantly for the frequencies of PIK3CA Exon 9 and 20 mutations (7% vs. 15%, respectively), PTEN deletion (21% vs. 4%) and PTEN loss (47% vs. 78%), while CRC patients differed for PTEN loss (57% vs. 26%). High study heterogeneity (I(2) > 80) was observed for all aberrations except PIK3CA mutations. Laboratory analysis of tumors from East Asian patients revealed significant differences between GC (n = 79) and CRC (n = 116) for the frequencies of PIK3CA amplification (46% vs. 4%) and PTEN loss (54% vs. 78%). The incidence of GC cases with 0, 1, 2 and 3 concurrent aberrations was 14%, 52%, 27% and 8%, respectively, while for CRC it was 10%, 60%, 25% and 4%, respectively. Our study consolidates knowledge on the frequency, co-occurrence and clinical relevance of PI3K pathway aberrations in GC and CRC. Up to 86% of GC and 90% of CRC have at least one aberration in the PI3K pathway, and there are significant differences in the frequencies of these aberrations according to cancer type and ethnicity.

  16. Design of an aberration corrected low-voltage SEM

    NARCIS (Netherlands)

    Aken, R.H. van; Maas, D.J.; Hagen, C.W.; Barth, J.E.; Kruit, P.

    2010-01-01

    The low-voltage foil corrector is a novel type of foil aberration corrector that can correct for both the spherical and chromatic aberration simultaneously. In order to give a realistic example of the capabilities of this corrector, a design for a low-voltage scanning electron microscope with the lo

  17. Adaptive aberration correction using a triode hyperbolic electron mirror.

    Science.gov (United States)

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z(0), and the coefficients of spherical and chromatic aberration, C(s) and C(c), of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties.

  18. Expressions for third-order aberration theory for holographic images

    Indian Academy of Sciences (India)

    S K Tripathy; S Ananda Rao

    2003-01-01

    Expressions for third-order aberration in the reconstructed wave front of point objects are established by Meier. But Smith, Neil Mohon, Sweatt independently reported that their results differ from that of Meier. We found that coefficients for spherical aberration, astigmatism, tally with Meier’s while coefficients for distortion and coma differ.

  19. Numerical correction of aberrations via phase retrieval with speckle illumination

    DEFF Research Database (Denmark)

    Almoro, Percival; Gundu, Phanindra Narayan; Hanson, Steen Grüner

    2009-01-01

    What we believe to be a novel technique for wavefront aberration measurement using speckle patterns is presented. The aberration correction is done numerically. A tilted lens is illuminated with a partially developed speckle field, and the transmitted light intensity is sampled at axially displaced...

  20. Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90.

    Science.gov (United States)

    Stechmann, Alexandra; Cavalier-Smith, Thomas

    2003-10-01

    Most eukaryote molecular phylogenies have been based on small-subunit ribosomal RNA as its database includes the most species, but serious problems have been encountered that can make these trees misleading. More recent studies using concatenated protein sequences have increased the data per organism, reducing misleading signals from a single sequence, but taxon sampling is limited. To increase the database of protein-coding genes we sequenced the cytosolic form of heat-shock protein Hsp90 from a broad variety of previously unsampled eukaryote groups: protozoan flagellates (phyla Choanozoa, Apusozoa, Cercozoa) and all three groups of chromists (Cryptophyta, Heterokonta, Haptophyta). Gamma-corrected distance trees robustly show three groups: bacterial sequences are sister to all eukaryote sequences, which are cleanly subdivided into the cytosolic sequences and a clade comprising the chloroplast and endoplasmic reticulum (ER) Hsp90 sequences. The eukaryote cytosolic sequences comprise a robust opisthokont clade (animals/Choanozoa/fungi), a bikont clade, and an amoebozoan branch. However their topology is not robust. When the cytosolic sequences are rooted using only the ER/ chloroplast clade as outgroup the amoebozoan Dictyostelium is sister to the opisthokonts forming a unikont clade in the distance tree. Congruence of this tree with that for concatenated mitochondrial proteins suggests that the root of the eukaryote tree is between unikonts and bikonts. Gamma-corrected maximum likelihood analyses of cytosolic sequences alone (519 unambiguously aligned amino acid positions) show bikonts as a clade, as do least-squares distance trees, but with other distance methods and parsimony the sole amoebozoan species branches weakly within bikonts. Choanozoa are clearly sisters to animals. Some major bikont groups (e.g. green plants, alveolates, Euglenozoa) are consistently recovered, but others (e.g. discicristates, chromalveolates) appear only in some trees; the backbone of

  1. TOR signalling in plants.

    Science.gov (United States)

    Rexin, Daniel; Meyer, Christian; Robaglia, Christophe; Veit, Bruce

    2015-08-15

    Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.

  2. Exosomes: mediators of communication in eukaryotes.

    Science.gov (United States)

    Lopez-Verrilli, María A; Court, Felipe A

    2013-01-01

    In addition to the established mechanisms of intercellular signaling, a new way of communication has gained much attention in the last decade: communication mediated by exosomes. Exosomes are nanovesicles (with a diameter of 40-120 nm) secreted into the extracellular space by the multivesicular endosome after its outer membrane fuses with the plasma membrane. Once released, exosomes modulate the response of the recipient cells that recognize them. This indicates that exosomes operate in a specific manner and participate in the regulation of the target cell. Remarkably, exosomes occur from unicellular organisms to mammals, suggesting an evolutionarily conserved mechanism of communication. In this review we describe the cascade of exosome formation, intracellular traffic, secretion, and internalization by recipient cells, and review their most relevant effects. We also highlight important steps that are still poorly understood.

  3. Heterotrimeric G-protein shuttling via Gip1 extends the dynamic range of eukaryotic chemotaxis.

    Science.gov (United States)

    Kamimura, Yoichiro; Miyanaga, Yukihiro; Ueda, Masahiro

    2016-04-19

    Chemotactic eukaryote cells can sense chemical gradients over a wide range of concentrations via heterotrimeric G-protein signaling; however, the underlying wide-range sensing mechanisms are only partially understood. Here we report that a novel regulator of G proteins, G protein-interacting protein 1 (Gip1), is essential for extending the chemotactic range ofDictyosteliumcells. Genetic disruption of Gip1 caused severe defects in gradient sensing and directed cell migration at high but not low concentrations of chemoattractant. Also, Gip1 was found to bind and sequester G proteins in cytosolic pools. Receptor activation induced G-protein translocation to the plasma membrane from the cytosol in a Gip1-dependent manner, causing a biased redistribution of G protein on the membrane along a chemoattractant gradient. These findings suggest that Gip1 regulates G-protein shuttling between the cytosol and the membrane to ensure the availability and biased redistribution of G protein on the membrane for receptor-mediated chemotactic signaling. This mechanism offers an explanation for the wide-range sensing seen in eukaryotic chemotaxis.

  4. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Cao, Jicong; Arha, Manish; Sudrik, Chaitanya; Mukherjee, Abhirup; Wu, Xia; Kane, Ravi S

    2015-04-30

    We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein-RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5' untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells.

  5. Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses.

    Science.gov (United States)

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2014-04-01

    Spatiotemporal focusing, or simultaneous spatial and temporal focusing (SSTF), has already been adopted for various applications in microscopy, photoactivation for biological studies, and laser fabrication. We investigate the effects of aberrations on focus formation in SSTF, in particular, the effects of phase aberrations related to low-order Zernike modes and a refractive index mismatch between the immersion medium and sample. By considering a line focus, we are able to draw direct comparison between the performance of SSTF and conventional spatial focusing (SF). Wide-field SSTF is also investigated and is found to be much more robust to aberrations than either line SSTF or SF. These results show the sensitivity of certain focusing methods to specific aberrations, and can inform on the necessity and benefit of aberration correction.

  6. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils;

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly...... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...... storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described...

  7. Horizontal gene transfer in the evolution of photosynthetic eukaryotes

    Institute of Scientific and Technical Information of China (English)

    Jinling HUANG; Jipei YUE

    2013-01-01

    Horizontal gene transfer (HGT) may not only create genome mosaicism,but also introduce evolutionary novelties to recipient organisms.HGT in plastid genomes,though relatively rare,still exists.HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants.In particular,ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent.There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments.Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes,reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.

  8. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  9. Aberrant repair and fibrosis development in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Mann Christopher J

    2011-05-01

    Full Text Available Abstract The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.

  10. Age-related changes in ocular aberrations with accommodation.

    Science.gov (United States)

    Radhakrishnan, Hema; Charman, W Neil

    2007-05-30

    This study investigates the changes in aberrations with monocular accommodation as a function of age. Second-order and higher order wavefront aberrations and pupil size were measured as a function of accommodation demand over the range of 0-4 D in the right eyes of 47 normal subjects with ages between 17 and 56 years. Higher order ocular Zernike aberrations were analyzed for the natural pupil size in terms of their equivalent defocus and were also determined for fixed pupil diameters of 4.5 mm in the unaccommodated eyes and 2.5 mm in the accommodating eyes. With relaxed accommodation (0 D accommodation stimulus), the major change with age was in the value of C4(0), which increased in positive value over the age range studied, although the total higher order RMS wavefront aberration did not increase. When the data were analyzed for natural pupils, spherical aberration was again found to change systematically in the positive direction with age. The equivalent defocus of total higher order RMS error for natural pupils showed no significant correlation with age (p > .05). With active accommodation, spherical aberration was found to decrease and become negative as the accommodative response increased in the younger subjects (40 years), the spherical aberration showed only small changes, some of which were positive, within the limited amplitude of accommodation available. Other higher order aberrations and the RMS of higher order aberrations did not appear to change systematically with accommodation, except in the oldest subjects. The change with age in the relationship between aberration and accommodation is interpreted in terms of the changing gradients of refractive index and surface curvatures of the crystalline lens.

  11. Regulation of eukaryotic DNA replication and nuclear structure

    Institute of Scientific and Technical Information of China (English)

    WUJIARUI

    1999-01-01

    In eukaryote,nuclear structure is a key component for the functions of eukaryotic cells.More and more evidences show that the nuclear structure plays important role in regulating DNA replication.The nuclear structure provides a physical barrier for the replication licensing,participates in the decision where DNA replication initiates,and organizes replication proteins as replication factory for DNA replication.Through these works,new concepts on the regulation of DNA replication have emerged,which will be discussed in this minireview.

  12. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  13. Wnt signaling in liver physiology and pathology

    Institute of Scientific and Technical Information of China (English)

    Satdarshan P. Singh Monga

    2009-01-01

    @@ 1 Wnt/β-catenin signaling This signaling pathway is known to play key roles during development and in maintaining homeostasis in many adult tissues. Its aberrant activation is associated with cancers in many tissues such as breast, colon, pancreas, skin and liver.

  14. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy.

    Science.gov (United States)

    Chowdhury, Subir K Roy; Smith, Darrell R; Fernyhough, Paul

    2013-03-01

    Diabetic neuropathy is a neurological complication of diabetes that causes significant morbidity and, because of the obesity-driven rise in incidence of type 2 diabetes, is becoming a major international health problem. Mitochondrial phenotype is abnormal in sensory neurons in diabetes and may contribute to the etiology of diabetic neuropathy where a distal dying-back neurodegenerative process is a key component contributing to fiber loss. This review summarizes the major features of mitochondrial dysfunction in neurons and Schwann cells in human diabetic patients and in experimental animal models (primarily exhibiting type 1 diabetes). This article attempts to relate these findings to the development of critical neuropathological hallmarks of the disease. Recent work reveals that hyperglycemia in diabetes triggers nutrient excess in neurons that, in turn, mediates a phenotypic change in mitochondrial biology through alteration of the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling axis. This vital energy sensing metabolic pathway modulates mitochondrial function, biogenesis and regeneration. The bioenergetic phenotype of mitochondria in diabetic neurons is aberrant due to deleterious alterations in expression and activity of respiratory chain components as a direct consequence of abnormal AMPK/PGC-1α signaling. Utilization of innovative respirometry equipment to analyze mitochondrial function of cultured adult sensory neurons from diabetic rodents shows that the outcome for cellular bioenergetics is a reduced adaptability to fluctuations in ATP demand. The diabetes-induced maladaptive process is hypothesized to result in exhaustion of the ATP supply in the distal nerve compartment and induction of nerve fiber dissolution. The role of mitochondrial dysfunction in the etiology of diabetic neuropathy is compared with other types of neuropathy with a distal dying-back pathology such as Friedreich

  15. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  16. Chromosome aberrations in solid tumors have a stochastic nature

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Mauro A.A. [Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-anexo, Porto Alegre 90035-003 (Brazil) and Departamento de Medicina Interna, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre 90035-903 (Brazil) and Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970 (Brazil) and Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas 92420-280 (Brazil)]. E-mail: mauro@ufrgs.br; Onsten, Tor G.H. [Departamento de Medicina Interna, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre 90035-903 (Brazil); Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas 92420-280 (Brazil); Moreira, Jose C.F. [Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-anexo, Porto Alegre 90035-003 (Brazil); Almeida, Rita M.C. de [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970 (Brazil)

    2006-08-30

    An important question nowadays is whether chromosome aberrations are random events or arise from an internal deterministic mechanism, which leads to the delicate task of quantifying the degree of randomness. For this purpose, we have defined several Shannon information functions to evaluate disorder inside a tumor and between tumors of the same kind. We have considered 79 different kinds of solid tumors with 30 or more karyotypes retrieved from the Mitelman Database of Chromosome Aberrations in Cancer. The Kaplan-Meier cumulative survival was also obtained for each solid tumor type in order to correlate data with tumor malignance. The results here show that aberration spread is specific for each tumor type, with high degree of diversity for those tumor types with worst survival indices. Those tumor types with preferential variants (e.g. high proportion of a given karyotype) have shown better survival statistics, indicating that aberration recurrence is a good prognosis. Indeed, global spread of both numerical and structural abnormalities demonstrates the stochastic nature of chromosome aberrations by setting a signature of randomness associated to the production of disorder. These results also indicate that tumor malignancy correlates not only with karyotypic diversity taken from different tumor types but also taken from single tumors. Therefore, by quantifying aberration spread, we could confront diverse models and verify which of them points to the most likely outcome. Our results suggest that the generating process of chromosome aberrations is neither deterministic nor totally random, but produces variations that are distributed between these two boundaries.

  17. Aberrant DNA methylation in cloned ovine embryos

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; HOU Jian; LEI TingHua; BAI JiaHua; GUAN Hong; AN XiaoRong

    2008-01-01

    By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of cloned ovine embryos. The em-bryos derived from in vitro fertilization were also examined for reference purpose. The results showed that: (1) during the pre-implantation development, cloned embryos displayed a similar demethylation profile to the fertilized embryos; that is, the methylation level decreased to the lowest at 8-cell stage, and then increased again at morulae stage. However, methylation level was obviously higher in cloned embryos than in stage-matched fertilized embryos, especially at 8-cell stage and afterwards; (2) at blastocyst stage, the methylation pattern in cloned embryos was different from that in fertilized em-bryos. In cloned blastocyst, inner cell mass (ICM) exhibited a comparable level to trophectoderm cells (TE), while in in-vitro fertilized blastocyst the methylation level of ICM was lower than that of TE, which is not consistent with that reported by other authors. These results indicate that DNA methylation is abnormally reprogrammed in cloned embryos, implying that aberrant DNA methylation reprogramming may be one of the factors causing cloned embryos developmental failure.

  18. Epigenetic aberrations and therapeutic implications in gliomas.

    Science.gov (United States)

    Natsume, Atsushi; Kondo, Yutaka; Ito, Motokazu; Motomura, Kazuya; Wakabayashi, Toshihiko; Yoshida, Jun

    2010-06-01

    Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.

  19. Localization of checkpoint and repair proteins in eukaryotes

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2005-01-01

    In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets of p...

  20. Tracking Eukaryotic Production and Burial Through Time with Zinc Isotopes

    Science.gov (United States)

    Tang, T. Y. S.; Planavsky, N.; Owens, J. D.; Love, G. D.; Lyons, T.; Peterson, L. C.; Knoll, A. H.; Dupont, C. L.; Reinhard, C.; Zumberge, A.

    2015-12-01

    Zinc is an important, often co-limiting nutrient for eukaryotes in the oceans today. Given the importance of Zn in the modern oceans, we developed a Zn isotope approach to track the extent of Zn limitation and eukaryotic production through Earth's history. Specifically, we use the isotopic systematics of the pyrite (δ66Znpyr), rock extracts (bitumen) and kerogen pyrolysate (δ66Znorg) within euxinic black shales. We show that δ66Znpyr of euxinic core-top muds from the Cariaco basin capture the global deep seawater signature, validating its use as a seawater proxy. Additionally, we propose that Δ66Znpyr-org can be used to track surface water zinc bioavailability. Detailed studies of short-lived oceanic anoxic events such as Cretaceous OAE2, which punctuate an otherwise dominantly oxic Phanerozoic world, exhibit dramatic shifts in seawater δ66Zn and organic bound zinc. Such perturbations are consistent with the demise of eukaryotes under a nitrogen stressed regime, in which cyanobacteria carry the competitive advantage. Contradictory to previous models, however, our data suggest that zinc remained largely bioavailable throughout these anoxic intervals despite significant drawdown of the global reservoir. The framework developed from studies of the modern, Cenozoic, and Mesozoic can be used to track the Precambrian evolution of the marine Zn cycle and the rise of eukaryotic algae to ecological dominance.

  1. Evolutionary position of breviate amoebae and the primary eukaryote divergence.

    Science.gov (United States)

    Minge, Marianne A; Silberman, Jeffrey D; Orr, Russell J S; Cavalier-Smith, Thomas; Shalchian-Tabrizi, Kamran; Burki, Fabien; Skjaeveland, Asmund; Jakobsen, Kjetill S

    2009-02-22

    Integration of ultrastructural and molecular sequence data has revealed six supergroups of eukaryote organisms (excavates, Rhizaria, chromalveolates, Plantae, Amoebozoa and opisthokonts), and the root of the eukaryote evolutionary tree is suggested to lie between unikonts (Amoebozoa, opisthokonts) and bikonts (the other supergroups). However, some smaller lineages remain of uncertain affinity. One of these unassigned taxa is the anaerobic, free-living, amoeboid flagellate Breviata anathema, which is of key significance as it is unclear whether it is a unikont (i.e. possibly the deepest branching amoebozoan) or a bikont. To establish its evolutionary position, we sequenced thousands of Breviata genes and calculated trees using 78 protein sequences. Our trees and specific substitutions in the 18S RNA sequence indicate that Breviata is related to other Amoebozoa, thereby significantly increasing the cellular diversity of this phylum and establishing Breviata as a deep-branching unikont. We discuss the implications of these results for the ancestral state of Amoebozoa and eukaryotes generally, demonstrating that phylogenomics of phylogenetically 'nomadic' species can elucidate key questions in eukaryote evolution. Furthermore, mitochondrial genes among the Breviata ESTs demonstrate that Breviata probably contains a modified anaerobic mitochondrion. With these findings, remnants of mitochondria have been detected in all putatively deep-branching amitochondriate organisms.

  2. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  3. Monitoring disulfide bond formation in the eukaryotic cytosol

    DEFF Research Database (Denmark)

    Østergaard, Henrik; Tachibana, Christine; Winther, Jakob R.

    2004-01-01

    Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green flu...

  4. Abundance of eukaryotic microbes in the deep subtropical North Atlantic

    NARCIS (Netherlands)

    Morgan-Smith, D.; Herndl, G.J.; van Aken, H.M.; Bochdansky, A.B.

    2011-01-01

    The meso- and bathypelagic ocean comprises the largest habitat on earth, yet we know very little about the distribution and activity of protists in this environment. These small eukaryotes are responsible for controlling bacterial abundance in the surface ocean and are major players in the material

  5. A new inhibitor of apoptosis from vaccinia virus and eukaryotes.

    NARCIS (Netherlands)

    Gubser, C.; Bergamaschi, D.; Hollinshead, M.; Lu, X.; Kuppeveld, F.J.M. van; Smith, G.L.

    2007-01-01

    A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein). Stable expression of both viral GAAP (v-GAAP) and human GAA

  6. Automatic generation of gene finders for eukaryotic species

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Krogh, A.

    2006-01-01

    Background The number of sequenced eukaryotic genomes is rapidly increasing. This means that over time it will be hard to keep supplying customised gene finders for each genome. This calls for procedures to automatically generate species-specific gene finders and to re-train them as the quantity...

  7. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  8. Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-Zhuo; WANG Da-Yong; WANG Yun-Xin; TAO Shi-Quan

    2011-01-01

    Digital holographic microscopy has been a powerful metrological technique for phase-contrast imaging. However inherent phase aberrations always exist and degrade the quality of the phase-contrast images. A surface fitting method based on an improved mathematic model is proposed, which can be used to remove the phase aberrations without any pre-knowledge of the setup or manual operation. The improved mathematic model includes not only the usual terms but also the cross terms and the high order terms to describe the phase aberrations with high accuracy. Meanwhile, a non-iterative algorithm is used to solve the parametersand thus less computational load is imposed. The proposed method is applied to the live imaging of cells. The experimental results verify its validity.%Digital holographic microscopy has been a powerful metrological technique for phase-contrast imaging.However inherent phase aberrations always exist and degrade the quality of the phase-contrast images.A surface fitting method based on an improved mathematic model is proposed,which can be used to remove the phase aberrations without any pre-knowledge of the setup or manual operation.The improved mathematic model includes not only the usual terms but also the cross terms and the high order terms to describe the phase aberrations with high accuracy.Meanwhile,a non-iterative algorithm is used to solve the parametersand thus less computational load is imposed.The proposed method is applied to the live imaging of cells.The experimental results verify its validity.Digital holographic microscopy (DHM) has been a powerful metrological technique which permits realtime quantitative phase-contrast imaging.The hologram is recorded by a CCD or a CMOS camera while the reconstruction is performed numerically.Many digital signal processing techniques have been introduced to enhance DHM for speckle removal,[1,2] aperture truncation,[3] phase unwrapping[4,5] etc.It has been widely used in biomedical optics for

  9. Study of residual aberration for non-imaging focusing heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T.; Chong, K.K.; Lim, B.H.; Lim, C.S. [Institute of Energy and Environment, Malaysia University of Science and Technology, No. 17, Jalan SS7/26, Kelana Jaya, 47301 Petaling Jaya, Selangor (Malaysia)

    2003-08-01

    Instead of using a specific focusing geometry, a non-imaging focusing heliostat has no fixed geometry but is composed of many small movable element mirrors that can be manoeuvred to eliminate the first-order aberration. Following our previous publication on the principle of non-imaging focusing heliostat, this paper further explores higher order residual aberration that limits the size of the focusing spot. The residual aberration can be partially corrected by offsetting the pivot point of mirrors and pre-setting the tilting angles of mirrors.

  10. Functional prokaryotic-eukaryotic chimera from the pentameric ligand-gated ion channel family.

    Science.gov (United States)

    Duret, Guillaume; Van Renterghem, Catherine; Weng, Yun; Prevost, Marie; Moraga-Cid, Gustavo; Huon, Christèle; Sonner, James M; Corringer, Pierre-Jean

    2011-07-19

    Pentameric ligand-gated ion channels (pLGICs), which mediate chemo-electric signal transduction in animals, have been recently found in bacteria. Despite clear sequence and 3D structure homology, the phylogenetic distance between prokaryotic and eukaryotic homologs suggests significant structural divergences, especially at the interface between the extracellular (ECD) and the transmembrane (TMD) domains. To challenge this possibility, we constructed a chimera in which the ECD of the bacterial protein GLIC is fused to the TMD of the human α1 glycine receptor (α1GlyR). Electrophysiology in Xenopus oocytes shows that it functions as a proton-gated ion channel, thereby locating the proton activation site(s) of GLIC in its ECD. Patch-clamp experiments in BHK cells show that the ion channel displays an anionic selectivity with a unitary conductance identical to that of the α1GlyR. In addition, pharmacological investigations result in transmembrane allosteric modulation similar to the one observed on α1GlyR. Indeed, the clinically active drugs propofol, four volatile general anesthetics, alcohols, and ivermectin all potentiate the chimera while they inhibit GLIC. Collectively, this work shows the compatibility between GLIC and α1GlyR domains and points to conservation of the ion channel and transmembrane allosteric regulatory sites in the chimera. This provides evidence that GLIC and α1GlyR share a highly homologous 3D structure. GLIC is thus a relevant model of eukaryotic pLGICs, at least from the anionic type. In addition, the chimera is a good candidate for mass production in Escherichia coli, opening the way for investigations of "druggable" eukaryotic allosteric sites by X-ray crystallography.

  11. Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution.

    Science.gov (United States)

    Raj, Dibyendu; Ghosh, Esha; Mukherjee, Avik K; Nozaki, Tomoyoshi; Ganguly, Sandipan

    2014-02-10

    Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 μM) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production. To study differential gene expression under three types of oxidative stress, a Giardia genomic DNA array was constructed and hybridized with labeled cDNA of cells with or without stress. The transcriptomic data has been analyzed and further validated using real time PCR. We identified that out of 9216 genes represented on the array, more than 200 genes encoded proteins with functions in metabolism, oxidative stress management, signaling, reproduction and cell division, programmed cell death and cytoskeleton. We recognized genes modulated by at least ≥ 2 fold at a significant time point in response to oxidative stress. The study has highlighted the genes that are differentially expressed during the three experimental conditions which regulate the stress management pathway differently to achieve redox homeostasis. Identification of some unique genes in oxidative stress regulation may help in new drug designing for this common enteric parasite prone to

  12. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).

    Science.gov (United States)

    Cavalier-Smith, T

    2003-01-29

    (30 encoding plastid proteins) and a red or blue phycobiliprotein antenna pigment, and the chromobiotes (heterokonts and haptophytes), which lost phycobilins and evolved the brown carotenoid fucoxanthin that colours brown seaweeds, diatoms and haptophytes. Chromobiotes transferred the 30 genes to the nucleus and lost the NM genome and nuclear-pore complexes, but retained its membrane as the periplastid reticulum (PPR), putatively the phospholipid factory of the periplastid space (former algal cytoplasm), as did the ancestral alveolate independently. The chlorarachnean NM has three minute chromosomes bearing approximately 300 genes riddled with pygmy introns. I propose that the periplastid membrane (PPM, the former algal plasma membrane) of chromalveolates, and possibly chlorarachneans, grows by fusion of vesicles emanating from the NM envelope or PPR. Dinoflagellates and euglenoids independently lost the PPM and PPR (after diverging from Sporozoa and chlorarachneans, respectively) and evolved triple chloroplast envelopes comprising the original plant double envelope and an extra outermost membrane, the EM, derived from the perialgal vacuole. In all metaalgae most chloroplast proteins are coded by nuclear genes and enter the chloroplast by using bipartite targeting sequences--an upstream signal sequence for entering the ER and a downstream chloroplast transit sequence. I present a new theory for the four-fold diversification of the chloroplast OM protein translocon following its insertion into the PPM to facilitate protein translocation across it (of both periplastid and plastid proteins). I discuss evidence from genome sequencing and other sources on the contrasting modes of protein targeting, cellular integration, and evolution of these two major lineages of eukaryote "cells within cells". They also provide powerful evidence for natural selection's effectiveness in eliminating most functionless DNA and therefore of a universally useful non-genic function for nuclear

  13. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells.

    Science.gov (United States)

    Devin, Anne; Rigoulet, Michel

    2007-01-01

    This review focuses on the different mechanisms involved in the adjustment of mitochondrial ATP production to cellular energy demand. The oxidative phosphorylation steady state at constant mitochondrial enzyme content can vary in response to energy demand. However, such an adaptation is tightly linked to a modification in both oxidative phosphorylation yield and phosphate potential and is obviously very limited in eukaryotic cells. We describe the three main mechanisms involved in mitochondrial response to energy demand. In heart cells, a short-term adjustment can be reached mainly through metabolic signaling via phosphotransfer networks by the compartmentalized energy transfer and signal transmission. In such a complex regulatory mechanism, Ca(2+) signaling participates in activation of matricial dehydrogenases as well as mitochondrial ATP synthase. These processes allow a large increase in ATP production rate without an important modification in thermodynamic forces. For a long-term adaptation, two main mechanisms are involved: modulation of the mitochondrial enzyme content as a function of energy demand and/or kinetic regulation by covalent modifications (phosphorylations) of some respiratory chain complex subunits. Regardless of the mechanism involved (kinetic regulation by covalent modification or adjustment of mitochondrial enzyme content), the cAMP signaling pathway plays a major role in molecular signaling, leading to the mitochondrial response. We discuss the energetic advantages of these mechanisms.

  14. Molecular Data are Transforming Hypotheses on the Origin and Diversification of Eukaryotes.

    Science.gov (United States)

    Tekle, Yonas I; Parfrey, Laura Wegener; Katz, Laura A

    2009-06-01

    The explosion of molecular data has transformed hypotheses on both the origin of eukaryotes and the structure of the eukaryotic tree of life. Early ideas about the evolution of eukaryotes arose through analyses of morphology by light microscopy and later electron microscopy. Though such studies have proven powerful at resolving more recent events, theories on origins and diversification of eukaryotic life have been substantially revised in light of analyses of molecular data including gene and, increasingly, whole genome sequences. By combining these approaches, progress has been made in elucidating both the origin and diversification of eukaryotes. Yet many aspects of the evolution of eukaryotic life remain to be illuminated.

  15. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    Science.gov (United States)

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  16. Eukaryotic microorganisms in cold environments. Examples from Pyrenean glaciers

    Directory of Open Access Journals (Sweden)

    Laura eGarcia-Descalzo

    2013-03-01

    Full Text Available Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the Little Ice Age although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and derreplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (> 1 % of all sequences were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema , Heteromita , Koliella and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers

  17. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric,aberration correcting monofocal intraocular lens

    Institute of Scientific and Technical Information of China (English)

    Florian; T; A; Kretz; Tamer; Tandogan; Ramin; Khoramnia; Gerd; U; Auffarth

    2015-01-01

    ·AIM: To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting,monofocal intraocular lens(IOL).·METHODS: Twenty-one patients(34 eyes) aged 50 to83 y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL(Tecnis ZCB00,Abbott Medical Optics). Three months after surgery they were examined for uncorrected(UDVA) and corrected distance visual acuity(CDVA), contrast sensitivity(CS)under photopic and mesopic conditions with and without glare source, ocular high order aberrations(HOA, Zywave II) and retinal straylight(C-Quant).· RESULTS: Postoperatively, patients achieved a postoperative CDVA of 0.0 log MAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27(primary coma components) and-0.04 ±0.16(spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed(P ≥0.28).· CONCLUSION: The implantation of an aspherical aberration correcting monofocal IOL after cataractsurgery resulted in very low residual higher order aberration(HOA) and normal straylight.

  18. Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli

    KAUST Repository

    Suen, KinMan

    2013-05-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc-Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc - induced through interaction with the phosphorylated receptor - releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells. © 2013 Nature America, Inc. All rights reserved.

  19. Anisoplanatism in adaptive optics systems due to pupil aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B

    2005-08-01

    Adaptive optics systems typically include an optical relay that simultaneously images the science field to be corrected and also a set of pupil planes conjugate to the deformable mirror of the system. Often, in the optical spaces where DM's are placed, the pupils are aberrated, leading to a displacement and/or distortion of the pupil that varies according to field position--producing a type of anisoplanatism, i.e., a degradation of the AO correction with field angle. The pupil aberration phenomenon is described and expressed in terms of Seidel aberrations. An expression for anisoplanatism as a function of pupil distortion is derived, an example of an off-axis parabola is given, and a convenient method for controlling pupil-aberration-generated anisoplanatism is proposed.

  20. Automated spherical aberration correction in scanning confocal microscopy

    NARCIS (Netherlands)

    Yoo, H.W.; Royen, M.E.; van Cappellen, W.A.; Houtsmuller, A.B.; Verhaegen, M.H.G.; Schitter, G.

    2014-01-01

    Mismatch between the refractive indexes of immersion media and glass coverslips introduces spherical aberrations in microscopes especially for high numerical aperture objectives. This contribution demonstrates an automated adjustment of the coverslip correction collar in scanning confocal microscopy

  1. Impact of primary aberrations on coherent lidar performance

    DEFF Research Database (Denmark)

    Hu, Qi; Rodrigo, Peter John; Iversen, Theis Faber Quist;

    2014-01-01

    In this work we investigate the performance of a monostatic coherent lidar system in which the transmit beam is under the influence of primary phase aberrations: spherical aberration (SA) and astigmatism. The experimental investigation is realized by probing the spatial weighting function...... of the lidar system using different optical transceiver configurations. A rotating belt is used as a hard target. Our study shows that the lidar weighting function suffers from both spatial broadening and shift in peak position in the presence of aberration. It is to our knowledge the first experimental...... effciency, the optimum truncation of the transmit beam and the spatial sensitivity of a CW coherent lidar system. Under strong degree of aberration, the spatial confinement is significantly degraded. However for SA, the degradation of the spatial confinement can be reduced by tuning the truncation...

  2. Automated computational aberration correction method for broadband interferometric imaging techniques.

    Science.gov (United States)

    Pande, Paritosh; Liu, Yuan-Zhi; South, Fredrick A; Boppart, Stephen A

    2016-07-15

    Numerical correction of optical aberrations provides an inexpensive and simpler alternative to the traditionally used hardware-based adaptive optics techniques. In this Letter, we present an automated computational aberration correction method for broadband interferometric imaging techniques. In the proposed method, the process of aberration correction is modeled as a filtering operation on the aberrant image using a phase filter in the Fourier domain. The phase filter is expressed as a linear combination of Zernike polynomials with unknown coefficients, which are estimated through an iterative optimization scheme based on maximizing an image sharpness metric. The method is validated on both simulated data and experimental data obtained from a tissue phantom, an ex vivo tissue sample, and an in vivo photoreceptor layer of the human retina.

  3. Aberrant internal carotid artery in the middle ear

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Keun Tak; Kang, Hyun Koo [Dept. of Radiology, Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  4. Intrinsic Third Order Aberrations in Electrostatic and Magnetic Quadrupoles

    CERN Document Server

    Baartman, R

    2015-01-01

    Intrinsic aberrations are those which occur due to the finite length of the desired field configuration. They are often loosely ascribed to the fringing field. This is misleading as it implies that the effects can be minimized by shaping the fields. In fact, there is an irreducible component related to the broken symmetry. It is present even in the hard-edge limit, and moreover, the other (soft-edge) effects can be simply ascribed to the intrinsic aberration spread over a finite length. We rederive the aberration formulas for quadrupoles using a Hamiltonian formalism. This allows for an easy comparison of electrostatic and magnetic quadrupoles. For different combinations of large and small emittances in the two transverse planes, it is found that in some situations electrostatic quadrupoles have lower aberrations, while in others, magnetic quadrupoles are better. As well, we discuss the ways in which existing transport codes handle quadrupole fringe fields. Pitfalls are pointed out and improvements proposed.

  5. Are persistent delusions in schizophrenia associated with aberrant salience?

    Directory of Open Access Journals (Sweden)

    Rafeef Abboud

    2016-06-01

    Conclusion: These findings do not support the hypothesis that persistent delusions are related to aberrant motivational salience processing in TRS patients. However, they do support the view that patients with schizophrenia have impaired reward learning.

  6. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography.

    Science.gov (United States)

    Fernández, Enrique; Drexler, Wolfgang

    2005-10-03

    Optical coherence tomography (OCT) enables visualization of the living human retina with unprecedented high axial resolution. The transverse resolution of existing OCT approaches is relatively modest as compared to other retinal imaging techniques. In this context, the use of adaptive optics (AO) to correct for ocular aberrations in combination with OCT has recently been demonstrated to notably increase the transverse resolution of the retinal OCT tomograms. AO is required when imaging is performed through moderate and large pupil sizes. A fundamental difference of OCT as compared to other imaging techniques is the demand of polychromatic light to accomplish high axial resolution. In ophthalmic OCT applications, the performance is therefore also limited by ocular chromatic aberrations. In the current work, the effects of chromatic and monochromatic ocular aberrations on the quality of retinal OCT tomograms, especially concerning transverse resolution, sensitivity and contrast, are theoretically studied and characterized. The repercussion of the chosen spectral bandwidth and pupil size on the final transverse resolution of OCT tomograms is quantitatively examined. It is found that losses in the intensity of OCT images obtained with monochromatic aberration correction can be up to 80 %, using a pupil size of 8 mm diameter in combination with a spectral bandwidth of 120 nm full width at half maximum for AO ultrahigh resolution OCT. The limits to the performance of AO for correction of monochromatic aberrations in OCT are established. The reduction of the detected signal and the resulting transverse resolution caused by chromatic aberration of the human eye is found to be strongly dependent on the employed bandwidth and pupil size. Comparison of theoretical results with experimental findings obtained in living human eyes is also provided.

  7. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast

  8. MutL homologs in restriction-modification systems and the origin of eukaryotic MORC ATPases

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-03-01

    Full Text Available Abstract The provenance and biochemical roles of eukaryotic MORC proteins have remained poorly understood since the discovery of their prototype MORC1, which is required for meiotic nuclear division in animals. The MORC family contains a combination of a gyrase, histidine kinase, and MutL (GHKL and S5 domains that together constitute a catalytically active ATPase module. We identify the prokaryotic MORCs and establish that the MORC family belongs to a larger radiation of several families of GHKL proteins (paraMORCs in prokaryotes. Using contextual information from conserved gene neighborhoods we show that these proteins primarily function in restriction-modification systems, in conjunction with diverse superfamily II DNA helicases and endonucleases. The common ancestor of these GHKL proteins, MutL and topoisomerase ATPase modules appears to have catalyzed structural reorganization of protein complexes and concomitant DNA-superstructure manipulations along with fused or standalone nuclease domains. Furthermore, contextual associations of the prokaryotic MORCs and their relatives suggest that their eukaryotic counterparts are likely to carry out chromatin remodeling by DNA superstructure manipulation in response to epigenetic signals such as histone and DNA methylation. Reviewers This article was reviewed by Arcady Mushegian and Gaspar Jekely.

  9. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Nicola Vitulo

    2007-01-01

    Full Text Available The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confi rming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals fi ve distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.

  10. Genetic and epigenetic factors affecting meiosis induction in eukaryotes revealed in paramecium research.

    Science.gov (United States)

    Prajer, Małgorzata

    2008-01-01

    This review presents studies of the induction of meiosis undertaken on the ciliate Paramecium, a unicellular model eukaryotic organism. Meiosis in Paramecium, preceding the process of fertilization, appears in starved cells after passing a defined number of divisions (cell generations), starting from the last fertilization. Investigations were performed on clones of cells entering autogamy, a self-fertilization process. Genetic as well as epigenetic factors, i.e. endo- and exogenous factors, affecting the induction ofmeiosis and changing the duration of the interautogamous interval (IAI), were analyzed. The results show that: (1) Meiosis induction is controlled genetically by the somatic macronucleus. However, besides the nuclear factors, the cytoplasmic protein immaturin also affects this process (Haga & Hiwatashi 1981); (2) Epigenetic factors, such as non-genetically disturbed cytoskeleton structures and changes in the cell architecture observed in doublet Paramecium cells, exert internal mechanical stress (Ingber 2003), which constitutes the endogenous impulse accelerating meiosis; (3) Mild osmotic stress, acting as an exogenous factor, can initiate the specific MAP kinases signaling pathway resulting in earlier meiosis induction, as in other unicellular eukaryotes (Seet & Pawson 2004).

  11. Study of the wavefront aberrations in children with amblyopia

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng-fei; ZHOU Yue-hua; WANG Ning-li; ZHANG Jing

    2010-01-01

    Background Amblyopia is a common ophthalmological condition and the wavefront aberrometer is a relatively new diagnostic tool used globally to measure optical characteristics of human eyes as well as to study refractive errors in amblyopic eyes. We studied the wavefront aberration of the amblyopic children's eyes and analyzed the mechanism of the wavefront aberration in the formation of the amblyopia, try to investigate the new evidence of the treatment of the amblyopia, especially in the refractory amblyopia.Methods The WaveScan Wavefront System (VISX, USA) aberrometer was used to investigate four groups of children under dark accommodation and cilliary muscle paralysis. There were 45 cases in the metropic group, 87 in the amblyopic group, 92 in the corrected-amblyopic group and 38 in the refractory amblyopic group. One-way analysis of variance (ANOVA), t-test and multivariate linear regression were used to analyze all the data.Results Third order to 6th order aberrations showed a decreasing trend whereas in the higher order aberrations the main ones were 3rd order coma (Z3-1-Z31), trefoil (Z3-3-Z33) and 4th order aberration (Z40); and 3rd order coma represented the highest percentage of all three main aberrations. Within 3rd order coma, vertical coma (Z3-1) accounted for a greater percentage than horizontal coma (Z31). Significant differences of vertical coma were found among all clinical groups of children: vertical coma in the amblyopic group (0.17±0.15) was significantly higher than in the metropic group (0.11±0.13, P0.05).Conclusions Although lower order aberrations such as defocus (myopia and hyperopia) and astigmatism are major factors determining the quality of the retinal image, higher order aberrations also need to be considered in amblyopic eyes as their effects are significant.

  12. Multiplexed aberration measurement for deep tissue imaging in vivo

    OpenAIRE

    Wang, Chen; Liu, Rui; Milkie, Daniel E; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large...

  13. Multiplexed aberration measurement for deep tissue imaging in vivo

    Science.gov (United States)

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  14. Wide-angle chromatic aberration corrector for the human eye.

    Science.gov (United States)

    Benny, Yael; Manzanera, Silvestre; Prieto, Pedro M; Ribak, Erez N; Artal, Pablo

    2007-06-01

    The human eye is affected by large chromatic aberration. This may limit vision and makes it difficult to see fine retinal details in ophthalmoscopy. We designed and built a two-triplet system for correcting the average longitudinal chromatic aberration of the eye while keeping a reasonably wide field of view. Measurements in real eyes were conducted to examine the level and optical quality of the correction. We also performed some tests to evaluate the effect of the corrector on visual performance.

  15. Aberrant cervical thymus mimicking thyroid on ultrasonography: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Sub; Park, Ju Hyun; Kim, Bong Soo; Park, Ji Kang; Choi, Jae Hyuck [Jeju National Univ. Hospital/Jeju National Univ. School of Medicine, Jeju (Korea, Republic of)

    2012-10-15

    Aberrant cervical thymus is rarely reported in adults. We report a case of solid aberrant cervical thymus in a 27 year old female, which was found incidentally on ultrasonography for the evaluation of the thyroid cancer. On ultrasonography, the lesion was found between the left thyroid and common carotid artery without any remarkable interface echo, and had similar echogenicity to the thyroid. The lesion extended to the upper pole of the left thyroid.

  16. Pattern of Chromosomal Aberrations in Patients from North East Iran

    Directory of Open Access Journals (Sweden)

    Saeedeh Ghazaey

    2013-01-01

    Full Text Available Objective: Chromosomal aberrations are common causes of multiple anomaly syndromes. Recurrent chromosomal aberrations have been identified by conventional cytogenetic methods used widely as one of the most important clinical diagnostic techniques.Materials and Methods: In this retrospective study, the incidences of chromosomal aberrations were evaluated in a six year period from 2005 to 2011 in Pardis Clinical and Genetics Laboratory on patients referred to from Mashhad and other cities in Khorasan province. Karyotyping was performed on 3728 patients suspected of having chromosomal abnormalities.Results: The frequencies of the different types of chromosomal abnormalities were determined, and the relative frequencies were calculated in each group. Among these patients, 83.3% had normal karyotypes with no aberrations. The overall incidences of chromosomal abnormalities were 16.7% including sex and autosomal chromosomal anomalies. Of those, 75.1 % showed autosomal chromosomal aberrations. Down syndrome (DS was the most prevalent autosomal aberration in the patients (77.1%. Pericentric inversion of chromosome 9 was seen in 5% of patients. This inversion was prevalent in patients with recurrent spontaneous abortion (RSA. Sex chromosomal aberrations were observed in 24.9% of abnormal patients of which 61% had Turner’s syndrome and 33.5% had Klinefelter’s syndrome.Conclusion: According to the current study, the pattern of chromosomal aberrations in North East of Iran demonstrates the importance of cytogenetic evaluation in patients who show clinical abnormalities. These findings provide a reason for preparing a local cytogenetic data bank to enhance genetic counseling of families who require this service.

  17. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  18. Dimensions of driving anger and their relationships with aberrant driving.

    Science.gov (United States)

    Zhang, Tingru; Chan, Alan H S; Zhang, Wei

    2015-08-01

    The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles.

  19. Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell.

    Science.gov (United States)

    Baudoin, Jean-Pierre; Jinschek, Joerg R; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; de Jonge, Niels

    2013-08-01

    Transmission electron microscopy (TEM) in combination with electron tomography is widely used to obtain nanometer scale three-dimensional (3D) structural information about biological samples. However, studies of whole eukaryotic cells are limited in resolution and/or contrast on account of the effect of chromatic aberration of the TEM objective lens on electrons that have been scattered inelastically in the specimen. As a result, 3D information is usually obtained from sections and not from whole cells. Here, we use chromatic aberration-corrected TEM to record bright-field TEM images of nanoparticles in a whole mount macrophage cell. Tilt series of images are used to generate electron tomograms, which are analyzed to assess the spatial resolution that can be achieved for different vertical positions in the specimen. The uptake of gold nanoparticles coated with low-density lipoprotein (LDL) is studied. The LDL is found to assemble in clusters. The clusters contain nanoparticles taken up on different days, which are joined without mixing their nanoparticle cargo.

  20. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry

    OpenAIRE

    2008-01-01

    Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much atte...

  1. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice.

    Science.gov (United States)

    Pathak, Rupak; Koturbash, Igor; Hauer-Jensen, Martin

    2017-01-11

    Ionizing radiation (IR) induces numerous stable and unstable chromosomal aberrations. Unstable aberrations, where chromosome morphology is substantially compromised, can easily be identified by conventional chromosome staining techniques. However, detection of stable aberrations, which involve exchange or translocation of genetic materials without considerable modification in the chromosome morphology, requires sophisticated chromosome painting techniques that rely on in situ hybridization of fluorescently labeled DNA probes, a chromosome painting technique popularly known as fluorescence in situ hybridization (FISH). FISH probes can be specific for whole chromosome/s or precise sub-region on chromosome/s. The method not only allows visualization of stable aberrations, but it can also allow detection of the chromosome/s or specific DNA sequence/s involved in a particular aberration formation. A variety of chromosome painting techniques are available in cytogenetics; here two highly sensitive methods, multiple fluorescence in situ hybridization (mFISH) and spectral karyotyping (SKY), are discussed to identify inter-chromosomal stable aberrations that form in the bone marrow cells of mice after exposure to total body irradiation. Although both techniques rely on fluorescent labeled DNA probes, the method of detection and the process of image acquisition of the fluorescent signals are different. These two techniques have been used in various research areas, such as radiation biology, cancer cytogenetics, retrospective radiation biodosimetry, clinical cytogenetics, evolutionary cytogenetics, and comparative cytogenetics.

  2. Myosin domain evolution and the primary divergence of eukaryotes.

    Science.gov (United States)

    Richards, Thomas A; Cavalier-Smith, Thomas

    2005-08-25

    Eukaryotic cells have two contrasting cytoskeletal and ciliary organizations. The simplest involves a single cilium-bearing centriole, nucleating a cone of individual microtubules (probably ancestral for unikonts: animals, fungi, Choanozoa and Amoebozoa). In contrast, bikonts (plants, chromists and all other protozoa) were ancestrally biciliate with a younger anterior cilium, converted every cell cycle into a dissimilar posterior cilium and multiple ciliary roots of microtubule bands. Here we show by comparative genomic analysis that this fundamental cellular dichotomy also involves different myosin molecular motors. We found 37 different protein domain combinations, often lineage-specific, and many previously unidentified. The sequence phylogeny and taxonomic distribution of myosin domain combinations identified five innovations that strongly support unikont monophyly and the primary bikont/unikont bifurcation. We conclude that the eukaryotic cenancestor (last common ancestor) had a cilium, mitochondria, pseudopodia, and myosins with three contrasting domain combinations and putative functions.

  3. "Race for the Surface": Eukaryotic Cells Can Win.

    Science.gov (United States)

    Pham, Vy T H; Truong, Vi Khanh; Orlowska, Anna; Ghanaati, Shahram; Barbeck, Mike; Booms, Patrick; Fulcher, Alex J; Bhadra, Chris M; Buividas, Ričardas; Baulin, Vladimir; Kirkpatrick, C James; Doran, Pauline; Mainwaring, David E; Juodkazis, Saulius; Crawford, Russell J; Ivanova, Elena P

    2016-08-31

    With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface are demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants.

  4. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren

    1996-01-01

    that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma-70 and sigma-54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely......In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... have at the same time the ability to find clusters and the ability to model the sequential structure in the input data. This is highly relevant in situations where the variance in the data is high, as is the case for the subclass structure in for example promoter sequences....

  5. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma 70 and sigma 54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely......In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... have at the same time the ability to find clusters and the ability to model the sequential structure in the input data. This is highly relevant in situations where the variance in the data is high, as is the case for the subclass structure in for example promoter sequences....

  6. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans

    OpenAIRE

    Javaux, E.J; Knoll, A H; Walter, M.R.

    2004-01-01

    Biomarker molecular fossils in 2770 Ma shales suggest that the Eucarya diverged from other principal domains early in Earth history. Nonetheless, at present, the oldest fossils that can be assigned to an extant eukaryotic clade are filamentous red algae preserved in ca. 1200 Ma cherts from Arctic Canada. Between these records lies a rich assortment of potentially protistan microfossils. Combined light microscopy, scanning electron microscopy, and transmission electron microscopy on 1500-1400 ...

  7. A high-affinity molybdate transporter in eukaryotes.

    Science.gov (United States)

    Tejada-Jiménez, Manuel; Llamas, Angel; Sanz-Luque, Emanuel; Galván, Aurora; Fernández, Emilio

    2007-12-11

    Molybdenum is an essential element for almost all living beings, which, in the form of a molybdopterin-cofactor, participates in the active site of enzymes involved in key reactions of carbon, nitrogen, and sulfur metabolism. This metal is taken up by cells in form of the oxyanion molybdate. Bacteria acquire molybdate by an ATP-binding-cassette (ABC) transport system in a widely studied process, but how eukaryotic cells take up molybdenum is unknown because molybdate transporters have not been identified so far. Here, we report a eukaryotic high-affinity molybdate transporter, encoded by the green alga Chlamydomonas reinhardtii gene MoT1. An antisense RNA strategy over the MoT1 gene showed that interference of the expression of this gene leads to the inhibition of molybdate transport activity and, in turn, of the Mo-containing enzyme nitrate reductase, indicating a function of MoT1 in molybdate transport. MOT1 functionality was also shown by heterologous expression in Saccharomyces cerevisiae. Molybdate uptake mediated by MOT1 showed a K(m) of approximately 6 nM, which is the range of the lowest K(m) values reported and was activated in the presence of nitrate. Analysis of deduced sequence from the putative protein coded by MoT1 showed motifs specifically conserved in similar proteins present in the databases, and defines a family of membrane proteins in both eukaryotes and prokaryotes probably involved in molybdate transport and distantly related to plant sulfate transporters SULTR. These findings represent an important step in the understanding of molybdate transport, a crucial process in eukaryotic cells.

  8. Structural Diversity of Eukaryotic Membrane Cytochrome P450s*

    OpenAIRE

    Johnson, Eric F.; Stout, C. David

    2013-01-01

    X-ray crystal structures are available for 29 eukaryotic microsomal, chloroplast, or mitochondrial cytochrome P450s, including two non-monooxygenase P450s. These structures provide a basis for understanding structure-function relations that underlie their distinct catalytic activities. Moreover, structural plasticity has been characterized for individual P450s that aids in understanding substrate binding in P450s that mediate drug clearance.

  9. A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells

    Science.gov (United States)

    2014-08-01

    division or binary fission, which is the primary method for reproduction. For eukaryotic cells, it’s called cell mitotic process or mitosis . At the late...of cytokinesis in animal, yeast and plant cells. Experimental observations have provide us with a basic picture of cell mitosis . For eu- karyotic... mitosis and cytokinesis in mammalian cells. 2014 Special Focus on Rho GTPases, page e29770, 2014. [7] Ulrike S. Eggert, Timothy J. Mitchison, and

  10. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  11. Optical aberrations of intraocular lenses measured in vivo and in vitro

    Science.gov (United States)

    Barbero, Sergio; Marcos, Susana; Jiménez-Alfaro, Ignacio

    2003-10-01

    Corneal and ocular aberrations were measured in a group of eyes before and after cataract surgery with spherical intraocular lens (IOL) implantation by use of well-tested techniques developed in our laboratory. By subtraction of corneal from total aberration maps, we also estimated the optical quality of the intraocular lens in vivo. We found that aberrations in pseudophakic eyes are not significantly different from aberrations in eyes before cataract surgery or from previously reported aberrations in healthy eyes of the same age. However, aberrations in pseudophakic eyes are significantly higher than in young eyes. We found a slight increase of corneal aberrations after surgery. The aberrations of the IOL and the lack of balance of the corneal spherical aberrations by the spherical aberrations of the intraocular lens also degraded the optical quality in pseudophakic eyes. We also measured the aberrations of the IOL in vitro, using an eye cell model, and simulated the aberrations of the IOL on the basis of the IOL's physical parameters. We found a good agreement among in vivo, in vitro, and simulated measures of spherical aberration: Unlike the spherical aberration of the young crystalline lens, which tends to be negative, the spherical aberration of the IOL is positive and increases with lens power. Computer simulations and in vitro measurements show that tilts and decentrations might be contributors to the increased third-order aberrations in vivo in comparison with in vitro measurements.

  12. Persistence of Early Emerging Aberrant Behavior in Children with Developmental Disabilities

    Science.gov (United States)

    Green, Vanessa A.; O'Reilly, Mark; Itchon, Jonathan; Sigafoos, Jeff

    2005-01-01

    This study examined the persistence of early emerging aberrant behavior in 13 preschool children with developmental disabilities. The severity of aberrant behavior was assessed every 6 months over a 3-year period. Teachers completed the assessments using the Aberrant Behavior Checklist [Aman, M. G., & Singh, N. N. (1986). "Aberrant Behavior…

  13. Suicidal autointegration of sleeping beauty and piggyBac transposons in eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Yongming Wang

    2014-03-01

    Full Text Available Transposons are discrete segments of DNA that have the distinctive ability to move and replicate within genomes across the tree of life. 'Cut and paste' DNA transposition involves excision from a donor locus and reintegration into a new locus in the genome. We studied molecular events following the excision steps of two eukaryotic DNA transposons, Sleeping Beauty (SB and piggyBac (PB that are widely used for genome manipulation in vertebrate species. SB originates from fish and PB from insects; thus, by introducing these transposons to human cells we aimed to monitor the process of establishing a transposon-host relationship in a naïve cellular environment. Similarly to retroviruses, neither SB nor PB is capable of self-avoidance because a significant portion of the excised transposons integrated back into its own genome in a suicidal process called autointegration. Barrier-to-autointegration factor (BANF1, a cellular co-factor of certain retroviruses, inhibited transposon autointegration, and was detected in higher-order protein complexes containing the SB transposase. Increasing size sensitized transposition for autointegration, consistent with elevated vulnerability of larger transposons. Both SB and PB were affected similarly by the size of the transposon in three different assays: excision, autointegration and productive transposition. Prior to reintegration, SB is completely separated from the donor molecule and followed an unbiased autointegration pattern, not associated with local hopping. Self-disruptive autointegration occurred at similar frequency for both transposons, while aberrant, pseudo-transposition events were more frequently observed for PB.

  14. Study of intrachromosomal duplications among the eukaryote genomes.

    Science.gov (United States)

    Achaz, G; Netter, P; Coissac, E

    2001-12-01

    Complete eukaryote chromosomes were investigated for intrachromosomal duplications of nucleotide sequences. The analysis was performed by looking for nonexact repeats on two complete genomes, Saccharomyces cerevisiae and Caenorhabditis elegans, and four partial ones, Drosophila melanogaster, Plasmodium falciparum, Arabidopsis thaliana, and Homo sapiens. Through this analysis, we show that all eukaryote chromosomes exhibit similar characteristics for their intrachromosomal repeats, suggesting similar dynamics: many direct repeats have their two copies physically close together, and these close direct repeats are more similar and shorter than the other repeats. On the contrary, there are almost no close inverted repeats. These results support a model for the dynamics of duplication. This model is based on a continuous genesis of tandem repeats and implies that most of the distant and inverted repeats originate from these tandem repeats by further chromosomal rearrangements (insertions, inversions, and deletions). Remnants of these predicted rearrangements have been brought out through fine analysis of the chromosome sequence. Despite these dynamics, shared by all eukaryotes, each genome exhibits its own style of intrachromosomal duplication: the density of repeated elements is similar in all chromosomes issued from the same genome, but is different between species. This density was further related to the relative rates of duplication, deletion, and mutation proper to each species. One should notice that the density of repeats in the X chromosome of C. elegans is much lower than in the autosomes of that organism, suggesting that the exchange between homologous chromosomes is important in the duplication process.

  15. Eukaryotic penelope-like retroelements encode hammerhead ribozyme motifs.

    Science.gov (United States)

    Cervera, Amelia; De la Peña, Marcos

    2014-11-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes.

  16. Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms.

    Science.gov (United States)

    Iwamoto, Masaaki; Asakawa, Haruhiko; Hiraoka, Yasushi; Haraguchi, Tokuko

    2010-06-01

    The nucleoporin Nup98 is an essential component of the nuclear pore complex. This peripheral nucleoporin with its Gly-Leu-Phe-Gly (GLFG) repeat domain contributes to nuclear-cytoplasmic trafficking, including mRNA export. In addition, accumulating studies indicate that Nup98 plays roles in several important biological events such as gene expression, mitotic checkpoint, and pathogenesis. Nup98 is well conserved among organisms belonging to the fungi and animal kingdoms. These kingdoms belong to the eukaryotic supergroup Opisthokonta. However, there is considerable diversity in the Nup98 orthologs expressed in organisms belonging to other eukaryotic supergroups. Intriguingly, in ciliates, a unicellular organism having two functionally distinct nuclei, GLFG-Nup98 is present in one of the nuclei and a distinct Nup98 ortholog is present in the other nucleus, and these different Nup98s participate in a nucleus-selective transport mechanism. In this review, we focus on Nup98 function and discuss how this nucleoporin has evolved in eukaryotic kingdoms.

  17. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.

    Science.gov (United States)

    Richards, Thomas A; Dacks, Joel B; Jenkinson, Joanna M; Thornton, Christopher R; Talbot, Nicholas J

    2006-09-19

    Filamentous fungi and oomycetes are eukaryotic microorganisms that grow by producing networks of thread-like hyphae, which secrete enzymes to break down complex nutrients, such as wood and plant material, and recover the resulting simple sugars and amino acids by osmotrophy. These organisms are extremely similar in both appearance and lifestyle and include some of the most economically important plant pathogens . However, the morphological similarity of fungi and oomycetes is misleading because they represent some of the most distantly related eukaryote evolutionary groupings, and their shared osmotrophic growth habit is interpreted as being the result of convergent evolution . The fungi branch with the animals, whereas the oomycetes branch with photosynthetic algae as part of the Chromalveolata . In this report, we provide strong phylogenetic evidence that multiple horizontal gene transfers (HGT) have occurred from filamentous ascomycete fungi to the distantly related oomycetes. We also present evidence that a subset of the associated gene families was initially the product of prokaryote-to-fungi HGT. The predicted functions of the gene products associated with fungi-to-oomycete HGT suggest that this process has played a significant role in the evolution of the osmotrophic, filamentous lifestyle on two separate branches of the eukaryote tree.

  18. DNA polymerase zeta (polζ) in higher eukaryotes

    Institute of Scientific and Technical Information of China (English)

    Gregory N Gan; John P Wittschieben; Birgitte φ Wittschieben; Richard D Wood

    2008-01-01

    Most current knowledge about DNA polymerase zeta (pol ζ) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where polζ consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already appar-ent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genuine instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair ofinterstrand DNA erosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent devel-opments in these areas.

  19. Oceanographic structure drives the assembly processes of microbial eukaryotic communities.

    Science.gov (United States)

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-03-17

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.

  20. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Takashi eMoriyama

    2014-09-01

    Full Text Available Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  1. Chromatin—a global buffer for eukaryotic gene control

    Directory of Open Access Journals (Sweden)

    Yuri M. Moshkin

    2015-09-01

    Full Text Available Most of eukaryotic DNA is embedded into nucleosome arrays formed by DNA wrapped around a core histone octamer. Nucleosome is a fundamental repeating unit of chromatin guarding access to the genetic information. Here, I will discuss two facets of nucleosome in eukaryotic gene control. On the one hand, nucleosome acts as a regulatory unit, which controls gene switches through a set of post-translational modifications occurring on histone tails. On the other hand, global configuration of nucleosome arrays with respect to nucleosome positioning, spacing and turnover acts as a tuning parameter for all genomic functions. A “histone code” hypothesis extents the Jacob-Monod model for eukaryotic gene control; however, when considering factors capable of reconfiguring entire nucleosome array, such as ATP-dependent chromatin remodelers, this model becomes limited. Global changes in nucleosome arrays will be sensed by every gene, yet the transcriptional responses might be specific and appear as gene targeted events. What determines such specificity is unclear, but it’s likely to depend on initial gene settings, such as availability of transcription factors, and on configuration of new nucleosome array state.

  2. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).

    OpenAIRE

    Cavalier-Smith, T

    2003-01-01

    Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all no...

  3. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: kokazaki@ipen.br

    2009-07-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or {gamma}-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The {gamma} contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for {gamma}-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the

  4. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

    Science.gov (United States)

    Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang

    2014-01-01

    An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.

  5. The Eukaryotic Mismatch Recognition Complexes Track with the Replisome during DNA Synthesis.

    Directory of Open Access Journals (Sweden)

    Joanna E Haye

    2015-12-01

    Full Text Available During replication, mismatch repair proteins recognize and repair mispaired bases that escape the proofreading activity of DNA polymerase. In this work, we tested the model that the eukaryotic mismatch recognition complex tracks with the advancing replisome. Using yeast, we examined the dynamics during replication of the leading strand polymerase Polε using Pol2 and the eukaryotic mismatch recognition complex using Msh2, the invariant protein involved in mismatch recognition. Specifically, we synchronized cells and processed samples using chromatin immunoprecipitation combined with custom DNA tiling arrays (ChIP-chip. The Polε signal was not detectable in G1, but was observed at active origins and replicating DNA throughout S-phase. The Polε signal provided the resolution to track origin firing timing and efficiencies as well as replisome progression rates. By detecting Polε and Msh2 dynamics within the same strain, we established that the mismatch recognition complex binds origins and spreads to adjacent regions with the replisome. In mismatch repair defective PCNA mutants, we observed that Msh2 binds to regions of replicating DNA, but the distribution and dynamics are altered, suggesting that PCNA is not the sole determinant for the mismatch recognition complex association with replicating regions, but may influence the dynamics of movement. Using biochemical and genomic methods, we provide evidence that both MutS complexes are in the vicinity of the replisome to efficiently repair the entire spectrum of mutations during replication. Our data supports the model that the proximity of MutSα/β to the replisome for the efficient repair of the newly synthesized strand before chromatin reassembles.

  6. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: Evidence that the eye uses longitudinal chromatic aberration to guide eye-growth

    OpenAIRE

    Rucker, Frances J.; Wallman, Josh

    2009-01-01

    Longitudinal chromatic aberration (LCA) causes short wavelengths to be focused in front of long wavelengths. This chromatic signal is evidently used to guide ocular accommodation. We asked whether chick eyes exposed to static gratings simulating the chromatic effects of myopic or hyperopic defocus would “compensate” for the simulated defocus.

  7. FragAnchor: A Large-Scale Predictor of Glycosylphosphatidylinositol Anchors in Eukaryote Protein Sequences by Qualitative Scoring

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A glycosylphosphatidylinositol (GPI) anchor is a common but complex C-terminal post-translational modification of extracellular proteins in eukaryotes. Here we investigate the problem of correctly annotating GPI-anchored proteins for the growing number of sequences in public databases. We developed a computational system, called FragAnchor, based on the tandem use of a neural network (NN) and a hidden Markov model (HMM). Firstly, NN selects potential GPI-anchored proteins in a dataset, then HMM parses these potential GPI signals and refines the prediction by qualitative scoring. FragAnchor correctly predicted 91% of all the GPI-anchored proteins annotated in the Swiss-Prot database.In a large-scale analysis of 29 eukaryote proteomes, FragAnchor predicted that the percentage of highly probable GPI-anchored proteins is between 0.21% and 2.01%. The distinctive feature of FragAnchor, compared with other systems,is that it targets only the C-terminus of a protein, making it less sensitive to the background noise found in databases and possible incomplete protein sequences. Moreover, FragAnchor can be used to predict GPI-anchored proteins in all eukaryotes. Finally, by using qualitative scoring, the predictions combine both sensitivity and information content. The predictor is publicly available at http: // navet. ics. hawaii.edu/~fraganchor/NNHMM/NNHMM.html.

  8. Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa

    Institute of Scientific and Technical Information of China (English)

    RAGUNATHAN Irulappan; PANNEERSELVAM Natarajan

    2007-01-01

    Turmeric has long been used as a spice and food colouring agent in Asia. In the present investigation, the antimutagenic potential of curcumin was evaluated in Allium cepa root meristem cells. So far there is no report on the biological properties of curcumin in plant test systems. The root tip cells were treated with sodium azide at 200 and 300 μg/ml for 3 h and curcumin was given at 5, 10 and 20 μg/ml for 16 h, prior to sodium azide treatment. The tips were squashed after colchicine treatment and the cells were analyzed for chromosome aberration and mitotic index. Curcumin induces chromosomal aberration in Allium cepa root tip cells in an insignificant manner, when compared with untreated control. Sodium azide alone induces chromosomal aberrations significantly with increasing concentrations. The total number of aberrations was significantly reduced in root tip cells pretreated with curcumin. The study reveals that curcumin has antimutagenic potential against sodium azide induced chromosomal aberrations in Allium cepa root meristem cells. In addition, it showed mild cytotoxicity by reducing the percentage of mitotic index in all curcumin treated groups, but the mechanism of action remains unknown. The antimutagenic potential of curcumin is effective at 5 μg/ml in Allium cepa root meristem cells.

  9. Chromosome aberrations as biomarkers of radiation exposure: Modelling basic mechanisms

    Science.gov (United States)

    Ballarini, F.; Ottolenghi, A.

    The space radiation environment is a mixed field consisting of different particles having different energies, including high charge and energy (HZE) ions. Conventional measurements of absorbed doses may not be sufficient to completely characterise the radiation field and perform reliable estimates of health risks. Biological dosimetry, based on the observation of specific radiation-induced endpoints (typically chromosome aberrations), can be a helpful approach in case of monitored exposure to space radiation or other mixed fields, as well as in case of accidental exposure. Furthermore, various ratios of aberrations (e.g. dicentric chromosomes to centric rings and complex exchanges to simple exchanges) have been suggested as possible fingerprints of radiation quality, although all of them have been subjected to some criticisms. In this context a mechanistic model and a Monte Carlo code for the simulation of chromosome aberration induction were developed. The model, able to provide dose-responses for different aberrations (e.g. dicentrics, rings, fragments, translocations, insertions and other complex exchanges), was further developed to assess the dependence of various ratios of aberrations on radiation quality. The predictions of the model were compared with available data, whose experimental conditions were faithfully reproduced. Particular attention was devoted to the scoring criteria adopted in different laboratories and to possible biases introduced by interphase death and mitotic delay. This latter aspect was investigated by taking into account both metaphase data and data obtained with Premature Chromosome Condensation (PCC).

  10. Spherical aberration and other higher-order aberrations in the human eye : from summary wave-front analysis data to optical variables relevant to visual perception

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    2010-01-01

    Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c(4)(0) (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot eas

  11. Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Crepel, Valérie; Represa, Alfonso

    2008-01-01

    Do temporal lobe epilepsy (TLE) seizures in adults promote further seizures? Clinical and experimental data suggest that new synapses are formed after an initial episode of status epilepticus, however their contribution to the transformation of a naive network to an epileptogenic one has been debated. Recent experimental data show that newly formed aberrant excitatory synapses on the granule cells of the fascia dentate operate by means of kainate receptor-operated signals that are not present on naive granule cells. Therefore, genuine epileptic networks rely on signaling cascades that differentiate them from naive networks. Recurrent limbic seizures generated by the activation of kainate receptors and synapses in naive animals lead to the formation of novel synapses that facilitate the emergence of further seizures. This negative, vicious cycle illustrates the central role of reactive plasticity in neurological disorders.

  12. Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang.

    Science.gov (United States)

    Dacks, Joel B; Marinets, Alexandra; Ford Doolittle, W; Cavalier-Smith, Thomas; Logsdon, John M

    2002-06-01

    The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist

  13. Non-Gaussianity and CMB aberration and Doppler

    CERN Document Server

    Catena, Riccardo; Notari, Alessio; Renzi, Alessandro

    2013-01-01

    The peculiar motion of an observer with respect to the CMB rest frame induces a deflection in the arrival direction of the observed photons (also known as CMB aberration) and a Doppler shift in the measured photon frequencies. As a consequence, aberration and Doppler effects induce non trivial correlations between the harmonic coefficients of the observed CMB temperature maps. In this paper we investigate whether these correlations generate a bias on Non-Gaussianity estimators $f_{NL}$. We perform this analysis simulating a large number of temperature maps with Planck-like resolution (lmax $= 2000$) as different realizations of the same cosmological fiducial model (WMAP7yr). We then add to these maps aberration and Doppler effects employing a modified version of the HEALPix code. We finally evaluate a generalization of the Komatsu, Spergel and Wandelt Non-Gaussianity estimator for all the simulated maps, both when peculiar velocity effects have been considered and when these phenomena have been neglected. Usi...

  14. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Directory of Open Access Journals (Sweden)

    Y. M. Harry Ng

    2003-04-01

    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  15. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  16. Differential aberration correction (DAC) microscopy: a new molecular ruler.

    Science.gov (United States)

    Vallotton, P

    2008-11-01

    Considerable efforts have been deployed towards measuring molecular range distances in fluorescence microscopy. In the 1-10 nm range, Förster energy transfer microscopy is difficult to beat. Above 300 nm, conventional diffraction limited microscopy is suitable. We introduce a simple experimental technique that allows bridging the gap between those two resolution scales in both 2D and 3D with a resolution of about 20 nm. The method relies on a computational approach to accurately correct optical aberrations over the whole field of view. The method is differential because the probes of interest are affected in exactly the same manner by aberrations as are the reference probes used to construct the aberration deformation field. We expect that this technique will have significant implications for investigating structural and functional questions in bio-molecular sciences.

  17. Dynamic compensation of chromatic aberration in a programmable diffractive lens.

    Science.gov (United States)

    Millán, María S; Otón, Joaquín; Pérez-Cabré, Elisabet

    2006-10-02

    A proposal to dynamically compensate chromatic aberration of a programmable phase Fresnel lens displayed on a liquid crystal device and working under broadband illumination is presented. It is based on time multiplexing a set of lenses, designed with a common focal length for different wavelengths, and a tunable spectral filter that makes each sublens work almost monochromatically. Both the tunable filter and the sublens displayed by the spatial light modulator are synchronized. The whole set of sublenses are displayed within the integration time of the sensor. As a result the central order focalization has a unique location at the focal plane and it is common for all selected wavelengths. Transversal chromatic aberration of the polychromatic point spread function is reduced by properly adjusting the pupil size of each sublens. Longitudinal chromatic aberration is compensated by making depth of focus curves coincident for the selected wavelengths. Experimental results are in very good agreement with theory.

  18. Measuring chromatic aberrations in imaging systems using plasmonic nanoparticles

    Science.gov (United States)

    Gennaro, Sylvain D.; Roschuk, Tyler R.; Maier, Stefan A.; Oulton, Rupert F.

    2016-04-01

    Chromatic aberration in optical systems arises from the wavelength dependence of a glass's refractive index. Polychromatic rays incident upon an optical surface are refracted at slightly different angles and in traversing an optical system follow distinct paths creating images displaced according to color. Although arising from dispersion, it manifests as a spatial distortion correctable only with compound lenses with multiple glasses and accumulates in complicated imaging systems. While chromatic aberration is measured with interferometry, simple methods are attractive for their ease of use and low cost. In this letter we retrieve the longitudinal chromatic focal shift of high numerical aperture (NA) microscope objectives from the extinction spectra of metallic nanoparticles within the focal plane. The method is accurate for high NA objectives with apochromatic correction, and enables rapid assessment of the chromatic aberration of any complete microscopy systems, since it is straightforward to implement

  19. Low chromatic aberration hexapole for molecular state selection

    Science.gov (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2016-01-01

    In molecular beam state-selection experiments, the electrostatic hexapole acts as an optical lens, imaging molecules from the source to the focus. The molecular longitudinal velocity spread induces the phenomenon of chromatic aberration, which will reduce the state-selection purity. We propose a scheme which can effectively reduce the chromatic aberration by changing the hexapole voltage operating manner. The hexapole is already charged before molecules arrive at the entrance of the hexapole. When molecules are completely inside the hexapole, the voltage is switched off rapidly at an appropriate time. In this manner, faster molecules travel a longer hexapole focusing region than slower molecules. Therefore the focusing positions of molecules with different velocities become close. Numerical trajectory simulations of molecular state selection are carried out, and the results show that this low chromatic aberration hexapole can significantly improve the state purity from 46.2% to 87.0%.

  20. An approach to remove defocused aberration on array confocal microscope

    Science.gov (United States)

    Huang, Xiangdong; Zhou, Tong; Jia, Jingguo

    2013-01-01

    In order to obtain a high resolution image required for ultra-precision measurement of microstructural object, a new approach is proposed for 3D microstructures. It uses the modulation transfer function with defocus aberration based on the ambiguity function and stable phase principle to achieve an optical phase filter, and utilizes generalized a spheric phase optical element to encode defocus images, and uses deconvolution technology to recover the images. In comparison with conventional optical system, the phase filter used in the optical system can make focal spot smaller when measure object defocusing, eliminates the effect of the defocus aberration, and improves the defocused property. Numerical results indicate the designed phase filter can improve lateral resolution of optical system, and the axial resolution of the optical system is not affect by the filter and defocus aberration. For different defocus plate, the phase filter can make character of modulation transfer function of lateral direction uniform approximation.

  1. Novel electrochemical sensor system for monitoring metabolic activity during the growth and cultivation of prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Pescheck, M; Schrader, J; Sell, D

    2005-09-01

    A novel amperometric sensor system is presented which directly reflects the metabolic activity of prokaryotic and eukaryotic cells during cultivation. The principle of an externally mounted sensor is current measurement using a three-electrode system. Only living cells are detected since the current signal is based on a redox mediator. Added to a culture sample in its oxidized form, the mediator is reduced by cellular metabolism and subsequently re-oxidized at the anode. The spontaneous immobilisation of the cells in the reaction vessel of the sensor by swelling dextrane polymers (Sephadex) prior to measurement is the key to a fast, consistent signal. Even metabolically less active mammalian cells produce a reliable signal within a few minutes; this may open up future applications of the electrochemical sensor in closed loop process control not only for bacterial and fungal bioprocesses, but also in cell culture technology.

  2. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    Science.gov (United States)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  3. Focus correction in an apodized system with spherical aberration.

    Science.gov (United States)

    Bernal-Molina, Paula; Castejón-Mochón, José Francisco; Bradley, Arthur; López-Gil, Norberto

    2015-08-01

    We performed a theoretical and computational analysis of the through-focus axial irradiance in a system with a Gaussian amplitude pupil function and fourth- and sixth-order spherical aberration (SA). Two cases are analyzed: low aberrated systems, and the human eye containing significant levels of SA and a natural apodization produced by the Stiles-Crawford effect. Results show that apodization only produces a refraction change of the plane that maximized the Strehl ratio for eyes containing significant levels of negative SA.

  4. Double aberration correction in a low-energy electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Th., E-mail: schmidtt@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Marchetto, H.; Levesque, P.L. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Groh, U.; Maier, F. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Preikszas, D. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Carl Zeiss NTS GmbH, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany); Hartel, P.; Spehr, R. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Lilienkamp, G. [Technische Universitaet Clausthal, Physikalisches Institut, Leibnizstrasse 4, D-38678 (Germany); Engel, W. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Fink, R. [Universitaet Erlangen-Nuernberg, Physikalische Chemie II, Egerlandstrasse 3, D-91058 Erlangen (Germany); Bauer, E. [Technische Universitaet Clausthal, Physikalisches Institut, Leibnizstrasse 4, D-38678 (Germany); Arizona State University, Department of Physics, Tempe, AZ 85287 (United States); Rose, H. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Umbach, E. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Freund, H.-J. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany)

    2010-10-15

    The lateral resolution of a surface sensitive low-energy electron microscope (LEEM) has been improved below 4 nm for the first time. This breakthrough has only been possible by simultaneously correcting the unavoidable spherical and chromatic aberrations of the lens system. We present an experimental criterion to quantify the aberration correction and to optimize the electron optical system. The obtained lateral resolution of 2.6 nm in LEEM enables the first surface sensitive, electron microscopic observation of the herringbone reconstruction on the Au(1 1 1) surface.

  5. Aberrations of the point spread function of a multimode fiber

    CERN Document Server

    Descloux, Adrien; Pinkse, Pepijn W H

    2016-01-01

    We investigate the point spread function of a multimode fiber. The distortion of the focal spot created on the fiber output facet is studied for a variety of the parameters. We develop a theoretical model of wavefront shaping through a multimode fiber and use it to confirm our experimental results and analyze the nature of the focal distortions. We show that aberration-free imaging with a large field of view can be achieved by using an appropriate number of segments on the spatial light modulator during the wavefront-shaping procedure. The results describe aberration limits for imaging with multimode fibers as in, e.g., microendoscopy.

  6. Investigation of spherical aberration effects on coherent lidar performance

    DEFF Research Database (Denmark)

    Hu, Qi; Rodrigo, Peter John; Iversen, Theis Faber Quist;

    2013-01-01

    In this paper we demonstrate experimentally the performance of a monostatic coherent lidar system under the influence of phase aberrations, especially the typically predominant spherical aberration (SA). The performance is evaluated by probing the spatial weighting function of the lidar system...... with different telescope configurations using a hard target. It is experimentally and numerically proven that the SA has a significant impact on lidar antenna efficiency and optimal beam truncation ratio. Furthermore, we demonstrate that both effective probing range and spatial resolution of the system...

  7. Pan-cancer analysis of ROS1 genomic aberrations

    OpenAIRE

    Wang, Yidan; 王奕丹

    2015-01-01

    The ROS proto-oncogene 1 (ROS1) encodes the ROS1 receptor kinase. ROS1 rearrangements are known to be oncogenic in glioblastoma, non–small-cell lung carcinoma (NSCLC) and cholangiocarcinoma. The clinical relevance of ROS1 genomic aberrations in other human cancers is largely unexamined. Here, we performed a pan-cancer analysis of ROS1 genomic aberrations across 20 cancer sites by interrogating the whole-exome sequencing data of the Cancer Genome Atlas (TCGA) via the cBioportal (www.cbioportal...

  8. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton.

    Science.gov (United States)

    Cuvelier, Marie L; Allen, Andrew E; Monier, Adam; McCrow, John P; Messié, Monique; Tringe, Susannah G; Woyke, Tanja; Welsh, Rory M; Ishoey, Thomas; Lee, Jae-Hyeok; Binder, Brian J; DuPont, Chris L; Latasa, Mikel; Guigand, Cédric; Buck, Kurt R; Hilton, Jason; Thiagarajan, Mathangi; Caler, Elisabet; Read, Betsy; Lasken, Roger S; Chavez, Francisco P; Worden, Alexandra Z

    2010-08-17

    Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed from only the latter two lineages. Tiny "picoplanktonic" members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed pico-prymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25% of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton.

  9. Insights into the Initiation of Eukaryotic DNA Replication.

    Science.gov (United States)

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.

  10. Telomeric position effect--a third silencing mechanism in eukaryotes.

    Directory of Open Access Journals (Sweden)

    J Greg Doheny

    Full Text Available Eukaryotic chromosomes terminate in telomeres, complex nucleoprotein structures that are required for chromosome integrity that are implicated in cellular senescence and cancer. The chromatin at the telomere is unique with characteristics of both heterochromatin and euchromatin. The end of the chromosome is capped by a structure that protects the end and is required for maintaining proper chromosome length. Immediately proximal to the cap are the telomere associated satellite-like (TAS sequences. Genes inserted into the TAS sequences are silenced indicating the chromatin environment is incompatible with transcription. This silencing phenomenon is called telomeric position effect (TPE. Two other silencing mechanisms have been identified in eukaryotes, suppressors position effect variegation [Su(vars, greater than 30 members] and Polycomb group proteins (PcG, approximately 15 members. We tested a large number of each group for their ability to suppress TPE [Su(TPE]. Our results showed that only three Su(vars and only one PcG member are involved in TPE, suggesting silencing in the TAS sequences occurs via a novel silencing mechanism. Since, prior to this study, only five genes have been identified that are Su(TPEs, we conducted a candidate screen for Su(TPE in Drosophila by testing point mutations in, and deficiencies for, proteins involved in chromatin metabolism. Screening with point mutations identified seven new Su(TPEs and the deficiencies identified 19 regions of the Drosophila genome that harbor suppressor mutations. Chromatin immunoprecipitation experiments on a subset of the new Su(TPEs confirm they act directly on the gene inserted into the telomere. Since the Su(TPEs do not overlap significantly with either PcGs or Su(vars, and the candidates were selected because they are involved generally in chromatin metabolism and act at a wide variety of sites within the genome, we propose that the Su(TPE represent a third, widely used, silencing

  11. Interaction of Low Temperature Plasmas with Prokaryotic and Eukaryotic Cells

    Science.gov (United States)

    Laroussi, Mounir

    2008-10-01

    Due to promising possibilities for their use in medical applications such as wound healing, surface modification of biocompatible materials, and the sterilization of reusable heat-sensitive medical instruments, low temperature plasmas and plasma jets are making big strides as a technology that can potentially be used in medicine^1-2. At this stage of research, fundamental questions about the effects of plasma on prokaryotic and eukaryotic cells are still not completely answered. An in-depth understanding of the pathway whereby cold plasma interact with biological cells is necessary before real applications can emerge. In this paper, first an overview of non-equilibrium plasma sources (both low and high pressures) will be presented. Secondly, the effects of plasma on bacterial cells will be discussed. Here, the roles of the various plasma agents in the inactivation process will be outlined. In particular, the effects of UV and that of various reactive species (O3, O, OH) are highlighted. Thirdly, preliminary findings on the effects of plasma on few types of eukaryotic cells will be presented. How plasma affects eukaryotic cells, such as mammalian cells, is very important in applications where the viability/preservation of the cells could be an issue (such as in wound treatment). Another interesting aspect is the triggering of apoptosis (programmed cell death). Some investigators have claimed that plasma is able to induce apoptosis in some types of cancer cells. If successfully replicated, this can open up a novel method of cancer treatment. In this talk however, I will briefly focus more on the wound healing potential of cold plasmas. ^1E. A. Blakely, K. A. Bjornstad, J. E. Galvin, O. R. Monteiro, and I. G. Brown, ``Selective Neuron Growth on Ion Implanted and Plasma Deposited Surfaces'', In Proc. IEEE Int. Conf. Plasma Sci., (2002), p. 253. ^2M. Laroussi, ``Non-thermal Decontamination of Biological Media by Atmospheric Pressure Plasmas: Review, Analysis, and

  12. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.

    Science.gov (United States)

    Oborník, Miroslav; Green, Beverley R

    2005-12-01

    Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.

  13. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  14. Insights into the Initiation of Eukaryotic DNA Replication

    Science.gov (United States)

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2–7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2–7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2–7 complex. Sld3 recruits Cdc45 to Mcm2–7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2–7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2–7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted. PMID:26710261

  15. The effect of negative autoregulation on eukaryotic gene expression

    Science.gov (United States)

    Nevozhay, Dmitry; Adams, Rhys; Murphy, Kevin; Josic, Kresimir; Balázsi, G. Ábor

    2009-03-01

    Negative autoregulation is a frequent motif in gene regulatory networks, which has been studied extensively in prokaryotes. Nevertheless, some effects of negative feedback on gene expression in eukaryotic transcriptional networks remain unknown. We studied how the strength of negative feedback regulation affects the characteristics of gene expression in yeast cells carrying synthetic transcriptional cascades. We observed a drastic reduction of gene expression noise and a change in the shape of the dose-response curve. We explained these experimentally observed effects by stochastic simulations and a simple set of algebraic equations.

  16. Septins and the lateral compartmentalization of eukaryotic membranes.

    Science.gov (United States)

    Caudron, Fabrice; Barral, Yves

    2009-04-01

    Eukaryotic cells from neurons and epithelial cells to unicellular fungi frequently rely on cellular appendages such as axons, dendritic spines, cilia, and buds for their biology. The emergence and differentiation of these appendages depend on the formation of lateral diffusion barriers at their bases to insulate their membranes from the rest of the cell. Here, we review recent progress regarding the molecular mechanisms and functions of such barriers. This overview underlines the importance and conservation of septin-dependent diffusion barriers, which coordinately compartmentalize both plasmatic and internal membranes. We discuss their role in memory establishment and the control of cellular aging.

  17. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Reddy Anireddy SN

    2006-01-01

    Full Text Available Abstract Background Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. Results We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. Conclusion The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage

  18. Recognition of extremophilic archaeal viruses by eukaryotic cells

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch; Wu, Linping; Hall, Arnaldur

    2016-01-01

    followed viral uptake, intracellular trafficking and cell viability in human endothelial cells of brain (hCMEC/D3 cells) and umbilical vein (HUVEC) origin. Whereas SMV1 is efficiently internalized into both types of human cells, SSV2 differentiates between HUVECs and hCMEC/D3 cells, thus opening a path......Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration...

  19. The interplay between the hippocampus and the amygdala in regulating aberrant hippocampal neurogenesis during protracted abstinence from alcohol dependence

    Directory of Open Access Journals (Sweden)

    Chitra D Mandyam

    2013-06-01

    Full Text Available The development of alcohol dependence involves elevated anxiety, low mood, and increased sensitivity to stress, collectively labeled negative affect. Particularly interesting is the recent accumulating evidence that sensitized extrahypothalamic stress systems (e.g., hyperglutamatergic activity, blunted hypothalamic-pituitary-adrenal [HPA] hormonal levels, altered corticotropin-releasing factor signaling, and altered glucocorticoid receptor signaling in the extended amygdala are evident in withdrawn dependent rats, supporting the hypothesis that pathological neuroadaptations in the extended amygdala contribute to the negative affective state. Notably, hippocampal neurotoxicity observed as aberrant dentate gyrus (DG neurogenesis (neurogenesis is a process where neural stem cells in the adult hippocampal subgranular zone generate DG granule cell neurons and DG neurodegeneration are observed in withdrawn dependent rats. These correlations between withdrawal and aberrant neurogenesis in dependent rats suggest that alterations in the DG could be hypothesized to be due to compromised HPA axis activity and associated hyperglutamatergic activity originating from the basolateral amygdala in withdrawn dependent rats. This review discusses a possible link between the neuroadaptations in the extended amygdala stress systems and the resulting pathological plasticity that could facilitate recruitment of new emotional memory circuits in the hippocampus as a function of aberrant DG neurogenesis.

  20. Signal focusing through active transport

    Science.gov (United States)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  1. Aberrant accumulation of the diabetes autoantigen GAD65 in Golgi membranes in conditions of ER stress and autoimmunity

    DEFF Research Database (Denmark)

    Phelps, Edward A; Cianciaruso, Chiara; Michael, Iacovos P

    2016-01-01

    , an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary beta cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes....... The palmitoylated form has heightened immunogenicity, exhibiting increased uptake by antigen presenting cells and T cell stimulation compared to the non-palmitoylated form. Similar accumulation of GAD65 in Golgi membranes is observed in human beta cells in pancreatic sections from GAD65 autoantibody positive...... individuals, who have not yet progressed to clinical onset of T1D, and T1D patients with residual beta cell mass and ongoing T cell infiltration of islets. We propose that aberrant accumulation of immunogenic GAD65 in Golgi membranes facilitates inappropriate presentation to the immune system following...

  2. Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma.

    Science.gov (United States)

    Both, Joeri; Krijgsman, Oscar; Bras, Johannes; Schaap, Gerard R; Baas, Frank; Ylstra, Bauke; Hulsebos, Theo J M

    2014-01-01

    Osteosarcoma is an aggressive bone tumor that preferentially develops in adolescents. The tumor is characterized by an abundance of genomic aberrations, which hampers the identification of the driver genes involved in osteosarcoma tumorigenesis. Our study aims to identify these genes by the investigation of focal copy number aberrations (CNAs, GPR177 as a new candidate oncogene in osteosarcoma. In osteosarcoma, CMTM8 has been shown to suppress EGFR signaling. In other tumor types, CMTM8 is known to suppress the activity of the oncogenic protein c-Met and GPR177 is known as an overexpressed upstream regulator of the Wnt-pathway. Further studies are needed to determine whether these proteins also exert the latter functions in osteosarcoma tumorigenesis.

  3. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  4. Differential algebraic method for arbitrary order curvilinear-axis combined geometric-chromatic aberration analysis

    CERN Document Server

    Cheng Min; Lu Yi Long; Yao Zhen Hua

    2003-01-01

    The principle of differential algebra is applied to analyse and calculate arbitrary order curvilinear-axis combined geometric-chromatic aberrations of electron optical systems. Expressions of differential algebraic form of high order combined aberrations are obtained and arbitrary order combined aberrations can be calculated numerically. As an example, a typical wide electron beam focusing system with curved optical axes named magnetic immersion lens has been studied. All the second-order and third-order combined geometric-chromatic aberrations of the lens have been calculated, and the patterns of the corresponding geometric aberrations and combined aberrations have been given as well.

  5. Effect of Coma Aberration on Orbital Angular Momentum Spectrum of Vortex Beams

    Institute of Scientific and Technical Information of China (English)

    CHEN Zi-Yang; PU Ji-Xiong

    2009-01-01

    Spiral spectra of vortex beams with coma aberration are studied.It is shown that the orbital angular momentum (OAM) states of vortex beams with coma aberration are different from those aberration-free vortex beams.Spiral spectra of beams with coma aberration are spreading.It is found that in the presence of coma aberration,the vortex beams contain not only the original OAM component but also other components.A larger coma aberration coefficient and/or a larger beam waist will lead to a wider spreading of the spiral spectrum. The results may have potential applications in information encoding and transmittance.

  6. A phototaxis signalling complex in Dictyostelium discoideum.

    Science.gov (United States)

    Bandala-Sanchez, Esther; Annesley, Sarah J; Fisher, Paul R

    2006-09-01

    Phototaxis has been studied in a variety of organisms belonging to all three major taxonomic domains - the bacteria, the archaea and the eukarya. Dictyostelium discoideum is one of a small number of eukaryotic organisms which are amenable to studying the signalling pathways involved in phototaxis. In this study we provide evidence based on protein coimmunoprecipitation for a phototaxis signalling complex in Dictyostelium that includes the proteins RasD, filamin, ErkB, GRP125 and PKB.

  7. EuPathDB: the eukaryotic pathogen genomics database resource

    Science.gov (United States)

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-01

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906

  8. EuPathDB: the eukaryotic pathogen genomics database resource.

    Science.gov (United States)

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y; Brestelli, John; Brunk, Brian P; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C; Lawrence, Cris; Li, Wei; Pinney, Deborah F; Pulman, Jane A; Roos, David S; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-04

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host-pathogen interactions.

  9. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    Science.gov (United States)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  10. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.

  11. Eukaryotic snoRNAs: a paradigm for gene expression flexibility.

    Science.gov (United States)

    Dieci, Giorgio; Preti, Milena; Montanini, Barbara

    2009-08-01

    Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.

  12. Eukaryotic Replisome Components Cooperate to Process Histones During Chromosome Replication

    Directory of Open Access Journals (Sweden)

    Magdalena Foltman

    2013-03-01

    Full Text Available DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.

  13. Specific features of protein biosynthesis in higher eukaryotes

    Directory of Open Access Journals (Sweden)

    El’skaya A. V.

    2013-05-01

    Full Text Available Over 40 years of studies in the field of higher eukaryotic translation are summarized in the review. Among the pioneer results obtained we should especially accentuate the following: i discovery of the adaptation of tRNAs and aminoacyl-tRNA synthetases (ARSs cellular pools to the synthesis of specific proteins and modulation of the elongation rate by rare isoacceptor tRNAs; ii the chaperone-like properties of the translation components (ribosomes and elongation factor eEF1A; characterization of high molecular weight complexes of ARSs; iii functional compartmentalization, including channeling of tRNA in eukaryotic cells; iv molecular mechanisms of channeling mediated by different non-canonical complexes involving eEF1A, tRNA and aminoacyl-tRNA synthetases; v characterization of the crystal structure of eEF1A2; vi comparison of spatial structure, molecular dynamics, tyrosine phosphorylation and abilities to interact with different protein partners of the eEF1A1 and eEF1A2 isoforms; vii discovery of the microRNA-mediated control of the expression of the proto-oncogenic eEF1A2 isoform in cancer cells; viii examination of the cancer-related changes in translation elongation complex eEF1H and mechanisms of oncogene PTI-1 action; ix discovery of the third tRNA binding site on mammals ribosomes and the allosteric interaction of the 80S ribosomal A and E sites.

  14. Aberrant behavior of preschool children: Evaluation of questionnaire

    Directory of Open Access Journals (Sweden)

    Fajgelj Stanislav

    2007-01-01

    Full Text Available In the study metric characteristics of children aberrant behavior questionnaire were analyzed. The analysis was performed on the sample of 1.165 children, aged 4-7, in preschool institutions in several towns of Vojvodina. The questionnaire contained 36 items of the Likert-type scale and was filled in by one parent of each child. The authors examined main metric characteristics of the complete questionnaire, as well as individual items under the Rasche’s measurement model. Generally, parents seldom notice aberrant behavior in their children. Most frequently they notice stubbornness, while very rarely torturing of animals. The item discrimination, on the whole, was found satisfying. The reliability of the questionnaire is 0.84., and all indicators of misfit are within satisfactory ranges. According to differential functioning of the items, the authors found gender and age specificities of parents’ evaluation of aberrant behavior of their children. Parents often notice stubbornness and moldiness in girls, and aggression in boys. According to the parent’s observations, younger children are characterized by nail nibbling, ticklishness, and fearfulness, whereas older children show a tendency to force their way by crying, waywardness and bed-wetting. By means of factor analysis of the items, three principal facets of aberrant behavior were determined: overindulgence, shyness and quarrelsomeness. Cross validation (hold out showed that these three facets were robust in relation to the selection of the sample.

  15. Using Aberrant Behaviors as Reinforcers for Autistic Children.

    Science.gov (United States)

    Charlop, Marjorie H.; And Others

    1990-01-01

    Three experiments assessed the efficacy of various reinforcers to increase correct task responding in a total of 10 autistic children, aged 6-9. Of the reinforcers used (stereotypy, delayed echolalia, perseverative behavior, and food), task performance was highest with opportunities to engage in aberrant behaviors, and lowest with edible…

  16. Refractive and diffractive neutron optics with reduced chromatic aberration

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar; Poulsen, Henning Friis; Bentley, P.M.

    2014-01-01

    by the use of optics for focusing and imaging. Refractive and diffractive optical elements, e.g. compound refractive lenses and Fresnel zone plates, are attractive due to their low cost, and simple alignment. These optical elements, however, suffer from chromatic aberration, which limit their effectiveness...

  17. Polarization aberrations of radiation at the lens focus

    NARCIS (Netherlands)

    Sokolov, AL

    2005-01-01

    The polarization aberrations of radiation at the lens focus are calculated with allowance for diffraction effects. Calculations are performed using the representation of radiation as a coherent set of Hermite-Gauss modes with certain amplitudes, phases, and polarizations. An expression for the longi

  18. The pterygo-spinous muscle--an aberrant (atavic) remnant.

    Science.gov (United States)

    Nathan, H

    1989-01-01

    We report here on an aberrant pterygoid muscle found during a dissection of the infratemporal fossa. We have not noted such a muscle in hundreds of dissections in the area. A few anatomical texts (Piersol, 1911; Testut, Latarjet, 1931) have referred to its possible existence as the pterygo-spinous muscle.

  19. Aberrant nerve fibres within the central nervous system.

    Science.gov (United States)

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  20. The Aberrant Salience Inventory: A New Measure of Psychosis Proneness

    Science.gov (United States)

    Cicero, David C.; Kerns, John G.; McCarthy, Denis M.

    2010-01-01

    Aberrant salience is the unusual or incorrect assignment of salience, significance, or importance to otherwise innocuous stimuli and has been hypothesized to be important for psychosis and psychotic disorders such as schizophrenia. Despite the importance of this concept in psychosis research, no questionnaire measures are available to assess…

  1. [Cytogenetic aberrations in histologically benign infiltratively growing sphenoid wing meningiomas].

    Science.gov (United States)

    Korshunov, A G; Cherekaev, V A; Bekiashev, A Kh; Sycheva, R V

    2007-01-01

    Meningiomas of the sphenoid wing (SW) frequently show an invasive pattern of growth and cause destruction of the adjacent structures. As a result, the rate of recurrent SW meningiomas is as high as 30%. Cytogenetic investigations showed no aberrations specific to invasively growing meningiomas. During this study, the authors evaluated 10 invasive and 5 non-invasive SW meningiomas via comparative genome hybridization (CGH) (matrix CGH), by using the gene chips of GenoSensor Array micromatrixes. The mean number of aberrations in the tumor cells was much greater in case of invasive meningiomas (67.4 versus 40.5 in case of non-invasive SW meningiomas. Furthermore, in invasive SW meningiomas, there were frequently losses in loci 1p, 6q, and 14q and gains in loci 15q and 10, which had been predetermined as molecular markers of stepwise progression of meningioma. Thus, the presence of a complex cytogenetic profile and progression-associated chromosome aberrations in benign SW meningiomas is linked with the increase of their invasive potential. Due to the fact that there are no well-defined adjuvant therapy regimens for recurring meningiomas at present, the revealed genomic aberrations may become potential targets for searching for drugs and a therapeutic intervention in future.

  2. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    Directory of Open Access Journals (Sweden)

    Cutler Sean R

    2007-06-01

    Full Text Available Abstract Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*, the ER-retention signal (K/HDEL*, the ER-retrieval signal for membrane bound proteins (KKxx*, the prenylation signal (CC* and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists

  3. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    Science.gov (United States)

    Austin, Ryan S; Provart, Nicholas J; Cutler, Sean R

    2007-01-01

    Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*), the ER-retention signal (K/HDEL*), the ER-retrieval signal for membrane bound proteins (KKxx*), the prenylation signal (CC*) and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists between species, among

  4. Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration.

    Science.gov (United States)

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger J

    2013-08-01

    In this Letter, multifocus optical-resolution photoacoustic microscopy is demonstrated using wavelength tuning and chromatic aberration for depth scanning. Discrete focal zones at several depth locations were created by refocusing light from a polarization-maintaining single-mode fiber pumped by a nanosecond fiber laser. The fiber and laser parameters were chosen to take advantage of stimulated Raman scattering (SRS) in the fiber to create a multiwavelength output that could then be bandpass filtered. The collimator lens and objective lens are chosen to take advantage of chromatic aberration in which each generated SRS wavelength peak focuses at a slightly different depth. The maximum amplitude of photoacoustic signals is mapped to form C-scan images. Additionally, all wavelength peaks fired simultaneously offers improved depth-of-field structural imaging at the cost of slight degradation of mainlobe-to-sidelobe ratios. Wavelength-tuned depth scanning over more than 440 μm is demonstrated, significantly greater than the ~100 μm depth of field predicted from our focused Gaussian beams. The improved depth of focus could be valuable for structural imaging of microvascular morphology without the need for mechanical scanning in the depth direction.

  5. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration.

    Science.gov (United States)

    Kruger, Philip B; Rucker, Frances J; Hu, Caitlin; Rutman, Hadassa; Schmidt, Nathan W; Roditis, Vasilios

    2005-05-01

    Accommodation was monitored while observers (23) viewed a square-wave grating (2.2 cycles/deg; 0.53 contrast) in a Badal optometer. The grating moved sinusoidally (0.2 Hz) to provide a stimulus between -1.00 D and -3.00 D during trials lasting 40.96 s. There were three illumination conditions: 1. Monochromatic 550 nm light to stimulate long-wavelength-sensitive cones (L-cones) and medium-wavelength-sensitive cones (M-cones) without chromatic aberration; 2. Monochromatic 550 nm light+420 nm light to stimulate long-, medium- and short-wavelength-sensitive cones (S-cones) with longitudinal chromatic aberration (LCA); 3. Monochromatic 550 nm light+420 nm light to stimulate L-, M- and S-cones viewed through an achromatizing lens. In the presence of LCA mean dynamic gain decreased (p=0.0003; ANOVA) and mean accommodation level was reduced (p=0.001; ANOVA). The reduction in gain and increased lag of accommodation in the presence of LCA could result from a blue-yellow chromatic signal or from a larger depth-of-focus.

  6. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets.

    Science.gov (United States)

    Wüstner, Daniel; Faergeman, Nils J

    2008-08-01

    Intrinsically fluorescent sterols, like dehydroergosterol (DHE), mimic cholesterol closely and are therefore suitable to determine cholesterol transport by fluorescence microscopy. Disadvantages of DHE are its low quantum yield, rapid bleaching, and the fact that its excitation and emission is in the UV region of the spectrum. Thus, one has to deal with chromatic aberration and low signal-to-noise ratio. We developed a method to correct for chromatic aberration between the UV channel and the red/green channel in multicolor imaging of DHE compared with the lipid droplet marker Nile Red in living macrophage foam cells and in adipocytes. We used deconvolution microscopy and developed image segmentation techniques to assess the DHE content of lipid droplets in both cell types in an automated manner. Pulse-chase studies and colocalization analysis were performed to monitor the redistribution of DHE upon adipocyte differentiation. DHE is targeted to transferrin-positive recycling endosomes in preadipocytes but associates with droplets in mature adipocytes. Only in adipocytes but not in foam cells fluorescent sterol was confined to the droplet-limiting membrane. We developed an approach to visualize and quantify sterol content of lipid droplets in living cells with potential for automated high content screening of cellular sterol transport.

  7. Sensor-less aberration correction in optical imaging systems using blind optimization

    Science.gov (United States)

    Avanaki, Mohammad R. N.; Mazraeh Khoshki, R.; Hojjatoleslami, S. A.; Podoleanu, A. Gh.

    2012-02-01

    The imperfection of optical devices in an optical imaging system deteriorates wavefront which results in aberration. This reduces the optical signal to noise ratio of the imaging system and the quality of the produced images. Adaptive optics composed of wavefront sensor (WFS) and deformable mirror (DM) is a straightforward solution for this problem. The need for a WFS in an AO system, raises the cost of the overall system, and there are also instances when they cannot be used, such as in microscopy. Moreover stray reflections from lens surfaces affect the performance of the WFS. In this paper, we describe a blind optimization technique with an in-expensive electronics without using the WFS to correct the aberration in order to achieve better quality images. The correction system includes an electromagnetic DM from Imagine, Mirao52d, with 52 actuators which are controlled by particle swarm optimization (PSO) algorithm. The results of the application of simulated annealing (SA), and genetic algorithm (GA) techniques that we have implemented in the sensor-less AO are used for comparison.

  8. Aberrant Cx26 Hemichannels and Keratitis-Ichthyosis-Deafness Syndrome: Insights into Syndromic Hearing Loss

    Directory of Open Access Journals (Sweden)

    Helmuth Alberto Sanchez

    2014-10-01

    Full Text Available Mutation of the GJB2 gene, which encodes the connexin Cx26 gap junction (GJ protein, is the most common cause of hereditary, sensorineural hearing loss. Cx26 is not expressed in hair cells, but is widely expressed throughout the non-sensory epithelial cells of the cochlea. Most GJB2 mutations produce non-syndromic deafness, but a subset produces syndromic deafness in which profound hearing loss is accompanied by a diverse array of infectious and neoplastic cutaneous disorders that can be fatal. Although GJ channels, which are assembled by the docking of two, so-called hemichannels (HCs, have been the main focus of deafness-associated disease models, it is now evident that the HCs themselves can function in the absence of docking and contribute to signaling across the cell membrane as a novel class of ion channel. A notable feature of syndromic deafness mutants is that the HCs exhibit aberrant behaviors providing a plausible basis for disease that is associated with excessive or altered contributions of Cx26 HCs that, in turn, lead to compromised cell integrity. Here we discuss some of the aberrant Cx26 HC properties that have been described for mutants associated with keratitis-ichthyosis-deafness (KID syndrome, a particularly severe Cx26-associated syndrome, which shed light on genotype-phenotype relationships and causes underlying cochlear dysfunction.

  9. Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    CERN Document Server

    Tyson, M James Jee And J Anthony

    2010-01-01

    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness vari...

  10. Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers.

    Science.gov (United States)

    Pandey, Prashant K; Siddharth, Jay; Verma, Pankaj; Bavdekar, Ashish; Patole, Milind S; Shouche, Yogesh S

    2012-06-01

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any microeukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.

  11. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  12. Construction and identification of eukaryotic eukaryotic expression plasmid pcdna3.1-bace and its transient expression in cells

    Institute of Scientific and Technical Information of China (English)

    Huilin Gong; Guanjun Zhang; Weijiang Dong

    2006-01-01

    Objective: To generate eukaryotic expression vector of pcDNA3.1-BACE and obtain its transient expression in COS-7 cells and high expression in the neuroblastoma SK-N-SH cells. Methods: A 1503 bp cDNA fragment was amplified from the total RNA of human neuroblastoma by RT-PCR method and cloned into plasmid pcDNA3.1. The vector was identified by digestion with restriction enzymes BamHI and XhoI and sequenced by Sanger-dideoxy-mediated chain termination. The expression of BACE gene was detected by immunocytochemistry method. Results: The results showed that the cDNAfragment included 1503 bp total coding region. The recombinant eukaryotic cell expression vector of pcDNA3.1-BACE was constructed successfully,and the sequence of insert was identical to the published sequence. The COS-7 cells and the neuroblastoma SK-N-SH cells transfected with the pcDNA3.1-BACE plasmid expressed high level of BACE protein in cytoplasm. Conclusion: The recombinant plasmid pcDNA3.1-BACE can provide very useful tool for researching the reason of Alzheimer's disease and lays the important foundation for preventing the AD laterly.

  13. Subjective face recognition difficulties, aberrant sensibility, sleeping disturbances and aberrant eating habits in families with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Källman Tiia

    2005-04-01

    Full Text Available Abstract Background The present study was undertaken in order to determine whether a set of clinical features, which are not included in the DSM-IV or ICD-10 for Asperger Syndrome (AS, are associated with AS in particular or whether they are merely a familial trait that is not related to the diagnosis. Methods Ten large families, a total of 138 persons, of whom 58 individuals fulfilled the diagnostic criteria for AS and another 56 did not to fulfill these criteria, were studied using a structured interview focusing on the possible presence of face recognition difficulties, aberrant sensibility and eating habits and sleeping disturbances. Results The prevalence for face recognition difficulties was 46.6% in individuals with AS compared with 10.7% in the control group. The corresponding figures for subjectively reported presence of aberrant sensibilities were 91.4% and 46.6%, for sleeping disturbances 48.3% and 23.2% and for aberrant eating habits 60.3% and 14.3%, respectively. Conclusion An aberrant processing of sensory information appears to be a common feature in AS. The impact of these and other clinical features that are not incorporated in the ICD-10 and DSM-IV on our understanding of AS may hitherto have been underestimated. These associated clinical traits may well be reflected by the behavioural characteristics of these individuals.

  14. Topology of eukaryotic type II membrane proteins: importance of N-terminal positively charged residues flanking the hydrophobic domain.

    Science.gov (United States)

    Parks, G D; Lamb, R A

    1991-02-22

    We have tested the role of different charged residues flanking the sides of the signal/anchor (S/A) domain of a eukaryotic type II (N(cyt)C(exo)) integral membrane protein in determining its topology. The removal of positively charged residues on the N-terminal side of the S/A yields proteins with an inverted topology, while the addition of positively charged residues to only the C-terminal side has very little effect on orientation. Expression of chimeric proteins composed of domains from a type II protein (HN) and the oppositely oriented membrane protein M2 indicates that the HN N-terminal domain is sufficient to confer a type II topology and that the M2 N-terminal ectodomain can direct a type II topology when modified by adding positively charged residues. These data suggest that eukaryotic membrane protein topology is governed by the presence or absence of an N-terminal signal for retention in the cytoplasm that is composed in part of positive charges.

  15. Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses

    Directory of Open Access Journals (Sweden)

    Ghose Chandrabali

    2006-01-01

    Full Text Available Abstract Background Virus taxonomy is based on morphologic characteristics, as there are no widely used non-phenotypic measures for comparison among virus families. We examined whether there is phylogenetic signal in virus nucleotide usage patterns that can be used to determine ancestral relationships. The well-studied model of tail morphology in bacteriophage classification was used for comparison with nucleotide usage patterns. Tetranucleotide usage deviation (TUD patterns were chosen since they have previously been shown to contain phylogenetic signal similar to that of 16S rRNA. Results We found that bacteriophages have unique TUD patterns, representing genomic signatures that are relatively conserved among those with similar host range. Analysis of TUD-based phylogeny indicates that host influences are important in bacteriophage evolution, and phylogenies containing both phages and their hosts support their co-evolution. TUD-based phylogeny of eukaryotic viruses indicates that they cluster largely based on nucleic acid type and genome size. Similarities between eukaryotic virus phylogenies based on TUD and gene content substantiate the TUD methodology. Conclusion Differences between phenotypic and TUD analysis may provide clues to virus ancestry not previously inferred. As such, TUD analysis provides a complementary approach to morphology-based systems in analysis of virus evolution.

  16. Methods for identifying and mapping recent segmental and gene duplications in eukaryotic genomes.

    Science.gov (United States)

    Khaja, Razi; MacDonald, Jeffrey R; Zhang, Junjun; Scherer, Stephen W

    2006-01-01

    The aim of this chapter is to provide instruction for analyzing and mapping recent segmental and gene duplications in eukaryotic genomes. We describe a bioinformatics-based approach utilizing computational tools to manage eukaryotic genome sequences to characterize and understand the evolutionary fates and trajectories of duplicated genes. An introduction to bioinformatics tools and programs such as BLAST, Perl, BioPerl, and the GFF specification provides the necessary background to complete this analysis for any eukaryotic genome of interest.

  17. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Bernad Lucia

    2009-11-01

    Full Text Available Abstract Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as

  18. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  19. An Interactive Exercise To Learn Eukaryotic Cell Structure and Organelle Function.

    Science.gov (United States)

    Klionsky, Daniel J.; Tomashek, John J.

    1999-01-01

    Describes a cooperative, interactive problem-solving exercise for studying eukaryotic cell structure and function. Highlights the dynamic aspects of movement through the cell. Contains 15 references. (WRM)

  20. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  1. Saccharomyces cerevisiae: a versatile eukaryotic system in virology

    Directory of Open Access Journals (Sweden)

    Breinig Tanja

    2007-10-01

    Full Text Available Abstract The yeast Saccharomyces cerevisiae is a well-established model system for understanding fundamental cellular processes relevant to higher eukaryotic organisms. Less known is its value for virus research, an area in which Saccharomyces cerevisiae has proven to be very fruitful as well. The present review will discuss the main achievements of yeast-based studies in basic and applied virus research. These include the analysis of the function of individual proteins from important pathogenic viruses, the elucidation of key processes in viral replication through the development of systems that allow the replication of higher eukayotic viruses in yeast, and the use of yeast in antiviral drug development and vaccine production.

  2. Prevention of DNA re-replication in eukaryotic cells

    Institute of Scientific and Technical Information of China (English)

    Lan N. Truong; Xiaohua Wu

    2011-01-01

    DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle. Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication, which can cause genome instability and tumorigenesis. Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects. These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints.Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells, indicating that proper functioning of these pathways is essential for maintaining genome stability. In this review, we discuss the regulatory mechanisms of licensing control, the deleterious consequences when both licensing and checkpoints are compromised, and present possible mechanisms to prevent re-replication in order to maintain genome stability.

  3. Synthetic biology tools for bioprospecting of natural products in eukaryotes.

    Science.gov (United States)

    Unkles, Shiela E; Valiante, Vito; Mattern, Derek J; Brakhage, Axel A

    2014-04-24

    Filamentous fungi have the capacity to produce a battery of natural products of often unknown function, synthesized by complex metabolic pathways. Unfortunately, most of these pathways appear silent, many in intractable organisms, and their products consequently unidentified. One basic challenge is the difficulty of expressing a biosynthesis pathway for a complex natural product in a heterologous eukaryotic host. Here, we provide a proof-of concept solution to this challenge and describe how the entire penicillin biosynthesis pathway can be expressed in a heterologous host. The method takes advantage of a combination of improved yeast in vivo cloning technology, generation of polycistronic mRNA for the gene cluster under study, and an amenable and easily manipulated fungal host, i.e., Aspergillus nidulans. We achieve expression from a single promoter of the pathway genes to yield a large polycistronic mRNA by using viral 2A peptide sequences to direct successful cotranslational cleavage of pathway enzymes.

  4. Soil fertility controls the size-specific distribution of eukaryotes.

    Science.gov (United States)

    Mulder, Christian

    2010-05-01

    The large range of body-mass values of soil organisms provides a tool to assess the organization of soil ecological communities. Relationships between log-transformed body mass M and log-transformed numerical abundance N of all eukaryotes occurring under organic pastures, mature grasslands, and seminatural heathlands in the Netherlands were investigated. The observed allometry of (M,N) assemblages of below-ground communities strongly reflects the availability of primary macronutrients and essential micronutrients. This log-linear model describes the continuous variation in the allometric slope of animals and fungi along an increasing soil fertility gradient. The aggregate contribution of small invertebrates (M soil explains 72% of these shifts but the nitrogen concentration explains only 36%, with copper and zinc as intermediate predictors (59% and 49%, respectively). Empirical evidence supports common responses of invertebrates to the rates of resource supply and, possibly, to the above-ground primary production of ecosystems.

  5. Kinetic model of DNA replication in eukaryotic organisms

    CERN Document Server

    Herrick, J; Bensimon, A; Herrick, John; Bechhoefer, John; Bensimon, Aaron

    2001-01-01

    We formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. The model describes well a large amount of different data within a simple theoretical framework. This allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.

  6. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii

    Science.gov (United States)

    Lemaire, Stéphane D.; Guillon, Blanche; Le Maréchal, Pierre; Keryer, Eliane; Miginiac-Maslow, Myroslawa; Decottignies, Paulette

    2004-01-01

    Proteomics were used to identify the proteins from the eukaryotic unicellular green alga Chlamydomonas reinhardtii that can be reduced by thioredoxin. These proteins were retained specifically on a thioredoxin affinity column made of a monocysteinic thioredoxin mutant able to form mixed disulfides with its targets. Of a total of 55 identified targets, 29 had been found previously in higher plants or Synechocystis, but 26 were new targets. Biochemical tests were performed on three of them, showing a thioredoxin-dependent activation of isocitrate lyase and isopropylmalate dehydrogenase and a thioredoxin-dependent deactivation of catalase that is redox insensitive in Arabidopsis. In addition, we identified a Ran protein, a previously uncharacterized nuclear target in a photosynthetic organism. The metabolic and evolutionary implications of these findings are discussed. PMID:15123830

  7. Eukaryotic and prokaryotic microbial communities during microalgal biomass production.

    Science.gov (United States)

    Lakaniemi, Aino-Maija; Hulatt, Chris J; Wakeman, Kathryn D; Thomas, David N; Puhakka, Jaakko A

    2012-11-01

    Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates.

  8. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Science.gov (United States)

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  9. Enhancer Sharing Promotes Neighborhoods of Transcriptional Regulation Across Eukaryotes

    Science.gov (United States)

    Quintero-Cadena, Porfirio; Sternberg, Paul W.

    2016-01-01

    Enhancers physically interact with transcriptional promoters, looping over distances that can span multiple regulatory elements. Given that enhancer–promoter (EP) interactions generally occur via common protein complexes, it is unclear whether EP pairing is predominantly deterministic or proximity guided. Here, we present cross-organismic evidence suggesting that most EP pairs are compatible, largely determined by physical proximity rather than specific interactions. By reanalyzing transcriptome datasets, we find that the transcription of gene neighbors is correlated over distances that scale with genome size. We experimentally show that nonspecific EP interactions can explain such correlation, and that EP distance acts as a scaling factor for the transcriptional influence of an enhancer. We propose that enhancer sharing is commonplace among eukaryotes, and that EP distance is an important layer of information in gene regulation. PMID:27799341

  10. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2014-03-01

    Full Text Available Biologic influence of deuterium (D on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О. The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of D2О (from 0 up to 98 % D2O and the subsequent selection of stable to D2O cells. In the result of that technique were obtained adapted to maximum concentration of D2O cells, biological material of which instead of hydrogen contained deuterium with levels of enrichment 92–97,5 at.% D.

  11. Structure of a eukaryotic SWEET transporter in a homotrimeric complex.

    Science.gov (United States)

    Tao, Yuyong; Cheung, Lily S; Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B; Feng, Liang

    2015-11-12

    Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.

  12. New universal rules of eukaryotic translation initiation fidelity.

    Directory of Open Access Journals (Sweden)

    Hadas Zur

    Full Text Available The accepted model of eukaryotic translation initiation begins with the scanning of the transcript by the pre-initiation complex from the 5'end until an ATG codon with a specific nucleotide (nt context surrounding it is recognized (Kozak rule. According to this model, ATG codons upstream to the beginning of the ORF should affect translation. We perform for the first time, a genome-wide statistical analysis, uncovering a new, more comprehensive and quantitative, set of initiation rules for improving the cost of translation and its efficiency. Analyzing dozens of eukaryotic genomes, we find that in all frames there is a universal trend of selection for low numbers of ATG codons; specifically, 16-27 codons upstream, but also 5-11 codons downstream of the START ATG, include less ATG codons than expected. We further suggest that there is selection for anti optimal ATG contexts in the vicinity of the START ATG. Thus, the efficiency and fidelity of translation initiation is encoded in the 5'UTR as required by the scanning model, but also at the beginning of the ORF. The observed nt patterns suggest that in all the analyzed organisms the pre-initiation complex often misses the START ATG of the ORF, and may start translation from an alternative initiation start-site. Thus, to prevent the translation of undesired proteins, there is selection for nucleotide sequences with low affinity to the pre-initiation complex near the beginning of the ORF. With the new suggested rules we were able to obtain a twice higher correlation with ribosomal density and protein levels in comparison to the Kozak rule alone (e.g. for protein levels r=0.7 vs. r=0.31; p<10(-12.

  13. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis.

    Science.gov (United States)

    Flannigan, Kyle L; McCoy, Kathy D; Wallace, John L

    2011-07-01

    Hydrogen sulfide (H(2)S) is an important modulator of many aspects of digestive function, both in health and disease. Colonic tissue H(2)S synthesis increases markedly during injury and inflammation and appears to contribute to resolution. Some of the bacteria residing in the colon can also produce H(2)S. The extent to which bacterial H(2)S synthesis contributes to what is measured as colonic H(2)S synthesis is not clear. Using conventional and germ-free mice, we have delineated the eukaryotic vs. prokaryotic contributions to colonic H(2)S synthesis, both in healthy and colitic mice. Colonic tissue H(2)S production is entirely dependent on the presence of the cofactor pyridoxal 5'-phosphate (vitamin B(6)), while bacterial H(2)S synthesis appears to occur independent of this cofactor. As expected, approximately one-half of the H(2)S produced by feces is derived from eukaryotic cells. While colonic H(2)S synthesis is markedly increased when the tissue is inflamed, and, in proportion to the extent of inflammation, fecal H(2)S synthesis does not change and tissue granulocytes do not appear to be the source of the elevated H(2)S production. Rats fed a B vitamin-deficient diet for 6 wk exhibited significantly diminished colonic H(2)S synthesis, but fecal H(2)S synthesis was not different from that of rats on the control diet. Our results demonstrate that H(2)S production by colonic bacteria does not contribute significantly to what is measured as colonic tissue H(2)S production, using the acetate trapping assay system employed in this study.

  14. A Case Study of the Reduction of Aberrant, Repetitive Responses of an Adolescent with Autism.

    Science.gov (United States)

    Gunter, Philip L.; And Others

    1993-01-01

    In this case study, music was applied noncontingently and contingently across four settings with an adolescent male with autism, to reduce aberrant, repetitive vocalizations. The intervention was associated with dramatic reductions in the primary aberrant behavior and reductions in two other aberrant behaviors. Task performance was differentially…

  15. Nodular Hyperplasia Arising from the Lateral Aberrant Thyroid Tissue: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min Hye; Park, Jeong Seon; Lee, Young Jun [Dept. of Radiology, Hanyang University College of Medicine, Hanyang University Hospital, Seoul (Korea, Republic of)

    2012-06-15

    The presence of aberrant thyroid tissue in the lateral neck is very rare. In addition, nodular hyperplasia in ectopic thyroid has rarely been reported. Due to the unusual location, the presence of lateral aberrant thyroid tissue could be misdiagnosed as a lymphadenopathy, neurogenic tumor, etc. We report on a case of nodular hyperplasia arising from the right lateral aberrant thyroid tissue.

  16. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age

    Science.gov (United States)

    Artal, Pablo; Berrio, Esther; Guirao, Antonio; Piers, Patricia

    2002-01-01

    We studied the age dependence of the relative contributions of the aberrations of the cornea and the internal ocular surfaces to the total aberrations of the eye. We measured the wave-front aberration of the eye with a Hartmann-Shack sensor and the aberrations of the anterior corneal surface from the elevation data provided by a corneal topography system. The aberrations of the internal surfaces were obtained by direct subtraction of the ocular and corneal wave-front data. Measurements were obtained for normal healthy subjects with ages ranging from 20 to 70 years. The magnitude of the RMS wave-front aberration (excluding defocus and astigmatism) of the eye increases more than threefold within the age range considered. However, the aberrations of the anterior corneal surface increase only slightly with age. In most of the younger subjects, total ocular aberrations are lower than corneal aberrations, while in the older subjects the reverse condition occurs. Astigmatism, coma, and spherical aberration of the cornea are larger than in the complete eye in younger subjects, whereas the contrary is true for the older subjects. The internal ocular surfaces compensate, at least in part, for the aberrations associated with the cornea in most younger subjects, but this compensation is not present in the older subjects. These results suggest that the degradation of the ocular optics with age can be explained largely by the loss of the balance between the aberrations of the corneal and the internal surfaces.

  17. Aberrations of ERBB2 and TOP2A Genes in Breast Cancer

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Vang; Müller, Sven; Møller, Susanne;

    2009-01-01

    Copy number changes in TOP2A have frequently been linked to ERBB2 (HER2) amplified breast cancers. To study this relationship, copy number changes of ERBB2 and TOP2A were investigated by fluorescence in situ hybridization (FISH) in two cell lines; one characterized by having amplification of both...... genes and the other by having amplification of ERBB2 and deletion of TOP2A. The characteristics are compared to findings on paired ERBB2 and TOP2A data from 649 patients with invasive breast cancer from a previously published biomarker study. The physical localization of FISH signals in metaphase...... compared to TOP2A. In the majority of breast cancer patients, simultaneous aberration of ERBB2 and TOP2A is not explained by simple co-amplification....

  18. Four parameters increase the sensitivity and specificity of the exon array analysis and disclose 25 novel aberrantly spliced exons in myotonic dystrophy.

    Science.gov (United States)

    Yamashita, Yoshihiro; Matsuura, Tohru; Shinmi, Jun; Amakusa, Yoshinobu; Masuda, Akio; Ito, Mikako; Kinoshita, Masanobu; Furuya, Hirokazu; Abe, Koji; Ibi, Tohru; Sahashi, Ko; Sahashi, Koo; Ohno, Kinji

    2012-06-01

    Myotonic dystrophy type 1 (DM1) is an RNA gain-of-function disorder in which abnormally expanded CTG repeats of DMPK sequestrate a splicing trans-factor MBNL1 and upregulate another splicing trans-factor CUGBP1. To identify a diverse array of aberrantly spliced genes, we performed the exon array analysis of DM1 muscles. We analyzed 72 exons by RT-PCR and found that 27 were aberrantly spliced, whereas 45 were not. Among these, 25 were novel and especially splicing aberrations of LDB3 exon 4 and TTN exon 45 were unique to DM1. Retrospective analysis revealed that four parameters efficiently detect aberrantly spliced exons: (i) the signal intensity is high; (ii) the ratio of probe sets with reliable signal intensities (that is, detection above background P-value=0.000) is high within a gene; (iii) the splice index (SI) is high; and (iv) SI is deviated from SIs of the other exons that can be estimated by calculating the deviation value (DV). Application of the four parameters gave rise to a sensitivity of 77.8% and a specificity of 95.6% in our data set. We propose that calculation of DV, which is unique to our analysis, is of particular importance in analyzing the exon array data.

  19. Correction of Optical Aberrations in Elliptic Neutron Guides

    CERN Document Server

    Bentley, Phillip M; Andersen, Ken H; Rodriguez, Damian Martin; Mildner, David F R

    2012-01-01

    Modern, nonlinear ballistic neutron guides are an attractive concept in neutron beam delivery and instrumentation, because they offer increased performance over straight or linearly tapered guides. However, like other ballistic geometries they have the potential to create significantly non-trivial instrumental resolution functions. We address the source of the most prominent optical aberration, namely coma, and we show that for extended sources the off-axis rays have a different focal length from on-axis rays, leading to multiple reflections in the guide system. We illustrate how the interplay between coma, sources of finite size, and mirrors with non-perfect reflectivity can therefore conspire to produce uneven distributions in the neutron beam divergence, the source of complicated resolution functions. To solve these problems, we propose a hybrid elliptic-parabolic guide geometry. Using this new kind of neutron guide shape, it is possible to condition the neutron beam and remove almost all of the aberration...

  20. [Aluminum induces chromosome aberrations in wheat root meristem cells].

    Science.gov (United States)

    Bulanova, N V; Synzynys, B I; Koz'min, G V

    2001-12-01

    The yield and pattern of chromosome structure aberrations in wheat seedlings treated with aluminum nitrate and aluminum sulfate at various concentrations have been determined by the anaphase method. Aluminum has a genotoxic effect causing genome, chromatid, and chromosome aberrations in apical root meristem cells. The relationship between the total yield of structural mutations and the aluminum concentration follows a bell-shaped curve. The mutagenic activity of aluminum nitrate peaks at 10(-3) mg/ml, which is twice as high as the permissible concentration limit (PCL) of aluminum in potable water. The maximum of the mutagenic activity of aluminum sulfate is observed at 5 x 10(-4) mg/ml, i.e., one PCL. Tap water boiled for 2 h in an aluminum vessel has virtually no genotoxic effect on wheat cells.

  1. Mathematical Modeling of Carcinogenesis Based on Chromosome Aberration Data

    Institute of Scientific and Technical Information of China (English)

    Xiao-bo Li

    2009-01-01

    Objective: The progression of human cancer is characterized by the accumulation of genetic instability. An increasing number of experimental genetic molecular techniques have been used to detect chromosome aberrations. Previous studies on chromosome abnormalities often focused on identifying the frequent loci of chromosome alterations, but rarely addressed the issue of interrelationship of chromosomal abnormalities. In the last few years, several mathematical models have been employed to construct models of carcinogenesis, in an attempt to identify the time order and cause-and-effect relationship of chromosome aberrations. The principles and applications of these models are reviewed and compared in this paper. Mathematical modeling of carcinogenesis can contribute to our understanding of the molecular genetics of tumor development, and identification of cancer related genes, thus leading to improved clinical practice of cancer.

  2. Chromatic aberration control for tunable all-silicone membrane microlenses.

    Science.gov (United States)

    Waibel, Philipp; Mader, Daniel; Liebetraut, Peter; Zappe, Hans; Seifert, Andreas

    2011-09-12

    Tunable multi-chamber microfluidic membrane microlenses with achromaticity over a given focal length range are demonstrated. In analogy to a fixed-focus achromatic doublet lens, the multi-lens system is based on a stack of microfluidic cavities filled with optically optimized liquids with precisely defined refractive index and Abbe number, and these are independently pneumatically actuated. The membranes separating the cavities form the refractive optical surfaces, and the curvatures as a function of pressure are calculated using a mechanical model for deformation of flexible plates. The results are combined with optical ray tracing simulations of the multi-lens system to yield chromatic aberration behavior, which is verified experimentally. A focal length tuning range of 5-40 mm and reduction in chromatic aberration of over 30% is demonstrated, limited by the availability of optical fluids.

  3. Filtering chromatic aberration for wide acceptance angle electrostatic lenses.

    Science.gov (United States)

    Fazekas, Ádám; Tóth, László

    2014-07-01

    Chromatic aberration is a major issue for imaging mainly with large acceptance angle electrostatic lenses. Its correction is necessary to take advantage of the outstanding spatial and angular resolution that these lenses provide. We propose a method to eliminate the effect of chromatic aberration on the measured images by determining the impact resulting from higher and lower kinetic energies. Based on a spectral image sequence and a matrix, which describes the transmission function of the lens, a system of linear equations is solved to approximate the 2D spectral intensity distribution of the sample surface. We present the description of our method and preliminary test results, which show significant contrast and image quality improvement. The presented algorithm can also be applied as a software-based energy analyzer.

  4. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline.

    Science.gov (United States)

    Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G; Birnbaum, Shari G; Scharfman, Helen E; Eisch, Amelia J; Hsieh, Jenny

    2015-03-26

    Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.

  5. Aberrations and adaptive optics in super-resolution microscopy.

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-08-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem.

  6. Detection of epigenetic aberrations in the development of hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Yujing

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Hepatocarcinogenesis is a complex, multistep process. It is now recognized that HCC is a both genetic and epigenetic disease; genetic and epigenetic components cooperate at all stages of hepatocarcinogenesis. Epigenetic changes involve aberrant DNA methylation, posttranslational histone modifications and aberrant expression of microRNAs all of which can affect the expression of oncogenes, tumor suppressor genes and other tumor-related genes and alter the pathways in cancer development. Several risk factors for HCC, including hepatitis B and C virus infections and exposure to the chemical carcinogen aflatoxin B1 have been found to influence epigenetic changes. Their interactions could play an important role in the initiation and progression of HCC. Discovery and detection of biomarkers for epigenetic changes is a promising area for early diagnosis and risk prediction of HCC.

  7. [239Pu and chromosomal aberrations in human peripheral blood lymphocytes].

    Science.gov (United States)

    Okladnikova, N D; Osovets, S V; Kudriavtseva, T I

    2009-01-01

    The genome status in somatic cells was assessed using the chromosomal aberration (CA) test in peripheral blood lymphocytes from 194 plutonium workers exposed to occupational radiation mainly from low-transportable compounds of airborne 230Pu. Pu body burden at the time of cytogenetic study varied from values close to the method sensitivity to values multiply exceeding the permissible level. Standard (routine) methods of peripheral blood lymphocytes cultivation were applied. Chromatid- and chromosomal-type structural changes were estimated. Aberrations were estimated per 100 examined metaphase cells. The quantitative relationship between the CA frequency and Pu body burden and the absorbed dose to the lung was found. Mathematical processing of results was carried out based on the phenomenological model. The results were shown as theoretical and experimental curves. The threshold of the CA yield was 0.43 +/- 0.03 kBq (Pu body burden) and 6.12 +/- 1.20 cGy (absorbed dose to the lung).

  8. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure.

  9. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  10. Chromosomic aberrations in female workers exposed to pesticides

    OpenAIRE

    Cuenca, Patricia; Ramírez, Vanessa

    2014-01-01

    The purpose of this work was to determine if the occupational exposure to those pesticides used at banana plantations’ packaging plants produces genetic damage to somatic cells of female workers. Chromosomal aberrations were scored in lymphocytes of 20 women, 10 female exposed workers and 10 female controls. Workers were recruited from independent farms from two locations in Costa Rica, during January through June in 1996 and 1997. These females had a minimum of three months of work, had neve...

  11. Manipulation of spatiotemporal photon distribution via chromatic aberration.

    Science.gov (United States)

    Li, Yuelin; Chemerisov, Sergey

    2008-09-01

    We demonstrate a spatiotemporal laser-pulse-shaping scheme that exploits the chromatic aberration in a dispersive lens. This normally harmful effect transforms the phase modulation into a beam-size modulation at the focal plane. In combination with the intricate diffraction effect via beam apodization, this method provides a spatiotemporal control of photon distribution with an accuracy of diffraction limit on a time scale of femtoseconds.

  12. Aberration of Light and Motion of Real Particle

    CERN Document Server

    Klacka, J

    2000-01-01

    Correct and complete (to terms of $\\vec{v} / c$ -- $\\vec{v}$ is particle's velocity, $c$ is the speed of light) derivation of equation of motion for real dust particle under the action of electromagnetic radiation is derived. The effect of aberration of light is used. Equation of motion is expressed in terms of particle's optical properties, standardly used in optics for stationary particles.

  13. Coherence and aberration effects in surface plasmon polariton imaging

    OpenAIRE

    Berthel, Martin; Jiang, Quanbo; Chartrand, Camille; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien

    2016-01-01

    We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a rigorous modal formalism based on scalar Whittaker potentials we develop a systematic analytical and vectorial method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes geometrical aberrations due index mismatch which played an...

  14. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  15. Aberrant behavior and cognitive ability in preschool children

    Directory of Open Access Journals (Sweden)

    Bala Gustav

    2007-01-01

    Full Text Available The sample included 712 preschool boys and girls at the age of 4 to 7 years (mean 5.96 decimal years and standard deviation .96 from preschool institutions in Novi Sad, Sombor, Sremska Mitrovica and Bačka Palanka. Information concerning 36 indicators of aberrant behavior of the children were supplied by their parents, whereas their cognitive ability was tested by Raven’s progressive colored matrices. Based on factor analysis (promax method, four factors i.e. generators of aberrant behavior in children were singled out: aggression, anxiousness, dissociation, and hysteria, whose relations with cognitive functioning and age were also analyzed by factor analysis. Aberrant behavior and cognitive abilities show significant interrelatedness. Owing to orderly developed cognitive abilities, a child understands essence and reality of problems, realizes possibilities and manners of solving them, and succeeds in realizing successful psycho-social functioning. Developed cognitive abilities enable a child to recognize and understand her/his own reactions in different situations and develop manners of reacting, which leads to strengthening psycho-social safety and adapting behavior in accordance with her/his age and abilities.

  16. Genomic aberrations of BRCA1-mutated fallopian tube carcinomas.

    Science.gov (United States)

    Hunter, Sally M; Ryland, Georgina L; Moss, Phillip; Gorringe, Kylie L; Campbell, Ian G

    2014-06-01

    Intraepithelial carcinomas of the fallopian tube are putative precursors to high-grade serous carcinomas of the ovary and peritoneum. Molecular characterization of these early precursors is limited but could be the key to identifying tumor biomarkers for early detection. This study presents a genome-wide copy number analysis of occult fallopian tube carcinomas identified through risk-reducing prophylactic oophorectomy from three women with germline BRCA1 mutations, demonstrating that extensive genomic aberrations are already established at this early stage. We found no indication of a difference in the level of genomic aberration observed in fallopian tube carcinomas compared with high-grade serous ovarian carcinomas. These findings suggest that spread to the peritoneal cavity may require no or very little further tumor evolution, which raises the question of what is the real window of opportunity to detect high-grade serous peritoneal carcinoma arising from the fallopian tube before it spreads. Nonetheless, the similarity of the genomic aberrations to those observed in high-grade serous ovarian carcinomas suggests that genetic biomarkers identified in late-stage disease may be relevant for early detection.

  17. Effect of therapeutic hypothermia on chromosomal aberration in perinatal asphyxia

    Directory of Open Access Journals (Sweden)

    Bahubali D Gane

    2016-01-01

    Full Text Available Introduction: Perinatal asphyxia is a major cause for neonatal mortality and morbidity around the world. The reduction of O2results in the generation of reactive oxygen species which interact with nucleic acid and make alteration in the structure and functioning of the genome. We studied the effect of therapeutic hypothermia on chromosomes with karyotyping. Subjects and Methods: Babies in the hypothermia group were cooled for the first 72 h, using gel packs. Rectal temperature of 33–34°C was maintained. Blood sample was collected after completion of therapeutic hypothermia for Chromosomal analysis. It was done with IKAROS Karyotyping system, Metasystems, based on recommendations of International system of human cytogenetic nomenclature. Results: The median chromosomal aberration was lower in hypothermia [2(0-5] than control group [4(1-7] and chromatid breakage was commonest aberration seen. Chromosomal aberration was significantly higher in severe encephalopathy group than moderate encephalopathy group. Conclusion: We conclude that the TH significantly reduces DNA damage in perinatal asphyxia.

  18. Incidence of chromosomal aberrations and micronuclei in cave tour guides.

    Science.gov (United States)

    Bilban, M; Bilban-Jakopin, C; Vrhovec, S

    2001-01-01

    An analysis of structural chromosomal aberrations (SCA) and micronucleus tests (MN) were performed in 38 subjects, cave tour guides and in appropriate control group. The dominant type of chromosomal aberrations in tourist guides were chromosomal breaks (0.013 per cell) and acentric fragments (0.011 per cell). In the control group, these aberrations were present up to 0.008 on cells. Considering the analysed cells of the guides in total (33,556), the incidence of dicentric and rings range is below 0.0008 on cells, even though three dicentric and ring chromosoms were found already in the first 1000 in vitro metaphases of some guides. Only 0.0003 dicentrics and neither other translocations were found in control group (ambiental exposure). The incidence of micronuclei in cytokinesis blocked lymphocytes ranged from 12-32 per 500 CB cells in the cave tour guides and from 4-11 per 500 CB cells in control group. Measurements of radon and its daughters were performed at different locations in the cave. Annual doses from 40-60 mSv were estimated per 2000 work hours for cave guides. The changes found in the genome of somatic cells may be related to the exposure doses of radon and its daughters, although smoking should not be ignored.

  19. Analysis of chromosome aberration data by hybrid-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Indrawati, Iwiq [Research and Development on Radiation and Nuclear Biomedical Center, National Nuclear Energy Agency (Indonesia); Kumazawa, Shigeru [Nuclear Technology and Education Center, Japan Atomic Energy Research Institute, Honkomagome, Tokyo (Japan)

    2000-02-01

    This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)

  20. Estimation of phase wave-front aberration distribution function using wavelet transform profilometry.

    Science.gov (United States)

    Rahbar, Kambiz; Faez, Karim; Attaran-Kakhki, Ebrahim

    2012-06-01

    Reduction of image quality under the effects of wavefront aberration of the optical system has a direct impact on the vision system's performance. This paper tries to estimate the amount of aberration with the use of wavelet transform profilometry. The basic idea is based on the principle that under aberration effects, the position of the fringes' image on the image plane will change, and this change correlates with the amount of aberration. So the distribution of aberration function can directly be extracted through measuring the amount of changes in the fringes' image on the image plane. Experimental results and the empirical validity of this idea are evaluated.

  1. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.

    2010-01-01

    Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic...... demonstrated using a complex insertion mutant library of TNF-alpha, from which different folding competent mutant proteins were uncovered....

  2. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2012-01-01

    maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins....

  3. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src@

    Directory of Open Access Journals (Sweden)

    Band Vimla

    2009-11-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR controls a wide range of cellular processes, and altered EGFR signaling contributes to human cancer. EGFR kinase domain mutants found in non-small cell lung cancer (NSCLC are constitutively active, a trait critical for cell transformation through activation of downstream pathways. Endocytic trafficking of EGFR is a major regulatory mechanism as ligand-induced lysosomal degradation results in termination of signaling. While numerous studies have examined mutant EGFR signaling, the endocytic traffic of mutant EGFR within the NSCLC milieu remains less clear. Results This study shows that mutant EGFRs in NSCLC cell lines are constitutively endocytosed as shown by their colocalization with the early/recycling endosomal marker transferrin and the late endosomal/lysosomal marker LAMP1. Notably, mutant EGFRs, but not the wild-type EGFR, show a perinuclear accumulation and colocalization with recycling endosomal markers such as Rab11 and EHD1 upon treatment of cells with endocytic recycling inhibitor monensin, suggesting that mutant EGFRs preferentially traffic through the endocytic recycling compartments. Importantly, monensin treatment enhanced the mutant EGFR association and colocalization with Src, indicating that aberrant transit through the endocytic recycling compartment promotes mutant EGFR-Src association. Conclusion The findings presented in this study show that mutant EGFRs undergo aberrant traffic into the endocytic recycling compartment which allows mutant EGFRs to engage in a preferential interaction with Src, a critical partner for EGFR-mediated oncogenesis.

  4. Correction of axial and lateral chromatic aberration with false color filtering.

    Science.gov (United States)

    Chang, Joonyoung; Kang, Hee; Kang, Moon Gi

    2013-03-01

    In this paper, we propose a chromatic aberration (CA) correction algorithm based on a false color filtering technique. In general, CA produces color distortions called color fringes near the contrasting edges of captured images, and these distortions cause false color artifacts. In the proposed method, a false color filtering technique is used to filter out the false color components from the chroma-signals of the input image. The filtering process is performed with the adaptive weights obtained from both the gradient and color differences, and the weights are designed to reduce the various types of color fringes regardless of the colors of the artifacts. Moreover, as preprocessors of the filtering process, a transient improvement (TI) technique is applied to enhance the slow transitions of the red and blue channels that are blurred by the CA. The TI process improves the filtering performance by narrowing the false color regions before the filtering process when severe color fringes (typically purple fringes) occur widely. Last, the CA-corrected chroma-signal is combined with the TI chroma-signal to avoid incorrect color adjustment. The experimental results show that the proposed method substantially reduces the CA artifacts and provides natural-looking replacement colors, while it avoids incorrect color adjustment.

  5. Disruption of Tgfbr2 in odontoblasts leads to aberrant pulp calcification.

    Science.gov (United States)

    Ahn, Y H; Kim, T H; Choi, H; Bae, C H; Yang, Y M; Baek, J A; Lee, J C; Cho, E S

    2015-06-01

    Transforming growth factor β (TGF-β) signaling has been implicated in dentin formation and repair; however, the molecular mechanisms underlying dentin formation remain unclear. To address the role of TGF-β signaling in dentin formation, we analyzed odontoblast-specific Tgfbr2 conditional knockout mice. The mutant mice had aberrant teeth with thin dysplastic dentin and pulpal obliteration, similar to teeth from human patients with dentinogenesis imperfecta type II and dentin dysplasia. In mutant, the odontoblasts lost their cellular polarity, and matrix secretion was disrupted after mantle dentin formation. As a consequence, the amount of predentin decreased significantly, and an ectopic fibrous matrix was formed below the odontoblast layer. This matrix gradually calcified and obliterated the pulp chamber with increasing age. Immunohistochemistry revealed decreased expression of alkaline phosphatase in mutant odontoblasts. In mutant dentin, Dsp expression was reduced, but Dmp1 expression increased significantly. Collagen type I, biglycan, and Dsp were expressed in the ectopic matrix. These results suggest that loss of responsiveness to TGF-β in odontoblasts results in impaired matrix formation and pulpal obliteration. Our study indicates that TGF-β signaling plays an important role in dentin formation and pulp protection. Furthermore, our findings may provide new insight into possible mechanisms underlying human hereditary dentin disorders and reparative dentin formation.

  6. Aberrant muscle syndrome: hypertrophy of the hand and arm due to aberrant muscles with or without hypertrophy of the muscles.

    Science.gov (United States)

    Ogino, Toshihiko; Satake, Hiroshi; Takahara, Masatoshi; Kikuchi, Noriaki; Watanabe, Tadayosi; Iba, Kousuke; Ishii, Seiichi

    2010-06-01

    Five patients were reported in our congenital anomaly registry who had six hands in total with muscular hyperplasia, aberrant muscles, ulnar drift of the fingers in the metacarpophalangeal (MP) joints, flexion contractures of the MP joints, and enlargement of the metacarpal spaces. Thirty patients with unilateral involvement of this condition have been reported previously. We reviewed these cases and found that the condition varied in severity and that it was reported using different names. However, this condition seems different from true macrodactyly and multiple camptodactyly, including windblown hand, and seems to be an isolated entity of congenital upper limb anomaly. The authors recommend 'aberrant muscle syndrome' or 'accessory muscle syndrome' as a diagnostic name, because this seems to be the most common pathological finding in this condition.

  7. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM) (Conference Presentation)

    Science.gov (United States)

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-03-01

    We present a method to acquire both fluorescence and high-resolution bright-field images with correction for the spatially varying aberrations over a microscope's wide field-of-view (FOV). First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff frequency of the microscope objective lens. At the same time, FPM algorithm is able to leverage on the redundancy within the set of acquired FPM bright-field images to estimate the microscope aberrations, which usually deteriorate in regions further away from the FOV's center. Second, the procedure acquires a raw wide-FOV fluorescence image within the same setup. Lack of moving parts allows us to use the FPM-estimated aberration map to computationally correct for the aberrations in the fluorescence image through deconvolution. Overlaying the aberration-corrected fluorescence image on top of the high-resolution bright-field image can be done with accurate spatial correspondence. This can provide means to identifying fluorescent regions of interest within the context of the sample's bright-field information. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of ~18.

  8. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System.

    Science.gov (United States)

    Gould, Sven B; Garg, Sriram G; Martin, William F

    2016-07-01

    Eukaryotes possess an elaborate endomembrane system with endoplasmic reticulum, nucleus, Golgi, lysosomes, peroxisomes, autophagosomes, and dynamic vesicle traffic. Theories addressing the evolutionary origin of eukaryotic endomembranes have overlooked the outer membrane vesicles (OMVs) that bacteria, archaea, and mitochondria secrete into their surroundings. We propose that the eukaryotic endomembrane system originated from bacterial OMVs released by the mitochondrial ancestor within the cytosol of its archaeal host at eukaryote origin. Confined within the host's cytosol, OMVs accumulated naturally, fusing either with each other or with the host's plasma membrane. This matched the host's archaeal secretory pathway for cotranslational protein insertion with outward bound mitochondrial-derived vesicles consisting of bacterial lipids, forging a primordial, secretory endoplasmic reticulum as the cornerstone of the eukaryotic endomembrane system. VIDEO ABSTRACT.

  9. Regulation of Interferon Gamma Signaling by Suppressors of Cytokine Signaling and Regulatory T Cells

    OpenAIRE

    2013-01-01

    Regulatory T cells (Tregs) play an indispensable role in the prevention of autoimmune disease, as interferon gamma (IFNγ) mediated, lethal auto-immunity occurs (in both mice and humans) in their absence. In addition, Tregs have been implicated in preventing the onset of autoimmune and auto-inflammatory conditions associated with aberrant IFNγ signaling such as type 1 diabetes, lupus, and lipopolysaccharide (LPS) mediated endotoxemia. Notably, suppressor of cytokine signaling-1 deficient (SOCS...

  10. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of subs...... the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways....

  11. Nitrogen fixation in eukaryotes – New models for symbiosis

    Directory of Open Access Journals (Sweden)

    Lockhart Peter

    2007-04-01

    Full Text Available Abstract Background Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. Results We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. Conclusion Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the

  12. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers.

    Science.gov (United States)

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies.

  13. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers.

    Directory of Open Access Journals (Sweden)

    Kenan Hadziavdic

    Full Text Available High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies.

  14. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation.

    Directory of Open Access Journals (Sweden)

    Gabriela Galicia-Vázquez

    Full Text Available Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.

  15. One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry.

    Science.gov (United States)

    Yu, Yeh-Wei; Xiao, Shuai; Cheng, Chih-Yuan; Sun, Ching-Cherng

    2016-05-16

    A simple method to decode the stored phase signal of volume holographic data storage with adequate wave aberration tolerance is highly demanded. We proposed and demonstrated a one-shot scheme to decode a binary-phase encoding signal through double-frequency-grating based shearing interferometry (DFGSI). The lateral shearing amount is dependent on the focal length of the collimated lens and the frequency difference between the gratings. Diffracted waves with phase encoding were successfully decoded through experimentation. An optical model for the DFGSI was built to analyze phase-error induction and phase-difference control by shifting the double-frequency grating longitudinally and laterally, respectively. The optical model was demonstrated experimentally. Finally, a high aberration tolerance of the DFGSI was demonstrated using the optical model.

  16. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity

    Directory of Open Access Journals (Sweden)

    Mitali Das

    2014-01-01

    Full Text Available As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

  17. Structural genomics of eukaryotic targets at a laboratory scale.

    Science.gov (United States)

    Busso, Didier; Poussin-Courmontagne, Pierre; Rosé, David; Ripp, Raymond; Litt, Alain; Thierry, Jean-Claude; Moras, Dino

    2005-01-01

    Structural genomics programs are distributed worldwide and funded by large institutions such as the NIH in United-States, the RIKEN in Japan or the European Commission through the SPINE network in Europe. Such initiatives, essentially managed by large consortia, led to technology and method developments at the different steps required to produce biological samples compatible with structural studies. Besides specific applications, method developments resulted mainly upon miniaturization and parallelization. The challenge that academic laboratories faces to pursue structural genomics programs is to produce, at a higher rate, protein samples. The Structural Biology and Genomics Department (IGBMC - Illkirch - France) is implicated in a structural genomics program of high eukaryotes whose goal is solving crystal structures of proteins and their complexes (including large complexes) related to human health and biotechnology. To achieve such a challenging goal, the Department has established a medium-throughput pipeline for producing protein samples suitable for structural biology studies. Here, we describe the setting up of our initiative from cloning to crystallization and we demonstrate that structural genomics may be manageable by academic laboratories by strategic investments in robotic and by adapting classical bench protocols and new developments, in particular in the field of protein expression, to parallelization.

  18. Rule-based design of synthetic transcription factors in eukaryotes.

    Science.gov (United States)

    Purcell, Oliver; Peccoud, Jean; Lu, Timothy K

    2014-10-17

    To design and build living systems, synthetic biologists have at their disposal an increasingly large library of naturally derived and synthetic parts. These parts must be combined together in particular orders, orientations, and spacings to achieve desired functionalities. These structural constraints can be viewed as grammatical rules describing how to assemble parts together into larger functional units. Here, we develop a grammar for the design of synthetic transcription factors (sTFs) in eukaryotic cells and implement it within GenoCAD, a Computer-Aided Design (CAD) software for synthetic biology. Knowledge derived from experimental evidence was captured in this grammar to guide the user to create designer transcription factors that should operate as intended. The grammar can be easily updated and refined as our experience with using sTFs in different contexts increases. In combination with grammars that define other synthetic systems, we anticipate that this work will enable the more reliable, efficient, and automated design of synthetic cells with rich functionalities.

  19. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity.

    Science.gov (United States)

    Das, Mitali; Singh, Sunita; Pradhan, Satyajit; Narayan, Gopeshwar

    2014-01-01

    As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2-7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the "MCM paradox." Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

  20. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  1. Chloroplast membrane transport: interplay of prokaryotic and eukaryotic traits.

    Science.gov (United States)

    Vothknecht, Ute C; Soll, Jürgen

    2005-07-18

    Chloroplasts are specific plant organelles of prokaryotic origin. They are separated from the surrounding cell by a double membrane, which represents an effective barrier for the transport of metabolites and proteins. Specific transporters in the inner envelope membrane have been described, which facilitate the exchange of metabolites. In contrast, the outer envelope has been viewed for a long time as a molecular sieve that offers a mere size constriction to the passage of molecules. This view has been challenged lately, and a number of specific and regulated pore proteins of the outer envelope (OEPs) have been identified. These pores seem to have originated by adaptation of outer membrane proteins of the cyanobacterial ancestor of the chloroplast. In a similar fashion, the transport of proteins across the two envelope membranes is achieved by two hetero-oligomeric protein complexes called Toc (translocon in the outer envelope of chloroplasts) and Tic (translocon in the inner envelope of chloroplasts). The phylogenetic provenance of the translocon components is less clear, but at least the channel protein of the Toc translocon is of cyanobacterial origin. Characteristic of cyanobacteria and chloroplasts is furthermore a specialized internal membrane system, the thylakoids, on which the components of the photosynthetic machinery are located. Despite the importance of this membrane, very little is known about its phylogenetic origin or the manner of its synthesis. Vipp1 appears to be a ubiquitous component of thylakoid formation, while in chloroplasts of land plants, additionally a vesicle transport system of eukaryotic origin might be involved in this process.

  2. A new inhibitor of apoptosis from vaccinia virus and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Caroline Gubser

    2007-02-01

    Full Text Available A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein. Stable expression of both viral GAAP (v-GAAP and human GAAP (h-GAAP, which is expressed in all human tissues tested, inhibited apoptosis induced by intrinsic and extrinsic apoptotic stimuli. Conversely, knockout of h-GAAP by siRNA induced cell death by apoptosis. v-GAAP and h-GAAP display overlapping functions as shown by the ability of v-GAAP to complement for the loss of h-GAAP. Lastly, deletion of the v-GAAP gene from vaccinia virus did not affect virus replication in cell culture, but affected virus virulence in a murine infection model. This study identifies a new regulator of cell death that is highly conserved in evolution from plants to insects, amphibians, mammals, and poxviruses.

  3. Characterization of Binding Sites of Eukaryotic Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    Jiang Qian; Jimmy Lin; Donald J. Zack

    2006-01-01

    To explore the nature of eukaryotic transcription factor (TF) binding sites and determine how they differ from surrounding DNA sequences, we examined four features associated with DNA binding sites: G+C content, pattern complexity,palindromic structure, and Markov sequence ordering. Our analysis of the regulatory motifs obtained from the TRANSFAC database, using yeast intergenic sequences as background, revealed that these four features show variable enrichment in motif sequences. For example, motif sequences were more likely to have palindromic structure than were background sequences. In addition, these features were tightly localized to the regulatory motifs, indicating that they are a property of the motif sequences themselves and are not shared by the general promoter "environment" in which the regulatory motifs reside. By breaking down the motif sequences according to the TF classes to which they bind, more specific associations were identified. Finally, we found that some correlations, such as G+C content enrichment, were species-specific, while others, such as complexity enrichment, were universal across the species examined. The quantitative analysis provided here should increase our understanding of protein-DNA interactions and also help facilitate the discovery of regulatory motifs through bioinformatics.

  4. Circular permutation of a synthetic eukaryotic chromosome with the telomerator

    Science.gov (United States)

    Mitchell, Leslie A.; Boeke, Jef D.

    2014-01-01

    Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the “telomerator,” a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes. PMID:25378705

  5. A general strategy to construct small molecule biosensors in eukaryotes

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-01-01

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.10606.001 PMID:26714111

  6. Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes.

    Science.gov (United States)

    Gao, Huan; Cai, Shengli; Yan, Binlun; Chen, Baiyao; Yu, Fei

    2009-01-01

    To address whether there are differences of variation among repeat motif types and among taxonomic groups, we present here an analysis of variation and correlation of dinucleotide microsatellite repeats in eukaryotic genomes. Ten taxonomic groups were compared, those being primates, mammalia (excluding primates and rodentia), rodentia, birds, fish, amphibians and reptiles, insects, molluscs, plants and fungi, respectively. The data used in the analysis is from the literature published in the Journal of Molecular Ecology Notes. Analysis of variation reveals that there are no significant differences between AC and AG repeat motif types. Moreover, the number of alleles correlates positively with the copy number in both AG and AC repeats. Similar conclusions can be obtained from each taxonomic group. These results strongly suggest that the increase of SSR variation is almost linear with the increase of the copy number of each repeat motif. As well, the results suggest that the variability of SSR in the genomes of low-ranking species seem to be more than that of high-ranking species, excluding primates and fungi.

  7. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David;

    2007-01-01

    Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor...

  8. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    Full Text Available Abstract Background In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP and sedoheptulose-1, 7-bisphosphate (SBP are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase, while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase and sedoheptulose-1, 7-bisphosphatase (SBPase, respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Results Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II. Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. Conclusions There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins

  9. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  10. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative

  11. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease

    DEFF Research Database (Denmark)

    Riise, Jesper; Plath, Niels; Pakkenberg, Bente

    2015-01-01

    Cognitive decline is a cardinal feature of Alzheimer’s disease (AD) predominantly linked to synaptic failure, disrupted network connectivity and neurodegeneration. A large body of evidence associates the Wnt pathway with synaptic modulation and cognitive processes, suggesting a potential role...

  12. LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling

    NARCIS (Netherlands)

    J. Chang (Jufang); M.M. Nicolau (Monica); T.R. Cox (Thomas); D. Wetterskog (Daniel); J.W.M. Martens (John); H. E Barker (Holly); J.T. Erler (Janine)

    2013-01-01

    textabstractIntroduction: Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expr

  13. New vessel formation and aberrant VEGF/VEGFR signaling in acute leukemia : Does it matter?

    NARCIS (Netherlands)

    De Bont, ESJM; Neefjes, VME; Rosati, S; Vellenga, E; Kamps, WA

    2002-01-01

    Although many patients with acute leukemia achieve a hematological complete remission with aggressive intensive therapy protocols, a large proportion shows reoccurrence of disease. Novel strategies are warranted. In acute leukemia new vessel formation is observed. New vessel formation is the result

  14. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism

    DEFF Research Database (Denmark)

    Södersten, Erik; Feyder, Michael; Lerdrup, Mads

    2014-01-01

    Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. ...... and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease....

  15. Computational identification of four spliceosomal snRNAs from the deep-branching eukaryote Giardia intestinalis.

    Directory of Open Access Journals (Sweden)

    Xiaowei Sylvia Chen

    Full Text Available RNAs processing other RNAs is very general in eukaryotes, but is not clear to what extent it is ancestral to eukaryotes. Here we focus on pre-mRNA splicing, one of the most important RNA-processing mechanisms in eukaryotes. In most eukaryotes splicing is predominantly catalysed by the major spliceosome complex, which consists of five uridine-rich small nuclear RNAs (U-snRNAs and over 200 proteins in humans. Three major spliceosomal introns have been found experimentally in Giardia; one Giardia U-snRNA (U5 and a number of spliceosomal proteins have also been identified. However, because of the low sequence similarity between the Giardia ncRNAs and those of other eukaryotes, the other U-snRNAs of Giardia had not been found. Using two computational methods, candidates for Giardia U1, U2, U4 and U6 snRNAs were identified in this study and shown by RT-PCR to be expressed. We found that identifying a U2 candidate helped identify U6 and U4 based on interactions between them. Secondary structural modelling of the Giardia U-snRNA candidates revealed typical features of eukaryotic U-snRNAs. We demonstrate a successful approach to combine computational and experimental methods to identify expected ncRNAs in a highly divergent protist genome. Our findings reinforce the conclusion that spliceosomal small-nuclear RNAs existed in the last common ancestor of eukaryotes.

  16. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.

    Science.gov (United States)

    Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J

    2016-09-01

    Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function.

  17. Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers

    Indian Academy of Sciences (India)

    Prashant K Pandey; Jay Siddharth; Pankaj Verma; Ashish Bavdekar; Milind S Patole; Yogesh S Shouche

    2012-06-01

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any micro-eukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.

  18. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2010-06-23

    I discuss eukaryotic deep phylogeny and reclassify the basal eukaryotic kingdom Protozoa and derived kingdom Chromista in the light of multigene trees. I transfer the formerly protozoan Heliozoa and infrakingdoms Alveolata and Rhizaria into Chromista, which is sister to kingdom Plantae and arguably originated by synergistic double internal enslavement of green algal and red algal cells. I establish new subkingdoms (Harosa; Hacrobia) for the expanded Chromista. The protozoan phylum Euglenozoa differs immensely from other eukaryotes in its nuclear genome organization (trans-spliced multicistronic transcripts), mitochondrial DNA organization, cytochrome c-type biogenesis, cell structure and arguably primitive mitochondrial protein-import and nuclear DNA prereplication machineries. The bacteria-like absence of mitochondrial outer-membrane channel Tom40 and DNA replication origin-recognition complexes from trypanosomatid Euglenozoa roots the eukaryotic tree between Euglenozoa and all other eukaryotes (neokaryotes), or within Euglenozoa. Given their unique properties, I segregate Euglenozoa from infrakingdom Excavata (now comprising only phyla Percolozoa, Loukozoa, Metamonada), grouping infrakingdoms Euglenozoa and Excavata as the ancestral protozoan subkingdom Eozoa. I place phylum Apusozoa within the derived protozoan subkingdom Sarcomastigota. Clarifying early eukaryote evolution requires intensive study of properties distinguishing Euglenozoa from neokaryotes and Eozoa from neozoa (eukaryotes except Eozoa; ancestrally defined by haem lyase).

  19. Eu-Detect: An algorithm for detecting eukaryotic sequences in metagenomic data sets

    Indian Academy of Sciences (India)

    Monzoorul Haque Mohammed; Sudha Chadaram Dinakar; Dinakar Komanduri; Tarini Shankar Ghosh; Sharmila S Mande

    2011-09-01

    Physical partitioning techniques are routinely employed (during sample preparation stage) for segregating the prokaryotic and eukaryotic fractions of metagenomic samples. In spite of these efforts, several metagenomic studies focusing on bacterial and archaeal populations have reported the presence of contaminating eukaryotic sequences inmetagenomic data sets. Contaminating sequences originate not only from genomes of micro-eukaryotic species but also from genomes of (higher) eukaryotic host cells. The latter scenario usually occurs in the case of host-associatedmetagenomes. Identification and removal of contaminating sequences is important, since these sequences not only impact estimates of microbial diversity but also affect the accuracy of several downstream analyses. Currently, the computational techniques used for identifying contaminating eukaryotic sequences, being alignment based, are slow, inefficient, and require huge computing resources. In this article, we present Eu-Detect, an alignment-free algorithm that can rapidly identify eukaryotic sequences contaminating metagenomic data sets. Validation results indicate that on a desktop with modest hardware specifications, the Eu-Detect algorithm is able to rapidly segregate DNA sequence fragments of prokaryotic and eukaryotic origin, with high sensitivity. A Web server for the Eu-Detect algorithm is available at http://metagenomics.atc.tcs.com/Eu-Detect/.

  20. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hao-Xin; XU Bing; XUE Li-Xia; DAI Yun; LIU Qian; RAO Xue-Jun

    2008-01-01

    @@ Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We caJculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are diffcult to accomplish in practice, and gives confdence to correct high-order aberrations out of the laboratory.

  1. Anterior corneal and internal contributions to peripheral aberrations of human eyes

    Science.gov (United States)

    Atchison, David A.

    2004-03-01

    Anterior corneal and internal component contributions to overall peripheral aberrations of five human eyes were determined, based on corneal topography and overall aberration measurements. Anterior corneal position and orientation (tilt) were referenced to the line of sight. Ray tracing was performed through the anterior cornea for 6-mm-diameter pupils at angles out to 40° in both the temporal and the nasal visual fields. In general, both component and overall Zernike aberrations were greater for the nasal than for the temporal visual field. In general, the anterior corneal aberration components were considerably higher than the overall aberrations across the visual field and were balanced to a considerable degree by the internal ocular aberration components. The component and overall levels of Zernike third-order aberrations showed linear trends away from the fixation axis, and the component levels of Zernike fourth-order aberrations showed quadratic trends away from the fixation axis. The second-order, but not higher-order, aberration components were susceptible to the choice of image radius of curvature, while disregarding corneal position and orientation affected second- and higher-order aberration components.

  2. Aberrant promoter hypermethylation in serum DNA from patients with silicosis.

    Science.gov (United States)

    Umemura, Shigeki; Fujimoto, Nobukazu; Hiraki, Akio; Gemba, Kenichi; Takigawa, Nagio; Fujiwara, Keiichi; Fujii, Masanori; Umemura, Hiroshi; Satoh, Mamoru; Tabata, Masahiro; Ueoka, Hiroshi; Kiura, Katsuyuki; Kishimoto, Takumi; Tanimoto, Mitsune

    2008-09-01

    It is well established that patients with silicosis are at high risk for lung cancer; however, it is difficult to detect lung cancer by chest radiography during follow-up treatment of patients with silicosis because of preexisting diffuse pulmonary shadows. The purpose of this study is to evaluate the usefulness of detection of serum DNA methylation for early detection of lung cancer in silicosis. Serum samples from healthy controls (n = 20) and silicosis patients with (n = 11) and without (n = 67) lung cancer were tested for aberrant hypermethylation at the promoters of the DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT), p16(INK4a), ras association domain family 1A (RASSF1A), the apoptosis-related gene death-associated protein kinase (DAPK) and retinoic acid receptor beta (RARbeta) by methylation-specific polymerase chain reaction. Aberrant promoter methylation in at least one of five tumor suppressor genes was detected more frequently in the serum DNA of silicosis patients with lung cancer than in that of patients without it (P = 0.006). Furthermore, the odds ratio of having lung cancer was 9.77 (P = 0.009) for those silicosis patients with methylation of at least one gene. Extended exposure to silica (>30 years) was correlated with an increased methylation frequency (P = 0.017); however, methylation status did not correlate with age, smoking history or radiographic findings of silicosis. These results suggest that testing for aberrant promoter methylation of tumor suppressor genes using serum DNA may facilitate early detection of lung cancer in patients with silicosis.

  3. Chromosomal aberrations in ovine lymphocytes exposed in vitro to tolylfluanid.

    Science.gov (United States)

    Sutiaková, Irena; Kovalkovičová, Natália; Sutiak, Václav

    2012-01-01

    Chromosomal aberrations have been used as important cytogenetic biomarkers to study the mutagenic effects of different chemicals in vivo and in vitro. Chromosomal aberrations were evaluated in cultures of sheep lymphocytes in vitro exposed to the fungicide tolylfluanid. Lymphocyte cultures from three donors were exposed to four different concentrations of fungicide (1.10(-4) M(.)L; 1.10(-5) M(.)L; 1.10(-6) M(.)L; 1 × 10(-7) M(.)L). Chromosomal analysis showed a significant (P = 0.018 and 0.038 respectively, Anova test, P Tukey test) increase in the frequency of aberrant cells (ABC) in cultures treated with the highest negative experimental concentrations of tolylfluanid (1.10(-4) M(.)L; 1.10(-5) M(.)L) compared to control. Significantly increased numbers of chromatid breaks (7.67 ± 0.58% against 1.67 ± 2.08%, P = 0.009, Anova test, P Tukey test) and chromatid gaps (7.67 ± 1.15% against 2.67 ± 0.58%, P = 0.003, Anova test, P Tukey test) were observed in ovine cultures treated with the highest experimental concentration of tolylfluanid (1.10(-4) M(.)L). Tolylfluanid induced also chromosomal exchanges (P = 0.038, and 0.016 respectively, Anova test, P Tukey test) in ovine cultures treated with the highest experimental concentrations of tolylfluanid (1.10(-4) M(.)L; 1.10(-5) M(.)L). The mitotic index has not shown any statistical differences between the various treatments and control groups. Our results suggest a significant genotoxic effect of tolylfluanid only at the highest concentration in sheep peripheral lymphocytes in vitro.

  4. Coherence and aberration effects in surface plasmon polariton imaging

    Science.gov (United States)

    Berthel, Martin; Jiang, Quanbo; Chartrand, Camille; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien

    2015-09-01

    We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a rigorous modal formalism based on scalar Whittaker potentials, we develop a systematic analytical and vectorial method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes geometrical aberrations due index mismatch which played an important role in the interpretation of recent experiments using leakage radiation microscopy. We compare our theory with experiments using classical or quantum near-field scanning optical microscopy probes and show that the approach leads to a full interpretation of the recorded optical images.

  5. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  6. Propagation of aberrated wavefronts using a ray transfer matrix.

    Science.gov (United States)

    Raasch, Thomas W

    2014-05-01

    A ray transfer matrix is used to calculate the propagation of aberrated wavefronts across a homogeneous refractive index. The wavefront is represented by local surface normals, i.e., by a ray bundle, and the propagation is accomplished by transferring those rays across the space. Wavefront shape is generated from the slopes and positions of the collection of rays. Calculation methods are developed for the paraxial case, for higher-order expansions, and for the exact tangent case. A numerical example is used to compare results between an analytical method and the methods developed here.

  7. Genomic aberrations in lung adenocarcinoma in never smokers.

    Directory of Open Access Journals (Sweden)

    Bastien Job

    Full Text Available BACKGROUND: Lung cancer in never smokers would rank as the seventh most common cause of cancer death worldwide. METHODS AND FINDINGS: We performed high-resolution array comparative genomic hybridization analysis of lung adenocarcinoma in sixty never smokers and identified fourteen new minimal common regions (MCR of gain or loss, of which five contained a single gene (MOCS2, NSUN3, KHDRBS2, SNTG1 and ST18. One larger MCR of gain contained NSD1. One focal amplification and nine gains contained FUS. NSD1 and FUS are oncogenes hitherto not known to be associated with lung cancer. FISH showed that the amplicon containing FUS was joined to the next telomeric amplicon at 16p11.2. FUS was over-expressed in 10 tumors with gain of 16p11.2 compared to 30 tumors without that gain. Other cancer genes present in aberrations included ARNT, BCL9, CDK4, CDKN2B, EGFR, ERBB2, MDM2, MDM4, MET, MYC and KRAS. Unsupervised hierarchical clustering with adjustment for false-discovery rate revealed clusters differing by the level and pattern of aberrations and displaying particular tumor characteristics. One cluster was strongly associated with gain of MYC. Another cluster was characterized by extensive losses containing tumor suppressor genes of which RB1 and WRN. Tumors in that cluster frequently harbored a central scar-like fibrosis. A third cluster was associated with gains on 7p and 7q, containing ETV1 and BRAF, and displayed the highest rate of EGFR mutations. SNP array analysis validated copy-number aberrations and revealed that RB1 and WRN were altered by recurrent copy-neutral loss of heterozygosity. CONCLUSIONS: The present study has uncovered new aberrations containing cancer genes. The oncogene FUS is a candidate gene in the 16p region that is frequently gained in never smokers. Multiple genetic pathways defined by gains of MYC, deletions of RB1 and WRN or gains on 7p and 7q are involved in lung adenocarcinoma in never smokers.

  8. Removing lateral chromatic aberration in bright field optical microscopy.

    Science.gov (United States)

    Guzmán-Altamirano, Miguel; Gutiérrez-Medina, Braulio

    2015-06-01

    We present an efficient alternative to remove lateral chromatic aberration (LCA) in bright field light microscopy images. Our procedure is based on error calibration using time-sequential acquisition at different wavelengths, and error correction through digital image warping. Measurement of the displacements of fiducial marks in the red and green images relative to blue provide calibration factors that are subsequently used in test images to realign color channels digitally. We demonstrate quantitative improvement in the position and boundaries of objects in target slides and in the color content and morphology of specimens in stained biological samples. Our results show a reduction of LCA content below the 0.1% level.

  9. Miniaturized modules for light sheet microscopy with low chromatic aberration.

    Science.gov (United States)

    Bruns, T; Bauer, M; Bruns, S; Meyer, H; Kubin, D; Schneckenburger, H

    2016-12-01

    Two miniaturized fibre-coupled modules for light sheet-based microscopy are described and compared with respect to image quality, chromatic aberration and beam alignment. Whereas in one module the light sheet is created by an achromatic cylindrical lens, reflection by a spherical mirror and concomitant astigmatic distortion are used to create the light sheet in the second module. Test experiments with fluorescent dyes in solution and multicellular tumour spheroids are reported, and some details on construction are given for both systems. Both modules are optimized for imaging individual cell layers of 3D biological samples and can be adapted to fit commercial microscopes.

  10. Coherence and aberration effects in surface plasmon polariton imaging

    CERN Document Server

    Berthel, Martin; Chartrand, Camille; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien

    2016-01-01

    We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a rigorous modal formalism based on scalar Whittaker potentials we develop a systematic analytical and vectorial method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes geometrical aberrations due index mismatch which played an important role in the interpretation of recent experiments using leakage radiation microscopy. We compare our theory with experiments using classical or quantum near-field scanning optical microscopy probes and show that the approach leads to a full interpretation of the recorded optical images.

  11. Adaptive dispersion formula for index interpolation and chromatic aberration correction.

    Science.gov (United States)

    Li, Chia-Ling; Sasián, José

    2014-01-13

    This paper defines and discusses a glass dispersion formula that is adaptive. The formula exhibits superior convergence with a minimum number of coefficients. Using this formula we rationalize the correction of chromatic aberration per spectrum order. We compare the formula with the Sellmeier and Buchdahl formulas for glasses in the Schott catalogue. The six coefficient adaptive formula is found to be the most accurate with an average maximum index of refraction error of 2.91 × 10(-6) within the visible band.

  12. Generic Misalignment Aberration Patterns and the Subspace of Benign Misalignment

    CERN Document Server

    Schechter, Paul L

    2012-01-01

    Q1: Why deploy N wavefront sensors on a three mirror anastigmat (TMA) and not N + 1? Q2: Why measure M Zernike coefficients and not M + 1? Q3: Why control L rigid body degrees of freedom (total) on the secondary and tertiary and not L + 1? The usual answer: "We did a lot of ray tracing and N,M, and L seemed OK." We show how straightforward results from aberration theory may be used to address these questions. We consider, in particular, the case of a three mirror anastigmat.

  13. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  14. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry.

    Science.gov (United States)

    Mentel, Marek; Martin, William

    2008-08-27

    Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages.

  15. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus

    Science.gov (United States)

    He, Wenjun; Fu, Yuegang; Liu, Zhiying; Zhang, Lei; Wang, Jiake; Zheng, Yang; Li, Yahong

    2017-03-01

    The polarization aberrations of a complex optical system with multi-element lens have been investigated using a 3D polarization aberration function. The 3D polarization ray-tracing matrix has been combined with the optical path difference to obtain a 3D polarization aberration function, which avoids the need for a complicated phase unwrapping process. The polarization aberrations of a microscope objective have been analyzed to include, the distributions of 3D polarization aberration functions, diattenuation aberration, retardance aberration, and polarization-dependent intensity on the exit pupil. Further, the aberrations created by the field of view and the coating on the distribution rules of 3D polarization aberration functions are discussed in detail. Finally a novel appropriate field of view and wavelength correction is proposed for a polarization aberration function which optimizes the image quality of a multi-element optical system.

  16. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps

    DEFF Research Database (Denmark)

    Møller, Annette; Asp, Torben; Holm, Preben Bach

    2008-01-01

    Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps...... exclusive for the secretory pathway of eukaryotes by combining the identification of lineage-specific genes with phylogenetic evolution of common genes. Sequences of P5 ATPases, which are regarded to be cation pumps in the endoplasmic reticulum (ER), were identified in all eukaryotic lineages but not in any...

  17. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Directory of Open Access Journals (Sweden)

    Aravind L

    2010-01-01

    Full Text Available Abstract Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA. We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1 the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58, which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber

  18. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Science.gov (United States)

    2010-01-01

    Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber PMID:20056006

  19. Cryptic sex in the smallest eukaryotic marine green alga.

    Science.gov (United States)

    Grimsley, Nigel; Péquin, Bérangère; Bachy, Charles; Moreau, Hervé; Piganeau, Gwenaël

    2010-01-01

    Ostreococcus spp. are common worldwide oceanic picoeukaryotic pelagic algae. The complete genomes of three strains from different ecological niches revealed them to represent biologically distinct species despite their identical cellular morphologies (cryptic species). Their tiny genomes (13 Mb), with approximately 20 chromosomes, are colinear and densely packed with coding sequences, but no sexual life cycle has been described. Seventeen new strains of one of these species, Ostreococcus tauri, were isolated from 98 seawater samplings from the NW Mediterranean by filtering, culturing, cloning, and plating for single colonies and identification by sequencing their ribosomal 18S gene. In order to find the genetic markers for detection of polymorphisms and sexual recombination, we used an in silico approach to screen available genomic data. Intergenic regions of DNA likely to evolve neutrally were analyzed following polymerase chain reaction amplification of sequences using flanking primers from adjacent conserved coding sequences that were present as syntenic pairs in two different species of Ostreococcus. Analyses of such DNA regions from eight marker loci on two chromosomes from each strain revealed that the isolated O. tauri clones were haploid and that the overall level of polymorphism was approximately 0.01. Four different genetic tests for recombination showed that sexual exchanges must be inferred to account for the between-locus and between-chromosome marker combinations observed. However, our data suggest that sexual encounters are infrequent because we estimate the frequency of meioses/mitoses among the sampled strains to be 10(-6). Ostreococcus tauri and related species encode and express core genes for mitosis and meiosis, but their mechanisms of cell division and recombination, nevertheless, remain enigmatic because a classical eukaryotic spindle with 40 canonical microtubules would be much too large for the available approximately 0.9-microm(3) cellular

  20. Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major.

    Science.gov (United States)

    Lye, Lon-Fye; Kang, Song Ok; Nosanchuk, Joshua D; Casadevall, Arturo; Beverley, Stephen M

    2011-01-01

    Aromatic amino acid hydroxylases (AAAH) typically use tetrahydrobiopterin (H(4)B) as the cofactor. The protozoan parasite Leishmania major requires biopterin for growth and expresses strong salvage and regeneration systems to maintain H(4)B levels. Here we explored the consequences of genetic manipulation of the sole L. major phenylalanine hydroxylase (PAH) to explore whether it could account for the Leishmania H(4)B requirement. L. major PAH resembles AAAHs of other organisms, bearing eukaryotic-type domain organization, and conservation of key catalytic residues including those implicated in pteridine binding. A pah(-) null mutant and an episomal complemented overexpressing derivative (pah-/+PAH) were readily obtained, and metabolic labeling studies established that PAH was required to hydroxylate Phe to Tyr. Neither WT nor overexpressing lines were able to hydroxylate radiolabeled tyrosine or tryptophan, nor to synthesize catecholamines. WT but not pah(-) parasites showed reactivity with an antibody to melanin when grown with l-3,4-dihydroxyphenylalanine (L-DOPA), although the reactive product is unlikely to be melanin sensu strictu. WT was auxotrophic for Phe, Trp and Tyr, suggesting that PAH activity was insufficient to meet normal Tyr requirements. However, pah(-) showed an increased sensitivity to Tyr deprivation, while the pah(-)/+PAH overexpressor showed increased survival and could be adapted to grow well without added Tyr. pah(-) showed no alterations in H(4)B-dependent differentiation, as established by in vitro metacyclogenesis, or survival in mouse or macrophage infections. Thus Leishmania PAH may mitigate but not alleviate Tyr auxotrophy, but plays no essential role in the steps of the parasite infectious cycle. These findings suggest PAH is unlikely to explain the Leishmania requirement for biopterin.