WorldWideScience

Sample records for abdominal muscle stretching

  1. Effects of diaphragm stretching on posterior chain muscle kinematics and rib cage and abdominal excursion: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Francisco J. González-Álvarez

    2016-01-01

    Full Text Available ABSTRACT Background Few studies have explored the effects of stretching techniques on diaphragm and spine kinematics. Objective To determine whether the application of diaphragm stretching resulted in changes in posterior chain muscle kinematics and ribcage and abdominal excursion in healthy subjects. Method Eighty healthy adults were included in this randomized clinical trial. Participants were randomized into two groups: the experimental group, which received a diaphragmatic stretching technique, or the placebo group, which received a sham-ultrasound procedure. The duration of the technique, the position of participants, and the therapist who applied the technique were the same for both treatments. Participant assessment (cervical range of movement, lumbar flexibility, flexibility of the posterior chain, and rib cage and abdominal excursion was performed at baseline and immediately after the intervention by a blinded assessor. Results The mean between-group difference [95% CI] for the ribcage excursion after technique at xiphoid level was 2.48 [0.97 to 3.99], which shows significant differences in this outcome. The remaining between-group analysis showed significant differences in cervical extension, right and left flexion, flexibility of the posterior chain, and ribcage excursion at xiphoid level (p<0.05 in favor of the experimental group. Conclusion Diaphragm stretching generates a significant improvement in cervical extension, right and left cervical flexion, flexibility of the posterior chain, and ribcage excursion at xiphoid level compared to a placebo technique in healthy adults.

  2. Acute Muscle Stretching and Shoulder Position Sense

    OpenAIRE

    Björklund, Martin; Djupsjöbacka, Mats; Crenshaw, Albert G

    2006-01-01

    Context: Stretching is common among athletes as a potential method for injury prevention. Stretching-induced changes in the muscle spindle properties are a suggested mechanism, which may imply reduced proprioception after stretching; however, little is known of this association.

  3. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  4. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  5. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  6. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    Science.gov (United States)

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  7. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  8. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    Science.gov (United States)

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation. PMID:22319684

  9. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    OpenAIRE

    Page, Phil

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation.

  10. Effects of stretching the scalene muscles on slow vital capacity.

    Science.gov (United States)

    Lee, Juncheol; Hwang, Sehee; Han, Seungim; Han, Dongwook

    2016-06-01

    [Purpose] The purpose of this study was to examine whether stretching of the scalene muscles would improve slow vital capacity (SVC). [Subjects and Methods] The subjects of this study were 20 healthy female students to whom the study's methods and purpose were explained and their agreement for participation was obtained. The SVC was measured using spirometry (Pony FX, COSMED Inc., Italy). The intervention used was stretching of the scalene muscles. Stretching was carried out for 15 min, 10 times at per each portion of scalene muscles: the anterior, middle, and posterior parts. [Results] Expiratory vital capacity (EVC) and tidal volume (Vt) noticeably increased after stretching. However, there were no changes in any of the SVC items in the control group. [Conclusion] This study demonstrated that stretching of the scalene muscles can effectively improve SVC. In particular, we confirmed that stretching of the scalene muscles was effective in increasing EVC and Vt, which are items of SVC.

  11. Does Postexercise Static Stretching Alleviate Delayed Muscle Soreness?

    Science.gov (United States)

    Buroker, Katherine C.; Schwane, James A.

    1989-01-01

    Because many experts recommend stretching after exercise to relieve muscle soreness, 23 subjects performed a 30-minute step test to induce delayed muscle soreness. There was neither temporary relief of pain immediately after stretching nor a reduction in pain during the 3-day postexercise period. (Author/SM)

  12. Effects on hamstring muscle extensibility, muscle activity, and balance of different stretching techniques.

    Science.gov (United States)

    Lim, Kyoung-Il; Nam, Hyung-Chun; Jung, Kyoung-Sim

    2014-02-01

    [Purpose] The purpose of this study was to investigate the effects of two different stretching techniques on range of motion (ROM), muscle activation, and balance. [Subjects] For the present study, 48 adults with hamstring muscle tightness were recruited and randomly divided into three groups: a static stretching group (n=16), a PNF stretching group (n=16), a control group (n=16). [Methods] Both of the stretching techniques were applied to the hamstring once. Active knee extension angle, muscle activation during maximum voluntary isometric contraction (MVC), and static balance were measured before and after the application of each stretching technique. [Results] Both the static stretching and the PNF stretching groups showed significant increases in knee extension angle compared to the control group. However, there were no significant differences in muscle activation or balance between the groups. [Conclusion] Static stretching and PNF stretching techniques improved ROM without decrease in muscle activation, but neither of them exerted statistically significant effects on balance.

  13. EFFECT OF STATIC STRETCHING ON STRENGTH OF HAMSTRING MUSCLE

    Directory of Open Access Journals (Sweden)

    Shweta P Pachpute

    2016-04-01

    Full Text Available Background: Flexibility is an indisputable component of fitness defined as the ability to move a single joint or series of joints through an unrestricted pain free range of motion. Static stretching consists of stretching a muscle or group of muscle to its farthest point and then maintaining or holding that position. The literature supports that muscles are capable of exerting their greatest strength when they are fully lengthen. Hence this study was conducted to find the effect of static stretching on hamstring muscle. Methods: The study was experimental study design. 40 samples were selected by purposive sampling method. Flexibility of the hamstring muscle unilaterally right side (arbitrarily chosen was measured by active knee extension test of all the subjects who met the inclusion criteria of the study. After measuring the flexibility of hamstring muscle, strength was measured by 1RM for the same side (right hamstring muscle. Static Stretching Protocol was given for 5 days per week for 6 weeks to all the participants. After the 6 weeks of training, knee extension deficiency and 1RM was documented. Result: Statistical analysis using Paired t-test was done. The t-test showed that there was significant effect of static stretching on 1RM of hamstring muscle (p<0.05 & active knee extension test (p=0.000. Conclusion: Static stretching showed significant change in pre and post 1RM of hamstring muscle and active knee extension test. There was significant improvement of hamstring muscles flexibility and strength after giving static stretching in female population. So it is possible that females who are unable to participate in traditional strength training activities may be able to experience gains through static stretching.

  14. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Science.gov (United States)

    Sloot, Lizeth H; van den Noort, Josien C; van der Krogt, Marjolein M; Bruijn, Sjoerd M; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  15. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  16. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    NARCIS (Netherlands)

    Gouw, S.; Wijer, A. de; Creugers, N.H.J.; Kalaykova, S.I.

    2017-01-01

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism.

  17. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  18. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.

    Science.gov (United States)

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-02-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.

  19. Reliability of Eelectromyography of Abdominal Muscles During Abdominal Manoeuvre with and without Pelvic Floor Muscle Contraction

    OpenAIRE

    Motahareh Hashem-Boroujerdi; Amir Masoud A'rab; Nouroddin Karimi; Nahid Tahan

    2012-01-01

    Objective: The purpose of this study was to determine the reliability of electromyography measurements of abdominal muscles activity during different manoeuvres (pelvic floor muscle (PFM) contraction, abdominal hollowing and abdominal bracing with and without PFM contraction) in subjects with and without chronic low back pain (LBP). Materials & Methods: In this methodology research 21 subjects (9 with LBP, 12 without LBP) who were selected simply & conveniently participated in the study. ...

  20. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females

    DEFF Research Database (Denmark)

    Caserotti, Paolo; Aagaard, Per; Simonsen, Erik Bruun

    2001-01-01

    Aging, muscle power, stretch-shortening cycle, eccentric muscle actions, concentric contractions......Aging, muscle power, stretch-shortening cycle, eccentric muscle actions, concentric contractions...

  1. Comparison of two stretching methods and optimization of stretching protocol for the piriformis muscle.

    Science.gov (United States)

    Gulledge, Brett M; Marcellin-Little, Denis J; Levine, David; Tillman, Larry; Harrysson, Ola L A; Osborne, Jason A; Baxter, Blaise

    2014-02-01

    Piriformis syndrome is an uncommon diagnosis for a non-discogenic form of sciatica whose treatment has traditionally focused on stretching the piriformis muscle (PiM). Conventional stretches include hip flexion, adduction, and external rotation. Using three-dimensional modeling, we quantified the amount of (PiM) elongation resulting from two conventional stretches and we investigated by use of a computational model alternate stretching protocols that would optimize PiM stretching. Seven subjects underwent three CT scans: one supine, one with hip flexion, adduction, then external rotation (ADD stretch), and one with hip flexion, external rotation, then adduction (ExR stretch). Three-dimensional bone models were constructed from the CT scans. PiM elongation during these stretches, femoral neck inclination, femoral head anteversion, and trochanteric anteversion were measured. A computer program was developed to map PiM length over a range of hip joint positions and was validated against the measured scans. ExR and ADD stretches elongated the PiM similarly by approximately 12%. Femoral head and greater trochanter anteversion influenced PiM elongation. Placing the hip joints in 115° of hip flexion, 40° of external rotation and 25° of adduction or 120° of hip flexion, 50° of external rotation and 30° of adduction increased PiM elongation by 30-40% compared to conventional stretches (15.1 and 15.3% increases in PiM muscle length, respectively). ExR and ADD stretches elongate the PiM similarly and therefore may have similar clinical effectiveness. The optimized stretches led to larger increases in PiM length and may be more easily performed by some patients due to increased hip flexion. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Relative Activity of Abdominal Muscles during Commonly Prescribed Strengthening Exercises.

    Science.gov (United States)

    Willett, Gilbert M.; Hyde, Jennifer E.; Uhrlaub, Michael B.; Wendel, Cara L.; Karst, Gregory M.

    2001-01-01

    Examined the relative electromyographic (EMG) activity of upper and lower rectus abdominis (LRA) and external oblique (EOA) muscles during five abdominal strengthening exercises. Isometric and dynamic EMG data indicated that abdominal strengthening exercises activated various abdominal muscle groups. For the LRA and EOA muscle groups, there were…

  4. [Effect of a muscle stretching program using the Global Postural Reeducation method on respiratory muscle strength and thoracoabdominal mobility of sedentary young males].

    Science.gov (United States)

    Moreno, Marlene Aparecida; Catai, Aparecida Maria; Teodori, Rosana Macher; Borges, Bruno Luis Amoroso; Cesar, Marcelo de Castro; Silva, Ester da

    2007-01-01

    To evaluate the effect that respiratory muscle stretching using the global postural reeducation (GPR) method has on respiratory muscle strength, thoracic expansion and abdominal mobility in sedentary young males. This was a randomized study involving 20 sedentary volunteers, aged 22.7 +/- 2.5 years, divided into two groups of 10: a control group, composed of subjects not performing any exercises, and a group of subjects submitted to the GPR method. The protocol consisted of a program to stretch the respiratory muscles with participants in the 'open-arm, open hip joint angle' position, which was regularly performed twice a week for 8 weeks, totaling 16 sessions. The two groups were submitted to measurements of maximal inspiratory pressure, maximal expiratory pressure, thoracic expansion and abdominal mobility, prior to and after the intervention period. The initial and final values for maximal respiratory pressures, thoracic expansion and abdominal mobility for the control group showed no significant differences (p > 0.05). However, for the GPR group, all values increased after the intervention (p < 0.05). Respiratory muscle stretching using the GPR method was efficient in promoting an increase in maximal respiratory pressures, thoracic expansion and abdominal mobility, suggesting that it could be used as a physiotherapy resource to develop respiratory muscle strength, thoracic expansion and abdominal mobility.

  5. Rehabilitative ultrasound imaging of the abdominal muscles.

    Science.gov (United States)

    Teyhen, Deydre S; Gill, Norman W; Whittaker, Jackie L; Henry, Sharon M; Hides, Julie A; Hodges, Paul

    2007-08-01

    Rehabilitative ultrasound imaging (RUSI) of the abdominal muscles is increasingly being used in the management of conditions involving musculoskeletal dysfunctions associated with the abdominal muscles, including certain types of low back and pelvic pain. This commentary provides an overview of current concepts and evidence related to RUSI of the abdominal musculature, including issues addressing the potential role of ultrasound imaging in the assessment and training of these muscles. Both quantitative and qualitative aspects associated with clinical and research applications are considered, as are the possible limitations related to the interpretation of measurements made with RUSI. Research to date has utilized a range of methodological approaches, including different transducer placements and imaging techniques. The pros and cons of the various methods are discussed, and guidelines for future investigations are presented. Potential implications and opportunities for clinical use of RUSI to enhance evidence-based practice are outlined, as are suggestions for future research to further clarify the possible role of RUSI in the evaluation and treatment of abdominal muscular morphology and function.

  6. Automated segmentation and recognition of abdominal wall muscles in X-ray torso CT images and its application in abdominal CAD

    International Nuclear Information System (INIS)

    Zhou, X.; Kamiya, N.; Hara, T.; Fujita, H.; Chen, H.; Yokoyama, R.; Hoshi, H.

    2007-01-01

    The information of abdominal wall is very important for the planning of surgical operation and abdominal organ recognition. In research fields of computer assisted radiology and surgery and computer-aided diagnosis, the segmentation and recognition of the abdominal wall muscles in CT images is a necessary pre-processing step. Due to the complexity of the abdominal wall structure and indistinctive in CT images, the automated segmentation of abdominal wall muscles is a difficult issue and has not been solved completely. We propose an approach to segment the abdominal wall muscles and divide it into three categories (front abdominal muscles including rectus abdominis; left and right side abdominal muscles including external oblique, internal oblique and transversus abdominis muscles) automatically. The approach, first, makes an initial classification of bone, fat, and muscles and organs based on the CT number. Then a layer structure is generated to describe the 3-D anatomical structures of human torso by stretching the torso region onto a thin-plate for easy recognition. The abdominal wall muscles are recognized on the layer structures using the spatial relations to the skeletal structure and CT numbers. Finally, the recognized regions are mapped back to the 3-D CT images using an inverse transformation of the stretching process. This method is applied to 20 cases of torso CT images and evaluations are based on visual comparison of the recognition results and the original CT images by an expert in anatomy. The results show that our approach can segment and recognize abdominal wall muscle regions effectively. (orig.)

  7. Automated segmentation and recognition of abdominal wall muscles in X-ray torso CT images and its application in abdominal CAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Kamiya, N.; Hara, T.; Fujita, H. [Dept. of Intelligent Image Information, Div. of Regeneration and Advanced Medical Sciences, Graduate School of Medicine, Gifu Univ., Gifu (Japan); Chen, H. [Dept. of Anatomy, Graduate School of Medicine, Gifu Univ., Gifu (Japan); Yokoyama, R.; Hoshi, H. [Dept. of Radiology, Gifu Univ. Graduate School of Medicine and Univ. Hospital, Gifu (Japan)

    2007-06-15

    The information of abdominal wall is very important for the planning of surgical operation and abdominal organ recognition. In research fields of computer assisted radiology and surgery and computer-aided diagnosis, the segmentation and recognition of the abdominal wall muscles in CT images is a necessary pre-processing step. Due to the complexity of the abdominal wall structure and indistinctive in CT images, the automated segmentation of abdominal wall muscles is a difficult issue and has not been solved completely. We propose an approach to segment the abdominal wall muscles and divide it into three categories (front abdominal muscles including rectus abdominis; left and right side abdominal muscles including external oblique, internal oblique and transversus abdominis muscles) automatically. The approach, first, makes an initial classification of bone, fat, and muscles and organs based on the CT number. Then a layer structure is generated to describe the 3-D anatomical structures of human torso by stretching the torso region onto a thin-plate for easy recognition. The abdominal wall muscles are recognized on the layer structures using the spatial relations to the skeletal structure and CT numbers. Finally, the recognized regions are mapped back to the 3-D CT images using an inverse transformation of the stretching process. This method is applied to 20 cases of torso CT images and evaluations are based on visual comparison of the recognition results and the original CT images by an expert in anatomy. The results show that our approach can segment and recognize abdominal wall muscle regions effectively. (orig.)

  8. Abdominal muscle function and incisional hernia

    DEFF Research Database (Denmark)

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2014-01-01

    PURPOSE: Although ventral incisional hernia (VIH) repair in patients is often evaluated in terms of hernia recurrence rate and health-related quality of life, there is no clear consensus regarding optimal operative treatment based on these parameters. It was proposed that health-related quality...... of life depends largely on abdominal muscle function (AMF), and the present review thus evaluates to what extent AMF is influenced by VIH and surgical repair. METHODS: The PubMed and EMBASE databases were searched for articles following a systematic strategy for inclusion. RESULTS: A total of seven...... studies described AMF in relation to VIH. Five studies examined AMF using objective isokinetic dynamometers to determine muscle strength, and two studies examined AMF by clinical examination-based muscle tests. CONCLUSION: Both equipment-related and functional muscle tests exist for use in patients...

  9. Sport stretching : Effect on passive muscle stiffness of short hamstrings

    NARCIS (Netherlands)

    Halbertsma, JPK; vanBolhuis, AI; Goeken, LNH

    Objective: To evaluate the effects of one 10-minute stretch on muscle stiffness in subjects with short hamstrings. Design: Randomized control trial. Setting: Laboratory for human movement sciences in the department of rehabilitation of a university hospital. Subjects: Sixteen students from the

  10. Acute effects of acupressure on abdominal muscle strength | Stein ...

    African Journals Online (AJOL)

    Acute effects of acupressure on abdominal muscle strength. ... African Journal for Physical Activity and Health Sciences ... (n = 20) or sham acupressure (n = 20) to determine the effect of acupressure on the acute efficacy abdominal muscle strength following a pre-test evaluation using the seven-stage abdominal sit-up test.

  11. Acute effects of different stretching durations on passive torque, mobility, and isometric muscle force.

    Science.gov (United States)

    Matsuo, Shingo; Suzuki, Shigeyuki; Iwata, Masahiro; Banno, Yasuhiro; Asai, Yuji; Tsuchida, Wakako; Inoue, Takayuki

    2013-12-01

    Static stretching is widely applied in various disciplines. However, the acute effects of different durations of stretching are unclear. Therefore, this study was designed to investigate the acute effects of different stretching durations on muscle function and flexibility, and provide an insight into the optimal duration of static stretching. This randomized crossover trial included 24 healthy students (17 men and 7 women) who stretched their right hamstrings for durations of 20, 60, 180, and 300 seconds in a random order. The following outcomes were assessed using an isokinetic dynamometer as markers of lower-limb function and flexibility: static passive torque (SPT), dynamic passive torque (DPT), stiffness, straight leg raise (SLR), and isometric muscle force. Static passive torque was significantly decreased after all stretching durations (p stretching compared with that after 20-second stretching, and stiffness decreased significantly after 180- and 300-second stretching (p stretching (p stretching durations (p stretching than after 20-second stretching and higher after 300-second stretching than after 60-second stretching (p muscle force significantly decreased after all stretching durations (p stretching is associated with a decrease in SPT but an increase in SLR. Over 180 seconds of stretching was required to decrease DPT and stiffness, but isometric muscle force decreased regardless of the stretching duration. In conclusion, these results indicate that longer durations of stretching are needed to provide better flexibility.

  12. Intermittent stretching induces fibrosis in denervated rat muscle.

    Science.gov (United States)

    Faturi, Fernanda M; Franco, Rúbia C; Gigo-Benato, Davilene; Turi, Andriette C; Silva-Couto, Marcela A; Messa, Sabrina P; Russo, Thiago L

    2016-01-01

    Stretching (St) has been used for treating denervated muscles. However, its effectiveness and safety claims require further study. Rats were divided into: (1) those with denervated (D) muscles, evaluated 7 or 15 days after sciatic nerve crush injury; (2) those with D muscles submitted to St during 7 or 15 days; and (3) those with normal muscles. Muscle fiber cross-sectional area, serial sarcomere number, sarcomere length, and connective tissue density were measured. MMP-2, MMP-9, TIMP-1, TGF-β1, and myostatin mRNAs were determined by real-time polymerase chain reaction. MMP-2 and MMP-9 activity was evaluated by zymography. Collagen I was localized using immunofluorescence. St did not prevent muscle atrophy due to denervation, but it increased fibrosis and collagen I deposition at day 15. St also upregulated MMP-9 and TGF-β1 gene expressions at day 7, and myostatin at day 15. Stretching denervated muscle does not prevent atrophy, but it increases fibrosis via temporal modulation of TGF-β1/myostatin and MMP-9 cascades. © 2015 Wiley Periodicals, Inc.

  13. Stretching to prevent or reduce muscle soreness after exercise.

    Science.gov (United States)

    Herbert, Robert D; de Noronha, Marcos; Kamper, Steven J

    2011-07-06

    Many people stretch before or after engaging in athletic activity. Usually the purpose is to reduce risk of injury, reduce soreness after exercise, or enhance athletic performance. This is an update of a Cochrane review first published in 2007. The aim of this review was to determine effects of stretching before or after exercise on the development of delayed-onset muscle soreness. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register (to 10 August 2009), the Cochrane Central Register of Controlled Trials (2010, Issue 1), MEDLINE (1966 to 8th February 2010), EMBASE (1988 to 8th February 2010), CINAHL (1982 to 23rd February 2010), SPORTDiscus (1949 to 8th February 2010), PEDro (to 15th February 2010) and reference lists of articles. Eligible studies were randomised or quasi-randomised studies of any pre-exercise or post-exercise stretching technique designed to prevent or treat delayed-onset muscle soreness (DOMS). For the studies to be included, the stretching had to be conducted soon before or soon after exercise and muscle soreness had to be assessed. Risk of bias was assessed using The Cochrane Collaboration's 'Risk of bias' tool and quality of evidence was assessed using GRADE. Estimates of effects of stretching were converted to a common 100-point scale. Outcomes were pooled in fixed-effect meta-analyses. Twelve studies were included in the review. This update incorporated two new studies. One of the new trials was a large field-based trial that included 2377 participants, 1220 of whom were allocated stretching. All other 11 studies were small, with between 10 and 30 participants receiving the stretch condition. Ten studies were laboratory-based and other two were field-based. All studies were exposed to either a moderate or high risk of bias. The quality of evidence was low to moderate.There was a high degree of consistency of results across studies. The pooled estimate showed that pre-exercise stretching reduced soreness at one

  14. Acute effects of static stretching on muscle-tendon mechanics of quadriceps and plantar flexor muscles.

    Science.gov (United States)

    Bouvier, Tom; Opplert, Jules; Cometti, Carole; Babault, Nicolas

    2017-07-01

    This study aimed to determine the acute effects of static stretching on stiffness indexes of two muscle groups with a contrasting difference in muscle-tendon proportion. Eleven active males were tested on an isokinetic dynamometer during four sessions randomly presented. Two sessions were dedicated to quadriceps and the two others to triceps surae muscles. Before and immediately after the stretching procedure (5 × 30 s), gastrocnemius medialis and rectus femoris fascicle length and myotendinous junction elongation were determined using ultrasonography. Passive and maximal voluntary torques were measured. Fascicle and myotendinous junction stiffness indexes were calculated. After stretching, maximal voluntary torque similarly decreased for both muscle groups. Passive torque significantly decreased on triceps surae and remained unchanged on quadriceps muscles. Fascicle length increased similarly for both muscles. However, myotendinous junction elongation remained unchanged for gastrocnemius medialis and increased significantly for rectus femoris muscle. Fascicle stiffness index significantly decreased on medial gastrocnemius and remained unchanged on rectus femoris muscle. In contrast, myotendinous junction stiffness index similarly decreased on both muscles. Depending on the muscle considered, the present results revealed different acute stretching effects. This muscle dependency appeared to affect primarily fascicle stiffness index rather than the myotendinous junction.

  15. Genetic stretching factors in masseter muscle after orthognathic surgery.

    Science.gov (United States)

    Breuel, Wiebke; Krause, Micaela; Schneider, Matthias; Harzer, Winfried

    2013-09-01

    Up to 30% of patients relapse after orthognathic operations, and one reason might be incomplete neuromuscular adaptation of the masticatory muscles. Displacement of the mandible in sagittal or vertical directions, or both, leads to stretching or compression of these muscles. The aim of this study was to analyse stretching factors in 35 patients with retrognathism or prognathism of the mandible (Classes II and III). Tissue samples were taken from both sides of the masseter muscle (anterior and posterior) both before and 6 months after operation. Developmental myosin heavy chains MYH3 and MYH8, the fast and slow MYH 1, 2, and 7, and cyclo-oxygenase (COX) 2, forkhead transcription factor (FOX)O3a, calcineurin, and nuclear factor of activated T cells (NFAT)1c (stretching and regeneration-specific), were analysed by real time polymerase chain reaction (PCR). Correlations of Class II and III with sagittal and vertical cephalometric measurements ANB and ML-NL-angle were examined, and the results showed significant differences in amounts of MYH8 (pstretching indicators FOXO3a, calcineurin, and NFAT1c only in Class II patients. This means that stretching of the masseter muscle caused by lengthening of the mandible and raising of the bite in Class II patients was more likely to lead to relapse (similar to that in patients with open bite) than in Class III patients. In conclusion, deep bite should be reduced more by incisor intrusion than by skeletal opening. The focus in these patients should be directed towards physiotherapeutic strengthening of the muscles of mastication, and more consideration should be given to change in the vertical dimension. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Duration of static stretching influences muscle force production in hamstring muscles.

    Science.gov (United States)

    Ogura, Yuji; Miyahara, Yutetsu; Naito, Hisashi; Katamoto, Shizuo; Aoki, Junichiro

    2007-08-01

    The purpose of the present study was to investigate whether duration of static stretching could affect the maximal voluntary contraction (MVC). Volunteer male subjects (n = 10) underwent 2 different durations of static stretching of their hamstring muscles in the dominant leg: 30 and 60 seconds. No static stretching condition was used as a control condition. Before and after each stretching trial, hamstring flexibility was measured by a sit and reach test. MVC was then measured using the maximal effort of knee flexion. The hamstring flexibility was significantly increased by 30 and 60 seconds of static stretching (control: 0.5 +/- 1.1 cm; 30 seconds: 2.1 +/- 1.8 cm; 60 seconds: 3.0 +/- 1.6 cm); however, there was no significant difference between 30 and 60 seconds of static stretching conditions. The MVC was significantly lowered with 60 seconds of static stretching compared to the control and 30 seconds of the stretching conditions (control: 287.6 +/- 24.0 N; 30 seconds: 281.8 +/- 24.2 N; 60 seconds: 262.4 +/- 36.2 N). However, there was no significant difference between control and 30 seconds of static stretching conditions. Therefore, it was concluded that the short duration (30 seconds) of static stretching did not have a negative effect on the muscle force production.

  17. Immediate effects of respiratory muscle stretching on chest wall kinematics and electromyography in COPD patients.

    Science.gov (United States)

    de Sá, Rafaela Barros; Pessoa, Maíra Florentino; Cavalcanti, Ana Gabriela Leal; Campos, Shirley Lima; Amorim, César; Dornelas de Andrade, Armèle

    2017-08-01

    This study evaluated the immediate effects of respiratory muscle stretching on chest wall kinematics and electromyographic activity in COPD patients. 28 patients with COPD were randomized into two groups: 14 to the treatment group (TG) and 14 to the control group (CG). The TG underwent a stretching protocol of the rib cage muscles, while the CG remained at rest under similar conditions. After a single session, TG increased the tidal volume of the pulmonary rib cage (Vrcp) (p=0.020) and tidal volume of abdominal rib cage (Vrca) (p=0.043) variations and their percentages in relation to the thoracic wall, Vrcp% (p=0.044) and Vrca% (p=0.022). Also, TG decreased the end-expiratory Vrcp (p=0.013) and the end-inspiratory Vrcp (p=0.011) variations. In addition, there was a reduction in respiratory rate (RR) (p=0.011) and minute volume (MV) (p=0.035), as well as an increase in expiratory time (Te) (p=0.026). There was also an immediate reduction in sternocleidomastoid (p=0.043) and upper trapezium (p=0.034) muscle electrical activity. Then, the study supports the use of stretching to improve COPD chest wall mobility with positive effects on chest wall mechanics, on volume distribution and electromyography. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Symmetry of muscle activity during abdominal exercises.

    Science.gov (United States)

    Rutkowska-Kucharska, Alicja; Szpala, Agnieszka; Pieciuk, Edyta

    2009-01-01

    In this study, the symmetry of EMG activity of right and left parts of rectus abdominis, erector spinae, rectus femoris has been tested during isometric exercises. Subjects (N = 3) were selected from the university population. In each of nine isometric exercises, the position of lower and upper extremities is different in relation to the upper body. Electromyographic signals were recorded from left and right parts of selected muscles at 1000 Hz sampling frequency. Differences in EMG activity between specific exercises for left and right parts of each muscle were tested for significance with a one-way ANOVA. It was concluded that EMG activity of left and right sides of rectus abdominis and rectus femoris does not differ significantly; nevertheless statistically important differences were noticed between left and right sides of erector spine. These findings provide more detailed knowledge and understanding of different forms of abdominal exercises.

  19. The effect of calf stretching box on stretching calf muscle compliance: a prospective, randomized single-blinded controlled trial.

    Science.gov (United States)

    Chadchavalpanichaya, Navaporn; Srisawasdi, Gulapar; Suwannakin, Atchara

    2010-12-01

    To study the effect of calf stretching box usage in increasing the compliance of performing calf stretching exercise as compared to the conventional exercise method. To study the effect of calf stretching box usage in decreasing the calf muscle tightness and complications as compared to the conventional exercise method. Eighty patients older than 45 years old with calf muscles tightness were enrolled in a prospective, randomized single-blinded controlled trial at the out-patient Rehabilitation medicine clinic, Siriraj Hospital, Bangkok Thailand between April and August 2009. Patients were randomized into two groups, the study group (stretching by using calf stretching box) and the control group (stretching by the conventional exercise method). Patients in both groups were asked to hold the stretch for at least 1 minute and to perform the stretching program at least two times per day, every day for two weeks. Furthermore, they were asked to record the real frequency and duration of their exercise and complications in a logbook every day. Thirty-eight patients in each group completed the study. The baseline characteristics of the patients in both groups were similar. The study group had higher frequency and longer duration of performing calf stretching exercise than the control group. They also reported more decrease of calf muscle tightness with less pain complication (shoulder pain, knee pain, low back pain, and calf muscle pain) than the control group (p calf muscle and degree of ankle range of motion between the two groups. Stretching calf muscle with calf stretching box can increase compliance, decrease calf muscle tightness and decrease complications when compared with the conventional exercise method.

  20. Influence of chronic stretching on muscle performance: Systematic review.

    Science.gov (United States)

    Medeiros, D M; Lima, C S

    2017-08-01

    The aim of the current study was to investigate the influence of chronic stretching on muscle performance (MP) by a systematic review. The search strategy included MEDLINE, PEDro, Cochrane CENTRAL, LILACS, and manual search from inception to June 2016. Randomized and controlled clinical trials, non-randomized, and single group studies that have analyzed the influence of flexibility training (FT) (using any stretching technique) on MP were included. Differently, studies with special populations (children, elderly, and people with any dysfunction/disease), and articles that have used FT protocols shorter than three weeks or 12 sessions were excluded. The MP assessment could have been performed by functional tests (e.g. jump, sprint, stretch-shortening cycle tasks), isometric contractions, and/or isotonic contractions. Twenty-eight studies were included out of 513. Seven studies evaluated MP by stretch-shortening cycle tasks, Ten studies evaluated MP by isometric contractions, and 13 studies assessed MP by isotonic contractions. We were unable to perform a meta-analysis due to the high heterogeneity among the included studies. In an individual study level analysis, we identified that 14 studies found positive effects of chronic stretching on MP. The improvements were observed only in functional tests and isotonic contractions, isometric contractions were not affected by FT. Therefore, FT might have an influence on dynamic MP. However, more studies are necessary to confirm whether FT can positively affect MP. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Why Do Abdominal Muscles Sometimes Separate during Pregnancy?

    Science.gov (United States)

    ... which exercises would be right for you. If abdominal muscle weakness associated with diastasis recti is interfering with your daily activities, surgery might be recommended to repair the muscle ...

  2. Absent abdominal muscles, nephro-urologic abnormalities, and ...

    African Journals Online (AJOL)

    Absent abdominal muscles, cryptorchidism, and hydroureteronephrosis are known to occur in the prune belly syndrome (PBS). We present a male with absent abdominal muscles, severe neurologic damage, with global developmental delay, hydroureteronephrosis, and cryptorchidism. The patient also had arthrogryposis ...

  3. Absent abdominal muscles, nephro-urologic abnormalities, and ...

    African Journals Online (AJOL)

    Kamal F. Akl

    2014-12-23

    Dec 23, 2014 ... Abstract Absent abdominal muscles, cryptorchidism, and hydroureteronephrosis are known to occur in the prune belly syndrome (PBS). We present a male with absent abdominal muscles, severe neurologic damage, with global devel- opmental ... hands with bilateral simian creases, contractures at elbows.

  4. The effects of abdominal muscle coactivation on lumbar spine stability.

    Science.gov (United States)

    Gardner-Morse, M G; Stokes, I A

    1998-01-01

    A biomechanical model of the lumbar spine was used to calculate the effects of abdominal muscle coactivation on spinal stability. To estimate the effects of abdominal muscle coactivation on lumbar spine stability, muscle fatigue rate, and lumbar spine compression forces. The activation of human trunk muscles has been found to involve coactivation of antagonistic muscles, which has not been adequately predicted by biomechanical models. Antagonistic activation of abdominal muscles might produce flexion moments resulting from abdominal pressurization. Qualitatively, antagonistic activity also has been attributed to the need to stabilize the spine. Spinal loads and spinal stability were calculated for maximum and submaximum (40%, 60% and 80%) efforts in extension and lateral bending using a previously published, anatomically realistic biomechanical model of the lumbar spine and its musculature. Three different antagonistic abdominal muscle coactivation patterns were imposed, and results were compared with those found in a model with no imposed coactivation. Results were quantified in terms of the sum of cubed muscle stresses (sigma sigma m3, which is related to the muscle fatigue rate), the maximum compressive loading on the lumbar spine, and the critical value of the muscle stiffness parameter (q) required for the spine to be stable. Forcing antagonistic coactivation increased stability, but at the cost of an increase in sigma sigma m3 and a small increase in maximum spinal compression. These analyses provide estimates of the effects of antagonistic abdominal muscle coactivation, indicating that its probable role is to stabilize the spine.

  5. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Science.gov (United States)

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (pstretches was found to be the most sensitive in categorizing muscles into activation patterns (pmuscles with different patterns react

  6. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    Science.gov (United States)

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed. Copyright 2003 Wiley Periodicals, Inc. J Clin Psychol.

  7. Respiratory muscle activity and respiratory obstruction after abdominal surgery.

    Science.gov (United States)

    Wu, A; Drummond, G B

    2006-04-01

    Respiratory movements in patients after abdominal surgery are frequently abnormal, with associated disturbances in the pattern of inspiratory pressure generation. The reasons for these abnormalities are not clear and have been attributed to impaired action of the diaphragm. However, an alternative is that partial airway obstruction could trigger reflex activation of the inspiratory ribcage muscles, which would cause a similar pattern of inspiratory pressure change. Direct measurement of electrical activity can indicate if reflex activation of inspiratory muscles occurs when partial airway obstruction is present. In an open study, we implanted electrodes to measure the EMG of scalene, intercostal and external oblique abdominal muscles in patients after lower abdominal surgery. Analgesia was with morphine i.v. by patient control. We used nasal cannulae to measure nasal airflow and compared EMG activity when airway obstruction was present with activity when breathing was not obstructed. The pattern of activity of the different muscles was distinct. Intercostal activity reached a maximum during inspiration, before the scalene muscles, whereas scalene activity increased in phase with increasing lung volume. Abdominal muscle activity commenced when expiratory flow had ceased and continued until the next inspiration. In all three muscle groups, partial airway obstruction did not alter muscle activity. Partial airway obstruction does not activate inspiratory ribcage muscles, in patients receiving morphine for postoperative analgesia after lower abdominal surgery. Changes in respiratory pressures and abnormalities of chest wall movement described in previous studies cannot be attributed to reflex responses and probably result from increased airway resistance and abdominal muscle action.

  8. Electromyographic activity of rectus abdominis muscles during dynamic Pilates abdominal exercises.

    Science.gov (United States)

    Silva, Gabriela Bueno; Morgan, Mirele Minussi; Gomes de Carvalho, Wellington Roberto; Silva, Elisangela; de Freitas, Wagner Zeferino; da Silva, Fabiano Fernandes; de Souza, Renato Aparecido

    2015-10-01

    To assess the electrical behaviour of the upper rectus abdominis (URA) and lower rectus abdominis (LRA) by electromyography (EMG) during the following dynamic Pilates abdominal exercises: roll up, double leg stretch, coordination, crisscross and foot work. The results were compared with EMG findings of traditional abdominal exercises (sit up and crunch). Seventeen female subjects (with no experience of the Pilates method) were recruited. The URA and LRA were evaluated while 12 isotonic contractions were performed using the Pilates principles or traditional abdominal exercises. The data were normalised by a maximal voluntary isometric contraction. Normality was accepted, and ANOVA followed by Tukey test was used to determine data differences (P muscle activation than traditional exercises, mainly in URA. Thus, these exercises have the potential to be prescribed for muscle strengthening programmes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    Science.gov (United States)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  10. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, Andreas; Budini, Francesco; Tilp, Markus

    2017-08-01

    Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.

  11. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Directory of Open Access Journals (Sweden)

    Lynn Bar-On

    Full Text Available The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01. The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between

  12. COMPARISON OF EFFECTS OF ABDOMINAL STRETCHING EXERCISE AND COLD COMPRESS THERAPY ON MENSTRUAL PAIN INTENSITY IN TEENAGE GIRLS

    Directory of Open Access Journals (Sweden)

    Desta Ayu Cahya Rosyida

    2017-07-01

    Full Text Available Background: Pain during menstruation is not uncommon, especially in young women, which has an impact on their life activities. Objective: To examine the effect of abdominal stretching exercise and cold compress therapy on decreasing intensity of menstrual pain in teenage girls at SMK Bakti Indonesia Medika. Design: A Quasy Experimental Study with two group comparison pretest-postest design. There were 46 respondents selected in this study by consecutive sampling that consisted of 23 samples in the abdominal stretching exercise group and 23 samples in the cold compress group. The menstrual pain was measured using VAS (visual analog scale. Data were analyzed using Mann-Whitney, Chi-Square, and Wilcoxon test. Results: Findings showed that the mean of menstrual pain before intervention in the abdominal stretching exercise was 7.04 and in the cold compress therapy was 6.74 with p-value 0.211 (<0.05, which indicated that there was no mean difference of pain between both groups. However, after intervention, the menstrual pain was reduced from 7.04 to 1.91 (5.09 difference in the abdominal stretching exercise group; and from 6.74 to 5.52 (1.22 difference in the cold compress group with p-value 0.000 (<0.05, which indicated that there was statistically significant difference of menstrual pain before and after intervention, both abdominal stretching exercise and cold compress therapy. Conclusion: There were statistically significant effects of abdominal stretching exercise and cold compress therapy on menstrual pain in teenage girls. The abdominal stretching exercise is more effective than cold compress therapy in reducing menstrual pain intensity. Thus, it is suggested that abdominal stretching exercise can be an alternative choice of management of dysmenorrhea in teenage girls, and can be a part of subject in the education as non-pharmacological medicine.

  13. Cardiovascular Responses to Skeletal Muscle Stretching: "Stretching" the Truth or a New Exercise Paradigm for Cardiovascular Medicine?

    Science.gov (United States)

    Kruse, Nicholas T; Scheuermann, Barry W

    2017-12-01

    Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.

  14. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial.

    Science.gov (United States)

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf

    2016-01-01

    Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG ( P stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.

  15. Lateral abdominal muscle size at rest and during abdominal drawing-in manoeuvre in healthy adolescents.

    Science.gov (United States)

    Linek, Pawel; Saulicz, Edward; Wolny, Tomasz; Myśliwiec, Andrzej; Kokosz, Mirosław

    2015-02-01

    Lateral abdominal wall muscles in children and adolescents have not been characterised to date. In the present report, we examined the reliability of the ultrasound measurement and thickness of the oblique external muscle (OE), oblique internal muscle (OI) and transverse abdominal muscle (TrA) at rest and during abdominal drawing-in manoeuvre (ADIM) on both sides of the body in healthy adolescents. We also determined possible differences between boys and girls and defined any factors-such as body mass, height and BMI-that may affect the thickness of the abdominal muscles. B-mode ultrasound was used to assess OE, OI and TrA on both sides of the body in the supine position. Ultrasound measurements at rest and during ADIM were reliable in this age group (ICC3,3 > 0.92). OI was always the thickest and TrA the thinnest muscle on both sides of the body. In this group, an identical pattern of the contribution of the individual muscles to the structure of the lateral abdominal wall (OI > OE > TrA) was observed. At rest and during ADIM, no statistically significant side-to-side differences were demonstrated in either gender. The body mass constitutes between 30% and <50% of the thickness differences in all muscles under examination at rest and during ADIM. The structure of lateral abdominal wall in adolescents is similar to that of adults. During ADIM, the abdominal muscles in adolescents react similarly to those in adults. This study provided extensive information regarding the structure of the lateral abdominal wall in healthy adolescents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Does acute passive stretching increase muscle length in children with cerebral palsy?

    Science.gov (United States)

    Theis, Nicola; Korff, Thomas; Kairon, Harvey; Mohagheghi, Amir A

    2013-01-01

    Children with spastic cerebral palsy experience increased muscle stiffness and reduced muscle length, which may prevent elongation of the muscle during stretch. Stretching performed either by the clinician, or children themselves is used as a treatment modality to increase/maintain joint range of motion. It is not clear whether the associated increases in muscle-tendon unit length are due to increases in muscle or tendon length. The purpose was to determine whether alterations in ankle range of motion in response to acute stretching were accompanied by increases in muscle length, and whether any effects would be dependent upon stretch technique. Eight children (6-14 y) with cerebral palsy received a passive dorsiflexion stretch for 5 × 20 s to each leg, which was applied by a physiotherapist or the children themselves. Maximum dorsiflexion angle, medial gastrocnemius muscle and fascicle lengths, and Achilles tendon length were calculated at a reference angle of 10 ° plantarflexion, and at maximum dorsiflexion in the pre- and post-stretch trials. All variables were significantly greater during pre- and post-stretch trials compared to the resting angle, and were independent of stretch technique. There was an approximate 10 ° increase in maximum dorsiflexion post-stretch, and this was accounted for by elongation of both muscle (0.8 cm) and tendon (1.0 cm). Muscle fascicle length increased significantly (0.6 cm) from pre- to post-stretch. The results provide evidence that commonly used stretching techniques can increase overall muscle, and fascicle lengths immediately post-stretch in children with cerebral palsy. © 2013.

  17. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease

    OpenAIRE

    Man, W. D-C.; Hopkinson, N.S.; Harraf, F.; Nikoletou, D.; Polkey, M. I.; Moxham, J.

    2005-01-01

    Background: Quadriceps muscle weakness is common in chronic obstructive pulmonary disease (COPD) but is not observed in a small hand muscle (adductor pollicis). Although this could be explained by reduced activity in the quadriceps, the observation could also be explained by anatomical location of the muscle or fibre type composition. However, the abdominal muscles are of a similar anatomical and fibre type distribution to the quadriceps, although they remain active in COPD. Cough gastric pre...

  18. Trunk muscle activities during abdominal bracing: comparison among muscles and exercises.

    Science.gov (United States)

    Maeo, Sumiaki; Takahashi, Takumi; Takai, Yohei; Kanehisa, Hiroaki

    2013-01-01

    Abdominal bracing is often adopted in fitness and sports conditioning programs. However, there is little information on how muscular activities during the task differ among the muscle groups located in the trunk and from those during other trunk exercises. The present study aimed to quantify muscular activity levels during abdominal bracing with respect to muscle- and exercise-related differences. Ten healthy young adult men performed five static (abdominal bracing, abdominal hollowing, prone, side, and supine plank) and five dynamic (V- sits, curl-ups, sit-ups, and back extensions on the floor and on a bench) exercises. Surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique (EO), internal oblique (IO), and erector spinae (ES) muscles were recorded in each of the exercises. The EMG data were normalized to those obtained during maximal voluntary contraction of each muscle (% EMGmax). The % EMGmax value during abdominal bracing was significantly higher in IO (60%) than in the other muscles (RA: 18%, EO: 27%, ES: 19%). The % EMGmax values for RA, EO, and ES were significantly lower in the abdominal bracing than in some of the other exercises such as V-sits and sit-ups for RA and EO and back extensions for ES muscle. However, the % EMGmax value for IO during the abdominal bracing was significantly higher than those in most of the other exercises including dynamic ones such as curl-ups and sit-ups. These results suggest that abdominal bracing is one of the most effective techniques for inducing a higher activation in deep abdominal muscles, such as IO muscle, even compared to dynamic exercises involving trunk flexion/extension movements. Key PointsTrunk muscle activities during abdominal bracing was examined with regard to muscle- and exercise-related differences.Abdominal bracing preferentially activates internal oblique muscles even compared to dynamic exercises involving trunk flexion/extension movements.Abdominal bracing should be

  19. Comparison of abdominal muscle activity during abdominal drawing-in maneuver combined with irradiation variations

    OpenAIRE

    Hwang, Young-In; Park, Du-Jin

    2017-01-01

    Many experts have used an indirect method for enhancing strength and performance of muscles in clinical practice. The indirect method, which called an irradiation is a basic procedure of proprioceptive neuromuscular facilitation, there is little research related the effects of irradiation. This study investigated abdominal muscle activity during abdominal drawing-in maneuver (ADIM) combined with irradiation variations. The study recruited 42 healthy, young adults who were divided randomly int...

  20. Acute effect of constant torque and angle stretching on range of motion, muscle passive properties, and stretch discomfort perception.

    Science.gov (United States)

    Cabido, Christian E T; Bergamini, Juliana C; Andrade, André G P; Lima, Fernando V; Menzel, Hans J; Chagas, Mauro H

    2014-04-01

    The aim of the present study was to compare the acute effects of constant torque (CT) and constant angle (CA) stretching exercises on the maximum range of motion (ROMmax), passive stiffness (PS), and ROM corresponding to the first sensation of tightness in the posterior thigh (FSTROM). Twenty-three sedentary men (age, 19-33 years) went through 1 familiarization session and afterward proceeded randomly to both CA and CT treatment stretching conditions, on separate days. An isokinetic dynamometer was used to analyze hamstring muscles during passive knee extension. The subjects performed 4 stretches of 30 seconds each with a 15-second interval between them. In the CA stretching, the subject reached a certain ROM (95% of ROMmax), and the angle was kept constant. However, in the CT stretching exercise, the volunteer reached a certain resistance torque (corresponding to 95% of ROMmax) and it was kept constant. The results showed an increase in ROMmax for both CA and CT (p stretch may be explained by greater changes in the biomechanical properties of the muscle-tendon unit and stretch tolerance, as indicated by the results of PS and FSTROM.

  1. Effect of passive stretching on the immobilized soleus muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Coutinho E.L.

    2004-01-01

    Full Text Available The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a the left soleus muscle was immobilized in the shortened position for 3 weeks; b during immobilization, the soleus was stretched for 40 min every 3 days; c the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A showed a significant decrease in weight (44 ± 6%, length (19 ± 7%, serial sarcomere number (23 ± 15%, and fiber area (37 ± 31% compared to the contralateral muscles (P < 0.05, paired Student t-test. The immobilized and stretched soleus (group B showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 ± 40 vs 37 ± 31%, respectively; P < 0.001, ANOVA test. Muscles submitted only to stretching (group C significantly increased the length (5 ± 2%, serial sarcomere number (4 ± 4%, and fiber area (16 ± 44% compared to the contralateral muscles (P < 0.05, paired Student t-test. In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.

  2. Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats.

    Science.gov (United States)

    Iizuka, Makito

    2009-05-01

    The pattern of respiratory activity in abdominal muscles was studied in anesthetized, spontaneously breathing, vagotomized neonatal rats at postnatal days 0-3. Anesthesia (2.0% isoflurane, 50% O(2)) depressed breathing and resulted in hypercapnia. Under this condition, abdominal muscles showed discharge late in the expiratory phase (E2 activity) in most rats. As the depth of anesthesia decreased, the amplitude of discharges in the diaphragm and abdominal muscles increased. A small additional burst frequently occurred in abdominal muscles just after the termination of diaphragmatic inspiratory activity (E1 or postinspiratory activity). Since this E1 activity is not often observed in adult rats, the abdominal respiratory pattern likely changes during postnatal development. Anoxia-induced gasping after periodic expiratory activity without inspiratory activity, and in most rats, abdominal expiratory activity disappeared before terminal apnea. These results suggest that a biphasic abdominal motor pattern (a combination of E2 and E1 activity) is a characteristic of vagotomized neonatal rats during normal respiration.

  3. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian

    2015-01-01

    regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1 was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport but its role in stretch......-stimulated glucose transport and signaling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton...... in isolated soleus and EDL muscles. In addition, Rac1's role in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which crossbridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin...

  4. A study of viscoelasticity index for evaluating muscle hypotonicity during static stretching.

    Science.gov (United States)

    Okamura, Naomi; Tsukune, Mariko; Kobayashi, Yo; Fujie, Masakatsu G

    2014-01-01

    Static stretching is widely used as a preventative treatment for musculoskeletal disabilities by providing muscle hypotonicity, which results from changes in muscle tissue structure. However, the quantitative evaluation of hypotonicity during stretching has had limited success owing to the confounding factor of mechanical stress relaxation. To resolve this problem, we propose a new evaluation method for hypotonicity based on a viscoelastic muscle model using fractional calculus, which is known to be effective for biomaterials. We made continuous measurements of rectus skin indentation during static stretching as an indicator of reaction force in the rectus femoris muscle. The viscoelastic ratio and modulus were computed from the indentation trace. Both viscoelastic parameters decreased significantly between the early and final phases of stretching. The results suggest that our method is useful for quantitative evaluation of muscle hypotonicity during stretching.

  5. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Gomes A.R.S.

    2004-01-01

    Full Text Available We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002, in serial sarcomere number (23 ± 15% and in cross-sectional area of the fibers (37 ± 31%, P < 0.001 compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05. Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05. In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  6. Maximum expiration activates the abdominal muscles during side bridge exercise.

    Science.gov (United States)

    Ishida, Hiroshi; Watanabe, Susumu

    2014-01-01

    Recent studies have indicated that maximum expiration could be a useful way of performing challenging exercises that include coactivation of the deep and superficial abdominal muscles. However, little is known about the effect of maximum expiration on the activity of the abdominal muscles during lumbar stabilizing exercise. The purpose of our study was to quantify changes in the activities of the abdominal muscles during side bridge exercise in combination with maximum expiration. Experimental laboratory study. The activities of the rectus abdominis (RA), external oblique (EO), and internal oblique (IO) muscles were measured using electromyography in 12 healthy men performing 3 tasks: holding the breath after maximum expiration in the prone position, holding the breath after resting expiration during side bridge exercise, and holding the breath after maximum expiration during side bridge exercise. Significant increases in the activities of the abdominal muscles (RA, EO, and IO) occurred with maximum expiration when compared with resting expiration during side bridge exercise (P abdominal muscle activities during a stabilizing exercise, thus contributing to existing knowledge about therapeutic exercise for alternative core training.

  7. Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature.

    Science.gov (United States)

    Opplert, Jules; Babault, Nicolas

    2018-02-01

    Stretching has long been used in many physical activities to increase range of motion (ROM) around a joint. Stretching also has other acute effects on the neuromuscular system. For instance, significant reductions in maximal voluntary strength, muscle power or evoked contractile properties have been recorded immediately after a single bout of static stretching, raising interest in other stretching modalities. Thus, the effects of dynamic stretching on subsequent muscular performance have been questioned. This review aimed to investigate performance and physiological alterations following dynamic stretching. There is a substantial amount of evidence pointing out the positive effects on ROM and subsequent performance (force, power, sprint and jump). The larger ROM would be mainly attributable to reduced stiffness of the muscle-tendon unit, while the improved muscular performance to temperature and potentiation-related mechanisms caused by the voluntary contraction associated with dynamic stretching. Therefore, if the goal of a warm-up is to increase joint ROM and to enhance muscle force and/or power, dynamic stretching seems to be a suitable alternative to static stretching. Nevertheless, numerous studies reporting no alteration or even performance impairment have highlighted possible mitigating factors (such as stretch duration, amplitude or velocity). Accordingly, ballistic stretching, a form of dynamic stretching with greater velocities, would be less beneficial than controlled dynamic stretching. Notwithstanding, the literature shows that inconsistent description of stretch procedures has been an important deterrent to reaching a clear consensus. In this review, we highlight the need for future studies reporting homogeneous, clearly described stretching protocols, and propose a clarified stretching terminology and methodology.

  8. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    Directory of Open Access Journals (Sweden)

    Abdullah Serefoglu, Ufuk Sekir, Hakan Gür, Bedrettin Akova

    2017-03-01

    Full Text Available The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a non-stretching (control, (b static stretching of the quadriceps muscles, (c static stretching of the hamstring muscles, (d dynamic stretching of the quadriceps muscles, and (e dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05 differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05 following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG

  9. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles.

    Science.gov (United States)

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-03-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  10. Short Term Effects of Neurodynamic Stretching and Static Stretching Techniques on Hamstring Muscle Flexibility in Healthy Male Subjects

    OpenAIRE

    Adel Rashad Ahmed; Ahmed Fathy Samhan

    2016-01-01

    Flexibility is a key component of rehabilitation and inadequate muscle extensibility remains a commonly accepted factor for musculoskeletal disorders. Studies on the most optimal technique for improving muscle flexibility are a widely debated. The aim of the study was to compare the effectiveness of neurodynamic and static stretching techniques on hamstring flexibility in healthy male subjects. This study was a randomized experimental trial; forty healthy male subjects with hamstr...

  11. Possible Cause of Nonlinear Tension Rise in Activated Muscle Fiber during Stretching.

    Science.gov (United States)

    Kochubei, P V; Bershitsky, S Yu

    2016-11-01

    Tension in contracting muscle fiber under conditions of ramp stretching rapidly increases, but after reaching a critical stretch P c sharply decreases. To find out the cause of these changes in muscle fiber tension, we stopped stretching before and after reaching P c and left the fiber stretched for 50 msec. After rapid tension drop, the transient tension rise not accompanied by fiber stiffness increase was observed only in fibers heated to 25°C and stretched to P c . Under other experimental conditions, this growth was absent. We suppose that stretch of the fiber to P c induces transition of stereo-specifically attached myosin heads to pre-power stroke state and when the stretching is stopped, they make their step on actin and generate force. When the tension reaches P c , all stereospecifically attached myosin heads turn out to be non-stereospecifically, or weakly attached to actin, and are unable to make the force-generating step.

  12. Acute decrease in the stiffness of resting muscle belly due to static stretching.

    Science.gov (United States)

    Taniguchi, K; Shinohara, M; Nozaki, S; Katayose, M

    2015-02-01

    The purpose of the study was to examine the acute effect of static stretching exercise on the resting stiffness of gastrocnemius muscle belly. Ten healthy young adults performed standing wall stretching in dorsiflexion for 1 min at a time and repeated five times. Before and after stretching, the shear modulus was measured in medial and lateral heads of the resting gastrocnemius muscle with ultrasound shear-wave elastography. After the stretching, dorsiflexion range of motion (ROM) of the ankle joint increased (P stretching, shear modulus decreased (P stretching across muscle heads. The decrease in shear modulus returned in 20 min after stretching. In the comparison group of 10 additional subjects, the standing intervention without stretching had no influence on these measures. There was a negative correlation between dorsiflexion ROM and shear modulus in either head before and after stretching. The results demonstrate the transient decreases in the stiffness of the resting gastrocnemius muscle belly and indicate that joint flexibility is greater in individuals with lower resting stiffness of the muscle belly. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Acute effect of muscle stretching on the steadiness of sustained submaximal contractions of the plantar flexor muscles.

    Science.gov (United States)

    Kato, Emika; Vieillevoye, Stéphanie; Balestra, Costantino; Guissard, Nathalie; Duchateau, Jacques

    2011-02-01

    This paper examines the acute effect of a bout of static stretches on torque fluctuation during an isometric torque-matching task that required subjects to sustain isometric contractions as steady as possible with the plantar flexor muscles at four intensities (5, 10, 15, and 20% of maximum) for 20 s. The stretching bout comprised five 60-s passive stretches, separated by 10-s rest. During the torque-matching tasks and muscle stretching, the torque (active and passive) and surface electromyogram (EMG) of the medial gastrocnemius (MG), soleus (Sol), and tibialis anterior (TA) were continuously recorded. Concurrently, changes in muscle architecture (fascicle length and pennation angle) of the MG were monitored by ultrasonography. The results showed that during stretching, passive torque decreased and fascicle length increased gradually. Changes in these two parameters were significantly associated (r(2) = 0.46; P stretches induced greater torque fluctuation (P muscles with no change in coactivation. Furthermore, stretching maneuvers produced a greater decrease (∼15%; P stretches can decrease torque steadiness by increasing muscle compliance and EMG activity of muscles around the joint. The relative influence of such adaptations, however, may depend on the torque level during the torque-matching task.

  14. Acute Effects of the Different Intensity of Static Stretching on Flexibility and Isometric Muscle Force.

    Science.gov (United States)

    Kataura, Satoshi; Suzuki, Shigeyuki; Matsuo, Shingo; Hatano, Genki; Iwata, Masahiro; Yokoi, Kazuaki; Tsuchida, Wakako; Banno, Yasuhiro; Asai, Yuji

    2017-12-01

    Kataura, S, Suzuki, S, Matsuo, S, Hatano, G, Iwata, M, Yokoi, K, Tsuchida, W, Banno, Y, and Asai, Y. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res 31(12): 3403-3410, 2017-In various fields, static stretching is commonly performed to improve flexibility, whereas the acute effects of different stretch intensities are unclear. Therefore, we investigated the acute effects of different stretch intensities on flexibility and muscle force. Eighteen healthy participants (9 men and 9 women) performed 180-second static stretches of the right hamstrings at 80, 100, and 120% of maximum tolerable intensity without stretching pain, in random order. The following outcomes were assessed as markers of lower limb function and flexibility: static passive torque (SPT), range of motion (ROM), passive joint (muscle-tendon) stiffness, passive torque (PT) at onset of pain, and isometric muscle force. Static passive torque was significantly decreased after all stretching intensities (p ≤ 0.05). Compared with before stretching at 100 and 120% intensities, ROM and PT were significantly increased after stretching (p ≤ 0.05), and passive stiffness (p = 0.05) and isometric muscle force (p ≤ 0.05) were significantly decreased. In addition, ROM was significantly greater after stretching at 100 and 120% than at 80%, and passive stiffness was significantly lower after 120% than after 80% (p ≤ 0.05). However, all measurements except SPT were unchanged after 80% intensity. There was a weak positive correlation between the intensities of stretching and the relative change for SPT (p ≤ 0.05), a moderate positive correlation with ROM (p ≤ 0.05), and a moderate positive correlation with passive stiffness (p ≤ 0.05). These results indicate that static stretching at greater intensity is more effective for increasing ROM and decreasing passive muscle-tendon stiffness.

  15. The Acute Effects of Static and Cyclic Stretching on Muscle Stiffness and Hardness of Medial Gastrocnemius Muscle.

    Science.gov (United States)

    Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Sakai, Shogo; Fujishita, Hironori; Kobayashi, Toshiki; Asaeda, Makoto; Hirata, Kazuhiko; Mikami, Yukio; Kimura, Hiroaki

    2017-12-01

    This study aimed to clarify the acute effects of static stretching (SS) and cyclic stretching (CS) on muscle stiffness and hardness of the medial gastrocnemius muscle (MG) by using ultrasonography, range of motion (ROM) of the ankle joint and ankle plantar flexor. Twenty healthy men participated in this study. Participants were randomly assigned to SS, CS and control conditions. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions in another day: (a) 2 minutes static stretching, (b) 2 minutes cyclic stretching, (c) control. Maximum ankle dorsiflexion range of motion (ROM max) and normalized peak torque (NPT) of ankle plantar flexor were measured in the pre- and post-stretching. To assess muscle stiffness, muscle-tendon junction (MTJ) displacement (the length changes in tendon and muscle) and MTJ angle (the angle made by the tendon of insertion and muscle fascicle) of MG were measured using ultrasonography at an ankle dorsiflexion angle of -10°, 0°, 10° and 20° before and after SS and CS for 2 minutes in the pre- and post-stretching. MG hardness was measured using ultrasound real-time tissue elastography (RTE). The results of this study indicate a significant effect of SS for ROM maximum, MTJ angle (0°, 10°, 20°) and RTE (10°, 20°) compared with CS (p muscle stiffness and hardness compared with CS. In addition, CS may contribute to the elongation of muscle tissue and increased muscle strength.

  16. Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number.

    Science.gov (United States)

    De Jaeger, Dominique; Joumaa, Venus; Herzog, Walter

    2015-06-15

    In humans, enhanced joint range of motion is observed after static stretch training and results either from an increased stretch tolerance or from a change in the biomechanical properties of the muscle-tendon unit. We investigated the effects of an intermittent stretch training on muscle biomechanical and structural variables. The left plantarflexors muscles of seven anesthetized New Zealand (NZ) White rabbits were passively and statically stretched three times a week for 4 wk, while the corresponding right muscles were used as nonstretched contralateral controls. Before and after the stretching protocol, passive torque produced by the left plantarflexor muscles as a function of the ankle angle was measured. The left and right plantarflexor muscles were harvested from dead rabbits and used to quantify possible changes in muscle structure. Significant mass and serial sarcomere number increases were observed in the stretched soleus but not in the plantaris or medial gastrocnemius. This difference in adaptation between the plantarflexors is thought to be the result of their different fiber type composition and pennation angles. Neither titin isoform nor collagen amount was modified in the stretched compared with the control soleus muscle. Passive torque developed during ankle dorsiflexion was not modified after the stretch training on average, but was decreased in five of the seven experimental rabbits. Thus, an intermittent stretching program similar to those used in humans can produce a change in the muscle structure of NZ White rabbits, which was associated in some rabbits with a change in the biomechanical properties of the muscle-tendon unit. Copyright © 2015 the American Physiological Society.

  17. Abdominal Muscle Density is Inversely Related to Adiposity Inflammatory Mediators.

    Science.gov (United States)

    Van Hollebeke, Rachel B; Cushman, Mary; Schlueter, Emma F; Allison, Matthew A

    2018-02-02

    Skeletal muscle is the largest regulator of glucose metabolism but few population-based studies have examined the associations between muscle and inflammation. We studied the relationships between abdominal muscle area and density with selected adiposity associated inflammatory mediators. Nearly 2,000 subjects underwent computed tomography (CT) of the abdomen and had venous fasting blood drawn concomitantly. The CT scans were interrogated for visceral and subcutaneous fat, as well as abdominal lean muscle areas and densities. We then categorized the muscle into locomotion (psoas) and stabilization (rectus, obliques and paraspinal) groups. Blood samples were assayed for interleukin-6 (IL-6), resistin, C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). The mean age was 64.7 years and 49% were female. Forty percent were White, 26% Hispanic/Latino American, 21% African American, and 13% Chinese American. The mean BMI was 28.0 kg/m2 and 30% were obese (BMI >30 kg/m2). Using multivariable linear regression models that included adjustment for abdominal muscle area, a 1-SD increment in the mean densities for total, stabilization and locomotive abdominal muscle were each significantly associated with lower levels of IL-6 (β= -15%, -15% and -9%, p < 0.01 for all) and resistin (β= -0.11, -0.11 and -0.07 ng/ml, p < 0.02 for all), but not CRP or TNF-α. Conversely, muscle area was not independently associated with any of the inflammatory mediators studied. Higher densities of several muscle groups in the abdomen are significantly associated with lower IL-6 and resistin levels, independent of the muscle area in these groups. Techniques that enhance muscle density may reduce levels of adiposity associated inflammatory mediators.

  18. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-01-01

    An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30–50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40–50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30–40% in tension developing muscle but did not affect contraction-stimulated glucose transport in muscles in which force development was prevented. Our findings suggest that Rac1 and the actin cytoskeleton regulate stretch-stimulated glucose transport and that Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. Key

  19. Electromyographic and kinetic analysis of two abdominal muscle performance tests.

    Science.gov (United States)

    Haladay, Douglas E; Denegar, Craig R; Miller, Sayers J; Challis, John

    2015-01-01

    In order to accurately assess the abdominal muscles, clinicians need valid clinical measures. The double leg lowering test (DLLT) and lower abdominal muscle progression (LAMP) are two common tests of abdominal muscle performance. The purposes of this study were to determine the relation between surface electromyographic (EMG) activity during the DLLT and LAMP levels; hip joint resultant moments and DLLT and LAMP levels; and the two measures of DLLT and LAMP. Ten healthy participants were tested under both conditions. Surface EMG activity of the abdominal muscles was obtained, while pelvic movement was detected simultaneously. A moderate to strong association was found between rectus abdominus muscle activity and a moderate association with the external obliques with both test levels. For the internal oblique/transversus abdominus, a moderate and weak association was found with the DLLT and LAMP, respectively. A very strong association existed between the hip resultant joint moments (RJM) and the DLLT, while there was a weak correlation between hip RJM and the LAMP. No significant correlation was found between the DLLT and LAMP grades. This finding suggests that these tests may measure different qualities of muscle performance and provides preliminary support for their use. Further evaluation of these assessments with clinical populations is necessary.

  20. Effect of single bout versus repeated bouts of stretching on muscle recovery following eccentric exercise.

    Science.gov (United States)

    Torres, Rui; Pinho, Francisco; Duarte, José Alberto; Cabri, Jan M H

    2013-11-01

    To analyze the effects of a single bout and repeated bouts of stretching on indirect markers of exercise-induced muscle damage. A randomized controlled clinical trial at a university human research laboratory was conducted. Fifty-six untrained males were randomly divided into four groups. (I) a single stretching group underwent a single bout of stretching on the quadriceps muscle; (II) an eccentric exercised group underwent eccentric quadriceps muscle contractions until exhaustion; (III) an eccentric exercise group followed by a single bout of stretching; (IV) an eccentric exercised group submitted to repeated bouts of stretching performed immediately and 24, 48, and 72 h post-exercise. Muscle stiffness, muscle soreness, maximal concentric peak torque, and plasma creatine kinase activity were assessed before exercise and 1, 24, 48, 72, and 96 h post-exercise. All exercised groups showed significant reduction in maximal concentric peak torque and significant increases in muscle soreness, muscle stiffness, and plasma creatine kinase. There were no differences between these groups in all assessed variables, with the exception of markers of muscle stiffness, which were significantly lower in the eccentric exercise group followed by single or repeated bouts. The single stretching group showed no change in any assessed variables during the measurement period. Muscle stretching performed after exercise, either as single bout or as repeated bouts, does not influence the levels of the main markers of exercise-induced muscle damage; however, repeated bouts of stretching performed during the days following exercise may have favorable effects on muscle stiffness. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Correlation Between Abdominal Muscle Thickness and Maximal Expiratory Pressure.

    Science.gov (United States)

    Ishida, Hiroshi; Suehiro, Tadanobu; Kurozumi, Chiharu; Ono, Koji; Watanabe, Susumu

    2015-11-01

    The activity of abdominal muscles mainly produces high expiratory pressure. These include the rectus abdominis, external oblique, internal oblique, and transverse abdominis muscles. The purpose of this study was to determine whether maximal expiratory pressure is associated with each abdominal muscle thickness at rest. Thirty-nine healthy male volunteers (mean age ± SD, 20.7 ± 2.7 years) participated in the study. The thickness of the right rectus abdominis, external oblique, internal oblique, and transverse abdominis muscles was measured by B-mode sonography in the supine position. The maximal expiratory pressure was obtained with a spirometer in the sitting position. The correlations between each abdominal muscle thickness and maximal expiratory pressure were determined by the Pearson correlation coefficient. The correlation coefficient between the rectus abdominis muscle and maximal expiratory pressure was 0.571 (Pmuscles and maximal expiratory pressure were 0.297 (P = .066), 0.267 (P = .100), and 0.022 (P = .894), respectively. Our results indicate that the rectus abdominis muscle thickness might be more highly correlated with expiratory pressure production than the external oblique, internal oblique, and transverse abdominis muscle thickness. © 2015 by the American Institute of Ultrasound in Medicine.

  2. Short Term Effects of Neurodynamic Stretching and Static Stretching Techniques on Hamstring Muscle Flexibility in Healthy Male Subjects

    Directory of Open Access Journals (Sweden)

    Adel Rashad Ahmed

    2016-05-01

    Full Text Available Flexibility is a key component of rehabilitation and inadequate muscle extensibility remains a commonly accepted factor for musculoskeletal disorders. Studies on the most optimal technique for improving muscle flexibility are a widely debated. The aim of the study was to compare the effectiveness of neurodynamic and static stretching techniques on hamstring flexibility in healthy male subjects. This study was a randomized experimental trial; forty healthy male subjects with hamstring tightness were randomly divided into two equal groups: The neurodynamic group and the static stretching group. Treatment was given for 5 consecutive days and the outcomes were measured using Active knee Extension Test and Straight Leg Raising. There was a significant improvement in hamstring flexibility following application of both neurodynamic and static stretching but the improvement in the neurodynamic group (p<0.001 was better than that of the static group (p<0.02. Results suggest that a neurodynamic stretching could increase hamstring flexibility to a greater extent than static stretching in healthy male subjects with a tight hamstring.

  3. Comparison of abdominal muscle activity during abdominal drawing-in maneuver combined with irradiation variations.

    Science.gov (United States)

    Hwang, Young-In; Park, Du-Jin

    2017-06-01

    Many experts have used an indirect method for enhancing strength and performance of muscles in clinical practice. The indirect method, which called an irradiation is a basic procedure of proprioceptive neuromuscular facilitation, there is little research related the effects of irradiation. This study investigated abdominal muscle activity during abdominal drawing-in maneuver (ADIM) combined with irradiation variations. The study recruited 42 healthy, young adults who were divided randomly into three groups according to which intervention they received. The first group performed the ADIM combined with coactivation of the pelvic floor muscle. The second group performed the ADIM combined with the irradiation resulting from dorsiflexion of the ankle. The third group performed the ADIM combined with the irradiation resulting from bilateral arm extension. Electromyography data were collected from the rectus abdominis, external oblique abdominis, and transversus abdominis/internal oblique abdominis (TrA/IO) muscles during ADIM combined with irradiation variations. There were significant differences in the abdominal muscle activity and the preferential contraction ratio of the TrA/IO among the three groups ( P abdominal muscles of healthy people and athletes. The ADIM without the irradiation is advantageous for recovering motor control of the TrA/IO.

  4. Uncommon external abdominal oblique muscle strain in a professional soccer player: a case report.

    Science.gov (United States)

    Dauty, Marc; Menu, Pierre; Dubois, Charles

    2014-10-01

    This is the first report of external abdominal oblique muscle injury occurring in a professional soccer player. A 28-year-old Caucasian professional soccer player presented after experiencing a popping sensation associated with strong parietal pain localized between the left 11th and 12th ribs. Ultrasound examination revealed a collection of fluid under the 11th rib, suggesting injury of the left external oblique muscle. Platelet-rich plasma treatment was administered and the soccer player returned to competition on the 21st day after treatment. This rare injury results from a sudden intrinsic eccentric contraction of the internal oblique muscle while in a stretched position. Ultrasound can help to confirm the diagnosis and to monitor clinical follow-up. Platelet-rich plasma treatment could aid recovery in high-level athletes.

  5. Static stretching does not alter pre and post-landing muscle activation

    Directory of Open Access Journals (Sweden)

    Moss Wesley R

    2011-05-01

    Full Text Available Abstract Background Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF activity. Methods 26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1st stretching session, and following 2 weeks of stretching. Results A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period. Conclusions Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.

  6. Preventive effects of stretching and stabilization exercises on muscle fatigue in mobile phone users.

    Science.gov (United States)

    Kim, Hye-Young; Yeun, Young-Ran; Kim, Sung-Joong

    2016-09-01

    [Purpose] The purpose of this study was to investigate the preventive effects of stretching and stabilization exercises on muscle fatigue of the neck erector spine and upper trapezius muscles. [Subjects and Methods] The subjects of this study were 26 healthy university students (14 males and 12 females). Each subject was assigned randomly to each of three study groups in order to prevent order effect. The three groups included in this study were the no-exercise, stretching exercise, and neck stabilization exercise groups. The median electromyographic frequency was used as a gauge of muscle fatigue. [Results] Decreased muscle fatigue was demonstrated by an increase in the median electromyographic frequency values in all the four muscle groups in the comparison between conditions 1 and 3. In particular, statistically significant differences were found between the two conditions in the right upper trapezius muscle group. [Conclusion] These findings suggest that the effect of stretching and stabilization exercises can reduce muscle fatigue in mobile phone users.

  7. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  8. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    Science.gov (United States)

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-01-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  9. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  10. Effects of dynamic stretching on strength, muscle imbalance, and muscle activation.

    Science.gov (United States)

    Costa, Pablo B; Herda, Trent J; Herda, Ashley A; Cramer, Joel T

    2014-03-01

    This study aimed to examine the acute effects of dynamic stretching on concentric leg extensor and flexor peak torque, eccentric leg flexor peak torque, and the conventional and functional hamstring-quadriceps (H:Q) ratios. Twenty-one women (mean ± SD age = 20.6 ± 2.0 yr, body mass = 64.5 ± 9.3 kg, height = 164.7 ± 6.5 cm) performed maximal voluntary isokinetic leg extension, flexion, and eccentric hamstring muscle actions at the angular velocities of 60°·s and 180°·s before and after a bout of dynamic hamstring and quadriceps stretching as well as a control condition. Leg flexion peak torque decreased under both control (mean ± SE for 60°s = 75.8 ± 4.0 to 72.4 ± 3.7 N·m, 180°·s = 62.1 ± 3.2 to 59.1 ± 3.1 N·m) and stretching (60°·s = 73.1 ± 3.9 to 65.8 ± 3.3 N·m, 180°·s = 61.2 ± 3.3 to 54.7 ± 2.6 N·m) conditions, whereas eccentric hamstring peak torque decreased only after the stretching (60°·s = 87.3 ± 5.1 to 73.3 ± 3.6 N·m, 180°·s = 89.2 ± 4.4 to 77.0 ± 3.4 N·m) intervention (P ≤ 0.05). Stretching also caused a decrease in conventional H:Q (60°·s = 0.58 ± 0.02 to 0.54 ± 0.02, 180°·s = 0.67 ± 0.02 to 0.61 ± 0.03) and functional H:Q ratios (60°·s = 0.69 ± 0.03 to 0.60 ± 0.03, 180°·s = 1.00 ± 0.06 to 0.60 ± 0.03) (P ≤ 0.05). Because dynamic stretching reduced concentric and eccentric hamstring strength as well as the conventional and functional H:Q ratios, fitness and allied-health professionals may need to be cautious when recommending dynamic rather than static stretching to maintain muscle force.

  11. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching.

    Science.gov (United States)

    Hirata, Kosuke; Miyamoto-Mikami, Eri; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2016-05-01

    It remains unclear whether the acute effect of stretching on passive muscle stiffness differs among the synergists. We examined the muscle stiffness responses of the medial (MG) and lateral gastrocnemii (LG), and soleus (Sol) during passive dorsiflexion before and after a static stretching by using ultrasound shear wave elastography. Before and after a 5-min static stretching by passive dorsiflexion, shear modulus of the triceps surae and the Achilles tendon (AT) during passive dorsiflexion in the knee extended position were measured in 12 healthy subjects. Before the static stretching, shear modulus was the greatest in MG and smallest in Sol. The stretching induced significant reductions in shear modulus of MG, but not in shear modulus of LG and Sol. The slack angle was observed at more plantar flexed position in the following order: AT, MG, LG, and Sol. After the stretching, the slack angles of each muscle and AT were significantly shifted to more dorsiflexed positions with a similar extent. When considering the shift in slack angle, the change in MG shear modulus became smaller. The present study indicates that passive muscle stiffness differs among the triceps surae, and that the acute effect of a static stretching is observed only in the stiff muscle. However, a large part of the reduction of passive muscle stiffness at a given joint angle could be due to an increase in the slack length.

  12. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man.

    Science.gov (United States)

    Cresswell, A G

    1993-01-01

    The purpose of this study was to determine and compare interactions between the abdominal musculature and intra-abdominal pressure (IAP) during controlled dynamic and static trunk muscle loading. Myoelectric activity was recorded in six subjects from the rectus abdominis, obliquus externus, obliquus internus, transversus abdominis and erector spinae muscles using surface and intra-muscular fine-wire electrodes. The IAP was recorded intra-gastrically. Trunk flexions and extensions were performed lying on one side on a swivel table. An adjustable brake provided different friction loading conditions, while adding weights to an unbraked swivel table afforded various levels of inertial loading. During trunk extensions at all friction loads, IAP was elevated (1.8-7.2 kPa) with concomitant activity in transversus abdominis and obliquus internus muscles--little or no activity was seen from rectus abdominis and obliquus externus muscles. For inertia loading during trunk extension, IAP levels were somewhat lower (1.8-5.6 kPa) and displayed a second peak when abdominal muscle activity occurred in the course of decelerating the movement. For single trunk flexions with friction loading, IAP was higher than that seen in extension conditions and increased with added resistance. For inertial loading during trunk flexion, IAP showed two peaks, the larger first peak matched peak forward acceleration and general abdominal muscle activation, while the second corresponded to peak deceleration and was accompanied by activity in transversus abdominis and erector spinae muscles. It was apparent that different loading strategies produced markedly different patterns of response in both trunk musculature and intra-abdominal pressure.

  13. Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.

    Science.gov (United States)

    Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John

    2016-07-01

    The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P stretch tolerance; 136.2%), area under the passive moment curve (i.e., energy storage; 302.6%), and maximal isometric plantarflexor moment (51.3%) were observed after training. Although no change in the slope of the passive moment curve (muscle-tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P muscle stiffness (-14.6%, P muscle strain injury, including strength, ROM, muscle stiffness, and maximal energy storage, indicate that the stretching of active muscle might influence injury risk in addition to muscle function. The lack of change in muscle-tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.

  14. Re-examination of the possible role of Golgi tendon organ and muscle spindle reflexes in proprioceptive neuromuscular facilitation muscle stretching.

    Science.gov (United States)

    Chalmers, Gordon

    2004-01-01

    Literature concerning the theoretical role of spinal reflex circuits and their sensorimotor signals in proprioceptive neuromuscular facilitation (PNF) muscle stretching techniques was examined. Reviewed data do not support the assertion commonly made in PNF literature that contraction of a stretched muscle prior to further stretch, or contraction of opposing muscles during muscle stretch, produces relaxation of the stretched muscle. Further, following contraction of a stretched muscle, inhibition of the stretch reflex response lasts only 1 s. Studies examined suggested that decreases in the response amplitude of the Hoffmann and muscle stretch reflexes following a contraction of a stretched muscle are not due to the activation of Golgi tendon organs, as commonly purported, but instead may be due to presynaptic inhibition of the muscle spindle sensory signal. The current view on the complex manner by which the spinal cord processes proprioceptive signals was discussed. The ability of acute PNF stretching procedures to often produce a joint range of motion greater than that observed with static stretching must be explained by mechanisms other than the spinal processing of proprioceptive information. Studies reviewed indicate that changes in the ability to tolerate stretch and/or the viscoelastic properties of the stretched muscle, induced by PNF procedures, are possible mechanisms.

  15. TRUNK MUSCLE ACTIVITIES DURING ABDOMINAL BRACING: COMPARISON AMONG MUSCLES AND EXERCISES

    Directory of Open Access Journals (Sweden)

    Sumiaki Maeo

    2013-09-01

    Full Text Available Abdominal bracing is often adopted in fitness and sports conditioning programs. However, there is little information on how muscular activities during the task differ among the muscle groups located in the trunk and from those during other trunk exercises. The present study aimed to quantify muscular activity levels during abdominal bracing with respect to muscle- and exercise-related differences. Ten healthy young adult men performed five static (abdominal bracing, abdominal hollowing, prone, side, and supine plank and five dynamic (V- sits, curl-ups, sit-ups, and back extensions on the floor and on a bench exercises. Surface electromyogram (EMG activities of the rectus abdominis (RA, external oblique (EO, internal oblique (IO, and erector spinae (ES muscles were recorded in each of the exercises. The EMG data were normalized to those obtained during maximal voluntary contraction of each muscle (% EMGmax. The % EMGmax value during abdominal bracing was significantly higher in IO (60% than in the other muscles (RA: 18%, EO: 27%, ES: 19%. The % EMGmax values for RA, EO, and ES were significantly lower in the abdominal bracing than in some of the other exercises such as V-sits and sit-ups for RA and EO and back extensions for ES muscle. However, the % EMGmax value for IO during the abdominal bracing was significantly higher than those in most of the other exercises including dynamic ones such as curl-ups and sit-ups. These results suggest that abdominal bracing is one of the most effective techniques for inducing a higher activation in deep abdominal muscles, such as IO muscle, even compared to dynamic exercises involving trunk flexion/extension movements

  16. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers.

    Science.gov (United States)

    Miyamoto, N; Hirata, K; Kanehisa, H

    2017-01-01

    The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Can chronic stretching change the muscle-tendon mechanical properties? A review.

    Science.gov (United States)

    Freitas, S R; Mendes, B; Le Sant, G; Andrade, R J; Nordez, A; Milanovic, Z

    2018-03-01

    It is recognized that stretching is an effective method to chronically increase the joint range of motion. However, the effects of stretching training on the muscle-tendon structural properties remain unclear. This systematic review with meta-analysis aimed to determine whether chronic stretching alter the muscle-tendon structural properties. Published papers regarding longitudinal stretching (static, dynamic and/or PNF) intervention (either randomized or not) in humans of any age and health status, with more than 2 weeks in duration and at least 2 sessions per week, were searched in PubMed, PEDro, ScienceDirect and ResearchGate databases. Structural or mechanical variables from joint (maximal tolerated passive torque or resistance to stretch) or muscle-tendon unit (muscle architecture, stiffness, extensibility, shear modulus, volume, thickness, cross-sectional area, and slack length) were extracted from those papers. A total of 26 studies were selected, with a duration ranging from 3 to 8 weeks, and an average total time under stretching of 1165 seconds per week. Small effects were seen for maximal tolerated passive torque, but trivial effects were seen for joint resistance to stretch, muscle architecture, muscle stiffness, and tendon stiffness. A large heterogeneity was seen for most of the variables. Stretching interventions with 3- to 8-week duration do not seem to change either the muscle or the tendon properties, although it increases the extensibility and tolerance to a greater tensile force. Adaptations to chronic stretching protocols shorter than 8 weeks seem to mostly occur at a sensory level. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Change detection technique for muscle tone during static stretching by continuous muscle viscoelasticity monitoring using wearable indentation tester.

    Science.gov (United States)

    Okamura, Naomi; Kobayashi, Yo; Sugano, Shigeki; Fujie, Masakatsu G

    2017-07-01

    Static stretching is widely performed to decrease muscle tone as a part of rehabilitation protocols. Finding out the optimal duration of static stretching is important to minimize the time required for rehabilitation therapy and it would be helpful for maintaining the patient's motivation towards daily rehabilitation tasks. Several studies have been conducted for the evaluation of static stretching; however, the recommended duration of static stretching varies widely between 15-30 s in general, because the traditional methods for the assessment of muscle tone do not monitor the continuous change in the target muscle's state. We have developed a method to monitor the viscoelasticity of one muscle continuously during static stretching, using a wearable indentation tester. In this study, we investigated a suitable signal processing method to detect the time required to change the muscle tone, utilizing the data collected using a wearable indentation tester. By calculating a viscoelastic index with a certain time window, we confirmed that the stretching duration required to bring about a decrease in muscle tone could be obtained with an accuracy in the order of 1 s.

  19. Abdominal muscle activation increases lumbar spinal stability: analysis of contributions of different muscle groups.

    Science.gov (United States)

    Stokes, Ian A F; Gardner-Morse, Mack G; Henry, Sharon M

    2011-10-01

    Antagonistic activation of abdominal muscles and increased intra-abdominal pressure are associated with both spinal unloading and spinal stabilization. Rehabilitation regimens have been proposed to improve spinal stability via selective recruitment of certain trunk muscle groups. This biomechanical analytical study addressed whether lumbar spinal stability is increased by such selective activation. The biomechanical model included anatomically realistic three-layers of curved abdominal musculature, rectus abdominis and 77 symmetrical pairs of dorsal muscles. The muscle activations were calculated with the model loaded with either flexion, extension, lateral bending or axial rotation moments up to 60 Nm, along with intra-abdominal pressure up to 5 or 10 kPa (37.5 or 75 mm Hg) and partial bodyweight. After solving for muscle forces, a buckling analysis quantified spinal stability. Subsequently, different patterns of muscle activation were studied by forcing activation of selected abdominal muscles to at least 10% or 20% of maximum. Spinal stability increased by an average factor of 1.8 with doubling of intra-abdominal pressure. Forcing at least 10% activation of obliques or transversus abdominis muscles increased stability slightly for efforts other than flexion, but forcing at least 20% activation generally did not produce further increase in stability. Forced activation of rectus abdominis did not increase stability. Based on analytical predictions, the degree of stability was not substantially influenced by selective forcing of muscle activation. This casts doubt on the supposed mechanism of action of specific abdominal muscle exercise regimens that have been proposed for low back pain rehabilitation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Effects of Contract-Relax, Static Stretching, and Isometric Contractions on Muscle-Tendon Mechanics.

    Science.gov (United States)

    Kay, Anthony D; Husbands-Beasley, Jade; Blazevich, Anthony J

    2015-10-01

    Loading characteristics of stretching techniques likely influence the specific mechanisms responsible for acute increases in range of motion (ROM). Therefore, the effects of a version of contract-relax (CR) proprioceptive neuromuscular facilitation stretching, static stretching (SS), and maximal isometric contraction (Iso) interventions were studied in 17 healthy human volunteers. Passive ankle moment was recorded on an isokinetic dynamometer, with EMG recording from the triceps surae, simultaneous real-time motion analysis, and ultrasound-imaging-recorded gastrocnemius medialis muscle and Achilles tendon elongation. Subjects then performed each intervention randomly on separate days before reassessment. Significant increases in dorsiflexion ROM (2.5°-5.3°; P muscle-tendon stiffness (10.1%-21.0%; P stretching (P stretching and Iso (17.7%-22.1%; P 0.05), whereas significant reductions in muscle stiffness occurred after CR stretching and SS (16.0%-20.5%; P 0.05). Increases in peak passive moment (stretch tolerance) occurred after Iso (6.8%; P stretching (10.6%; P = 0.08), and SS (5.2%; P = 0.08); no difference in changes between conditions was found (P > 0.05). Significant correlations (rs = 0.69-0.82; P muscle and tendon stiffness are distinct. Concomitant reductions in muscle and tendon stiffness after CR stretching suggest a broader adaptive response that likely explains its superior efficacy in acutely increasing ROM. Although mechanical changes appear tissue-specific between interventions, similar increases in stretch tolerance after all interventions are strongly correlated with changes in ROM.

  1. Sympathetic modulation of muscle spindle afferent sensitivity to stretch in rabbit jaw closing muscles.

    Science.gov (United States)

    Roatta, S; Windhorst, U; Ljubisavljevic, M; Johansson, H; Passatore, M

    2002-04-01

    Previous reports showed that sympathetic stimulation affects the activity of muscle spindle afferents (MSAs). The aim of the present work is to study the characteristics of sympathetic modulation of MSA response to stretch: (i) on the dynamic and static components of the stretch response, and (ii) on group Ia and II MSAs to evaluate potentially different effects. In anaesthetised rabbits, the peripheral stump of the cervical sympathetic nerve (CSN) was stimulated at 10 impulses s(-1) for 45-90 s. The responses of single MSAs to trapezoidal displacement of the mandible were recorded from the mesencephalic trigeminal nucleus. The following characteristic parameters were determined from averaged trapezoidal responses: initial frequency (IF), peak frequency at the end of the ramp (PF), and static index (SI). From these, other parameters were derived: dynamic index (DI = PF - SI), dynamic difference (DD = PF - IF) and static difference (SD = SI - IF). The effects of CSN stimulation were also evaluated during changes in the state of intrafusal muscle fibre contraction induced by succinylcholine and curare. In a population of 124 MSAs, 106 units (85.4 %) were affected by sympathetic stimulation. In general, while changes in resting discharge varied among different units (Ia vs. II) and experimental conditions (curarised vs. non-curarised), ranging from enhancement to strong depression of firing, the amplitude of the response to muscle stretches consistently decreased. This was confirmed and detailed in a quantitative analysis performed on 49 muscle spindle afferents. In both the non-curarised (23 units) and curarised (26 units) condition, stimulation of the CSN reduced the response amplitude in terms of DD and SD, but hardly affected DI. The effects were equally present in both Ia and II units; they were shown to be independent from gamma drive and intrafusal muscle tone and not secondary to muscle hypoxia. Sympathetic action on the resting discharge (IF) was less

  2. Uninvolved versus target muscle contraction during contract: relax proprioceptive neuromuscular facilitation stretching.

    Science.gov (United States)

    Azevedo, Daniel Camara; Melo, Raphael Marques; Alves Corrêa, Ricardo Vidal; Chalmers, Gordon

    2011-08-01

    The purpose of this study was to compare the acute effect of the contract-relax (CR) stretching technique on knee active range of motion (ROM) using target muscle contraction or an uninvolved muscle contraction. pre-test post-test control experimental design. Clinical research laboratory. Sixty healthy men were randomly assigned to one of three groups. The Contract-Relax group (CR) performed a traditional hamstring CR stretch, the Modified Contract-Relax group (MCR) performed hamstring CR stretching using contraction of an uninvolved muscle distant from the target muscle, and the Control group (CG) did not stretch. Active knee extension test was performed before and after the stretching procedure. Two-way between-within analysis of variance (ANOVA) results showed a significant interaction between group and pre-test to post-test (p < 0.001). Post-hoc examination of individual groups showed no significant change in ROM for the CG (0.8°, p = 0.084), and a significant moderate increase in ROM for both the CR (7.0°, p < 0.001) and MCR (7.0°, p < 0.001) groups. ROM gain following a CR PNF procedure is the same whether the target stretching muscle is contracted, or an uninvolved muscle is contracted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Dynamic Stretching does not Change the Stiffness of the Muscle-Tendon Unit.

    Science.gov (United States)

    Mizuno, T; Umemura, Y

    2016-12-01

    The purpose of this study was to identify changes in ankle range of motion and passive mechanical properties of the muscle-tendon unit after dynamic stretching. 12 healthy subjects participated in this study. Displacement of the muscle-tendon junction was measured using ultrasonography while the ankle was passively dorsiflexed at 1°/sec to its maximal dorsiflexion angle. Passive torque was also measured using an isokinetic dynamometer. Measurements were conducted pre-intervention, immediately after the intervention and 5, 10, 15 and 30 min post-intervention. The dynamic stretching consisted of four 30-s periods of ankle dorsiflexion and plantarflexion. Ankle range of motion was significantly increased immediately (from 18.3±1.8° to 21.4±1.7°) and 10 min (20.9±1.9°) after dynamic stretching, but this change disappeared within 15 min. However, stiffness of the muscle-tendon unit and displacement of the muscle-tendon junction at the submaximal dorsiflexion angle did not differ between the experimental conditions. These results demonstrate that dynamic stretching by contracting an antagonist muscle group increases ankle range of motion temporarily without changing the passive mechanical properties of the muscle-tendon unit. The increased range of motion of the ankle after dynamic stretching might be caused by enhanced stretch tolerance. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch.

    Science.gov (United States)

    Luo, De-Yi; Wazir, Romel; Du, Caigan; Tian, Ye; Yue, Xuan; Wei, Tang-Qiang; Wang, Kun-Jie

    2015-11-01

    The purpose of this study was to describe and test a kind of stretch pattern which is based on modified BOSE BioDynamic system to produce optimum physiological stretch during bladder cycle. Moreover, we aimed to emphasize the effects of physiological stretch's amplitude upon proliferation and contractility of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to stretch simulating bladder cycle at the range of stretches and time according to customized software on modified BOSE BioDynamic bioreactor. Morphological changes were assessed using immunofluorescence and confocal laser scanning microscope. Cell proliferation and cell viability were determined by BrdU incorporation assay and Cell Counting Kit-8, respectively. Contractility of the cells was determined using collagen gel contraction assay. RT-PCR was used to assess phenotypic and contractility markers. HBSMCs were found to show morphologically spindle-shaped and orientation at various elongations in the modified bioreactor. Stretch-induced proliferation and viability depended on the magnitude of stretch, and stretches also regulate contractility and contraction markers in a magnitude-dependent manner. We described and tested a kind of stretch pattern which delivers physiological stretch implemented during bladder cycle. The findings also showed that mechanical stretch can promote magnitude-dependent morphological, proliferative and contractile modulation of HBSMCs in vitro.

  5. Muscle and joint responses during and after static stretching performed at different intensities.

    Science.gov (United States)

    Freitas, Sandro R; Andrade, Ricardo J; Larcoupaille, Lilian; Mil-homens, Pedro; Nordez, Antoine

    2015-06-01

    We investigated the effects of plantarflexor static stretching of different intensities on the medial gastrocnemius (GAS) shear elastic modulus, GAS fascicle length and ankle passive torque-angle responses during and after stretching. Participants performed three stretching sessions of different intensities: 40 % (R40) of maximal dorsiflexion range of motion (ROM), 60 % (R60) of ROM, and 80 % (R80) of ROM. Each stretching lasted 10 min. The GAS architecture, GAS shear elastic modulus, ankle passive torque-angle, and muscle activity were assessed before, during, and after the stretching. The absolute and relative (i.e., normalized to the static stretching start value) GAS shear elastic modulus relaxation varied across stretching intensities. The absolute passive torque relaxation varied across intensities (p stretching start value. No significant changes were observed in GAS fascicle length during the stretching (p = 0.93). After stretching, passive torque at a given angle was significantly decreased for R60 [-0.99 ± 0.59 Nm (-6.5 ± 3.8 %), p stretching and post-stretching effect in the GAS shear elastic modulus or ankle passive torque variables. No significant relation was found between the shear elastic modulus and the ankle passive torque responses during and after stretching. The effects of stretching on joint passive torque do not reflect changes in the medial gastrocnemius shear elastic modulus, and these responses to stretching depend on its intensity.

  6. Influence of passive stretching on inhibition of disuse atrophy and hemodynamics of rat soleus muscle

    OpenAIRE

    Kimura, Shigefumi; Inaoka, Pleiades Tiharu; Yamazaki, Toshiaki

    2012-01-01

    The purpose of this study was to determine the infl uence of passive stretching on inhibition of disuse atrophy and hemodynamics among longitudinal regions of the rat soleus muscle. Disuse muscle atrophy was induced by hindlimb suspension for two weeks. Muscle blood flow was evaluated using thallium-201 (201Tl) which is a radiotracer that has been reported to be useful to assess blood perfusion in skeletal muscle. Thirty-nine male Wistar rats were divided randomly into 5 groups: control (C: n...

  7. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  8. Static vs. Dynamic Acute Stretching Effect on Quadriceps Muscle Activity during Soccer Instep Kicking

    Science.gov (United States)

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2013-01-01

    The purpose of this study was to compare the effects of static and dynamic stretching on quadriceps muscle activation during maximal soccer instep kicking. The kicking motion of twelve male college soccer players (body height: 174.66 ± 5.01 cm; body mass: 72.83 ± 4.83 kg; age: 18.83 ± 0.75 years) was captured using six synchronized high-speed infra-red cameras whilst electromyography (EMG) signals from vastus medialis (VM), lateralis (VL) and rectus femoris (RF) were recorded before and after static or dynamic stretching. Analysis of variance designs showed a higher increase in knee extension angular velocity (9.65% vs. −1.45%, p stretching exercises. Based on these results, it could be suggested that dynamic stretching is probably more effective in increasing quadriceps muscle activity and knee extension angular velocity during the final swing phase of a maximal soccer instep kick than static stretching. PMID:24511339

  9. Acute effects of passive stretching of the plantarflexor muscles on neuromuscular function: the influence of age.

    Science.gov (United States)

    Ryan, Eric D; Herda, Trent J; Costa, Pablo B; Herda, Ashley A; Cramer, Joel T

    2014-01-01

    The acute effects of stretching on peak force (Fpeak), percent voluntary activation (%VA), electromyographic (EMG) amplitude, maximum range of motion (MROM), peak passive torque, the passive resistance to stretch, and the percentage of ROM at EMG onset (%EMGonset) were examined in 18 young and 19 old men. Participants performed a MROM assessment and a maximal voluntary contraction of the plantarflexors before and immediately after 20 min of passive stretching. Fpeak (-11 %), %VA (-6 %), and MG EMG amplitude (-9 %) decreased after stretching in the young, but not the old (P > 0.05). Changes in Fpeak were related to reductions in all muscle activation variables (r = 0.56-0.75), but unrelated to changes in the passive resistance to stretch (P ≥ 0.24). Both groups experienced increases in MROM and peak passive torque and decreases in the passive resistance to stretch. However, the old men experienced greater changes in MROM (P stretching for both groups (P = 0.213), but occurred earlier in the old (P = 0.06). The stretching-induced impairments in strength and activation in the young but not the old men may suggest that the neural impairments following stretching are gamma-loop-mediated. In addition, the augmented changes in MROM and passive torque and the lack of change in %EMGonset for the old men may be a result of age-related changes in muscle-tendon behavior.

  10. Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes.

    Science.gov (United States)

    Djilas, Milan; Azevedo-Coste, Christine; Guiraud, David; Yoshida, Ken

    2009-10-01

    In this study, we explored the feasibility of estimating muscle length in passive conditions by interpreting nerve responses from muscle spindle afferents recorded with thin-film longitudinal intrafascicular electrodes. Afferent muscle spindle response to passive stretch was recorded in ten acute rabbit experiments. A newly proposed first-order model of muscle spindle response to passive sinusoidal muscle stretch manages to capture the relationship between afferent neural firing rate and muscle length. We demonstrate that the model can be used to track random motion trajectories with bandwidth from 0.1 to 1 Hz over a range of 4 mm with a muscle length estimation error of 0.3 mm (1.4 degrees of joint angle). When estimation is performed using four-channel ENG there is a 50% reduction in estimate variation, compared to using single-channel recordings.

  11. Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation.

    Science.gov (United States)

    Bjerkefors, Anna; Squair, Jordan W; Chua, Romeo; Lam, Tania; Chen, Zhen; Carpenter, Mark G

    2015-02-01

    To use transcranial magnetic stimulation and electromyography to assess the potential for preserved function in the abdominal muscles in individuals classified with motor-complete spinal cord injury above T6. Five individuals with spinal cord injury (C5-T3) and 5 able-bodied individuals. Transcranial magnetic stimulation was delivered over the abdominal region of primary motor cortex during resting and sub-maximal (or attempted) contractions. Surface electromyography was used to record motor-evoked potentials as well as maximal voluntary (or attempted) contractions in the abdominal muscles and the diaphragm. Responses to transcranial magnetic stimulation in the abdominal muscles occurred in all spinal cord injury subjects. Latencies of muscle response onsets were similar in both groups; however, peak-to-peak amplitudes were smaller in the spinal cord injury group. During maximal voluntary (or attempted) contractions all spinal cord injury subjects were able to elicit electromyography activity above resting levels in more than one abdominal muscle across tasks. Individuals with motor-complete spinal cord injury above T6 were able to activate abdominal muscles in response to transcranial magnetic stimulation and during maximal voluntary (or attempted) contractions. The activation was induced directly through corticospinal pathways, and not indirectly by stretch reflex activations of the diaphragm. Transcranial magnetic stimulation and electromyography measurements provide a useful method to assess motor preservation of abdominal muscles in persons with spinal cord injury.

  12. REPEATED ABDOMINAL EXERCISE INDUCES RESPIRATORY MUSCLE FATIGUE

    Directory of Open Access Journals (Sweden)

    J. Richard Coast

    2009-12-01

    Full Text Available Prolonged bouts of hyperpnea or resisted breathing are known to result in respiratory muscle fatigue, as are primarily non respiratory exercises such as maximal running and cycling. These exercises have a large ventilatory component, though, and can still be argued to be respiratory activities. Sit-up training has been used to increase respiratory muscle strength, but no studies have been done to determine whether this type of non-respiratory activity can lead to respiratory fatigue. The purpose of the study was to test the effect of sit-ups on various respiratory muscle strength and endurance parameters. Eight subjects performed pulmonary function, maximum inspiratory pressure (MIP and maximum expiratory pressure (MEP measurements, and an incremental breathing test before and after completing a one-time fatiguing exercise bout of sit-ups. Each subject acted as their own control performing the same measurements 3-5 days following the exercise bout, substituting rest for exercise. Following sit-up induced fatigue, significant decreases were measured in MIP [121.6 ± 26 to 113.8 ± 23 cmH2O (P <0.025], and incremental breathing test duration [9.6 ± 1.5 to 8.5 ± 0.7 minutes (P <0.05]. No significant decreases were observed from control pre-test to control post-test measurements. We conclude that after a one-time fatiguing sit-up exercise bout there is a reduction in respiratory muscle strength (MIP, MEP and endurance (incremental breathing test duration but not spirometric pulmonary function

  13. Sweating response to passive stretch of the calf muscle during activation of forearm muscle metaboreceptors in heated humans.

    Science.gov (United States)

    Amano, Tatsuro; Ichinose, Masashi; Nishiyasu, Takeshi; Inoue, Yoshimitsu; Koga, Shunsaku; Miwa, Mikio; Kondo, Narihiko

    2014-05-15

    Activation of muscle metaboreceptors and mechanoreceptors has been shown to independently influence the sweating response, while their integrative control effects remain unclear. We examined the sweating response when the two muscle receptors are concurrently activated in different limbs, as well as the blood pressure response. In total, 27 young males performed passive calf muscle stretches (muscle mechanoreceptor activation) for 30 s in a semisupine position with and without postisometric handgrip exercise muscle ischemia (PEMI, muscle metaboreceptor activation) at exercise intensities of 35 and 50% of maximum voluntary contraction (MVC) under hot conditions (ambient temperature, 35°C, relative humidity, 50%). Passive calf muscle stretching alone increased the mean sweating rate significantly on the forehead, chest, and thigh (SRmean) and mean arterial blood pressure (MAP), but not the heart rate (HR), from prestretching levels by 0.04 ± 0.01 mg·cm(2)·min(-1), 4.0 ± 1.3 mmHg (P 0.05), respectively. The SRmean and MAP during PEMI were significantly higher than those at rest. The passive calf muscle stretch during PEMI increased MAP significantly by 3.4 ± 1.0 and 2.0 ± 0.7 mmHg for 35 and 50% of MVC, respectively (P muscle receptors in different limbs differ and that the influence of calf muscle mechanoreceptor activation alone on the sweating response disappears during forearm muscle metaboreceptor activation. Copyright © 2014 the American Physiological Society.

  14. Effect of abdominal and pelvic floor tasks on muscle activity, abdominal pressure and bladder neck.

    Science.gov (United States)

    Junginger, Baerbel; Baessler, Kaven; Sapsford, Ruth; Hodges, Paul W

    2010-01-01

    Although the bladder neck is elevated during a pelvic floor muscle (PFM) contraction, it descends during straining. This study aimed to investigate the relationship between bladder neck displacement, electromyography (EMG) activity of the pelvic floor and abdominal muscles and intra-abdominal pressure (IAP) during different pelvic floor and abdominal contractions. Nine women without PFM dysfunction performed maximal, gentle and moderate PFM contractions, maximal and gentle transversus abdominis (TrA) contractions, bracing, Valsalva and head lift. Bladder neck position was assessed with perineal ultrasound. PFM and abdominal muscle activities were recorded with a vaginal probe and fine-wire electrodes, respectively. IAP was recorded with a rectal balloon. Bladder neck elevation only occurred during PFM and TrA contractions. PFM EMG and IAP increased during all tasks from 0.5 (gentle TrA) to 45.7 cmH2O (maximal Valsalva). Bladder neck elevation was only observed when the activity of PFM EMG was high relative to the IAP increase.

  15. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles

    Science.gov (United States)

    Lin, Shih-Ping; Lin, Yi-Hsun; Fan, Shih-Chen; Huang, Bu-Miin; Lin, Wei-Yin; Wang, Shyh-Hau; Shung, K. Kirk; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU) improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors. Gastrocnemius muscles from mice were assembled and ex vivo passive stretching was performed before or after injury. After injury, the muscle significantly decreased mechanical strength. Ultrasonic images were obtained by HFU at different deformations to scan in cross and longitudinal orientations of muscle. The ultrasonography was quantified by echogenicity and Nakagami parameters (NP) for structural evaluation and correlated with histological results. The injured muscle at its original length exhibited decreased echogenicity and NP from HFU images. Cross-sectional ultrasonography revealed a loss of correlation between NP and passive muscle stretching that suggested a special scatterer pattern in the cross section of injured muscle. The independence of NP during passive stretching of injured muscle was confirmed by histological findings in ruptured collagen fibers, decreased muscle density, and increased intermuscular fiber space. Thus, HFU analysis of NP in cross section represents muscle injury that may benefit the clinical diagnosis. PMID:27034946

  16. Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women.

    Science.gov (United States)

    Manoel, Mateus E; Harris-Love, Michael O; Danoff, Jerome V; Miller, Todd A

    2008-09-01

    The purpose of this study was to investigate the acute effects of 3 types of stretching-static, dynamic, and proprioceptive neuromuscular facilitation (PNF)-on peak muscle power output in women. Concentric knee extension power was measured isokinetically at 60 degrees x s(-1) and 180 degrees x s(-1) in 12 healthy and recreationally active women (mean age +/- SD, 24 +/- 3.3 years). Testing occurred before and after each of 3 different stretching protocols and a control condition in which no stretching was performed. During 4 separate laboratory visits, each subject performed 5 minutes of stationary cycling at 50 W before performing the control condition, static stretching protocol, dynamic stretching protocol, or PNF protocol. Three submaximal warm-up trials preceded 3 maximal knee extensions at each testing velocity. A 2-minute rest was allowed between testing at each velocity. The results of the statistical analysis indicated that none of the stretching protocols caused a decrease in knee extension power. Dynamic stretching produced percentage increases (8.9% at 60 degrees x s(-1) and 6.3% at 180 degrees x s(-1)) in peak knee extension power at both testing velocities that were greater than changes in power after static and PNF stretching. The findings suggest that dynamic stretching may increase acute muscular power to a greater degree than static and PNF stretching. These findings may have important implications for athletes who participate in events that rely on a high level of muscular power.

  17. Acute effects of stretching exercise on the soleus muscle of female aged rats.

    Science.gov (United States)

    Zotz, Talita Gnoato; Capriglione, Luiz Guilherme A; Zotz, Rafael; Noronha, Lucia; Viola De Azevedo, Marina Louise; Fiuza Martins, Hilana Rickli; Silveira Gomes, Anna Raquel

    2016-01-01

    It has been shown that stretching exercises can improve the flexibility and independence of the elderly. However, although these exercises commonly constitute training programs, the morphological adaptations induced by stretching exercises in aged skeletal muscle are still unclear. To assess the acute effects of passive mechanical static stretching on the morphology, sarcomerogenesis and modulation of important components of the extracellular matrix of the soleus muscle of aged female rats. Fifteen old female rats with 26 months were divided into two groups: stretching (n=8, SG) and control (n=7, CG): The stretching protocol consisted of 4 repetitions each of 1 min with 30s interval between sets. Stretching was performed on the left soleus muscle, 3 times a week for 1 week. After three sessions, the rats were anesthetized to remove the left soleus muscle, and then euthanized. The following analyses were carried out: muscle fiber cross-sectional area and serial sarcomere number; immunohistochemistry for the quantification of collagen I, III and TGFβ-1. a decrease in muscle fiber cross-sectional area of the SG was observed when compared to the CG (p=0.0001, Kruskal-Wallis); the percentage of type I collagen was significantly lower in the SG when compared to the CG (p=0.01, Kruskal-Wallis), as well as the percentage of TGFβ-1 (p=0.04, Kruskal-Wallis); collagen III was significantly higher in the SG than in the CG (7.06±6.88% vs 4.92±5.30%, p=0.01, Kruskal-Wallis). Although the acute stretching induced muscle hypotrophy, an antifibrotic action was detected. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Shoulder horizontal abduction stretching effectively increases shear elastic modulus of pectoralis minor muscle.

    Science.gov (United States)

    Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki

    2017-07-01

    Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Stretching versus transitory icing: which is the more effective treatment for attenuating muscle fatigue after repeated manual labor?

    Science.gov (United States)

    Eguchi, Yasumasa; Jinde, Manabu; Murooka, Kazuki; Konno, Yoshimasa; Ohta, Masanori; Yamato, Hiroshi

    2014-12-01

    Effective recovery from muscle fatigue, especially during rest intervals between periods of high-intensity activity, is important to ensure optimal subsequent performance. Stretching and icing are two types of treatment used for muscle recovery in such situations. However, their effectiveness remains unclear because of a lack of adequate evidence and/or discrepant results of previous studies. We performed a study to elucidate the effects of stretching and icing on muscle fatigue in subjects performing alternating muscle contraction and rest. Sixteen healthy male subjects aged 21-27 years were evaluated. Each subject performed repeated isometric muscle contraction exercises that involved lifting and holding a dumbbell to induce muscle fatigue. Four treatments were performed during the rest periods between isometric muscle contraction: static stretching, ballistic stretching, no stretching, or icing. Electromyography and relative muscle oxygen saturation measurements were performed during the exercises. Muscle fatigue was indirectly estimated by the decline in the median frequency of the electromyographic signal. Stretching between alternate isometric muscle contraction exercises resulted in a significantly lower median frequency of the electromyographic signal than did no stretching. There was no significant difference in the change in the median frequency between static and ballistic stretching. Conversely, icing between alternate exercises did not decrease the median frequency. Stretching, whether static or ballistic, is not beneficial for recovery from muscle fatigue and may actually inhibit recovery. Icing may more effectively induce such recovery and thus may be a better choice between the two treatment techniques.

  20. Relationship between ultrasonography and electromyography measurement of abdominal muscles when activated with and without pelvis floor muscles contraction.

    Science.gov (United States)

    Tahan, N; Arab, A M; Arzani, P; Rahimi, F

    2013-12-01

    The importance of the abdominal musculature in spine stability, has promoted the development of a variety of studies. Ultrasound imaging (UI) is a valuable tool which, when applied appropriately, has the potential to provide significant insight into abdominal muscle contraction. Limited studies have been taken place regarding the relationship between ultrasound measures of muscle thickening and electromyography (EMG) measures of activation. Inconsistent results, however, have been reported. Based on previous studies association between abdominal muscle activation and thickening may be affected by contraction level. The aims of this study were to measure the relationship between abdominal muscle thickness and abdominal muscles amplitude in different levels of abdominal muscles contraction. The research was carried on with a convenience sampling at the Physical Therapy Department of University of Social Welfare and Rehabilitation Sciences. Thirty healthy participants volunteered for this study. Muscle thickness right transversus abdominis (TrA) and obliqus internus (OI) muscles in abdominal hallowing maneuvers with and without pelvic floor muscle (PFM) contraction has been measured. Additionally, surface EMG of the right TrA/IO muscles was recorded. A hardware electrical part that acts as trigger system was used to record the activities of abdominal muscles in UI and EMG synchronously. Thickness change, normalized thickness and maximum amplitude abdominal muscles were used for statistical analysis. Correlations between the thickness change and amplitude measures were -0.03 -- 0.38 for TrA/IO. The Correlations between the normalized thickness and amplitude measures were -0.04--0.26 for TrA/IO. There is not clear relationship between increases in abdominal muscle activation and corresponding measures of thickening during abdominal muscle contraction. Changes in thickness of deep abdominal muscle cannot be used to indicate changes in the electrical activity in this

  1. Abdominal muscle activity during breathing in different postural sets in healthy subjects.

    Science.gov (United States)

    Mesquita Montes, António; Gouveia, Sara; Crasto, Carlos; de Melo, Cristina Argel; Carvalho, Paulo; Santos, Rita; Vilas-Boas, João Paulo

    2017-04-01

    This study aims to evaluate the effect of different postural sets on abdominal muscle activity during breathing in healthy subjects. Twenty-nine higher education students (20.86 ± 1.48 years; 9 males) breathed at the same rhythm (inspiration: 2 s; expiration: 4 s) in supine, standing, tripod and 4-point-kneeling positions. Surface electromyography was performed to assess the activation intensity of rectus abdominis, external oblique and transversus abdominis/internal oblique muscles during inspiration and expiration. During both breathing phases, the activation intensity of external oblique and transversus abdominis/internal oblique was significantly higher in standing when compared to supine (p ≤ 0.001). No significant differences were found between tripod position and 4-point-kneeling positions. Transversus abdominis/internal oblique activation intensity in these positions was higher than in supine and lower than in standing. Postural load and gravitational stretch are factors that should be considered in relation to the specific recruitment of abdominal muscles for breathing mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force

    Directory of Open Access Journals (Sweden)

    Leyla Alizadeh Ebadi

    2018-03-01

    Full Text Available The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A 5 min jogging; (B 5 min jogging followed by 15 s static stretching; (C 5 min jogging followed by 30 s static stretching; (D 5 min jogging, followed by static stretching for 45 s. Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  3. Influence of acute static stretching on the behavior of maximum muscle strength

    Directory of Open Access Journals (Sweden)

    Carmen Lúcia Borges Bastos

    2014-06-01

    Full Text Available The aim of this study was to compare the influence of acute static stretching on maximal muscle strength (1RM. The non-probabilistic sample consisted of 30 subjects split into two groups: static stretching (SS= 15 and without stretching group (WS= 15. Muscle strength evaluation (1RM was conducted with a Dynamometer model 32527pp400 Pound push / pull devices coupled in knee extension (KE and bench press (BP. The Wilcoxon test for intragroup comparisons and the Kruskal-Wallis test for comparisons between groups (p< 0.05 were selected. There were no significant differences (p> 0.05 between the SS and WS in exercise KE and BP. Therefore, it can be concluded that there was no reduction in the performance of 1RM performing the exercises KE and BP when preceded by static stretching.

  4. PENGARUH ABDOMINAL MUSCLE STRENGTHENING DENGAN METODE PILATES

    Directory of Open Access Journals (Sweden)

    Bambang Trisnowiyanto

    2016-12-01

    Full Text Available Seseorang yang memiliki kebiasaan melakukan aktivitas pasif seperti duduk lama saat bekerja dapat meningkatkan resiko terjadinya muscle power imbalance pada otot-otot penyangga tubuh yang pada akhirnya mudah mengalami nyeri pada punggung bagian bawah, sehinga bila melakukan aktifitas atau pekerjaan yang melebihi kapasitas fisik yang dimiliki, akan mudah mengalami kelelahan dan bila dipaksakan dapat terjadi cedera, seperti terjadinya spasme atau kram pada otot perut. Peningkatan kekuatan otot perut, salah satunya dapat dicapai dengan latihan Pilates yang memiliki keunggulan memiliki fokus latihan yang bertujuan menguatkan otot-otot core stability diantaranya adalah otot perut. Tujuan: Untuk mengetahui pengaruh latihan Pilates terhadap peningkatan kekuatan otot perut. Subyek Penelitian Sebanyak 34 terdiri dari ibu-ibu rumah tangga dengan rentang usia antara 30–50 tahun. Metode Penelitian: Eksperimen dengan rancangan one group pre-post test with control dengan kriteria inklusi dan ekslusi. Bentuk latihan pilates yang dipilih adalah khusus gerakan yang ditujukan untuk latihan otot-otot perut sebanyak 16 gerakan, program latihan diberikan selama 2 bulan, dengan durasi selama 45 menit/sesi latihan, 2 kali/minggu. Pengukuran kekuatan otot perut menggunakan curl up test. Analisis Statistik: Uji beda pre-post test dengan Wilcoxon Test, didapatkan p=0,000 (p<0.05 dan uji beda pre-pre test dan post-post test dengan Mann-whitney U Test kedua kelompok p=0,849(p<0.05  dan post-post test kedua kelompok p=0,007 (p<0.05. Kesimpulan: Latihan Pilates berpengaruh terhadap peningkatan kekuatan otot perut.

  5. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    Directory of Open Access Journals (Sweden)

    Wada JT

    2016-10-01

    Full Text Available Juliano T Wada,1 Erickson Borges-Santos,1 Desiderio Cano Porras,1 Denise M Paisani,1 Alberto Cukier,2 Adriana C Lunardi,1 Celso RF Carvalho1 1Department of Physical Therapy, 2Department of Cardiopneumology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil Background: Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown.Objective: The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD.Design: This study was a randomized and controlled trial.Participants: A total of 30 patients were allocated to a treatment group (TG or a control group (CG; n=15, each group.Intervention: The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks of aerobic training.Evaluations: Functional exercise capacity (6-minute walk test, thoracoabdominal kinematics (optoelectronic plethysmography, and respiratory muscle activity (surface electromyography were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%.Results: After the intervention, the TG showed improved abdominal (ABD contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01. The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001.Conclusion: Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional

  6. Acute Effects of Static and Proprioceptive Neuromuscular Facilitation Stretching on Muscle Strength and Power Output.

    Science.gov (United States)

    Marek, Sarah M; Cramer, Joel T; Fincher, A Louise; Massey, Laurie L; Dangelmaier, Suzanne M; Purkayastha, Sushmita; Fitz, Kristi A; Culbertson, Julie Y

    2005-06-01

    Context: Stretching is commonly used as a technique for injury prevention in the clinical setting. Our findings may improve the understanding of the neuromuscular responses to stretching and help clinicians make decisions for rehabilitation progression and return to play.Objective: To examine the short-term effects of static and proprioceptive neuromuscular facilitation stretching on peak torque (PT), mean power output (MP), active range of motion (AROM), passive range of motion (PROM), electromyographic (EMG) amplitude, and mechanomyographic (MMG) amplitude of the vastus lateralis and rectus femoris muscles during voluntary maximal concentric isokinetic leg extensions at 60 and 300 degrees .s.Design: A randomized, counterbalanced, cross-sectional, repeated-measures design.Setting: A university human research laboratory.Patients or Other Participants: Ten female (age, 23 +/- 3 years) and 9 male (age, 21 +/- 3 years) apparently healthy and recreationally active volunteers.Intervention(s): Four static or proprioceptive neuromuscular facilitation stretching exercises to stretch the leg extensor muscles of the dominant limb during 2 separate, randomly ordered laboratory visits.Main Outcome Measure(s): The PT and MP were measured at 60 and 300 degrees .s, EMG and MMG signals were recorded, and AROM and PROM were measured at the knee joint before and after the stretching exercises.Results: Static and proprioceptive neuromuscular facilitation stretching reduced PT (P = .051), MP (P = .041), and EMG amplitude (P = .013) from prestretching to poststretching at 60 and 300 degrees .s (P proprioceptive neuromuscular facilitation stretching. The MMG amplitude increased in the rectus femoris muscle in response to the static stretching at 60 degrees .s (P = .031), but no other changes in MMG amplitude were observed (P > .05).Conclusions: Both static and proprioceptive neuromuscular facilitation stretching caused similar deficits in strength, power output, and muscle activation at

  7. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles

    Energy Technology Data Exchange (ETDEWEB)

    Loughna, P.; Goldspink, G.; Goldspink, D.F.

    1986-07-01

    Muscle atrophy in humans can occur during prolonged bed rest, plaster cast immobilization, and space flight. In the present study, the suspension model used by Musacchia et al. (1983) is employed to investigate changes in protein synthesis and degradation in fast-twitch phasic (extensor digitorum longus) and slow-twitch postural (soleus) muscles in the rat, following hypokinesia and hypodynamia. In addition, the use of passive stretch was examined as a means of preventing atrophy. The obtained results suggest that the mechanisms controlling the processes of protein synthesis and protein breakdown during muscle disuse atrophy may be independent of each other. It appears, however, that the muscle atrophy due to hypokinesia and hypodynamia can be temporarily prevented by passively stretching a muscle. 38 references.

  8. Effect of proprioceptive neuromuscular facilitation stretching on the plantar flexor muscle-tendon tissue properties.

    Science.gov (United States)

    Mahieu, N N; Cools, A; De Wilde, B; Boon, M; Witvrouw, E

    2009-08-01

    Proprioceptive neuromuscular facilitation (PNF) stretching programs have been shown to be the most effective stretching technique to increase the range of motion (ROM). The objective of this study was to examine the mechanism of effect of PNF stretching on changes in the ROM. Sixty-two healthy subjects were randomized into two groups: a PNF stretching group and a control group. The PNF group performed a 6-week stretching program for the calf muscles. Before and after this period, all subjects were evaluated for dorsiflexion ROM, passive resistive torque (PRT) of the plantar flexors and stiffness of the Achilles tendon. The results of the study revealed that the dorsiflexion ROM was significantly increased in the PNF group (DeltaROMext: 5.97+/-0.671 degrees ; DeltaROMflex: 5.697+/-0.788 degrees ). The PRT of the plantar flexors and the stiffness of the Achilles tendon did not change significantly after 6 weeks of PNF stretching. These findings provide evidence that PNF stretching results in an increased ankle dorsiflexion. However, this increase in ROM could not be explained by a decrease of the PRT or by a change in stiffness of the Achilles tendon, and therefore can be explained by an increase in stretch tolerance.

  9. Making muscle elastic: the structural basis of myomesin stretching.

    Directory of Open Access Journals (Sweden)

    Larissa Tskhovrebova

    2012-02-01

    Full Text Available Skeletal and cardiac muscles are remarkable biological machines that support and move our bodies and power the rhythmic work of our lungs and hearts. As well as producing active contractile force, muscles are also passively elastic, which is essential to their performance. The origins of both active contractile and passive elastic forces can be traced to the individual proteins that make up the highly ordered structure of muscle. In this Primer, we describe the organization of sarcomeres--the structural units that produce contraction--and the nature of the proteins that make muscle elastic. In particular, we focus on an elastic protein called myomesin, whose novel modular architecture helps explain elasticity.

  10. Assessing muscle spasticity with Myotonometric and passive stretch measurements: validity of the Myotonometer

    Science.gov (United States)

    Li, Xiaoyan; Shin, Henry; Li, Sheng; Zhou, Ping

    2017-01-01

    Spasticity of the biceps brachii muscle was assessed using the modified Ashworth Scale (MAS), Myotonometry and repeated passive stretch techniques, respectively. Fourteen subjects with chronic hemiplegia participated in the study. Spasticity was quantified by muscle displacements and compliance from the Myotonometer measurements and resistive torques from the repeated passive stretch at velocities of 5 °/s and 100 °/s, respectively. Paired t-tests indicated a significant decrease of muscle displacement and compliance in the spastic muscles as compared to the contralateral side (muscle displacement: spastic: 4.84 ± 0.33 mm, contralateral: 6.02 ± 0.49 mm, p = 0.038; compliance: spastic: 1.79 ± 0.12 mm/N, contralateral: 2.21 ± 0.18 mm/kg, p = 0.048). In addition, passive stretch tests indicated a significant increase of total torque at the velocity of 100 °/s compared with that of 5 °/s (Tt5 = 2.82 ± 0.41 Nm, Tt100 = 6.28 ± 1.01 Nm, p stretch test and the Myotonometer measurements (r spasticity in stroke. PMID:28281581

  11. Effectiveness of passive stretching versus hold relax technique in flexibility of hamstring muscle

    Directory of Open Access Journals (Sweden)

    Gauri Shankar

    2010-10-01

    Full Text Available Aim: To compare the effectiveness of passive stretching and hold relax technique in the flexibility of hamstring muscle. Methods: A total of 80 normal healthy female subjects between age group 20-30 years referred to the department of physiotherapy, Sumandeep Vidyapeeth University, sampling method being convenient sampling. The subjects were randomly divided in two groups i.e. passive stretching group (n=40 and PNF group (n=40 and given passive stretching and proprioceptive neuromuscular facilitation technique respectively. Active knee extension range was measured before and after the intervention by goniometer. Results: t test showed a highly significant (p=0.000 increase in range of motion in PNF group. Conclusion: Proprioceptive neuromuscular facilitation technique is more effective in increasing hamstring flexibility than the passive stretching.

  12. The combined influence of stretch, mobility and electrical stimulation in the prevention of muscle fiber atrophy caused hypokinesia and hypodynamia

    Science.gov (United States)

    Goldspink, G.; Goldspink, D.; Loughna, P.

    1984-01-01

    The morphological and biochemical changes which occur in the hind limb muscles of the rat in response to hypokinesia and hypodynamia were investigated. Hind limb cast fixation and suspension techniques were employed to study the musclar atrophy after five days of hypokinesia and hypodynamia induced by suspension, appreciable muscular atrophy was apparent, particularly in the anti-gravity muscles. The effect of passive stretching and electrical stimulation on muscle atrophy was studied. Changes in muscle protein mass were assessed with spectrophotometric and radioactive techniques. Passive stretch is shown to counteract muscle disuse atrophy. The change in the numbers of specific muscle fibers in atrophied muscles is discussed.

  13. Passive Repetitive Stretching for a Short Duration within a Week Increases Myogenic Regulatory Factors and Myosin Heavy Chain mRNA in Rats' Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Yurie Kamikawa

    2013-01-01

    Full Text Available Stretching is a stimulation of muscle growth. Stretching for hours or days has an effect on muscle hypertrophy. However, differences of continuous stretching and repetitive stretching to affect muscle growth are not well known. To clarify the difference of continuous and repetitive stretching within a short duration, we investigated the gene expression of muscle-related genes on stretched skeletal muscles. We used 8-week-old male Wistar rats ( for this study. Animals medial gastrocnemius muscle was stretched continuously or repetitively for 15 min daily and 4 times/week under anesthesia. After stretching, muscles were removed and total RNA was extracted. Then, reverse transcriptional quantitative real-time PCR was done to evaluate the mRNA expression of MyoD, myogenin, and embryonic myosin heavy chain (MyHC. Muscles, either stretched continuously or repetitively, increased mRNA expression of MyoD, myogenin, and embryonic MyHC more than unstretched muscles. Notably, repetitive stretching resulted in more substantial effects on embryonic MyHC gene expression than continuous stretching. In conclusion, passive stretching for a short duration within a week is effective in increasing myogenic factor expression, and repetitive stretching had more effects than continuous stretching for skeletal muscle on muscle growth. These findings are applicable in clinical muscle-strengthening therapy.

  14. Passive repetitive stretching for a short duration within a week increases myogenic regulatory factors and myosin heavy chain mRNA in rats' skeletal muscles.

    Science.gov (United States)

    Kamikawa, Yurie; Ikeda, Satoshi; Harada, Katsuhiro; Ohwatashi, Akihiko; Yoshida, Akira

    2013-01-01

    Stretching is a stimulation of muscle growth. Stretching for hours or days has an effect on muscle hypertrophy. However, differences of continuous stretching and repetitive stretching to affect muscle growth are not well known. To clarify the difference of continuous and repetitive stretching within a short duration, we investigated the gene expression of muscle-related genes on stretched skeletal muscles. We used 8-week-old male Wistar rats (N = 28) for this study. Animals medial gastrocnemius muscle was stretched continuously or repetitively for 15 min daily and 4 times/week under anesthesia. After stretching, muscles were removed and total RNA was extracted. Then, reverse transcriptional quantitative real-time PCR was done to evaluate the mRNA expression of MyoD, myogenin, and embryonic myosin heavy chain (MyHC). Muscles, either stretched continuously or repetitively, increased mRNA expression of MyoD, myogenin, and embryonic MyHC more than unstretched muscles. Notably, repetitive stretching resulted in more substantial effects on embryonic MyHC gene expression than continuous stretching. In conclusion, passive stretching for a short duration within a week is effective in increasing myogenic factor expression, and repetitive stretching had more effects than continuous stretching for skeletal muscle on muscle growth. These findings are applicable in clinical muscle-strengthening therapy.

  15. Does vibration counteract the static stretch-induced deficit on muscle force development?

    Science.gov (United States)

    Fernandes, Igor Alexandre; Kawchuk, Gregory; Bhambhani, Yagesh; Gomes, Paulo Sergio Chagas

    2013-09-01

    To determine the residual acute vibration-stretching effect on preactivation levels, short-latency stretch reflex, and performance during execution of drop jumps. Repeated measures. Eleven male recreational athletes performed a set of three 45cm drop jumps before and immediately after a 30s static stretching exercise with and without simultaneously imposed muscle vibration (45Hz, 5mm). Drop jump height, ground reaction forces and electromyographic data including Vastus Lateralis onset/levels of preactivation and short-latency stretch reflex were recorded. No changes were induced on drop jump height. However, stretching-induced decrements on ground reaction force peak and time to peak as well as an increment in contact time followed a delay in short-latency stretch reflex onset and a reduced preactivation level of Vastus Lateralis. Otherwise, when vibration was simultaneously imposed, there was no evidence of changes in high-speed force production variables or electromyographic recordings. Mechanical vibration, when applied simultaneously to static-stretching routines, appeared to be effective to counteract decreased musculotendinous unit stiffness-induced high-speed force production deficit during jumping performance. Copyright © 2012. Published by Elsevier Ltd.

  16. Effects of cryotherapy and thermotherapy associated with static stretching on the flexibility of hamstring muscles

    Directory of Open Access Journals (Sweden)

    S.A. Silva

    2010-01-01

    Full Text Available The objective of the present study was to analyze the effect of cryotherapy and muscular warming on the flexibility of the hamstring muscles associated with three minutes of static stretching. Forty young male and female volunteers were randomly included in one of four groups: Group 1 – Control group, Group 2 – Three minutes of static stretching, Group 3 – Stretching preceded by warming using shortwave diathermy (20 minutes, and Group 4 – Stretching preceded by applying cryotherapy (20 minutes to the posterior thigh region. The program consisted of three series of stretching during five consecutive days and flexibility was assessed by goniometric evaluations of the extensor angle of the knee at the beginning of the protocol, at the end of the day and at the end of the protocol. The intergroup comparison was made through ANOVA post-hoc Tukey and the intragroup by paired t test, all with 5% level of significance. The three experimental groups significantly increased their range of motion in relation to the control group. However, differences were not observed among groups submitted to the different stretching programs. In conclusion, increases in flexibility were due to stretching and did not depend on previous application of hyperthermia and/or hypothermia.

  17. A comparison of two stretching programs for hamstring muscles: A randomized controlled assessor-blinded study.

    Science.gov (United States)

    Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc

    2016-01-01

    Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.

  18. Effects of Plantar Flexor Muscle Static Stretching Alone and Combined With Massage on Postural Balance.

    Science.gov (United States)

    Hemmati, Ladan; Rojhani-Shirazi, Zahra; Ebrahimi, Samaneh

    2016-10-01

    To evaluate and compare the effects of stretching and combined therapy (stretching and massage) on postural balance in people aged 50 to 65 years. Twenty-three subjects participated in this nonrandomized clinical trial study. Each participant randomly received plantar flexor muscle stretching (3 cycles of 45 seconds with a 30-second recovery period between cycles) alone and in combination with deep stroking massage (an interval of at least 30 minutes separated the two interventions). The data were recorded with a force platform immediately after each condition with eyes open and closed. The center of pressure displacement and velocity along the mediolateral and anteroposterior axes were calculated under each condition. The data were analyzed with multiple-pair t-tests. The center of pressure displacement and velocity along the mediolateral axis increased after both stretching and the combined intervention. There were significant differences in both values between participants in the stretching and combined interventions (pmuscle stretching (for 45 seconds) combined with deep stroking massage may have more detrimental effects on postural balance than stretching alone because each intervention can intensify the effects of the other.

  19. Simultaneous Recording and Analysis of Uterine and Abdominal Muscle Electromyographic Activity in Nulliparous Women During Labor.

    Science.gov (United States)

    Qian, Xueya; Li, Pin; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2017-03-01

    To record and characterize electromyography (EMG) from the uterus and abdominal muscles during the nonlabor to first and second stages of labor and to define relationships to contractions. Nulliparous patients without any treatments were used (n = 12 nonlabor stage, 48 during first stage and 33 during second stage). Electromyography of both uterine and abdominal muscles was simultaneously recorded from electrodes placed on patients' abdominal surface using filters to separate uterine and abdominal EMG. Contractions of muscles were also recorded using tocodynamometry. Electromyography was characterized by analysis of various parameters. During the first stage of labor, when abdominal EMG is absent, uterine EMG bursts temporally correspond to contractions. In the second stage, uterine EMG bursts usually occur at same frequency as groups of abdominal bursts and precede abdominal bursts, whereas abdominal EMG bursts correspond to contractions and are accompanied by feelings of "urge to push." Uterine EMG increases progressively from nonlabor to second stage of labor. (1) Uterine EMG activity can be separated from abdominal EMG events by filtering. (2) Uterine EMG gradually evolves from the antepartum stage to the first and second stages of labor. (3) Uterine and abdominal EMG reflect electrical activity of the muscles during labor and are valuable to assess uterine and abdominal muscle events that control labor. (4) During the first stage of labor uterine, EMG is responsible for contractions, and during the second stage, both uterine and abdominal muscle participate in labor.

  20. Changes in lateral abdominal muscles' thickness immediately after the abdominal drawing-in maneuver and maximum expiration.

    Science.gov (United States)

    Ishida, Hiroshi; Watanabe, Susumu

    2013-04-01

    All lateral abdominal muscles contract more strongly during maximum expiration than during the abdominal drawing-in maneuver (ADIM). However, little is known about which of the lateral abdominal muscles is activated during maximum expiration. Thus, the purpose of this study is to quantify changes in the thickness of the lateral abdominal muscles immediately after the ADIM and maximum expiration. The thickness of the transverse abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles was measured by ultrasound imaging in 30 healthy men before and after the ADIM and maximum expiration. After the ADIM, there was no significant change in the thickness of the lateral abdominal muscles. After maximum expiration, the thickness of the TrA muscle significantly increased, and there was no significant change in the thickness of the IO and EO muscles. Thus, maximum expiration may be an effective method for TrA, rather than IO and EO, muscle training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. An electromyographic study of abdominal muscle activity in children with spastic cerebral palsy

    OpenAIRE

    Saviour Adjenti; Graham Louw; Jennifer Jelsma; Marianne Unger

    2017-01-01

    Background: Inadequate knowledge in the recruitment patterns of abdominal muscles in individuals with spastic-type cerebral palsy (STCP). Objectives: To determine whether there is any difference between the neuromuscular activity (activation pattern) of the abdominal muscles in children with STCP and those of their typically developing (TD) peers. Method: The NORAXAN® electromyography (EMG) was used to monitor the neuromuscular activity in abdominal muscles of individuals with STCP (n =...

  2. Repeated passive stretching : Acute effect on the passive muscle moment and extensibility of short hamstrings

    NARCIS (Netherlands)

    Halbertsma, JPK; Mulder, [No Value; Goeken, LNH; Eisma, WH; Mulder, I.; Göeken, L.N.

    Objective: To examine the response of short hamstring muscles to repeated passive stretching. Design: A repeated measures design. Setting: A university laboratory for human movement analysis in a department of rehabilitation. Subjects: Students (7 men, 10 women) from the Department of Human Movement

  3. Core muscle activation during Swiss ball and traditional abdominal exercises.

    Science.gov (United States)

    Escamilla, Rafael F; Lewis, Clare; Bell, Duncan; Bramblet, Gwen; Daffron, Jason; Lambert, Steve; Pecson, Amanda; Imamura, Rodney; Paulos, Lonnie; Andrews, James R

    2010-05-01

    Controlled laboratory study using a repeated-measures, counterbalanced design. To test the ability of 8 Swiss ball exercises (roll-out, pike, knee-up, skier, hip extension right, hip extension left, decline push-up, and sitting march right) and 2 traditional abdominal exercises (crunch and bent-knee sit-up) on activating core (lumbopelvic hip complex) musculature. Numerous Swiss ball abdominal exercises are employed for core muscle strengthening during training and rehabilitation, but there are minimal data to substantiate the ability of these exercises to recruit core muscles. It is also unknown how core muscle recruitment in many of these Swiss ball exercises compares to core muscle recruitment in traditional abdominal exercises such as the crunch and bent-knee sit-up. A convenience sample of 18 subjects performed 5 repetitions for each exercise. Electromyographic (EMG) data were recorded on the right side for upper and lower rectus abdominis, external and internal oblique, latissimus dorsi, lumbar paraspinals, and rectus femoris, and then normalized using maximum voluntary isometric contractions (MVICs). EMG signals during the roll-out and pike exercises for the upper rectus abdominis (63% and 46% MVIC, respectively), lower rectus abdominis (53% and 55% MVIC, respectively), external oblique (46% and 84% MVIC, respectively), and internal oblique (46% and 56% MVIC, respectively) were significantly greater compared to most other exercises, where EMG signals ranged between 7% to 53% MVIC for the upper rectus abdominis, 7% to 44% MVIC for the lower rectus abdominis, 14% to 73% MVIC for the external oblique, and 16% to 47% MVIC for the internal oblique. The lowest EMG signals were consistently found in the sitting march right exercise. Latissimus dorsi EMG signals were greatest in the pike, knee-up, skier, hip extension right and left, and decline push-up (17%-25% MVIC), and least with the sitting march right, crunch, and bent-knee sit-up exercises (7%-8% MVIC

  4. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    Energy Technology Data Exchange (ETDEWEB)

    Wazir, Romel; Luo, De-Yi; Tian, Ye; Yue, Xuan; Li, Hong; Wang, Kun-Jie, E-mail: kunjiewangatscu@163.com

    2013-07-26

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in

  5. Muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction in healthy humans.

    Science.gov (United States)

    Drew, Rachel C; Blaha, Cheryl A; Herr, Michael D; Cui, Ruda; Sinoway, Lawrence I

    2017-06-01

    Reflex renal vasoconstriction occurs during exercise, and renal vasoconstriction in response to upper-limb muscle mechanoreflex activation has been documented. However, the renal vasoconstrictor response to muscle mechanoreflex activation originating from lower limbs, with and without local metabolite accumulation, has not been assessed. Eleven healthy young subjects (26 ± 1 yr; 5 men) underwent two trials involving 3-min passive calf muscle stretch (mechanoreflex) during 7.5-min lower-limb circulatory occlusion (CO). In one trial, 1.5-min 70% maximal voluntary contraction isometric calf exercise preceded CO to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex; 70% trial). A control trial involved no exercise before CO (mechanoreflex alone; 0% trial). Beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), mean arterial blood pressure (MAP; photoplethysmographic finger cuff), and heart rate (electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as MAP/RBFV. All baseline cardiovascular variables were similar between trials. Stretch increased RVR and decreased RBFV in both trials (change from CO with stretch: RVR - 0% trial = Δ 10 ± 2%, 70% trial = Δ 7 ± 3%; RBFV - 0% trial = Δ -3.8 ± 1.1 cm/s, 70% trial = Δ -2.7 ± 1.5 cm/s; P muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction, with and without muscle metaboreflex activation, in healthy humans. Copyright © 2017 the American Physiological Society.

  6. Stretch reflex excitability of the anti-gravity ankle extensor muscle in elderly humans.

    Science.gov (United States)

    Kawashima, N; Nakazawa, K; Yamamoto, S-I; Nozaki, D; Akai, M; Yano, H

    2004-01-01

    To examine whether the stretch reflex excitability of the soleus muscle changes with age, stretch reflexes at rest (REST) and during weak voluntary contractions (ACT) were elicited in 18 older and 14 younger subjects. The amplitude of the stretch reflex responses and gain, defined as the gradient of the regression line for the relation between stretch reflex responses against the angular velocity of the applied perturbation, were evaluated in each short-latency (M1) and two long-latency components (M2 and M3). It was found that in the older group, both the amplitude and gain of the M1 component did not change from the REST to the ACT conditions, whereas in the younger group both variables significantly increased from the REST to ACT conditions. The latency of the M1 component was significantly shorter under the REST condition (older vs. younger: 51.8 +/- 7.37 vs. 55.1 +/- 8.69 ms), while no group differences were found in those variables under the ACT condition, suggesting that the muscle-tendon complexes of SOL muscles of the older subjects were less elastic and had less slack, probably due to age-related histochemical alterations. Further, the Hoffman reflex (H-reflex), elicited during the REST condition in 10 older and 11 younger subjects showed no significant differences, suggesting that the soleus motoneuron response to the Ia input was comparable between the two subject groups. The histochemical alterations occurring with the ageing process might augment the short-latency stretch reflex in the SOL muscle without enhancement of motoneuronal excitability, and this effect might be masked when the muscle is voluntarily activated.

  7. Effect of abdominal muscle training on respiratory muscle strength and forced expiratory flows in sedentary, healthy adolescents.

    Science.gov (United States)

    Rodríguez-Núñez, Iván; Navarro, Ximena; Gatica, Darwin; Manterola, Carlos

    2016-10-01

    Respiratory muscle training is the most commonly used method to revert respiratory muscle weakness; however, the effect of protocols based on non-respiratory maneuvers has not been adequately studied in the pediatric population. The objective of this study was to establish the effect of abdominal muscle training on respiratory muscle strength and forced expiratory flows in healthy adolescents. This was a quasi-experiment. The sample was made up of healthy adolescents divided into two groups: an experimental group who completed eight weeks of active abdominal muscle training, and an equivalent control group. The following indicators were measured: abdominal muscle strength, maximal inspiratory pressure, maximal expiratory pressure (MEP), peak expiratory flow, and peak cough flow, before and after protocol completion. A value of p abdominal muscle training, MEP and peak expiratory flow increased in healthy (sedentary) adolescents. Such effects were associated with intervention-induced increases in cough peak flow. Sociedad Argentina de Pediatría.

  8. Abdominal muscle function and incisional hernia: a systematic review.

    Science.gov (United States)

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2014-08-01

    Although ventral incisional hernia (VIH) repair in patients is often evaluated in terms of hernia recurrence rate and health-related quality of life, there is no clear consensus regarding optimal operative treatment based on these parameters. It was proposed that health-related quality of life depends largely on abdominal muscle function (AMF), and the present review thus evaluates to what extent AMF is influenced by VIH and surgical repair. The PubMed and EMBASE databases were searched for articles following a systematic strategy for inclusion. A total of seven studies described AMF in relation to VIH. Five studies examined AMF using objective isokinetic dynamometers to determine muscle strength, and two studies examined AMF by clinical examination-based muscle tests. Both equipment-related and functional muscle tests exist for use in patients with VIH, but very few studies have evaluated AMF in VIH. There are no randomized controlled studies to describe the impact of VIH repair on AMF, and no optimal surgical treatment in relation to AMF after VIH repair can be advocated for at this time.

  9. Active stretching for lower extremity muscle tightness in pediatric patients with lumbar spondylolysis.

    Science.gov (United States)

    Sato, Masahiro; Mase, Yasuyoshi; Sairyo, Koichi

    2017-01-01

    It was reported that hamstring muscle tightness may increase mechanical loading on the lumbar spine. Therefore, we attempt to decrease tightness in the leg muscles in pediatric patients. Forty-six pediatric patients with spondylolysis underwent rehabilitation. We applied active stretching to the hamstrings, quadriceps, and triceps surae. Tightness in each muscle was graded as good, fair, or poor. We educated each patient on how to perform active stretching at home. They were re-evaluated for muscle tightness 2 months later. Tightness at baseline and after 2 months was as follows: for the hamstrings, good in 3 patients, fair in 9, and poor in 34 and significant improved after 2 months (p<0.05), with improvement by least 1 grade seen in 86% of patients with fair or poor at baseline; for the quadriceps, 7, 3, and 30 patients had good, fair and poor, with significant improvements in 72% (p<0.05). For the triceps surae, 6, 3 and 10 patients had good, fair and poor, which improved significantly (p<0.05). Home-based active stretching was effective for relieving muscle tightness in the leg in a pediatric population. Adolescent athletes should perform such exercise to maintain flexibility and prevent lumbar disorders. J. Med. Invest. 64: 136-139, February, 2017.

  10. Mechanical and neural stretch responses of the human soleus muscle at different walking speeds

    DEFF Research Database (Denmark)

    Cronin, Neil J; Ishikawa, Masaki; Grey, Michael J

    2009-01-01

    During human walking, a sudden trip may elicit a Ia afferent fibre mediated short latency stretch reflex. The aim of this study was to investigate soleus (SOL) muscle mechanical behaviour in response to dorsiflexion perturbations, and to relate this behaviour to short latency stretch reflex respo...... mechanisms, such as altered fusimotor drive, reduced pre-synaptic inhibition and/or increased descending excitatory input, acted to maintain motoneurone output as walking speed increased, preventing a decrease in short latency reflex amplitudes....... perturbations of 6 deg were applied during mid-stance at walking speeds of 3, 4 and 5 km h(-1). At each walking speed, perturbations were delivered at three different velocities (slow: approximately 170 deg s(-1), mid: approximately 230 deg s(-1), fast: approximately 280 deg s(-1)). At 5 km h(-1), fascicle...... walking speeds. As stretch velocity is a potent stimulus to muscle spindles, a decrease in the velocity of fascicle stretch at faster walking speeds would be expected to decrease spindle afferent feedback and thus stretch reflex amplitudes, which did not occur. It is therefore postulated that other...

  11. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population

    DEFF Research Database (Denmark)

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth

    2016-01-01

    BACKGROUND: Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. AIM: To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local...... and central pain sensitivity. METHOD: This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days...... intervention group/19 control group). No statistically significant group differences in the changes from baseline were found regarding PPT and TS measurements for the stretched calf, the contra-lateral calf, and the arm. CONCLUSION: Four weeks of regular stretching of the calf muscles does not affect pressure...

  12. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats.

    Science.gov (United States)

    Gianelo, M C S; Polizzelo, J C; Chesca, D; Mattiello-Sverzut, A C

    2016-02-01

    The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (Pstretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development.

  13. Differential effects of 30- vs. 60-second static muscle stretching on vertical jump performance.

    Science.gov (United States)

    Pinto, Matheus D; Wilhelm, Eurico N; Tricoli, Valmor; Pinto, Ronei S; Blazevich, Anthony J

    2014-12-01

    It has been proposed that pre-exercise static stretching may reduce muscle force and power. Recent systematic and meta-analytical reviews have proposed a threshold regarding the effect of short (stretching durations on subsequent performance in a multi-joint task (e.g., jump performance), although its effect on power output remains less clear. Furthermore, no single experimental study has explicitly compared the effect of short (e.g., 30 seconds) and moderate (60 seconds) durations of continuous static stretching on multi-joint performance. Therefore, the aim of the present study was determine the effect of acute short- and moderate-duration continuous stretching interventions on vertical jump performance and power output. Sixteen physically active men (21.0 ± 1.9 years; 1.7 ± 0.1 m; 78.4 ± 12.1 kg) volunteered for the study. After familiarization, subjects attended the laboratory for 3 testing sessions. In the nonstretching (NS) condition, subjects performed a countermovement jump (CMJ) test without a preceding stretching bout. In the other 2 conditions, subjects performed 30-second (30SS; 4 minutes) or 60-second (60SS; 8 minutes) static stretching bouts in calf muscles, hamstrings, gluteus maximus, and quadriceps, respectively, followed by the CMJ test. Results were compared by repeated-measures analysis of variance. In comparison with NS, 60SS resulted in a lower CMJ height (-3.4%, p ≤ 0.05) and average (-2.7%, p ≤ 0.05) and peak power output (-2.0%, p ≤ 0.05), but no difference was observed between 30SS and the other conditions (p > 0.05). These data suggest a dose-dependent effect of stretching on muscular performance, which is in accordance with previous studies. The present results suggest a threshold of continuous static stretching in which muscular power output in a multi-joint task may be impaired immediately following moderate-duration (60 seconds; 8 minutes) static stretching while short-duration (30 seconds; 4 minutes) stretching has a

  14. [Stretching the triceps surae muscle after 40 degrees C warming in patients with cerebral palsy].

    Science.gov (United States)

    Lespargot, A; Robert, M; Khouri, N

    2000-11-01

    Equinus in patients with cerebral palsy results from at least two factors: excessive contracture of the triceps surae and muscle retraction. Tendon surgery and progressive lengthening techniques using plaster walking boots can provide variable improvement in retraction. We compared the effect of this technique when applied with or without prior 40 degrees C warming in the same patients. We also assessed the efficacy of this treatment method in terms or degree of retraction, patient age, puberty maturity, and sex. This series included 70 muscles in 52 patients with cerebral palsy aged 2 years 11 months to 21 years (mean 8 years 3 months). Common features in these patients were: - equinus mainly explained by triceps retraction, - no history of prior surgery on the triceps tendon, - knee flexion less than 15 degrees in the upright position, - easily reduced lateral deformation of the foot, - absence of mediotarsal dislocation, - triceps stretching could be achieved without triggering unacceptably intense contracture. The retraction of the triceps surae was measured from the maximal passive dorsal flexion angle of the foot, before and after applying each stretching boot. The difference between these measurements gave the gain obtained with the plaster boot. Protocol R- (stretching with plaster boot) consisted in a series of slow stretchings for 10 minutes before making the boot which was worn 7 days. Recurrent retraction in these same patients warranted another treatment within a delay of 3 to 17 months (mean delay 8.7 months). The same treatment then followed protocol R+ where the stretching was preceded by immersion of the segment in a 40 degrees C water bath for 10 minutes. Mean gain obtained with protocol R+ (warming) was 6.8 degrees knee extended and 7.1 degrees knee flexed. These differences were highly significant in both cases (p knee extended and for 32 muscles, knee flexed. The gain was not related to age, sex or puberty maturity. It was not related to the

  15. Azelnidipine inhibits cultured rat aortic smooth muscle cell death induced by cyclic mechanical stretch.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available Acute aortic dissection is the most common life-threatening vascular disease, with sudden onset of severe pain and a high fatality rate. Clarifying the detailed mechanism for aortic dissection is of great significance for establishing effective pharmacotherapy for this high mortality disease. In the present study, we evaluated the influence of biomechanical stretch, which mimics an acute rise in blood pressure using an experimental apparatus of stretching loads in vitro, on rat aortic smooth muscle cell (RASMC death. Then, we examined the effects of azelnidipine and mitogen-activated protein kinase inhibitors on mechanical stretch-induced RASMC death. The major findings of the present study are as follows: (1 cyclic mechanical stretch on RASMC caused cell death in a time-dependent manner up to 4 h; (2 cyclic mechanical stretch on RASMC induced c-Jun N-terminal kinase (JNK and p38 activation with peaks at 10 min; (3 azelnidipine inhibited RASMC death in a concentration-dependent manner as well as inhibited JNK and p38 activation by mechanical stretch; and (4 SP600125 (a JNK inhibitor and SB203580 (a p38 inhibitor protected against stretch-induced RASMC death; (5 Antioxidants, diphenylene iodonium and tempol failed to inhibit stretch-induced RASMC death. On the basis of the above findings, we propose a possible mechanism where an acute rise in blood pressure increases biomechanical stress on the arterial walls, which induces RASMC death, and thus, may lead to aortic dissection. Azelnidipine may be used as a pharmacotherapeutic agent for prevention of aortic dissection independent of its blood pressure lowering effect.

  16. Cyclic stretch induces human bladder smooth muscle cell proliferation in vitro through muscarinic receptors.

    Science.gov (United States)

    Dai, Yi; Tian, Ye; Luo, De-Yi; Wazir, Romel; Yue, Xuan; Li, Hong; Wang, Kun-Jie

    2015-03-01

    The present study aimed to investigate whether the cyclic stretch‑induced proliferation of human bladder smooth muscle cells (HBSMCs) is mediated by muscarinic (M) receptors, together with the signal transduction mechanisms involved in this process. HBSMCs seeded onto silicone membranes were subjected to different cyclic stretches (5, 10, 15 and 20%) for 6 and 12 h. As the effect of cyclic stretch on M2 and M3 mRNA expression levels was maximal at 6 h 10% stretch, all subsequent experiments were performed at this stretch. Western blot analysis was used to quantify M2, M3, protein kinase C (PKC) and phosphorylated (p)‑PKC protein expression levels, flow cytometry was employed to examine cell cycle distribution and a 5-bromo‑2-deoxyuridine (BrdU) incorporation assay was used to assess cell proliferation at this stretch. Subsequently, HBSMCs were exposed to different acetylcholine concentrations and/or cyclic stretch, M receptor antagonists [AF-DX16, an M2 receptor antagonist; 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), an M3 receptor antagonist and atropine, a non‑selective antagonist] and GF 109203X, a PKC antagonist, to assess the possible underlying signaling mechanisms. Cyclic stretch was found to increase the proliferation of HBSMCs and the expression levels of M2, M3, PKC and p‑PKC proteins. M receptor and PKC antagonists exerted no apparent effect on nonstretched cells, but reduced the incorporation of BrdU into stretched cells; the most pronounced effects were observed when non‑selective M receptor and PKC antagonists were applied. Notably, 4‑DAMP did not inhibit stretch‑induced PKC activation. These results indicate that the activation of the M3 receptor signaling pathway in stretch‑induced HBSMC proliferation occurs via PKC-independent mechanisms.

  17. Synergistic Activities of Abdominal Muscles Are Required for Efficient Micturition in Anesthetized Female Mice.

    Science.gov (United States)

    Zhang, Chuan; Zhang, Yingchun; Cruz, Yolanda; Boone, Timothy B; Munoz, Alvaro

    2018-03-01

    To characterize the electromyographic activity of abdominal striated muscles during micturition in urethane-anesthetized female mice, and to quantitatively evaluate the contribution of abdominal responses to efficient voiding. Cystometric and multichannel electromyographic recordings were integrated to enable a comprehensive evaluation during micturition in urethane-anesthetized female mice. Four major abdominal muscle domains were evaluated: the external oblique, internal oblique, and superior and inferior rectus abdominis. To further characterize the functionality of the abdominal muscles, pancuronium bromide (25 μg/mL or 50 μg/mL, abdominal surface) was applied as a blocking agent of neuromuscular junctions. We observed a robust activation of the abdominal muscles during voiding, with a consistent onset/offset concomitant with the bladder pressure threshold. Pancuronium was effective, in a dose-dependent fashion, for partial and complete blockage of abdominal activity. Electromyographic discharges during voiding were significantly inhibited by applying pancuronium. Decreased cystometric parameters were recorded, including the peak pressure, pressure threshold, intercontractile interval, and voiding duration, suggesting that the voiding efficiency was significantly compromised by abdominal muscle relaxation. The relevance of the abdominal striated musculature for micturition has remained a topic of debate in human physiology. Although the study was performed on anesthetized mice, these results support the existence of synergistic abdominal electromyographic activity facilitating voiding in anesthetized mice. Further, our study presents a rodent model that can be used for future investigations into micturition-related abdominal activity.

  18. Functional electrical stimulation to the abdominal wall muscles synchronized with the expiratory flow does not induce muscle fatigue.

    Science.gov (United States)

    Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide

    2017-03-01

    [Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.

  19. The effects of a 4-week static stretching programme on the individual muscles comprising the hamstrings.

    Science.gov (United States)

    Ichihashi, Noriaki; Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Fujita, Kosuke; Umehara, Jun; Nakao, Sayaka; Ibuki, Satoko

    2016-12-01

    The aims of this study were to investigate the effects of a 4-week intervention of static stretching (SS) on muscle hardness of the semitendinosus (ST), semimembranosus (SM) and biceps femoris (BF) muscles. Shear elastic modulus was measured by using ultrasound shear wave elastography as the index of muscle hardness. Thirty healthy men (age 22.7 ± 2.2 years) volunteered for this study and were randomly assigned to the SS intervention group (n = 15) or the control group (n = 15). Participants in the SS intervention group received a 4-week stretch intervention for the hamstrings of their dominant leg. Shear elastic moduli of the hamstrings were measured at initial evaluation and after 4 weeks in both groups at a determined angle. In all muscles, the shear elastic modulus decreased significantly after SS intervention. The percentage change in the shear elastic modulus from the value at initial evaluation to after 4 weeks intervention was greatest in the SM. These results suggest that SS intervention has chronic effects on reducing hardness of the hamstring muscle components, especially the SM muscle.

  20. The effects of three types of piriform muscle stretching on muscle thickness and the medial rotation angle of the coxal articulation.

    Science.gov (United States)

    Park, Jun Chul; Shim, Jae Hun; Chung, Sin Ho

    2017-10-01

    [Purpose] The purpose of this study was three kinds of stretching methods and measured the change in the thickness of the piriform muscle in real time using ultrasound images and compared the medial rotation angle of the coxal articulation. [Subjects and Methods] Fourty-five subjects who attend B University in Cheonan, divided into three groups. The subjects in these three groups then underwent stretching with flexion of coxal articulation over 90°, stretching with flexion of coxal articulation under 90°, and muscle energy technique (MET) application. The main outcome measures were piriform muscle thickness and medial rotation angle of the coxal articulation. [Results] All groups showed decreased piriform muscle thickness and increased medial rotation angle of the coxal articulation. [Conclusion] Based on the above results, three kinds of piriform muscle stretching methods are effective of reduce muscle thickness and increase medial rotation angle of the coxal articulation.

  1. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    Science.gov (United States)

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  2. Pelvic floor muscle contraction and abdominal hollowing during walking can selectively activate local trunk stabilizing muscles.

    Science.gov (United States)

    Lee, Ah Young; Baek, Seung Ok; Cho, Yun Woo; Lim, Tae Hong; Jones, Rodney; Ahn, Sang Ho

    2016-11-21

    Trunk muscle exercises are widely performed, and many studies have been performed to examine their effects on low back pains. However, the effect of trunk muscles activations during walking with pelvic floor muscle contraction (PFMC) and abdominal hollowing (AH) has not been clarified. To investigate whether walking with PFMC and AH is more effective for promoting local trunk muscle activation than walking without PFMC and AH. Twenty healthy men (28.9 ± 3.14 years, 177.2 ± 4.25 cm, 72.1 ± 6.39 kg, body mass index 22.78 ± 2.38 kg/m2) were participated in this study. Surface electrodes were attached over the multifidus (MF), lumbar erector spinae (LES), thoracic erector spinae (TES), transverse abdominus-internal oblique abdominals (TrA-IO), external oblique abdominals (EO), and rectus abdominus (RA). The amplitudes of electromyographic signals were measured during a normal walking with and without PFMC and AH. PFMC and AH while walking was found to result in significant bilateral increases in the normalized maximum voluntary contraction (MVC) of MFs and TrA-IOs (pmuscle activity to global muscle activities were increased while performing PFMC and AH during normal walking. Bilateral TrA-IO/EO activity ratios were significantly increased by PFMC and AH (pmuscles. This study suggests that PFMC and AH during normal daily walking improves activation of muscles responsible for spinal dynamic stabilization and might be useful if integrated into low back disability and pain physical rehabilitation efforts.

  3. Titin force enhancement following active stretch of skinned skeletal muscle fibres.

    Science.gov (United States)

    Powers, Krysta; Joumaa, Venus; Jinha, Azim; Moo, Eng Kuan; Smith, Ian Curtis; Nishikawa, Kiisa; Herzog, Walter

    2017-09-01

    In actively stretched skeletal muscle sarcomeres, titin-based force is enhanced, increasing the stiffness of active sarcomeres. Titin force enhancement in sarcomeres is vastly reduced in mdm , a genetic mutation with a deletion in titin. Whether loss of titin force enhancement is associated with compensatory mechanisms at higher structural levels of organization, such as single fibres or entire muscles, is unclear. The aim of this study was to determine whether mechanical deficiencies in titin force enhancement are also observed at the fibre level, and whether mechanisms compensate for the loss of titin force enhancement. Single skinned fibres from control and mutant mice were stretched actively and passively beyond filament overlap to observe titin-based force. Mutant fibres generated lower contractile stress (force divided by cross-sectional area) than control fibres. Titin force enhancement was observed in control fibres stretched beyond filament overlap, but was overshadowed in mutant fibres by an abundance of collagen and high variability in mechanics. However, titin force enhancement could be measured in all control fibres and most mutant fibres following short stretches, accounting for ∼25% of the total stress following active stretch. Our results show that the partial loss of titin force enhancement in myofibrils is not preserved in all mutant fibres and this mutation likely affects fibres differentially within a muscle. An increase in collagen helps to reestablish total force at long sarcomere lengths with the loss in titin force enhancement in some mutant fibres, increasing the overall strength of mutant fibres. © 2017. Published by The Company of Biologists Ltd.

  4. Acute effect of static stretching on muscle force in older women

    Directory of Open Access Journals (Sweden)

    André Luiz Demantova Gurjão

    2010-04-01

    Full Text Available The objective of this study was to investigate the acute effect of static stretching on the peak rate of force development (PRFD and maximum voluntary contraction (MVC in older women. Ten women (68.5 ± 7.0 years; 70.9 ± 8.1 kg; 159.4 ± 6.0 cm; body mass index: 28.0 ± 3.8 kg/m2 were studied. MVC and PRFD were determined by leg press exercise before and after the control or stretching condition (three sets of 30 seconds of static stretching of the quadriceps on two different days (interval of 24 hours. PRFD was determined as the steepest slope of the curve, calculated within regular windows of 20 milliseconds (∆force/∆time for the first 200 milliseconds after the onset of contraction. MVC was determined as the highest value recorded in each set. Only one condition was tested on each day and the order of application of each condition was determined randomly. The stretching intensity was evaluated by the muscle pain threshold. Four post-condition assessments (post-treatment, 10, 20, and 30 minutes were performed to monitor muscle strength. ANCOVA 2x5, followed by the Scheffé post-hoc test, showed no significant interactions between conditions vs. times (P > 0.05 for PRFD or MVC. In conclusion, acute bouts of static stretching of the quadriceps femoris do not affect the ability of rapid and maximum muscle force production in older women.

  5. Effects of three protocols of hamstring muscle stretching and paravertebral lumbar

    Directory of Open Access Journals (Sweden)

    Juliana Moesch

    Full Text Available Introduction the muscle stretching is widely used to gain extensibility and flexibility, it is important to know the duration of these effects, after return to usual activity level. Thus, the aim of this study was to analyze the effect of three protocols of hamstring and paravertebral lumbar muscles stretching, and joint flexibility and muscle extensibility after six weeks. Methods participants were 40 volunteers, with limited hamstring extensibility, randomized into three groups: active stretching static (n = 14, proprioceptive neuromuscular facilitation (n = 14 and kinesiostretching (n = 12. The protocol was divided into 3 stages: the 1st control (six weeks, the 2nd application of stretch (six weeks and the 3rd follow-up (eight weeks. The project was approved by the Ethics Committee on Human Research Unioeste, under protocol number 25536/2008. Four evaluations were conducted with board coupled to a system and goniometry and Well´s bench, distributed at the beginning and end of each step. Data were analyzed with repeated measures ANOVA, and one-way, with a significance level of 5%. Results there was no significant difference for the three groups in the control stage. There were significant differences in the three protocols in the stage of stretching. After follow-up stage, there was significant difference in the ratings to the board goniometry, and there was no difference in the Well’s Bench. Conclusion the three techniques promoted significant gain in extensibility and flexibility, extensibility was not maintained after the follow-up stage, and the flexibility of the posterior chain continued gains.

  6. The Effect of Anabolic Steroid Administration on Passive Stretching-Induced Expression of Mechano-Growth Factor in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Satoshi Ikeda

    2013-01-01

    Full Text Available Background. Stretching of skeletal muscle induces expression of the genes which encode myogenic transcription factors or muscle contractile proteins and results in muscle growth. Anabolic steroids are reported to strengthen muscles. We have previously studied the effects of muscle stretching on gene expression. Here, we studied the effect of a combination of passive stretching and the administration of an anabolic steroid on mRNA expression of a muscle growth factor, insulin-like growth factor-I autocrine variant, or mechano-growth factor (MGF. Methods. Twelve 8-week-old male Wistar rats were used. Metenolone was administered and passive repetitive dorsiflexion and plantar flexion of the ankle joint performed under deep anesthesia. After 24 h, the gastrocnemius muscles were removed and the mRNA expression of insulin-like growth factor-I autocrine variant was measured using quantitative real-time polymerase chain reaction. Results. Repetitive stretching in combination with metenolone, but not stretching alone, significantly increased MGF mRNA expression. Conclusion. Anabolic steroids enhance the effect of passive stretching on MGF expression in skeletal muscle.

  7. The effect of anabolic steroid administration on passive stretching-induced expression of mechano-growth factor in skeletal muscle.

    Science.gov (United States)

    Ikeda, Satoshi; Kamikawa, Yurie; Ohwatashi, Akihiko; Harada, Katsuhiro; Yoshida, Akira

    2013-01-01

    Stretching of skeletal muscle induces expression of the genes which encode myogenic transcription factors or muscle contractile proteins and results in muscle growth. Anabolic steroids are reported to strengthen muscles. We have previously studied the effects of muscle stretching on gene expression. Here, we studied the effect of a combination of passive stretching and the administration of an anabolic steroid on mRNA expression of a muscle growth factor, insulin-like growth factor-I autocrine variant, or mechano-growth factor (MGF). Twelve 8-week-old male Wistar rats were used. Metenolone was administered and passive repetitive dorsiflexion and plantar flexion of the ankle joint performed under deep anesthesia. After 24 h, the gastrocnemius muscles were removed and the mRNA expression of insulin-like growth factor-I autocrine variant was measured using quantitative real-time polymerase chain reaction. Repetitive stretching in combination with metenolone, but not stretching alone, significantly increased MGF mRNA expression. Anabolic steroids enhance the effect of passive stretching on MGF expression in skeletal muscle.

  8. Acute effects of short and long duration dynamic stretching protocols on muscle strength

    Directory of Open Access Journals (Sweden)

    Christiano Francisco dos Santos

    Full Text Available Objective Compare the acute effects of dynamic stretching protocols on the isokinetic performance of the quadriceps and hamstring muscles at two velocities in adult males.Methodology Included the participation of 14 males (21 ± 2.6 years; 178 ± 0.4 cm; 73.2 ± 20.9 kg were assessed using an isokinetic dynamometer before and after following a short or long-duration dynamic stretching protocol or a control protocol. The results were assessed by a two-way ANOVA and a Scheffé’s post hoc test at a 5% significance level.Results No difference was found in the variables assessed at 180°/s after LDDS. At 60°/s, LDDS reduced the power of the knee flexors. The control protocol reduced the power of the knee flexors and increased the power of the extensors. At 60°/s, the work of the knee flexors exhibited a reduction after LDDS. The control protocol resulted in a reduction in the work of the flexors. The peak torque angle exhibited a reduction in the extensors and flexors after LDDS and SDDS.Conclusion Dynamic stretching did not cause any change in the peak torque, which points to its possible use in activities involving velocity and muscle strength. The executing dynamic stretching before physical activities such as running and high-intensity sports might be beneficial by promoting increases in heart rate and in body temperature.

  9. The effects of stretching on the flexibility, muscle performance and functionality of institutionalized older women

    Directory of Open Access Journals (Sweden)

    D. Gallon

    2011-03-01

    Full Text Available Stretching has been widely used to increase the range of motion. We assessed the effects of a stretching program on muscle-tendon length, flexibility, torque, and activities of daily living of institutionalized older women. Inclusion/exclusion criteria were according to Mini-Mental State Examination (MMSE (>13, Barthel Index (>13 and Lysholm Scoring Scale (>84. Seventeen 67 ± 9 year-old elderly women from a nursing home were divided into 2 groups at random: the control group (CG, N = 9 participated in enjoyable cultural activities; the stretching group (SG, N = 8 performed active stretching of hamstrings, 4 bouts of 1 min each. Both groups were supervised three times per week over a period of 8 weeks. Peak torque was assessed by an isokinetic method. Both groups were evaluated by a photogrammetric method to assess muscle-tendon length of uni- and biarticular hip flexors and hamstring flexibility. All measurements were analyzed before and after 8 weeks by two-way ANOVA with the level of significance set at 5%. Hamstring flexibility increased by 30% in the SG group compared to pre-training (76.5 ± 13.0° vs 59.5 ± 9.0°, P = 0.0002 and by 9.2% compared to the CG group (76.5 ± 13.0° vs 64.0 ± 12.0°, P = 0.0018. Muscle-tendon lengths of hip biarticular flexor muscles (124 ± 6.8° vs 118.3 ± 7.6°, 5.0 ± 7.0%, P = 0.031 and eccentric knee extensor peak torque were decreased in the CG group compared to pre-test values (-49.4 ± 16.8 vs -60.5 ± 18.9 Nm, -15.7 ± 20%, P = 0.048. The stretching program was sufficient to increase hamstring flexibility and a lack of stretching can cause reduction of muscle performance.

  10. Stretch-shortening cycle muscle power in women and men aged 18-81 years

    DEFF Research Database (Denmark)

    Edwén, C E; Thorlund, Jonas Bloch; Magnusson, Stig Peter

    2014-01-01

    This study explored the age-related deterioration in stretch-shortening cycle (SSC) muscle power and concurrent force-velocity properties in women and men across the adult life span. A total of 315 participants (women: n = 188; men: n = 127) aged 18-81 years performed maximal countermovement jump...... on an instrumented force plate. Maximal SSC leg extension power expressed per kg body mass (Ppeak) was greater in men than in women across the adult age span (P ......This study explored the age-related deterioration in stretch-shortening cycle (SSC) muscle power and concurrent force-velocity properties in women and men across the adult life span. A total of 315 participants (women: n = 188; men: n = 127) aged 18-81 years performed maximal countermovement jumps...

  11. Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography.

    Science.gov (United States)

    Koo, Terry K; Guo, Jing-Yi; Cohen, Jeffrey H; Parker, Kevin J

    2014-01-01

    Quantifying passive stretching responses of individual muscles helps the diagnosis of muscle disorders and aids the evaluation of surgical/rehabilitation treatments. Utilizing an animal model, we demonstrated that shear elastic modulus measured by supersonic shear wave elastography increases linearly with passive muscle force. This study aimed to use this state-of-the-art technology to study the relationship between shear elastic modulus and ankle dorsi-plantarflexion angle of resting tibialis anterior muscles and extract physiologically meaningful parameters from the elasticity-angle curve to better quantify passive stretching responses. Elasticity measurements were made at resting tibialis anterior of 20 healthy subjects with the ankle positioned from 50° plantarflexion to up to 15° dorsiflexion at every 5° for two cycles. Elasticity-angle data was curve-fitted by optimizing slack angle, slack elasticity, and rate of increase in elasticity within a piecewise exponential model. Elasticity-angle data of all subjects were well fitted by the piecewise exponential model with coefficients of determination ranging between 0.973 and 0.995. Mean (SD) of slack angle, slack elasticity, and rate of increase in elasticity were 10.9° (6.3°), 5.8 (1.9) kPa, and 0.0347 (0.0082) respectively. Intraclass correlation coefficients of each parameter were 0.852, 0.942, and 0.936 respectively, indicating excellent test-retest reliability. This study demonstrated the feasibility of using supersonic shear wave elastography to quantify passive stretching characteristics of individual muscle and provided preliminary normative values of slack angle, slack elasticity, and rate of increase in elasticity for human tibialis anterior muscles. Future studies will investigate diagnostic values of these parameters in clinical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The effect of stretching on muscle strength: A short review of possible causes

    Directory of Open Access Journals (Sweden)

    Alexandre Gonçalves

    2007-06-01

    Full Text Available There is currently a certain level of disagreement in the scientifi c community on the benefi ts to muscle performance of stretching before exercise. Studies researching this subject have observed a tendency for muscle strength to reduce as a result of acute stretching. Nevertheless, there are differences in the conclusions that these studies have drawn as to what are the true reasons for this loss in muscular erformance after stretching. The objective of this study, therefore, is to perform a review of literature indexed in PUBMED and SCIELO, of Brazilian and international periodicals and of textbooks on neuromuscular physiology in order to analyze the effect of stretching on muscle strength and the possible causes for this effect. After analyzing the relevant literature, it was be concluded that muscle stretching can indeed result in reduced muscle strength performance in individuals exercising to gain muscle strength, but that the causes of this process are still the subject of disagreement and that further studies are needed to better elucidate the issue. RESUMO Atualmente, o alongamento muscular antes do exercício vem trazendo controvérsias no âmbito científi co, em relação aos seus benefícios, no que diz respeito ao desempenho muscular do indivíduo. Nesta linha de pesquisa, os estudos têm observado uma tendência na diminuição da força muscular como conseqüência do alongamento agudo. Contudo, existe divergências entre os estudos sobre os motivos reais da perda de performance muscular após alongamento. Assim, o objetivo do presente estudo foi analisar, através de uma revisão de literatura nas bases de dados PUBMED, SCIELO, periódicos nacionais e internacionais assim como em livros relacionados à fi siologia neuromuscular a infl uência do alongamento sobre a força muscular e suas possíveis causas. Após a análise da literatura levantada, pode-se concluir que o alongamento muscular pode acarretar défi cit de for

  13. The effect of abdominal resistance training and energy restricted diet on lateral abdominal muscles thickness of overweight and obese women.

    Science.gov (United States)

    Noormohammadpour, Pardis; Kordi, Ramin; Dehghani, Saeed; Rostami, Mohsen

    2012-07-01

    The role of transabdominal muscles (external oblique, internal oblique and transversus abdominis) on core stability has been shown previously. Energy restricted diet and abdominal resistance training are commonly used by overweight and obese people to reduce their weight. In this study we investigated the impact of 12 weeks concurrent energy restricted diet and abdominal resistance training on the thickness of the lateral abdominal muscles of 19 obese and overweight women employing ultrasonography in resting and drawing-in maneuvers. The results showed significant increase of the muscle thicknesses during drawing-in maneuver after 12 weeks intervention. Based on our findings, it can be concluded that 12 weeks concurrent abdominal resistance training and energy restricted diet in addition to weight loss lead to improvement of transabdominal muscles thickness in obese and overweight people. Considering the role of these muscles in core stability, using this therapeutic protocol in obese people, particularly in those who have weakness of these muscles might be helpful. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. [Postpartum pelvic floor muscle training and abdominal rehabilitation: Guidelines].

    Science.gov (United States)

    Deffieux, X; Vieillefosse, S; Billecocq, S; Battut, A; Nizard, J; Coulm, B; Thubert, T

    2015-12-01

    Provide guidelines for clinical practice concerning postpartum rehabilitation. Systematically review of the literature concerning postpartum pelvic floor muscle training and abdominal rehabilitation. Pelvic-floor rehabilitation using pelvic floor muscle contraction exercises is recommended to treat persistent urinary incontinence at 3 months postpartum (grade A), regardless of the type of incontinence. At least 3 guided sessions with a therapist is recommended, associated with pelvic floor muscle exercises at home. This postpartum rehabilitation improves short-term urinary incontinence (1 year) but not long-term (6-12 years). Early pelvic-floor rehabilitation (within 2 months following childbirth) is not recommended (grade C). Postpartum pelvic-floor rehabilitation in women presenting with anal incontinence, is associated with a lower prevalence of anal incontinence symptoms in short-term (1 year) (EL3) but not long-term (6 and 12) (EL3). Postpartum pelvic-floor rehabilitation is recommended to treat anal incontinence (grade C) but results are not maintained in medium or long term. No randomized trials have evaluated the pelvic-floor rehabilitation in asymptomatic women in order to prevent urinary or anal incontinence in medium or long term. It is therefore not recommended (expert consensus). Rehabilitation supervised by a therapist (physiotherapist or midwife) is not associated with better results than simple advice for voluntary contraction of the pelvic floor muscles to prevent/correct, in short term (6 months), a persistent prolapse 6 weeks postpartum (EL2), whether or not with a levator ani avulsion (EL3). Postpartum pelvic-floor rehabilitation is not associated with a decrease in the prevalence of dyspareunia at 1-year follow-up (EL3). Postpartum pelvic-floor rehabilitation guided by a therapist is therefore not recommended to treat or prevent prolapse (grade C) or dyspareunia (grade C). No randomized trials have evaluated the effect of pelvic

  15. Comparison of Abdominal Muscle Activity in Relation to Knee Angles during Abdominal Drawing-in Exercises Using Pressure Biofeedback

    OpenAIRE

    Lee, Jun-Cheol; Lee, Su-Kyoung; Kim, Kyoung

    2013-01-01

    [Purpose] The leg angles that are the most effective for abdominal muscle activation were investigated by performing abdominal drawing-in exercises at different leg angles with a biofeedback pressure unit. [Methods] Subjects were asked to adopt a supine position, and the tip of the biofeedback pressure unit was placed under the posterior superior iliac spine. Then, the pressure was adjusted to 40 mmHg while referring to the pressure gauge connected to the biofeedback pressure unit. Subjects w...

  16. The Effects of Proprioceptive Neuromuscular Facilitation Stretching on Post-Exercise Delayed Onset Muscle Soreness in Young Adults.

    Science.gov (United States)

    McGRATH, Ryan P; Whitehead, James R; Caine, Dennis J

    Until recently, the scientific community believed that post-exercise stretching could reduce delayed onset muscle soreness (DOMS), but recent reviews of studies on the topic have concluded that pre- or post-exercise static stretching has no effect on mitigating DOMS. However, the effect of proprioceptive neuromuscular facilitation (PNF) post-exercise stretching on preventing DOMS has not been adequately studied. The purpose of this study was to determine the effect of post-exercise PNF stretching on DOMS. Young adult participants (N=57) were randomly assigned to a PNF stretching group (n=19), a static stretching group (n=20), and to a no-stretching control group (n=18). All participants completed exercise designed to induce DOMS prior to post-exercise experimental stretching protocols. Participants rated their soreness level on a pain scale 24 and 48 hours post-exercise. A 3 × 2 mixed ANOVA showed there was an effect for time ( p <.01). Post hoc testing revealed that DOMS pain significantly decreased ( p <.05) from 24 to 48 hours post-exercise for the PNF and control groups, but not for the static stretching group. Other analyses revealed a significant correlation ( r =.61, p <.01) between the pre- and post-exercise stretch scores and the 48 hour post-exercise pain score for the PNF group. Consistent with the results of previous research on post-exercise static stretching, these results indicate that post-exercise PNF stretching also does not prevent DOMS. However, the correlation analysis suggests it is possible the pre-stretch muscle contractions of the post-exercise PNF protocol may have placed a load on an already damaged muscle causing more DOMS for some participants.

  17. The Effects of Proprioceptive Neuromuscular Facilitation Stretching on Post-Exercise Delayed Onset Muscle Soreness in Young Adults

    Science.gov (United States)

    McGRATH, RYAN P.; WHITEHEAD, JAMES R.; CAINE, DENNIS J.

    2014-01-01

    Until recently, the scientific community believed that post-exercise stretching could reduce delayed onset muscle soreness (DOMS), but recent reviews of studies on the topic have concluded that pre- or post-exercise static stretching has no effect on mitigating DOMS. However, the effect of proprioceptive neuromuscular facilitation (PNF) post-exercise stretching on preventing DOMS has not been adequately studied. The purpose of this study was to determine the effect of post-exercise PNF stretching on DOMS. Young adult participants (N=57) were randomly assigned to a PNF stretching group (n=19), a static stretching group (n=20), and to a no-stretching control group (n=18). All participants completed exercise designed to induce DOMS prior to post-exercise experimental stretching protocols. Participants rated their soreness level on a pain scale 24 and 48 hours post-exercise. A 3 × 2 mixed ANOVA showed there was an effect for time (p<.01). Post hoc testing revealed that DOMS pain significantly decreased (p<.05) from 24 to 48 hours post-exercise for the PNF and control groups, but not for the static stretching group. Other analyses revealed a significant correlation (r=.61, p<.01) between the pre- and post-exercise stretch scores and the 48 hour post-exercise pain score for the PNF group. Consistent with the results of previous research on post-exercise static stretching, these results indicate that post-exercise PNF stretching also does not prevent DOMS. However, the correlation analysis suggests it is possible the pre-stretch muscle contractions of the post-exercise PNF protocol may have placed a load on an already damaged muscle causing more DOMS for some participants. PMID:27182398

  18. Mechanomyogram amplitude correlates with human gastrocnemius medialis muscle and tendon stiffness both before and after acute passive stretching.

    Science.gov (United States)

    Longo, Stefano; Cè, Emiliano; Rampichini, Susanna; Devoto, Michela; Limonta, Eloisa; Esposito, Fabio

    2014-10-01

    The study aimed to assess the level of correlation between muscle-tendon unit (MTU) stiffness and mechanomyogram (MMG) signal amplitude of the human gastrocnemius medialis muscle, both before and after acute passive stretching. The passive torque (Tpass), electrically evoked peak torque (pT) and myotendinous junction displacement were determined at different angles of dorsiflexion (0, 10 and 20 deg), while maximum voluntary isometric torque (Tmax) was assessed only at 0 deg. Measurements were repeated after a bout of passive stretching. From the MMG signal, the root mean square (RMS) and peak to peak (p-p) were calculated. The MTU, muscle and tendon stiffness were determined by ultrasound and Tpass measurements. Before stretching, correlations between MMG RMS and MTU, muscle and tendon stiffness were found (R(2) = 0.22-0.46). After stretching, Tpass, Tmax, pT and MTU, muscle and tendon stiffness decreased by 25 ± 7, 16 ± 2, 9 ± 2, 22 ± 7, 23 ± 8 and 28 ± 5%, respectively (P muscle and tendon stiffness were still present after stretching (R(2) = 0.44-0.60). In conclusion, correlations between MMG RMS and stiffness exist both before and after stretching, suggesting that a slacker MTU leads to larger muscle fibre oscillations. However, care must be taken in using MMG amplitude as an indirect index to estimate stiffness owing to the relatively small R(2) values of the investigated correlations. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  19. The effects of therapeutic hip exercise with abdominal core activation on recruitment of the hip muscles

    OpenAIRE

    Chan, Mandy KY; Chow, Ka Wai; Lai, Alfred YS; Mak, Noble KC; Sze, Jason CH; Tsang, Sharon MH

    2017-01-01

    Background Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application o...

  20. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  1. Exercise-Induced Abdominal Wall Muscle Injury Resulting in Rhabdomyolysis and Mimicking an Acute Abdomen.

    Science.gov (United States)

    Echague, Charlene G; Csokmay, John M

    2018-03-01

    Rhabdomyolysis is characterized by muscle necrosis and release of intracellular constituents, causing muscle pain, weakness, and myoglobinuria. This can be attributed to muscle injury after strenuous exercise. If the abdominal wall is involved, clinical presentation may resemble an acute abdomen. A 27-year-old woman, gravida 4 para 2, presented with swelling and pain of the mons pubis and abdominal pain after intense powerlifting 2 days prior. A computed tomography scan was performed, revealing abdominal wall inflammation. Although myoglobinuria was absent, there was high suspicion for rhabdomyolysis, which was confirmed by an elevated creatine kinase level. The patient improved after receiving intravenous fluids and abstaining from physical activity. Abdominal wall muscle injury resulting in rhabdomyolysis can imitate an acute abdomen in a healthy woman presenting with abdominal pain and swelling.

  2. Effects of muscle stretching exercises in the treatment of fibromyalgia: a systematic review.

    Science.gov (United States)

    Lorena, Suélem Barros de; Lima, Maria do Carmo Correia de; Ranzolin, Aline; Duarte, Ângela Luiza Branco Pinto

    2015-01-01

    This study has the objective to systematize scientific evidences about the use of muscle stretching exercises in the treatment of FM. It was performed from retrospective research without chronological and linguistic limits, at databases of MEDLINE, LILACS, SciELO and PEDro, as well as at PubMed search tool. Data collection was performed by two independent reviewers in October 2012, with the search strategy formulated by crossing descriptors and relevant terms to the topic in English, Portuguese and Spanish languages. Randomized clinical trials, only with patients with a clinical diagnosis of fibromyalgia and muscle stretching exercises as a therapeutic measure at least in one of the intervention groups were included. Included studies were assessed for methodological quality using PEDro scale and their references analyzed to highlight additional sources. The search amounted to an average of 6,794 items. Only five articles were selected, one being excluded because of its low methodological quality. Pain was assessed unanimously. The method and timing of interventions varied widely, there was poor mention of the parameters used in the stretches and absence of specific physical examinations. There was significant improvement in all studies regarding pain, besides as related to quality of life and physical condition. It is clear the importance of muscle stretching in the treatment of FM, however, there is a need for further studies to establish the real benefits of the technique, because the majority of published studies shows low methodological quality and there is a lack of standardization regarding the use of this resource. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  3. Effect of PNF stretching training on the properties of human muscle and tendon structures.

    Science.gov (United States)

    Konrad, A; Gad, M; Tilp, M

    2015-06-01

    The purpose of this study was to investigate the influence of a 6-week proprioceptive neuromuscular facilitation (PNF) stretching training program on the various parameters of the human gastrocnemius medialis muscle and the Achilles tendon. Therefore, 49 volunteers were randomly assigned into PNF stretching and control groups. Before and after the stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) of the musculo-articular complex were measured with a dynamometer. Muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in tendon and muscle, and hence to calculate stiffness. Mean RoM increased from 31.1 ± 7.2° to 33.1 ± 7.2° (P = 0.02), stiffness of the tendon decreased significantly in both active (from 21.1 ± 8.0 to 18.1 ± 5.5 N/mm) and passive (from 12.1 ± 4.9 to 9.6 ± 3.2 N/mm) conditions, and the pennation angle increased from 18.5 ± 1.8° to 19.5 ± 2.1° (P = 0.01) at the neutral ankle position (90°), only in the intervention group, whereas MVC and PRT values remained unchanged. We conclude that a 6-week PNF stretching training program increases RoM and decreases tendon stiffness, despite no change in PRT. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. COMPARATIVE EFFECT OF STATIC AND DYNAMIC STRETCHING EXERCISE TO IMPROVE FLEXIBILITY OF HAMSTRING MUSCLES AMONG NON ATHLETES

    Directory of Open Access Journals (Sweden)

    Jibi Paul

    2014-10-01

    Full Text Available Background: Stretching exercises have been routinely used in persons with hamstring tightness and athletes to increase flexibility of muscle and to reduce joint injuries. Many studies have reported effect of static and dynamic stretching on flexibility of this muscle. Finding the best method to improve flexibility of hamstring muscle is important for athletes and individuals to reduce their injuries. Objective of the study was to find out the effect of static stretching exercise and dynamic stretching exercise on flexibility of hamstring muscle and also to compare the effect of static and dynamic stretching exercise on flexibility of hamstring muscle. Methods: This was a comparative experimental study with seventy four female healthy subjects from physiotherapy department of KPJ Healthcare University College, Malaysia. Convenient sampling method used to select the samples. The subjects were selected by inclusion criteria and randomly divided equally in to two with 37 subjects in each group. Static stretching exercise and dynamic stretching exercise were given as intervention program for four weeks respectively for experimental and control group. Pre and post data of restricted range of movement for knee extension was measured using goniometry and documented separately for both group. Result: In experimental and control group, pre-post statistical analysis found significant effect in increase of hamstring flexibility with P<0.0001, for right and left side. Comparative study between experimental and control group found that static stretching exercise have significant effect in increase of hamstring flexibility for right and left side with P<0.04. Conclusion: This study concluded that static stretching exercise is more effective to improve hamstring flexibility compared to dynamic stretching exercise.

  5. Botulinum Neurotoxin A Injections Influence Stretching of the Gastrocnemius Muscle-Tendon Unit in an Animal Model

    Science.gov (United States)

    Haubruck, Patrick; Mannava, Sandeep; Plate, Johannes F.; Callahan, Michael F.; Wiggins, Walter F.; Schmidmaier, Gerhard; Tuohy, Christopher J.; Saul, Katherine R.; Smith, Thomas L.

    2012-01-01

    Botulinum Neurotoxin A (BoNT-A) injections have been used for the treatment of muscle contractures and spasticity. This study assessed the influence of (BoNT-A) injections on passive biomechanical properties of the muscle-tendon unit. Mousegastrocnemius muscle (GC) was injected with BoNT-A (n = 18) or normal saline (n = 18) and passive, non-destructive, in vivo load relaxation experimentation was performed to examine how the muscle-tendon unit behaves after chemical denervation with BoNT-A. Injection of BoNT-A impaired passive muscle recovery (15% vs. 35% recovery to pre-stretching baseline, p stretch reflex; thereby modulating in vivo passive muscle properties. However, it is also possible that BoNT-A injection may alter the structure of skeletal muscle; thus modulating the in vivo passive biomechanical properties of the muscle-tendon unit. PMID:23012650

  6. Comparison of spine motion and trunk muscle activity between abdominal hollowing and abdominal bracing maneuvers during prone hip extension.

    Science.gov (United States)

    Suehiro, Tadanobu; Mizutani, Masatoshi; Watanabe, Susumu; Ishida, Hiroshi; Kobara, Kenichi; Osaka, Hiroshi

    2014-07-01

    The aim of this study was to examine the effects of lumbopelvic stabilization maneuvers on spine motion and trunk muscle activity during prone hip extension (PHE). In this study, 14 healthy male volunteers (mean age, 21.2 ± 2.6 years) were instructed to perform PHE without any maneuvers (control), with abdominal hollowing (AH), and with abdominal bracing (AB). Surface electromyography data were collected from the trunk muscles and the lumbopelvic motion was measured. Lumbar extension and anterior pelvic tilt degree were significantly lower in the AH and AB than in the control condition during PHE (p 0.05). Global muscle group activity such as external obliques was lower in the AH than in the AB. These findings suggest that PHE with AH effectively minimizes unwanted lumbopelvic motion which does not result in global muscle activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Muscle Activity of Abdominal and Back Muscles during Six Starting Positions in Untrained Individuals.

    Science.gov (United States)

    Sakulsriprasert, Prasert; Eak-udchariya, Penpailin; Jalayondeja, Wattana

    2015-06-01

    This study aimed to investigate the electromyography (EMG) activity amongfive abdominal and back muscles at six starting positions in untrained individuals. Twenty-five healthy individuals aged 20.9 +/- 3.9 years, who were inexperienced with lumbar stabilization exercise, were recruited. They were asked to perform maximum voluntary isometric contraction (MVIC), and then six starting positions in random order EMG data ofeach starting position were normalized as a percentage of MVIC. Friedman two-way analysis of variance (ANOVA) and Wilcoxon signed-ranks tests were used for data analysis. Significant differences in EMG activity of five abdominal and back muscles were found in all six starting positions (pactivity ofthe transversus abdominis/internal abdominal oblique (TrA/IO) was found in crook lying, with right leg lifted (CLR), and of multifidus (MF) in four-point kneeling with straight right leg lifted horizontally (4p-SRL). The results suggested that CLR and sitting on a gym ball (SG) were able tofacilitate TrA/IO activity with minimal activity from the rectus abdominis (RA), while CL, 4p-SRL, andSG were able tofacilitate MF activity with minimal activity from erector spinae (ES).

  8. Is Abdominal Muscle Activity Different from Lumbar Muscle Activity during Four-Point Kneeling?

    Directory of Open Access Journals (Sweden)

    Soraya Pirouzi

    2013-12-01

    Full Text Available Background: Stabilization exercises can improve the performance of trunk and back muscles, which are effective in the prevention and treatment of low back pain. The four-point kneeling exercise is one of the most common types of stabilization exercises. This quasi-experimental study aimed to evaluate and compare the level of activation between abdominal and lumbar muscles in the different stages of the four-point kneeling exercise. Methods: The present study was conducted on 30 healthy women between 20 and 30 years old. Muscle activity was recorded bilaterally from transversus abdominis, internal oblique, and multifidus muscles with an electromyography (EMG device during the different stages of the four-point kneeling exercise. All the collected EMG data were normalized to the percentage of maximum voluntary isometric contraction. The repeated measures ANOVA and paired t-test were used for the statistical analysis of the data. Results: A comparison between mean muscle activation in right arm extension and left leg extension showed that left internal oblique and left transverse abdominis muscles produced greater activation during left leg extension (P<0.05. The comparison of mean muscle activation between right arm extension and the bird-dog position showed that, except for the right internal oblique, all the muscles produced higher activation in the bird-dog stage (P<0.05. In comparison to the bird-dog stage, the left multifidus showed high activation during left leg extension (P<0.05. Conclusion: The results of this study showed that the activity of all the above-mentioned muscles during quadruped exercise can provide stability, coordination, and smoothness of movements.

  9. Acute effects of static active or dynamic active stretching on eccentric-exercise-induced hamstring muscle damage.

    Science.gov (United States)

    Chen, Che-Hsiu; Chen, Trevor C; Jan, Mei-Hwa; Lin, Jiu-Jenq

    2015-04-01

    To examine whether an acute bout of active or dynamic hamstring-stretching exercises would reduce the amount of muscle damage observed after a strenuous eccentric task and to determine whether the stretching protocols elicit similar responses. A randomized controlled clinical trial. Thirty-six young male students performed 5 min of jogging as a warm-up and were allocated to 1 of 3 groups: 3 min of static active stretching (SAS), 3 min of dynamic active stretching (DAS), or control (CON). All subjects performed eccentric exercise immediately after stretching. Heart rate, core temperature, maximal voluntary isometric contraction, passive hip flexion, passive hamstring stiffness (PHS), plasma creatine kinase activity, and myoglobin were recorded at prestretching, at poststretching, and every day after the eccentric exercises for 5 d. After stretching, the change in hip flexion was significantly higher in the SAS (5°) and DAS (10.8°) groups than in the CON (-4.1°) group. The change in PHS was significantly higher in the DAS (5.6%) group than in the CON (-5.7%) and SAS (-6.7%) groups. Furthermore, changes in muscle-damage markers were smaller in the SAS group than in the DAS and CON groups. Prior active stretching could be useful for attenuating the symptoms of muscle damage after eccentric exercise. SAS is recommended over DAS as a stretching protocol in terms of strength, hamstring range of motion, and damage markers.

  10. Contraction of Abdominal Wall Muscles Influences Incisional Hernia Occurrence and Size

    Science.gov (United States)

    Lien, Samuel C.; Hu, Yaxi; Wollstein, Adi; Franz, Michael G.; Patel, Shaun P.; Kuzon, William M.; Urbanchek, Melanie G.

    2015-01-01

    Background Incisional hernias are a complication in 10% of all open abdominal operations and can result in significant morbidity. The purpose of this study is to determine if inhibiting abdominal muscle contraction influences incisional hernia formation during laparotomy healing. We hypothesize that reducing abdominal musculature deformation reduces incisional hernia occurrence and size. Study Design Using an established rat model for incisional hernia, a laparotomy through the linea alba was closed with one mid-incision, fast-absorbing suture. Three groups were compared: a SHAM group (SHAM; n = 6) received no laparotomies while the Saline Hernia (SH; n = 6) and Botox Hernia (BH; n = 6) groups were treated once with equal volume saline or Botulinum Toxin (Botox®, Allergan) before the incomplete laparotomy closure. On post-operative day 14, the abdominal wall was examined for herniation and adhesions and contractile forces were measured for abdominal wall muscles. Results No hernias developed in SHAM rats. Rostral hernias developed in all SH and BH rats. Caudal hernias developed in all SH rats, but in only 50% of the BH rats. Rostral hernias in the BH group were 35% shorter and 43% narrower compared to those in the SH group (p abdominal muscles compared to the SHAM and SH groups (p abdominal muscles reduces the number and size of incisional hernias. These results confirm abdominal wall muscle contractions play a significant role in the pathophysiology of incisional hernia formation. PMID:25817097

  11. Comparison of EMG during passive stretching and shortening phases of each muscle for the investigation of parkinsonian rigidity.

    Science.gov (United States)

    Kwon, Yuri; Kim, Ji-Won; Kim, Ji-Sun; Koh, Seong-Beom; Eom, Gwang-Moon; Lim, Tae-Hong

    2015-01-01

    The aim of this study was to test the hypothesis in the literature that torque resistance of parkinsonian rigidity is the difference between the independent contributions of stretched and shortened muscles. The hypothesis was tested using muscle-specific stretch-shortening (MSSS) EMG ratio in this study. Nineteen patients with idiopathic Parkinson's disease (PD) and 18 healthy subjects (the mean age comparable to that of patients) participated in this study. The EMG activity was measured in the four muscles involved in wrist joint movement, i.e. flexor carpi radialis, flexor carpi ulnaris, extensor carpi radialis and extensor carpi ulnaris. The passive flexion-extension movement with a range of ±30∘ was applied at wrist joint. Root mean squared (RMS) mean was calculated from the envelope of the EMG for each of stretching and shortening phases. MSSS EMG ratio was defined as the ratio of RMS EMG of stretching phase and RMS EMG of shortening phase of a single muscle, and it was calculated for each muscle. MSSS EMG ratios were smaller than one in all muscles. These results indicate that all wrist muscles generate greater mean EMG during shortening than during stretching. Therefore, the torque resistance of parkinsonian rigidity cannot be explained as the simple summation of independent antagonistic torque pair.

  12. Giant ventral hernia-relationship between abdominal wall muscle strength and hernia area.

    Science.gov (United States)

    Strigård, K; Clay, L; Stark, B; Gunnarsson, U; Falk, P

    2016-08-02

    Symptoms arising from giant ventral hernia have been considered to be related to weakening of the abdominal muscles. The aim of this study was to investigate the relationship between the area of the abdominal wall defect and abdominal wall muscle strength measured by the validated BioDex system together with a back/abdominal unit. Fifty-two patients with giant ventral hernia (>10 cm wide) underwent CT scan, clinical measurement of hernia size and BioDex measurement of muscle strength prior to surgery. The areas of the hernia derived from CT scan and from clinical measurement were compared with BioDex forces in the modalities extension, flexion and isometric contraction. The Spearman rank test was used to calculate correlations between area, BMI, gender, age, and muscle strength. The hernia area calculated from clinical measurements correlated to abdominal muscle strength measured with the Biodex for all modalities (p-values 0.015-0.036), whereas no correlation was seen with the area calculated by CT scan. No relationship was seen between BMI, gender, age and the area of the hernia. The inverse correlation between BioDex abdominal muscle strength and clinically assessed hernia area, seen in all modalities, was so robust that it seems safe to conclude that the area of the hernia is an important determinant of the degree of loss of abdominal muscle strength. Results using hernia area calculated from the CT scan showed no such correlation and this would seem to concur with the results from a previous study by our group on patients with abdominal rectus diastasis. In that study, defect size assessed clinically, but not that measured by CT scan, was in agreement with the size of the diastasis measured intra-operatively. The point at which the area of a hernia begins to correlate with loss of abdominal wall muscle strength remains unknown since this study only included giant ventral hernias.

  13. Effects of Different Types of Contraction in Abdominal Bracing on the Asymmetry of Left and Right Abdominal Muscles

    OpenAIRE

    Park, Sung-Hyun; Song, Min-Young; Park, Hyeon-Ji; Park, Ji-Hyun; Bae, Hyun-Young; Lim, Da-Som

    2014-01-01

    [Purpose] The purpose of this study was to investigate the effective strength levels of abdominal muscle contraction using the bracing contraction method. [Subjects] The experiment was conducted with 31 healthy male (M=15) and female (F=16) adults attending D University in Busan; all participants had less than obesity level BMI (BMI

  14. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching.

    Science.gov (United States)

    Dubois, Guillaume; Kheireddine, Walid; Vergari, Claudio; Bonneau, Dominique; Thoreux, Patricia; Rouch, Philippe; Tanter, Mickael; Gennisson, Jean-Luc; Skalli, Wafa

    2015-09-01

    Development of shear wave elastography gave access to non-invasive muscle stiffness assessment in vivo. The aim of the present study was to define a measurement protocol to be used in clinical routine for quantifying the shear modulus of lower limb muscles. Four positions were defined to evaluate shear modulus in 10 healthy subjects: parallel to the fibers, in the anterior and posterior aspects of the lower limb, at rest and during passive stretching. Reliability was first evaluated on two muscles by three operators; these measurements were repeated six times. Then, measurement reliability was compared in 11 muscles by two operators; these measurements were repeated three times. Reproducibility of shear modulus was 0.48 kPa and repeatability was 0.41 kPa, with all muscles pooled. Position did not significantly influence reliability. Shear wave elastography appeared to be an appropriate and reliable tool to evaluate the shear modulus of lower limb muscles with the proposed protocol. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  16. The influence of passive stretch on the growth and protein turnover of the denervated extensor digitorum longus muscle

    Science.gov (United States)

    Goldspink, David F.

    1978-01-01

    At 7 days after cutting the sciatic nerve, the extensor digitorum longus muscle was smaller and contained less protein than its innervated control. Correlating with these changes was the finding of elevated rates of protein degradation (measured in vitro) in the denervated tissue. However, at this time, rates of protein synthesis (measured in vitro) and nucleic acid concentrations were also higher in the denervated tissue, changes more usually associated with an active muscle rather than a disused one. These anabolic trends have, at least in part, been explained by the possible greater exposure of the denervated extensor digitorum longus to passive stretch. When immobilized under a maintained influence of stretch the denervated muscle grew to a greater extent. Although this stretch-induced growth appeared to occur predominantly through a stimulation of protein synthesis, it was opposed by smaller increases in degradative rates. Nucleic acids increased at a similar rate to the increase in muscle mass when a continuous influence of stretch was imposed on the denervated tissue. In contrast, immobilization of the denervated extensor digitorum longus in a shortened unstretched state reversed most of the stretch-induced changes; that is, the muscle became even smaller, with protein synthesis decreasing to a greater extent than breakdown after the removal of passive stretch. The present investigation suggests that stretch will promote protein synthesis and hence growth of the extensor digitorum longus even in the absence of an intact nerve supply. However, some factor(s), in addition to passive stretch, must contribute to the anabolic trends in this denervated muscle. PMID:708412

  17. Postural response of the pelvic floor and abdominal muscles in women with and without incontinence.

    Science.gov (United States)

    Smith, Michelle D; Coppieters, Michel W; Hodges, Paul W

    2007-01-01

    To determine whether activity of the pelvic floor (PF) and abdominal muscles differs between continent and incontinent women in response to a postural perturbation with a moderately full or empty bladder. Electromyographic (EMG) activity of the PF and abdominal muscles was recorded with surface electrodes prior to and after a postural perturbation in which a 1 kg weight was dropped 30 cm into a bucket held by the subject. Perturbations were applied to the trunk in trials in which the timing of the weight drop was unknown (unexpected) or predictable (expected). Trials were performed with the bladder empty, and when the subject reported a sensation of moderate bladder fullness after drinking between 200 and 1,000 ml of water. Women with incontinence demonstrated increased PF EMG compared to continent women both prior to and during the postural response associated with unexpected loading. In addition, obliquus externus abdominis EMG was increased in incontinent women during these trials. When the bladder was moderately full, PF EMG decreased, whereas abdominal muscle EMG tended to increase. These data suggest that women with incontinence have increased PF and abdominal muscle activity associated with postural perturbations. This finding challenges the clinical assumption that incontinence is associated with reduced PF muscle activity, and suggests that training control and coordination of abdominal muscle activity may be important in treatment of this condition. The contrasting effects of increased bladder volume on PF and abdominal muscle EMG are likely to present further challenges to the maintenance of continence.

  18. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation

    Science.gov (United States)

    Seider, M. J.; Kapp, R.; Chen, C.-P.; Booth, F. W.

    1980-01-01

    Skeletal muscle preparations using cut muscle fibers have often been used in studies of protein metabolism. The present paper reports an investigation of the effect of muscle cutting or stretching in vitro on the rates of protein synthesis and/or degradation. Protein synthesis and content, and ATP and phosphocreatine levels were monitored in soleus and extensor digitorum longus muscles from the rat with various extents of muscle fiber cuts and following stretching to about 120% the resting length. Rates of protein synthesis are found to be significantly lower and protein degradation higher in the cut muscles than in uncut controls, while ATP and phosphocreatine concentrations decreased. Stretched intact muscles, on the other hand, are observed to have higher concentrations of high-energy phosphates than unstretched muscles, while rates of protein degradation were not affected. Results thus demonstrate that the cutting of skeletal muscle fibers alters many aspects of muscle metabolism, and that moderate decreases in ATP concentration do not alter rates of protein concentration in intact muscles in vitro.

  19. The comparison of abdominal muscle activation on unstable surface according to the different trunk stability exercises

    OpenAIRE

    Lee, Jung-seok; Kim, Da-yeon; Kim, Tae-ho

    2016-01-01

    [Purpose] This study aimed to determine the effect of abdominal muscle activities and the activation ratio related to trunk stabilization to compare the effects between the abdominal drawing-in maneuver and lumbar stabilization exercises on an unstable base of support. [Subjects and Methods] Study subjects were 20 male and 10 female adults in their 20s without lumbar pain, who were equally and randomly assigned to either the abdominal drawing-in maneuver group and the lumbar stabilization exe...

  20. The effect of passive stretching on delayed onset muscle soreness, and other detrimental effects following eccentric exercise

    DEFF Research Database (Denmark)

    Lund, Henrik; Vestergaard-Poulsen, P; Kanstrup, I.L.

    1998-01-01

    The aim of this study was to measure if passive stretching would influence delayed onset muscle soreness (DOMS), dynamic muscle strength, plasma creatine kinase concentration (CK) and the ratio of phosphocreatine to inorganic phosphate (PCr/P(i)) following eccentric exercise. Seven healthy...

  1. Pain intensity and abdominal muscle activation during walking in patients with low back pain

    OpenAIRE

    Kim, Si-Hyun; Park, Kyue-Nam; Kwon, Oh-Yun

    2017-01-01

    Abstract Nonspecific low back pain (LBP) is a common musculoskeletal problem that is intensified during physical activity. Patients with LBP have been reported to change their abdominal muscle activity during walking; however, the effects of pain intensity, disability level, and fear-avoidance belief on this relationship have not been evaluated. Thus, we compared abdominal muscle activity in patients with LBP and asymptomatic controls, and assessed the impact of pain intensity, disability lev...

  2. Acute Effects of Different Methods of Stretching and Specific Warm-ups on Muscle Architecture and Strength Performance.

    Science.gov (United States)

    Sá, Marcos A; Matta, Thiago T; Carneiro, Simone P; Araujo, Carolina O; Novaes, Jefferson S; Oliveira, Liliam F

    2016-08-01

    Sá, MA, Matta, TT, Carneiro, SP, Araujo, CO, Novaes, JS, and Oliveira, LF. Acute effects of different methods of stretching and specific warm-ups on muscle architecture and strength performance. J Strength Cond Res 30(8): 2324-2329, 2016-The purpose of the study was to investigate the acute effects of 2 stretching interventions, proprioceptive neuromuscular facilitation (PNF) and passive static stretching (PSS), and a specific warm-up (SW) on the strength and architecture of the vastus laterallis and biceps femoris muscles in a subsequent performance on a strength training session (STS). Musculoskeletal ultrasound images were acquired from 9 men before and immediately after stretchings or a SW, and 10 minutes after a STS. The STS consisted of the following exercises: leg extension, leg curl, leg press, and hack machine squat. The PNF resulted in lower performance for all situations. The PSS and SW improved performance for the leg press compared with the PNF and controls (CSs). For the hack machine squat, SWs resulted in higher performance than stretching conditions. The vastus lateralis muscle fascicle length (FL) increases after a STS for PNF. The biceps femoris muscle showed a higher pennation angle 10 minutes after the STS for PSS; the FL increases immediately after PSS and then decreases 10 minutes after the STS for PSS. As per our results, the SWs should be performed before STSs, whereas PNF stretching should not be prescribed because this condition impairs subsequent performance. These results may assist health professionals in prescribing resistance training.

  3. Effects of repeated ankle stretching on calf muscle-tendon and ankle biomechanical properties in stroke survivors.

    Science.gov (United States)

    Gao, Fan; Ren, Yupeng; Roth, Elliot J; Harvey, Richard; Zhang, Li-Qun

    2011-06-01

    The objective of this study was to investigate changes in active and passive biomechanical properties of the calf muscle-tendon unit induced by controlled ankle stretching in stroke survivors. Ten stroke survivors with ankle spasticity/contracture and ten healthy control subjects received intervention of 60-min ankle stretching. Joint biomechanical properties including resistance torque, stiffness and index of hysteresis were evaluated pre- and post-intervention. Achilles tendon length was measured using ultrasonography. The force output of the triceps surae muscles was characterized via the torque-angle relationship, by stimulating the calf muscles at a controlled intensity across different ankle positions. Compared to healthy controls, the ankle position corresponding to the peak torque of the stroke survivors was shifted towards plantar flexion (Pcalf muscles in stroke survivors under matched stimulations (Pmuscle-tendon level, repeated stretching improved calf muscle force output, which might be associated with decreased muscle fascicle stiffness, increased fascicle length and shortening of the Achilles tendon. The study provided evidence of improvement in muscle tendon properties through stretching intervention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    OpenAIRE

    Serefoglu, Abdullah; Sekir, Ufuk; G?r, Hakan; Akova, Bedrettin

    2017-01-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) ...

  5. Effect of abdominal bracing training on strength and power of trunk and lower limb muscles.

    Science.gov (United States)

    Tayashiki, Kota; Maeo, Sumiaki; Usui, Seiji; Miyamoto, Naokazu; Kanehisa, Hiroaki

    2016-09-01

    It is unknown whether maximal voluntary co-contraction of abdominal muscles, called abdominal bracing, can be a training maneuver for improving strength and power of trunk and lower limb muscles. The present study aimed to elucidate this. Twenty young adult men (23.3 ± 1.8 years) were allocated to training (TG, n = 11) or control (CG, n = 9) group. TG conducted an 8-week training program (3 days/week) consisting of 2-s maximal abdominal bracing followed by 2-s muscle relaxation (5 × 10 repetitions/day). Maximal voluntary isometric strength during trunk flexion and extension, hip extension, and knee extension, maximal lifting power from sitting position, and the thicknesses of abdominal muscles were measured before and after the intervention. In addition, surface electromyograms from trunk and lower limb muscles and intra-abdominal pressure (IAP) during the maximal abdominal bracing and maximal lifting tasks were also determined. After the intervention, TG showed significant increases in isometric trunk extension (+14.4 %) and hip extension (+34.7 %) strength and maximal lifting power (+15.6 %), while CG did not show any changes in strength and power variables. Furthermore, TG had significant gains in the muscle thickness of the oblique internal (+22.4 %), maximal IAP during abdominal bracing (+36.8 %), and the rate of IAP rise during lifting task (+58.8 %), without corresponding changes in CG. The current study indicates that a training style with maximal voluntary co-contraction of abdominal muscles can be an effective maneuver for increasing strength and power during movements involving trunk and hip extensions, without using external load.

  6. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    Science.gov (United States)

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padjactivities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Rectus Abdominis Muscle Malignant Fibrous Histiocytoma Causing a Large Abdominal Wall Defect: Reconstruction with Biological Mesh

    Directory of Open Access Journals (Sweden)

    Evangelos Falidas

    2014-01-01

    Full Text Available Malignant fibrous histiocytoma (MFH is a common soft tissue sarcoma usually involving limbs and retroperitoneum. MFH of the rectus abdominis muscle is extremely rare. Surgery in similar cases leads to large abdominal wall defects needing reconstruction. Biological and synthetic laminar absorbable prostheses are available for the repair of hernia defects in the abdominal wall. They share the important feature of being gradually degraded in the host, resulting the formation of a neotissue. We herein report the case of an 84-year-old man with MFH of the rectus abdominis muscle which was resected and the large abdominal wall defect was successfully repaired with a biological mesh.

  8. Effect of a 5-week static stretching program on hardness of the gastrocnemius muscle.

    Science.gov (United States)

    Akagi, R; Takahashi, H

    2014-12-01

    This study investigated the effects of a static stretching (SS) program on muscle hardnesses of the gastrocnemius medialis (MG) and gastrocnemius lateralis (LG). Nineteen young men participated in this study. Either the right or left leg was randomly selected to conduct three bouts of 2-min SS of the plantar flexors 6 days a week for 5 weeks in each subject (the SS group), and the other leg was assigned to a control group. Before (pretest) and after (posttest) conducting the SS program, MG and LG hardnesses were measured using shear wave ultrasound elastography. The SS program was found to decrease muscle hardnesses, but not to change the ratio of MG hardness to LG hardness. There were no significant differences between the relative changes in the MG and LG hardnesses from pretest to posttest in both the SS and control groups. Significant correlations between the muscle hardness ratios at pretest and posttest were found in both groups. The results of this study suggest that the current SS program is useful for improving muscle condition in the plantar flexors, and that its long-term effects on the MG and LG hardnesses are of the same degree. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight.

    Science.gov (United States)

    Wang, Qian; Newhard, Christopher S; Ramanath, Seemanti; Sheppard, Debra; Swank, Douglas M

    2014-01-15

    Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers - 1% muscle length (ML) amplitude and 150 Hz oscillation frequency - were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance.

  10. In Vivo Sarcomere Length Measurement in Whole Muscles during Passive Stretch and Twitch Contractions.

    Science.gov (United States)

    Young, Kevin W; Kuo, Bill P-P; O'Connor, Shawn M; Radic, Stojan; Lieber, Richard L

    2017-02-28

    Muscle force is dictated by micrometer-scale contractile machines called sarcomeres. Whole-muscle force drops from peak force production to zero with just a few micrometers of sarcomere length change. No current technology is able to capture adequate dynamic sarcomere data in vivo, and thus we lack fundamental data needed to understand human movement and movement disorders. Methods such as diffraction, endoscopy, and optical coherence tomography have been applied to muscle but are prohibitively invasive, sensitive to motion artifact, and/or imprecise. Here, we report dynamic sarcomere length measurement in vivo using a combination of our recently validated resonant reflection spectroscopy method combined with optical frequency domain interferometry. Using a 250-μm-wide fiber optic probe, we captured nanometer sarcomere length changes from thousands of sarcomeres on the sub-millisecond timescale during whole-muscle stretch and twitch contraction. We believe that this demonstrates the first large-scale sensing of sarcomere dynamics in vivo, which is a necessary first step to understand movement disorders and to create patient-specific surgical interventions and rehabilitation. Published by Elsevier Inc.

  11. Preoperative abdominal muscle elongation with botulinum toxin A for complex incisional ventral hernia repair.

    Science.gov (United States)

    Farooque, Faisal; Jacombs, Anita S W; Roussos, Emmanouel; Read, John W; Dardano, Anthony N; Edye, Michael; Ibrahim, Nabeel

    2016-01-01

    Surgical repair of recurrent abdominal incisional hernia(s) can be challenging due to complex operative conditions, intense post-operative pain, potential respiratory compromise and lateral muscle traction predisposing to early recurrence. We report our preliminary results with botulinum toxin A (BTA) injection causing flaccid paralysis (relaxation) of the lateral abdominal wall muscles prior to surgery. A prospective pilot study measured the effect of preoperative BTA prior to elective repair of recurrent abdominal hernias. Under ultrasound control, 2 weeks prior to surgery, 50 units of BTA was injected into the external oblique, internal oblique and transversus abdominis muscles at three sites on each side of the lateral abdominal wall (total dose 300 units). Pre- and post-BTA abdominal computed tomography measured changes in abdominal wall muscle thickness and length. All hernias were repaired with laparoscopic or laparoscopic-assisted mesh techniques in a single or two-staged procedure. Eight patients received BTA injections which were tolerated with no complications. Post-BTA preoperative computed tomography showed a significant increase in mean length of lateral abdominal wall from 18.5 cm pre-BTA to 21.3 cm post-BTA (P = 0.017) with a mean unstretched length gain of 2.8 cm per side (range 0.8-6.0 cm). All hernias were surgically reduced with mesh with no early recurrence. Preoperative BTA injection prior to complex abdominal hernia repair is a safe procedure that causes flaccid relaxation, elongation and thinning of the lateral abdominal muscles and decrease in hernia defect. Although further evaluation is required, BTA injections may be a useful adjunct to surgical repair of complex incisional hernias. © 2015 Royal Australasian College of Surgeons.

  12. Effect of passive stretching and jogging on the series elastic muscle stiffness and range of motion of the ankle joint

    Science.gov (United States)

    McNair, Peter J; Stanley, Stephen N

    1996-01-01

    Objective To determine the effect of stretching and jogging on the series elastic muscle stiffness of the plantar flexors and on the range of dorsiflexion at the ankle joint. Methods 24 healthy subjects participated in this study. Each subject undertook all of the following protocols, in random order: (1) stretching protocol: five 30 s static stretches with 30 s rest between stretches; (2) aerobic jogging protocol: subjects ran on a treadmill for 10 min at 60% of their maximum age predicted heart rate; (3) combined protocol: subjects ran first and then stretched. A damped oscillation technique was used to measure the series elastic stiffness of the plantar flexors. Dorsiflexion of the ankle was assessed with a weights and pulley system that moved the ankle joint from a neutral position into dorsiflexion passively. Electromyography was used to monitor the activity of the plantar and dorsiflexors during these procedures. The statistical analysis of these data involved an analysis of covariance Results For decreasing series elastic muscle stiffness running was more effective than stretching (Pjogging and static stretching exercises appear to be beneficial to individuals participating in sporting activities. ImagesFigure 2Figure 3Figure 4Figure 5Figure 6 PMID:9015593

  13. Acute effects of antagonist static stretching in the inter-set rest period on repetition performance and muscle activation.

    Science.gov (United States)

    Miranda, Humberto; Maia, Marianna de Freitas; Paz, Gabriel Andrade; Costa, Pablo B

    2015-01-01

    The purpose of this study was to investigate the effects of antagonist passive static stretching (AS) during the inter-set rest period on repetition performance and muscle activation. Ten trained men (22.4 ± 0.9 years) participated in this study. Two protocols were adopted: Passive recovery (PR)--three sets to repetition failure were performed for the seated row (SR) with two-minute rest interval between sets without pre-exercise stretching; AS--forty seconds of stretching was applied to pectoralis major prior to each set of SR. Significant increases in the number of repetitions were noted under AS compared with PR (p muscle activity were noted inter-sets under the AS compared with the PR condition. Therefore, the AS adopted during the inter-set rest period may enhance repetition performance and activation of agonist muscles in an acute manner.

  14. Assessment of muscle architecture of the biceps femoris and vastus lateralis by ultrasound after a chronic stretching program.

    Science.gov (United States)

    e Lima, Kelly M M; Carneiro, Simone P; Alves, Daniel de S; Peixinho, Carolina C; de Oliveira, Liliam F

    2015-01-01

    To evaluate the chronic effects of a static stretching program on the muscle architecture of biceps femoris (BF) and vastus lateralis (VL) muscles in ultrasound (US) images. Randomized controlled longitudinal trial. Biomechanics Laboratory of Physical Education School of the Army, Rio de Janeiro, Brazil. The study included 24 healthy and physically active male volunteers (19.05 ± 1.40 years, 1.73 ± 0.07 m, and 73.15 ± 8.33 kg), randomly allocated to 1 of 2 groups: stretching group (SG, n = 12) and control group (n = 12). The SG was submitted to 3 sets of 30 seconds of static stretching 3 times a week during 8 weeks. Ultrasound equipment (7.5 MHz) was used for the evaluation of BF and VL muscle architecture variables (pennation angle, fiber length, muscle thickness, and fascicle displacement) before and after training. Knee range of motion (ROM) and isometric flexion and extension torque (TQ) were also measured. There were no significant changes in muscle architecture, TQ, and maximum knee flexion angle (P > 0.05). However, maximum knee extension angle (MEA) increased significantly in the SG (pretraining: 159.37 ± 7.27 degrees and posttraining: 168.9 ± 3.7 degrees; P stretching protocol was insufficient to cause structural changes in the VL and BF muscles. The increase in MEA could not be explained by muscle architecture changes. To describe changes in the VL and BF muscle tendon unit using US after a long-term stretching program to identify which structures are responsible for ROM increase.

  15. Comparison of Abdominal Muscle Activity in Relation to Knee Angles during Abdominal Drawing-in Exercises Using Pressure Biofeedback.

    Science.gov (United States)

    Lee, Jun-Cheol; Lee, Su-Kyoung; Kim, Kyoung

    2013-10-01

    [Purpose] The leg angles that are the most effective for abdominal muscle activation were investigated by performing abdominal drawing-in exercises at different leg angles with a biofeedback pressure unit. [Methods] Subjects were asked to adopt a supine position, and the tip of the biofeedback pressure unit was placed under the posterior superior iliac spine. Then, the pressure was adjusted to 40 mmHg while referring to the pressure gauge connected to the biofeedback pressure unit. Subjects were instructed to increase the pressure by 10 mmHg using the drawing-in technique upon the oral instruction, "Start," and to maintain the drawn-in state. The time during which the pressure was maintained within an error range of ±1-2mmHg was measured in seconds. [Result] During the abdominal drawing-in exercises, the activity of the rectus abdominis, the internal and external obliques, and the transverse abdominis increased as the knee joint flexion angle increased from 45° to 120°. [Conclusion] When trunk stabilization exercises are performed at the same pressure to reduce damage after the acute phase of low back pain, trunk muscle strength can be efficiently increased by increasing the knee joint angle gradually, while performing abdominal drawing-in exercises with a biofeedback pressure unit.

  16. Does long-term passive stretching alter muscle-tendon unit mechanics in children with spastic cerebral palsy?

    Science.gov (United States)

    Theis, Nicola; Korff, Thomas; Mohagheghi, Amir A

    2015-12-01

    Cerebral palsy causes motor impairments during development and many children may experience excessive neural and mechanical muscle stiffness. The clinical assumption is that excessive stiffness is thought to be one of the main reasons for functional impairments in cerebral palsy. As such, passive stretching is widely used to reduce stiffness, with a view to improving function. However, current research evidence on passive stretching in cerebral palsy is not adequate to support or refute the effectiveness of stretching as a management strategy to reduce stiffness and/or improve function. The purpose was to identify the effect of six weeks passive ankle stretching on muscle-tendon unit parameters in children with spastic cerebral palsy. Thirteen children (8-14 y) with quadriplegic/diplegic cerebral palsy were randomly assigned to either an experimental group (n=7) or a control group (n=6). The experimental group underwent an additional six weeks of passive ankle dorsiflexion stretching for 15 min (per leg), four days per week, whilst the control group continued with their normal routine, which was similar for the two groups. Measures of muscle and tendon stiffness, strain and resting length were acquired pre- and post-intervention. The experimental group demonstrated a 3° increase in maximum ankle dorsiflexion. This was accompanied by a 13% reduction in triceps surae muscle stiffness, with no change in tendon stiffness. Additionally, there was an increase in fascicle strain with no changes in resting length, suggesting muscle stiffness reductions were a result of alterations in intra/extra-muscular connective tissue. The results demonstrate that stretching can reduce muscle stiffness by altering fascicle strain but not resting fascicle length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The efficacy of two modified proprioceptive neuromuscular facilitation stretching techniques in subjects with reduced hamstring muscle length.

    Science.gov (United States)

    Youdas, James W; Haeflinger, Kristin M; Kreun, Melissa K; Holloway, Andrew M; Kramer, Christine M; Hollman, John H

    2010-05-01

    Difference scores in knee extension angle and electromyographic (EMG) activity were quantified before and after modified proprioceptive neuromuscular facilitation (PNF) hold-relax (HR) and hold-relax-antagonist contraction (HR-AC) stretching procedures in 35 healthy individuals with reduced hamstring muscle length bilaterally (knee extension angle <160 degrees ). Participants were randomly assigned each PNF procedure to opposite lower extremities. Knee extension values were measured by using a goniometer. EMG data were collected for 10 seconds before and immediately after each PNF stretching technique and normalized to maximum voluntary isometric contraction (% MVIC). A significant time by stretch-type interaction was detected (F(1,34) = 21.1; p < 0.001). Angles of knee extension for HR and HR-AC were not different prior to stretching (p = 0.45). Poststretch knee extension angle was greater in the HR-AC condition than the HR condition (p < 0.007). The proportion of subjects who exceeded the minimal detectable change (MDC(95)) with the HR-AC stretch (97%) did not differ (p = 0.07) from the proportion who exceeded the MDC(95) with the HR stretch (80%). Because EMG activation increased (p < 0.013) after the HR-AC procedure, it is doubtful a relationship exists between range of motion improvement after stretching and inhibition of the hamstrings. On average the 10-second modified HR procedure produced an 11 degrees gain in knee extension angle within a single stretch session.

  18. Change in onset times of the abdominal muscles following functional task in lumbar spinal stenosis

    OpenAIRE

    Song, Hyun Seung; Park, Seong Doo

    2014-01-01

    The purpose of this study was to investigate the difference in the onset times of the abdominal muscle following a rapid arm task in lumbar spinal stenosis (LSS). In total, 32 patients with LSS were recruited from W oriental hospital. Muscle activity onset of the internal oblique (IO) and external oblique (EO) muscles was measured by electromyography (EMG) activity with a rapid arm movement and during the performance of a walking task. The LSS group demonstrated a significantly later onset of...

  19. Developing a Stretching Program.

    Science.gov (United States)

    Beaulieu, J E

    1981-11-01

    In brief: Although stretching exercises can prevent muscle injuries and enhance athletic performance, they can also cause injury. The author explains the four most common types of stretching exercises and explains why he considers static stretching the safest. He also sets up a stretching routine for runners. In setting up a safe stretching program, one should (1) precede stretching exercises with a mild warm-up; (2) use static stretching; (3) stretch before and after a workout; (4) begin with mild and proceed to moderate exercises; (5) alternate exercises for muscle groups; (6) stretch gently and slowly until tightness, not pain, is felt; and (7) hold the position for 30 to 60 seconds.

  20. Comparison of changes in the mobility of the pelvic floor muscle on during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction

    OpenAIRE

    Jung, Halim; Jung, Sangwoo; Joo, Sunghee; Song, Changho

    2016-01-01

    [Purpose] The purpose of this study was to compare changes in the mobility of the pelvic floor muscle during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. [Subjects] Thirty healthy adults participated in this study (15 men and 15 women). [Methods] All participants performed a bridge exercise and abdominal curl-up during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. Pelvic floor mobility...

  1. The effects of 4 weeks stretching training to the point of pain on flexibility and muscle tendon unit properties.

    Science.gov (United States)

    Muanjai, Pornpimol; Jones, David A; Mickevicius, Mantas; Satkunskiene, Danguole; Snieckus, Audrius; Rutkauskaite, Renata; Mickeviciene, Dalia; Kamandulis, Sigitas

    2017-08-01

    The purpose of this study was to compare the benefits and possible problems of 4 weeks stretching when taken to the point of pain (POP) and to the point of discomfort (POD). Twenty-six physically active women (20 ± 1.1 years) took part in group-based stretching classes of the hamstring muscles, 4 times per week for 4 weeks, one group one stretching to POD, the other to POP. Passive stiffness, joint range of motion (ROM), maximal isometric torque and concentric knee flexion torque, were measured before training and 2 days after the last training session. Hip flexion ROM increased by 14.1° (10.1°-18.1°) and 19.8° (15.1°-24.5°) and sit-and-reach by 7.6 (5.2-10.0) cm and 7.5 (5.0-10.0) cm for POD and POP, respectively (Mean and 95% CI; p muscle tendon unit (MTU). Hamstrings stretching to POP increased flexibility and had no detrimental effects on muscle function but the benefits were no better than when stretching to POD so there is no justification for recommending painful stretching. The improvements in flexibility over 4 weeks of stretching training appear to be largely due to changes in the perception of pain rather than physical properties of the MTU although less flexible individuals benefited more from the training and increased hamstring muscle length.

  2. Contraction of abdominal wall muscles influences size and occurrence of incisional hernia.

    Science.gov (United States)

    Lien, Samuel C; Hu, Yaxi; Wollstein, Adi; Franz, Michael G; Patel, Shaun P; Kuzon, William M; Urbanchek, Melanie G

    2015-07-01

    Incisional hernias are a complication in 10% of all open abdominal operations and can result in substantial morbidity. The purpose of this study was to determine whether inhibiting abdominal muscle contraction influences incisional hernia formation during the fascial healing after laparotomy. We hypothesized that decreasing the deformation of the abdominal musculature would decrease the size or occurrence of an incisional hernia. Using an established rat model for incisional hernia, a laparotomy through the linea alba was closed with 1 mid-incision, fast-absorbing suture. Three groups were compared: a sham group (sham; n = 6) received no laparotomy, and the saline hernia (SH; n = 6) and Botox hernia (BH; n = 6) groups were treated once with equal volumes of saline or botulinum toxin (Botox, Allergan) before the incomplete laparotomy closure. On postoperative day 14, the abdominal wall was examined for herniation and adhesions, and contractile forces were measured for abdominal wall muscles. No hernias developed in the sham rats. Rostral hernias developed in all SH and BH rats. Caudal hernias developed in all SH rats, but in only 50% of the BH rats. Rostral hernias in the BH group were 35% shorter and 43% narrower compared with those in the SH group (P abdominal muscles compared with the sham and SH groups (P abdominal muscles decreases the number and size of incisional hernias. These results suggest that contractions of the abdominal wall muscle play a role in the pathophysiology of the formation of incisional hernias. Published by Elsevier Inc.

  3. Metabolomics Reveals Protection of Resveratrol in Diet-Induced Metabolic Risk Factors in Abdominal Muscle.

    Science.gov (United States)

    Chen, Guoyou; Ye, Guozhu; Zhang, Xinbo; Liu, Xiaoxiao; Tu, Yingfeng; Ye, Zengjie; Liu, Jincheng; Guo, Qi; Wang, Zhiguo; Wang, Lin; Dong, Sijun; Fan, Yuhua

    2018-01-01

    Abdominal obesity is recognized as the main reason of metabolic syndrome, which is closely related to disordered skeletal and/or abdominal muscle metabolic functions. Metabolomics is a comprehensive assessment system in biological metabolites. The aim of our present study is to investigate the diet-induced metabolic risk factors by metabolic in the abdominal muscles and clarify the relationship between atheroprotective effects of Resveratrol (Rev) and abdominal muscles metabolic components during the development of atherosclerosis. The mice were randomly divided into three groups including normal group (N), high fat diet (HFD or H) group and high fat diet with Rev treated group (HR). GC-MS combined with pattern recognition approaches were employed to obtain comprehensive metabolic signatures and related differential metabolites after 24 week HFD feeding. Oil Red O staining and Electron microscopy technology (EMT) were employed to detect the size of fatty plaques and intracellular lipid accumulation, respectively. The result indicated that 22 types of metabolites in the abdominal muscles were obviously altered by HFD feeding group. Moreover, Rev treatment obviously increased 11 different kinds of metabolites, most of which were involved in the carbohydrate, amino acid and lipid metabolisms. Importantly, these elevated different metabolites were involved in pathways mainly related to galactose metabolism, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism in abdominal muscles. Oil Red O staining and Electron microscopy showed less lipid accumulation in the lesions and decreased intracellular lipid deposition in the foam cells in HR group. We concluded that Rev produced a beneficial effect partially by modulating multiple metabolism pathways and metabolites in the abdominal muscles, which may provide a new protective mechanism of Rev on the progression of atherosclerosis. These notably changed metabolites might be potential biomarkers

  4. The effects of isometric resistance training on stretch reflex induced tremor in the knee extensor muscles.

    Science.gov (United States)

    Durbaba, Rade; Cassidy, Angela; Budini, Francesco; Macaluso, Andrea

    2013-06-15

    This study examines the effect of 4 wk of high-intensity isometric resistance training on induced tremor in knee extensor muscles. Fourteen healthy volunteers were assigned to either the training group (n = 7) or the nontraining control group (n = 7). Induced tremor was assessed by measuring force fluctuations during anisometric contractions against spring loading, whose compliance was varied to allow for preferential activation of the short or long latency stretch reflex components. Effects of high-intensity isometric resistance training on induced tremor was assessed under two contraction conditions: relative force matching, where the relative level of activity was equal for both pre- and post-training sessions, set at 30% maximum voluntary contraction (MVC), and absolute force matching, where the level of activity was set to 30% pretrained MVC. The training group experienced a 26.5% increase in MVC in contrast to the 0.8% for the control group. For relative force-matching contractions, induced tremor amplitude and frequency did not change in either the training or control group. During absolute force-matching contractions, induced tremor amplitude was decreased by 37.5% and 31.6% for the short and long components, respectively, with no accompanying change in frequency, for the training group. No change in either measure was observed in the control group for absolute force-matching contractions. The results are consistent with high-intensity isometric resistance training induced neural changes leading to increased strength, coupled with realignment of stretch reflex automatic gain compensation to the new maximal force output. Also, previous reported reductions in anisometric tremor following strength training may partly be due to changed stretch reflex behavior.

  5. A randomized controlled trial of stretch-and-flow voice therapy for muscle tension dysphonia.

    Science.gov (United States)

    Watts, Christopher R; Hamilton, Amy; Toles, Laura; Childs, Lesley; Mau, Ted

    2015-06-01

    To investigate the effect of stretch-and-flow voice therapy on vocal function and handicap. Randomized controlled trial. Participants with primary muscle tension dysphonia were randomly assigned to experimental or control groups. Experimental participants received vocal hygiene education followed by 6 weeks of stretch-and-flow voice therapy. Control participants received vocal hygiene education only. Outcome variables consisted of a measure of vocal handicap (Voice Handicap Index [VHI]), maximum phonation time, s/z ratio, and acoustic measures. All measures were obtained at baseline prior to treatment and within 2 weeks posttreatment or at the end of the control period. The pre- to posttreatment measurement change (delta Δ) was applied to statistical analyses. A multivariate analysis of variance revealed significant group differences in pre-to-post changes on measures of VHI, maximum phonation time, and cepstral peak prominence (CPP) in connected speech and vowels (P = 0.003, 0.013, 0.025, and 0.017 respectively), with a significant reduction of VHI (Cohen's d = 1.6), increase in maximum phonation time (Cohen's d = 1.2), increase of CPP in connected speech (Cohen's d = 1.2), and increase of CPP in vowels (Cohen's d = 1.1) in the experimental group compared to the control group. This preliminary small sample randomized controlled trial found significantly greater improvement in vocal handicap, maximum phonation time, and acoustic measures of vocal function after participants received stretch-and-flow voice therapy compared to participants receiving vocal hygiene education alone. Additional research incorporating larger samples will be needed to confirm and further investigate these findings. 1b. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Reliability of the ultrasound measurements of abdominal muscles activity when activated with and without pelvic floor muscles contraction.

    Science.gov (United States)

    Tahan, Nahid; Rasouli, Omid; Arab, Amir Massoud; Khademi, Khosro; Samani, Elham Neisani

    2014-01-01

    Synergistic co-activation of the abdominal and pelvic floor muscles (PFM) has been shown in literature. Some studies have assessed the reliability of ultrasound measures of the abdominal muscles. The aim of this study was to determine the reliability of ultrasound measurements of transverses abdominis (TrA) and obliquus internus (OI) muscles during different conditions (PFM contraction, abdominal hollowing manoeuvre (AHM) with and without PFM contraction) in participants with and without chronic low back pain (LBP). 21 participants (9 with LBP, 12 healthy) participated in the study. The reliability of thickness measurements at rest and during each condition and thickness changes and percentage of this changes at different conditions were assessed. The results showed high reliability of the thickness measurement at rest and during each condition of TrA and OI muscles, moderate to substantial reliability for the thickness change and percentage of thickness change of TrA, and fair to moderate reliability of the thickness change and percentage of thickness change of OI in both groups. Ultrasound imaging can be used as a reliable method for assessment of abdominal muscle activity with and without PFM contraction.

  7. Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior.

    Science.gov (United States)

    Shim, Jongmin; Grosberg, Anna; Nawroth, Janna C; Parker, Kevin Kit; Bertoldi, Katia

    2012-03-15

    Recent progress in tissue engineering has made it possible to build contractile bio-hybrid materials that undergo conformational changes by growing a layer of cardiac muscle on elastic polymeric membranes. Further development of such muscular thin films for building actuators and powering devices requires exploring several design parameters, which include the alignment of the cardiac myocytes and the thickness/Young's modulus of elastomeric film. To more efficiently explore these design parameters, we propose a 3-D phenomenological constitutive model, which accounts for both the passive deformation including pre-stretch and the active behavior of the cardiomyocytes. The proposed 3-D constitutive model is implemented within a finite element framework, and can be used to improve the current design of bio-hybrid thin films and help developing bio-hybrid constructs capable of complex conformational changes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Acute static vibration-induced stretching enhanced muscle viscoelasticity but did not affect maximal voluntary contractions in footballers.

    Science.gov (United States)

    Jemni, Monèm; Mkaouer, Bessem; Marina, Michel; Asllani, Arben; Sands, William A

    2014-11-01

    The aim of this study was to compare the effects of acute vibration-enhanced static stretching and/or static stretching alone on the strength and flexibility of the hamstrings and quadriceps muscles. Twenty-one male footballers participated in this study (21.9 ± 1.8 years; 75.54 ± 7.3 kg; 178.7 ± 6.5 cm). The experiment started with 5 minutes standardized warm-up followed by (a) baseline flexibility pretest (Split Test); (b) maximal voluntary flexion and extension (isokinetic strength) of the knee; (c) Treatment or Sham involving 45-second stretch with or without vibration for the hamstring and quadriceps muscle groups with 10-second rest between; and (d) posttest repeating the measures of the pretest. Each player randomly performed both trials on separate occasions. The vibration device operated at 35 Hz with 2 mm amplitude. Stretching with vibration statistically increased hamstring flexibility by 7.8% (p ≤ 0.05) when compared with stretching without vibration. No statistical differences for hamstring or quadriceps strength were noted between treatment conditions. There was no statistical correlation between flexibility and strength measurements. In conclusion, flexibility increased with vibration-enhanced static stretching; however, no change was evident in the maximal voluntary contractions of the knee flexors and extensors.

  9. Effect of static and dynamic muscle stretching as part of warm up procedures on knee joint proprioception and strength.

    Science.gov (United States)

    Walsh, Gregory S

    2017-10-01

    The importance of warm up procedures prior to athletic performance is well established. A common component of such procedures is muscle stretching. There is conflicting evidence regarding the effect of static stretching (SS) as part of warm up procedures on knee joint position sense (KJPS) and the effect of dynamic stretching (DS) on KJPS is currently unknown. The aim of this study was to determine the effect of dynamic and static stretching as part warm up procedures on KJPS and knee extension and flexion strength. This study had a randomised cross-over design and ten healthy adults (20±1years) attended 3 visits during which baseline KJPS, at target angles of 20° and 45°, and knee extension and flexion strength tests were followed by 15min of cycling and either a rest period (CON), SS, or DS and repeat KJPS and strength tests. All participants performed all conditions, one condition per visit. There were warm up×stretching type interactions for KJPS at 20° (p=0.024) and 45° (p=0.018), and knee flexion (p=0.002) and extension (pwarm up procedures. However, the negative impact of SS on muscle strength limits the utility of SS before athletic performance. If stretching is to be performed as part of a warm up, DS should be favoured over SS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The time course of the effects of constant-angle and constant-torque stretching on the muscle-tendon unit.

    Science.gov (United States)

    Herda, T J; Costa, P B; Walter, A A; Ryan, E D; Cramer, J T

    2014-02-01

    The purpose of the present study was to examine the time course of passive range of motion (PROM), passive torque (PASTQ), and musculo-tendinous stiffness (MTS) responses during constant-angle (CA) and constant-torque (CT) stretching of the leg flexors. Eleven healthy men [mean ± standard deviation (SD): age = 21.5 ± 2.3 years] performed 16 30-s bouts of CA and CT stretching of the leg flexors. PROM, PASTQ , and MTS were measured during stretches 1, 2, 4, 8, and 16. For PROM and PASTQ , there were no differences between CA and CT stretching treatments (P > 0.05); however, there were stretch-related differences (P stretching (collapsed across CA and CT stretching) with additional increases up to 8 min of stretching. PASTQ decreased following one 30-s bout of stretching (collapsed across CA and CT stretching) and continued to decrease up to 4 min of stretching. In contrast, only the CT stretching treatment resulted in changes to MTS (P stretching, with subsequent decreases in MTS up to 6 min of stretching. These results suggested that CT stretching may be more appropriate than a stretch held at a constant muscle length for decreasing MTS. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    International Nuclear Information System (INIS)

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-01-01

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: → Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. → Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. → Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. → Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  12. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  13. The effect of kinesio taping versus stretching techniques on muscle soreness, and flexibility during recovery from nordic hamstring exercise.

    Science.gov (United States)

    Ozmen, Tarik; Yagmur Gunes, Gokce; Dogan, Hanife; Ucar, Ilyas; Willems, Mark

    2017-01-01

    The purpose of this study was to examine the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching, or kinesio taping (KT) on muscle soreness and flexibility during recovery from exercise. Sixty-five females were randomly assigned to four groups: PNF stretching (n = 15), static stretching (n = 16), KT (n = 17), and control (n = 17). All participants performed nordic hamstring exercise (5 sets of 8 repetitions). In all groups, hamstring flexibility at 24 h and 48 h was not changed from baseline (p > .05). The muscle soreness was measured higher at 48 h post-exercise compared with baseline in the control group (p = .04) and at 24 h post-exercise compared with baseline in the PNF group (p  .05). The KT application and pre-exercise stretching have no contribute to flexibility at 24 h and 48 h after exercise, but may attenuate muscle soreness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of the abdominal draw-in manoeuvre in combination with ankle dorsiflexion in strengthening the transverse abdominal muscle in healthy young adults: a preliminary, randomised, controlled study.

    Science.gov (United States)

    Chon, Seung-Chul; Chang, Ki-Yeon; You, Joshua Sung H

    2010-06-01

    To compare the effect of the abdominal draw-in manoeuvre with the abdominal draw-in manoeuvre in combination with ankle dorsiflexion on changes in muscle thickness and associated muscle activity in abdominal muscles. A preliminary, randomised, controlled study. University laboratory. Forty healthy adults (18 males, 22 females) were allocated at random to the experimental group [mean age (SD) 24 (1.6) years, n=20] or the control group [mean age (SD) 24 (1.9) years, n=20]. The experimental group performed the abdominal draw-in manoeuvre in combination with ankle dorsiflexion, and the control group performed the abdominal draw-in manoeuvre alone, five times a day. Ultrasonography and electromyography were used to determine the intervention-related changes in muscle activity and the thickness of abdominal muscles during the abdominal draw-in manoeuvre or the abdominal draw-in manoeuvre in combination with ankle dorsiflexion. A significant difference was found in the thickness of the transverse abdominal muscle between the groups [mean difference 0.24 cm, 95% confidence interval (CI) 0.08 to 0.40, P=0.005. On electromyography, a significant difference was demonstrated in the amplitude of the transverse abdominal muscle contraction between the two techniques in the experimental group (mean difference 68.76 mV, 95% CI 53.16 to 84.36, P=0.000. The intra-class correlation coefficient (ICC(2,1)) showed excellent test-retest reliability of ultrasound measurement of the abdominal muscles: 0.96 (95% CI 0.85 to 0.99) for the transverse abdominal muscle, 0.87 (95% CI 0.62 to 0.98) for the internal oblique muscle and 0.77 (95% CI 0.44 to 0.96) for the external oblique muscle. This is the first study to demonstrate the additive effect of ankle dorsiflexion on deep core muscle thickness and activity, thus contributing to existing knowledge about therapeutic exercise for the effective management of low back pain. Copyright 2009 Chartered Society of Physiotherapy. Published by

  15. Urethral obstruction malformation complex: a cause of abdominal muscle deficiency and the "prune belly".

    Science.gov (United States)

    Pagon, R A; Smith, D W; Shepard, T H

    1979-06-01

    Abdominal muscle deficiency with a "prune belly" abdomen as been a major feature of the so-called prune belly syndrome, which has been regarded as a specific entity, although the etiology and developmental pathology are not understood. We present evidence that abdominal muscle deficiency is an etiologically nonspecific anatomic defect which is secondary to fetal abdominal distention of various causes. One of the more common causes is urethral obstruction with consequent early bladder distention, causing abdominal distention and other anomalies, a constellation of findings which we have termed the urethral obstruction malformation complex. This interpretation of the etiology of most cases of prune belly syndrome accounts for the male predominance, the observed variability in severity, and the lack of a defined mode of inheritance. Recurrence risk figures need to be redefined for each specific obstructing lesion of the urethra. The possibility of early prenatal diagnosis and management of fetuses with urethral obstruction needs further study.

  16. Control of abdominal muscles by brain stem respiratory neurons in the cat

    Science.gov (United States)

    Miller, Alan D.; Ezure, Kazuhisa; Suzuki, Ichiro

    1985-01-01

    The nature of the control of abdominal muscles by the brain stem respiratory neurons was investigated in decerebrate unanesthetized cats. First, it was determined which of the brain stem respiratory neurons project to the lumbar cord (from which the abdominal muscles receive part of their innervation), by stimulating the neurons monopolarly. In a second part of the study, it was determined if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons; in these experiments, discriminate spontaneous spikes of antidromically acivated expiratory (E) neurons were used to trigger activity from both L1 and L2 nerves. A large projection was observed from E neurons in the caudal ventral respiratory group to the contralateral upper lumber cord. However, cross-correlation experiments found only two (out of 47 neuron pairs tested) strong monosynaptic connections between brain stem neurons and abdominal motoneurons.

  17. Synergism between abdominal and pelvic floor muscles in healthy women: a systematic review of observational studies

    Directory of Open Access Journals (Sweden)

    Lia Ferla

    Full Text Available Abstract Introduction: The training of the pelvic floor muscles is widely used for treating pelvic floor dysfunctions, like urinary incontinence. During the training, abdominal contractions are avoided; however several studies support the use of the synergy between these muscle groups. Objective: Carrying out a systematic review of studies that seek to identify the presence of synergy between the muscles of the abdomen and the pelvic floor and its functionality in women without pelvic floor dysfunction. Methodology: To conduct the review, we have followed the recommendations proposed by the Cochrane Collaboration for systematic reviews. The literature search included the databases SCIELO, PEDro, MEDLINE, Cochrane CENTRAL and EMBASE, and manual research, the starting date of the databases until August 2013. We included cross observational studies with healthy women who were assessed to find the presence of synergy between the abdominal muscles and the pelvic floor. Results: We included 10 articles and they all showed the existence of synergy between the abdominal and pelvic floor muscles in healthy women in the supine, sitting and standing positions. Conclusion: Thus, we can conclude that there is synergy between the muscles of the abdomen and the pelvic floor in healthy women. Better understanding the behavior of these muscles and synergy may favor the development of strategies for the prevention and treatment of disorders of the female pelvic floor muscles.

  18. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cação-Benedini, L.O.; Ribeiro, P.G. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Prado, C.M.; Chesca, D.L. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mattiello-Sverzut, A.C. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  19. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    Directory of Open Access Journals (Sweden)

    L.O. Cação-Benedini

    2014-06-01

    Full Text Available Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68 and Western blot analysis (dystrophin/laminin. Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days, an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  20. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle.

    Science.gov (United States)

    Cação-Benedini, L O; Ribeiro, P G; Prado, C M; Chesca, D L; Mattiello-Sverzut, A C

    2014-06-01

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  1. Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion.

    Science.gov (United States)

    Stephenson, E W

    1989-01-01

    Depolarizing ion gradients stimulate 45Ca release in skeletal muscle fibers skinned by microdissection. Several lines of indirect evidence suggest that sealed transverse (T) tubules rather than sarcoplasmic reticulum (SR) are the locus of such stimulatory depolarization. Two implications of this hypothesis were tested. (a) A requirement for signal transmission was evaluated from the stimulation of 45Ca efflux in fibers that had been highly stretched, an intervention that can impair the electrical stimulation of intact fibers. Length was increased over approximately 95-115 s, after loading with 45Ca and rinsing at normal length; prestimulus 45Ca loss due to stretch itself was very small. In the first study, stimulation of 45Ca release by KCl replacement of K propionate was inhibited completely in fibers stretched to twice slack length, compared with fibers at 1.05-1.1 times slack length. Identical protocols did not alter 45Ca release stimulated by caffeine or Mg2+ reduction, implying that SR Ca release per se was fully functional and inhibition was selective for a preceding step in ionic stimulation. In a second study, stimulation by choline Cl replacement of K methanesulfonate, at constant [K+] [Cl-] product, was inhibited strongly; total 45Ca release decreased 69%, and stimulation above control loss decreased 78%, in segments stretched to twice the length at which sarcomere spacing had been 2.2 micron, compared with paired controls from the same fibers kept at 2.3 micron. (b) Perchlorate potentiation of T tubule activation was evaluated in fibers stimulated at constant [K+] [Cl-] at normal length (2.3 micron); this anion shifts the voltage dependence of intramembrane charge movement and contractile activation in intact fibers. Perchlorate (8 mM) potentiated both submaximal stimulation of Ca2+-dependent 45Ca release by partial choline Cl replacement of K methanesulfonate and the small Ca2+-insensitive 45Ca efflux component stimulated by nearly full replacement in

  2. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... attached to a portable stretching device. The soleus stretch reflex was elicited by applying small amplitude (approximately 8 deg) dorsiflexion perturbations 200 ms after heel contact. 3. Short and medium latency responses were observed with latencies of 55 +/- 5 and 78 +/- 6 ms, respectively. The short...... the hypothesis that, during walking the medium latency component of the stretch reflex resulting from an unexpected perturbation is contributed to by group II muscle afferents....

  3. Short-latency stretch reflexes do not contribute to premature calf muscle activity during the stance phase of gait in spastic patients

    NARCIS (Netherlands)

    Niet, M. de; Latour, H.; Hendricks, H.T.; Geurts, A.C.H.; Weerdesteijn, V.G.M.

    2011-01-01

    de Niet M, Latour H, Hendricks H, Geurts AC, Weerdesteyn V. Short-latency stretch reflexes do not contribute to premature calf muscle activity during the stance phase of gait in spastic patients. OBJECTIVE: To identify whether a relationship exists between stretch and activity of the calf muscles

  4. Differential control of abdominal muscles during multi-directional support-surface translations in man.

    Science.gov (United States)

    Carpenter, Mark G; Tokuno, Craig D; Thorstensson, Alf; Cresswell, Andrew G

    2008-07-01

    The current study aimed to understand how deep and superficial abdominal muscles are coordinated with respect to activation onset times and amplitudes in response to unpredictable support-surface translations delivered in multiple directions. Electromyographic (EMG) data were recorded intra-muscularly using fine-wire electrodes inserted into the right rectus abdominis (RA), obliquus externus (OE), obliquus internus (OI) and transversus abdominis (TrA) muscles. Twelve young healthy male subjects were instructed to maintain their standing balance during 40 support surface translations (peak acceleration 1.3 m s(-2); total displacement 0.6 m) that were counter-balanced between four different directions (forward, backward, leftward, rightward). Differences between abdominal muscles in EMG onset times were found for specific translation directions. The more superficial RA (backward translations) and OE (forward and leftward translations) muscles had significantly earlier EMG onsets compared to TrA. EMG onset latencies were dependent on translation direction in RA, OE and OI, but independent of direction in TrA. EMG amplitudes in RA and OE were dependent on translation direction within the first 100 ms of activity, whereas responses from the two deeper muscles (TrA and OI) were independent of translation direction during this interval. The current results provide new insights into how abdominal muscles contribute to postural reactions during human stance. Response patterns of deep and superficial abdominal muscles during support surface translations are unlike those previously described during upper-body perturbations or voluntary arm movements, indicating that the neural mechanisms controlling individual abdominal muscles are task-specific to different postural demands.

  5. Reproducibility of rehabilitative ultrasound imaging for the measurement of abdominal muscle activity: a systematic review.

    Science.gov (United States)

    Costa, Leonardo Oliveira Pena; Maher, Chris G; Latimer, Jane; Smeets, Rob J E M

    2009-08-01

    Rehabilitative ultrasound imaging (RUSI) measures of abdominal wall muscles are used to indirectly measure muscle activity. These measures are used to identify suitable patients and to monitor progress of motor control exercise treatment of people with low back pain. The purpose of this study was to systematically review reproducibility studies of RUSI for measuring thickness of abdominal wall muscles. Eligible studies were identified via searches of MEDLINE, EMBASE, and CINAHL. The authors also searched personal files and tracked references of the retrieved studies via the Web of Science Index. Studies involving any type of reliability and or agreement of any type of ultrasound measurements (B or M mode) for any of the abdominal wall muscles were selected. Two independent reviewers extracted data and assessed methodological quality. Due to heterogeneity of the studies' designs, pooling the data for a meta-analysis was not possible. Twenty-one studies were included, and these studies were typically of low quality and studied subjects who were healthy rather than people seeking care for low back pain. The studies reported good to excellent reliability for single measures of thickness and poor to good reliability for measures of thickness change (reflecting the muscle activity). Interestingly, no studies checked reliability of measures of the difference in thickness changes over time (representing improvement or deterioration in muscle activity). The current evidence of the reproducibility of RUSI for measuring abdominal muscle activity is based mainly on studies with suboptimal designs and the study of people who were healthy. The critical question of whether RUSI provides reliable measures of improvement in abdominal muscle activity remains to be evaluated.

  6. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells

    International Nuclear Information System (INIS)

    Ghazanfari, Samane; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali

    2009-01-01

    Bone marrow mesenchymal stem cells (MSCs) are capable of differentiating into a variety of cell types such as vascular smooth muscle cells (SMCs). In this study, we investigated influence of cyclic stretch on proliferation of hMSCs for different loading conditions, alignment of actin filaments, and consequent differentiation to SMCs. Isolated cells from bone marrow were exposed to cyclic stretch utilizing a customized device. Cell proliferation was examined by MTT assay, alignment of actin fibers by a designed image processing code, and cell differentiation by fluorescence staining. Results indicated promoted proliferation of hMSCs by cyclic strain, enhanced by elevated strain amplitude and number of cycles. Such loading regulated smooth muscle α-actin, and reoriented actin fibers. Cyclic stretch led to differentiation of hMSCs to SMCs without addition of growth factor. It was concluded that applying appropriate loading treatment on hMSCs could enhance proliferation capability, and produce functional SMCs for engineered tissues.

  7. Changes in recruitment of the abdominal muscles in people with low back pain: ultrasound measurement of muscle activity.

    Science.gov (United States)

    Ferreira, Paulo H; Ferreira, Manuela L; Hodges, Paul W

    2004-11-15

    Ultrasound and electromyographic (EMG) measures of trunk muscle activity were compared between low back pain (LBP) and control subjects in a cross-sectional study. To compare the recruitment of the abdominal muscles (measured as a change in thickness with ultrasound imaging) between people with and without low back pain and to compare these measurements with EMG recordings made with intramuscular electrodes. Although ultrasonography has been advocated as a noninvasive measure of abdominal muscle activity, it is not known whether it can provide a valid measure of changes in motor control of the abdominal muscles in LBP. Ten subjects with recurrent LBP and 10 matched controls were tested during isometric low load tasks with their limbs suspended. Changes in thickness from resting baseline values were obtained for transversus abdominis (TrA), obliquus internus (OI), and obliquus externus (OE) using ultrasonography. Fine wire EMG was measured concurrently. Study participants with LBP had a significantly smaller increase in TrA thickness with isometric leg tasks compared with controls. No difference was found between groups for OI or OE. Similar results were found for EMG. People with LBP had less TrA EMG activity with leg tasks, and there was no difference between groups for EMG activity for OI or OE. This study reinforces evidence for changes in automatic control of TrA in people with LBP. Furthermore, the data establish a new test of recruitment of the abdominal muscles in people with LBP. This test presents a feasible noninvasive test of automatic recruitment of the abdominal muscles.

  8. Botulinum neurotoxin treatment in children with cerebral palsy: validation of a needle placement protocol using passive muscle stretching and relaxing

    NARCIS (Netherlands)

    Warnink-Kavelaars, Jessica; Vermeulen, R. Jeroen; Buizer, Annemieke I.; Becher, Jules G.

    2016-01-01

    AimTo validate a detailed intramuscular needle placement protocol using passive muscle stretching and relaxing for botulinum neurotoxin type A (BoNT-A) treatment in the lower extremity of children with spastic cerebral palsy (CP), with verification by electrical stimulation. MethodA prospective

  9. The effects of therapeutic hip exercise with abdominal core activation on recruitment of the hip muscles.

    Science.gov (United States)

    Chan, Mandy Ky; Chow, Ka Wai; Lai, Alfred Ys; Mak, Noble Kc; Sze, Jason Ch; Tsang, Sharon Mh

    2017-07-21

    Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application of core exercises to promote training and rehabilitation outcome of the hip region. The aim of the present study was to examine the effects of abdominal core activation, which is monitored directly by surface electromyography (EMG), on hip muscle activation while performing different hip exercises, and to explore whether participant characteristics such as gender, physical activity level and contractile properties of muscles, which is assessed by tensiomyography (TMG), have confounding effect to the activation of hip muscles in enhanced core condition. Surface EMG of bilateral internal obliques (IO), upper gluteus maximus (UGMax), lower gluteus maximus (LGMax), gluteus medius (GMed) and biceps femoris (BF) of dominant leg was recorded in 20 young healthy subjects while performing 3 hip exercises: Clam, side-lying hip abduction (HABD), and prone hip extension (PHE) in 2 conditions: natural core activation (NC) and enhanced core activation (CO). EMG signals normalized to percentage of maximal voluntary isometric contraction (%MVIC) were compared between two core conditions with the threshold of the enhanced abdominal core condition defined as >20%MVIC of IO. Enhanced abdominal core activation has significantly promoted the activation level of GMed in all phases of clam exercise (P activity level and TMG parameters were not major covariates to activation of hip muscles under enhanced core condition. Abdominal core activation enhances the hip muscles recruitment in Clam, HABD and PHE

  10. Changes in Activation of Abdominal Muscles at Selected Angles During Trunk Exercise by Using Ultrasonography.

    Science.gov (United States)

    Kim, Hyun-Dong; Jeon, Dong-Min; Bae, Hyun-Woo; Kim, Jong-Gil; Han, Nami; Eom, Mi-Ja

    2015-12-01

    To investigate the changes of activation of the abdominal muscles depending on exercise angles and whether the activation of rectus abdominis differs according to the location, during curl up and leg raise exercises, by measuring the thickness ratio of abdominal muscles using ultrasonography. We examined 30 normal adults without musculoskeletal problems. Muscle thickness was measured in the upper rectus abdominis (URA), lower rectus abdominis (LRA), obliquus externus (EO), obliquus internus (IO), and transversus abdominis (TrA), at pre-determined angles (30°, 60°, 90°) and additionally at the resting angle (0°). Muscle thickness ratio was calculated by dividing the resting (0°) thickness for each angle, and was used as reflection of muscle activity. The muscle thickness ratio was significantly different depending on the angles in URA and LRA. For curl up-URA p=0 (30°90°), p=0.44 (30°90°), p=0.44 (30°>90°), respectively, by one-way ANOVA test-and for leg raise-URA p=0 (30°abdominal muscles (EO, IO, and TrA). Also, there was no significant difference in the muscle thickness ratio of URA and LRA during both exercises. In the aspect of muscle activity, there was significant difference in the activation of RA muscle by selected angles, but not according to location during both exercises. According to this study, exercise angle is thought to be an important contributing factor for strengthening of RA muscle; however, both the exercises are thought to have no property of strengthening RA muscle selectively based on the location.

  11. Ultrasound Assessment of Abdominal Muscle Thickness in Women With and Without Low Back Pain During Pregnancy.

    Science.gov (United States)

    Weis, Carol Ann; Nash, Jennifer; Triano, John J; Barrett, Jon

    2017-05-01

    The aim of this preliminary study was to determine the differences in abdominal musculature thickness, within 1 month of delivery, in women who experienced back pain during pregnancy compared with those who did not. B-mode ultrasound imaging was used to measure abdominal muscle thickness on 76 postpartum participants who participated in a larger study; 47 women experienced back pain during pregnancy, and 29 did not. Participant data were stratified by group, and primary comparisons were based on these grouping across the abdominal muscles, including rectus abdominis (upper and lower fibers), external oblique, internal oblique, and transversus abdominis. Means and standard deviations were also used to set parameters for future studies. In the present study, there was no difference in any abdominal muscle thickness between groups. Women with low back pain were significantly shorter (165.19 ± 6.64 cm) than women who did not have from back pain during pregnancy (169.38 ± 7.58 cm). All other demographics, such as age, weight, and date tested postpartum, were not significantly different between groups. The results of this study showed no variation in abdominal muscle thickness in women who had back pain during pregnancy and those who did not. Copyright © 2017. Published by Elsevier Inc.

  12. Structural adaptations of rat lateral gastrocnemius muscle-tendon complex to a chronic stretching program and their quantification based on ultrasound biomicroscopy and optical microscopic images.

    Science.gov (United States)

    Peixinho, Carolina Carneiro; Martins, Natália Santos Fonseca; de Oliveira, Liliam Fernandes; Machado, João Carlos

    2014-01-01

    A chronic regimen of flexibility training can increase range of motion, with the increase mechanisms believed to be a change in the muscle material properties or in the neural components associated with this type of training. This study followed chronic structural adaptations of lateral gastrocnemius muscle of rats submitted to stretching training (3 times a week during 8weeks), based on muscle architecture measurements including pennation angle, muscle thickness and tendon length obtained from ultrasound biomicroscopic images, in vivo. Fiber length and sarcomere number per 100μm were determined in 3 fibers of each muscle (ex vivo and in vitro, respectively), using conventional optical microscopy. Stretching training resulted in a significant pennation angle reduction of the stretched leg after 12 sessions (25%, P=0.002 to 0.024). Muscle thickness and tendon length presented no significant changes. Fiber length presented a significant increase for the stretched leg (8.5%, P=0.00006), with the simultaneous increase in sarcomere length (5%, P=0.041) since the stretched muscles presented less sarcomeres per 100μm. A stretching protocol with characteristics similar to those applied in humans was sufficient to modify muscle architecture of rats with absence of a sarcomerogenesis process. The results indicate that structural adaptations take place in skeletal muscle tissue submitted to moderate-intensity stretching training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Abdominal bracing during lifting alters trunk muscle activity and body kinematics.

    Science.gov (United States)

    Coenen, Pieter; Campbell, Amity; Kemp-Smith, Kevin; O'Sullivan, Peter; Straker, Leon

    2017-09-01

    We assessed whether participants are able to perform abdominal bracing during lifting, and described its effects on trunk muscle activity and body kinematics. Fourteen participants performed 10 lifts (symmetrical lifting of a 15 kg load from floor level), 5 with abdominal bracing and 5 without. Activity of the lumbar multifidus (LM) and internal oblique (IO) muscles, and trunk and lower body kinematics were obtained. During non-bracing lifting, IO activity did not increase beyond rested standing levels (with average muscle activity ranging between 8.2 and 9.1% maximum voluntary contraction; %MVC), while LM activity did (range: 8.5-21.0 %MVC). During bracing lifting, muscle activity was higher compared to non-bracing in IO and LM at the start of the lift (with average between condition differences up to 10.9 %MVC). Upper leg, pelvis and lumbar spine angles were smaller, but thorax flexion angles were larger while lifting with bracing compared to without (with average between condition differences ranging from 0.7° to 4.3°). Although participants do not typically brace their abdominal muscles while lifting, they can be trained to do so. There appears to be no clear advantage of abdominal bracing during lifting, leaving its value for low-back pain prevention unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  15. Velocity and attenuation of shear waves in the phantom of a muscle-soft tissue matrix with embedded stretched fibers

    Science.gov (United States)

    Rudenko, O. V.; Tsyuryupa, S. N.; Sarvazyan, A. P.

    2016-09-01

    We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.

  16. Post-immobilization eccentric training promotes greater hypertrophic and angiogenic responses than passive stretching in muscles of weanling rats.

    Science.gov (United States)

    Benedini-Elias, Priscila Cação Oliveira; Morgan, Mariana Calvente; Cornachione, Anabelle Silva; Martinez, Edson Z; Mattiello-Sverzut, Ana Claudia

    2014-04-01

    This study investigated how different types of remobilization after hind limb immobilization, eccentric exercise and passive static stretching, influenced the adaptive responses of muscles with similar function and fascicle size, but differing in their contractile characteristics. Female Wistar weanling rats (21 days old) were divided into 8 groups: immobilized for 10 days, maintaining the ankle in maximum plantar flexion; immobilized and submitted to eccentric training for 10 or 21 days on a declining treadmill for 40min; immobilized and submitted to passive stretching for 10 or 21 days for 40min by maintaining the ankle in maximum dorsiflexion; control of immobilized; and control of 10 or 21 days. The soleus and plantaris muscles were analyzed using fiber distribution, lesser diameter, capillary/fiber ratio, and morphology. Results showed that the immobilization reduced the diameter of all fiber types, caused changes in fiber distribution and decreased the number of transverse capillaries in both muscles. The recovery period of the soleus muscle is longer than that of the plantaris after detraining. Moreover, eccentric training induced greater hypertrophic and angiogenic responses than passive stretching, especially after 21 days of rehabilitation. Both techniques demonstrated positive effects for muscle rehabilitation with the eccentric exercise being more effective. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Measurement of abdominal muscle thickness using M-mode ultrasound imaging during functional activities.

    Science.gov (United States)

    Bunce, Steve M; Hough, Alan D; Moore, Ann P

    2004-02-01

    Ultrasound imaging has been previously utilized in the measurement of muscle thickness and cross-sectional area in research studies, and advocated as a clinical biofeedback tool in the rehabilitation of transversus abdominis function following episodes of low back pain. This paper describes how the thickness of the abdominal muscles can be quantified with a new measurement technique using M-mode ultrasound. The technique uses a custom-made transducer holder that facilitates measurement of muscle thickness changes during functional activity. Limitations of the technique and potential future applications are discussed. The M-mode ultrasound technique may provide an effective method for the non-invasive measurement of abdominal muscle thickness during functional activities.

  18. Abdominal muscle activity according to knee joint angle during sit-to-stand.

    Science.gov (United States)

    Eom, Juri; Rhee, Min-Hyung; Kim, Laurentius Jongsoon

    2016-06-01

    [Purpose] This study assessed the activity of the abdominal muscles according to the angle of the knee joints during sit-to-stand. [Subjects and Methods] Thirty healthy adult males participated in this study. Subjects initiated sit-to-stand at knee joint angles of 60°, 90°, or 120°. An electromyography system was used to measure the maximum voluntary isometric contraction of the rectus abdominis, external oblique, and internal oblique and transverse abdominis muscles. [Results] Percent contraction differed significantly among the three knee joint angles, most notably for the internal oblique and transverse abdominis muscles. [Conclusion] Wider knee joint angles more effectively activate the abdominal muscles, especially those in the deep abdomen, than do narrower angles.

  19. Recruitment and plasticity in diaphragm, intercostal, and abdominal muscles in unanesthetized rats

    OpenAIRE

    Navarrete-Opazo, A.; Mitchell, G. S.

    2014-01-01

    Although rats are a frequent model for studies of plasticity in respiratory motor control, the relative capacity of rat accessory respiratory muscles to express plasticity is not well known, particularly in unanesthetized animals. Here, we characterized external intercostal (T2, T4, T5, T6, T7, T8, T9 EIC) and abdominal muscle (external oblique and rectus abdominis) electromyogram (EMG) activity in unanesthetized rats via radiotelemetry during normoxia (Nx: 21% O2) and following acute intermi...

  20. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    International Nuclear Information System (INIS)

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie

    2013-01-01

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs

  1. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells

    Science.gov (United States)

    Zile, M. R.; Cowles, M. K.; Buckley, J. M.; Richardson, K.; Cowles, B. A.; Baicu, C. F.; Cooper G, I. V.; Gharpuray, V.

    1998-01-01

    Diastolic dysfunction is an important cause of congestive heart failure; however, the basic mechanisms causing diastolic congestive heart failure are not fully understood, especially the role of the cardiac muscle cell, or cardiocyte, in this process. Before the role of the cardiocyte in this pathophysiology can be defined, methods for measuring cardiocyte constitutive properties must be developed and validated. Thus this study was designed to evaluate a new method to characterize cardiocyte constitutive properties, the gel stretch method. Cardiocytes were isolated enzymatically from normal feline hearts and embedded in a 2% agarose gel containing HEPES-Krebs buffer and laminin. This gel was cast in a shape that allowed it to be placed in a stretching device. The ends of the gel were held between a movable roller and fixed plates that acted as mandibles. Distance between the right and left mandibles was increased using a stepper motor system. The force applied to the gel was measured by a force transducer. The resultant cardiocyte strain was determined by imaging the cells with a microscope, capturing the images with a CCD camera, and measuring cardiocyte and sarcomere length changes. Cardiocyte stress was characterized with a finite-element method. These measurements of cardiocyte stress and strain were used to determine cardiocyte stiffness. Two variables affecting cardiocyte stiffness were measured, the passive elastic spring and viscous damping. The passive spring was assessed by increasing the force on the gel at 1 g/min, modeling the resultant stress vs. strain relationship as an exponential [sigma = A/k(ekepsilon - 1)]. In normal cardiocytes, A = 23.0 kN/m2 and k = 16. Viscous damping was assessed by examining the loop area between the stress vs. strain relationship during 1 g/min increases and decreases in force. Normal cardiocytes had a finite loop area = 1.39 kN/m2, indicating the presence of viscous damping. Thus the gel stretch method provided accurate

  2. Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities.

    Science.gov (United States)

    Tran, D; Podwojewski, F; Beillas, P; Ottenio, M; Voirin, D; Turquier, F; Mitton, D

    2016-07-01

    The performance of hernia treatment could benefit from more extensive knowledge of the mechanical behavior of the abdominal wall in a healthy state. To supply this knowledge, the antero-lateral abdominal wall was characterized in vivo on 11 healthy volunteers during 4 activities: rest, pullback loading, abdominal breathing and the "Valsalva maneuver". The elasticity of the abdominal muscles (rectus abdominis, obliquus externus, obliquus internus and transversus abdominis) was assessed using ultrasound shear wave elastography. In addition, the abdomen was subjected to a low external load at three locations: on the midline (linea alba), on the rectus abdominis region and on lateral muscles region in order to evaluate the local stiffness of the abdomen, at rest and during "Valsalva maneuver". The results showed that the "Valsalva maneuver" leads to a statistically significant increase of the muscle shear modulus compared to the other activities. This study also showed that the local stiffness of the abdomen was related to the activity. At rest, a significant difference has been observed between the anterior (0.5N/mm) and the lateral abdomen locations (1N/mm). Then, during the Valsalva maneuver, the local stiffness values were similar for all locations (ranging from 1.6 to 2.2N/mm). This work focuses on the in vivo characterization of the mechanical response of the human abdominal wall and abdomen during several activities. In the future, this protocol could be helpful for investigation on herniated patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The effect of static stretch and dynamic range of motion training on the flexibility of the hamstring muscles.

    Science.gov (United States)

    Bandy, W D; Irion, J M; Briggler, M

    1998-04-01

    To date, limited information exists describing a relatively new stretching technique, dynamic range of motion (DROM). The purpose of this study was to compare the effects of DROM with static stretch on hamstring flexibility. Fifty-eight subjects, ranging in age from 21 to 41 years and with limited hamstring flexibility (defined as 30 degrees loss of knee extension measured with the femur held at 90 degrees of hip flexion), were randomly assigned to one of three groups. One group performed DROM 5 days a week by lying supine with the hip held in 90 degrees of flexion. The subject then actively moved the leg into knee extension (5 seconds), held the leg in end range knee extension for 5 seconds, and then slowly lowered the leg to the initial position (5 seconds). These movements were performed six times per session (30 seconds of total actual stretching time). The second group performed one 30-second static stretch, 5 days per week. The third group served as a control group and did not stretch. Before and after 6 weeks of training, flexibility of the hamstring muscles was determined in all three groups by measuring knee extension range of motion (ROM) with the femur maintained in 90 degrees of hip flexion. Data were analyzed with a 2 x 3 (test x group) two-way analysis of variance (ANOVA) with repeated measures on one variable (test) and appropriate post hoc analyses. The results of the two-way ANOVA revealed a significant interaction. Further statistical post hoc analysis of data to interpret the interaction revealed significant differences between the control group (gain = 0.70 degree) and both stretching groups, as well as a significant difference between the static stretch group (gain = 11.42 degrees) and the DROM group (gain = 4.26 degrees). The results of this study suggest that, although both static stretch and DROM will increase hamstring flexibility, a 30-second static stretch was more effective than the newer technique, DROM, for enhancing flexibility. Given

  4. Abdominal muscles contribute in a minor way to peak spinal compression in lifting

    NARCIS (Netherlands)

    Looze, M.P. de; Groen, H.; Horemans, H.; Kingma, I.; Dieën, J.H. van

    1999-01-01

    In lifting, the abdominal muscles are thought to be activated to stabilize the spine. As a detrimental effect, they contribute to spinal compression. The existing literature is not conclusive about the biological relevance of this effect. From biological, mechanical and anatomical considerations it

  5. Reliability of ultrasound thickness measurement of the abdominal muscles during clinical isometric endurance tests.

    Science.gov (United States)

    ShahAli, Shabnam; Arab, Amir Massoud; Talebian, Saeed; Ebrahimi, Esmaeil; Bahmani, Andia; Karimi, Noureddin; Nabavi, Hoda

    2015-07-01

    The study was designed to evaluate the intra-examiner reliability of ultrasound (US) thickness measurement of abdominal muscles activity when supine lying and during two isometric endurance tests in subjects with and without Low back pain (LBP). A total of 19 women (9 with LBP, 10 without LBP) participated in the study. Within-day reliability of the US thickness measurements at supine lying and the two isometric endurance tests were assessed in all subjects. The intra-class correlation coefficient (ICC) was used to assess the relative reliability of thickness measurement. The standard error of measurement (SEM), minimal detectable change (MDC) and the coefficient of variation (CV) were used to evaluate the absolute reliability. Results indicated high ICC scores (0.73-0.99) and also small SEM and MDC scores for within-day reliability assessment. The Bland-Altman plots of agreement in US measurement of the abdominal muscles during the two isometric endurance tests demonstrated that 95% of the observations fall between the limits of agreement for test and retest measurements. Together the results indicate high intra-tester reliability for the US measurement of the thickness of abdominal muscles in all the positions tested. According to the study's findings, US imaging can be used as a reliable method for assessment of abdominal muscles activity in supine lying and the two isometric endurance tests employed, in participants with and without LBP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Abdominal muscle activity during breathing with and without inspiratory and expiratory loads in healthy subjects.

    Science.gov (United States)

    Mesquita Montes, António; Baptista, João; Crasto, Carlos; de Melo, Cristina Argel; Santos, Rita; Vilas-Boas, João Paulo

    2016-10-01

    Central Nervous System modulates the motor activities of all trunk muscles to concurrently regulate the intra-abdominal and intra-thoracic pressures. The study aims to evaluate the effect of inspiratory and expiratory loads on abdominal muscle activity during breathing in healthy subjects. Twenty-three higher education students (21.09±1.56years; 8males) breathed at a same rhythm (inspiration: two seconds; expiration: four seconds) without load and with 10% of the maximal inspiratory or expiratory pressures, in standing. Surface electromyography was performed to assess the activation intensity of rectus abdominis, external oblique and transversus abdominis/internal oblique muscles, during inspiration and expiration. During inspiration, transversus abdominis/internal oblique activation intensity was significantly lower with inspiratory load when compared to without load (p=0.009) and expiratory load (p=0.002). During expiration, the activation intensity of all abdominal muscles was significantly higher with expiratory load when compared to without load (pactivation intensity of external oblique (p=0.036) and transversus abdominis/internal oblique (p=0.022) was significantly higher with inspiratory load when compared to without load. Transversus abdominis/internal oblique activation intensity was significantly higher with expiratory load when compared to inspiratory load (pmuscle to modulate the intra-abdominal pressure for the breathing mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Oblique abdominal muscle activity in standing and in sitting on hard and soft seats

    NARCIS (Netherlands)

    C.J. Snijders (Chris); M.P. Bakker (Martin); A. Vleeming (Andry); R. Stoeckart (Rob); H.J. Stam (Henk)

    1995-01-01

    textabstractThe activity of the oblique abdominal muscles was investigated with the trunk in unconstrained, symmetrical and static postures. Electromyographic recordings in six healthy subjects revealed that in all subjects the activity of both the internal and the external obliques is significantly

  8. Comparison of changes in the mobility of the pelvic floor muscle on during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction

    Science.gov (United States)

    Jung, Halim; Jung, Sangwoo; Joo, Sunghee; Song, Changho

    2016-01-01

    [Purpose] The purpose of this study was to compare changes in the mobility of the pelvic floor muscle during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. [Subjects] Thirty healthy adults participated in this study (15 men and 15 women). [Methods] All participants performed a bridge exercise and abdominal curl-up during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. Pelvic floor mobility was evaluated as the distance from the bladder base using ultrasound. [Results] According to exercise method, bridge exercise and abdominal curl-ups led to significantly different pelvic floor mobility. The pelvic floor muscle was elevated during the abdominal drawing-in maneuver and descended during maximal expiration. Finally, pelvic floor muscle mobility was greater during abdominal curl-up than during the bridge exercise. [Conclusion] According to these results, the abdominal drawing-in maneuver induced pelvic floor muscle contraction, and pelvic floor muscle contraction was greater during the abdominal curl-up than during the bridge exercise. PMID:27065532

  9. Comparison of changes in the mobility of the pelvic floor muscle on during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction.

    Science.gov (United States)

    Jung, Halim; Jung, Sangwoo; Joo, Sunghee; Song, Changho

    2016-01-01

    [Purpose] The purpose of this study was to compare changes in the mobility of the pelvic floor muscle during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. [Subjects] Thirty healthy adults participated in this study (15 men and 15 women). [Methods] All participants performed a bridge exercise and abdominal curl-up during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. Pelvic floor mobility was evaluated as the distance from the bladder base using ultrasound. [Results] According to exercise method, bridge exercise and abdominal curl-ups led to significantly different pelvic floor mobility. The pelvic floor muscle was elevated during the abdominal drawing-in maneuver and descended during maximal expiration. Finally, pelvic floor muscle mobility was greater during abdominal curl-up than during the bridge exercise. [Conclusion] According to these results, the abdominal drawing-in maneuver induced pelvic floor muscle contraction, and pelvic floor muscle contraction was greater during the abdominal curl-up than during the bridge exercise.

  10. The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Randers, Morten Bredsgaard

    2012-01-01

    ) and muscle fiber size (CSA) were studied in untrained individuals (n=49, 21-45yrs) pre and post 12weeks of progressive heavy-resistance strength training (ST, n=8), recreational soccer training (SOC, n=15), high-intensity interval running (INT, n=7), continuous running (RUN, n=9) or continuation...... production, indicating a more explosive-type SSC muscle performance. No effects were detected in CMJ performance after continuous running, high-intensity interval running and recreational soccer, despite an increased muscle fiber CSA and quadriceps muscle activity in SOC. Enhanced neuromuscular activity......The purpose of the present study was to evaluate the effect of contrasting training modalities on mechanical muscle performance and neuromuscular activity during maximal SSC (stretch-shortening cycle) countermovement jumps (CMJ). Bilateral countermovement jumping, surface electromyography (EMG...

  11. Muscle disuse caused by botulinum toxin injection leads to increased central gain of the stretch reflex in the rat.

    Science.gov (United States)

    Pingel, Jessica; Hultborn, Hans; Näslund-Koch, Lui; Jensen, Dennis B; Wienecke, Jacob; Nielsen, Jens Bo

    2017-10-01

    Botulinum toxin (Btx) is used in children with cerebral palsy and in other neurological patients to diminish spasticity and reduce the risk of development of contractures. We investigated changes in the central gain of the stretch reflex circuitry in response to Btx injection in the triceps surae muscle in rats. Experiments were performed in 21 rats. Eight rats were a control group, and 13 rats were injected with 6 IU of Btx in the left triceps surae muscle. Two weeks after Btx injection, larger monosynaptic reflexes (MSR) were recorded from the left (injected) than the right (noninjected) L4 + L5 ventral roots following stimulation of the corresponding dorsal roots. A similar increase on the left side was observed in response to stimulation of descending motor tracts, suggesting that increased excitability of spinal motor neurons may at least partly explain the increased reflexes. However, significant changes were also observed in postactivation depression of the MSR, suggesting that plastic changes in transmission from Ia afferent to the motor neurons also may be involved. The data demonstrate that muscle paralysis induced by Btx injection is accompanied by plastic adaptations in the central stretch reflex circuitry, which counteract the antispastic effect of Btx. NEW & NOTEWORTHY Injection of botulinum toxin into ankle muscles causes increased gain of stretch reflex. This is caused by adaptive changes in regulation of transmitter release from Ia afferents and increased excitability of spinal motor neurons. Copyright © 2017 the American Physiological Society.

  12. Botulinum neurotoxin treatment in children with cerebral palsy: validation of a needle placement protocol using passive muscle stretching and relaxing.

    Science.gov (United States)

    Warnink-Kavelaars, Jessica; Vermeulen, R Jeroen; Buizer, Annemieke I; Becher, Jules G

    2016-12-01

    To validate a detailed intramuscular needle placement protocol using passive muscle stretching and relaxing for botulinum neurotoxin type A (BoNT-A) treatment in the lower extremity of children with spastic cerebral palsy (CP), with verification by electrical stimulation. A prospective observational study was performed in 75 children with spastic CP who received regular BoNT-A treatment under general anaesthesia (52 males, 23 females; mean age 8y 9mo, SD 3y 7mo, range 4-18y; mean body mass index 16.2, SD 3.7, range 7.7-26.7). A total of 1084 intramuscular needle placements using passive muscle stretching and relaxing were verified by electrical stimulation. Primary outcome was the positive predictive value. Intramuscular needle placement in the muscles adductor brevis, adductor longus, gracilis, semimembranosus, semitendinosus, biceps femoris, rectus femoris, and lateral and medial heads of the gastrocnemius and soleus had a positive predictive value ranging from 85.7% to 100% (95% confidence interval ranging from 71.5-89.9% to 91.4-100%). This validated detailed protocol for intramuscular needle placement using passive muscle stretching and relaxing for BoNT-A treatment in the lower extremity of children with spastic CP is reliable and has a high positive predictive value. © 2016 Mac Keith Press.

  13. Changes in Passive Properties of the Gastrocnemius Muscle-Tendon Unit During a 4-Week Routine Static-Stretching Program.

    Science.gov (United States)

    Nakamura, Masatoshi; Ikezoe, Tome; Umegaki, Hiroki; Kobayashi, Takuya; Nishishita, Satoru; Ichihashi, Noriaki

    2017-07-01

    Static stretching (SS) is commonly performed in a warm-up routine to increase joint range of motion (ROM) and to decrease muscle stiffness. However, the time course of changes in ankle-dorsiflexion (DF) ROM and muscle stiffness during a routine SS program is unclear. To investigate changes in ankle-DF ROM, passive torque at DF ROM, and muscle stiffness during a routine SS program performed 3 times weekly for 4 wk. A quasi-randomized controlled-trial design. The subjects comprised 24 male volunteers (age 23.8 ± 2.3 y, height 172.0 ± 4.3 cm, body mass 63.1 ± 4.5 kg) randomly assigned to either a group performing a 4-wk stretching program (SS group) or a control group. DF ROM, passive torque, and muscle stiffness were measured during passive ankle dorsiflexion in both groups using a dynamometer and ultrasonography once weekly during the 4-wk intervention period. In the SS group, DF ROM and passive torque at DF ROM significantly increased after 2, 3, and 4 wk compared with the initial measurements. Muscle stiffness also decreased significantly after 3 and 4 wk in the SS group. However, there were no significant changes in the control group. Based on these results, the SS program effectively increased DF ROM and decreased muscle stiffness. Furthermore, an SS program of more than 2 wk duration effectively increased DF ROM and changed the stretch tolerance, and an SS program more than 3 wk in duration effectively decreased muscle stiffness.

  14. The impact of low skeletal muscle mass in abdominal surgery

    NARCIS (Netherlands)

    J.L.A. van Vugt (Jeroen)

    2017-01-01

    textabstractAlthough perioperative outcome in transplant and surgical oncology patients has greatly improved during the last decades, preoperative risk assessment remains of utmost importance to further improve outcomes and adapt patient-tailored treatment strategies. Low skeletal muscle mass is

  15. Abdominal muscle activity during breathing in different postures in COPD "Stage 0" and healthy subjects.

    Science.gov (United States)

    Mesquita Montes, António; Maia, Joana; Crasto, Carlos; de Melo, Cristina Argel; Carvalho, Paulo; Santos, Rita; Pereira, Susana; Vilas-Boas, João Paulo

    2017-04-01

    This study aims to evaluate the effect of different postures on the abdominal muscle activity during breathing in subjects "at risk" for the development of chronic obstructive pulmonary disease (COPD) and healthy. Twenty-nine volunteers, divided in "At Risk" for COPD (n=16; 47.38±5.08years) and Healthy (n=13; 47.54±6.65years) groups, breathed at the same rhythm in supine, standing, tripod and 4-point-kneeling positions. Surface electromyography was performed to assess the activation intensity of rectus abdominis, external oblique and transversus abdominis/internal oblique (TrA/IO) muscles, during inspiration and expiration. From supine to standing, an increased activation of all abdominal muscles was observed in "At Risk" for COPD group; however, in Healthy group, TrA/IO muscle showed an increased activation. In both groups, the TrA/IO muscle activation in tripod and 4-point kneeling positions was higher than in supine and lower than in standing. Subjects "at risk" for the development of COPD seemed to have a specific recruitment of the superficial layer of ventrolateral abdominal wall for the synchronization of postural function and mechanics of breathing. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A estimulação russa no fortalecimento da musculatura abdominal Russian stimulation in strengthening abdominal muscle

    Directory of Open Access Journals (Sweden)

    Evelyne Patrícia Fernandes Lima

    2012-06-01

    Full Text Available INTRODUÇÃO - A flacidez muscular surge com maior frequência nas mulheres, o que causa fator ruim para a estética corporal. OBJETIVO - Analisar os resultados da corrente russa no fortalecimento da musculatura abdominal. MÉTODOS - Revisão bibliográfica com base nas publicações acessíveis pelas seguintes bases de dados: Medline/Pubmed, Scielo, Lilacs com cruzamento dos descritores corrente russa, flacidez, abdômen. O uso da eletroestimulação age tanto sobre as fibras brancas, que respondem pela velocidade, como também sobre as fibras vermelhas dado à sua sustentação, e ainda sobre as fibras intermediárias. CONCLUSÃO - Os dados publicados mostram a satisfação e êxito do tratamento, enfatizando que a corrente russa favorece o aumento da hipertrofia e força muscular.INTRODUCTION - Muscle weakness appears most often in women, the factor that causes bad esthetics. OBJECTIVE - To analyze the results of the Russian current strengthening the abdominal muscles. METHODS - Literature review based on publications available in the following databases: Medline / Pubmed, Scielo, Lilacs with crossing headings Russian current, sagging, abdomen. The use of electrical stimulation acts both on the white fibers, which account for the speed, but also on the red fibers given their support, and on intermediate fibers. CONCLUSION - The data published show the satisfaction and success of treatment, emphasizing that the Russian current promotes increase of muscle strength and hypertrophy.

  17. Changes in lateral abdominal muscle thickness during an abdominal drawing-in maneuver in individuals with and without low back pain.

    Science.gov (United States)

    Beazell, James R; Grindstaff, Terry L; Hart, Joseph M; Magrum, Eric M; Cullaty, Martha; Shen, Francis H

    2011-10-01

    The purpose of this study was to compare lateral abdominal muscle thickness changes in individuals with and without low back pain (LBP) during an abdominal drawing-in maneuver (ADIM) using ultrasound imaging. Twenty individuals (13 females and 7 males, average age 40.1 ± 13.4) with stabilization classification LBP and 19 controls (10 females and 9 males, average age 30.3 ± 8.7) participated in this study. Bilateral measurements were made using ultrasound imaging to determine changes in thickness of the transversus abdominus (TrA) and external and internal oblique (EO+IO) muscles during an ADIM. There were no significant differences in relaxed muscle thickness values or contraction ratios for the TrA or EO+IO between groups or side. Individuals with stabilization classification LBP demonstrated no difference in lateral abdominal muscle thickness during an ADIM when compared with controls without LBP when using a pressure biofeedback device to monitor stability.

  18. Immediate Effects of Neurodynamic Sliding versus Muscle Stretching on Hamstring Flexibility in Subjects with Short Hamstring Syndrome

    Science.gov (United States)

    Castellote-Caballero, Yolanda; Valenza, Maríe C.; Puentedura, Emilio J.; Fernández-de-las-Peñas, César; Alburquerque-Sendín, Francisco

    2014-01-01

    Background. Hamstring injuries continue to affect active individuals and although inadequate muscle extensibility remains a commonly accepted factor, little is known about the most effective method to improve flexibility. Purpose. To determine if an isolated neurodynamic sciatic sliding technique would improve hamstring flexibility to a greater degree than stretching or a placebo intervention in asymptomatic subjects with short hamstring syndrome (SHS). Study Design. Randomized double-blinded controlled trial. Methods. One hundred and twenty subjects with SHS were randomized to 1 of 3 groups: neurodynamic sliding, hamstring stretching, and placebo control. Each subject's dominant leg was measured for straight leg raise (SLR) range of motion (ROM) before and after interventions. Data were analyzed with a 3 × 2 mixed model ANOVA followed by simple main effects analyses. Results. At the end of the study, more ROM was observed in the Neurodynamic and Stretching groups compared to the Control group and more ROM in the Neurodynamic group compared to Stretching group. Conclusion. Findings suggest that a neurodynamic sliding technique will increase hamstring flexibility to a greater degree than static hamstring stretching in healthy subjects with SHS. Clinical Relevance. The use of neurodynamic sliding techniques to improve hamstring flexibility in sports may lead to a decreased incidence in injuries; however, this needs to be formally tested. PMID:26464889

  19. Immediate Effects of Neurodynamic Sliding versus Muscle Stretching on Hamstring Flexibility in Subjects with Short Hamstring Syndrome

    Directory of Open Access Journals (Sweden)

    Yolanda Castellote-Caballero

    2014-01-01

    Full Text Available Background. Hamstring injuries continue to affect active individuals and although inadequate muscle extensibility remains a commonly accepted factor, little is known about the most effective method to improve flexibility. Purpose. To determine if an isolated neurodynamic sciatic sliding technique would improve hamstring flexibility to a greater degree than stretching or a placebo intervention in asymptomatic subjects with short hamstring syndrome (SHS. Study Design. Randomized double-blinded controlled trial. Methods. One hundred and twenty subjects with SHS were randomized to 1 of 3 groups: neurodynamic sliding, hamstring stretching, and placebo control. Each subject’s dominant leg was measured for straight leg raise (SLR range of motion (ROM before and after interventions. Data were analyzed with a 3×2 mixed model ANOVA followed by simple main effects analyses. Results. At the end of the study, more ROM was observed in the Neurodynamic and Stretching groups compared to the Control group and more ROM in the Neurodynamic group compared to Stretching group. Conclusion. Findings suggest that a neurodynamic sliding technique will increase hamstring flexibility to a greater degree than static hamstring stretching in healthy subjects with SHS. Clinical Relevance. The use of neurodynamic sliding techniques to improve hamstring flexibility in sports may lead to a decreased incidence in injuries; however, this needs to be formally tested.

  20. Is application of Kinesio tape to treat hyperlordosis more effective on abdominal muscles or hamstrings?

    Directory of Open Access Journals (Sweden)

    Sara Abolahrari Shirazi

    2018-01-01

    Full Text Available Background: Hyperlordosis is defined as an abnormal increase in the lumbar arch of >40°. This study compared two taping techniques include abdominal muscles and hamstrings taping for the treatment of lumbar hyperlordosis. Materials and Methods: The randomized clinical trial was performed in Shiraz, Iran, during June and September 2014. Thirty women aged 20–45 years old with at least 40° lumbar lordosis participated. The women were randomized into two groups (n = 15. Abdominal muscles taping was performed for the first group, whereas the other group underwent hamstrings taping with 30% tension. Lumbar lordosis was measured before, immediately after, and 24 h after taping. The two-way repeated measures analysis of variance was used to compare the two groups for lumbar lordosis angle. Results: No significant differences were detected between the lumbar lordosis angles before and immediately after taping in the two groups (P > 0.05. However, a significant reduction was observed in lordosis angle in the abdominal group and the hamstring group 24 h after taping relative to before intervention (P < 0.01. Conclusion: Taping of the abdominal and hamstring muscles was not effective immediately, whereas it decreased lordosis after 24 h.

  1. Is application of Kinesio tape to treat hyperlordosis more effective on abdominal muscles or hamstrings?

    Science.gov (United States)

    Shirazi, Sara Abolahrari; Haghighi, Farzaneh Moslemi; Alavi, Seyedeh Mahshid; Nezhad, Fahimeh Freiydoon; Emami, Farahnaz

    2018-01-01

    Hyperlordosis is defined as an abnormal increase in the lumbar arch of >40°. This study compared two taping techniques include abdominal muscles and hamstrings taping for the treatment of lumbar hyperlordosis. The randomized clinical trial was performed in Shiraz, Iran, during June and September 2014. Thirty women aged 20-45 years old with at least 40° lumbar lordosis participated. The women were randomized into two groups ( n = 15). Abdominal muscles taping was performed for the first group, whereas the other group underwent hamstrings taping with 30% tension. Lumbar lordosis was measured before, immediately after, and 24 h after taping. The two-way repeated measures analysis of variance was used to compare the two groups for lumbar lordosis angle. No significant differences were detected between the lumbar lordosis angles before and immediately after taping in the two groups ( P > 0.05). However, a significant reduction was observed in lordosis angle in the abdominal group and the hamstring group 24 h after taping relative to before intervention ( P < 0.01). Taping of the abdominal and hamstring muscles was not effective immediately, whereas it decreased lordosis after 24 h.

  2. Treatment of abdominal cellulite and circumference reduction with radiofrequency and dynamic muscle activation.

    Science.gov (United States)

    Wanitphakdeedecha, Rungsima; Iamphonrat, Thanawan; Thanomkitti, Kanchalit; Lektrakul, Nittaya; Manuskiatti, Woraphong

    2015-01-01

    Cellulite is a frequent skin condition for which treatment remains a challenge. A wide variety of treatments are available but most procedures offer suboptimal clinical effect and/or delayed therapeutic outcome. Only few therapeutic options have proven efficacy in the treatment of cellulite. To determine the efficacy and the safety profiles of radiofrequency and dynamic muscle activation technology in treatment of abdominal cellulite and circumference reduction. Twenty-five females with abdominal cellulite received 6 weekly radiofrequency and dynamic muscle activation treatments. Treatment areas included the abdomen and both sides of flanks. Subjects were evaluated using standardized photographs, and measurements of body weight and abdominal circumference at baseline, before every treatment visit, and 1 week and four weeks after the final treatment. Subcutaneous tissue thickness was recorded by ultrasound at baseline and 4 weeks after completion of treatment protocol. Physicians' evaluation and patient's satisfaction of clinical improvement were also measured. All subjects completed the treatment protocol and attended every follow-up visits. There was significant abdominal circumference reduction of 2.96 and 2.52 cm at 1-, and 4-week follow-up visits (p cellulite appearance. The benefit of muscle activation is yet to be determined.

  3. Vibration Therapy Is No More Effective Than the Standard Practice of Massage and Stretching for Promoting Recovery From Muscle Damage After Eccentric Exercise.

    Science.gov (United States)

    Fuller, Joel T; Thomson, Rebecca L; Howe, Peter R C; Buckley, Jonathan D

    2015-07-01

    The purpose of this study was to determine if vibration therapy is more effective than the standard treatment of stretching and massage for improving recovery of muscle strength and reducing muscle soreness after muscle damage induced by eccentric exercise. A randomized, single-blinded parallel intervention trial design was used. Research laboratory. Fifty untrained men aged 18 to 30 years completed the study. Participants performed 100 maximal eccentric muscle actions (ECCmax) of the right knee extensor muscles. For the next 7 days, 25 participants applied cycloidal vibration therapy to the knee extensors twice daily and 25 participants performed stretching and sports massage (SSM) twice daily. Changes in markers of muscle damage [peak isometric torque (PIT), serum creatine kinase (CK), and serum myoglobin (Mb)], muscle soreness (visual analog scale), and inflammation [serum C-reactive protein (CRP)] were assessed. After ECCmax, there was no difference in recovery of PIT and muscle soreness or serum CK, Mb, and CRP levels between vibration and SSM groups (P > 0.28). Cycloidal vibration therapy is no more effective than the standard practice of stretching and massage to promote muscle recovery after the performance of muscle-damaging exercise. Prescription of vibration therapy after maximal exercise involving eccentric muscle damage did not alleviate signs and symptoms of muscle damage faster than the standard prescription of stretching and massage.

  4. Control of abdominal and expiratory intercostal muscle activity during vomiting - Role of ventral respiratory group expiratory neurons

    Science.gov (United States)

    Miller, Alan D.; Tan, L. K.; Suzuki, Ichiro

    1987-01-01

    The role of ventral respiratory group (VRG) expiratory (E) neurons in the control of abdominal and internal intercostal muscle activity during vomiting was investigated in cats. Two series of experiments were performed: in one, the activity of VRG E neurons was recorded during fictive vomiting in cats that were decerebrated, paralyzed, and artificially ventilated; in the second, the abdominal muscle activity during vomiting was compared before and after sectioning the axons of descending VRG E neurons in decerebrate spontaneously breathing cats. The results show that about two-thirds of VRG E neurons that project at least as far caudally as the lower thoracic cord contribute to internal intercostal muscle activity during vomiting. The remaining VRG E neurons contribute to abdominal muscle activation. As shown by severing the axons of the VRG E neurons, other, as yet unidenified, inputs (either descending from the brain stem or arising from spinal reflexes) can also produce abdominal muscle activation.

  5. Muscle stretching exercises and resistance training in fibromyalgia: which is better? A three-arm randomized controlled trial.

    Science.gov (United States)

    Assumpção, Ana; Matsutani, Luciana A; Yuan, Susan L; Santo, Adriana S; Sauer, Juliana; Mango, Pamela; Marques, Amelia P

    2017-11-29

    Exercise therapy is an effective component of fibromyalgia (FM) treatment. However, it is important to know the effects and specificities of the different types of exercise: muscle stretching and resistance training. To verify and compare the effectiveness of muscle stretching exercise and resistance training for symptoms and quality of life in FM patients. Randomized controlled trial. Physical therapy service, FM outpatient clinic. Forty-four women with FM (79 screened). Patients were randomly allocated into a stretching group (n=14), resistance group (n=16), and control group (n=14). Pain was assessed using the visual analog scale, pain threshold using a Fischer dolorimeter, FM symptoms using the Fibromyalgia Impact Questionnaire (FIQ), and quality of life using the Medical Outcomes Study 36-item Short- Form Health Survey (SF-36). The three intervention groups continued with usual medical treatment. In addition, the stretching and resistance groups performed two different exercise programs twice a week for 12 weeks. After treatment, the stretching group showed the highest SF-36 physical functioning score (p=0.01) and the lowest bodily pain score (p=0.01). The resistance group had the lowest FIQ depression score (p=0.02). The control group had the highest score for FIQ morning tiredness and stiffness, and the lowest score for SF-36 vitality. In clinical analyses, the stretching group had significant improvement in quality of life for all SF-36 domains, and the resistance group had significant improvement in FM symptoms and in quality of life for SF-36 domains of physical functioning, vitality, social function, emotional role, and mental health. Muscle stretching exercise was the most effective modality in improving quality of life, especially with regard to physical functioning and pain, and resistance training was the most effective modality in reducing depression. The trial included a control group and two intervention groups, both of which received exercise

  6. Effects of two stretching methods on shoulder range of motion and muscle stiffness in baseball players with posterior shoulder tightness: a randomized controlled trial.

    Science.gov (United States)

    Yamauchi, Taishi; Hasegawa, Satoshi; Nakamura, Masatoshi; Nishishita, Satoru; Yanase, Ko; Fujita, Kosuke; Umehara, Jun; Ji, Xiang; Ibuki, Satoko; Ichihashi, Noriaki

    2016-09-01

    The cross-body stretch and sleeper stretch are widely used for improving flexibility of the posterior shoulder. These stretching methods were modified by Wilk. However, few quantitative data are available on the new, modified stretching methods. A recent study reported the immediate effects of stretching and soft tissue mobilization on the shoulder range of motion (ROM) and muscle stiffness in subjects with posterior shoulder tightness. However, the long-term effect of stretching for muscle stiffness is unknown. The objective of this study was to examine the effects of 2 stretching methods, the modified cross-body stretch (MCS) and the modified sleeper stretch (MSS), on shoulder ROM and muscle stiffness in baseball players with posterior shoulder tightness. Twenty-four college baseball players with ROM limitations in shoulder internal rotation were randomly assigned to the MCS or MSS group. We measured shoulder internal rotation and horizontal adduction ROM and assessed posterior shoulder muscle stiffness with ultrasonic shear wave elastography before and after a 4-week intervention. Subjects were asked to perform 3 repetitions of the stretching exercises every day, for 30 seconds, with their dominant shoulder. In both groups, shoulder internal rotation and horizontal adduction ROM were significantly increased after the 4-week intervention. Muscle stiffness of the teres minor decreased in the MCS group, and that of the infraspinatus decreased in the MSS group. The MCS and MSS are effective for increasing shoulder internal rotation and horizontal adduction ROM and decreasing muscle stiffness of the infraspinatus or teres minor. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie, E-mail: kunjiewangatscu@163.com

    2013-08-30

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.

  8. The Acute Effects of Unilateral Ankle Plantar Flexors Static- Stretching on Postural Sway and Gastrocnemius Muscle Activity During Single-Leg Balance Tasks

    Directory of Open Access Journals (Sweden)

    Bráulio N. Lima, Paulo R.G. Lucareli, Willy A. Gomes, Josinaldo J. Silva, Andre S. Bley, Erin H. Hartigan, Paulo H. Marchetti

    2014-09-01

    Full Text Available The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG and the center of pressure (COP during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipodal quiet standing for 30s before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch a unilateral ankle plantar flexor static- stretching protocol [6 sets of 45s/15s, 70-90% point of discomfort (POD]. Postural sway was described using the COP area, COP speed (antero-posterior and medio-lateral directions and COP frequency (antero-posterior and medio-lateral directions. Surface EMG (EMG integral [IEMG] and Median frequency[FM] was used to describe the muscular activity of gastrocnemius lateralis. Ankle dorsiflexion passive range of motion increased in the stretched limb before and after the static-stretching protocol (mean ± SD: 15.0° ± 6.0 and 21.5° ± 7.0 [p < 0.001]. COP area and IEMG increased in the stretch limb between pre-stretching and immediately post-stretching (p = 0.015 and p = 0.036, respectively. In conclusion, our static- stretching protocol effectively increased passive ankle ROM. The increased ROM appears to increase postural sway and muscle activity; however these finding were only a temporary or transient effect.

  9. Reliability of Abdominal Muscle Stiffness Measured Using Elastography during Trunk Rehabilitation Exercises.

    Science.gov (United States)

    MacDonald, David; Wan, Alan; McPhee, Megan; Tucker, Kylie; Hug, François

    2016-04-01

    The aim of this study was to assess the intra-session and inter-rater reliability of shear modulus measured in abdominal muscles during two commonly used trunk stability exercises. Thirty healthy volunteers performed a series of abdominal hollow and abdominal brace tasks. Supersonic shear imaging was used to measure the shear modulus (considered an index of muscle tension) of the four anterior trunk muscles: obliquus externus abdominis, obliquus internus abdominis, transversus abdominis and rectus abdominis. Because of measurement artifacts, internus abdominis and transversus abdominis data were not analyzed for 36.7% and 26.7% of the participants, respectively. These participants exhibited thicker superficial fat layers than the others. For the remaining participants, fair to excellent intra-session and inter-rater reliability was observed with moderate to high intra-class coefficients (0.45-0.97) and low to moderate standard error of measurement values (0.38-3.53 kPa). Reliability values were consistently greater for superficial than for deeper muscles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Lumbo-pelvic stability and electromyography of abdominal muscles in ballet dancers.

    Science.gov (United States)

    Negrão Filho, R de Faria; Silva, L Alves; Monteiro, T Lombardi; Alves, N; de Carvalho, A Cesinando; de Azevedo, F Mícolis

    2009-01-01

    Evaluating the ability to rectify and maintain lumbar adjustment can contribute toward the understanding of the behavior of abdominal muscles and their participation in the stability of pelvic muscles in dancers during the posterior pelvic tilt and double straight leg lowering tests. Nine healthy volunteers (male and female ballet dancers; age mean: 25.9 +/- 7.37 years) underwent maximal isometric voluntary contraction (MIVC), isometric voluntary contraction at 50% of MIVC, posterior pelvic tilt (PPT) and double straight leg lowering (DSLL) tests. The tests were carried out in a single day, with 3 repetitions each. During the tests, electromygraphic signals of the rectus abdominis, obliquus internus and obliquus externus were recorded. The signal acquisition system was made up of bipolar surface electrodes, electrogoniometer and an electromechanic device (pressure sensor), which were connected to a signal conditioner module. Root mean square values of each muscle during the DSLL and PPT were converted into percentage of activation of 50% MIVC. Lower back pressure was submitted to the same process. ANOVA with repeated measures was performed, with the level of significance set at p pelvic tilt and there was trend toward greater activation of the bilateral obliquus internus muscle. In an attempt to keep the pelvic region stabilized during DSLL, there was a greater contribution from the obliquus externus muscle in relation to other abdominal muscles.

  11. Influence of pelvis position on the activation of abdominal and hip flexor muscles.

    Science.gov (United States)

    Workman, J Chad; Docherty, David; Parfrey, Kevin C; Behm, David G

    2008-09-01

    A pelvic position has been sought that optimizes abdominal muscle activation while diminishing hip flexor activation. Thus, the objective of the study was to investigate the effect of pelvic position and the Janda sit-up on trunk muscle activation. Sixteen male volunteers underwent electromyographic (EMG) testing of their abdominal and hip flexor muscles during a supine isometric double straight leg lift (DSLL) with the feet held approximately 5 cm above a board. The second exercise (Janda sit-up) was a sit-up action where participants simultaneously contracted the hamstrings and the abdominal musculature while holding an approximately 45 degrees angle at the knee. Root mean square surface electromyography was calculated for the Janda sit-up and DSLL under 3 pelvic positions: anterior, neutral, and posterior pelvic tilt. The selected muscles were the upper and lower rectus abdominis (URA, LRA), external obliques, lower abdominal stabilizers (LAS), rectus femoris, and biceps femoris. The Janda sit-up position demonstrated the highest URA and LRA activation and the lowest rectus femoris activation. The Janda sit-up and the posterior tilt were significantly greater (p Activation levels of the URA and LRA in neutral pelvis were significantly (p activity were found for the external obliques or LAS. No rectus femoris differences were found in the 3 pelvis positions. The results of this study indicate that pelvic position had a significant effect on the activation of selected trunk and hip muscles during isometric exercise, and the activation of the biceps femoris during the Janda sit-up reduced the activation of the rectus femoris while producing high levels of activation of the URA and LRA.

  12. Directional preference of activation of abdominal and paraspinal muscles during position-control tasks in sitting.

    Science.gov (United States)

    Eriksson Crommert, Martin; Tucker, Kylie; Holford, Christopher; Wight, Alexander; McCook, Donna; Hodges, Paul

    2017-08-01

    Controversy exists in the literature regarding antagonist activity of trunk muscles during different types of trunk loading, and the direction-specificity of activation of trunk muscles, particularly the deeper trunk muscles. This study aimed to systematically compare activation of a range of trunk muscles between directions of statically applied loads, and to consider the impact of breathing in this activation. In a semi-seated position, 13 healthy male participants resisted moderate inertial loads applied to the trunk in eight different directions. Intramuscular electromyography was recorded from eight abdominal and back muscles on the right side during 1s prior to peak inspiration/expiration. All muscles demonstrated a directional preference of activation. No muscle displayed antagonistic activation during loading conditions of an intensity that exceded that recorded in upright sitting without a load. During these moderate intensity sustained efforts, trunk muscle activation varied little between respiratory phases. Antagonistic muscle activation of amplitude equivalent to the activation recorded in upright sitting without load is sufficient to maintain control of the spine during predictable and sustained low load tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cyclic Mechanical Stretch Induced Smooth Muscle Cell Changes in Cerebral Aneurysm Progress by Reducing Collagen Type IV and Collagen Type VI Levels

    Directory of Open Access Journals (Sweden)

    Peixi Liu

    2018-02-01

    Full Text Available Background/Aims: Cerebral aneurysm growth is characterized by continuous structural weakness of local smooth muscle cells, though the mechanism is unclear. In this study, we examine protein changes in cerebral aneurysm and human brain vascular smooth muscle cells after cyclic mechanical stretch. We further explore the relationship between the smooth muscle cell changes and reductions in the levels of collagen types IV and VI. Methods: Saccular cerebral aneurysms (n=10 were collected, and temporal artery samples were used as controls. Quantitative proteomics were analyzed and histopathological changes were examined. Smooth muscle cells were cultured in a flexible silicone chamber and subjected to 15% cyclic mechanical stretch. The effect of stretch on the cell viability, function, gene and protein expression were further studied for the understanding the molecular mechanism of aneurysm development. Results: Proteomics analysis revealed 92 proteins with increased expression and 88 proteins with decreased expression compared to the controls (p<0.05. KEGG pathway analysis showed that the change in focal adhesion and extracellular matrix-receptor interaction, suggesting the involvement of collagen type IV and VI. The aneurysm tissue exhibited fewer smooth muscle cells and lower levels of collagen type IV and VI. Human brain vascular smooth muscle cell culture showed spindle-like cells and obvious smooth muscle cell layer. Cell proteomics analysis showed that decreased expression of 118 proteins and increased expression of 32 proteins in smooth muscle cells after cyclic mechanical stretch. KEGG pathway analysis indicated that focal adhesion and ECM-receptor interaction were involved. After cyclic mechanical stretch, collagen type IV and IV expression were decreased. Moreover, the stretch induced MMP-1 and MMP-3 expression elevation. Conclusion: We demonstrated that collagen type IV and VI were decreased in cerebral aneurysms and continuous cyclic

  14. METODE ACTIVE ISOLATED STRETCHING (AIS DAN METODE HOLD RELAX STRETCHING (HRS SAMA EFEKTIF DALAM MENINGKATKAN FLEKSIBILITAS OTOT HAMSTRING PADA MAHASISWA AKADEMI FISIOTERAPI WIDYA HUSADA SEMARANG YANG MENGALAMI HAMSTRING MUSCLE TIGHTNESS (HMTs

    Directory of Open Access Journals (Sweden)

    Akhmad alfajri

    2015-08-01

    Full Text Available Students with Hamstring Muscle Tightness (HMTs will be at risk of Anterior Crusiatum Ligament (ACL, Low Back Pain (LBP and also Plantar Faciitis. One of the efforts to reduce tightness and improve hamstring muscle flexibility is stretching. Active Isolated Stretching (AIS and Hold Relax Stretching (HRS are the methods of influential stretching to improve muscle flexibility. The goal of the research is to prove that AIS method is equally effective with the HRS method to improve hamstring muscle flexibility to the HMTs patients. The research method was true experimental with pre and post test group design. The research was conducted for 3 weeks and the samples are 23 students in range of 18-25 years old students of physical therapy in Physical Therapy Academy of Widya Husada Semarang which divided into 2 groups; AIS group (n= 12 and HRS group (n= 11. The research used Sit and Reach Test (SRT as the measurement instrument. The result of the research was the average result of AIS group used SRT before treatment was 1.75 cm, SB= 4.309 and after treatment was 10. 58 cm, SB = 8. 005 within p= 0.000 (p 0.05. Those explain that the improvement of hamstring muscle flexibility to the two groups does not show any significant difference. Conclusion from this study was active isolated stretching method and hold relax stretching method are equally effective to improving muscle flexibility of hamstring muscle tightness students of physical therapy in Physical Therapy Academy of Widya Husada Semarang.

  15. THE EFFECTS OF STATIC STRETCHING OF THE HAMSTRING MUSCLES IN A WARM-UP ON PERFORMANCE AMONG FOOTBALL PLAYERS: A SYSTEMATIC LIVERATURE REVIEW

    OpenAIRE

    Hollis, John

    2016-01-01

    The purpose of this thesis was to research the most recent evidence surrounding the effects of static stretching among football players on the hamstring muscles, and how it affects their performance. The research for this thesis was carried out in the form of a systematic literature review. The content of the thesis looks at the importance of a warm-up including the different types, the demands of football, the anatomy of the hamstring muscles, and the differing types of stretching. The s...

  16. Pain intensity and abdominal muscle activation during walking in patients with low back pain: The STROBE study.

    Science.gov (United States)

    Kim, Si-Hyun; Park, Kyue-Nam; Kwon, Oh-Yun

    2017-10-01

    Nonspecific low back pain (LBP) is a common musculoskeletal problem that is intensified during physical activity. Patients with LBP have been reported to change their abdominal muscle activity during walking; however, the effects of pain intensity, disability level, and fear-avoidance belief on this relationship have not been evaluated. Thus, we compared abdominal muscle activity in patients with LBP and asymptomatic controls, and assessed the impact of pain intensity, disability level, and fear-avoidance belief.Thirty patients with LBP divided into groups reporting low (LLBP) and high-pain intensity low back pain (HLBP), and 15 participants without LBP were recruited. LBP patients' self-reported pain intensity, disability, and fear-avoidance belief were recorded. To examine abdominal muscle activity (rectus abdominis [RA], internal [IO], and external oblique [EO] muscles) during walking, all subjects walked at a self-selected speed. Abdominal muscle activity (RA, IO, and EO) was compared among groups (LLBP, HLBP, and controls) in different phases of walking (double support vs swing). Relationships between abdominal muscle activity and clinical measures (pain intensity, disability, fear-avoidance belief) were analyzed using partial correlation analysis.Right IO muscle activity during walking was significantly decreased in LLBP and HLBP compared with controls in certain walking phase. Partial correlation coefficients showed significant correlations between fear-avoidance belief and right EO activity (r = .377, P  .05).This study demonstrated decreased IO muscle activity during certain walking phases in LLBP and HLBP compared with asymptomatic participants. Although altered IO muscle activity during walking was observed in patients with LBP, no changes were found with other abdominal muscles (EO, RA). Thus, these results provide useful information about abdominal muscle activity during walking in patients with LBP.

  17. Ultrasound Assessment of the Abdominal Muscles at Rest and During the ASLR Test Among Adolescents With Scoliosis.

    Science.gov (United States)

    Linek, Paweł; Saulicz, Edward; Kuszewski, Michał; Wolny, Tomasz

    2017-05-01

    Observational study. Are there deviations in the thickness of abdominal muscles at rest in individuals with adolescent idiopathic scoliosis (AIS)? Are there deviations in abdominal muscular activity in people with AIS during the active straight leg raise (ASLR) test? Ultrasound imaging can be used to assess the lateral abdominal muscle. Some authors suggest that scoliosis develops through a weakness or improper functioning of the abdominal muscles that cannot provide adequate support to the spinal segments. However, the literature lacks studies on the functioning of the abdominal muscles in individuals with spinal deviations. This study focuses on the evaluation of the thickness of the external oblique (EO), internal oblique (IO), and transversus abdominalis (TrA) muscles of individuals with AIS. Seventy-one healthy adolescents and 71 patients with AIS, all aged 10-16 years, were studied. The thickness of the muscles at rest was measured at the end of normal exhalation in millimeters. Muscular activity during the ASLR test was measured in the final position, and the standards were normalized with the thickness produced at rest. Muscular activity during the ASLR test was represented as a percentage change in the muscle thickness. The AIS group demonstrated a smaller resting thickness of all tested muscles of both sides (Pmuscles on the right side of the body showed higher activity in the AIS group during the ASLR test (Pactivity of the EO, IO, and TrA muscles on the right side.

  18. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I

    2018-02-21

    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  19. Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle.

    Science.gov (United States)

    Wei, Bin; Chen, Zheng; Zhang, Xu; Feldman, Morris; Dong, Xian-zhi; Doran, Robert; Zhao, Bao-Lu; Yin, Wen-xuan; Kotlikoff, Michael I; Ji, Guangju

    2008-06-25

    Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+) release occurs in the form of Ca(2+) sparks and Ca(2+) waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown. We examined the transduction mechanism linking cell stretch to Ca(2+) release. The probability and frequency of Ca(2+) sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO) and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+) sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+) sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level. Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle.

  20. Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle.

    Directory of Open Access Journals (Sweden)

    Bin Wei

    2008-06-01

    Full Text Available Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+ release occurs in the form of Ca(2+ sparks and Ca(2+ waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown.We examined the transduction mechanism linking cell stretch to Ca(2+ release. The probability and frequency of Ca(2+ sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+ sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+ sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level.Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle.

  1. Tissue Deformation Index as a Reliable Measure of Lateral Abdominal Muscle Activation on M-Mode Sonography.

    Science.gov (United States)

    Biały, Maciej; Adamczyk, Wacław; Gnat, Rafael; Stranc, Tomasz

    2017-07-01

    The aim of this article is to present a novel method of evaluating the activity of lateral abdominal muscles using M-mode sonography. The method leads to calculation of the tissue deformation index, representing the percent change in lateral abdominal muscle thickness over time. The objectives of this study were as follows: (1) to establish the mean tissue deformation index values for individual lateral abdominal muscles; and (2) to establish the reliability of the tissue deformation index. In a group of 34 healthy young volunteers (mean age, 24.03 years; body mass, 68.89 kg; body height, 174.25 cm), the reflex response of the lateral abdominal muscles to postural perturbation in the form of rapid arm abduction was recorded in 2 series, with 6 repetitions each, and the tissue deformation index was calculated. The mean tissue deformation index values formed a gradient, increasing from deep to superficial lateral abdominal muscles: 0.06%/ms for transversus abdominis, 0.11%/ms for oblique internal, and 0.16 for oblique external muscles. The tissue deformation index values differed significantly among individual lateral abdominal muscles (all paired comparisons, P  0.8). © 2017 by the American Institute of Ultrasound in Medicine.

  2. Recruitment and plasticity in diaphragm, intercostal, and abdominal muscles in unanesthetized rats.

    Science.gov (United States)

    Navarrete-Opazo, A; Mitchell, G S

    2014-07-15

    Although rats are a frequent model for studies of plasticity in respiratory motor control, the relative capacity of rat accessory respiratory muscles to express plasticity is not well known, particularly in unanesthetized animals. Here, we characterized external intercostal (T2, T4, T5, T6, T7, T8, T9 EIC) and abdominal muscle (external oblique and rectus abdominis) electromyogram (EMG) activity in unanesthetized rats via radiotelemetry during normoxia (Nx: 21% O2) and following acute intermittent hypoxia (AIH: 10 × 5-min, 10.5% O2; 5-min intervals). Diaphragm and T2-T5 EIC EMG activity, and ventilation were also assessed during maximal chemoreceptor stimulation ( 7% CO2, 10.5% O2) and sustained hypoxia (SH: 10.5% O2). In Nx, T2 EIC exhibits prominent inspiratory activity, whereas T4, T5, T6, and T7 EIC inspiratory activity decreases in a caudal direction. T8 and T9 EIC and abdominal muscles show only tonic or sporadic activity, without consistent respiratory activity. MCS increases diaphragm and T2 EIC EMG amplitude and tidal volume more than SH (0.94 ± 0.10 vs. 0.68 ± 0.05 ml/100 g; P muscles exhibit inspiratory activity during Nx; 2) MCS elicits greater ventilatory, diaphragm, and rostral T2-T5 EIC muscle activity vs. SH; and 3) AIH induces greater rostral EIC LTF than diaphragm LTF. Copyright © 2014 the American Physiological Society.

  3. Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats

    Science.gov (United States)

    Keller, Anastasia V.P.; Wainwright, Grace; Shum-Siu, Alice; Prince, Daniella; Hoeper, Alyssa; Martin, Emily

    2017-01-01

    Abstract After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0–3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients. PMID:27196003

  4. Core muscle size assessed by perioperative abdominal CT scan is related to mortality, postoperative complications, and hospitalization after major abdominal surgery

    DEFF Research Database (Denmark)

    Hasselager, Rune; Gögenur, Ismail

    2014-01-01

    of these found significantly longer length of stay related to low core muscle area. Seven studies investigated 1-year and long-term mortality after surgery, whereof only one did not find significantly increased mortality related to low core muscle area. Furthermore, one study found increased short-term (... abdominal surgery. RESULTS: Eight studies were found. Four studies investigated postoperative complications related to core muscle area. Three of these studies found significantly increased risk of complications related to low core muscle area. Three studies investigated length of hospitalization, and two...

  5. Muscle disuse caused by botulinum toxin injection leads to increased central gain of the stretch reflex in the rat

    DEFF Research Database (Denmark)

    Pingel, Jessica; Hultborn, Hans; Naslund-Koch, Lui

    2017-01-01

    Botulinum toxin (Btx) is used in children with cerebral palsy and other neurological patients to diminish spasticity and reduce the risk of development of contractures. Here, we investigated changes in the central gain of the stretch reflex circuitry in response to botulinum toxin injection...... in the triceps surae muscle in rats. Experiments were performed in 21 rats. 8 rats were in a control group and 13 rats were injected with 6 IU of Btx in the left triceps surae muscle. Two weeks after Btx injection larger monosynaptic reflexes (MSR) were recorded from the left (injected) than the right (non....... However, significant changes were also observed in post-activation depression of the MSR suggesting that plastic changes in transmission from Ia afferent to the motor neurons may also be involved. The data demonstrate that muscle paralysis induced by Btx injection is accompanied by plastic adaptations...

  6. The Efficacy of Dynamic Contract-Relax Stretching on Delayed-Onset Muscle Soreness Among Healthy Individuals: A Randomized Clinical Trial.

    Science.gov (United States)

    Xie, Yanfei; Feng, Beibei; Chen, Kedi; Andersen, Lars L; Page, Phil; Wang, Yuling

    2018-01-01

    To evaluate the efficacy of dynamic contract-relax stretching on delayed-onset muscle soreness (DOMS) in the calf muscle of healthy individuals. Randomized clinical trial. Research laboratory. Three groups of 16 healthy participants (n = 48) were recruited by convenience sampling. Three sets of resisted bilateral heel-raising exercises until exhaustion were conducted to initiate DOMS. Participants were randomly allocated into control group without any interventions, dynamic contract-relax stretching (DS), or static stretching (SS) groups. Dynamic contract-relax stretching and SS groups performed DS and SS, respectively, on the dominant leg twice a day for 5 consecutive days (before time points of outcome measurements at 24, 48, 72, 96, and 120 hours postexercise, respectively). Muscle soreness, lower leg girth, pressure pain threshold (PPT), range of motion (ROM), and muscle strength were measured before exercise, immediately after, and at 24, 48, 72, 96, and 120 hours postexercise. There was a significant effect of time in all outcome measures including muscle soreness, lower leg girth, PPT, ROM, and muscle strength; however, there were no significant group differences or group by time interactions. The effect of DS on relieving DOMS in the calf muscle is insignificant in this study. Further evidence is needed to prove the efficacy of DS on DOMS. Stretching is commonly recommended before and after exercise; however, this study showed no significant impact of DS or SS in treating DOMS.

  7. Influence of posture and muscle length on stretch reflex activity in poststroke patients with spasticity

    NARCIS (Netherlands)

    Fleuren, J.F.M.; Fleuren, Judith F.; Nederhand, Marcus Johannes; Hermens, Hermanus J.

    Objective To investigate the influence of different positions on stretch reflex activity of knee flexors and extensors measured by electromyography in poststroke patients with spasticity and its expression in the Ashworth Scale.

  8. Reliability of ultrasound imaging for the measurement of abdominal muscle thickness in typically developing children

    Directory of Open Access Journals (Sweden)

    M. Unger

    2010-01-01

    Full Text Available Introduction: A bdominal muscles are key to both posture andgait in both children with typical development (TD and with disabilities.Ultrasound (US imaging is a potential non-invasive method for investigatingactivity in these muscles. This study therefore aimed to determine the inter-tester and intra-tester reliability of B-mode US for investigating transverseabdominus (TrA , rectus abdominus (RA and external- (EO and internaloblique (IO muscle activity in children with TD. Design: A  prospective cor-relational descriptive study.  Participants:  Eighty six, 6-13year old children from one private and one public mainstream school. Outcome measures: Two sets of B-mode US images where captured per subject during rest and during head-up, resisted head-up and resisted sling activities. Intra-class Correlation Coefficients (ICC and standard error of measurement (SEM were used to analyse the data. Results: Good correlation was found for both test - retest condi-tions for all four muscles tested during rest: 0.91(TrA ; 0.90(IO; 0.91(EO; 0.94(RA for intra-tester reliability and0.74(TrA ; 0.88(IO; 0.74(EO; 0.83(RA for inter-tester reliability. Repeatability of thickness measures during activity however showed variation in recruitment patterns. A  significant correlation was found between age and BMI andresting abdominal muscle thickness (p<0.001. Conclusion: The study supports the reliability of US measurement of resting abdominal muscles and of the RA  under active conditions in children aged six to 13. However the stability o measurement of the other muscles under active conditions still needs to be established.

  9. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review.

    Science.gov (United States)

    Behm, David G; Blazevich, Anthony J; Kay, Anthony D; McHugh, Malachy

    2016-01-01

    Recently, there has been a shift from static stretching (SS) or proprioceptive neuromuscular facilitation (PNF) stretching within a warm-up to a greater emphasis on dynamic stretching (DS). The objective of this review was to compare the effects of SS, DS, and PNF on performance, range of motion (ROM), and injury prevention. The data indicated that SS- (-3.7%), DS- (+1.3%), and PNF- (-4.4%) induced performance changes were small to moderate with testing performed immediately after stretching, possibly because of reduced muscle activation after SS and PNF. A dose-response relationship illustrated greater performance deficits with ≥60 s (-4.6%) than with muscle group. Conversely, SS demonstrated a moderate (2.2%) performance benefit at longer muscle lengths. Testing was performed on average 3-5 min after stretching, and most studies did not include poststretching dynamic activities; when these activities were included, no clear performance effect was observed. DS produced small-to-moderate performance improvements when completed within minutes of physical activity. SS and PNF stretching had no clear effect on all-cause or overuse injuries; no data are available for DS. All forms of training induced ROM improvements, typically lasting muscle and tendon stiffness or from neural adaptations causing an improved stretch tolerance. Considering the small-to-moderate changes immediately after stretching and the study limitations, stretching within a warm-up that includes additional poststretching dynamic activity is recommended for reducing muscle injuries and increasing joint ROM with inconsequential effects on subsequent athletic performance.

  10. Acute muscle and joint mechanical responses following a high-intensity stretching protocol.

    Science.gov (United States)

    Freitas, Sandro R; Andrade, Ricardo J; Nordez, Antoine; Mendes, Bruno; Mil-Homens, Pedro

    2016-08-01

    A previous study observed a joint passive torque increase above baseline ~30 min after a high-intensity stretching. This study examined the effect of a high-intensity stretching on ankle dorsiflexion passive torque, medial gastrocnemius (MG) shear modulus, and plantar flexors maximal voluntary isometric force (MVIC). Participants (n = 11, age 27.2 ± 6.5 years, height 172.0 ± 10.0 cm, weight 69.5 ± 10.4 kg) underwent two stretching sessions with plantar flexors isometric contractions performed: (1) 5 min before, 1 min after, and every 10 min after stretching (MVC session); (2) 5 min before, and 60 min after the stretching (no-MVC session). In both sessions, no changes were observed for MG shear modulus (p > 0.109). In the no-MVC session, passive torque decreased 1 min after stretching (-7.5 ± 8.4 %, p = 0.015), but increased above baseline 30 min after stretching (+6.3 ± 9.3 %, p = 0.049). In the MVC session, passive torque decreased at 1 min (-10.1 ± 6.3 %, p stretching, whereas the MVIC decreased at 1 min (-5.0 ± 9.3 %, p = 0.04) and 10 min (-6.7 ± 8.7 %, p = 0.02) after stretching. The ankle passive torque increase 30 min following the stretch was not due to the MG shear modulus response; consequently, response may be due to changes in surrounding connective tissue mechanical properties.

  11. Immediate Effect of Hold-Relax Stretching of Iliopsoas Muscle on Transversus Abdominis Muscle Activation in Chronic Non-Specific Low Back Pain with Lumbar Hyperlordosis.

    Science.gov (United States)

    Malai, Suthichan; Pichaiyongwongdee, Sopa; Sakulsriprasert, Prasert

    2015-06-01

    To determine the immediate effect of hold-relax (HR) stretching of the iliopsoas muscle on pain, transversus abdominis (TrA) activation capacity, lumbar stability level, lumbar lordosis angle and iliopsoas muscle length in chronic non-specific low back pain (CNSLBP) with lumbar hyperlordosis. Participants aged from 30-55 years with CNSLBP with lumbar hyperlordosis were divided in two groups: (Group 1) Intervention group received 10-second isometric contraction ofthe iliopsoas muscle (HR), 10-second rest, 20-second static stretch, 5 repetitions. (Group 2) control group received 15 minutes resting in supine lying. The visual analog scale, prone test with the pressure biofeedback unit, modified isometric stability test, aflexible ruler and modified Thomas test were usedforpre- and post-test. Two-way ANOVA was used for within and between-group comparisons. The present study consisted of 20 participants. Significant differences were found in pain, TrA activation capacity, lumbar lordosis angle and iliopsoas muscle length between intervention and control groups and between pre- and post-test for intervention group (ppain and lumbar lordosis angle, enhanced TrA activation, and increased length of hip flexor in CNSLBP with lumbar hyperlordosis.

  12. MALDI imaging mass spectrometry of Pacific White Shrimp L. vannamei and identification of abdominal muscle proteins.

    Science.gov (United States)

    Schey, Kevin L; Hachey, Amanda J; Rose, Kristie L; Grey, Angus C

    2016-06-01

    MALDI imaging mass spectrometry (IMS) has been applied to whole animal tissue sections of Pacific White Shrimp, Litopenaeus vannamei, in an effort to identify and spatially localize proteins in specific organ systems. Frozen shrimp were sectioned along the ventral-dorsal axis and methods were optimized for matrix application. In addition, tissue microextraction and homogenization was conducted followed by top-down LC-MS/MS analysis of intact proteins and searches of shrimp EST databases to identify imaged proteins. IMS images revealed organ system specific protein signals that highlighted the hepatopancreas, heart, nervous system, musculature, and cuticle. Top-down proteomics identification of abdominal muscle proteins revealed the sequence of the most abundant muscle protein that has no sequence homology to known proteins. Additional identifications of abdominal muscle proteins included titin, troponin-I, ubiquitin, as well as intact and multiple truncated forms of flightin; a protein known to function in high frequency contraction of insect wing muscles. The combined use of imaging mass spectrometry and top-down proteomics allowed for identification of novel proteins from the sparsely populated shrimp protein databases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Circulating 20S Proteasome Is Independently Associated with Abdominal Muscle Mass in Hemodialysis Patients

    Science.gov (United States)

    Fukasawa, Hirotaka; Kaneko, Mai; Niwa, Hiroki; Matsuyama, Takashi; Yasuda, Hideo; Kumagai, Hiromichi; Furuya, Ryuichi

    2015-01-01

    Protein-energy wasting is highly prevalent in hemodialysis patients, and it contributes to patient morbidity and mortality. The ubiquitin-proteasome system is the major pathway for intracellular protein degradation and it is involved in the regulation of basic cellular processes. However, the role of this system in the determination of nutritional status is largely unknown. To examine a relationship between protein-energy wasting and the ubiquitin-proteasome system, a cross-sectional study of 76 hemodialysis patients was performed. Plasma concentrations of 20S proteasome were studied to evaluate its association with muscle and fat mass, which were investigated by abdominal muscle and fat areas measured using computed tomography and by creatinine production estimated using the creatinine kinetic model. Plasma 20S proteasome concentrations significantly and negatively correlated with abdominal muscle areas and creatinine production (rho = -0.263, P hemodialysis patients. Our findings indicate a relationship between circulating 20S proteasomes and muscle metabolism in these patients. Trial Registration UMIN Clinical Trials Registry UMIN000012341 PMID:25803510

  14. Cardiovascular responses to passive static flexibility exercises are influenced by the stretched muscle mass and the Valsalva maneuver.

    Science.gov (United States)

    Farinatti, Paulo T V; Soares, Pedro P S; Monteiro, Walace D; Duarte, Antonio F A; Castro, Luis A Viveiros de

    2011-01-01

    The respiratory pattern is often modified or even blocked during flexibility exercises, but little is known about the cardiovascular response to concomitant stretching and the Valsalva maneuver (VM) in healthy subjects. This study evaluated the heart rate (HR), systolic blood pressure (SBP), and rate-pressure product (RPP) during and after large and small muscle group flexibility exercises performed simultaneously with the VM. Asymptomatic volunteers (N = 22) with the following characteristics were recruited: age, 22 ± 3 years; weight, 73 ± 6 kg; height, 175 ± 5 cm; HR at rest, 66 ± 9 BPM; and SBP at rest, 113 ± 10 mmHg. They performed two exercises: four sets of passive static stretching for 30 s of the dorsi-flexion (DF) of the gastrocnemius and the hip flexion (HF) of the ischio-tibialis. The exercises were performed with (V+) or without (V-) the VM in a counterbalanced order. The SBP and HR were measured, and the RPP was calculated before the exercise session, at the end of each set, and during a 30-min post-exercise recovery period. The within-group comparisons showed that only the SBP and RPP increased throughout the sets (p < 0.05), but no post-exercise hypotension was detected. The between-group comparisons showed that greater SBP increases were related to the VM and to a larger stretched muscle mass. Differences for a given set were identified for the HR (the HFV+ and HFV- values were higher than the DFV+ and DFV- values by approximately 12 BPM), SBP (the HFV+ value was higher than the DFV+ and DFV- values by approximately 12 to 15 mmHg), and RPP (the HFV+ value was higher than the HFV- value by approximately 2000 mmHGxBPM, and the HFV+ value was higher than the DFV+ and DFV- values by approximately 4000 mmHGxBPM). Both the stretched muscle mass and the VM influence acute cardiovascular responses to multiple-set passive stretching exercise sessions.

  15. Cardiovascular responses to passive static flexibility exercises are influenced by the stretched muscle mass and the Valsalva maneuver

    Directory of Open Access Journals (Sweden)

    Paulo T. V Farinatti

    2011-01-01

    Full Text Available BACKGROUND: The respiratory pattern is often modified or even blocked during flexibility exercises, but little is known about the cardiovascular response to concomitant stretching and the Valsalva maneuver (VM in healthy subjects. OBJECTIVES: This study evaluated the heart rate (HR, systolic blood pressure (SBP, and rate-pressure product (RPP during and after large and small muscle group flexibility exercises performed simultaneously with the VM. METHODS: Asymptomatic volunteers (N = 22 with the following characteristics were recruited: age, 22 ± 3 years; weight, 73 ± 6 kg; height, 175 ± 5 cm; HR at rest, 66 ± 9 BPM; and SBP at rest, 113 ± 10 mmHg. They performed two exercises: four sets of passive static stretching for 30 s of the dorsi-flexion (DF of the gastrocnemius and the hip flexion (HF of the ischio-tibialis. The exercises were performed with (V+ or without (V- the VM in a counterbalanced order. The SBP and HR were measured, and the RPP was calculated before the exercise session, at the end of each set, and during a 30-min post-exercise recovery period. RESULTS: The within-group comparisons showed that only the SBP and RPP increased throughout the sets (p<0.05, but no post-exercise hypotension was detected. The between-group comparisons showed that greater SBP increases were related to the VM and to a larger stretched muscle mass. Differences for a given set were identified for the HR (the HFV+ and HFV- values were higher than the DFV+ and DFV- values by approximately 12 BPM, SBP (the HFV+ value was higher than the DFV+ and DFV- values by approximately 12 to 15 mmHg, and RPP (the HFV+ value was higher than the HFV- value by approximately 2000 mmHGxBPM, and the HFV+ value was higher than the DFV+ and DFV- values by approximately 4000 mmHGxBPM. CONCLUSION: Both the stretched muscle mass and the VM influence acute cardiovascular responses to multiple-set passive stretching exercise sessions.

  16. The effects of trunk extensor and abdominal muscle fatigue on postural control and trunk proprioception in young, healthy individuals.

    Science.gov (United States)

    Larson, Dennis J; Brown, Stephen H M

    2018-02-01

    The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4  days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body's ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Control of abdominal muscles by brain stem respiratory neurons in the cat.

    Science.gov (United States)

    Miller, A D; Ezure, K; Suzuki, I

    1985-07-01

    Control of abdominal musculature by brain stem respiratory neurons was studied in decerebrate unanesthetized cats by determining 1) which brain stem respiratory neurons could be antidromically activated from the lumbar cord, from which the abdominal muscles receive part of their innervation, and 2) if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons. A total of 462 respiratory neurons, located between caudal C2 and the retrofacial nucleus (Bötzinger complex), were tested for antidromic activation from the upper lumbar cord. Fifty-eight percent of expiratory (E) neurons (70/121) in the caudal ventral respiratory group (VRG) between the obex and rostral C1 were antidromically activated from contralateral L1. Eight of these neurons were activated at low thresholds from lamina VIII and IX in the L1-2 gray matter. One-third (14/41) of the E neurons that projected to L1 could also be activated from L4-5. Almost all antidromic E neurons had an augmenting firing pattern. Ten scattered inspiratory (I) neurons projected to L1 but could not be activated from L4-5. No neurons that fired during both E and I phases (phase-spanning neurons) were antidromically activated from the lumbar cord. In order to test for possible monosynaptic connections between descending E neurons and abdominal motoneurons, cross-correlations were obtained between 27 VRG E neurons, which were antidromically activated from caudal L2 and contralateral L1 and L2 abdominal nerve activity (47 neuron-nerve combinations). Only two neurons showed a correlation with one of the two nerves tested. Although there is a large projection to the lumbar cord from expiratory neurons in the ventral respiratory group caudal to the obex, cross-correlation analyses suggest that strong monosynaptic connections between these neurons and abdominal motoneurons are scarce.

  18. Trigeminal Proprioception Evoked by Strong Stretching of the Mechanoreceptors in Müller's Muscle Induces Reflex Contraction of the Orbital Orbicularis Oculi Slow-Twitch Muscle Fibers.

    Science.gov (United States)

    Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke

    2014-01-01

    The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.

  19. Changes in multifidus and abdominal muscle size in response to microgravity: possible implications for low back pain research.

    Science.gov (United States)

    Hides, J A; Lambrecht, G; Stanton, W R; Damann, V

    2016-05-01

    In microgravity, muscle atrophy occurs in the intrinsic muscles of the spine, with changes also observed in the abdominal muscles. Exercises are undertaken on the International Space Station and on Earth following space flight to remediate these effects. Similar effects have been seen on Earth in prolonged bed rest studies and in people with low back pain (LBP). The aim of this case report was to examine the effects of microgravity, exercise in microgravity and post-flight rehabilitation on the size of the multifidus and antero-lateral abdominal muscles. Ultrasound imaging was used to assess size of the multifidus, transversus abdominis and internal oblique muscles at four time points: pre-flight and after daily rehabilitation on day one (R + 1), day 8 (R + 8) and day 14 (R + 14) after return to Earth (following 6 months in microgravity). Exercises in microgravity maintained multifidus size at L2-L4, however, after spaceflight, size of the multifidus muscle at L5 was reduced, size of the internal oblique muscle was increased and size of transversus abdominis was reduced. Rehabilitation post-space flight resulted in hypertrophy of the multifidus muscle to pre-mission size at the L5 vertebral level and restoration of antero-lateral abdominal muscle size. Exercise in space can prevent loss of spinal intrinsic muscle size. For the multifidus muscles, effectiveness varied at different levels of the spine. Post-mission rehabilitation targeting specific motor control restored muscle balance between the antero-lateral abdominal and multifidus muscles, similar to results from intervention trials for people with LBP. A limitation of the current investigation is that only one astronaut was studied, however, the microgravity model could be valuable as predictable effects on trunk muscles can be induced and interventions evaluated. Level of Evidence Case series.

  20. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2018-04-01

    Utilization of high-intensity resistance training to counter age-related sarcopenia is currently debated because of the potential for maladaptation when training design is inappropriate. Training design is problematic because the influence of various loading variables (e.g. contraction mode, repetition number, and training frequency) is still not well characterized at old age. To address this in a precisely controlled manner, we developed a rodent model of high-intensity training consisting of maximally-activated stretch-shortening contractions (SSCs), contractions typical during resistance training. With this model, we determined that at old age, high-repetition SSC training (80 SSCs: 8 sets of 10 repetitions) performed frequently (i.e. 3 days per week) for 4.5 weeks induced strength deficits with no muscle mass gain while decreasing frequency to 2 days per week promoted increases in muscle mass and muscle quality (i.e. performance normalized to muscle mass). This finding confirmed the popular notion that decreasing training frequency has a robust effect with age. Meanwhile, the influence of other loading variables remains contentious. The aim of the present study was to assess muscle adaptation following modulation of contraction mode and repetition number during high-intensity SSC training. Muscles of young (3 month old) and old (30 month old) male rats were exposed to 4.5 weeks of low-repetition static training of 4 (i.e. 4 sets of one repetition) isometric (ISO) contractions 3 days per week or a more moderate-repetition dynamic training of 40 SSCs (i.e. 4 sets of 10 repetitions) 3 days per week. For young rats, performance and muscle mass increased regardless of training protocol. For old rats, no muscle mass adaptation was observed for 4 ISO training while 40 SSC training induced muscle mass gain without improvement in muscle quality, an outcome distinct from modulating training frequency. Muscle mass gain for old rats was accompanied by

  1. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population: A Randomized Trial.

    Science.gov (United States)

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth; Ginnerup-Nielsen, Elisabeth; Bliddal, Henning; Henriksen, Marius

    2016-07-01

    Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local and central pain sensitivity. This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days a week for 4 weeks on the dominant leg. Participants in the control group were instructed not to do any stretching for 4 weeks. Pressure pain threshold (PPT) and temporal summation (TS) of pressure pain were measured on the stretched calf, the contra-lateral calf, and contra-lateral lower arm using a computerized cuff algometer. Analyses of variance on the per-protocol population (defined as participants that adhered to the protocol) were used to assess group differences in the changes from baseline. Forty healthy volunteers were included, of which 34 participants adhered to the protocol (15 intervention group/19 control group). No statistically significant group differences in the changes from baseline were found regarding PPT and TS measurements for the stretched calf, the contra-lateral calf, and the arm. Four weeks of regular stretching of the calf muscles does not affect pressure pain sensitivity, suggesting that pressure pain sensitivity is unaffected by stretching in a healthy population. The mechanisms underlying any benefits of regular stretching remain to be explained. © 2015 World Institute of Pain.

  2. Effects of high-intensity pulse irradiation with linear polarized near-infrared rays and stretching on muscle tone in patients with cerebrovascular disease: a randomized controlled trial.

    Science.gov (United States)

    Takeuchi, Nobuyuki; Takezako, Nobuhiro; Shimonishi, Yuko; Usuda, Shigeru

    2017-08-01

    [Purpose] The purpose of this study was to clarify the influence of high-intensity pulse irradiation with linear polarized near-infrared rays (HI-LPNR) and stretching on hypertonia in cerebrovascular disease patients. [Subjects and Methods] The subjects were 40 cerebrovascular disease patients with hypertonia of the ankle joint plantar flexor muscle. The subjects were randomly allocated to groups undergoing treatment with HI-LPNR irradiation (HI-LPNR group), stretching (stretching group), HI-LPNR irradiation followed by stretching (combination group), and control group (10 subjects each). In all groups, the passive range of motion of ankle dorsiflexion and passive resistive joint torque of ankle dorsiflexion were measured before and after the specified intervention. [Results] The changes in passive range of motion, significant increase in the stretching and combination groups compared with that in the control group. The changes in passive resistive joint torque, significant decrease in HI-LPNR, stretching, and combination groups compared with that in the control group. [Conclusion] HI-LPNR irradiation and stretching has effect of decrease muscle tone. However, combination of HI-LPNR irradiation and stretching has no multiplier effect.

  3. Acute Effects of Constant-Angle and Constant-Torque Static Stretching on Passive Stiffness of the Posterior Hip and Thigh Muscles in Healthy, Young and Old Men.

    Science.gov (United States)

    Palmer, Ty B

    2017-07-24

    The purpose of this study was to examine the acute effects of constant-angle (CA) and constant-torque (CT) static stretching on passive stiffness of the posterior hip and thigh muscles in healthy, young and old men. Fifteen young (25±3 years) and 15 old (71±4 years) men underwent 2 passive straight-leg raise (SLR) assessments before and after 8 min of CA and CT stretching using an isokinetic dynamometer. Passive stiffness was calculated during each SLR as the slope of the final 10% of the angle-torque curve. The results indicated that passive stiffness decreased from pre- to post-stretching for both treatments (P≤0.001-0.002) and age groups (P≤0.001-0.046); however, greater decreases were observed for the CT than the CA stretching (P=0.045) and for the old than the young men (Pstretching. These findings suggest that holding stretches at a constant tension may be a more effective strategy for altering passive stiffness of the posterior hip and thigh muscles. The greater stretch-induced stiffness decreases observed for the older men provide support that acute static stretching may be particularly effective for reducing stiffness in the elderly. As a result, it may be advantageous to prescribe static stretching prior to exercise for older adults, as this may be used to elicit substantial declines in passive stiffness, which could help reduce the risk of subsequent injury events in this population.

  4. The effect of the absence of abdominal muscles on pulmonary function and exercise.

    Science.gov (United States)

    Ewig, J M; Griscom, N T; Wohl, M E

    1996-04-01

    In order to determine the long-term sequelae of prune belly syndrome (PBS) and whether the absence of abdominal wall musculature impairs exercise performance we studied nine patients 6 to 31 yr of age with PBS. Conventional spirometry, lung volumes, DLCO, and respiratory muscle strength were measured. A progressive 1-min incremental exercise test was performed on a cycle ergometer, and relative abdominal and chest wall displacements were measured by respiratory inductive plethysmography (RIP). Mean values of TLC, FRC, and RV were 94 +/- 12, 88 +/- 13, and 94 +/- 41%, respectively. Mean values of PEFR, FEV1, and FEF25-75 were 83 +/- 24, 92 +/- 23, and 83 +/- 28%, respectively. Maximal expiratory pressures were significantly reduced in seven of nine patients, with marked reduction in four (>3 SD below the mean). Percent predicted maximal VO2 achieved, % maximal work, and % maximal heart rate were 79 +/- 13, 78 +/- 14, and 87 +/- 2%, respectively. All seven subjects with absent abdominal musculature had paradoxical motion of the abdomen during quiet respiration in the erect or sitting position and while exercising. These subjects had synchronous breathing at rest in the supine position. Although the etiology of the relatively low work rates and VO2 achieved was multifactorial, we speculate that the abdominal paradox in these subjects necessitates abnormally large rib cage displacements during exercise, which may be a significant contributing factor to exercise limitation in some of these subjects.

  5. Psoas muscle hematoma secondary to a ruptured abdominal aortic aneurysm: case report

    International Nuclear Information System (INIS)

    Cumming, M.J.; Hall, A.J.; Burbridge, B.E.

    2000-01-01

    The diagnosis of a ruptured abdominal aortic aneurysm (RAAA) is usually made on the basis of the classic clinical presentation of hypotension, abdominal or back pain, and a pulsating abdominal mass. However, given the large differential diagnosis for abdominal or back pain, the diagnosis can be elusive in a stable patient. The importance of a rapid diagnosis of a RAAA is emphasized by the 32%-70% operative mortality rate and the 77%-94% overall mortality rate. The case reported here demonstrates unusual clinical and radiological findings in a patient with a RAAA. The patient presented with back pain and a progressive radiculopathy in the L4 distribution. The diagnosis of RAAA was delayed 6 weeks because of the investigation of a suspected nerve root entrapment. Consecutive computed tomographic (CT) imaging over a 6-day period showed the evolution of a psoas muscle hematoma secondary to a RAAA. This case emphasizes the importance of considering a RAAA in elderly patients with a prolonged history of back pain. (author)

  6. Stretching position can affect levator scapular muscle activity, length, and cervical range of motion in people with a shortened levator scapulae.

    Science.gov (United States)

    Jeong, Hyo-Jung; Cynn, Heon-Seock; Yi, Chung-Hwi; Yoon, Jang-Whon; Lee, Ji-Hyun; Yoon, Tae-Lim; Kim, Bo-Been

    2017-07-01

    Levator scapulae (LS) muscle stretching exercises are a common method of lengthening a shortened muscle; however, the appropriate stretching position for lengthening the LS in people with a shortened LS remains unclear. The purpose of this study was to compare the effects of different stretching exercise positions on the LS and introduce effective stretching exercise methods to clinicians. Twenty-four university students (12 men, 12 women) with a shortened LS were recruited. LS muscle activity, LS index (LSI), and cervical range of motion (ROM) were measured pre (baseline) and post three different stretching exercise positions (sitting, quadruped, and prone). The LSI and cervical ROM exceeded the minimal detectable change and had significant changes. The LSI was greater in the sitting position than at the baseline (p = 0.01), quadruped position (p Stretching the LS in the sitting position was the most effective exercise for improving LS muscle length and cervical ROM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lumbar and abdominal muscle activity during walking in subjects with chronic low back pain: Support of the ''guarding'' hypothesis?

    NARCIS (Netherlands)

    van der Hulst, M.; Vollenbroek-Hutten, Miriam Marie Rosé; Rietman, Johan Swanik; Hermens, Hermanus J.

    It has been hypothesized that changes in trunk muscle activity in chronic low back pain (CLBP) reflect an underlying “guarding��? mechanism, which will manifest itself as increased superficial abdominal – and lumbar muscle activity. During a functional task like walking, it may be further provoked

  8. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Directory of Open Access Journals (Sweden)

    Xianming Zhang

    Full Text Available It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS, but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB and abdominal muscle paralysis group (BIPAPAP. All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml and oxygenation index (293±36 vs. 226±31 mmHg, lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7 and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9 in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1.Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  9. Effects of non-paretic arm exercises using a tubing band on abdominal muscle activity in stroke patients.

    Science.gov (United States)

    Lee, Dong-Kyu; Kang, Min-Hyeok; Kim, Ji-Won; Kim, Yang-Gon; Park, Ji-Hyuk; Oh, Jae-Seop

    2013-01-01

    Abdominal strengthening exercises are important for stroke patients; however, there is a lack of research on therapeutic exercises for increasing abdominal muscle activity in stroke patients. We investigated the effects of non-paretic arm exercises using a tubing band on abdominal muscle activity in stroke patients. In total, 18 hemiplegic subjects (13 males, 5 females) were recruited. All subjects performed non-paretic arm exercises involving three different shoulder movements (extension, flexion, and horizontal abduction) using an elastic tubing band. Surface electromyography (EMG) signals were recorded from the rectus abdominis (RA), external oblique (EO), and internal oblique (IO) muscles bilaterally during non-paretic arm exercises. EMG activities of abdominal muscles during non-paretic arm extension and horizontal abduction were increased significantly versus shoulder flexion when subjects performed the arm exercise in a seated position. Muscle activity of the EO was significantly greater in the paretic than the non-paretic side during non-paretic arm extension and horizontal abduction. We suggest that non-paretic arm extension and horizontal abduction exercises using an elastic tubing band may be effective in increasing abdominal muscle activity.

  10. Isometric abdominal wall muscle strength assessment in individuals with incisional hernia: a prospective reliability study

    DEFF Research Database (Denmark)

    Jensen, K. K.; Kjær, Michael; Jorgensen, L. N.

    2016-01-01

    Purpose To determine the reliability of measurements obtained by the Good Strength dynamometer, determining isometric abdominal wall and back muscle strength in patients with ventral incisional hernia (VIH) and healthy volunteers with an intact abdominal wall. Methods Ten patients with VIH and ten...... and extension showed excellent test–retest reliability for both patients with VIH (ICC 0.91 and 0.99) and healthy controls (ICC 0.97 and 0.96). Bland and Altman plots showed that no systematic bias was present for neither truncal flexion nor extension when assessing reliability. For patients with VIH...... and IPAQ was found. Conclusions The Good Strength dynamometer provided a reliable, low-cost measure of truncal flexion and extension in patients with VIH....

  11. Characterization of muscle stretching and damage using polarization-sensitive optical coherence tomography (PS-OCT)

    Science.gov (United States)

    Chen, Dongsheng; Zeng, Nan; Liu, Celong; Ma, Hui

    2012-12-01

    In this paper, we study muscle elastic drawing and damage using our lab's polarization-sensitive optical coherence tomography (PS-OCT) instrument and polarization sensitive Monte Carlo program. First, we acquire two-dimensional PS-OCT images of elastically drawn and injured muscle, injury processes including dehydration and hydrolysis, we extract some characteristics from experimental results including extinction coefficient, integral reflectivity and birefringence and so on, which will change during muscle is being elastically drawn or injured. In order to further understand and evaluate the degree of muscle elastic drawing or damage according to the measurements parameters mentioned above, we do some corresponding simulations using our lab's Monte Carlo program, which is based on a sphere cylinder birefringence model and can simulate complicated tissue containing anisotropic microstructures and various polarization imaging and measurement systems. For muscle elastic drawing, we find that integral reflectivity sometimes increases and decreases as muscle's elastic drawing continues, and through simulation we are unable to find the relationship between extinction coefficients and muscle elastic drawing. As for muscle damage, we simulate two processes: dehydration and hydrolysis. We find that as dehydration deepens, the birefringence of muscle is increasing but getting slowly and the integral reflectivity is decreasing, and as hydrolysis deepens, the birefringence decreases and the integral reflectivity decreases almost linearly. Through the analysis above, we demonstrate the validity of those parameters to characterize muscle elasticity and fiber structure and explain its potential for assessment of muscle damage.

  12. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    Science.gov (United States)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  13. Association between changes in electromyographic signal amplitude and abdominal muscle thickness in individuals with and without lumbopelvic pain.

    Science.gov (United States)

    Whittaker, Jackie L; McLean, Linda; Hodder, Joanne; Warner, Martin B; Stokes, Maria J

    2013-01-01

    Validation study. To investigate the association between changes in electromyographic (EMG) signal amplitude and sonographic measures of muscle thickness of 4 abdominal muscles, during 2 clinical tests, in adults with and without lumbopelvic pain. There is a trend in rehabilitation to use ultrasound imaging (USI) to determine the extent of abdominal muscle contraction. However, the literature investigating the relationship between abdominal muscle thickness change and level of activation is inconclusive and has not included clinically relevant tasks. Simultaneous recording from fine-wire EMG and USI was performed for 4 abdominal muscles, in 7 adults with lumbopelvic pain (mean ± SD age, 29.7 ± 12.0 years) and 7 adults without lumbopelvic pain (32.0 ± 10.6 years), during an active straight leg raise (ASLR) test and an abdominal drawing-in maneuver (ADIM). Cross-correlation functions and linear regression analyses were used to describe the relationship between the 2 measures. Analyses of variance were used to compare individuals with and without lumbopelvic pain, with an alpha set at .05. Across all muscles, peak cross-correlation values were low (ASLR, r = 0.28 ± 0.09; ADIM, r = 0.35 ± 0.11), and there was large variability in associated time lags (ASLR, τ = 0.69 ± 2.56 seconds; ADIM, τ = 0.53 ± 3.75 seconds). Regression analyses did not detect a systematic pattern of association between EMG signal amplitude and USI measurements, and analyses of variance revealed no differences between cohorts. These results suggest a weak relationship between EMG amplitude and abdominal muscle thickness change measured with USI during the ADIM and ASLR, and raise questions about thickness change derived from USI as a measure of muscular activity for the abdominal musculature.

  14. Force produced after stretch in sarcomeres and half-sarcomeres isolated from skeletal muscles

    Science.gov (United States)

    Minozzo, Fábio C.; Baroni, Bruno M.; Correa, José A.; Vaz, Marco A.; Rassier, Dilson E.

    2013-07-01

    The goal of this study was to evaluate if isolated sarcomeres and half-sarcomeres produce a long-lasting increase in force after a stretch is imposed during activation. Single and half-sarcomeres were isolated from myofibrils using micro-needles, which were also used for force measurements. After full force development, both preparations were stretched by different magnitudes. The sarcomere length (SL) or half-sarcomere length variations (HSL) were extracted by measuring the initial and final distances from the Z-line to the adjacent Z-line or to a region externally adjacent to the M-line of the sarcomere, respectively. Half-sarcomeres generated approximately the same amount of isometric force (29.0 +/- SD 15.5 nN.μm-2) as single sarcomeres (32.1 +/- SD 15.3 nN.μm-2) when activated. In both cases, the steady-state forces after stretch were higher than the forces during isometric contractions at similar conditions. The results suggest that stretch-induced force enhancement is partly caused by proteins within the half-sarcomere.

  15. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy.

    Science.gov (United States)

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Ramírez Barragán, Ana; Lerma Lara, Sergio

    2017-11-01

    Tissue related ankle hyper-resistance has been reported to contribute to equinus gait in children with spastic cerebral palsy. Hence, ankle plantarflexor stretching programs have been developed in order to restore passive ankle dorsiflexion. Despite high quality evidence on the limited effects of stretching on passive joint mobility, further muscle-tendon adaptations have been reported which may impact gait performance. As such, children with spastic cerebral palsy subject to long-term manual static stretching achieved dorsiflexion gains through the reduction of muscle and fascicle strain whilst preserving tendon strain, and prolonged use of ankle-foot orthoses achieved similar dorsiflexion gains through increased tendon strain whilst preserving muscle and fascicle strain. The latter concurred with normalization of early stance plantarflexor moment yet reductions in push-off plantarflexor moment given the increase in tendon compliance. Therefore, similar limited gains in passive ankle joint mobility in response to stretching may be achieved either by preserving/restoring optimal muscle-tendon function, or at the expense of muscle-tendon function and thus contributing gait impairments. The largest increase in ankle passive joint mobility in children with SCP has been obtained through prolonged plantarflexor stretching through ankle casting combined with botulinum neurotoxin type A. However, to our knowledge, there are no published studies on muscle-tendinous adaptations to ankle casting combined with botulinum toxin type A and its effect on ankle joint gait kinetics. Therefore, we hypothesized that ankle casting elicits muscle-tendon adaptations which concur with altered ankle joint kinetics during the stance phase of gait in children with SCP. More information is needed about the relationships between muscle structure and function, and the effect of specific interventions designed to alter muscle properties and associated functional outcomes in children with

  16. In Vivo Sarcomere Length Measurement in Whole Muscles during Passive Stretch and Twitch Contractions

    OpenAIRE

    Young, Kevin W.; Kuo, Bill P.-P.; O’Connor, Shawn M.; Radic, Stojan; Lieber, Richard L.

    2017-01-01

    Muscle force is dictated by micrometer-scale contractile machines called sarcomeres. Whole-muscle force drops from peak force production to zero with just a few micrometers of sarcomere length change. No current technology is able to capture adequate dynamic sarcomere data in vivo, and thus we lack fundamental data needed to understand human movement and movement disorders. Methods such as diffraction, endoscopy, and optical coherence tomography have been applied to muscle but are prohibitive...

  17. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    Science.gov (United States)

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-10-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.

  18. Correlation between stiffness and electromechanical delay components during muscle contraction and relaxation before and after static stretching.

    Science.gov (United States)

    Longo, Stefano; Cè, Emiliano; Rampichini, Susanna; Devoto, Michela; Venturelli, Massimo; Limonta, Eloisa; Esposito, Fabio

    2017-04-01

    The study was aimed at assessing possible correlations of the electromechanical delay components during muscle contraction (Delay TOT ) and relaxation (R-Delay TOT ), with muscle-tendon unit (MTU), muscle, and tendon stiffness before and after static stretching (SS). Plantarflexor muscles' maximum voluntary torque (T max ) was measured in 18 male participants (age 24±3yrs; body mass 76.4±8.9kg; stature 1.78±0.09m; mean±SD). During T max , surface electromyogram (EMG), mechanomyogram, and force signals were detected. Delay TOT and R-Delay TOT with their electrochemical and mechanical components were calculated. Passive torque and myotendinous junction displacement were assessed at 0°, 10° and 20° of dorsiflexion to determine MTU, muscle and tendon stiffness. The same protocol was repeated after SS. Delay TOT , R-Delay TOT and their mainly mechanical components correlated with MTU, muscle and tendon stiffness, both before (R 2 from 0.562 to 0.894; p<0.001) and after SS (R 2 from 0.726 to 0.955; p<0.001). SS decreased T max (-14%; p<0.001) and lengthened almost all the Delay TOT and R-Delay TOT components (from +5.9% to +30.5%; p<0.05). Correlations were found only between stiffness and the mechanical components of Delay TOT and R-Delay TOT . Correlations persisted after SS but delays increased to a higher extent than stiffness, indicating a complexity of the relationship between stiffness and delays that will be discussed in the manuscript. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Training specific adaptations of H- and stretch reflexes in human soleus muscle

    OpenAIRE

    Gruber, Markus; Taube, Wolfgang; Gollhofer, Albert; Beck, Sandra; Amtage, Florian; Schubert, Martin

    2007-01-01

    The authors investigated the effect of physical exercise on reflex excitability in a controlled intervention study. Healthy participants (N = 21) performed 4 weeks of either power training (ballistic strength training) or balance training (sensorimotor training [SMT]). Both training regimens enhanced balance control and rate of force development, whereas reductions in peak-to-peak amplitudes of stretch reflexes and in the ratio of the maximum Hoffman reflex to the maximum efferent motor respo...

  20. Stretch-induced force deficits in murine extensor digitorum longus muscles after cardiotoxin injection.

    Science.gov (United States)

    Markert, Chad; Petroski, Gregory F; Childers, Charles K; McDonald, Kerry S; Childers, Martin K

    2006-10-01

    A leftward shift in a muscle's length-tension relationship is thought to impair myofilament overlap. We hypothesized that left-shifted muscles would incur greater eccentric contraction-induced damage compared to controls. We evaluated contractile properties and force deficits in regenerating murine extensor digitorum longus (EDL) muscles 7, 14, and 21 days after cardiotoxin (CTX) injection. Specific tension recovered to control values by 21 days. CTX-injected muscles demonstrated left-shifted length-tension curves and incurred greater contraction-induced force deficits than controls (P < 0.001) on day 7. We speculate that increased contraction-induced damage in 7-day CTX-injected muscles results from changes in myofilament overlap that occurs during early regeneration.

  1. Within-day and between-day reliability of thickness measurements of abdominal muscles using ultrasound during abdominal hollowing and bracing maneuvers.

    Science.gov (United States)

    Aboufazeli, Mahnaz; Afshar-Mohajer, Nima

    2018-01-01

    Ultrasonography imaging has been used as a non-invasive method to estimate the thickness and relative activities of the abdominal muscles in patients with lower back pain (LBP). However, the statistical reliability of US thickness measurements of abdominal muscles, including transversus abdominis (TrA), internal oblique (IO) and external oblique (EO) muscles during abdominal hollowing (AH) and abdominal bracing (AB) maneuvers has not been well-investigated. This study was performed on a total of 20 female subjects (10 with LBP and 10 without LBP) in the age range of 25-55 years to assess within-day and between-day reliability of the measurements. US measurements on maneuvers were repeated after two hours for the within-day reliability and after five days for the between-day reliability assessment. High intra-class correlation coefficient (ICC) values (>0.75) for within-day and between-day reliability assessments during AH maneuver were concluded. The ICC values were moderate for reliability assessment during AB. The ICC values for AH were greater than AB both for within- and between-day reliabilities. The small standard error of measurement and minimal detectable change values (0.16-0.78 and 0.44 to 2.15, respectively) were found for both AH and AB. We recommend real-time US imaging as a reliable way of determining the thicknesses of the TrA and IO muscle (and to some extent, EO muscle) for both healthy and LBP patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of performing an abdominal hollowing exercise on trunk muscle activity during curl-up exercise on an unstable surface

    OpenAIRE

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of the abdominal hollowing exercise on trunk muscle activity during the curl-up exercise on an unstable surface by measuring electromyography (EMG) activity. [Subjects] Fourteen young healthy adults (nine male, five female) voluntarily participated in this study. [Methods] Each subject was asked to perform a curl-up exercise on two supporting surfaces (stable and unstable surfaces) combined with the abdominal hollowing exercis...

  3. Role of abdominal muscles activity on duration and severity of hypoxemia episodes in mechanically ventilated preterm infants.

    Science.gov (United States)

    Esquer, Cristian; Claure, Nelson; D'Ugard, Carmen; Wada, Yoshiro; Bancalari, Eduardo

    2007-01-01

    Episodes of hypoxemia are often observed in ventilated preterm infants. The factors that determine their duration, severity and the failure of the mechanical breaths to maintain ventilation have not been fully defined. To determine the relation between activity of the abdominal muscles and the duration and severity of hypoxemia episodes in ventilated preterm infants. Clinically stable ventilated preterm infants weighing between 500 and 1,000 g at birth, who presented with frequent episodes of hypoxemia, were studied. Recordings of arterial oxygen saturation (SpO(2)), tidal volume and abdominal surface electromyography were obtained during 4 h to assess the temporal relationship between activation of abdominal musculature with the onset, duration and severity of hypoxemia episodes. In 15 infants, GA (mean +/- SD) 25 +/- 1.5 weeks, BW 697 +/- 141 g, age 37 +/- 14 days, synchronized intermittent mandatory ventilation rate 17 +/- 6 breaths/min, peak inspiratory pressure 18 +/- 1.9 cm H(2)O, positive end-expiratory pressure 4.8 +/- 0.6 cm H(2)O, and fraction of inspired oxygen (FiO(2)) 0.4 +/- 0.1 were studied. These infants presented with 7.2 +/- 4.4 episodes of hypoxemia (SpO(2) abdominal muscle contractions per episode correlated with the duration and severity of the episodes of hypoxemia. The episode duration increased by 14 +/- 18 s per abdominal muscle contraction. The lowest SpO(2) reached during an episode of hypoxemia decreased by 1.7 +/- 1.4% for every abdominal muscle contraction. These data document a relationship between abdominal muscles contraction and the duration and severity of hypoxemia episodes in ventilated preterm infants. These findings can explain the failure of mechanical ventilation to prevent their occurrence or decrease their severity. Copyright (c) 2007 S. Karger AG, Basel.

  4. Comparison of Abdominal Muscles Thickness Changes Different Postures beween Non-Specific Chronic Low Back Pain Patients and Healthy Males by Ultrasonography

    Directory of Open Access Journals (Sweden)

    Omid Rasouli

    2010-01-01

    Conclusion: Abdominal muscles respond to postural changes and these muscles are automatically targeted by decreasing the seated stability. In non–specific chronic low back pain patients, activity of Transvers Abdominis was decreased and activity of Rectus Abdominis was increased.

  5. Slow expiration reduces sternocleidomastoid activity and increases transversus abdominis and internal oblique muscle activity during abdominal curl-up.

    Science.gov (United States)

    Yoon, Tae-Lim; Kim, Ki-Song; Cynn, Heon-Seock

    2014-04-01

    The aim of this study was to investigate the effects of quiet inspiration versus slow expiration on sternocleidomastoid (SCM) and abdominal muscle activity during abdominal curl-up in healthy subjects. Twelve healthy subjects participated in this study. Surface electromyography (EMG) was used to collect activity of bilateral SCM, rectus abdominis (RA), external oblique (EO), and transversus abdominis/internal oblique (TrA/IO) muscles. A paired t-test was used to determine significant differences in the bilateral SCM, RF, EO, and TrA/IO muscles between abdominal curl-up with quiet inspiration and slow expiration. There were significantly lower EMG activity of both SCMs and greater EMG activity of both IOs during abdominal curl-up with slow expiration, compared with the EMG activity of both SCMs and IOs during abdominal curl-up with quiet inspiration (pabdominal curl-up for reduced SCM activation and selective activation of TrA/IO in healthy subjects compared with those in abdominal curl up with quiet inspiration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The difference between standing and sitting in 3 different seat inclinations on abdominal muscle activity and chest and abdominal expansion in woodwind and brass musicians.

    Science.gov (United States)

    Ackermann, Bronwen J; O'Dwyer, Nicholas; Halaki, Mark

    2014-01-01

    Wind instrumentalists require a sophisticated functioning of their respiratory system to control their air stream, which provides the power for optimal musical performance. The air supply must be delivered into the instrument in a steady and controlled manner and with enough power by the action of the expiratory musculature to produce the desired level of sound at the correct pitch. It is suggested that playing posture may have an impact on the abdominal muscle activity controlling this expired air, but there is no research on musicians to support this theory. This study evaluated chest and abdominal expansion, via respiratory inductive plethysmography, as well as activation patterns of lower and upper abdominal musculature, using surface electromyography, during performance of a range of typical orchestral repertoire by 113 woodwind and brass players. Each of the five orchestral excerpts was played in one of four randomly allocated postures: standing; sitting flat; sitting inclined forwards; and sitting inclined backwards. Musicians showed a clear preference for playing in standing rather than sitting. In standing, the chest expansion range and maximum values were greater (p abdominal expansion was less than in all sitting postures (p abdominal expansion was reduced in the forward inclined posture compared to the other sitting postures (p abdominal muscle activation between the sitting postures, but the level of activation in sitting was only 2/3 of the significantly higher level observed in standing (p < 0.01). This study has demonstrated significant differences in respiratory mechanics between sitting and standing postures in wind musicians during playing of typical orchestral repertoire. Further research is needed to clarify the complex respiratory mechanisms supporting musical performance.

  7. The difference between standing and sitting in 3 different seat inclinations on abdominal muscle activity and chest and abdominal expansion in woodwind and brass musicians

    Directory of Open Access Journals (Sweden)

    Bronwen Jane Ackermann

    2014-08-01

    Full Text Available Wind instrumentalists require a sophisticated functioning of their respiratory system to control their air stream, which provides the power for optimal musical performance. The air supply must be delivered into the instrument in a steady and controlled manner and with enough power by the action of the expiratory musculature to produce the desired level of sound at the correct pitch. It is suggested that playing posture may have an impact on the abdominal muscle activity controlling this expired air, but there is no research on musicians to support this theory. This study evaluated chest and abdominal expansion, via respiratory inductive plethysmography, as well as activation patterns of lower and upper abdominal musculature, using surface electromyography, during performance of a range of typical orchestral repertoire by 113 woodwind and brass players. Each of the five orchestral excerpts was played in one of four randomly allocated postures: standing; sitting flat; sitting inclined forwards; and sitting inclined backwards.Musicians showed a clear preference for playing in standing rather than sitting. In standing, the chest expansion range and maximum values were greater (p<0.01, while the abdominal expansion was less than in all sitting postures (p<0.01. Chest expansion patterns did not vary between the three sitting postures, while abdominal expansion was reduced in the forward inclined posture compared to the other sitting postures (p<0.05. There was no significant variation in abdominal muscle activation between the sitting postures, but the level of activation in sitting was only 2/3 of the significantly higher level observed in standing (p<0.01.This study has demonstrated significant differences in respiratory mechanics between sitting and standing postures in wind musicians during playing of typical orchestral repertoire. Further research is needed to clarify the complex respiratory mechanisms supporting musical performance.

  8. Functional effects of botulinum toxin type-A treatment and subsequent stretching of spastic calf muscles: a study in patients with hereditary spastic paraplegia.

    Science.gov (United States)

    de Niet, Mark; de Bot, Susanne T; van de Warrenburg, Bart P C; Weerdesteyn, Vivian; Geurts, Alexander C

    2015-02-01

    Although calf muscle spasticity is often treated with botulinum toxin type-A, the effects on balance and gait are ambiguous. Hereditary spastic paraplegia is characterized by progressive spasticity and relatively mild muscle weakness of the lower limbs. It is therefore a good model to evaluate the functional effects of botulinum toxin type-A. Explorative pre-post intervention study. Fifteen subjects with pure hereditary spastic paraplegia. Patients with symptomatic calf muscle spasticity and preserved calf muscle strength received botulinum toxin type-A injections in each triceps surae (Dysport®, 500-750 MU) followed by daily stretching exercises (18 weeks). Before intervention (T0), and 4 (T1) and 18 (T2) weeks thereafter, gait, balance, motor selectivity, calf muscle tone and strength were tested. Mean comfortable gait velocity increased from T0 (0.90 m/s (standard deviation (SD) 0.18)) to T1 (0.98 m/s (SD 0.20)), which effect persisted at T2, whereas balance and other functional measures remained unchanged. Calf muscle tone declined from T0 (median 2; range 1-2) to T1 (median 0; range 0-1), which effect partially persisted at T2 (median 1; range 0-2). Calf muscle strength did not change. Botulinum toxin type-A treatment and subsequent muscle stretching of the calves improved comfortable gait velocity and reduced muscle tone in patients with hereditary spastic paraplegia, while preserving muscle strength. Balance remained unaffected.

  9. The difference between standing and sitting in 3 different seat inclinations on abdominal muscle activity and chest and abdominal expansion in woodwind and brass musicians

    OpenAIRE

    Ackermann, Bronwen J.; O'Dwyer, Nicholas; Halaki, Mark

    2014-01-01

    Wind instrumentalists require a sophisticated functioning of their respiratory system to control their air stream, which provides the power for optimal musical performance. The air supply must be delivered into the instrument in a steady and controlled manner and with enough power by the action of the expiratory musculature to produce the desired level of sound at the correct pitch. It is suggested that playing posture may have an impact on the abdominal muscle activity controlling this expir...

  10. Abdominal and hip flexor muscle activity during 2 minutes of sit-ups and curl-ups.

    Science.gov (United States)

    Burden, Adrian M; Redmond, Colin G

    2013-08-01

    Previous studies have compared muscle activity between different types of sit-ups and curl-ups. However, few have examined the exercises used by the armed forces or investigated the influence of exercise duration on muscle activation. The aim of this study was to compare abdominal and hip flexor muscle activity between the style of sit-up used by the British Army and 4 variations of a curl-up, at the start, middle, and end of a 2-minute exercise period. Surface electromyograms (EMGs) were recorded from the upper and lower rectus abdominis, external oblique, transversus abdominis and internal oblique, and the rectus femoris (RF) of 23 British Army personnel. Isometric maximal voluntary contractions were used to normalize integrated EMGs to allow them to be compared between exercises. Curl-ups with arms crossed and feet restrained produced the highest integrated EMG in all the abdominal muscles (p activity in the RF than in nonrestrained versions of the curl-up (p muscle activity between the start and the end of the exercises (p activated the muscle the most, that is, sit-ups and curl-ups with feet restrained (p abdominal muscles, rather than hip flexors, then curl-ups without restraint of the feet should be performed instead of exercises in which the feet are restrained.

  11. Abdominal muscle feedforward activation in patients with chronic low back pain is largely unaffected by 8 weeks of core stability training.

    Science.gov (United States)

    Allison, Garry T

    2012-01-01

    Does timing of abdominal muscle activation in response to rapid shoulder flexion change after 8 weeks with low-load core stability exercises (CSE), high-load sling exercises (SE), or general exercises (GE) in chronic nonspecific low back pain (LBP) patients? A randomised, controlled trial with concealed allocation. Patients were recruited from general practitioners, physiotherapists, or by advertising at a regional hospital in Norway. Men and women, aged 18-60 years, with chronic nonspecific LBP for 3 months or more, and pain score of 2 or more on a 0-10 numeric rating scale were included. Key exclusion criteria included radiating pain below the knee or neurological signs from nerve root compression, and former back surgery. Randomisation of 109 participants allocated 36 to CSE, 36 to SE, and 37 to GE. Patients in the three groups attended treatment once a week for 8 weeks, supervised by a physiotherapist. All were encouraged to stay active and received an information booklet with general information on LBP. The CSE were individualised according to protocols focusing on isolated activation of transversus abdominis during an abdominal drawing-in manoeuver in supine hook-lying position with ultrasound feedback. Written instructions to carry out the drawing-in exercise (10 × 10 seconds 2-3 times per day) at home were also provided. The SE maintained the lumbar spine stable in neutral position throughout a range of leg/arm positions and movements, using elastic bands attached to the pelvis to help the patient maintain a neutral spine position. The SE was performed for 40 minutes in a physiotherapy clinic. The GE group received generalised trunk strengthening and stretching exercises supervised by a physiotherapist at a fitness centre. Primary outcome was change in onset of the deep abdominal muscles in response to rapid shoulder flexion. 102 participants completed the study. No or small changes were found in onset after treatment. Baseline adjusted between

  12. The acute effects of static stretching on peak force, peak rate of force development and muscle activity during single- and multiple-joint actions in older women.

    Science.gov (United States)

    Gonçalves, Raquel; Gurjão, André Luiz Demantova; Jambassi Filho, José Claudio; Farinatti, Paulo De Tarso Veras; Gobbi, Lilian Teresa Bucken; Gobbi, Sebastião

    2013-01-01

    The present study investigated the acute effects of static stretching on peak force, peak rate of force development and integrated electromyography (iEMG) in 27 older women (65 ± 4 years; 69 ± 9 kg; 157 ± 1 cm; 28 ± 4 kg · m(-2)). The participants were tested during two exercises (leg press and knee extension) after two conditions: stretching and control. The data were collected on four days (counterbalanced with a 24-hour rest period). In the stretching condition, the quadriceps muscle was stretched (knee flexion) for three sets of 30 s with 30 s rest intervals. No significant difference was detected for peak force and peak rate of force development during the single- and multiple-joint exercises, regardless of the following interactions: condition (stretching and control) vs. time (pre x post x 10 x 20 x 30 minutes post; P > 0.05) and exercise vs. time (P > 0.05). Additionally, no significant interaction was found for the iEMG activity (condition vs. time; P > 0.05) in the single- and multiple-joint exercises. In conclusion, a small amount of stretching of an agonist muscle (quadriceps) did not affect the peak force, peak rate of force development and EMG activity in older women during single- and multiple-joint exercises.

  13. The effects of abdominal draw-in maneuver and core exercise on abdominal muscle thickness and Oswestry disability index in subjects with chronic low back pain.

    Science.gov (United States)

    Park, Seong-Doo; Yu, Seong-Hun

    2013-04-01

    The purpose of this study was to effects of abdominal draw-in maneuver and core exercise with 4 weeks using the musculoskeletal ultrasonography on muscle thickness and disability in subjects with low back pain. Twenty patients with nonspecific back pain (abdominal draw-in maneuver group: n= 10, core exercise group: n= 10) were recruited in the study. Both group received exercise intervention 3 times a week for 4weeks. The test were based on muscle thickness (transversus abdominis; Tra, internal oblique; IO and external oblique; EO), disability (Oswestry disability index; ODI) measured immediately before and after intervention. The data was measured by SPSS program 12.0 version and analyzed by Paired t-test and Independent t-test. The following results were obtained. The thickness of IO, EO for both group significantly improved except for muscle thickness of Tra. The ODI were significant difference for both groups. As the results of this study, we suggest that it may be effective method to apply to increase for the thickness of Tra, EO using abdominal draw-in maneuver and thickness of IO using core exercise.

  14. A prophylactic effect of proprioceptive neuromuscular facilitation (PNF) stretching on symptoms of muscle damage induced by eccentric exercise of the wrist extensors.

    Science.gov (United States)

    Khamwong, Peanchai; Pirunsan, Ubon; Paungmali, Aatit

    2011-10-01

    Stretching with proprioceptive neuromuscular facilitation (PNF) is frequently used before exercise. The prophylactic effect of PNF on symptoms of muscle damage induced by eccentric exercise of the wrist extensors was examined in this study. Twenty-eight healthy males were randomly divided into the PNF group (n = 14) and the control group (n = 14). PNF was used before eccentric exercise induction in the wrist extensors. All subjects were tested to examine muscle damage characteristics including sensory-motor functions at baseline, immediately, and from 1st to 8th days after the exercise-induced muscle damage (EIMD). The results demonstrated that the PNF group showed a lesser deficit in some sensory-motor functions (p < 0.05) than the control group. The prior PNF stretching application could be useful for attenuating the signs and symptoms of muscle damage after eccentric exercise. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Short-latency stretch reflexes do not contribute to premature calf muscle activity during the stance phase of gait in spastic patients.

    Science.gov (United States)

    de Niet, Mark; Latour, Hilde; Hendricks, Henk; Geurts, Alexander C; Weerdesteyn, Vivian

    2011-11-01

    To identify whether a relationship exists between stretch and activity of the calf muscles during the stance phase of gait in patients with upper motor neuron syndrome (UMNS), while taking into account the physiologic phase shift between these entities. Survey. Ambulatory care and general community. Patients with UMNS (n=15; 9 patients with stroke, 6 patients with hereditary spastic paraparesis) with premature calf muscle activity during the stance phase of gait and healthy controls (n=13). Not applicable. Timing of optimal association (phase shift) between the lengthening velocity of the gastrocnemius muscle and its electromyographic activity as revealed by cross-correlation analyses. Although premature calf muscle activity was evident in the patient groups, the phase shift between calf muscle stretch and its activity did not correspond with the monosynaptic stretch reflex latency (40- to 80-ms time window). However, there was a main effect of group on the phase shifts (F(3,33)=3.23, P=.035). Post hoc analysis revealed that in the paretic leg of stroke patients, the electromyographic activity preceded the lengthening velocity by 9 ± 54ms, whereas in the control group, the electromyographic activity followed the pattern of the muscle-lengthening velocity with a delay of 61 ± 54ms (P=.029). Short-latency stretch reflexes do not significantly contribute to premature calf muscle activity in the stance phase of (spastic) gait. This notion questions the validity of the clinical assessment of hyperreflexia and clonus of the calf as a predictor of calf muscle spasticity during gait. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Comparison of EMG activity on abdominal muscles during plank exercise with unilateral and bilateral additional isometric hip adduction.

    Science.gov (United States)

    Kim, Soo-Yong; Kang, Min-Hyeok; Kim, Eui-Ryong; Jung, In-Gui; Seo, Eun-Young; Oh, Jae-Seop

    2016-10-01

    The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (pmuscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (pabdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Immediate effects of hamstring stretching alone or combined with ischemic compression of the masseter muscle on hamstrings extensibility, active mouth opening and pain in athletes with temporomandibular dysfunction.

    Science.gov (United States)

    Espejo-Antúnez, Luis; Castro-Valenzuela, Elisa; Ribeiro, Fernando; Albornoz-Cabello, Manuel; Silva, Anabela; Rodríguez-Mansilla, Juan

    2016-07-01

    To assess the immediate effects of hamstrings stretching alone or combined with ischemic compression of the masseter muscle on hamstrings extensibility, active mouth opening and pain in athletes with temporomandibular dysfunction and hamstrings shortening. Forty-two participants were randomized to receive the stretching technique (n = 21) or the stretching plus the ischemic compression (n = 21). Outcome measures were: hamstrings extensibility, active mouth opening, pressure pain thresholds and pain intensity. Both interventions improved significantly active mouth opening (group 1: 35.7 ± 6.7 to 39.1 ± 7.6 mm, p Hamstrings stretching induced an acute improvement in hamstrings extensibility, active mouth opening and pain. Moreover, the addition of ischemic compression did not induce further improvements on the assessed parameters. Copyright © 2016. Published by Elsevier Ltd.

  18. Medium-latency stretch reflexes of foot and leg muscles analysed by cooling the lower limb in standing humans.

    Science.gov (United States)

    Schieppati, M; Nardone, A

    1997-09-15

    1. In standing subjects, an ankle-dorsiflexing perturbation of the supporting surface evokes a short-latency response (SLR) and a medium-latency response (MLR) to stretch in both soleus (Sol) and flexor digitorum brevis (FDB) muscles. The SLR is the counterpart of the monosynaptic reflex, whilst the MLR might be either mediated by Ia fibres, the delay being due to a long-loop central circuit, or by fibres of slower conduction velocity. Since small afferents are slowed more than large ones by low temperature, a greater latency increment for the MLR than the SLR induced by cooling of the limb would point to a peripheral origin of the MLR. 2. In nine subjects, one limb was cooled by circulating water in a tube wrapped around it for about 120 min. Perturbations were delivered to the same limb prior to and during cooling, and after rewarming. EMG was recorded by surface electrodes from the Sol and FDB muscles. 3. The mean increase in latency of MLRs was significantly greater than that of SLRs in both muscles. On average, the Sol SLR increased from 42.4 to 47.0 ms and the Sol MLR from 72.0 to 82.3 ms. The FDB SLR increased from 58.1 to 66.5 ms and the FDB MLR from 94.9 to 110.5 ms. The mean difference (MLR minus SLR) increased from 29.6 to 35.2 ms for Sol, and from 36.8 to 43.9 ms for FDB at the end of cooling. After 30 min of rewarming, the responses of both muscles recovered towards control values. 4. The greater latency increment of the MLRs than of the SLRs favours the hypothesis of a slower conduction velocity of the responsible afferent fibres. The most likely candidate fibres are the spindle group II afferents.

  19. Ultrasound measurement of abdominal muscles during clinical isometric endurance tests in women with and without low back pain.

    Science.gov (United States)

    ShahAli, Shabnam; Arab, Amir Massoud; Ebrahimi, Esmaeil; ShahAli, Shiva; Rahmani, Nahid; Negahban, Hossein; Kazemnejad, Anoshirvan; Bahmani, Andia

    2018-02-26

    The present study investigated group differences between the thickness changes of the transverse abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles, during performance of the isometric supine chest raise and the supine double leg-straight leg raise tests in women with and without low back pain (LBP). Twenty women with LBP and 20 women without LBP participated in this case-control study. The thickness of the right TrA, IO, and EO muscles was measured using B-mode ultrasound (US) at rest, immediately at the beginning of performing the tests and when participants in both groups self-reported fatigue. The percentage of change in thickness of the abdominal muscles from rest to the initiation and fatigue stages of both tests was measured. The results indicate a statistically significant difference in the pattern of changes in deep (TrA) and superficial (EO) abdominal muscles thickness at the fatigue stage of the supine double straight-leg raise (SDSLR) test between groups (P abdominal muscles thicknesses change at rest or during stages of the clinical isometric endurance tests (P > 0.05). An altered activation pattern in the deep (TrA) and superficial (EO) muscles of LBP participants during fatigue stage of the SDSLR test as compared to controls indicates motor control dysfunction in the LBP group. Comparison of the activity of TrA and EO muscles during fatigue stage of SDSLR test can be used to assess alterations in motor control of abdominal muscles.

  20. The assessment of abdominal and multifidus muscles and their role in physical function in older adults: a systematic review.

    Science.gov (United States)

    Cuellar, W A; Wilson, A; Blizzard, C L; Otahal, P; Callisaya, M L; Jones, G; Hides, J A; Winzenberg, T M

    2017-03-01

    Age-related changes in the trunk (abdominal and lumbar multifidus) muscles and their impact on physical function of older adults are not clearly understood. To systematically summarise studies of these trunk muscles in older adults. Cochrane Library, Pubmed, EMBASE and CINAHL were searched using terms for abdominal and MF muscles and measurement methods. Two reviewers independently assessed studies and included those reporting measurements of abdominal muscles and/or MF by ultrasound, computed tomography, magnetic resonance imaging or electromyography of adults aged ≥50 years. A best evidence synthesis was performed. Best evidence synthesis revealed limited evidence for detrimental effects of ageing or spinal conditions on trunk muscles, and conflicting evidence for decreased physical activity or stroke having detrimental effects on trunk muscles. Thicknesses of rectus abdominis, internal oblique and external oblique muscles were 36% to 48% smaller for older than younger adults. Muscle quality was poorer among people with moderate-extreme low back pain and predicted physical function outcomes. Study heterogeneity precluded meta-analysis. Overall, the evidence base in older people has significant limitations, so the role of physiotherapy interventions aimed at these muscles remains unclear. The results point to areas in which further research could lead to clinically useful outcomes. These include determining the role of the trunk muscles in the physical function of older adults and disease; developing and testing rehabilitation programmes for older people with spinal conditions and lower back pain; and identifying modifiable factors that could mitigate age-related changes. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  1. Effect of botulinum toxin type A in lateral abdominal wall muscles thickness and length of patients with midline incisional hernia secondary to open abdomen management.

    Science.gov (United States)

    Ibarra-Hurtado, T R; Nuño-Guzmán, C M; Miranda-Díaz, A G; Troyo-Sanromán, R; Navarro-Ibarra, R; Bravo-Cuéllar, L

    2014-10-01

    Abdominal wall hernia secondary to open abdomen management represents a surgical challenge. The hernia worsens due to lateral muscle retraction. Our objective was to evaluate if Botulinum Toxin Type A (BTA) application in lateral abdominal wall muscles modifies its thickness and length. A clinical trial of male trauma patients with hernia secondary to open abdomen management was performed from January 2009 to July 2011. Thickness and length of lateral abdominal muscles were measured by a basal Computed Tomography and 1 month after BTA application. A dosage of 250 units of BTA was applied at five points at each side between the external and internal oblique muscles under ultrasonographic guidance. Statistical analysis for differences between basal and after BTA application measures was performed by a paired Student's t test (significance: p abdominal muscles decreases its thickness and increases its length in abdominal wall hernia patients secondary to open abdomen management.

  2. Magnetic resonance imaging assessment of regional abdominal muscle function in elite AFL players with and without low back pain.

    Science.gov (United States)

    Hides, Julie; Hughes, Brita; Stanton, Warren

    2011-06-01

    Changes in the motor control of trunk muscles have been identified in people with low back pain (LBP) including elite football players. Previous research has found functional differences in the anatomical regions of abdominal muscles; however, this has not been examined in football players with LBP. The aim of this study was to investigate if the ability to draw-in the abdominal wall is altered among football players with LBP, and to determine if there are functional differences between the middle and lower abdominal regions in participants with and without LBP. Forty-three elite Australian Football League players were imaged using magnetic resonance imaging (MRI) as they drew in their abdominal walls, and the trunk cross-sectional area (CSA) was measured in relaxed and contracted states. At the lower region, participants with LBP (1.1%) reduced their trunk CSA to a lesser extent than those without LBP (3.2%) (P = 0.018). The results also showed that the draw-in of the abdominal wall was smaller in Region 1 (8.8%) compared to Region 2 (16.0%) and Region 3 (19.7%) (P < 0.001). This study provides evidence of regional differences in motor control and altered control of the lower region in participants with LBP. This may direct physiotherapists, especially those treating athletes, to focus on the lower abdominal region in those with LBP. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Isometric abdominal wall muscle strength assessment in individuals with incisional hernia: a prospective reliability study.

    Science.gov (United States)

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2016-12-01

    To determine the reliability of measurements obtained by the Good Strength dynamometer, determining isometric abdominal wall and back muscle strength in patients with ventral incisional hernia (VIH) and healthy volunteers with an intact abdominal wall. Ten patients with VIH and ten healthy volunteers with an intact abdominal wall were each examined twice with a 1 week interval. Examination included the assessment of truncal flexion and extension as measured with the Good Strength dynamometer, the completion of the International Physical Activity Questionnaire (IPAQ) and the self-assessment of truncal strength on a visual analogue scale (SATS). The test-retest reliability of truncal flexion and extension was assessed by interclass correlation coefficient (ICC), and Bland and Altman graphs. Finally, correlations between truncal strength, and IPAQ and SATS were examined. Truncal flexion and extension showed excellent test-retest reliability for both patients with VIH (ICC 0.91 and 0.99) and healthy controls (ICC 0.97 and 0.96). Bland and Altman plots showed that no systematic bias was present for neither truncal flexion nor extension when assessing reliability. For patients with VIH, no significant correlations between objective measures of truncal strength and IPAQ or SATS were found. For healthy controls, both truncal flexion (τ 0.58, p = 0.025) and extension (τ 0.58, p = 0.025) correlated significantly with SATS, while no other significant correlation between truncal strength measures and IPAQ was found. The Good Strength dynamometer provided a reliable, low-cost measure of truncal flexion and extension in patients with VIH.

  4. Abdominal muscle EMG-activity during bridge exercises on stable and unstable surfaces.

    Science.gov (United States)

    Czaprowski, Dariusz; Afeltowicz, Anna; Gębicka, Anna; Pawłowska, Paulina; Kędra, Agnieszka; Barrios, Carlos; Hadała, Michał

    2014-08-01

    To assess abdominal muscles (AM) activity during prone, side, and supine bridge on stable and unstable surfaces (BOSU, Swiss Ball). Prospective comparison study. Research laboratory. Thirty-three healthy volunteers from a university population. Surface electromyography of the rectus abdominis (RA), the external oblique (EO) and the internal oblique with the transversus abdominis (IO-TA). The AM exhibited the highest activity during prone bridge on a Swiss Ball (RA, EO, IO-TA 44.7 ± 19.2, 54.7 ± 22.9, 36.8 ± 18.6 in % of MVC, respectively). The lowest activity was observed during supine bridge on a stable surface and a BOSU (under 5.0). The lowest ratio analyzed on the basis of the relation of EO and IO-TA activity to RA was obtained during prone bridge on the Swiss Ball (1.4 ± 0.7 for EO, 0.9 ± 0.5 for IO-TA). The highest ratio was obtained during prone bridge on stable surface and supine bridges. The highest level of activity in the abdominal muscles is achieved during prone bridge on a Swiss Ball. However, this exercise provided the lowest activity of the EO and IO-TA in relation to RA. It is essential to conduct further studies verifying the usefulness of using Swiss Ball during core stability training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Medial gastrocnemius muscle stiffness cannot explain the increased ankle joint range of motion following passive stretching in children with cerebral palsy.

    Science.gov (United States)

    Kalkman, Barbara M; Bar-On, Lynn; Cenni, Francesco; Maganaris, Constantinos N; Bass, Alfie; Holmes, Gill; Desloovere, Kaat; Barton, Gabor J; O'Brien, Thomas D

    2018-03-01

    What is the central question of this study? Can the increased range of motion seen acutely after stretching in children with cerebral palsy be explained by changes in the stiffness of the medial gastrocnemius fascicles? What is the main finding and its importance? We show, for the first time, that passive muscle and tendon properties are not changed acutely after a single bout of stretching in children with cerebral palsy and, therefore, do not contribute to the increase in range of motion. This contradicts common belief and what happens in healthy adults. Stretching is often used to increase or maintain the joint range of motion (ROM) in children with cerebral palsy (CP), but the effectiveness of these interventions is limited. Therefore, our aim was to determine the acute changes in muscle-tendon lengthening properties that contribute to increased ROM after a bout of stretching in children with CP. Eleven children with spastic CP [age 12.1 (3 SD) years, 5/6 hemiplegia/diplegia, 7/4 gross motor function classification system level I/II] participated. Each child received three sets of five × 20 s passive, manual static dorsiflexion stretches separated by 30 s rest, with 60 s rest between sets. Before and immediately after stretching, ultrasound was used to measure medial gastrocnemius fascicle lengthening continuously over the full ROM and an individual common ROM pre- to post-stretching. Simultaneously, three-dimensional motion of two marker clusters on the shank and the foot was captured to calculate ankle angle, and ankle joint torque was calculated from manually applied torques and forces on a six degrees-of-freedom load cell. After stretching, the ROM was increased [by 9.9 (12.0) deg, P = 0.005]. Over a ROM common to both pre- and post-measurements, there were no changes in fascicle lengthening or torque. The maximal ankle joint torque tolerated by the participants increased [by 2.9 (2.4) N m, P = 0.003], and at this highest passive torque the

  6. Inhibition of skeletal muscle protein synthesis in septic intra-abdominal abscess

    International Nuclear Information System (INIS)

    Vary, T.C.; Siegel, J.H.; Tall, B.D.; Morris, J.G.; Smith, J.A.

    1988-01-01

    Chronic sepsis is always associated with profound wasting leading to increased release of amino acids from skeletal muscle. Net protein catabolism may be due to decreased rate of synthesis, increased rate of degradation, or both. To determine whether protein synthesis is altered in chronic sepsis, the rate of protein synthesis in vivo was estimated by measuring the incorporation of [ 3 H]-phenylalanine in skeletal muscle protein in a chronic (5-day) septic rat model induced by creation of a stable intra-abdominal abscess using an E. coli + B. fragilis-infected sterile fecal-agar pellet as foreign body nidus. Septic rats failed to gain weight at rates similar to control animals, therefore control animals were weight matched to the septic animals. The skeletal muscle protein content in septic animals was significantly reduced relative to control animals (0.18 +/- 0.01 vs. 0.21 +/- 0.01 mg protein/gm wet wt; p less than 0.02). The rate of incorporation of [ 3 H]-phenylalanine into skeletal muscle protein from control animals was 39 +/- 4 nmole/gm wet wt/hr or a fractional synthetic rate of 5.2 +/- 0.5%/day. In contrast to control animals, the fractional synthetic rate in septic animals (2.6 +/- 0.2%/day) was reduced by 50% compared to control animals (p less than 0.005). The decreased rate of protein synthesis in sepsis was not due to an energy deficit, as high-energy phosphates and ATP/ADP ratio were not altered. This decrease in protein synthesis occurred even though septic animals consumed as much food as control animals

  7. The relationship between cough-specific quality of life and abdominal muscle endurance, fatigue, and depression in patients with COPD.

    Science.gov (United States)

    Arikan, Hulya; Savci, Sema; Calik-Kutukcu, Ebru; Vardar-Yagli, Naciye; Saglam, Melda; Inal-Ince, Deniz; Coplu, Lutfi

    2015-01-01

    Cough is a prevalent symptom that impacts quality of life in COPD. The aim of this study was to assess the relationship between cough-specific quality of life, abdominal muscle endurance, fatigue, and depression in stable patients with COPD. Twenty-eight patients with COPD (mean age 60.6±8.7 years) referred for pulmonary rehabilitation participated in this cross-sectional study. Sit-ups test was used for assessing abdominal muscle endurance. Leicester Cough Questionnaire (LCQ) was used to evaluate symptom-specific quality of life. Fatigue perception was evaluated with Fatigue Impact Scale (FIS). Beck Depression Inventory (BDI) was used for assessing depression level. The LCQ total score was significantly associated with number of sit-ups; BDI score; FIS total; physical, cognitive, and psychosocial scores (Pfatigue and decrease abdominal muscle endurance in patients with COPD. Decreased cough-related quality of life is related with increased level of depression in COPD patients. Effects of increased abdominal muscle endurance and decreased fatigue in COPD patients with chronic cough need further investigation.

  8. Botulinum Neurotoxin A Injections Influence Stretching of the Gastrocnemius Muscle-Tendon Unit in an Animal Model

    Directory of Open Access Journals (Sweden)

    Christopher J. Tuohy

    2012-08-01

    Full Text Available Botulinum Neurotoxin A (BoNT-A injections have been used for the treatment of muscle contractures and spasticity. This study assessed the influence of (BoNT-A injections on passive biomechanical properties of the muscle-tendon unit. Mouse gastrocnemius muscle (GC was injected with BoNT-A (n = 18 or normal saline (n = 18 and passive, non-destructive, in vivo load relaxation experimentation was performed to examine how the muscle-tendon unit behaves after chemical denervation with BoNT-A. Injection of BoNT-A impaired passive muscle recovery (15% vs. 35% recovery to pre-stretching baseline, p < 0.05 and decreased GC stiffness (0.531 ± 0.061 N/mm vs. 0.780 ± 0.037 N/mm, p < 0.05 compared to saline controls. The successful use of BoNT-A injections as an adjunct to physical therapy may be in part attributed to the disruption of the stretch reflex; thereby modulating in vivo passive muscle properties. However, it is also possible that BoNT-A injection may alter the structure of skeletal muscle; thus modulating the in vivo passive biomechanical properties of the muscle-tendon unit.

  9. Acute effects of static stretching on the hamstrings using shear elastic modulus determined by ultrasound shear wave elastography: Differences in flexibility between hamstring muscle components.

    Science.gov (United States)

    Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ichihashi, Noriaki

    2015-08-01

    Static stretching (SS) with hip flexion and knee extension is often used to stretch the hamstrings. However, it is unclear whether there are the differences in the acute effect of this SS maneuver on flexibility between each component of the hamstrings, namely the semitendinosus (ST), semimembranosus (SM), and biceps femoris (BF) muscles. The aims of this study were to investigate the acute effects of SS on the flexibility of the individual muscle components of the hamstrings, and to examine the difference in the acute effect of SS between these components using shear elastic modulus as the index of muscle flexibility. Twenty healthy men (age, 23.4 ± 2.3 years) volunteered for this study. The shear elastic modulus of the ST, SM and BF muscles were measured using ultrasound shear wave elastography before (PRE) and immediately after (POST) 5 min of SS. Measurements of shear elastic modulus were taken with the knee at 90° (slack position) and 45° (extension position) of flexion. In all muscles, the shear elastic modulus at both knee angles decreased significantly after SS. The percentage change in the shear elastic modulus from PRE to POST in the muscles at 45° of knee flexion was greatest in the SM. These results suggest that SS with hip flexion and knee extension has acute effects on increasing flexibility of the hamstring muscle components, especially the SM muscle. Copyright © 2015. Published by Elsevier Ltd.

  10. Effect of stretching-based rehabilitation on pain, flexibility and muscle strength in dancers with hamstring injury: a single-blind, prospective, randomized clinical trial.

    Science.gov (United States)

    Kim, Giwon; Kim, Hyangsun; Kim, Woo K; Kim, Junesun

    2017-10-24

    Hamstring injuries commonly occur in mainstream sports and occupations that involve physical activity. We evaluated the effect of a stretching-based rehabilitation program on pain, flexibility, and strength in dancers with hamstring injuries. Sixteen Korean traditional dancers with unilateral hamstring injuries were included and randomly assigned to a rehabilitation or control group. The rehabilitation group received stretching-based rehabilitation for 8 weeks, which comprised simple static stretches and basic range of motion (ROM) exercises, such as static and active stretching, concentric and eccentric ROM training, and trunk stabilization exercises. The control group received conventional treatment with analgesics and physical therapy. Outcomes were assessed before and after the interventions in both groups by comparing the visual analog scale (VAS) score for pain, straight leg raise ROM test for hamstring muscle flexibility, and isometric strength test for hamstring muscle strength. Subjects who underwent rehabilitation showed significant improvements in VAS score for pain (p = 0.017) and ROM for flexibility (p flexibility and strength in patients with hamstring injury. The data indicate that a stretching-based rehabilitation program can help promote functional recovery from hamstring injury.

  11. Stimulation of abdominal and upper thoracic muscles with surface electrodes for respiration and cough: acute studies in adult canines.

    Science.gov (United States)

    Walter, James S; Posluszny, Joseph; Dieter, Raymond; Dieter, Robert S; Sayers, Scott; Iamsakul, Kiratipath; Staunton, Christine; Thomas, Donald; Rabbat, Mark; Singh, Sanjay

    2017-06-14

    To optimize maximal respiratory responses with surface stimulation over abdominal and upper thorax muscles and using a 12-Channel Neuroprosthetic Platform. Following instrumentation, six anesthetized adult canines were hyperventilated sufficiently to produce respiratory apnea. Six abdominal tests optimized electrode arrangements and stimulation parameters using bipolar sets of 4.5 cm square electrodes. Tests in the upper thorax optimized electrode locations, and forelimb moment was limited to slight-to-moderate. During combined muscle stimulation tests, the upper thoracic was followed immediately by abdominal stimulation. Finally, a model of glottal closure for cough was conducted with the goal of increased peak expiratory flow. Optimized stimulation of abdominal muscles included three sets of bilateral surface electrodes located 4.5 cm dorsal to the lateral line and from the 8 th intercostal space to caudal to the 13 th rib, 80 or 100 mA current, and 50 Hz stimulation frequency. The maximal expired volume was 343 ± 23 ml (n=3). Optimized upper thorax stimulation included a single bilateral set of electrodes located over the 2 nd interspace, 60 to 80 mA, and 50 Hz. The maximal inspired volume was 304 ± 54 ml (n=4). Sequential stimulation of the two muscles increased the volume to 600 ± 152 ml (n=2), and the glottal closure maneuver increased the flow. Studies in an adult canine model identified optimal surface stimulation methods for upper thorax and abdominal muscles to induce sufficient volumes for ventilation and cough. Further study with this neuroprosthetic platform is warranted.

  12. A control system for automatic electrical stimulation of abdominal muscles to assist respiratory function in tetraplegia.

    Science.gov (United States)

    Gollee, H; Hunt, K J; Allan, D B; Fraser, M H; McLean, A N

    2007-09-01

    People with tetraplegia have poor respiratory function leading to limited tidal volume (V(T)) and reduced cough peak flow (CPF). These problems may cause respiratory failure during the initial admission or subsequent intercurrent illness. Electrical stimulation of the abdominal muscles during expiration can improve respiratory function by increasing V(T) and CPF. We developed a novel control system to automatically trigger muscle stimulation, synchronised with the subject's voluntary respiratory activity. The system was tested in four subjects with a functionally complete lesion at level C4 to C6, aged between 16 and 46 years, 3 months to 5 years post injury, who were breathing spontaneously. The algorithm delivered automatic stimulation patterns, detecting cough and quiet breathing while suppressing stimulation during other activities such as speaking. Marked increases in V(T) (between 9% and 71% of baseline) and CPF (between 31% and 54% of baseline) were observed, suggesting that the technique may have potential use in both acute and established tetraplegia to increase minute ventilation and to improve cough clearance of secretions.

  13. Effects of hippotherapy on the thickness of deep abdominal muscles and activity of daily living in children with intellectual disabilities.

    Science.gov (United States)

    Lee, JiHyun; Yun, Chang-Kyo

    2017-04-01

    [Purpose] The purpose of this study is to investigate the effect of hippotherapy exercise on the thickness of deep abdominal muscles and daily activities of children with intellectual disabilities. [Subjects and Methods] Seven children with intellectual disabilities were treated with hippotherapy for 30 minutes twice a week for 6 weeks. The thickness of deep abdominal muscles and Functional Independence Measure (FIM) of the subjects were measured by ultrasonography before and after the experiment. [Results] There was no significant change in the thickness of the External Oblique and Internal Oblique muscles, but there was a statistically significant change in Transverse Adbominis thickness and FIM score after treatment compared to before treatment. [Conclusion] Hippotherapy exercise has a positive effect on the improvement of Transverse Abdominis (TrA) and activity of daily livings of children with intellectual disabilities.

  14. EFFECTIVENESS OF ECCENTRIC TRAINING, DYNAMIC RANGE OF MOTION EXERCISES AND STATIC STRETCHING ON FLEXIBILITY OF HAMSTRING MUSCLE AMONG FOOTBALL PLAYERS.

    OpenAIRE

    Askar P.V; Veena Pais; Nagarajan Mohan; Shaikhji Saad; Nusaibath M Shaikhji

    2015-01-01

    Background: Hamstring stretch is an important part of treatment programs aimed at decreasing the likelihood of hamstring injury. Few studies have examine the effect of eccentric training, static stretching and dynamic range of motion(DROM) exercise in improving hamstring flexibility this study compares the effect of eccentric training and static stretching in improving hamstring flexibility. The purpose of this study was to determine the effects of Eccentric training, Static stretching and Dy...

  15. Comparison of deep and superficial abdominal muscle activity between experienced Pilates and resistance exercise instructors and controls during stabilization exercise.

    Science.gov (United States)

    Moon, Ji-Hyun; Hong, Sang-Min; Kim, Chang-Won; Shin, Yun-A

    2015-06-01

    Pilates and resistance exercises are used for lumbar stabilization training. However, it is unclear which exercise is more effective for lumbar stabilization. In our study, we aimed to compare surface muscle activity and deep muscle thickness during relaxation and spinal stabilization exercise in experienced Pilates and resistance exercise instructors. This study is a retrospective case control study set in the Exercise Prescription Laboratory and Sports Medicine Center. The participants included Pilates instructors (mean years of experience, 3.20±1.76; n=10), resistance exercise instructors (mean years of experience, 2.53±0.63; n=10), and controls (n=10). The participants performed 4 different stabilization exercises: abdominal drawing-in maneuver, bridging, roll-up, and one-leg raise. During the stabilization exercises, surface muscle activity was measured with electromyography, whereas deep muscle thickness was measured by ultrasound imaging. During the 4 stabilization exercises, the thickness of the transverse abdominis (TrA) was significantly greater in the Pilates-trained group than the other 2 other groups. The internal oblique (IO) thickness was significantly greater in the Pilates- and resistance-trained group than the control group, during the 4 exercises. However, the surface muscle activities were similar between the groups. Both Pilates and resistance exercise instructors had greater activation of deep muscles, such as the TrA and IO, than the control subjects. Pilates and resistance exercise are both effective for increasing abdominal deep muscle thickness.

  16. External abdominal oblique muscle ultrasonographic thickness changes is not an appropriate surrogate measure of electromyographic activity during isometric trunk contractions.

    Science.gov (United States)

    Rabello, Lucas M; Gagnon, Dany; da Silva, Rubens A; Paquette, Philippe; Larivière, Christian

    2015-01-01

    The function of specific abdominal muscles can be assessed using both electromyography (EMG) and ultrasound imaging (USI) thickness measures. However, the relationship between these two measurements is not conclusive during sitting isometric trunk efforts. This study was conducted to assess the relationship between USI thickness and EMG amplitude measures of the right external oblique (EO) muscle during isometric efforts in the sitting position. Eighteen subjects performed ramp isometric efforts progressing from 0 to 50% of their maximal voluntary contraction (MVC) in three trunk directions on a dynamometer: (1) forward flexion; (2) right lateral flexion; and (3) left axial rotation. USI and surface EMG amplitude measures of the EO muscle were recorded concomitantly and both normalized against rest values and maximal EMG, respectively. EO muscle was significantly more activated (p muscle activity. USI thickness measures should be interpreted with great caution in research and clinical settings.

  17. Acute effect of static stretching on muscle force in older women DOI:10.5007/1980-0037.2010v12n3p195

    Directory of Open Access Journals (Sweden)

    André Luiz Demantova Gurjão

    2010-01-01

    Full Text Available The objective of this study was to investigate the acute effect of static stretching on the peak rate of force development (PRFD and maximum voluntary contraction (MVC in older women. Ten women (68.5 ± 7.0 years; 70.9 ± 8.1 kg; 159.4 ± 6.0 cm; body mass index: 28.0 ± 3.8 kg/m2 were studied. MVC and PRFD were determined by leg press exercise before and after the control or stretching condition (three sets of 30 seconds of static stretching of the quadriceps on two different days (interval of 24 hours. PRFD was determined as the steepest slope of the curve, calculated within regular windows of 20 milliseconds (∆force/∆time for the first 200 milliseconds after the onset of contraction. MVC was determined as the highest value recorded in each set. Only one condition was tested on each day and the order of application of each condition was determined randomly. The stretching intensity was evaluated by the muscle pain threshold. Four post-condition assessments (post-treatment, 10, 20, and 30 minutes were performed to monitor muscle strength. ANCOVA 2x5, followed by the Scheffé post-hoc test, showed no significant interactions between conditions vs. times (P > 0.05 for PRFD or MVC. In conclusion, acute bouts of static stretching of the quadriceps femoris do not affect the ability of rapid and maximum muscle force production in older women.

  18. Effects of a stretching protocol for the pectoralis minor on muscle length, function, and scapular kinematics in individuals with and without shoulder pain.

    Science.gov (United States)

    Rosa, Dayana P; Borstad, John D; Pogetti, Lívia S; Camargo, Paula R

    Parallel-group intervention with repeated measures. Shortening of the pectoralis minor (PM) may contribute to alterations in scapular kinematics. To evaluate the effects of a stretching protocol on function, muscle length, and scapular kinematics in subjects with and without shoulder pain. A sample of 25 patients with shoulder pain and 25 healthy subjects with PM tightness performed a daily stretching protocol for 6 weeks. Outcome measures included Disabilities of the Arm, Shoulder, and Hand questionnaire, PM length, and scapular kinematics. Disabilities of the Arm, Shoulder, and Hand scores decreased (P .05) were found for PM length in both groups. Scapular anterior tilt increased (P stretching protocol significantly decreases pain and improves function in subjects with shoulder pain. The mechanism responsible for these improvements does not appear directly related to PM muscle length or scapula kinematics, suggesting that other neuromuscular mechanisms are involved. The PM stretching protocol did not change the PM length or scapular kinematics in subjects with or without shoulder pain. However, pain and function of the upper limbs improved in patients with shoulder pain. 2b. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  19. Toward a Concept of Stretch Coupling in Smooth Muscle: A Thesis by Lars Thuneberg on Contractile Activity in Neonatal Interstitial Cells of Cajal

    DEFF Research Database (Denmark)

    Huizinga, Jan D; Lammers, Wim J E P; Mikkelsen, Hanne B

    2010-01-01

    The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence for the contrac...... amongst the physiological properties of the ICC networks of the gut musculature. Anat Rec, 2010. (c) 2010 Wiley-Liss, Inc....

  20. The abdominal drawing-in manoeuvre for detecting activity in the deep abdominal muscles: is this clinical tool reliable and valid?

    Science.gov (United States)

    Kaping, Karsten; Äng, Björn O; Rasmussen-Barr, Eva

    2015-12-09

    The abdominal drawing-in manoeuvre (ADIM) is a common clinical tool for manually assessing whether a preferential activation of the deep abdominal muscles in patients with low back pain (LBP) is 'correct' or not. The validity and reliability of manual assessment of the ADIM are, however, as yet unknown. This study evaluated the concurrent and discriminative validity and reliability of the manually assessed ADIM. Single-blinded cross-sectional study. General population in Stockholm County, Sweden. The study sample comprised 38 participants seeking care for LBP, and 15 healthy subjects. The manual ADIM was assessed as correct or not following a standard procedure. Ultrasound imaging (USI) was used as the concurrent reference (gold standard) for the manually assessed ADIM by calculating a ratio of the change in muscle thickness between the resting and the contracted states: the correlation between manual test and USI was calculated. Discriminative validity was analysed by calculating sensitivity and specificity. A sample of 24 participants was analysed with κ coefficients for interobserver reliability between two raters. The concurrent validity between the manual ADIM and the ADIM-USI ratios showed poor correlations (r=0.13-0.40). The discriminative validity of the manually assessed ADIM to predict LBP showed a sensitivity/specificity of 0.30/0.73, while the ADIM-USI ratio to predict LBP showed 0.19/0.87. The interobserver reliability for the manually assessed ADIM revealed substantial agreement: K=0.71, CI (95%) 0.41 to 1.00. Although the interobserver reliability of the manually assessed ADIM was high, the concurrent and discriminative validity were both low for examining the preferential activity of the deep abdominal muscles. Neither the manually assessed ADIM nor the ultrasound testing discriminated between participants with LBP and healthy subjects regarding preferential activity of the transversus muscle as this ability/inability was also present in healthy

  1. Effects of cervical stretching and cranio-cervical flexion exercises on cervical muscle characteristics and posture of patients with cervicogenic headache.

    Science.gov (United States)

    Park, Seung Kyu; Yang, Dae Jung; Kim, Je Ho; Kang, Da Hang; Park, Sam Heon; Yoon, Jong Hyuk

    2017-10-01

    [Purpose] The present study aimed to conduct a comparative analysis of changes in mechanical characteristics of cervical muscles and cervical posture in patients with cervicogenic headache following exercise program intervention in order to present effective treatment methods for such patients. [Subjects and Methods] A total of 30 patients with cervicogenic headache were recruited and 15 patients were allocated to cervical stretching exercise group and 15 to cervical stretching exercise and cranio-cervical flexion exercise group. After 3 weeks of exercise intervention, craniovertebral angle and tone (Hz) and stiffness (N/m) of the suboccipital and upper trapezius muscles were measured. [Results] After the exercise program intervention, a greater amount of change in tone of suboccipital and upper trapezius muscles was found in the experimental group, as compared to the control group, but the difference was not statistically significant. Greater amount of change in muscle stiffness and craniovertebral angle was found in the experimental group, as compared to the control group. [Conclusion] Findings of the present study showed that cranio-cervical exercise was an effective form of exercise for changing muscle characteristics and posture in patients with cervicogenic headache. Such findings will be helpful in providing effective treatments for patients with cervicogenic headache.

  2. Muscle Energy Technique and Static Stretching for Treatment of Mechanical Neck Pain 16 July 2012 International Journal of Health and Rehabilitation Sciences Volume 1 Number 1 O RIGINAL R ESEARCH Comparative Effectiveness of Muscle Energy Technique and Static Stretching for Treatment of Subacute Mechanical N eck Pain

    Directory of Open Access Journals (Sweden)

    Richa Mahajan

    2012-07-01

    Full Text Available Background: Neck pain is a common problem within our society. Upper trapezius and the levator scapulae are the most common postural muscles that tends to get shorten leading to restricted neck mobility. If these group of muscles are treated it may provide with best results. There is lack of evidence to allow conclusions to be drawn about the effectiveness of Muscle energy technique (MET when compared with stretching exercises for relieving mechanical neck pain. It would be interesting to study if these two techniques yield comparable outcomes and if one technique is superior to the next which should be the alternate choice of therapy Objective: To evaluate the comparative effectiveness of Muscle energy technique and static stretching on pain and active cervical range of motion (ROM in subacute mechanical neck pain Subjects and methods: 45 patients with subacute mechanical neck pain were randomly assigned to receive Muscle Energy Technique plus conventional physiotherapy (group 1, n = 15, static stretching plus conventional exercise program (group 2, n = 15 and conventional physiotherapy only (group 3, n = 15. Intervention: Group 1 received 6 sessions of Muscle Energy Technique and 10 sessions of conventional physiotherapy. Group 2 received 6 sessions of static stretching and 10 sessions of conventional physiotherapy. Group 3 received 10 sessions of conventional physiotherapy. All groups were treated for 2 weeks.Outcome measures:Pain intensity on 100mm VAS, active cervical lateral flexion range of motion, active cervical rotation range of motion. Results: Paired t-test was used for within group analysis. ANOVA followed by post hoc analysis was employed for between group comparisons. No significant difference was found in any of the outcome measure between MET and static stretching groups (p > 0.05 while both were found to be significantly better than the conventional exercise group (p < 0.05 between the 3 groups. Statistically significant

  3. The effects of different size gold nanoparticles on mechanical properties of vascular smooth muscle cells under mechanical stretching

    Science.gov (United States)

    Kieu, Tri Minh

    Nanotechnology is an emerging and promising frontier for medicine and biomedical research due to its potential for applications such as drug delivery, imaging enhancement, and cancer treatment. While these materials may possess significant possibilities, the effects of these particles in the body and how the particles affect the cells is not fully understood. In this study, vascular smooth muscle cells (VSMCs) will be exposed to 5 and 20 nm diameter citrate AuNPs under mechanical conditions. The cytotoxicity properties of these particles will be investigated using LDH and MTT assays. Atomic force microscopy will be used to study how the size of the nanoparticles affect the mechanical properties of the VSMCs. Immunofluorescence staining for alpha actin will also be performed to enhance understanding of the phenotypic shift. The LDH and MTT cytotoxicity assay results demonstrated that neither 5 nor 20 nm diameter nanoparticles are cytotoxic to the cells. However, the mechanical properties and cell morphology of the VSMCs was altered. Under static conditions, both AuNP treatments decreased the mechanical properties of the cells. The size of the nanoparticles had a softening effect on elastic modulus of the cell and sign of a synthetic phenotype was observed. The VSMCs subjected to mechanical stretching exhibited higher elastic modulus compared to the static experimental groups. Again, both AuNPs treatments decreased the mechanical properties of the cells and signs of more synthetic phenotype was seen. However, the size of the nanoparticles did not have any influence on cell's elastic modulus unlike the static treated cells. The mechanical testing condition provided a better look at how these particles would affect the cells in vivo. While the nanoparticles are not cytotoxic to the VSMCs, they are altering the mechanical properties and phenotype of the cell.

  4. P-18: Comparison of Lateral Abdominal Muscle Thickness in Young Male Soccer Players With and Without Low Back Pain

    Directory of Open Access Journals (Sweden)

    Bahareh Tavana

    2017-03-01

    Full Text Available PURPOSE: To compare the lateral abdominal muscle thickness and other possible functional risk factors in young soccer players with and without low back pain (LBP.METHOD: In total, 30 young soccer players between 16 and 20 years old, with and without LBP, from the premier league participated in this study. The thicknesses of external oblique, internal oblique and transversus abdominis on both sides were measured via ultrasound imaging. In addition, hamstring flexibility, active lumbar forward flexion, and isometric muscle endurance of trunk extensors were measured and were compared regarding the history of LBP.RESULTS: Mean ± SD age of the subjects was 17.4 ± 1.1 years. There was no statistically significant difference regarding age, BMI, weekly training hours and age of starting to compete between groups. Subjects with sports-life, last year and last month history ofLBP had a statistically significant lower external oblique muscle thickness in both right and left side, and both dominant and non-dominant feet (p<0.05. Subjects with sportslife history of LBP had lower internal oblique muscle thickness in both side and both feet (p<0.05. Moreover, those with a sports-life history of LBP had a significantly higher degree of hamstring muscle tightness than non-LBP group on the dominant foot (p <0.05.CONCLUSION: In this sample group of young soccer players, abdominal muscles seem to have an important role in the stability of the spine and prevention of LBP. Further longitudinal studies are needed to evaluate the role of these muscles as a risk factor for soccer players.

  5. Comparison of abdominal muscle activity and peak expiratory flow between forced vital capacity and fast expiration exercise.

    Science.gov (United States)

    Ishida, Hiroshi; Suehiro, Tadanobu; Watanabe, Susumu

    2017-04-01

    [Purpose] The purpose of this investigation was to compare the activities of the abdominal muscles and peak expiratory flow between forced vital capacity and fast expiration exercise. [Subjects and Methods] Fifteen healthy male participated in this study. Peak expiratory flow and electromyographic activities of the rectus abdominis, external oblique, and internal oblique/transversus abdominis muscles were measured during forced vital capacity and fast expiration exercise and then peak amplitude and its appearance time were obtained. [Results] Peak expiratory flow values were significantly higher during fast expiration exercise than during forced vital capacity. The internal oblique/transversus abdominis muscles showed significantly higher peak amplitude during fast expiration exercise than during forced vital capacity. However, there were no significant differences between forced vital capacity and fast expiration exercise in the rectus abdominis and external oblique muscles. There was no difference in the appearance time of the peak amplitude between forced vital capacity and fast expiration exercise in any muscle. [Conclusion] Fast expiration exercise might be beneficial for increasing expiratory speed and neuromuscular activation of the internal oblique/transversus abdominis muscles compared to forced vital capacity. These findings could be considered when recommending a variation of expiratory muscle strength training as part of pulmonary rehabilitation programs.

  6. The effect of scapular posterior tilt exercise, pectoralis minor stretching, and shoulder brace on scapular alignment and muscles activity in subjects with round-shoulder posture.

    Science.gov (United States)

    Lee, Ji-hyun; Cynn, Heon-seock; Yoon, Tae-lim; Ko, Chang-hee; Choi, Woo-jeong; Choi, Sil-ah; Choi, Bong-sam

    2015-02-01

    There are various methods for rehabilitating round-shoulder posture (RSP), including strengthening exercises, stretching, and using a shoulder brace or taping to correct the altered posture. However, no study has determined which intervention is the most effective of the three methods to decrease RSP (intervention #1: scapular posterior tilting exercise alone [hereafter, SPT], intervention #2: the scapular posterior tilting exercise after PM stretching [PM stretch+SPT], and intervention #3: the scapular posterior tilting exercise with use of a shoulder brace [SPT+brace]). The purpose of this study was to compare the SPT, PM stretch+SPT, and SPT+brace on RSP, PM index (PMI), and lower trapezius (LT) and serratus anterior (SA) activity in subjects with RSP. In total, fifteen young men with RSP, participated in the study (21.46 ± 2.30 years old). RSP was confirmed using a caliper measure. Surface electromyography (SEMG) data for LT and SA activity were collected during the three interventions, and the SEMG data are expressed as a percentage of the maximal voluntary isometric contraction (%MVIC). RSP was significantly less in the PM stretch+SPT and SPT+brace than in the SPT (Pstretch+SPT and SPT+brace than in the SPT (Pstretch+SPT than in the SPT or SPT+brace in subjects with RSP (Pstretching exercise and application of a shoulder brace may help correct RSP and restore the length of the PM. The posterior tilting exercise after PM stretching was the most effective method for eliciting greater LT muscle activation among the interventions tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Immediate Effects of Combining Local Techniques in the Craniomandibular Area and Hamstring Muscle Stretching in Subjects with Temporomandibular Disorders: A Randomized Controlled Study.

    Science.gov (United States)

    Rodriguez-Blanco, Cleofás; Cocera-Morata, Francisco Miguel; Heredia-Rizo, Alberto Marcos; Ricard, François; Almazán-Campos, Ginés; Oliva-Pascual-Vaca, Ángel

    2015-08-01

    To assess the immediate effects on vertical mouth opening, orofacial mechanosensitivity, and lumbar and suboccipital mobility after adding a myofascial induction technique to a multimodal protocol in subjects with temporomandibular disorders (TMD). A randomized and double-blind controlled trial was carried out. University-based physical therapy research clinic. Sixty subjects (35±11.22 years) with TMD, and restricted mobility of the mandibular condyles and the first cervical vertebrae, were recruited and randomized to either a control group (CG) (n=30) or an experimental group (EG) (n=30). The CG underwent a neuromuscular technique over the masseter muscles and passive hamstring muscle stretching. A suboccipital muscle inhibition technique was added to this protocol in the EG. Primary measurements were made of vertical mouth opening and pressure pain threshold of the masseter muscles. Secondary outcome measures included pressure algometry of the trigeminal nerve, suboccipital range of motion, and lumbar spine mobility, assessed with the sit-and-reach (SAR) test and lumbar forward bending. All evaluations were collected at baseline and immediately after intervention. In the intragroup comparison, the EG observed an increase in suboccipital flexion (p0.05). The inclusion of a myofascial induction maneuver in a protocol combining local (neuromuscular treatment) and distal techniques (hamstring stretching) in subjects with TMD has no impact on improving mouth opening, suboccipital and lumbar mobility, and orofacial sensitivity to mechanical pressure.

  8. Acute effects of proprioceptive neuromuscular facilitation and static stretching on maximal voluntary contraction and muscle electromyographical activity in indoor soccer players.

    Science.gov (United States)

    Reis, Erika da Fonseca Silva; Pereira, Guilherme Borges; de Sousa, Nuno Manuel Frade; Tibana, Ramires Alsamir; Silva, Mauro Fernando; Araujo, Marcia; Gomes, Italo; Prestes, Jonato

    2013-11-01

    The aim was to investigate and compare the effects of proprioceptive neuromuscular facilitation (PNF) and static stretching (SS) on maximal voluntary contraction (MVC) and muscle activation in indoor soccer players. Thirty-three young adult men were divided into two groups: (i) sedentary and (ii) trained. Each group completed three different experimental trials: SS, PNF and no stretching (NS). The MVC of knee extension was evaluated before and immediately after each condition along with electromyography from the vastus lateralis (VL) and rectus femoris (RF) muscles of the dominant leg. PNF or SS techniques induced no decrease on MVC and muscle electromyographical activity in indoor soccer players (P>0·05). The electromyography of the RF and VL was lower after SS only in the sedentary group (P≤0·05). Short-duration PNF or SS has no effect on isometric MVC and muscle activity in indoor soccer players. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. Electromyographic activity of the anterolateral abdominal wall muscles during the vesical filling and evacuation

    Directory of Open Access Journals (Sweden)

    Ahmed Shafik

    2007-06-01

    Full Text Available

    BACKGROUND: The role of the anterolateral abdominal wall muscles (AAWMs during the vesical filling and evacuation has not been sufficiently addressed in the literature. We have investigated the hypothesis that the AAWMs exhibit the increased electromyographic (EMG activity on the vesical distension and contraction which presumably assists vesical evacuation.

    METHODS: The effects of the vesical balloon distension on the vesical pressure (VP, vesical neck (VNP pressures and the AAWMs' EMG activity were studied in 28 healthy volunteers aged 40.7 ± 9.7 years (18 men, 10 women. These effects were tested after the individual anesthetization of the bladder and AAWMs and after saline infiltration.

    RESULTS: The VP and the VNP showed a gradual increase upon the incremental vesical balloon distension which started at a distending volume of 120–140 ml. At a mean volume of 364.6 ± 23.8 ml, the VP increased to a mean of 36.6 ± 3.2 cmH2O, the VNP decreased to 18.4 ± 2.4 cmH2O, and the AAWMs EMG registered a significant increase. This effect disappeared in the individual bladder and in the AAWMs' anesthetization. However, it did not disappear in the saline administration.

    CONCLUSIONS: The AAWMs appear to contract simultaneously with vesical contraction. This action presumably increases the IAP and it

  10. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy.

    Science.gov (United States)

    Zhao, Heng; Wu, Yi-Ning; Hwang, Miriam; Ren, Yupeng; Gao, Fan; Gaebler-Spira, Deborah; Zhang, Li-Qun

    2011-08-01

    Biomechanical properties of calf muscles and Achilles tendon may be altered considerably in children with cerebral palsy (CP), contributing to childhood disability. It is unclear how muscle fascicles and tendon respond to rehabilitation and contribute to improvement of ankle-joint properties. Biomechanical properties of the calf muscle fascicles of both gastrocnemius medialis (GM) and soleus (SOL), including the fascicle length and pennation angle in seven children with CP, were evaluated using ultrasonography combined with biomechanical measurements before and after a 6-wk treatment of passive-stretching and active-movement training. The passive force contributions from the GM and SOL muscles were separated using flexed and extended knee positions, and fascicular stiffness was calculated based on the fascicular force-length relation. Biomechanical properties of the Achilles tendon, including resting length, cross-sectional area, and stiffness, were also evaluated. The 6-wk training induced elongation of muscle fascicles (SOL: 8%, P = 0.018; GM: 3%, P = 0.018), reduced pennation angle (SOL: 10%, P = 0.028; GM: 5%, P = 0.028), reduced fascicular stiffness (SOL: 17%, P = 0.128; GM: 21%, P = 0.018), decreased tendon length (6%, P = 0.018), increased Achilles tendon stiffness (32%, P = 0.018), and increased Young's modulus (20%, P = 0.018). In vivo characterizations of calf muscles and Achilles tendon mechanical properties help us better understand treatment-induced changes of calf muscle-tendon and facilitate development of more effective treatments.

  11. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy

    Science.gov (United States)

    Zhao, Heng; Wu, Yi-Ning; Hwang, Miriam; Ren, Yupeng; Gao, Fan; Gaebler-Spira, Deborah

    2011-01-01

    Biomechanical properties of calf muscles and Achilles tendon may be altered considerably in children with cerebral palsy (CP), contributing to childhood disability. It is unclear how muscle fascicles and tendon respond to rehabilitation and contribute to improvement of ankle-joint properties. Biomechanical properties of the calf muscle fascicles of both gastrocnemius medialis (GM) and soleus (SOL), including the fascicle length and pennation angle in seven children with CP, were evaluated using ultrasonography combined with biomechanical measurements before and after a 6-wk treatment of passive-stretching and active-movement training. The passive force contributions from the GM and SOL muscles were separated using flexed and extended knee positions, and fascicular stiffness was calculated based on the fascicular force-length relation. Biomechanical properties of the Achilles tendon, including resting length, cross-sectional area, and stiffness, were also evaluated. The 6-wk training induced elongation of muscle fascicles (SOL: 8%, P = 0.018; GM: 3%, P = 0.018), reduced pennation angle (SOL: 10%, P = 0.028; GM: 5%, P = 0.028), reduced fascicular stiffness (SOL: 17%, P = 0.128; GM: 21%, P = 0.018), decreased tendon length (6%, P = 0.018), increased Achilles tendon stiffness (32%, P = 0.018), and increased Young's modulus (20%, P = 0.018). In vivo characterizations of calf muscles and Achilles tendon mechanical properties help us better understand treatment-induced changes of calf muscle-tendon and facilitate development of more effective treatments. PMID:21596920

  12. Overexpression of Catalase in Vascular Smooth Muscle Cells Prevents the Formation of Abdominal Aortic Aneurysms

    Science.gov (United States)

    Parastatidis, Ioannis; Weiss, Daiana; Joseph, Giji; Taylor, W Robert

    2013-01-01

    Objective Elevated levels of oxidative stress have been reported in abdominal aortic aneurysms (AAA), but which reactive oxygen species (ROS) promotes the development of AAA remains unclear. Here we investigate the effect of the hydrogen peroxide (H2O2) degrading enzyme catalase on the formation of AAA. Approach and Results AAA were induced with the application of calcium chloride (CaCl2) on mouse infrarenal aortas. The administration of PEG-catalase, but not saline, attenuated the loss of tunica media and protected against AAA formation (0.91±0.1 mm vs. 0.76±0.09 mm). Similarly, in a transgenic mouse model, catalase over-expression in the vascular smooth muscle cells (VSMC) preserved the thickness of tunica media and inhibited aortic dilatation by 50% (0.85±0.14 mm vs. 0.57±0.08 mm). Further studies showed that injury with CaCl2 decreased catalase expression and activity in the aortic wall. Pharmacologic administration or genetic over-expression of catalase restored catalase activity and subsequently decreased matrix metalloproteinase activity. In addition, a profound reduction in inflammatory markers and VSMC apoptosis was evident in aortas of catalase over-expressing mice. Interestingly, as opposed to infusion of PEG-catalase, chronic over-expression of catalase in VSMC did not alter the total aortic H2O2 levels. Conclusions The data suggest that a reduction in aortic wall catalase activity can predispose to AAA formation. Restoration of catalase activity in the vascular wall enhances aortic VSMC survival and prevents AAA formation primarily through modulation of matrix metalloproteinase activity. PMID:23950141

  13. Adipose stem cells promote smooth muscle cells to secrete elastin in rat abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Xiaohong Tian

    Full Text Available Abdominal aortic aneurysm (AAA is a life-threatening disease and its prevalence rate increases with social aging. The degradation of elastic is an important factor in the formation of AAA.Adipose derived stem cells (ADSCs and bone marrow mesenchymal stem cells (BMSCs were isolated from rats, and identified by Oil red O and alizarin red staining after adipogenesis and osteogenesis induction. In addition, ADSCs were also identified by flow cytometry with CD markers. AAA model in rats was established, and smooth muscle cells (SMCs were isolated from AAA aortic wall and identified by immunohistochemistry. ADSCs or BMSCs were co-cultured with AAA aortic wall for in vitro experiment, and ADSCs were injected into AAA model for in vivo test. Then orcein staining was used for observing the morphology of elastic fiber, Western blot and real-time PCR were used respectively to detect the protein and gene expression of elastin, gelatinases spectrum analysis was used to detect the activity of matrix metalloproteinase-2 (MMP-2 and MMP-9.Lots of red lipid droplets were visible by Oil red O staining after adipogenesis induction, and black calcium nodules appeared by alizarin red staining after osteogenesis induction. The results of flow cytometry showed that ADSCs expressed CD44 and CD105, but exhibited negligible expression of CD31 and CD45. SMCs exhibited spindle-like morphology and α-actin protein was positive in cytoplasm. After co-cultured with ADSCs or BMSCs, the elastic fiber recovered normal winding shape, both the gene and protein expression of elastin increased, and the activity of MMP-2 decreased. The in vivo result was similar to that of in vitro.ADSCs promote the expression of elastin in SMCs and contribute to the reconstruction of elastic fiber, which may provide new ideas for treating AAA.

  14. EFFECTIVENESS OF ECCENTRIC TRAINING, DYNAMIC RANGE OF MOTION EXERCISES AND STATIC STRETCHING ON FLEXIBILITY OF HAMSTRING MUSCLE AMONG FOOTBALL PLAYERS.

    Directory of Open Access Journals (Sweden)

    Askar P.V

    2015-12-01

    Full Text Available Background: Hamstring stretch is an important part of treatment programs aimed at decreasing the likelihood of hamstring injury. Few studies have examine the effect of eccentric training, static stretching and dynamic range of motion(DROM exercise in improving hamstring flexibility this study compares the effect of eccentric training and static stretching in improving hamstring flexibility. The purpose of this study was to determine the effects of Eccentric training, Static stretching and Dynamic range of motion (DROM exercise in improving hamstring flexibility and the second objective is find which technique is more effective in improving hamstring flexibility when compared with a control group. Study design is Experimental pre-test post-test design. Methods: 88 male subjects with limited hamstring flexibility were recruited for this study were assigned to four group. Group1 received eccentric training, group2 received dynamic range of motion exercise, group3 received static stretching and group4 was served as control group. Hamstring length was measured pre intervention and post intervention using a self-monitored active knee extension test. Results: Eccentric training, static stretching and dynamic range of motion exercise showed a significant increase in hamstring length between pre and post intervention. Following a between group analysis done by independent t test revealed a significant difference between group1 group2 and group3 Conclusion: It is concluded that eccentric training, dynamic range of motion (DROM exercise and static stretching groups improved hamstring flexibility.

  15. Associations between low back pain, urinary incontinence, and abdominal muscle recruitment as assessed via ultrasonography in the elderly.

    Science.gov (United States)

    Figueiredo, Vânia F; Amorim, Juleimar S C; Pereira, Aline M; Ferreira, Paulo H; Pereira, Leani S M

    2015-01-01

    Low back pain (LBP) and urinary incontinence (UI) are highly prevalent among elderly individuals. In young adults, changes in trunk muscle recruitment, as assessed via ultrasound imaging, may be associated with lumbar spine stability. To assess the associations between LBP, UI, and the pattern of transversus abdominis (TrA), internal (IO), and external oblique (EO) muscle recruitment in the elderly as evaluated by ultrasound imaging. Fifty-four elderly individuals (mean age: 72±5.2 years) who complained of LBP and/or UI as assessed by the McGill Pain Questionnaire, Incontinence Questionnaire-Short Form, and ultrasound imaging were included in the study. The statistical analysis comprised a multiple linear regression model, and a p-value ultrasound imaging-based studies to measure abdominal muscle recruitment in the elderly.

  16. Ultrasound-Derived Abdominal Muscle Thickness Better Detects Metabolic Syndrome Risk in Obese Patients than Skeletal Muscle Index Measured by Dual-Energy X-Ray Absorptiometry.

    Directory of Open Access Journals (Sweden)

    Ayumi Ido

    Full Text Available Sarcopenia has never been diagnosed based on site-specific muscle loss, and little is known about the relationship between site-specific muscle loss and metabolic syndrome (MetS risk factors. To this end, this cross-sectional study aimed to investigate the relationship between site-specific muscle size and MetS risk factors. Subjects were 38 obese men and women aged 40-82 years. Total body fat and lean body mass were assessed by whole-body dual-energy X-ray absorptiometry (DXA scan. Muscle thickness (MTH was measured using B-mode ultrasound scanning in six body regions. Subjects were classified into general obesity (GO and sarcopenic obesity (SO groups using the threshold values of one standard deviation below the sex-specific means of either MTH or skeletal muscle index (SMI measured by DXA. MetS risk score was acquired by standardizing and summing the following continuously distributed variables: visceral fat area, mean blood pressure, HbA1c, and serum triglyceride / high density lipoprotein cholesterol, to obtain the Z-score. Multiple regression analysis revealed that the MetS risk score was independently associated with abdominal MTH in all subjects, but not with MTH in other muscle regions, including the thigh. Although HbA1c and the number of MetS risk factors in the SO group were significantly higher than those in the GO group, there were no significant differences between GO and SO groups as defined by SMI. Ultrasound-derived abdominal MTH would allow a better assessment of sarcopenia in obese patients and can be used as an alternative to the conventionally-used SMI measured by DXA.

  17. A mechanism accounting for independence on starting length of tension increase in ramp stretches of active skeletal muscle at short half-sarcomere lengths.

    Science.gov (United States)

    Till, Olaf; Siebert, Tobias; Blickhan, Reinhard

    2010-09-07

    Based on previous experimental results of independence on starting length of the tension gradient in constant-velocity stretches of active skeletal muscle at muscle lengths including the ascending limb and the plateau of the tension-length relation, a possible physiological mechanism determining the tension increase in lengthening active muscle is discussed. Considering the sliding filament theory, it is suggested that the tension-length relation of a half-sarcomere in lengthening contractions is different from that in isometric contractions. The assumed mechanism predicts, among others, that the thick filament retains its shortened length in lengthening contractions starting from a half-sarcomere length where this filament is compressed. An example model is implemented and checked with simulations. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. A comparison of abdominal muscle thickness changes after a lifting task in subjects with and without chronic low-back pain.

    Science.gov (United States)

    Seyed Hoseinpoor, Tahere; Kahrizi, Sedighe; Mobini, Bahram; Naji, Mohsen

    2015-03-01

    Using ultrasound imaging, the abdominal muscles' response to the back extensor muscle fatigue was assessed in subjects with chronic low-back pain (CLBP). Lumbar muscle fatigue is a common occurrence among workers. Alteration in motor coordination is one consequence of muscular fatigue. According to previous studies, CLBP subjects use their back and abdominal muscles in different ways, but questions remain about abdominal muscle responses to back muscle fatigue in CLBP patients. Thirteen CLBP patients and 15 healthy subjects participated in this study. The thickness of abdominal muscles-including transverse abdominis (TrA), internal oblique abdominis (IO), and external oblique abdominis (EO) muscles-was measured in standing position with and without axial loads before and after a lifting fatigue task. The results reveal a significant difference for the main effects of group on percentage of change in TrA thickness (F = 8.9, p = .004). Percentage of change in thickness of TrA was 10% greater in the CLBP group. Although IO thickness displayed greater percentage of change in the CLBP group, the difference between groups was not significant. Abdominal muscle behavior changes with back-muscle fatigue in both healthy and CLBP subjects, but responses were more exaggerated in CLBP patients. Ultrasound imaging technique can provide critical information about the effect of fatigue on spinal muscle activation and consequently about the stability of the spine. As a more applicable and easy technique, ergonomists can use ultrasound imaging in musculoskeletal system assessment in worker populations in future studies. © 2014, Human Factors and Ergonomics Society.

  19. Effect of stretching with and without muscle strengthening exercises for the foot and hip in patients with plantar fasciitis: A randomized controlled single-blind clinical trial.

    Science.gov (United States)

    Kamonseki, Danilo H; Gonçalves, Geiseane A; Yi, Liu C; Júnior, Império Lombardi

    2016-06-01

    To compare the effect of stretching with and without muscle strengthening of the foot alone or foot and hip on pain and function in patients with plantar fasciitis. Single blind randomized controlled trial. Eighty-three patients with plantar fasciitis were allocated to one of three treatment options for an eight-week period: Foot Exercise Group (FEG - extrinsic and intrinsic foot muscles), Foot and Hip Exercise Group (FHEG - abductor and lateral rotator muscles) and Stretching Alone Exercise Group (SAEG). A visual analog scale for pain, the Foot and Ankle Outcome Score and the Star Excursion Balance Test. All evaluations were performed before treatment and after the last treatment session. Improvements were found in all groups regarding the visual analog scale, the pain, activities of daily living, sports and recreation, quality of life (p  0.05). All three exercise protocols analyzed led to improvements at eight-week follow-up in pain, function and dynamic lower limb stability in patients with plantar fasciitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Associations between low back pain, urinary incontinence, and abdominal muscle recruitment as assessed via ultrasonography in the elderly

    Directory of Open Access Journals (Sweden)

    Vânia F. Figueiredo

    2015-02-01

    Full Text Available Background: Low back pain (LBP and urinary incontinence (UI are highly prevalent among elderly individuals. In young adults, changes in trunk muscle recruitment, as assessed via ultrasound imaging, may be associated with lumbar spine stability. Objective: To assess the associations between LBP, UI, and the pattern of transversus abdominis (TrA, internal (IO, and external oblique (EO muscle recruitment in the elderly as evaluated by ultrasound imaging. Method: Fifty-four elderly individuals (mean age: 72±5.2 years who complained of LBP and/or UI as assessed by the McGill Pain Questionnaire, Incontinence Questionnaire-Short Form, and ultrasound imaging were included in the study. The statistical analysis comprised a multiple linear regression model, and a p-value <0.05 was considered significant. Results: The regression models for the TrA, IO, and EO muscle thickness levels explained 2.0% (R2=0.02; F=0.47; p=0.628, 10.6% (R2=0.106; F=3.03; p=0.057, and 10.1% (R2=0.101; F=2.70; p=0.077 of the variability, respectively. None of the regression models developed for the abdominal muscles exhibited statistical significance. A significant and negative association (p=0.018; β=-0.0343 was observed only between UI and IO recruitment. Conclusion: These results suggest that age-related factors may have interfered with the findings of the study, thus emphasizing the need to perform ultrasound imaging-based studies to measure abdominal muscle recruitment in the elderly.

  1. Diagnostic accuracy of common clinical tests for assessing abdominal muscle function after motor-complete spinal cord injury above T6.

    Science.gov (United States)

    Bjerkefors, A; Squair, J W; Malik, R; Lam, T; Chen, Z; Carpenter, M G

    2015-02-01

    Diagnostic study. The objective of this study was to compare patterns of electromyography (EMG) recordings of abdominal muscle function in persons with motor-complete spinal cord injury (SCI) above T6 and in able-bodied controls, and to determine whether manual examination or ultrasound measures of muscle activation can be accurate alternatives to EMG. Research center focused on SCI and University laboratory, Vancouver, Canada. Thirteen people with SCI (11 with American Spinal Injury Association Impairment Scale (AIS) A and 2 AIS B; C4-T5), and 13 matched able-bodied participants volunteered for the study. Participants completed trunk tasks during manual examination of the abdominal muscles and then performed maximal voluntary isometric contractions, while EMG activity and muscle thickness changes were recorded. The frequency of muscle responses detected by manual examination and ultrasound were compared with detection by EMG (sensitivity and specificity). All individuals with SCI were able to elicit EMG activity above resting levels in at least one abdominal muscle during one task. In general, the activation pattern was task specific, confirming voluntary control of the muscles. Ultrasound, when compared with EMG, showed low sensitivity but was highly specific in its ability to detect preserved abdominal muscle function in persons with SCI. Conversely, manual examination was more sensitive than ultrasound but showed lower specificity. The results from this study confirm preserved voluntary abdominal muscle function in individuals classified with motor-complete SCI above T6 and highlight the need for further research in developing more accurate clinical measures to diagnose the level of trunk muscle preservation in individuals with SCI.

  2. Ultrasound measurement of deep and superficial abdominal muscles thickness during standing postural tasks in participants with and without chronic low back pain.

    Science.gov (United States)

    Ehsani, Fatemeh; Arab, Amir Massoud; Jaberzadeh, Shapour; Salavati, Mahyar

    2016-06-01

    Activity of deep abdominal muscles increases the lumbar stability. Majority of previous studies indicated abdominal muscle activity dysfunction during static activity in patients with low back pain (LBP). However, the number of studies that evaluated deep abdominal muscle activity in dynamic standing activities in patients is limited, while this assessment provides better understanding of pain behavior during these activities. Investigation of superficial and deep abdominal muscles activity in participants with chronic LBP as compared to healthy individuals during standing tasks. Case control study. Ultrasound imaging was used to measure the thickness of transverse abdominis (TrA), internal oblique (IO) and external oblique (EO) muscles in female participants with (N = 45) and without chronic LBP (CLBP) (N = 45) during tests. The Biodex Balance System was used to provide standing tasks. The thickness of each muscle in a standing task was normalized to actual thickness at rest in the supine lying position to estimate its activity. The results indicate increases in thickness of all muscles in both groups during dynamic as compared to static standing tasks (P  0.5). Lower percentages of thickness change for TrA muscle and higher for EO muscle were found in the patients as compared to healthy individuals during all tests (P  1.28). Higher activity of superficial than deep abdominal muscles in patients as compared to healthy individuals during standing tasks indicates motor control dysfunction in patients with CLBP. Standing tasks can discriminate the individuals with and without LBP and can be progressively used in training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Test-retest reliability of measurements of abdominal and multifidus muscles using ultrasound imaging in adults aged 50-79 years.

    Science.gov (United States)

    Cuellar, W A; Blizzard, L; Callisaya, M L; Hides, J A; Jones, G; Ding, C; Winzenberg, T M

    2017-04-01

    Test-retest reliability of the combined process of ultrasound imaging (USI) and image measurement of thickness of abdominal and upper lumbar multifidus (MF) muscles and MF cross sectional area (CSA) of older adults has not been established. Imaging muscles of older adults can be challenging due to age-related changes in the spine and skeletal muscle so establishing test-retest reliability in this population is important. This study aimed to evaluate test-retest reliability of USI of abdominal and MF muscle thickness and MF CSA for adults aged 50-79 years. One operator took single sets of ultrasound images of abdominal and MF muscles of 23 adults aged 50-79 years participating in a clinical trial of vitamin D supplementation for knee osteoarthritis, on two occasions, one week apart. Images were subsequently measured by a single examiner. Test-retest reliability for abdominal muscle thickness and MF CSA was substantial (intraclass correlation coefficients (ICC) > 0.81) and for MF thickness ranged from fair to substantial (ICC 0.55-0.86). The standard error of measurement (SEM) was low (0.02-0.21) in every case. ICCs were low and SEM values were high for percentage thickness change. The substantial test-retest reliability of abdominal and MF (L4-L5) muscle thickness and of MF CSA supports the use of USI as a clinical and research tool to assess abdominal and MF muscle thickness and MF CSA of older adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ultrasound tissue Doppler imaging reveals no delay in abdominal muscle feed-forward activity during rapid arm movements in patients with chronic low back pain.

    Science.gov (United States)

    Gubler, Deborah; Mannion, Anne F; Schenk, Peter; Gorelick, Mark; Helbling, Daniel; Gerber, Hans; Toma, Valeriu; Sprott, Haiko

    2010-07-15

    Cross-sectional study. Comparison of the timing of onset of lateral abdominal muscle activity during rapid arm movements in patients with nonspecific chronic low back pain (cLBP) and back-pain-free controls. Rapid movements of the arm are normally associated with prior activation of trunk-stabilizing muscles in readiness for the impending postural perturbation. Using invasive intramuscular electromyography techniques, studies have shown that this feed-forward function is delayed in some patients with low back pain (LBP). Ultrasound tissue Doppler imaging (TDI) provides an ultrasound method for quantifying muscle activation in a noninvasive manner, allowing investigation of larger groups of patients and controls. Ninety-six individuals participated (48 patients with cLBP and 48 matched LBP-free controls). During rapid shoulder flexion, abduction, and extension, surface electromyographic signals from the deltoid and motion-mode TDI images from the contralateral lateral abdominal muscles were recorded simultaneously. The onset of muscle activity was given by changes in the tissue velocity of the abdominal muscles, as measured with TDI. Pain and disability in the patients were assessed using standardized questionnaires. Data were analyzed using repeated measures analysis of variance. In both groups, feed-forward activity of the lateral abdominal muscles was recorded during arm movements in all directions. The main effect of "group membership" revealed no significant difference between the groups for the earliest onset of abdominal muscle activity (P = 0.398). However, a significant "group x body side" interaction (P = 0.015) was observed, and this was the result of earlier onsets in the cLBP group than controls for the abdominal muscles on the right (but not left) body side. No relationship was found between the time of onset of the earliest abdominal muscle activity and pain intensity, pain frequency, pain medication usage, or Roland Morris disability scores. Patients

  5. Muscle mitochondrial oxidative phosphorylation activity, but not content, is altered with abdominal obesity in sedentary men: synergism with changes in insulin sensitivity.

    Science.gov (United States)

    Chanseaume, Emilie; Barquissau, Valentin; Salles, Jérôme; Aucouturier, Julien; Patrac, Véronique; Giraudet, Christophe; Gryson, Céline; Duché, Pascale; Boirie, Yves; Chardigny, Jean-Michel; Morio, Béatrice

    2010-06-01

    Abdominal obesity is a major risk factor for muscle insulin resistance. Mitochondria may play a key role in this etiology. Changes in muscle mitochondrial content and function were examined according to abdominal obesity and insulin sensitivity in men. The descriptive MitHyCal study was conducted on the general population of Clermont-Ferrand, France. Forty-two healthy sedentary men (41.7 +/- 4.3 yr) were divided into four groups according to waist circumference: 87 cm or less (group 1, n = 10); 88-93 cm (group 2, n = 12); 94-101 cm (group 3, n = 10); and 102 cm or greater (group 4, n = 10). Plasma metabolic check-up was performed, and insulin sensitivity index was calculated from glucose and insulin responses to a 3-h oral glucose tolerance test. Muscle biopsies were obtained to assess mitochondrial content, oxidative phosphorylation activity, and superoxide anion (reactive oxygen species) production. Assessment of muscle mitochondrial content and function was planned before data collection began. Abdominal obesity was negatively correlated to insulin sensitivity index (r = -0.39; P muscle mitochondrial content and maximal activity of key oxidative enzymes. In contrast, muscle mitochondrial ADP-stimulated respiration rate was 24% higher in groups 2 and 3 compared to groups 1 and 4 (P Abdominal obesity is associated with alterations in intrinsic muscle mitochondrial function but not content. These adaptations mainly result in reduced mitochondrial ATP production rate in response to insulin resistance.

  6. Intra-abdominal pressure and abdominal wall muscular function: Spinal unloading mechanism.

    Science.gov (United States)

    Stokes, Ian A F; Gardner-Morse, Mack G; Henry, Sharon M

    2010-11-01

    The roles of antagonistic activation of abdominal muscles and of intra-abdominal pressurization remain enigmatic, but are thought to be associated with both spinal unloading and spinal stabilization in activities such as lifting. Biomechanical analyses are needed to understand the function of intra-abdominal pressurization because of the anatomical and physiological complexity, but prior analyses have been over-simplified. To test whether increased intra-abdominal pressure was associated with reduced spinal compression forces for efforts that generated moments about each of the principal axis directions, a previously published biomechanical model of the spine and its musculature was modified by the addition of anatomically realistic three-layers of curved abdominal musculature connected by fascia to the spine. Published values of muscle cross-sectional areas and the active and passive stiffness properties were assigned. The muscle activations were calculated assuming minimized muscle stress and stretch for the model loaded with flexion, extension, lateral bending and axial rotation moments of up to 60 Nm, along with intra-abdominal pressurization of 5 or 10 kPa (37.5 or 75 mm Hg) and partial bodyweight (340 N). The analysis predicted a reduction in spinal compressive force with increase in intra-abdominal pressurization from 5 to 10 kPa. This reduction at 60 Nm external effort was 21% for extension effort, 18% for flexion effort, 29% for lateral bending and 31% for axial rotation. This analysis predicts that intra-abdominal pressure produces spinal unloading, and shows likely muscle activation patterns that achieve this. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. The effect of exercise training on hormone-sensitive lipase in rat intra-abdominal adipose tissue and muscle

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Stallknecht, B; Langfort, J

    2001-01-01

    1. Adrenaline-stimulated lipolysis in adipose tissue may increase with training. The rate-limiting step in adipose tissue lipolysis is catalysed by the enzyme hormone-sensitive lipase (HSL). We studied the effect of exercise training on the activity of the total and the activated form of HSL......, n = 12) or sedentary (S, n = 12). Then RE and ME adipose tissue and the EDL and soleus muscles were incubated for 20 min with 4.4 microM adrenaline. 3. HSL enzyme activities in adipose tissue were higher in T compared with S rats. Furthermore, in RE adipose tissue, training also doubled HSL protein...... not differ between T and S rats (P > 0.05). 4. In conclusion, training increased the amount of HSL and the sensitivity of HSL to stimulation by adrenaline in intra-abdominal adipose tissue, the extent of the change differing between anatomical locations. In contrast, in skeletal muscle the amount of HSL...

  8. Effect of core stability exercises on feed-forward activation of deep abdominal muscles in chronic low back pain: a randomized controlled trial.

    Science.gov (United States)

    Vasseljen, Ottar; Unsgaard-Tøndel, Monica; Westad, Christian; Mork, Paul Jarle

    2012-06-01

    A randomized controlled trial. To investigate feed-forward activation or timing of abdominal muscle activation in response to rapid shoulder flexion after 8 weeks with core stability exercises, sling exercises, or general exercises in chronic nonspecific low back pain (LBP) patients. Delayed onset in abdominal muscles has been associated with LBP. Low load exercises to volitionally activate the transversus abdominis were introduced to restore trunk muscle activation deficits. More forceful co-contraction exercises have been advocated by others. This study explored whether abdominal muscle onset changed after low-load core stability exercises, high-load sling exercises, or general exercises. Subjects (N = 109) with chronic nonspecific LBP of at least 3 months' duration were randomly assigned to 8 weekly treatments with low-load core stability exercises, high-load stabilizing exercises in slings, or general exercises in groups. Primary outcome was onset recorded bilaterally by m-mode ultrasound imaging in the deep abdominal muscles in response to rapid shoulder flexion. No or small changes were found in onset after treatment. Baseline adjusted between group differences showed a 15 ms (95% confidence interval [CI], 1-28; P = 0.03) and a 19 ms (95% CI, 5-33; P core stability and general exercises, respectively, but on 1 side only. There was no association between changes in pain and onset over the intervention period (R ≤ 0.02). Abdominal muscle onset was largely unaffected by 8 weeks of exercises in chronic LBP patients. There was no association between change in onset and LBP. Large individual variations in activation pattern of the deep abdominal muscles may justify exploration of differential effects in subgroups of LBP.

  9. In a dynamic lifting task, the relationship between cross-sectional abdominal muscle thickness and the corresponding muscle activity is affected by the combined use of a weightlifting belt and the Valsalva maneuver.

    Science.gov (United States)

    Blanchard, Trevor W; Smith, Camille; Grenier, Sylvain G

    2016-06-01

    It has been shown that under isometric conditions, as the activity of the abdominal muscles increases, the thicknesses of the muscles also increase. The purpose of this experiment was to determine whether change in muscle thickness could be used as a measure of muscle activity during a deadlift as well as determining the effect of a weightlifting belt and/or the Valsalva maneuver on the muscle thicknesses. The Transversus Abdominis (TrA) and Internal Obliques (IO) muscles were analyzed at rest and during a deadlift. Muscle thickness was measured using ultrasound imaging and muscle activity was simultaneously recorded using electromyography. Each subject performed deadlift under normal conditions, while performing the Valsalva maneuver, while wearing a weightlifting belt and while both utilizing the belt and the Valsalva maneuver. There was no relationship between change in muscle thickness and muscle activity for both the TrA and IO (R(2)abdominal muscle thickness whereas the belt limited muscle expansion; each with an increase in activity. These results indicate that ultrasound cannot be used to measure muscle activity for a deadlift and that the belt affects how the IO and TrA function together. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Activity of Lower Limb Muscles During Squat With and Without Abdominal Drawing-in and Pilates Breathing.

    Science.gov (United States)

    Barbosa, Alexandre C; Martins, Fábio M; Silva, Angélica F; Coelho, Ana C; Intelangelo, Leonardo; Vieira, Edgar R

    2017-11-01

    Barbosa, AC, Martins, FM, Silva, AF, Coelho, AC, Intelangelo, L, and Vieira, ER. Activity of lower limb muscles during squat with and without abdominal drawing-in and Pilates breathing. J Strength Cond Res 31(11): 3018-3023, 2017-The purpose of this study was to assess the effects of abdominal drawing-in and Pilates breathing on the activity of lower limb muscles during squats. Adults (n = 13, 22 ± 3 years old) with some Pilates experience performed three 60° squats under each of the following conditions in a random order: (I) normal breathing, (II) drawing-in maneuver with normal breathing, and (III) drawing-in maneuver with Pilates breathing. Peak-normalized surface electromyography of the rectus femoris, biceps femoris, gastrocnemius medialis, and tibialis anterior during the knee flexion and extension phases of squat exercises was analyzed. There were significant differences among the conditions during the knee flexion phase for the rectus femoris (p = 0.001), biceps femoris (p = 0.038), and tibialis anterior (p = 0.001), with increasing activation from conditions I to III. For the gastrocnemius medialis, there were significant differences among the conditions during the knee extension phase (p = 0.023), with increased activity under condition I. The rectus and biceps femoris activity was higher during the extension vs. flexion phase under conditions I and II. The tibialis anterior activity was higher during the flexion compared with the extension phase under all conditions, and the medial gastrocnemius activity was higher during the extension phase under condition I. Doing squats with abdominal drawing-in and Pilates breathing resulted in increased rectus, biceps femoris, and tibialis anterior activity during the flexion phase, increasing movement stability during squat exercises.

  11. Loss of abdominal muscle in Pitx2 mutants associated with altered axial specification of lateral plate mesoderm.

    Directory of Open Access Journals (Sweden)

    Diana Eng

    Full Text Available Sequence specific transcription factors (SSTFs combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM before the onset of myogenesis in somites. The somatopleure of Pitx2 null embryos begins to grow abnormally outward before muscle regulatory factors (MRFs or Pitx2 begin expression in the dermomyotome/myotome. Abdominal somites become deformed and stunted as they elongate into the mutant body wall, but maintain normal MRF expression domains. Subsequent loss of abdominal muscles is therefore not due to defects in specification, determination, or commitment of the myogenic lineage. Microarray analysis was used to identify SSTF families whose expression levels change in E10.5 interlimb body wall biopsies. All Hox9-11 paralogs had lower RNA levels in mutants, whereas genes expressed selectively in the hypaxial dermomyotome/myotome and sclerotome had higher RNA levels in mutants. In situ hybridization analyses indicate that Hox gene expression was reduced in parts of the LPM and intermediate mesoderm of mutants. Chromatin occupancy studies conducted on E10.5 interlimb body wall biopsies showed that Pitx2 protein occupied chromatin sites containing conserved bicoid core motifs in the vicinity of Hox 9-11 and MRF genes. Taken together, the data indicate that Pitx2 protein in LPM cells acts, presumably in combination with other SSTFs, to repress gene expression, that are normally expressed in physically adjoining cell types. Pitx2 thereby prevents cells in the interlimb LPM from adopting the stable network kernels that define sclerotomal, dermomyotomal, or myotomal mesenchymal cell types. This mechanism may be viewed either as lineage restriction or specification.

  12. Loss of abdominal muscle in Pitx2 mutants associated with altered axial specification of lateral plate mesoderm.

    Science.gov (United States)

    Eng, Diana; Ma, Hsiao-Yen; Xu, Jun; Shih, Hung-Ping; Gross, Michael K; Kioussi, Chrissa; Kiouss, Chrissa

    2012-01-01

    Sequence specific transcription factors (SSTFs) combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM) before the onset of myogenesis in somites. The somatopleure of Pitx2 null embryos begins to grow abnormally outward before muscle regulatory factors (MRFs) or Pitx2 begin expression in the dermomyotome/myotome. Abdominal somites become deformed and stunted as they elongate into the mutant body wall, but maintain normal MRF expression domains. Subsequent loss of abdominal muscles is therefore not due to defects in specification, determination, or commitment of the myogenic lineage. Microarray analysis was used to identify SSTF families whose expression levels change in E10.5 interlimb body wall biopsies. All Hox9-11 paralogs had lower RNA levels in mutants, whereas genes expressed selectively in the hypaxial dermomyotome/myotome and sclerotome had higher RNA levels in mutants. In situ hybridization analyses indicate that Hox gene expression was reduced in parts of the LPM and intermediate mesoderm of mutants. Chromatin occupancy studies conducted on E10.5 interlimb body wall biopsies showed that Pitx2 protein occupied chromatin sites containing conserved bicoid core motifs in the vicinity of Hox 9-11 and MRF genes. Taken together, the data indicate that Pitx2 protein in LPM cells acts, presumably in combination with other SSTFs, to repress gene expression, that are normally expressed in physically adjoining cell types. Pitx2 thereby prevents cells in the interlimb LPM from adopting the stable network kernels that define sclerotomal, dermomyotomal, or myotomal mesenchymal cell types. This mechanism may be viewed either as lineage restriction or specification.

  13. Abdominal muscle function in ventilation and locomotion in new world opossums and basal eutherians: Breathing and running with and without epipubic bones.

    Science.gov (United States)

    Reilly, Stephen M; McElroy, Eric J; White, Thomas D

    2009-08-01

    All tetrapods have the same four basic abdominal hypaxial muscle layers that wrap around the abdomen between the pelvis, ribcage, and spine. However, the marsupials and our immediate mammalian ancestors have epipubic bones extending anteriorly into the ventral hypaxial layers with two additional muscles connecting them to the ventral midline and femur. Studies of two marsupials have shown that all of the abdominal hypaxials play a part bilaterally in resting ventilation and during locomotion there is an asymmetrical pattern of activity as the hypaxial muscles form a cross-couplet linkage that uses the epipubic bone as a lever to provide long-axis support of the body between diagonal limb couplets during each step. The cross-couplet epipubic lever system defines the earliest mammals and is lost in placental mammals. To expand our understanding of the evolution of mammalian abdominal muscle function and loco-ventilatory integration we tested the generality of the cross-couplet system in marsupials and conducted the first formal studies of hypaxial abdominal motor patterns in generalized placental mammals focusing on a representative rodent and insectivore. These new data reveal 1) that continuous abdominal muscle tonus during resting ventilation and a 1:1 breath to step cycle during locomotion appear to be the basal condition for mammals, 2) that the loss of epipubic bones in eutherians is associated with a shift from the cross-couplet dominated motor pattern of marsupials to a shoulder-to-pelvis system with unilateral activation of abdominal muscles during locomotion and 3) that hypaxial function in generalized eutherians is more similar to marsupials than cursorial mammals. (c) 2009 Wiley-Liss, Inc.

  14. An electromyographic study of abdominal muscle activity in children with spastic cerebral palsy

    Directory of Open Access Journals (Sweden)

    Saviour Adjenti

    2017-10-01

    Conclusion: The findings from this study suggest that the RA could be targeted during rehabilitation regimens; however, the force generated by this muscle may not be sufficient for the maintenance of trunk stability without optimal support from the EO and IO muscles.

  15. Oblique abdominal muscle activity in response to external perturbations when pushing a cart

    NARCIS (Netherlands)

    Lee, Y.J.; Hoozemans, M.J.M.; van Dieen, J.H.

    2010-01-01

    Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that

  16. Efeito de um programa de alongamento muscular pelo método de Reeducação Postural Global sobre a força muscular respiratória e a mobilidade toracoabdominal de homens jovens sedentários Effect of a muscle stretching program using the Global Postural Reeducation method on respiratory muscle strength and thoracoabdominal mobility of sedentary young males

    Directory of Open Access Journals (Sweden)

    Marlene Aparecida Moreno

    2007-12-01

    Full Text Available OBJETIVO: Avaliar o efeito do alongamento da cadeia muscular respiratória, pelo método de Reeducação Postural Global (RPG, sobre a força muscular respiratória e a mobilidade toracoabdominal de homens jovens sedentários. MÉTODOS: Estudo randomizado, realizado com 20 voluntários sedentários, idade 22,65 ± 2,5 anos, divididos em dois grupos de 10: grupo controle, que não participou do alongamento, e grupo submetido à intervenção pelo método de RPG. O protocolo foi constituído por um programa de alongamento da cadeia muscular respiratória na postura 'rã no chão com os braços abertos' realizado com a regularidade de duas vezes por semana, durante 8 semanas, totalizando 16 sessões. Os dois grupos foram submetidos à avaliação da medida da pressão inspiratória máxima, pressão expiratória máxima e cirtometria toracoabdominal, antes e após o período de intervenção. RESULTADOS: Os valores das pressões respiratórias máximas e da cirtometria do grupo controle antes e após o período de intervenção não apresentaram alterações significativas (p > 0,05. No grupo RPG, os valores de todas as variáveis apresentaram diferenças estatisticamente significativas após o protocolo de intervenção (p OBJECTIVE: To evaluate the effect that respiratory muscle stretching using the global postural reeducation (GPR method has on respiratory muscle strength, thoracic expansion and abdominal mobility in sedentary young males. METHODS: This was a randomized study involving 20 sedentary volunteers, aged 22.7 ± 2.5 years, divided into two groups of 10: a control group, composed of subjects not performing any exercises, and a group of subjects submitted to the GPR method. The protocol consisted of a program to stretch the respiratory muscles with participants in the 'open-arm, open hip joint angle' position, which was regularly performed twice a week for 8 weeks, totaling 16 sessions. The two groups were submitted to measurements of

  17. To Evaluate the Effectiveness of TBTS - A Novel Device to do Self-Stretching of Gastroc-Soleus Muscle in Patients with Equinus Deformity.

    Science.gov (United States)

    Muzaffar, Tufail; Rather, Abdul Hamid; Haque, Kaleem Ul; Ahmad, Sheikh Javeed

    2017-06-01

    Various methods have been used for management of equinus deformity. However, stretching gastroc-soleus muscle and achilles tendon is a difficult task. It is labour intensive, which makes the provision of treatment difficult for many patients. To study the effectiveness of Tension Bar Tendon Stretch (TBTS) compared to conventional stretching in patients with equinus deformity in terms of improvement in equinus angle and spasticity. A prospective randomised case control study was done on 16 patients of both the sexes in the age group four years to 56 years. Patients were stratified based on presence or absence of spasticity. Patients were further randomly allotted to the study or control group. Study group received stretching with TBTS in addition to the conventional rehabilitation programme. Patients were assessed in terms of improvement in equinus deformity and spasticity (modified Ashworth scale). These indices were measured at 0 month (pre-treatment), 1 month (post-treatment), and 6 months (follow up). Equinus deformity in patients with spastic equinus changed from 22.4° to 12° in study group while in control group change was from 21° to 17°. The difference was statistically significant with p-value of 0.001. Non-spastic (post accidental) changed from 30° to 15° in study group while in control group change was from 31° to 23° with p-value of 0.001. Modified Ashworth Score (MAS) was assessed only in spastic equinus, while in study group MAS changed from 2.8 to 1.5 and MAS change was 2.6 to 2 in control group; this difference after six months of therapy was statistically significant with a p-value of 0.001. TBTS can be an effective tool in rehabilitation of patients having equinus deformity; it provides an effective and patient controlled stretching and no need for a physical therapist. TBTS is a novel but simple instrument that can be made locally by the patient or the family.

  18. Ultrasonic Thickness of Lateral Abdominal Wall Muscles in Response to Pelvic Floor Muscle Contraction in women with stress incontinency with and without Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Farideh Dehghan-Manshadi

    2014-01-01

    Full Text Available Objective: Urinary Incontinence (UI as a common lower urinary tract dysfunction , results from Pelvic Floor Muscle's (PFM underactivity.Because of co-activation of PFM and the Lateral Abdominal Wall Muscles (LAWM, this study was aimed to investigate the changes in the ultrasonic thickness of the LAWM in response to PFM contraction in stress urinary incontinent (SUIwomen with and without Chronic Low Back Pain (CLBP. Materials & Methods: A total of 28 women, 10 healthy, 18 SUI with and without CLBP (9 in each group participated in this quasi-experimental study. After collecting demographic information and assessment of PFM function, changes in ultrasonic thickness of right LAWM were measured in response to PFM contraction. One way ANOVA, Kruskal-Wallis and Pearson’s correlation tests were performed to analyze the data. Values of P0.05. There was a significant increase in thickness of the Traversus Abdominis Muscle (TrA during PFM contraction in control group comparing experimental groups (P=0.03. Women in control group showed significantly higher PFM strength and more intravaginal pressure (P=0.001. Conclusion: Changes in ultrasonic thickness of the TrA during PFM contraction revealed disturbance of co-activation of the LAWM and the PFM in women with and without SUI CLBP.

  19. Training through gametherapy promotes coactivation of the pelvic floor and abdominal muscles in young women, nulliparous and continents.

    Science.gov (United States)

    Silva, Valeria Regina; Riccetto, Cássio Luis Zanettini; Martinho, Natalia Miguel; Marques, Joseane; Carvalho, Leonardo Cesar; Botelho, Simone

    2016-01-01

    several studies have been investigated co-activation can enhance the effectveness of PFM training protocols allowing preventive and therapeutic goals in pelvic floor dysfunctions. The objective of the present study was to investigate if an abdominal-pelvic protocol of training (APT) using gametherapy would allow co-activation of PFM and transversus abdominis/oblique internal (TrA/OI) muscles. Twenty-five nulliparous, continent, young females, with median age 24.76 (±3.76) years were evaluated using digital palpation (DP) of PFM and surfasse electromyography of PFM and TrA/OI simultaneously, during maximal voluntary contraction (MVC), alternating PFM and TrA/OI contraction requests. All women participated on a supervised program of APT using gametherapy, that included exercises of pelvic mobilization associated to contraction of TrA/OI muscles oriented by virtual games, for 30 minutes, three times a week, in a total of 10 sessions. Electromyographic data were processed and analyzed by ANOVA - analysis of variance. When MVC of TrA/OI was solicited, it was observed simultaneous increase of electromyographic activity of PFM (p=0.001) following ATP. However, EMG activity did not change significantly during MVC of PFM. Training using gametherapy allowed better co-activation of pelvic floor muscles in response to contraction of TrA, in young nulliparous and continent women. Copyright© by the International Brazilian Journal of Urology.

  20. Reduced Chest and Abdominal Wall Mobility and Their Relationship to Lung Function, Respiratory Muscle Strength, and Exercise Tolerance in Subjects With COPD.

    Science.gov (United States)

    Kaneko, Hideo; Shiranita, Shuichi; Horie, Jun; Hayashi, Shinichiro

    2016-11-01

    Advanced air-flow limitation in patients with COPD leads to a reduction in vital capacity, respiratory muscle strength, and exercise capacity. However, its impact on chest and abdominal wall mobility is unknown. This study aimed to ascertain the prevalence of patients with COPD with reduced chest and abdominal wall mobility and to investigate the effect of reduced chest and abdominal wall mobility on pulmonary function, respiratory muscle strength, and exercise capacity. In 51 elderly male subjects with COPD, chest and abdominal wall mobility, FVC, FEV 1 , FEV 1 /FVC, maximal inspiratory pressure (P Imax ), maximal expiratory pressure (P Emax ), and the 6-min walk distance (6MWD) were assessed. Chest and abdominal wall mobility were measured using the breathing movement scale (0-8) at the 3 regions (upper chest, lower chest, and abdomen). Reduced mobility was defined as a value lower than the lower limit of the normal scale. The unpaired t test, Mann-Whitney test, and multiple regression analysis were performed. The percentages of subjects with reduced mobility were 78% for the upper chest, 76% for the lower chest, and 53% for the abdomen. The subjects with reduced mobility had significantly low FVC, FEV 1 , and 6MWD in each region and significantly low FEV 1 /FVC, P Imax , and P Emax in the abdominal region compared with those with nonreduced mobility. FVC and 6MWD were independently associated with the scale values in each region and with the abdominal scale value, respectively. The majority of subjects with COPD had reduced chest and abdominal wall mobility, which was independently associated with FVC. Even though abdominal wall mobility was relatively preserved compared with chest wall mobility, it was also independently associated with 6MWD. Copyright © 2016 by Daedalus Enterprises.

  1. Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats

    OpenAIRE

    Andrews, Colin G.; Pagliardini, Silvia

    2015-01-01

    Breathing is more vulnerable to apneas and irregular breathing patterns during rapid eye movement (REM) sleep in both humans and rodents. We previously reported that robust and recurrent recruitment of expiratory abdominal (ABD) muscle activity is present in rats during REM epochs despite ongoing REM-induced muscle atonia in skeletal musculature. To develop a further understanding of the characteristics of ABD recruitment during REM epochs and their relationship with breathing patterns and ir...

  2. Acute Onset of Abdominal Muscle Dyskinesia ('Belly Dancer Syndrome') From Quetiapine Exposure: A Case Report.

    Science.gov (United States)

    Yeh, Jia-Yin; Tu, Kun-Yu; Tseng, Ping-Tao; Lee, Yu; Lin, Pao-Yen

    2018-02-22

    Belly dancer syndrome, also called belly dance syndrome or belly dancer dyskinesia, is a kind of abdominal dyskinesia with painful sensation. Its etiology is still unclear and there are few studies reporting its association with antipsychotics. Quetiapine is an atypical antipsychotic that causes lower risk of extrapyramidal symptoms than typical antipsychotics. Here, we presented the first case of belly dancer syndrome in a 71-year-old woman with major depressive disorder after short-term use of quetiapine.

  3. Effects of Motor Control Exercise Vs Muscle Stretching Exercise on Reducing Compensatory Lumbopelvic Motions and Low Back Pain: A Randomized Trial.

    Science.gov (United States)

    Park, Kyue-Nam; Kwon, Oh-Yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Weon, Jong-Hyuck; Kim, Tae-Ho; Choi, Houng-Sik

    2016-10-01

    The purpose of this study was to investigate the effectiveness of a 6-week motor control exercise (MCE) vs stretching exercise (SE) on reducing compensatory pelvic motion during active prone knee flexion (APKF) and intensity of low back pain. Thirty-six people in the lumbar-rotation-extension subgroup were randomly assigned equally into 2 exercise groups (18 people in each an MCE or SE group). A 3-dimensional motion-analysis system was used to measure the range and onset time of pelvic motion and knee flexion during APKF. Surface electromyography was used to measure the muscle activity and onset time of the erector spinae and the hamstrings during APKF. The level of subjective low back pain was measured using a visual analog scale. The MCE group had more significant decreases in and delay of anterior pelvic tilt, pelvic rotation, and erector spinae muscle activity during APKF, as well as reduced intensity of low back pain compared with the SE group (P < .05). For rehabilitation in patients in the lumbar-rotation-extension subgroup, MCE was more effective than SE in reducing compensatory pelvic motion and muscle activity during APKF and minimizing low back pain. Copyright © 2016. Published by Elsevier Inc.

  4. Comparison of the effects of knee and hip and single knee muscles strengthening/ stretching exercises on pain intensity and function in athletes with patellofemoral pain syndrome

    Directory of Open Access Journals (Sweden)

    Vahid Mazloum

    2016-08-01

    Full Text Available Background: Patellofemoral pain syndrome (PFPS is a common musculoskeletal condition among athletes. The evidence emphasizes on the importance of hip musculature strengthening exercises for such patients. Objective: To investigate the effects of strengthening-stretching knee muscles exercises and hip posterolateral musculature exercises in athletes with PFPS. Methods: In this clinical trial, 28 athletes with age average of 22.7±2.4 years with PFPS were allocated into conventional knee muscles exercises (CKME (n=14 and posterolateral hip muscles exercises (PHME (n=14. The subjects of both groups performed the supervised exercise protocols in 12 sessions. The Visual Analogue Scale and 6-minute walking tests were administrated respectively to evaluate pain intensity and function. The data were analyzed using Shapiro-wilk test, Independent-sample t test, and Repeated Measure ANOVA test. Findings: Demographic, pain intensity, and physical function data were similar between groups at baseline. Both groups significantly improved in pain intensity and function following a 4-week exercise program. Additionally, the athletes in PHME group had higher level of decreased pain intensity and improved function in follow-up assessment than the subjects in CKME group. Conclusion: Using hip posterolateral musculature exercises in addition to the knee conventional exercises is more effective for athletes with PFPS.

  5. Postoperative outcomes following preoperative inspiratory muscle training in patients undergoing open cardiothoracic or upper abdominal surgery: protocol for a systematic review

    Directory of Open Access Journals (Sweden)

    Mans Christina M

    2012-12-01

    Full Text Available Abstract Background In patients undergoing open cardiothoracic and upper abdominal surgery, postoperative pulmonary complications remain an important cause of postoperative morbidity and mortality, impacting upon hospital length of stay and health care resources. Adequate preoperative respiratory muscle strength may help protect against the development of postoperative pulmonary complications and therefore preoperative inspiratory muscle training has been suggested to be of potential value in improving postoperative outcomes. Methods/Design A systematic search of electronic databases will be undertaken to identify randomized trials of preoperative inspiratory muscle training in patients undergoing elective open cardiothoracic and upper abdominal surgery. From these trials, we will extract available data for a list of predefined outcomes, including postoperative pulmonary complications, hospital length of stay and respiratory muscle strength. We will meta-analyze comparable results where possible, and report a summary of the available pool of evidence. Discussion This review will provide the most comprehensive answer available to the question of whether preoperative inspiratory muscle training is clinically useful in improving postoperative outcomes in patients undergoing cardiothoracic and upper abdominal surgery. It will help inform clinicians working in the surgical arena of the likely effectiveness of instituting preoperative inspiratory muscle training programs to improve postoperative outcomes.

  6. Reliability and validity of lumbar and abdominal trunk muscle endurance tests in office workers with nonspecific subacute low back pain.

    Science.gov (United States)

    del Pozo-Cruz, Borja; Mocholi, Miguel H; del Pozo-Cruz, Jesus; Parraca, Jose A; Adsuar, Jose C; Gusi, Narcis

    2014-01-01

    Despite the widespread use of trunk endurance tests, the reliability and validity of these tests in office workers with subacute nonspecific low back pain are unknown. This cross-sectional study involved 190 subjects: 30 men and 42 women without low back pain and 47 men and 71 women with low back pain. All subjects underwent timed prone and supine isometric lumbar and abdominal trunk endurance tests that were performed until subjective fatigue occurred. All subjects also completed the Roland Morris and Oswestry self-reported disability questionnaires. A test-retest study (7 days) was conducted with 31 participants with low back pain from the study. For the abdominal trunk endurance test, males and females with low back pain had mean (SD) values of 62.06 (36.87) and 46.06 (29.28) seconds, respectively, both significantly lower than the asymptomatic workers. For the lumbar test, males and females with low back pain had mean (SD) values of 79.57 (30.66) and 75.49 (28.97) seconds, respectively, again, both significantly lower than the asymptomatic workers. The intraclass correlation coefficients of both tests exceeded 0.90 and the Kappa indices were excellent for both men and women. Receiver-operating curve analyses revealed areas under the curve very close to or exceeding 0.70 for both men and women for both tests. The lumbar and abdominal trunk muscle endurance tests appeared to be reliable and valid measures in office workers with subacute low back pain.

  7. Evaluation of pelvic floor muscles activity with and without abdominal maneuvers in subjects with and without low back pain.

    Science.gov (United States)

    Ehsani, Fatemeh; Arab, Amir Massoud; Assadi, Hamed; Karimi, Noureddin; Shanbehzadeh, Sanaz

    2016-04-27

    There was controversy in finding of studies related pelvic floor muscle (PFM) rehabilitation of subjects with low back pain (LBP), while this issue is very important for treatment of subjects with LBP. The purpose of this study was to evaluate PFM contraction in three conditions of alone and with abdominal hollowing (AH) or abdominal bracing (AB) maneuvers in subjects with and without chronic LBP. Subjects were divided into two groups: subjects with LBP (N = 25) and without LBP (N = 27). PFM contraction alone and during contraction with AH or AB maneuvers was measured. The amount of bladder base movement was measured as an indicator of PFM activity. There were no differences in PFM activity between subjects with and without chronic LBP, when PFM contracted alone (P = 0.60), contracted with AH (P= 0.12) and AB maneuver (P = 0.54). Our data revealed that contraction of the PFM alone produce greater displacement of the bladder base than contraction of the PFM with AH (P = 0.005) or AB maneuver (P = 0.001) in both groups. However, no significant difference was found between contraction of the PFM with AH and AB maneuver in individuals with LBP (P = 0.31). It seems that PFM contraction alone is more effective than PFM contraction with AH or AB maneuvers in lifting the pelvic floor in subjects with and without LBP.

  8. Effect of a muscle stretching program using the global postural reeducation method for patients with chronic low back pain: A randomized controlled trial.

    Science.gov (United States)

    Lawand, Priscila; Lombardi Júnior, Império; Jones, Anamaria; Sardim, Carla; Ribeiro, Luiza Helena; Natour, Jamil

    2015-07-01

    To assess the effect of a muscle stretching program using the global postural reeducation (GPR) method for patients with chronic low back pain. A randomized, controlled, clinical trial with a single blinded examiner and intention-to-treat analysis was conducted. Sixty-one patients with chronic low back pain were randomly allocated to either the GPR group or a control group. Patients in the GPR group underwent one weekly 60-minute session of GPR for a period of 12 weeks. The control group remained on the waiting list under drug treatment, with no physical intervention. The following parameters were evaluated: pain (VAS), function capacity (Roland-Morris Questionnaire [RMQ]), quality of life (SF-36) and depressive symptoms (Beck Inventory). The evaluations were performed by a single blinded examiner at baseline, three and six months after the initial evaluation. The GPR group demonstrated statistical improvements (P<0.05) in the VAS and RMQ as well as the pain, emotional aspects, limitation in physical functioning, vitality and mental health subscales of the SF-36 immediately after the intervention (three months), which were maintained through to the six-month evaluation. Based on the findings, a stretching program using the