WorldWideScience

Sample records for ab initio investigation

  1. Ab initio investigation of the mechanical properties of copper

    Institute of Scientific and Technical Information of China (English)

    Liu Yue-Lin; Gui Li-Jiang; Jin Shuo

    2012-01-01

    Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation,we have systematically investigated the theoretical mechanical properties of copper (Cu).The theoretical tensile strengths are calculated to be 25.3 GPa,5.9 GPa,and 37.6 GPa for the fcc Cu single crystal in the [001],[110],and [111] directions,respectively.Among the three directions,the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes,while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes.In terms of the elastic constants of Cu single crystal,we also estimate some mechanical quantities of polycrystalline Cu,including bulk modulus B,shear modulus G,Young's modulus Ep,and Poisson's ratio v.

  2. An investigation of ab initio shell-model interactions derived by no-core shell model

    Science.gov (United States)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  3. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  4. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    Science.gov (United States)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  5. Transport properties of boron nanotubes investigated by ab initio calculation

    Institute of Scientific and Technical Information of China (English)

    Guo Wei; Hu Yi-Bin; Zhang Yu-Yang; Du Shi-Xuan; Gao Hong-Jun

    2009-01-01

    We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory(DFT). The transport properties of BNTs with different diameters and chiralities are studied by the Keldysh nonequi-librium Green function (NEGF) method. It is found that the cohesive energies and conductances of BNTs decrease as their diameters decrease. It is more difficult to form (N, 0) tubes than (M, M) tubes when the diameters of the two kinds of tubes are comparable. However, the (N, 0) tubes have a higher conductance than the (M, M) tubes. When the BNTs are connected to gold electrodes, the coupling between the BNTs and the electrodes will affect the transport properties of tubes significantly.

  6. Binding of oxygen with titanium dioxide on singlet potential energy surface: An ab initio investigation

    Science.gov (United States)

    Bogdanchikov, Georgii A.; Baklanov, Alexey V.

    2017-01-01

    Ab initio calculations have been carried out to investigate interaction of titanium dioxide TiO2 with oxygen O2 in ground triplet and excited singlet states. On a singlet potential energy surface (PES) formation of a stable compound of titanium peroxide TiO4 is revealed which should appear in reaction of TiO2 with singlet oxygen without activation barrier. This peroxide is lower in energy than the ground state of two individual molecules TiO2 + 3O2 by 34.6 kcal/mol. Location of conical intersection between triplet and singlet PESs of TiO2sbnd O2 is also investigated.

  7. All-electron ab initio investigations of the electronic states of the NiC molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl. A.

    1999-01-01

    momenta of F-4(g) Ni+ and S-4(u) C-. The predicted ground state, (1)Sigma(+), is well separated from the dense manifold of excited states by an energy gap of 6465 cm(-1). Multi-reference configuration-interaction (MRCI) calculations result in r(e) = 1.621 Angstrom and omega(e) = 874 cm(-1) agreeing well......The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...

  8. Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-01

    This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.

  9. Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Department of Nano Science, Computational Physical Science Research Laboratory, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2008-10-01

    By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.

  10. Ab-initio investigation of ferroelectricity in asymmetrically layered magnetic perovskites

    Science.gov (United States)

    Hatt, Alison; Spaldin, Nicola

    2007-03-01

    In an effort to combine magnetism and ferroelectricity in a single material we are motivated to explore creative routes to ferroelectricity that allow the coexistence of magnetism. In this talk we present results from an ab-initio study of a system of asymmetrically layered magnetic perovskite oxides in which the asymmetric layering should induce a ferroelectric polarization. We investigate this prediction in a model system of La(Al,Fe,Cr)O3, and find that a large switchable ferroelectric polarization can indeed be obtained, although it does not originate from the asymmetric layering. We examine the forces driving polarization in this system, and propose two- and three-dimensional heteroepitaxy as a general route to stabilizing novel ferroelectrics and multiferroics.

  11. Ab Initio Investigations of the C2F4S Isomers and of Their Interconversions

    DEFF Research Database (Denmark)

    Shim, Irene; Vallano-Lorenzo, Sandra; Lisbona-Martin, Pilar

    2003-01-01

    The transition states and the activation energies for the unobserved isomerization reactions between the three possible C2F4S isomers with divalent sulfur, trifluorothioacetyl fluoride 1, tetrafluorothiirane 2, and trifluoroethenesulfenyl fluoride 3, have been determined by ab initio Hartree-Fock...

  12. Ab initio calculations on 2-imidazolyl-2-thiazolyl azo compounds - an investigation of potential near-infrared absorbing structures

    DEFF Research Database (Denmark)

    Åstrand, P.-O.; Bak, K.L.; Sauer, S.P.A.

    2001-01-01

    The two lowest singlet excitation energies of 26 2-imidazolyl-2-thiazolylazo compounds have been investigated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Various combinations of 4- and 5-substituents at both the imidazole and thiazole units have bee...

  13. Nitrogen Molecule-Ethylene Sulfide Complex Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    Science.gov (United States)

    Iwano, Sakae; Kawashima, Yoshiyuki; Hirota, Eizi

    2016-06-01

    We have systematically investigated the van der Waals complexes consisting of the one from each of the two groups: (Rg, CO, N_2 or CO_2) and (dimethyl ether, dimethyl sulfide, ethylene oxide or ethylene sulfide), by using Fourier transform microwave spectroscopy supplemented by ab initio MO calculations, in order to understand the dynamical behavior of van der Waals complexes and to obtain information on the potential function to internal motions in complexes. Two examples of the N_2 complex were investigated: N_2-DME (dimethyl ether), for which we reported a preliminary result and N_2-EO (ethylene oxide). In the present study we focused attention to the N_2-ES (ethylene sulfide) complex. We have detected two sets of the {b}-type transitions for the 15N_2-ES in ortho and para states, and have analyzed them by using the asymmetric-rotor program of {A}-reduction. In contrast with the N_2-EO, for which each of the ortho and para states were found split into a strong/weak pair, only some transitions of the 15N_2-ES were accompanied by two or three components. The observed spectra of the 14N_2-ES were complicated because of hyperfine splittings due to the nuclear quadrupole coupling of the two nitrogen atoms. We concluded that the N_2 moiety was located in the plane perpendicular to the C-S-C plane and bisecting the CSC angle of the ES. Two isomers were expected to exist for 15NN-ES, one with 15N in the inner and the other in the outer position, and in fact two sets of the spectra were detected. We have carried out ab initio molecular orbital calculations at the level of MP2 with basis sets 6-311++G(d, p), aug-cc-pVDZ, and aug-cc-pVTZ, to complement the information on the intracomplex motions obtained from the observed rotational spectra. Y. Kawashima, A. Sato, Y. Orita, and E. Hirota, J. Phys. Chem. A, 2012 116, 1224 Y. Kawashima, Y. Tatamitani, Y. Morita, and E. Hirota, 61st International Symposium on Molecular Spectroscopy, TE10 (2006) Y. Kawashima and E. Hirota, J

  14. An ab initio quantum chemical investigation of the structure and stability of ozone-water complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sathyamurthy, N., E-mail: nsath@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli 140306 (India)

    2013-03-29

    Highlights: ► Eclipse geometry most stable for the 1:1 ozone-water complex. ► Cyclic structure most stable for the 1:2 complex. ► Shift in the vertical electronic excitation energy of ozone due to hydration. - Abstract: Ab initio quantum chemical calculations have been carried out to investigate the structure and stability of 1:1 and 1:2 ozone-water complexes. All the geometries have been optimized at the CCSD level of theory using aug-cc-pVDZ and aug-cc-pVTZ basis sets. The importance of correlation-consistent basis sets in deciding the nature of critical points on these complexes is emphasized. An analysis based on the dipole moment of the complexes and the charge distribution on atoms follows. The effect of ozone molecule on the structure and properties of water dimer is also investigated. Values of the vertical electronic excitation energy and the corresponding transition dipole moment have been calculated for the ozone-water complexes using the multi-reference-configuration-interaction method and the aug-cc-pVTZ basis set. The calculated shift in vibrational frequencies due to complex formation is compared with the earlier reported experimental and theoretical values.

  15. Ab initio atomic thermodynamics investigation on oxygen defects in the anatase TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhijun [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Liu, Tingyu, E-mail: liutyyxj@163.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Chenxing; Gan, Haixiu [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Jianyu [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Feiwu [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer Three typical oxygen defects under the different annealing conditions have been studied. Black-Right-Pointing-Pointer The oxygen vacancy is easier to form at the surface than in the bulk. Black-Right-Pointing-Pointer The adsorption of O{sub 2} whose orientation is parallel to the surface should be more favorable. Black-Right-Pointing-Pointer The reduction reaction may firstly undertake at the surface during the annealing treatment. Black-Right-Pointing-Pointer The interstitial oxygen has important contribution to lead to the reduction of the band gap. - Abstract: In the framework of the ab initio atomic thermodynamics, the preliminary analysis of the oxygen defects in anatase TiO{sub 2} has been done by investigating the influence of the annealing treatment under representative conditions on three typical oxygen defects, that is, oxygen vacancy, oxygen adsorption and oxygen interstitial. Our results in this study agree well with the related experimental results. The molecular species of the adsorbed O{sub 2} is subject to the ratio of the number of the O{sub 2} to that of the vacancy, as well as to the initial orientation of O{sub 2} relative to the surface (101). Whatever the annealing condition is, the oxygen vacancy is easier to form at the surface than in the bulk indicating that the reduction reaction may firstly undertake at the surface during the annealing treatment, which is consistent with the phase transformation experiments. The molecular ion, peroxide species, caused by the interstitial oxygen has important contribution to the top of the valence band and lead to the reduction of the band gap.

  16. Investigations into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics.

    Science.gov (United States)

    Ionescu, Andrei R; Whitfield, Dennis M; Zgierski, Marek Z; Nukada, Tomoo

    2006-12-29

    We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted (5)S(1) conformation and the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted (3)E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.

  17. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2009-06-15

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  18. Density functional and ab initio investigation of S2N2 and (SN)2

    Science.gov (United States)

    Moon, Jiwon; Chae, Myoungju; Kim, Joonghan

    2017-03-01

    Quantum chemical calculations were performed to calculate the molecular properties of the 1Ag state of disulfur dinitride, S2N2, and the 1A1 state of the SN dimer, (SN)2, using density functional theory (DFT) and ab initio methods. The molecular structure of (SN)2 is a trapezoid instead of a rectangle. Because the multireference character of (SN)2 is considerable, most hybrid DFTs poorly describe its molecular properties. In contrast, old generalized gradient approximations give qualitatively correct descriptions of the molecular properties of (SN)2. Multi-state second-order multiconfigurational perturbation theory gives results that are close to those from multireference configuration interaction with the Davidson correction. The multireference character should be considered when calculating the molecular properties of poly sulfur nitride systems.

  19. Nitrogen Molecule-Dimethyl Sulfide Complex Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    Science.gov (United States)

    Kawashima, Yoshiyuki; Iwano, Sakae; Hirota, Eizi

    2016-06-01

    This paper presents an extension of the preceding talk on the FTMW spectroscopy of N_2-ES (ethylene sulfide), namely the results on N_2-DMS (dimethyl sulfide). We have previously investigated two N_2 complexes: N_2-DME (dimethyl ether), for which we reported a prelimanary result, and N_2-EO (ethylene oxide). We have observed the ground-state rotational spectrum of the N_2-DMS complex, i.e. c-type transitions in the frequency region from 5 to 24 GHz, which we assigned to the normal, 15N_2-DMS, and 15NN-DMS species of the N_2-DMS. We have found both the ortho and para states for the 14N_2-DMS and 15N_2-DMS species. In the case of the 15N_2-DMS, some transitions with Ka = 2 and 3 were observed slightly split by the internal rotation of the two methyl tops of the DMS. The observed spectra of the 15N_2-DMS were analyzed by using the XIAM program. In the case of the para state of the 15N_2-DMS, three rotational and five centrifugal distortion constants with the V3 barrier to the methyl group internal rotation, whereas, in the case of the ortho state of the 15N_2-DMS, two more centrifugal distortion constants, ΦJK and ΦKJ, were needed to reproduce the observed spectra. For the N_2-DMS complex, we concluded that the N_2 moiety was located in a plane perpendicular to the C-S-C plane and bisecting the CSC angle of the DMS. We have carried out ab initio molecular orbital calculations at the level of MP2 with basis sets 6-311++G(d, p), aug-cc-pVDZ, and aug-cc-pVTZ, to complement the information on the intracomplex motions obtained from the observed rotational spectra. We have applied a natural bond orbital (NBO) analysis to the N_2-DMS and N_2-ES to calculate the stabilization energy CT (=Δ Eσσ*), which was closely correlated with the binding energy EB, as found for other related complexes. Y. Kawashima, Y. Tatamitani, Y. Morita, and E. Hirota, 61st International Symposium on Molecular Spectroscopy, TE10 (2006) Y. Kawashima and E. Hirota, J. Phys. Chem. A 2013 117, 13855

  20. Ab Initio Investigations of the Excited Electronic States of CaOCa

    Science.gov (United States)

    Fawzy, Wafaa M.; Heaven, Michael

    2016-06-01

    Chemical bonding in alkaline earth hypermetalic oxides is of fundamental interest. Previous Ab initio studies of CaOCa predicted a centrosymmetric linear geometry for both the 1Σg^+ ground state and the low lying triplet 3Σu^+ state. However, there have been no reports concerning the higher energy singlet and triplet states. The present work is focused on characterization of the potential energy surface (PES) of the excited 1Σu^+ state (assuming a centrosymmetric linear geometry) and obtaining predictions for the 1Σu^+←1Σg^+ vibronic transitions. We employed the multireference configuration interaction (MRCISD) method with state-averaged, full-valence complete active space self-consistent field (SA-FV-CASSCF) wavefunctions. In these calculations, the active space consisted of ten valence electrons in twelve orbitals, where all the valence electrons were correlated. Contributions of higher excitation and relativistic effects were taken into account using the Davidson correction and the Douglas-Kroll (DK) Hamiltonian, respectively. The correlation-consistent polarized weighed core-valence quadruple zeta basis set (cc-pwCVQZ-DK) was used for all three atoms. The full level of theory is abbreviated as SA-FV-CASSCF (10,12)-MRCISD-Q/cc-pwCVQZ-DK. The calculations were carried out using the MOLPRO2012 suite of programs. For the centrosymmetric linear geometry in all states, initial investigations of one-dimensional radial cuts provided equilibrium bond distances of 2.034 {Å}, 2.034 {Å}, and 1.999 {Å} for the 1Σg^+ , 3Σu^+ , and 1Σu^+ states, respectively. The vertical excitation frequency of the 1Σu^+←1Σg^+ optical transition was calculated to occur at 14801 wn. These predictions were followed by spectroscopic searches by Heaven et al. Indeed, rotationally resolved vibronic progressions were recorded in the vicinity of the predicted electronic band origin. Calculation of the three-dimensional PES showed that the potential minimum in the 1Σu^+ corresponds

  1. Ab initio study, investigation of NMR shielding tensors, NBO and vibrational frequency of catechol thioethers

    Directory of Open Access Journals (Sweden)

    A. Bagheri Gh

    2010-08-01

    Full Text Available The electrochemical oxidation of dopamine and 3,4-dihydroxymethamphetamine (HHMA has been studied in the presence of GSH and cysteine as a nucleophile. In order to determine the optimized geometries, energies, dipole moments, atomic charges, thermochemical analysis and other properties, we performed quantum chemical ab initio and density functional calculations at B3LYP level with 6-31G* basis set. The structural and vibrational properties of 5-S-glutathionyldopamine, 5-S-cysteinyldopamine and 5-S-N-acetylcysteinyldopamine are studied. The chemical shifts of anisotropy and Δδ are calculated. The gauge-invariant atomic orbital (GIAO method was employed to calculate isotropic atomic shielding of compounds. These calculations yield molecular geometries in good agreement with available experimental data. The bond lengths, bond angles, dipole moment, electron affinity, ionization potential, electronegativy, absolute hardness, highest occupied molecular orbital (HOMO and the energy of the lowest unoccupied molecular orbital (LUMO of the studied compounds were calculated in gas phase and water. NMR analysis of dopamine-o-quinone-glutathione conjugate revealed that the addition of glutathione was at C-5 to form glutathionyl-dopamine.

  2. Ab initio RNA folding.

    Science.gov (United States)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-17

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  3. High-resolution, near-infrared CW-CRDS, and ab initio investigations of N2O-HDO

    Science.gov (United States)

    Földes, T.; Lauzin, C.; Vanfleteren, T.; Herman, M.; Liévin, J.; Didriche, K.

    2015-03-01

    We have investigated the N2O-HDO molecular complex using ab initio calculations at the CCSD(T)-F12a/aug-cc-pVTZ level of theory and using cavity ring-down spectroscopy to probe an HDO/N2O/Ar supersonic jet around 1.58 μm. A single a-type vibrational band was observed, 13 cm-1 redshifted compared to the OH+OD excited band in HDO, and 173 vibration-rotation lines were assigned (Trot ≈ 20 K). A weighted fit of existing microwave and present near infrared (NIR) data was achieved using a standard Watson's Hamiltonian (σ = 1.26), producing ground and excited states rotational constants. The comparison of the former with those calculated ab initio suggests a planar geometry in which the OD rather than the OH bond in water is almost parallel to NNO. The equilibrium geometry and dissociation energy (De = -11.7 kJ/mol) of the water-nitrous oxide complex were calculated. The calculations further demonstrate and allow characterising another minimum, 404 cm-1 (ΔE0) higher in energy. Harmonic vibrational frequencies and dissociation energies, D0, were calculated for various conformers and isotopic forms of the complex, in both minima. The absence of N2O-D2O from dedicated NIR experiments is reported and discussed.

  4. Investigating the quartz (1010)/water interface using classical and ab initio molecular dynamics.

    Science.gov (United States)

    Skelton, A A; Wesolowski, D J; Cummings, P T

    2011-07-19

    Two different terminations of the (1010) surface of quartz (α and β) interacting with water are simulated by classical (CMD) (using two different force fields) and ab initio molecular dynamics (AIMD) and compared with previously published X-ray reflectivity (XR) experiments. Radial distribution functions between hydroxyl and water show good agreement between AIMD and CMD using the ClayFF force field for both terminations. The Lopes et al. (Lopes, P. E. M.; Murashov, V.; Tazi, M.; Demchuk, E.; MacKerell, A. D. J. Phys. Chem. B2006, 110, 2782-2792) force field (LFF), however, underestimates the extent of hydroxyl-water hydrogen bonding. The β termination is found to contain hydroxyl-hydroxyl hydrogen bonds; the quartz surface hydroxyl hydrogens and oxygens that hydrogen bond with each other exhibit greatly reduced hydrogen bonding to water. Conversely, the hydroxyl hydrogen and oxygens that are not hydrogen bonded to other surface hydroxyls but are connected to those that are show a considerable amount of hydrogen bonding to water. The electron density distribution of an annealed surface of quartz (1010) obtained by XR is in qualitative agreement with electron densities calculated by CMD and AIMD. In all simulation methods, the interfacial water peak appears farther from the surface than observed by XR. Agreement among AIMD, LFF, and XR is observed for the relaxation of the near-surface atoms; however, ClayFF shows a larger discrepancy. Overall, results show that for both terminations of (1010), LFF treats the near-surface structure more accurately whereas ClayFF treats the interfacial water structure more accurately. It is shown that the number of hydroxyl and water hydrogen bonds to the bridging Si-O-Si oxygens connecting the surface silica groups to the rest of the crystal is much greater for the α than the β termination. It is suggested that this may play a role in the greater resistance to dissolution of the β termination than that of the α termination.

  5. Ab-initio investigation of the influence of chemical compounds on graphene layer properties in fabricated IR detector

    Science.gov (United States)

    Ruta, L.; Wozny, J.; Szczecinska, N.; Lisik, Z.

    2016-11-01

    In this work, the influence of H2O, NaOH and propanol on properties of graphene layer placed on SiO2 has been investigated. These chemical particles are present during technological steps required for a device fabrication and may lead to significant changes of graphene properties. The investigation has been done by means of ab-initio simulation based on the DFT method. A MedeA-VASP package was used to investigate behavior of graphene layer in the vicinity of chemical compounds. Presented studies show that properties of graphene are significantly modified when particles of H2O and NaOH are captured in-between graphene layer and SiO2. Special attention should be paid to NaOH which, according to simulations, decays and modifies the properties of graphene layer.

  6. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com

    2008-11-19

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  7. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes.

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-11-19

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  8. All Electron ab initio Investigations of the Three Lowest Lying Electronic States of the RuC Molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, K. A.

    2000-01-01

    The three lowest-lying electronic states of RuC, (1)Sigma(+), (3)Delta, and (1)Delta, have been investigated by performing all-electron ab initio multi-configuration self-consistent-field (CASSCF) and multi-reference configuration interaction (MRCI) calculations including relativistic corrections....... The electronic ground state is derived as (1)Sigma(+) with the spectroscopic constants r(e) = 1.616 Angstrom and omega(e) = 1085 cm(-1). The lowest-lying excited state, (3)Delta, has r(e) = 1.632 Angstrom, omega(e) = 1063 cm(-1), and T-e = 912 cm(-1). These results are consistent with recent spectroscopic values....... The chemical bonds in all three lowest-lying states are triple bonds composed of one sigma and two pi bonds. (C) 2000 Elsevier Science B.V. All rights reserved....

  9. Electronic structure of AlCrN films investigated using various photoelectron spectroscopies and ab initio calculations

    Science.gov (United States)

    Tatemizo, N.; Imada, S.; Miura, Y.; Yamane, H.; Tanaka, K.

    2017-03-01

    The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.

  10. Ab initio investigation of the structure and nonlinear optical properties of five-membered heterocycles containing sulfur

    Science.gov (United States)

    Spassova, Milena; Enchev, Venelin

    2004-03-01

    An ab initio HF and MP2 study of the static (hyper)polarizabilities of 2,4-substituted imidazoles and thiazoles is presented. The comparison of the two types of five-membered heterocycles suggests, that the exocyclic heteroatoms have much more influence upon the calculated hyperpolarizabilities, than the ring heteroatoms. It has been found, that adding diffuse functions to the 6-31G** basis set and inclusion of the electron correlation result in drastic changes in the second hyperpolarizability. The changes are more pronounced for the structures with larger number of sulfur atoms. A HF/6-31G** investigation of a push-pull system, in which thiorhodanine has been chosen as acceptor fragment shows an enhancement of the molecular polarizabilities with respect to the corresponding typical donor-acceptor NH 2/NO 2 polyene.

  11. Using Raman Spectroscopy and ab initio Calculations to Investigate lntermolecular Hydrogen Bonds in Binary Mixture (Tetrahydrofuran+Water)

    Institute of Scientific and Technical Information of China (English)

    WU Nan-nan; OUYANG Shun-li; LI Zuo-wei; LIU Jing-yao; GAO Shu-qin

    2011-01-01

    We analyzed the properties and structures of the hydrogen-bonded complexes of tetrahydrofuran(THF)and water by means of experimental Raman spectra and ab initio calculations.The optimized geometries and vibrational frequencies of the neat THF molecule and its hydrogen-bonded complexes with water(THF/H2O) were calculated at the MP2/6-31 l+G(d,p) level of theory.We found that the intermolecular hydrogen bonds which are formed from the binary mixtures of the neat THF and water with different molar ratios could explain the changes in wavenumber position and linewidth very well.The combination of ab initio calculations and experimental Raman spectral data provides an insight into the hydrogen bonds leading to the concentration dependent changes in the spectral features.

  12. MoS{sub 2} on an amorphous HfO{sub 2} surface: An ab initio investigation

    Energy Technology Data Exchange (ETDEWEB)

    Scopel, W. L., E-mail: wlscopel@if.uff.br [Departamento de Física, Universidade Federal do Espírito Santo, Vitória, Brazil and Departamento de Ciências Exatas, Universidade Federal Fluminense, Volta Redonda, Rio de Janerio (Brazil); Miwa, R. H., E-mail: hiroki@infis.ufu.br; Schmidt, T. M., E-mail: tome@infis.ufu.br [Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais (Brazil); Venezuela, P., E-mail: vene@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janerio (Brazil)

    2015-05-21

    The energetic stability, electronic and structural properties of MoS{sub 2} adsorbed on an amorphous a-HfO{sub 2} surface (MoS{sub 2}/HfO{sub 2}) are examined through ab initio theoretical investigations. Our total energy results indicate that the formation of MoS{sub 2}/HfO{sub 2} is an exothermic process with an adsorption energy of 34 meV/Å{sup 2}, which means that it is more stable than similar systems like graphene/HfO{sub 2} and MoS{sub 2}/SiO{sub 2}. There are no chemical bonds at the MoS{sub 2}-HfO{sub 2} interface. Upon formation of MoS{sub 2}/HfO{sub 2}, the electronic charge distribution is mostly localized at the interface region with no net charge transfer between the adsorbed MoS{sub 2} sheet and –HfO{sub 2} surface. However, the MoS{sub 2} sheet becomes n-type doped when there are oxygen vacancies in the HfO{sub 2} surface. Further investigation of the electronic distribution reveals that there are no electron- and hole-rich regions (electron-hole puddles) on the MoS{sub 2} sheet, which makes this system promising for use in high-speed nanoelectronic devices.

  13. Operation Mechanism of Double-Walled Carbon Nanotubes Transistors Investigated By ab initio Calculations

    Institute of Scientific and Technical Information of China (English)

    LAN nai-Ping; ZHANG Shuang

    2009-01-01

    Recently, a new switching characteristic of double-walled carbon nanotubes (DWNTs) transistors is found in during experiments. We carry out a series of ab intio calculations on DWNTs' electronic properities, together with verification on the electronic response under the electric field. Our results reveal that the peculiar energy states relation in DWNTs and related contact modes should account for the distinct switching behavior of DWNT transistors. We believe these results have important implications in the fabrication and understanding of electronic devices with DWNTs.

  14. The Structure, Dynamics and Electronic Structure of Liquid Ag-Se Alloys Investigated by ab initio Simulation

    CERN Document Server

    Kirchhoff, F; Gillan, M J

    1996-01-01

    Ab initio molecular-dynamics simulations have been used to investigate the structure, dynamics and electronic properties of the liquid alloy Ag(1-x)Se(x) at 1350 K and at the three compositions x=0.33, 0.42 and 0.65. The calculations are based on density-functional theory in the local density approximation and on the pseudopotential plane-wave method. The reliability of the simulations is confirmed by detailed comparisons with very recent neutron diffraction results for the partial structure factors and radial distribution functions (RDF) of the stoichiometric liquid Ag2Se. The simulations show a dramatic change of the Se-Se RDF with increasing Se content. This change is due to the formation of Se clusters bound by covalent bonds, the Se-Se bond length being almost the same as in pure c-Se and l-Se. The clusters are predominantly chain-like, but for higher x a large fraction of 3-fold coordinated Se atoms is also found. It is shown that the equilibrium fractions of Se present as isolated atoms and in clusters...

  15. Mechanical and magneto-opto-electronic investigation of transition metal based fluoro-perovskites: An ab-initio DFT study

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.

  16. Katoite under pressure: an ab initio investigation of its structural, elastic and vibrational properties sheds light on the phase transition.

    Science.gov (United States)

    Erba, Alessandro; Navarrete-López, Alejandra M; Lacivita, Valentina; D'Arco, Philippe; Zicovich-Wilson, Claudio M

    2015-01-28

    The evolution under pressures up to 65 GPa of structural, elastic and vibrational properties of the katoite hydrogarnet, Ca3Al2(OH)12, is investigated with an ab initio simulation performed at the B3LYP level of theory, by using all-electron basis sets with the Crystal periodic program. The high-symmetry Ia3d phase of katoite, stable under ambient conditions, is shown to be destabilized, as pressure increases, by interactions involving hydrogen atoms and their neighbors which weaken the hydrogen bonding network of the structure. The corresponding thermodynamical instability is revealed by anomalous deviations from regularity of its elastic constants and by numerous imaginary phonon frequencies, up to 50 GPa. Interestingly, as pressure is further increased above 50 GPa, the Ia3d structure is shown to become stable again (all positive phonon frequencies and regular elastic constants). However, present calculations suggest that, above about 15 GPa and up to at least 65 GPa, a phase of I4[combining macron]3d symmetry (a non-centrosymmetric subgroup of Ia3d) becomes more stable than the Ia3d one, being characterized by strengthened hydrogen bonds. At low-pressures (between about 5 GPa and 15 GPa), both phases show some instabilities (more so for I4[combining macron]3d than for Ia3d), thus suggesting either the existence of a third phase or a possible phase transition of second order.

  17. Structure and lattice dynamics of GaN and AlN. Ab-initio investigations of strained polytypes and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jan-Martin

    2004-10-14

    In this dissertation, ab-initio investigations of the strain influence on vibrational properties of GaN and AlN as well as of short-period GaN/AlN superlattices are presented. Based on densityfunctional theory and density-functional perturbation theory, for differently strained structures complete phonon spectra and related properties are calculated using the local-density approximation and norm-conserving pseudopotentials. (orig.)

  18. The Wacker oxidation of allyl alcohol along cyclic-intermediate routes: An ab initio molecular dynamics investigation

    Science.gov (United States)

    Imandi, Venkataramana; Nair, Nisanth N.

    2016-09-01

    The absence of isotope scrambling observed by Henry and coworkers in the Wacker oxidation of deuterated allylic alcohol was used by them as support for the inner-sphere mechanism hydroxypalladation mechanism. One of the assumptions used to interpret their experimental data was that allyl alcohol oxidation takes place through non-cyclic intermediate routes as in the case of ethene. Here we verify this assumption through ab initio metadynamics simulations of the Wacker oxidation of allyl alcohol in explicit solvent. Importance of our results in interpreting the isotope scrambling experiments is discussed.

  19. Energetics and bonding study of hexamethylenetetramine and fourteen related cage molecules: An ab initio G3(MP2 investigation

    Directory of Open Access Journals (Sweden)

    HO-ON HO

    2005-04-01

    Full Text Available The ab initio G3(MP2method has been applied to hexamethylenetetramine (HMT and fourteen related cage systems. The agreement between the calculated and experimental molecular dimensions, which are available for five of the 15 cage species, ranges from satisfactory to excellent. In addition, the G3(MP2 heat of formation at 298 K for HMT is in excellent accord with experimental results. Hence, the calculated heats of formation for the other 14 cage systems should be reliable estimates.

  20. Ab-initio investigations of the electronic properties of bulk wurtzite Beryllia and its derived nanofilms

    KAUST Repository

    Goumri-Said, Souraya

    2010-08-01

    In this Letter we investigate the electronic properties of the bulk and the nanofilm BeO in wurtzite structure. We performed a first-principles pseudo-potential method within the generalized gradient approximation. We will give more importance to the changes in band structure and density of states between the bulk structure and its derived nanofilms. The bonding characterization will be investigated via the analysis Mulliken population and charge density contours. It is found that the nanofilm retains the same properties as its bulk structure with slight changes in electronic properties and band structure which may offer some unusual transport properties. © 2010 Elsevier B.V. All rights reserved.

  1. Ab initio investigation of photoinduced non-thermal phase transition in β-cristobalite

    Science.gov (United States)

    Shi-Quan, Feng; Hua-Ping, Zang; Yong-Qiang, Wang; Xin-Lu, Cheng; Jin-Sheng, Yue

    2016-01-01

    Using the linear-response method, we investigate the phonon properties of β-cristobalite crystal under electronic excitation effect. We find that the transverse-acoustic phonon frequency becomes imaginary as the electron temperature is increased, which means that the lattice of β-cristobalite becomes unstable under intense laser irradiation. In addition, for the optic phonon mode, the LO(H)-TO(H) splitting disappears when the electronic temperature reaches a certain value, corresponding to the whole transverse-acoustic phonon branches becoming negative. It means that the electronic excitation destroys the macroscopic electric field of β-cristobalite. Based on the calculated phonon band structures, some thermodynamic properties are calculated as a function of temperature at different electronic temperatures. These investigations provide evidence that non-thermal melting takes place during a femtosecond pulse laser interaction with β-cristobalite. Project support by the National Natural Science Foundation of China (Grant Nos. 11374217 and 11547158).

  2. Ab initio investigations of the dynamic and thermodynamic properties of atmospherically relevant strong acids

    OpenAIRE

    Partanen, Lauri

    2017-01-01

    Sulfuric and hydrochloric acids participate in several important chemical processes occurring in the atmosphere. Due to its tendency to react with water molecules, sulfuric acid is an important factor in cloud formation and related phenomena. Hydrochloric acid is heavily implicated in stratospheric ozone depletion because of its role as a temporary reservoir for chlorine radicals. In this thesis, the thermodynamics and dynamics of these two acids are investigated. The dynamic part focuse...

  3. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  4. Ab initio investigation of the anomalous phonon softening in FeSi

    Science.gov (United States)

    Stern, Robin; Madsen, Georg K. H.

    2016-10-01

    The anomalous softening of the acoustic phonon peak in FeSi has recently received considerable experimental attention. In our work, we investigate the effect of thermal disorder on the lattice dynamics and the filling of the narrow band gap of FeSi using density functional theory. We show, by comparing the phonon density of states from temperature-independent and temperature-dependent force constants, that thermal structural disorder together with thermal expansion explains the anomalously strong renormalization of the acoustic phonons. Furthermore, we find an intricate interplay between thermal disorder and volume in gap closure.

  5. Ab Initio Investigations of Thermoelectric Effects in Graphene – Boron Nitride Nanoribbons

    Directory of Open Access Journals (Sweden)

    Visan Camelia

    2016-01-01

    Full Text Available Thermoelectric effects of graphene – hexagonal boron nitride (hBN nanoribbons have been investigated by density functional theory (DFT calculations. Pristine zig-zag nanoribbons are not suited to achieve high thermopower as the transmission function is flat around the chemical potential. By introducing hBN inclusions, the nanoribbon systems exhibit enhanced thermopower, due to the asymmetries introduced in the spin dependent transmission functions. Finite temperature differences between the two contacts are considered. The possibility of a good integration of hBN into graphene, makes the hybrid systems suitable for thermoelectric applications, which may be subject to further optimizations.

  6. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    Science.gov (United States)

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine.

  7. Ab initio investigation of the electronic properties of HgmTen clusters

    Science.gov (United States)

    Nanavati, Sachin; Kumar, Vijay; Pandey, Ravindra; Dixit, Ambesh

    2014-03-01

    Nanostructured HgTe quantum dots have attracted attention due to their potential applications in novel mid-infrared (3 - 5 μm) wavelength photodetectors and other optoelectronic applications. HgTe bulk material is a semimetal with bandgap ~ -0.3 eV, however at nanoscale, we observe drastic changes in the optical and electronic properties such as band gap opening, that makes it possible for engineering optoelectronic properties. We investigated the structural, optical, and electronic properties of HgmTen (m = n = 12, 13, 33, and 34) nanoparticles using density functional theory and the pseudopotential method within the generalized gradient approximation. The structures are relaxed to achieve the stable configurations and corresponding electronic properties are calculated. We investigated the density of states, energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), binding energy, and the Hg-Te bond length variation as a function of the cluster size. We will discuss the changes in the electronic structure and optical properties for these clusters with respect to the cluster size variation. The authors would like to thank C-DAC, Pune, India for the computational resources and MHRD, Gov. of India for financial support.

  8. An ab initio investigation of the Buckingham birefringence of furan, thiophene, and selenophene in cyclohexane solution

    Science.gov (United States)

    Rizzo, Antonio; Frediani, Luca; Ruud, Kenneth

    2007-10-01

    Using a recently developed quadratic response methodology for the calculation of frequency-dependent third-order properties of molecules in solution, we investigate the Buckingham birefringence of furan, thiophene, and selenophene in cyclohexane solution. These systems are chosen since accurate experimental data are available, allowing for a direct comparison of experimental observations with our theoretical estimates. Our model for describing the solvent effects is based on a dielectric continuum approach for the solvent, and uses a molecule-shaped cavity. Our results show qualitatively different Buckingham constants and effective quadrupole centers calculated with and without the solvent, and only when the solvent is included are the qualitative trends observed experimentally reproduced. It is demonstrated that a significant part of this effect arises from the geometry relaxation of the molecules in the solvent.

  9. Ab Initio Investigation of Methanthiol and Dimethyl Sulfide Adsorption on Zeolite

    Institute of Scientific and Technical Information of China (English)

    Lü Renqing

    2006-01-01

    The Hartree-Fock and cluster model methods have been employed to investigate interactions of methanthiol or dimethyl sulfide on zeolites. Molecular complexes formed by adsorption of methanthiol on silanol H3SiOSi(OH)2OSiH3 with five coordination forms and dimethyl sulfide on silanol H3SiOSi(OH)2OSiH3 with four coordination forms, and Br(o)nsted acid sites of bridging hydroxyl H3Si(OH)Al(OH)2OSiH3 entering into interactions with methanthiol or dimethyl sulfide have been investigated. Full optimization and frequency analysis of all cluster models have been carried out using the Hartree-Fock method at 6-31 +G** basis set level for hydrogen, silicon, aluminum, oxygen, carbon, and sulfur atoms. The structures and energy changes of different coordination forms derived from methanthiol and H3Si(OH)Al(OH)2OSiH3, dimethyl sulfide and H3Si(OH)Al(OH)2OSiH3, methanthiol and H3SiOSi(OH)2OSiH3, dimethyl sulfide and H3SiOSi(OH)2OSiH3 complexes have been comparatively studied. The calculated results showed that the nature of interactions leading to the formation of the bridging hydroxyl-methanthiol, silanol-methanthiol,bridging hydroxyl-dimethyl sulfide, silanol-dimethyl sulfide complexes was governed by the Van der Waals force as confirmed by a small change in geometric structures and properties. Methanthiol and dimethyl sulfide molecules were adsorbed on bridging hydroxyl group prior to silanol group as evidenced by the heat of adsorption, and the protonization of methanthiol adsorption on bridging hydroxyl model, which was supposed in the literature, was not found.

  10. Ab initio investigations of magnetic properties of ultrathin transition-metal films on 4d substrates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zubi, Ali

    2010-12-22

    In this thesis, we investigate the magnetic properties of 3d transition-metal monolayers on 4d transition-metal substrates by means of state of the art first-principles quantum theory. In order to reveal the underlying physics of these systems we study trends by performing systematic investigations across the transition-metal series. Case studies are presented for which Rh has been chosen as exemplary 4d substrate. We consider two substrate orientations, a square lattice provided by Rh(001) and a hexagonal lattice provided by Rh(111). We find, all 3d transition-metal (V, Cr, Mn, Fe, Co and Ni) monolayers deposited on the Rh substrate are magnetic and exhibit large local moments which follow Hund's rule with a maximum magnetic moment for Mn of about 3.7 {mu}{sub B} depending on the substrate orientation. The largest induced magnetic moment of about 0.46 {mu}{sub B} is found for Rh atoms adjacent to the Co(001)-film. On Rh(001) we predict a ferromagnetic (FM) ground state for V, Co and Ni, while Cr, Mn and Fe monolayers favor a c(2 x 2) antiferromagnetic (AFM) state, a checkerboard arrangement of up and down magnetic moments. The magnetic anisotropy energies of these ultrathin magnetic films are calculated for the FM and the AFM states. With the exception of V and Cr, the easy axis of the magnetization is predicted to be in the film plane. With the exception of Fe, analogous results are obtained for the 3d-metal monolayers on Rh(111). For Fe on Rh(111) a novel magnetic ground state is predicted, a double-row-wise antiferromagnetic state along the [11 anti 2] direction, a sequence of ferromagnetic double-rows of atoms, whose magnetic moments couple antiferromagnetically from double row to double row. The magnetic structure can be understood as superposition of a left- and right-rotating flat spin spiral. In a second set of case studies the properties of an Fe monolayer deposited on varies hexagonally terminated hcp (0001) and fcc (111) surfaces of 4d

  11. Ab initio investigation on the magnetic ordering in Gd doped ZnO

    KAUST Repository

    Bantounas, Ioannis

    2011-04-22

    The current study investigates the magnetic properties of the Gdx Zn1−xO, with x=0.0625 and 0.0185, dopedsemiconductor using the full potential (linearized) augmented plane wave plus local orbital method. We show that in contrast to the findings of Shi et al. [J. Appl. Phys. 106, 023910 (2009)], the implementation of the Hubbard U parameter to the Gd f states favors an antiferromagnetic phase in both wurtzite GdO and Gdx Zn1−xO. Spin polarized calculations on Gdx Zn1−xO indicate that, even if a ferromagnetic ground state were favored, the magnetic influence of Gd in a perfect ZnO wurtzite lattice is highly localized and limited to the first three nearest neighboring O atoms. Increasing the supercell size and thus diluting the concentration of Gd within the ZnO matrix does not show any changes in the net magnetic moment between these three O atoms nor in the remaining lattice sites, indicating that sizing effects do not influence the range of matrix polarization. We conclude that the localized Gd induced polarization can not account for long range magnetic ordering in a defect-free ZnO wurtzite lattice.

  12. Ab initio investigations of the electronic structure of HeCH + and HeCH 2+

    Science.gov (United States)

    Hughes, Jason M.; von Nagy-Felsobuki, Ellak I.

    1997-07-01

    The 1A' and 3A″ electronic states of HeCH + and the 2A' ground electronic state of HeCH 2+ have been investigated using an all electron coupled cluster single, double and triple excitation [CCSD(T)] method coupled with an augmented correlation-consistent polarised core valence triple zeta basis set (aug-cc-pCVTZ). For the 1A' and 3A″ electronic states of HeCH +, the CCSD(T)a aug-cc-pCVTZ model yielded an optimised geometry of C s symmetry eith a { rCHe, rCH, θHCHe} structural parameters of {2.172 Å, 1.129 Å, 81.4°} and {1.675 Å, 1.121 Å, 101.4°} respectively. Moreover, this electronic model yielded the singlet state to be 26.3 kcal mol -1 lower in energy in energy when compared with the triplet state. For the 2A' ground electronic state of HeCH 2+ the optimised structural parameters were {1.388 Å, 1.253 Å, 110.5°}, respectively. The calculated harmonic frequencies for all these electronic states were found to be real.

  13. Properties of the Fe/GaAs(110) interface investigated by ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gruenebohm, Anna; Herper, Heike C.; Entel, Peter [Fachbereich Physik, Universitaet Duisburg-Essen, Duisburg (Germany)

    2009-07-01

    Fe/GaAs is a widely used system for spintronic devices. For example the small lattice mismatch (<2%) and the cheap preparation of layered systems are promising. Because of this many studies on Fe/GaAs have been performed in the last decades mostly on the (001) direction. Recently the (110) direction has attracted plenty of attention as the free GaAs(110) surface doesn't reconstruct and allows to grow flat interfaces. Unfortunately, diffusion and alloy formation occur at both interfaces which may lead to reduced spin injection and magnetic inactive regions. To get an insight into the interface properties we do calculations within the PAW method using VASP adopting the GGA/PBE form for the exchange-correlation potential. To simulate the free surface the slap method is used thereby one side of the slab is passivated through pseudo-hydrogen to guarantee a bulk-like behavior in a moderate sized slap. The adsorption of single Fe-atoms as well as the first monolayers of iron are investigated with respect to the energy landscape for different structures and the magnetic moments. While diffusion of atoms through the interface was shown to be low in energy no magnetic inactive phase could be observed. Hence our results don't show any fundamental limitations for spintronic applications.

  14. An ab-initio theoretical investigation of the soft-magnetic properties of permalloys

    Energy Technology Data Exchange (ETDEWEB)

    Ostanin, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Staunton, J.B. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)]. E-mail: j.b.staunton@warwick.ac.uk; Razee, S.S.A. [Department of Physics, University of Kuwait, SAFAT 13060 (Kuwait); Ginatempo, B. [Dipartimento di Fisica and Unita INFM, Universita di Messina, Salita Sperone 31, I-98166 Messina (Italy); Bruno, Ezio [Dipartimento di Fisica and Unita INFM, Universita di Messina, Salita Sperone 31, I-98166 Messina (Italy)

    2005-08-15

    We study Ni{sub 80}Fe{sub 20}-based permalloys with the relativistic spin-polarized Korringa-Kohn-Rostoker electronic structure method. Treating the compositional disorder with the coherent potential approximation, we investigate how the magnetocrystalline anisotropy, K, and magnetostriction, {lambda}, of Ni-rich Ni-Fe alloys vary with the addition of small amounts of non-magnetic transition metals, Cu and Mo. From our calculations we follow the trends in K and {lambda} and find the compositions of Ni-Fe-Cu and Ni-Fe-Mo where both are near zero. These high permeability compositions of Ni-Fe-Cu and Ni-Fe-Mo match well with those discovered experimentally. We monitor the connection of the magnetic anisotropy with the number of minority spin electrons N{sub {down_arrow}}. By raising N{sub {down_arrow}} via artificially increasing the band-filling of Ni{sub 80}Fe{sub 20}, we are able to reproduce the key features that underpin the magnetic softening we find in the ternary alloys. The effect of band-filling on the dependence of magnetocrystalline anisotropy on atomic short-range order in Ni{sub 80}Fe{sub 20} is also studied. Our calculations, based on a static concentration wave theory, indicate that the susceptibility of the high permeability of the Ni-Fe-Cu and Ni-Fe-Mo alloys to their annealing conditions is also strongly dependent on the alloys' compositions. An ideal soft magnet appears from these calculations.

  15. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung Jalan Ganeca 10 Gd. T.P. Rachmat, Bandung 40132 (Indonesia); Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id; Dipojono, H. K., E-mail: dipojono@tf.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  16. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Science.gov (United States)

    Tanuwijaya, V. V.; Hidayat, N. N.; Agusta, M. K.; Dipojono, H. K.

    2015-09-01

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO3 sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  17. Interaction of an aluminum atom with an alkaline earth atom: Spectroscopic and ab initio investigations of AlCa

    Science.gov (United States)

    Behm, Jane M.; Morse, Michael D.; Boldyrev, Alexander I.; Simons, Jack

    1994-10-01

    A spectroscopic analysis of diatomic AlCa generated by laser vaporization of a 2:1 Al:Ca metal alloy followed by supersonic expansion has been completed using resonant two-photon ionization spectroscopy. Four excited electronic states have been identified and investigated in the energy region from 13 500 to 17 900 cm-1. These are the [13.5] 2Πr, the [15.8] 2Σ, the [17.0] 2Δ3/2(?), and the [17.6] 2Δ3/2 states. From rotational analysis excited state bond lengths have been measured for three of the four excited states, and the ground state has been unambiguously determined as a 2Πr state with a weighted least squares value of the ground state bond length of r0` = 3.1479± 0.0010 Å. The ionization energy of the molecule has also been directly determined as 5.072±0.028 eV. Ab initio calculations for the potential energy curves of seven low-lying states of AlCa [X 2Πr, 2Σ+, 4Σ-, 4Πr, 2Πr(2), 2Δ, and 2Σ-] and for the X 1Σ+ ground electronic state of AlCa+ have been carried out. In agreement with experiment, 2Πr is calculated to be the ground electronic state of the neutral molecule. The dissociation energies of AlCa (X 2Πr) into Al(3s23p1,2P0)+Ca(4s2,1S) and for AlCa+ (X 1Σ+) into Al+(3s2,1S)+Ca(4s2,1S) are calculated to be 0.47 and 1.50 eV, respectively. The excited 2Σ+, 4Σ-, 4Πr, 2Πr(2), 2Δ, and 2Σ- states are calculated to lie 0.2, 0.7, 0.7, 1.1, 1.1, and 1.1 eV above X 2Πr, respectively, and the vertical and adiabatic ionization energies of AlCa have been calculated to be 5.03 and 4.97 eV, respectively.

  18. Resonance and Aromaticity : An Ab Initio Valence Bond Approach

    NARCIS (Netherlands)

    Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A.

    2012-01-01

    Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wav

  19. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Greiner, Walter

    2004-01-01

    The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...

  20. Reciprocity Theorems for Ab Initio Force Calculations

    CERN Document Server

    Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.

  1. Discovering chemistry with an ab initio nanoreactor

    OpenAIRE

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerat...

  2. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  3. Ab initio Bogoliubov coupled cluster theory

    Science.gov (United States)

    Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas

    2014-09-01

    Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.

  4. Ab Initio Investigation on Cu/Cr Codoped Amorphous Carbon Nanocomposite Films with Giant Residual Stress Reduction.

    Science.gov (United States)

    Li, Xiaowei; Guo, Peng; Sun, Lili; Wang, Aiying; Ke, Peiling

    2015-12-23

    Amorphous carbon films (a-C) codoped by two metal elements exhibit the desirable combination of tribological and mechanical properties for widely potential applications, but are also prone to catastrophic failure due to the inevitable residual compressive stress. Thus far, the residual stress reduction mechanism remains unclear due to the insufficient understanding of the structure from the atomic and electronic scale. In this paper, using ab initio calculations, we first designed a novel Cu/Cr codoped a-C film and demonstrated that compared with pure and Cu/Cr monodoped cases, the residual stress in Cu/Cr codoped a-C films could be reduced by 93.6% remarkably. Atomic bond structure analysis revealed that the addition of Cu and Cr impurities in amorphous carbon structure resulted in the critical and significant relaxation of distorted C-C bond lengths. On the other hand, electronic structure calculation indicated a weak bonding interaction between the Cr and C atoms, while the antibonding interaction was observed for the Cu-C bonds, which would play a pivot site for the release of strain energy. Those interactions combined with the structural evolution could account for the drastic residual stress reduction caused by Cu/Cr codoping. Our results provide the theoretical guidance and desirable strategy to design and fabricate a new nanocomposite a-C films with combined properties for renewed applications.

  5. Ab Initio -Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cherukara, Mathew J. [Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Sciences Division; Narayanan, Badri [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Kinaci, Alper [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Sasikumar, Kiran [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Gray, Stephen K. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Univ. of Chicago, IL (United States). Computation Inst.; Chan, Maria K. Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Univ. of Chicago, IL (United States). Computation Inst.; Sankaranarayanan, Subramanian K. R. S. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Univ. of Chicago, IL (United States). Computation Inst.

    2016-08-28

    We introduce a bond order potential (BOP) for stanene based on an ab initio derived training data set. The potential is optimized to accurately describe the energetics, as well as thermal and mechanical properties of a free-standing sheet, and used to study diverse nanostructures of stanene, including tubes and ribbons. As a representative case study, using the potential, we perform molecular dynamics simulations to study stanene’s structure and temperature-dependent thermal conductivity. We find that the structure of stanene is highly rippled, far in excess of other 2-D materials (e.g., graphene), owing to its low in-plane stiffness (stanene: ~ 25 N/m; graphene: ~ 480 N/ m). The extent of stanene’s rippling also shows stronger temperature dependence compared to that in graphene. Furthermore, we find that stanene based nanostructures have significantly lower thermal conductivity compared to graphene based structures owing to their softness (i.e., low phonon group velocities) and high anharmonic response. Our newly developed BOP will facilitate the exploration of stanene based low dimensional heterostructures for thermoelectric and thermal management applications.

  6. Competing structural ordering tendencies in new high-TC ferromagnetic Fe-Co-based Heusler alloys from ab initio investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje; Gruner, Markus; Entel, Peter [Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg (Germany); Wuttig, Manfred [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States)

    2011-07-01

    Fe-Co-based Heuslers are candidates for new ferromagnetic shape memory alloys (FSMA) as they promise higher operation temperatures compared with prototype Ni2MnGa. Of interest are also the corresponding binary systems FeZn and Fe3Ga which show a huge magnetostriction. We present results of ab initio and Monte Carlo calculations regarding structural, magnetic, and electronic properties of Fe2CoGa1-xZnx alloys in conventional X2YZ and inverse (XY)XZ Heusler structures. All systems exhibit high Curie temperatures TC. The preference of the cubic inverse structures is believed to originate from the bcc-like environment of two inequivalent Fe atoms and their strong hybridization with the Co- states. Weakening the Co-Fe hybridization by substitution of Ga by Zn reduces this preference and leads to higher TC but simultaneously reduces the miscibility. Despite the strong spin-dependent Fe-Co hybridization we find a localized character of the spin moments. Extraordinary Z-elements like Cu, Ag, and Au or further enhancement of the Zn content induces a martensitic instability also in the inverse structures. Thus, we conclude that it is possible to find new FSMA with rather high Curie temperatures.

  7. Recombination centers in 4H-SiC investigated by electrically detected magnetic resonance and ab initio modeling

    Science.gov (United States)

    Cottom, J.; Gruber, G.; Hadley, P.; Koch, M.; Pobegen, G.; Aichinger, T.; Shluger, A.

    2016-05-01

    Electrically detected magnetic resonance (EDMR) is a powerful technique for the observation and categorization of paramagnetic defects within semiconductors. The interpretation of the recorded EDMR spectra has long proved to be challenging. Here, defect spectra are identified by comparing EDMR measurements with extensive ab initio calculations. The defect identification is based upon the defect symmetry and the form of the hyperfine (HF) structure. A full description is given of how an accurate spectrum can be generated from the theoretical data by considering some thousand individual HF contributions out of some billion possibilities. This approach is illustrated with a defect observed in nitrogen implanted silicon carbide (SiC). Nitrogen implantation is a high energy process that gives rise to a high defect concentration. The majority of these defects are removed during the dopant activation anneal, shifting the interstitial nitrogen to the desired substitutional lattice sites, where they act as shallow donors. EDMR shows that a deep-level defect persists after the dopant activation anneal. This defect is characterized as having a g c ∥ B = 2.0054 ( 4 ) and g c ⊥ B = 2.0006 ( 4 ) , with pronounced hyperfine shoulder peaks with a 13 G peak to peak separation. The nitrogen at a carbon site next to a silicon vacancy ( N C V Si ) center is identified as the persistent deep-level defect responsible for the observed EDMR signal and the associated dopant deactivation.

  8. Ab initio interatomic potentials and the thermodynamic properties of fluids

    Science.gov (United States)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  9. Ab initio phase diagram of iridium

    Science.gov (United States)

    Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.

    2016-09-01

    The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.

  10. Optical Distinctions Between Weyl Semimetal TaAs and Dirac Semimetal Na3Bi: An Ab Initio Investigation

    Science.gov (United States)

    Dadsetani, Mehrdad; Ebrahimian, Ali

    2016-11-01

    We present ab initio a study on linear and nonlinear optical properties of topological semimetal Tantalum arsenide and Sodium bismuthate. The real and imaginary part of the dielectric function in addition to the energy loss spectra of TaAs and Na3Bi have been calculated within random phase approximation (RPA); then, the electron-hole interaction is included by solving the Bethe-Salpeter equation for the electron-hole Green's function. In spite of being in the single category of topological materials, we have found obvious distinction between linear optical responses of TaAs and Na3Bi at a high energy region where, in contrast to Na3Bi, Tantalum arsenide has excitonic peaks at 9 eV and 9.5 eV. It is remarkable that the excitonic effects in the high energy range of the spectrum are stronger than in the lower one. The dielectric function is overall red shifted compared with that of RPA approximation. The resulting static dielectric constants for Na3Bi are smaller than corresponding ones in TaAs. At a low energy region, the absorption intensity of TaAs is more than Na3Bi. The calculated second-order nonlinear optical susceptibilities χ ijk (2) ( ω) show that Tantalum arsenide acts as a Weyl semimetal, and has high values of nonlinear responses in the low energy region which makes it promising candidate for the second harmonic generation in the terahertz frequency region. In the low energy regime, optical spectra are dominated by the 2 ω intra-band contributions.

  11. Ab initio centroid path integral molecular dynamics: Application to vibrational dynamics of diatomic molecular systems

    Science.gov (United States)

    Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi

    2004-01-01

    An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.

  12. Uniaxial Phase Transition in Si : Ab initio Calculations

    OpenAIRE

    Cheng, C.

    2002-01-01

    Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing t...

  13. AB INITIO INVESTIGATION OF 12-CROWN-4 AND BENZO-12-CROWN-4 COMPLEXES WITH Li+, Na+, K+, Zn2+, Cd2+, AND Hg2+

    Directory of Open Access Journals (Sweden)

    Yahmin Yahmin

    2010-06-01

    Full Text Available The structure and binding energies of 12-crown-4 and benzo-12-crown-4 complexes with Li+, Na+, K+, Zn2+, Cd2+, and Hg2+were investigated with ab initio calculations using Hartree-Fock approximation and second-order perturbation theory. The basis set used in this study is lanl2mb. The structure optimization of cation-crown ether complexes was evaluated at HF/lanl2mb level of theory and interaction energy of the corresponding complexes was calculated at MP2/lanl2mb level of theory (MP2/lanl2mb//HF/lanl2mb. Interactions of the crown ethers and the cations were discussed in term of the structure parameter of crown ether. The binding energies of the complexes show that all complex formed from transition metal cations is more stable than the complexes formed from alkali metal cations.   Keywords: 12-crown-4, benzo-12-crown-4, alkali metals, transition metals

  14. Five-membered rings as diazo components in optical data storage devices: An ab initio investigation of the lowest singlet excitation energies

    DEFF Research Database (Denmark)

    Åstrand, P.-O.; Sommer-Larsen, P.; Hvilsted, Søren

    2000-01-01

    The two lowest singlet excitation energies of 18 azo dyes have been studied by ab initio quantum-chemical methods within the second-order polarization propagator approximation (SOPPA). Various combinations of five-membered rings (furan, thiophene, pyrrole, oxazole, thiazole, and imidazole) have b...

  15. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St

    1998-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  16. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  17. Operator evolution for ab initio nuclear theory

    CERN Document Server

    Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr

    2014-01-01

    The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range and find at short ranges an increased contribution from such ind...

  18. Discovering chemistry with an ab initio nanoreactor

    Science.gov (United States)

    Martinez, Todd

    Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.

  19. Ab initio alpha-alpha scattering

    CERN Document Server

    Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-01-01

    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.

  20. An ab initio study of hydroxylated graphane

    Science.gov (United States)

    Buonocore, Francesco; Capasso, Andrea; Lisi, Nicola

    2017-09-01

    Graphene-based derivatives with covalent functionalization and well-defined stoichiometry are highly desirable in view of their application as functional surfaces. Here, we have evaluated by ab initio calculations the energy of formation and the phase diagram of hydroxylated graphane structures, i.e., fully functionalized graphene derivatives coordinated with -H and -OH groups. We compared these structures to different hydrogenated and non-hydrogenated graphene oxide derivatives, with high level of epoxide and hydroxyl groups functionalization. Based on our calculations, stable phases of hydroxylated graphane with low and high contents of hydrogen are demonstrated for high oxygen and hydrogen partial pressure, respectively. Stable phases of graphene oxide with a mixed carbon hybridization are also found. Notably, the synthesis of hydroxylated graphane has been recently reported in the literature.

  1. Giant magnetoresistance An ab-initio description

    CERN Document Server

    Binder, J

    2000-01-01

    A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened KORRINGA-KOHNROSTOKER method. Scattering at impurity atoms in the multilayers is described by means of a GREEN's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the BOLTZMANN equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the BOLTZMANN equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the...

  2. Discovering chemistry with an ab initio nanoreactor

    Science.gov (United States)

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-12-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.

  3. Emergence of rotational bands in ab initio no-core configuration interaction calculations

    CERN Document Server

    Caprio, M A; Vary, J P; Smith, R

    2015-01-01

    Rotational bands have been observed to emerge in ab initio no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. We investigate the ab initio emergence of nuclear rotation in the Be isotopes, focusing on 9Be for illustration, and make use of basis extrapolation methods to obtain ab initio predictions of rotational band parameters for comparison with experiment. We find robust signatures for rotational motion, which reproduce both qualitative and quantitative features of the experimentally observed bands.

  4. Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules

    Science.gov (United States)

    Shiga, Motoyuki; Nakayama, Akira

    2008-01-01

    The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.

  5. On the hierarchical parallelization of ab initio simulations

    CERN Document Server

    Ruiz-Barragan, Sergi; Shiga, Motoyuki

    2016-01-01

    A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.

  6. Ab initio calculation of the Hoyle state

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2011-01-01

    The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle^{1} as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago^{2,3}, nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine...

  7. Phonocatalysis. An ab initio simulation experiment

    Directory of Open Access Journals (Sweden)

    Kwangnam Kim

    2016-06-01

    Full Text Available Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

  8. Ab initio phonon scattering by dislocations

    Science.gov (United States)

    Wang, Tao; Carrete, Jesús; van Roekeghem, Ambroise; Mingo, Natalio; Madsen, Georg K. H.

    2017-06-01

    Heat management in thermoelectric and power devices as well as in random access memories poses a grand challenge and can make the difference between a working and an abandoned device design. Despite the prevalence of dislocations in all these technologies, the modeling of their thermal resistance is based on 50-year-old analytical approximations, whose simplicity was driven by practical limitations rather than physical insight. We introduce an efficient ab initio approach based on Green's functions computed by two-dimensional reciprocal space integration. By combining elasticity theory and density functional theory, we calculate the scattering strength of a 90∘ misfit edge dislocation in Si. Because of the breakdown of the Born approximation, earlier literature models fail, even qualitatively. We find that a dislocation density larger than 109cm-2 is necessary to substantially influence thermal conductivity at room temperature and above. We quantify how much of the reduction of thermal conductivity measured in nanograined samples can be explained by realistic dislocation concentrations.

  9. Structure, reactivity and spectroscopic properties of minerals from lateritic soils : insights from ab initio calculations

    OpenAIRE

    Balan, Etienne; Lazzeri, M.; Mauri, F.; Calas, G.

    2007-01-01

    We review here some recent applications of ab initio calculations to the modelling of spectroscopic and energetic properties of minerals, which are key components of lateritic soils or govern their geochemical properties. Quantum mechanical ab initio calculations are based on density functional theory and density functional perturbation theory. Among the minerals investigated, zircon is a typical resistant primary mineral. Its resistance to weathering is at the origin of the peculiar geochemi...

  10. Ab initio materials physics and microscopic electrodynamics of media

    OpenAIRE

    2016-01-01

    We argue that the amazing progress of first-principles materials physics necessitates a revision of the Standard Approach to electrodynamics of media. We hence subject this Standard Approach to a thorough critique, which shows both its inherent conceptual problems and its practical inapplicability to modern ab initio calculations. We then go on to show that the common practice in ab initio materials physics has overcome these difficulties by taking a different, microscopic approach to electro...

  11. Ab initio electronic properties of dual phosphorus monolayers in silicon

    DEFF Research Database (Denmark)

    Drumm, Daniel W.; Per, Manolo C.; Budi, Akin

    2014-01-01

    In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon......, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device...

  12. Ab-initio study of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  13. Vibrational spectroscopy investigation using ab initio and DFT vibrational analysis of 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine-4-oxide

    Science.gov (United States)

    Prasath, M.; Muthu, S.; Arun Balaji, R.

    2013-09-01

    The FT-IR and FT-Raman spectrum of 7-chloro-2-methylamino-5-phenyl-3H-1, 4-benzodiazepine-4-oxide (7CMP4BO) has been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The optimized geometry, Thermodynamic properties, NBO, Molecular Electrostatic Potentials, PES, frequency and intensity of the vibrational bands of 7CMP4BO were obtained by the ab initio HF and density functional theory (DFT), B3LYP/6-31G (d,p) basis set. The molecule orbital contributions were studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The linear polarizability (α) and the first order hyperpolarizability (β) values of the investigated molecule have been computed using DFT quantum mechanical calculations. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically calculated values.

  14. Ab initio direct classical trajectory investigation on the SN2 reaction of F- with NH2F: nonstatistical central barrier recrossing dynamics.

    Science.gov (United States)

    Yu, Feng

    2012-02-05

    The bimolecular nucleophilic substitution (S(N)2) reaction of F(a)(-) with NH(2)F(b) has been investigated with the ab initio direct classical trajectory method. According to our trajectory calculations, a dynamic behavior of nonstatistical central barrier recrossing is revealed. Among the 64 trajectories calculated in this work, 45 trajectories follow the dynamic reaction pathways as assumed by statistical theory and other 19 trajectories with central barrier recrossings are nonstatistical. For the nonstatistical trajectories, the central barrier recrossings may originate from the inefficient kinetic energy transfer from the intramolecular modes of the NH(2)F(a) moiety in the dynamic F(b)(-)…H-NH-F(a) complex to the intermolecular modes of the dynamic F(b)(-)…H-NH-F(a) complex on the exit-channel potential energy surface. With respect to the dynamic behavior of the nonstatistical central barrier recrossing, the statistical theories such as the Rice-Ramsperger-Kassel-Marcus and transition state theories without further corrections cannot be used to model the reaction kinetics for this S(N)2 reaction.

  15. Investigations of the structure of silicate glasses and carbohydrates by silicon-29 and carbon-13 nuclear magnetic resonance and by ab initio calculations

    Science.gov (United States)

    Zhang, Ping

    Measurements of the relative abundance of anionic species, commonly described as Qn species in silicate glasses are essential for any structure-based model of thermodynamic or transport properties of silicate liquids and magmas. Solid-state 29Si NMR has provided the most convincing evidence that the Qn species distribution in alkali glasses is not random but closer to binary. Unfortunately, for most silicate glasses 29Si MAS NMR spectra are incompletely resolved. A 2D NMR technique is reported that cannot only determine the distribution of Qn species without any a priori assumptions about the lineshapes, but also provide over an order of magnitude improvement in the precision of Qn species quantification. Results of this approach on a few carefully chosen composition should lead to a major improvement of structure-based thermodynamic models of silicate liquids. Another important aspect of structure of silicate glasses is the environment of nonbridging oxygen atoms. In other words, how the cations are distributed around non-bridging oxygen atoms. 17O solid-state NMR has been shown to be a powerful probe for studying the local structure of non-bridging oxygen. One challenge in exploiting techniques such as DOR, DAS, or MQ-MAS is the development of appropriate models to describe the relationships between NMR parameters and local structure. Ab initio calculations on the model cluster [(OH)3Si-OMn] OH 3Si-OMn n-1 + (M = Na, K; n = 3,4,5) have been performed. A point charge model is also used to derive approximate expressions to describe the dependence of the 17O quadrupole coupling parameters on the cation-non-bridging oxygen distance and its orientation. Solid-state NMR and ab initio quantum mechanical methods are used to characterize the possible molecular conformations of trehalose. Combining ab initio derived maps and using the 13 C lineshape as constraints, the torsion angle distribution map for alpha-alpha ' trehalose was constructed. Measurements of 13C isotropic

  16. Finite Elements in Ab Initio Electronic-Structure Calulations

    Science.gov (United States)

    Pask, J. E.; Sterne, P. A.

    Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.

  17. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    Science.gov (United States)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  18. Ab initio investigation of the effect of pressure on the structure and electronic properties of alkali metal oxides and peroxides

    Science.gov (United States)

    Aleinikova, M. V.; Zhuravlev, Yu. N.; Korabelnikov, D. V.

    2012-10-01

    Within the framework of a gradient approximation of the all-electron density functional theory (DFT), using a linear combination of atomic orbitals of the CRYSTAL09 software package, the structural and electronic properties of lithium, sodium, and potassium oxides and peroxides are investigated under hydrostatic conditions in the range of pressures from -3 to 15 GPa. The crystal structure parameters are determined, the band structure, densities of state (DOSs), atomic charges, and overlap populations are calculated, and their dependence on pressure is established. The energy band gap is shown to increase with pressure.

  19. Ab initio investigations of the charge transport properties of endohedral M@C20 (M=Na and K) metallofullerenes

    Institute of Scientific and Technical Information of China (English)

    An Yi-Peng; Yang Chuan-Lu; Wang Mei-Shan; Ma Xiao-Guang; Wang De-Hua

    2010-01-01

    Using density functional theory and quantum transport calculations based on nonequilibum Green's function formalism,we investigate the charge transport properties of endohedral M@C20 (M = Na and K) metallofullerenes.Our results show that the conductance of C20 fullerene can be obviously improved by insertion of alkali atom at its centre.Both linear and nonlinear sections are found on the Ⅰ-Ⅴ curves of the Au-M@C20-Au two-probe systems.The novel negative differential resistance behaviour is also observed in Na@C20 molecule but not in K@C20.

  20. Structural and electronic properties of Sin, Sin+, and AlSin-1 (n=2-13) clusters: Theoretical investigation based on ab initio molecular orbital theory

    Science.gov (United States)

    Nigam, Sandeep; Majumder, Chiranjib; Kulshreshtha, S. K.

    2004-10-01

    The geometric and electronic structures of Sin, Sin+, and AlSin-1 clusters (2⩽n⩽13) have been investigated using the ab initio molecular orbital theory under the density functional theory formalism. The hybrid exchange-correlation energy function (B3LYP) and a standard split-valence basis set with polarization functions [6-31G(d)] were employed for this purpose. Relative stabilities of these clusters have been analyzed based on their binding energies, second difference in energy (Δ 2E) and fragmentation behavior. The equilibrium geometry of the neutral and charged Sin clusters show similar structural growth. However, significant differences have been observed in the electronic structure leading to their different stability pattern. While for neutral clusters, the Si10 is magic, the extra stability of the Si11+ cluster over the Si10+ and Si12+ bears evidence for the magic behavior of the Si11+ cluster, which is in excellent agreement with the recent experimental observations. Similarly for AlSin-1 clusters, which is isoelectronic with Sin+ clusters show extra stability of the AlSi10 cluster suggesting the influence of the electronic structures for different stabilities between neutral and charged clusters. The ground state geometries of the AlSin-1 clusters show that the impurity Al atom prefers to substitute for the Si atom, that has the highest coordination number in the host Sin cluster. The fragmentation behavior of all these clusters show that while small clusters prefers to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size.

  1. Ab-initio investigation of structural, electronic and optical properties BSb compound in bulk and surface (110 states

    Directory of Open Access Journals (Sweden)

    H A Badehian

    2015-07-01

    Full Text Available In recent work the structural, electronic and optical properties of BSb compound in bulk and surface (110 states have been studied. Calculations have been performed using Full-Potential Augmented Plane Wave (FP-LAPW method by WIEN2k code in Density Functional Theory (DFT framework. The structural properties of the bulk such as lattice constant, bulk module and elastic constants have been investigated using four different approximations. The band gap energy of the bulk and the (110 surface of BSb were obtained about 1.082 and 0.38 eV respectively. Moreover the surface energy, the work function, the surface relaxation, surface state and the band structure of BSb (110 were investigated using symmetric and stoichiometric 15 layers slabs with the vacuum of 20 Bohr. In addition, the real and imaginary parts of the dielectric function of the bulk and the BSb (110 slab were calculated and compared to each other. Our obtained results have a good agreement with the available results.

  2. An ab initio investigation of Bi2Se3 topological insulator deposited on amorphous SiO2

    Science.gov (United States)

    de Oliveira, I. S. S.; Scopel, W. L.; Miwa, R. H.

    2017-02-01

    We use first-principles simulations to investigate the topological properties of Bi2Se3 thin films deposited on amorphous SiO2, Bi2Se3/a-SiO2, which is a promising substrate for topological insulator (TI) based device applications. The Bi2Se3 films are bonded to a-SiO2 mediated by van der Waals interactions. Upon interaction with the substrate, the Bi2Se3 topological surface and interface states remain present, however the degeneracy between the Dirac-like cones is broken. The energy separation between the two Dirac-like cones increases with the number of Bi2Se3 quintuple layers (QLs) deposited on the substrate. Such a degeneracy breaking is caused by (i) charge transfer from the TI to the substrate and charge redistribution along the Bi2Se3 QLs, and (ii) by deformation of the QL in contact with the a-SiO2 substrate. We also investigate the role played by oxygen vacancies ({{\\text{V}}\\text{O}} ) on the a-SiO2, which increases the energy splitting between the two Dirac-like cones. Finally, by mapping the electronic structure of Bi2Se3/a-SiO2, we found that the a-SiO2 surface states, even upon the presence of {{\\text{V}}\\text{O}} , play a minor role on gating the electronic transport properties of Bi2Se3.

  3. An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc 2 AlC MAX compound

    Science.gov (United States)

    Ali, M. A.; Nasir, M. T.; Khatun, M. R.; Islam, A. K. M. A.; Naqib, S. H.

    2016-10-01

    The structural vibrational, thermodynamical, and optical properties of potentially technologically important, weakly coupled MAX compound, Sc2AlC are calculated using density functional theory (DFT). The structural properties of Sc2AlC are compared with the results reported earlier. The vibrational, thermodynamical, and optical properties are theoretically estimated for the first time. The phonon dispersion curve is calculated and the dynamical stability of this compound is investigated. The optical and acoustic modes are observed clearly. We calculate the Helmholtz free energy (F), internal energy (E), entropy (S), and specific heat capacity (Cv ) from the phonon density of states. Various optical parameters are also calculated. The reflectance spectrum shows that this compound has the potential to be used as an efficient solar reflector.

  4. Ab Initio Investigation of He Bubbles at the Y2Ti2O7-Fe Interface in Nanostructured Ferritic Alloys

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys are promising materials candidates for the next generation of nuclear reactors due to their ability to withstand high temperatures, high pressures, high neutron flux and especially, the presence of high concentrations of transmutation product helium. As helium diffuses through the matrix, large number densities of complex oxide nanoclusters, namely Y2Ti2O7, Y2O3 and Y2TiO5, act as trapping sites for individual helium atoms and helium clusters. Consequently, there is a significant decrease in the amount of helium that reaches grain boundaries, mitigating the threat of pressurized bubble formation and embrittlement. In order to understand the helium trapping mechanisms of the oxides at a fundamental level, the interface between the nanoclusters and the iron matrix must be modeled. We present results obtained using density functional theory on the Y2Ti2O7-Fe interface where the structure has been modeled based on experimental observations. Helium has been added along the interface in order to investigate the influence of helium on the structure and to obtain thermodynamic and kinetic parameters of helium along the interface.

  5. Adsorption of ethanol on V2O5 (010) surface for gas-sensing applications: Ab initio investigation

    Science.gov (United States)

    Qin, Yuxiang; Cui, Mengyang; Ye, Zhenhua

    2016-08-01

    The adsorption of ethanol on V2O5 (010) surface was investigated by means of density functional theory (DFT) with a combined generalized gradient approximation (GGA) plus Hubbard U approach to exploit the potential sensing applications. The adsorption configurations were first constructed by considering different orientations of ethanol molecule to V and O sites on the "Hill"- and "Valley"-like regions of corrugated (010) surface. It is found that ethanol molecule can adsorb on whole surface in multiple stable configurations. Nevertheless the molecular adsorption on the "Hill"-like surface is calculated to occur preferentially, and the single coordinated oxygen on "Hill"-like surface (O1(H)) acting as the most energetically favorable adsorption site shows the strongest adsorption ability to ethanol molecule. Surface adsorption of ethanol tunes the electronic structure of V2O5 and cause an n-doping effect. As a consequence, the Fermi levels shift toward the conductive bond increasing the charge carrier concentration of electrons in adsorbed V2O5. The sensitive electronic structure and the multiple stable configurations to ethanol adsorption highlight the high adsorption activity and then the potential of V2O5 (010) surface applied to high sensitive sensor for ethanol vapor detection. Further Mulliken population and Natural bond orbital (NBO) calculations quantify the electron transfer from the adsorbed ethanol to the surface, and correlates the adsorption ability of surface sites with the charge donation and dispersion.

  6. Metallic behavior of NiS thin film under the structural, optical, electrical and ab initio investigation frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Boughalmi, R. [Unité de physique des dispositifs à semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Rahmani, R. [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique (LPC2ME). Département de physique, Faculté des Sciences, Université d' Oran Es-Sénia, Oran (Algeria); Département de physique, Université des Sciences et de la Technologie d' Oran- Mohamed-Boudiaf, Oran (Algeria); Boukhachem, A., E-mail: abdelwaheb.boukhachem@laposte.net [Unité de physique des dispositifs à semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Amrani, B.; Driss-Khodja, K. [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique (LPC2ME). Département de physique, Faculté des Sciences, Université d' Oran Es-Sénia, Oran (Algeria); Amlouk, M. [Unité de physique des dispositifs à semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia)

    2015-08-01

    Nickel sulfide (NiS) thin films were deposited on the glass substrates by spray pyrolysis at 250 °C using an aqueous solution which contains nickel chloride hexahydrate and thiourea as precursors. X-ray diffraction analysis confirms that the hexagonal structure is being part of P6{sub 3}/mmc space group of the deposited films with (100) preferred orientation and lattice parameters a = 3.441 Å and c = 5.320 Å. The optical properties, investigated through transmittance and reflectance measurements reveal that the direct band gap energy (Eg) is around 0.55 eV. The electrical study shows a metallic behavior of the current II-VI binary compound. This behavior regarding NiS II-VI binary sulfide was confirmed by numerical studies based on the density functional theory (DFT) were adopted. The ground state quantities, such as lattice parameter, bulk modulus and its pressure derivative as well as the elastic constants were obtained. The values are consistent with the stability of hexagonal structure. The band structure and the states densities of such material were studied. The results show that there is an agreement between experimental and simulation. - Highlights: • NiS thin films are synthesized by Spray pyrolysis. • NiS is a low band gap compound. • These films have interesting electrical properties showing a metallic behavior. • Computational study confirms the electrical measurements.

  7. Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Alireza, E-mail: Alireza.soltani46@yahoo.com [Young Researchers Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Raz, Shima Ghafouri [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Rezaei, Vahid Joveini [Young Researchers Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Dehno Khalaji, Aliakbar [Department of Chemistry, Faculty of Science, Golestan University, Gorgan (Iran, Islamic Republic of); Savar, Mohammad [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The electronic properties of NH{sub 3} on Al- and Ga-doped (8, 0) and (5, 5) BNNT are studied. Black-Right-Pointing-Pointer The adsorption energy for NH{sub 3} on Al-doped (8, 0) BNNT is higher than that of Ga-doped (8, 0) BNNT. Black-Right-Pointing-Pointer The relation between adsorption energy and charge transfer was investigated. - Abstract: We performed first-principles calculations on the ammonia (NH{sub 3}) adsorption properties with zigzag and armchair single-walled BN nanotubes (SWBNNTs) using B3LYP/6-31G* basis set implemented in Gaussian 98 program. We considered the ammonia adsorption on structural and electronic properties of Al- and Ga-doped (8, 0), (5, 5) BNNTs. The adsorption energy for the most stable configuration of NH{sub 3} on Al-doped (8, 0) BNNT is about -0.182 eV, which is typical for the chemisorptions. We determined that both aluminum and gallium doping can significantly enhance the adsorption energy of NH{sub 3}/BNNTs complexes. Our electronic results reveal that there is a significant orbital hybridization between two species in adsorption process being an evidence of covalent interaction.

  8. Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation

    Science.gov (United States)

    Bedjaoui, A.; Bouhemadou, A.; Bin-Omran, S.

    2016-04-01

    The structural, elastic and thermodynamic properties of the α (tetragonal) and β (orthorhombic) polymorphs of the Sr2GeN2 compound have been examined in detail using ab initio density functional theory pseudopotential plane-wave calculations. Apart the structural properties at the ambient conditions, all present reported results are predicted for the first time. The calculated equilibrium lattice parameters and inter-atomic bond-lengths of the considered polymorphs are in good agreement with the available experimental data. It is found that α-Sr2GeN2 is energetically more stable than β-Sr2GeN2. The two examined polymorphs are very similar in their crystal structures and have almost identical local environments. The single-crystal and polycrystalline elastic parameters and related properties - including elastic constants, bulk, shear and Young's moduli, Poisson's ratio, anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature - have been predicted. Temperature and pressure dependence of some macroscopic properties - including the unit-cell volume, bulk modulus, volume thermal expansion coefficient, heat capacity and Debye temperature - have been evaluated using ab initio calculations combined with the quasi-harmonic Debye model.

  9. Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H2O)6+

    Science.gov (United States)

    Liu, Lei; Hu, Cui-E.; Tang, Mei; Chen, Xiang-Rong; Cai, Ling-Cang

    2016-10-01

    The low-lying isomers of cationic water cluster (H2O)6+ have been globally explored by using particle swarm optimization algorithm in conjunction with quantum chemical calculations. Compared with previous results, our searching method covers a wide range of structural isomers of (H2O)6+ and therefore turns out to be more effective. With these local minima, geometry optimization and vibrational analysis are performed for the most interesting clusters at second-order Møller-Plesset (MP2)/aug-cc-pVDZ level, and their energies are further refined at MP2/aug-cc-pVTZ and coupled-cluster theory with single, double, and perturbative triple excitations/aug-cc-pVDZ level. The interaction energies using the complete basis set limits at MP2 level are also reported. The relationships between their structure arrangement and their energies are discussed. Based on the results of thermal simulation, structural change from a four-numbered ring to a tree-like structure occurs at T ≈ 45 K, and the relative population of six lowest-free-energy isomers is found to exceed 4% at some point within the studied temperature range. Studies reveal that, among these six isomers, two new-found isomers constitute 10% of isomer population at 180 K, and the experimental spectra can be better explained with inclusions of the two isomers. The molecular orbitals for six representative cationic water clusters are also studied. Through topological and reduced density gradient analysis, we investigated the structural characteristics and the bonding strengths of these water cluster radical cations.

  10. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, Julian Arndt

    2012-12-11

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  11. Recent achievements in ab initio modelling of liquid water

    CERN Document Server

    Khaliullin, Rustam Z

    2013-01-01

    The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.

  12. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  13. P-V Relation for Mercuric Calcogenides: Ab Initio Method

    Directory of Open Access Journals (Sweden)

    G. Misra

    2011-01-01

    Full Text Available Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P, volume (V and temperature (T that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This ab initio method is extended to derive the equation of state for Mercuric Calcogenides. The present equation of state has also been tested for the prediction of End Point. The computed results compare well with Quantum statistical data.

  14. Adsorption of ethanol on V{sub 2}O{sub 5} (010) surface for gas-sensing applications: Ab initio investigation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: qinyuxiang@tju.edu.cn [School of Electronics and Information Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cui, Mengyang; Ye, Zhenhua [School of Electronics and Information Engineering, Tianjin University, Tianjin 300072 (China)

    2016-08-30

    Highlights: • Ethanol adsorbed on V{sub 2}O{sub 5} (010) surface was investigated by ab initio calculations. • Ethanol prefers to adsorb on “Hill”-like surface, rather than“Valley”-like region. • Surface O{sub 1(H)} site plays a key role to dominate the ethanol adsorption process. • Sensing mechanism is related with electronic structure and electron redistribution. • Gas sensitivity is reflected by quantitative electron population analysis. - Abstract: The adsorption of ethanol on V{sub 2}O{sub 5} (010) surface was investigated by means of density functional theory (DFT) with a combined generalized gradient approximation (GGA) plus Hubbard U approach to exploit the potential sensing applications. The adsorption configurations were first constructed by considering different orientations of ethanol molecule to V and O sites on the “Hill”- and “Valley”-like regions of corrugated (010) surface. It is found that ethanol molecule can adsorb on whole surface in multiple stable configurations. Nevertheless the molecular adsorption on the “Hill”-like surface is calculated to occur preferentially, and the single coordinated oxygen on “Hill”-like surface (O{sub 1(H)}) acting as the most energetically favorable adsorption site shows the strongest adsorption ability to ethanol molecule. Surface adsorption of ethanol tunes the electronic structure of V{sub 2}O{sub 5} and cause an n-doping effect. As a consequence, the Fermi levels shift toward the conductive bond increasing the charge carrier concentration of electrons in adsorbed V{sub 2}O{sub 5}. The sensitive electronic structure and the multiple stable configurations to ethanol adsorption highlight the high adsorption activity and then the potential of V{sub 2}O{sub 5} (010) surface applied to high sensitive sensor for ethanol vapor detection. Further Mulliken population and Natural bond orbital (NBO) calculations quantify the electron transfer from the adsorbed ethanol to the surface, and

  15. Ab initio study of alanine polypeptide chains twisting

    CERN Document Server

    Solovyov, I A; Solovyov, A V; Yakubovitch, A V; Greiner, Walter; Solov'yov, Andrey V.; Solov'yov, Ilia A.; Yakubovitch, Alexander V.

    2005-01-01

    We have investigated the potential energy surfaces for alanine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles Phi and Psi, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable corres...

  16. Ab initio dynamical exchange interactions in frustrated antiferromagnets

    Science.gov (United States)

    Simoni, Jacopo; Stamenova, Maria; Sanvito, Stefano

    2017-08-01

    The ultrafast response to an optical pulse excitation of the spin-spin exchange interaction in transition metal antiferromagnets is studied within the framework of the time-dependent spin-density functional theory. We propose a formulation for the full dynamical exchange interaction, which is nonlocal in space, and it is derived starting from ab initio arguments. Then, we investigate the effect of the laser pulse on the onset of the dynamical process. It is found that we can distinguish two types of excitations, both activated immediately after the action of the laser pulse. While the first one can be associated to a Stoner-like excitation and involves the transfer of spin from one site to another, the second one is related to the ultrafast modification of a Heisenberg-like exchange interaction and can trigger the formation of spin waves in the first few hundred femtoseconds of the time evolution.

  17. Ab initio study of the transition-metal carbene cations

    Institute of Scientific and Technical Information of China (English)

    李吉海; 冯大诚; 冯圣玉

    1999-01-01

    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  18. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    CERN Document Server

    Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens

    2016-01-01

    We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  19. Gas phase ion chemistry of coumarins: ab initio calculations used to ...

    African Journals Online (AJOL)

    Gas phase ion chemistry of coumarins: ab initio calculations used to justify ... and quadrupole mass spectrometer (qMS) coupled to a gas chromatograph is ... Ab Initio calculations, Electron ionization, Positive chemical ionization, Negative ...

  20. Experimental and ab initio investigations of the x-ray absorption near edge structure of orthorhombic LuMnO3

    Science.gov (United States)

    Hu, Y.; Borca, C. N.; Kleymenov, E.; Nachtegaal, M.; Delley, B.; Janousch, M.; Dönni, A.; Tachibana, M.; Kitazawa, H.; Takayama-Muromachi, E.; Kenzelmann, M.; Niedermayer, C.; Lippert, T.; Wokaun, A.; Schneider, C. W.

    2012-06-01

    X-ray near edge absorption spectroscopy was used to probe the electronic structure of multiferroic orthorhombic LuMnO3 polycrystalline samples and strained, twin-free orthorhombic (1-10) LuMnO3 films grown by pulsed laser deposition on (1-10) YAlO3 substrates. For all o-LuMnO3 samples x-ray near edge absorption spectroscopy spectra reveal that the pre-edge structure is influenced by the increase in MnO6 distortion as a result of the smaller Re-ion or film strain. Furthermore there is clear evidence of anisotropic Mn-O bonding and Mn orbital ordering along the c- and [110] direction. The experimental film and bulk data are in agreement with ab initio simulations.

  1. Ab initio molecular dynamics simulation of laser melting of silicon

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting tr

  2. Ab initio study of alanine polypeptide chain twisting

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    chains. These particular degrees of freedom are essential for the characterization of the proteins folding process. Calculations have been carried out within the ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined...

  3. Relaxation of Small Molecules: an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2

    2002-01-01

    Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.

  4. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    Science.gov (United States)

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  5. Ab-Initio Theory of Charge Transport in Organic Crystals

    Science.gov (United States)

    Hannewald, K.; Bobbert, P. A.

    2005-06-01

    A theory of charge transport in organic crystals is presented. Using a Holstein-Peierls model, an explicit expression for the charge-carrier mobilities as a function of temperature is obtained. Calculating all material parameters from ab initio calculations, the theory is applied to oligo-acene crystals and a brief comparison to experiment is given.

  6. Structural flexibility of DABCO. Ab initio and DFT benchmark study

    Science.gov (United States)

    Nizovtsev, Anton S.; Ryzhikov, Maxim R.; Kozlova, Svetlana G.

    2017-01-01

    The energy and structural parameters of 1,4-diazabicyclo[2.2.2]octane (DABCO) obtained by various DFT methods are examined versus ab initio and experimental data. The features of twisting potentials of DABCO and closely-related species (1-azabicyclo[2.2.2]octane and bicyclo[2.2.2]octane) are discussed in light of computational schemes applied.

  7. Ab initio simulation of dislocation cores in metals; Simulation ab initio des coeurs de dislocation dans les metaux

    Energy Technology Data Exchange (ETDEWEB)

    Ventelon, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMP), 91 - Gif-sur-Yvette (France)

    2008-07-01

    In the framework of the multi scale simulation of metals and alloys plasticity, the aim of this study is to develop a methodology of ab initio dislocations study and to apply it to the [111] screw dislocation in the bc iron. (A.L.B.)

  8. Ab initio and Monte Carlo investigations of structural, electronic and magnetic properties of new ferromagnetic Heusler alloys with high Curie temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje

    2011-08-30

    The mechanism which causes many of the unusual thermomechanical properties of martensitic alloys, as for example, superelasticity and the shape-memory effect, is the martensitic transformation. The prototype ferromagnetic shape memory alloy (FSMA) is Ni{sub 2}MnGa. But a technological breakthrough is missing due to its poor ductility and low operation temperatures. The goal of this thesis is the proposal of new FSMA appropriate for future technological applications. I focus on X{sub 2}YZ Heusler alloys which are mainly based on Mn, Fe, Co, and Ni for the X and Y sites and Z=Ga or Zn. The big challenge of this work is to find material classes which combine the unique magnetomechanical properties of FSMA which are large recoverable magnetostrictive strains, high magnetocrystalline anisotropy energy, and highly mobile twin boundaries with transformation temperatures clearly above room temperature and a reduced brittleness. Such a study, providing material classes which from a theoretical point of view are promising candidates for future FSMA, will help the experimental physicists to select interesting subgroups in the vast number of possible chemical compositions of X{sub 2}YZ Heusler alloys. I have systematically varied the composition in the new Heusler alloys in order to find trends indicating generic tendencies of the material properties, for instance, as a function of the valence electron concentration e/a. A main feature of this thesis is the attempt to find the origin of the competing structural ordering tendencies between conventional X{sub 2}YZ and inverse (XY)XZ Heusler structures which are observed for all systems investigated. In the first part of this work the accuracy and predictive power of ab initio and Monte Carlo simulations is demonstrated by reproducing the experimental phase diagram of Ni-Mn-(Ga,In,Sn,Sb). The linear increasing and decreasing slopes of T{sub M} and T{sub C} can be reproduced by total and free energy calculations and the analysis

  9. Benzyl alcohol-ammonia (1:1) cluster structure investigated by combined IR-UV double resonance spectroscopy in jet and ab initio calculation

    Indian Academy of Sciences (India)

    Nikhil Guchhait

    2001-06-01

    Laser-induced fluorescence excitation and IR-UV double resonance spectroscopy have been used to determine the hydrogen-bonded structure of benzyl alcohol-ammonia (1:1) cluster in a jet-cooled molecular beam. In addition, ab initio quantum chemical calculations have been performed at HF/6-31G and HF/6-31G(d, p) levels for different ground state equilibrium structures of the cluster to correlate the calculated OH and NH frequencies and their intensities with experimental results. The broad red-shifted OH-stretching mode in the IR-UV double resonance spectrum suggests strong hydrogen bonding between the hydroxyl hydrogen and the lone pair of the ammonia nitrogen. The position and intensity distribution of the calculated NH and OH modes for the minimum-energy gauche form at HF/6-31 level have better correlation with the experimental results compared to other calculated ground state equilibrium conformers. These results lead to the conclusion that the minimum energy gauche form of the cluster is populated in the jet-cooled condition.

  10. Serine Proteases an Ab Initio Molecular Dynamics Study

    CERN Document Server

    De Santis, L

    1999-01-01

    In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.

  11. The density matrix renormalization group for ab initio quantum chemistry

    CERN Document Server

    Wouters, Sebastian

    2014-01-01

    During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...

  12. Spin-orbit decomposition of ab initio wavefunctions

    CERN Document Server

    Johnson, Calvin W

    2014-01-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulting wavefunctions into their component $L$- and $S$-components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly fifty years and six orders of magnitude in basis dimensions. I suggest $L$-$S$ may be a useful tool for analyzing \\textit{ab initio} wavefunctions of light nuclei, for example in the case of rotational bands.

  13. Spin-orbit decomposition of ab initio nuclear wave functions

    Science.gov (United States)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  14. High Level Ab Initio Kinetics as a Tool for Astrochemistry

    Science.gov (United States)

    Klippenstein, Stephen

    2015-05-01

    We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.

  15. Toward the Ab-initio Description of Medium Mass Nuclei

    CERN Document Server

    Barbieri, C; Soma, V; Duguet, T; Navratil, P

    2012-01-01

    As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.

  16. Ab initio theories for light nuclei and neutron stars

    Science.gov (United States)

    Gezerlis, Alexandros

    2016-09-01

    In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).

  17. Study of Nuclear Clustering from an Ab Initio Perspective

    Science.gov (United States)

    Kravvaris, Konstantinos; Volya, Alexander

    2017-08-01

    We put forward a new ab initio approach that seamlessly bridges the structure, clustering, and reactions aspects of the nuclear quantum many-body problem. The configuration interaction technique combined with the resonating group method based on a harmonic oscillator basis allows us to treat the reaction and multiclustering dynamics in a translationally invariant way and preserve the Pauli principle. Our presentation includes studies of Be,108 and an exploration of 3 α clustering in 12C.

  18. Ab initio calculation of tight-binding parameters

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, A.K.; Klepeis, J.E.

    1997-12-01

    We calculate ab initio values of tight-binding parameters for the f- electron metal Ce and various phases of Si, from local-density functional one-electron Hamiltonian and overlap matrix elements. Our approach allows us to unambiguously test the validity of the common minimal basis and two-center approximations as well as to determine the degree of transferability of both nonorthogonal and orthogonal hopping parameters in the cases considered.

  19. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    Science.gov (United States)

    2015-07-15

    144306  (2010)]  and  the   cubic -­‐ spline -­‐fitted   PES   reported   by   Xu,   Xie,   Zhang,   Lin,   and   Guo...SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b ...accurate global PESs and for direct dynamics simulations using interpolating moving least squares (IMLS) that guarantee high fidelity to ab initio data. A

  20. GAUSSIAN 76: An ab initio Molecular Orbital Program

    Science.gov (United States)

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  1. Nuclear forces and ab initio calculations of atomic nuclei

    OpenAIRE

    Meißner, Ulf-G.

    2014-01-01

    Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.

  2. Thermochemical data for CVD modeling from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  3. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    Science.gov (United States)

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  4. Ab initio molecular dynamics using hybrid density functionals

    Science.gov (United States)

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost

    2008-06-01

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  5. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  6. Ab-initio calculations for dilute magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Belhadji, Brahim

    2008-03-03

    This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)

  7. Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations.

    Science.gov (United States)

    Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M

    2015-08-05

    Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Melting curves of metals by ab initio calculations

    Science.gov (United States)

    Minakov, Dmitry; Levashov, Pavel

    2015-06-01

    In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).

  9. Rational design of electrolyte components by ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Patrik; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2006-02-28

    This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc. (author)

  10. Ab initio transport across bismuth selenide surface barriers

    KAUST Repository

    Narayan, Awadhesh

    2014-11-24

    © 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.

  11. Ab Initio Studies of Metal Hexaboride Materials

    Science.gov (United States)

    Schmidt, Kevin M.

    Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron

  12. Benchmarks of the ab initio FCI, MCSM and NCFC methods

    CERN Document Server

    Abe, T; Otsuka, T; Shimizu, N; Utsuno, Y; Vary, J P

    2012-01-01

    We report ab initio no-core solutions for properties of light nuclei with three different approaches in order to assess the accuracy and convergence rates of each method. Full Configuration Interaction (FCI), Monte Carlo Shell Model (MCSM) and No Core Full Configuration (NCFC) approaches are solved separately for the ground state energy and other properties of seven light nuclei using the realistic JISP16 nucleon-nucleon interaction. The results are consistent among the different approaches. The methods differ significantly in how the required computational resources scale with increasing particle number for a given accuracy.

  13. Ab initio modeling of small proteins by iterative TASSER simulations

    Directory of Open Access Journals (Sweden)

    Zhang Yang

    2007-05-01

    Full Text Available Abstract Background Predicting 3-dimensional protein structures from amino-acid sequences is an important unsolved problem in computational structural biology. The problem becomes relatively easier if close homologous proteins have been solved, as high-resolution models can be built by aligning target sequences to the solved homologous structures. However, for sequences without similar folds in the Protein Data Bank (PDB library, the models have to be predicted from scratch. Progress in the ab initio structure modeling is slow. The aim of this study was to extend the TASSER (threading/assembly/refinement method for the ab initio modeling and examine systemically its ability to fold small single-domain proteins. Results We developed I-TASSER by iteratively implementing the TASSER method, which is used in the folding test of three benchmarks of small proteins. First, data on 16 small proteins (α-root mean square deviation (RMSD of 3.8Å, with 6 of them having a Cα-RMSD α-RMSD α-RMSD of the I-TASSER models was 3.9Å, whereas it was 5.9Å using TOUCHSTONE-II software. Finally, 20 non-homologous small proteins (α-RMSD of 3.9Å was obtained for the third benchmark, with seven cases having a Cα-RMSD Conclusion Our simulation results show that I-TASSER can consistently predict the correct folds and sometimes high-resolution models for small single-domain proteins. Compared with other ab initio modeling methods such as ROSETTA and TOUCHSTONE II, the average performance of I-TASSER is either much better or is similar within a lower computational time. These data, together with the significant performance of automated I-TASSER server (the Zhang-Server in the 'free modeling' section of the recent Critical Assessment of Structure Prediction (CASP7 experiment, demonstrate new progresses in automated ab initio model generation. The I-TASSER server is freely available for academic users http://zhang.bioinformatics.ku.edu/I-TASSER.

  14. Ab initio study of phase equilibria in TiCx

    DEFF Research Database (Denmark)

    Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.

    2002-01-01

    The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti......3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures....

  15. Accelerating Ab Initio Nuclear Physics Calculations with GPUs

    CERN Document Server

    Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik

    2014-01-01

    This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.

  16. Spin-orbit decomposition of ab initio wavefunctions

    OpenAIRE

    Johnson, Calvin W.

    2014-01-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulti...

  17. Tailoring magnetoresistance at the atomic level: An ab initio study

    KAUST Repository

    Tao, Kun

    2012-01-05

    The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.

  18. Ab initio structure determination via powder X-ray diffraction

    Indian Academy of Sciences (India)

    Digamber G Porob; T N Guru Row

    2001-10-01

    Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.

  19. Hydrogen Desorption from Mg Hydride: An Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Simone Giusepponi

    2012-07-01

    Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.

  20. Morphing ab initio potential energy curve of beryllium monohydride

    Science.gov (United States)

    Špirko, Vladimír

    2016-12-01

    Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.

  1. Resonance and aromaticity: an ab initio valence bond approach.

    Science.gov (United States)

    Rashid, Zahid; van Lenthe, Joop H; Havenith, Remco W A

    2012-05-17

    Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wave function for each system was constructed using a linear combination of the VB structures (spin functions), which closely resemble the Kekulé valence structures, and two types of orbitals, that is, strictly atomic (local) and delocalized atomic (delocal) p-orbitals, were used to describe the π-system. It is found that the Pauling-Wheland's resonance energy with nonorthogonal structures decreases, while the same with orthogonalized structures and the total mean resonance energy (the sum of the weighted off-diagonal contributions in the Hamiltonian matrix of orthogonalized structures) increase when delocal orbitals are used as compared to local p-orbitals. Analysis of the interactions between the different structures of a system shows that the resonance in the 6π electrons conjugated circuits have the largest contributions to the resonance energy. The VBSCF calculations also show that the extra stability of phenanthrene, a kinked benzenoid, as compared to its linear counterpart, anthracene, is a consequence of the resonance in the π-system rather than the H-H interaction in the bay region as suggested previously. Finally, the empirical parameters for the resonance interactions between different 4n+2 or 4n π electrons conjugated circuits, used in Randić's conjugated circuits theory or Herdon's semi-emprical VB approach, are quantified. These parameters have to be scaled by the structure coefficients (weights) of the contributing structures.

  2. Equations of state of heavy metals: ab initio approaches; Equations d'etat des metaux lourds: approches ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-07-01

    The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)

  3. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  4. Unified ab initio approaches to nuclear structure and reactions

    CERN Document Server

    Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-01-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...

  5. Ab initio calculations of reactions of light nuclei

    Science.gov (United States)

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2017-09-01

    An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable as a support tool for accurate evaluations of crucial reaction data for nuclear astrophysics, fusion-energy research, and other applications. We present an efficient many-body approach to nuclear bound and scattering states alike, known as the ab initio no-core shell model with continuum. In this approach, square-integrable energy eigenstates of the A-nucleon system are coupled to (A-A)+A target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges. We show that predictive results for nucleon and deuterium scattering on 4He nuclei can be obtained from the direct solution of the Schröedinger equation with modern nuclear potentials.

  6. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  7. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    Science.gov (United States)

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  8. Ab-initio electronic structure method for substitutional disorder applied to iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Alexander

    2016-02-12

    An ab-initio electronic structure method for substitutionally disordered real materials is developed within a pseudopotential density functional theory approach. The method is validated against exact diagonalization and for simple disordered CuZn alloys. The developed method is applied to iron-based superconductors. In particular, band renormalization effects due to various chemical substitutions in BaFe{sub 2}As{sub 2} are investigated and their Cooper pair breaking effects are compared.

  9. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    Science.gov (United States)

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.

  10. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  11. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.

    Science.gov (United States)

    Yang, Jianjun; Tse, John S

    2011-11-17

    The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.

  12. Magnetism and metal insulator transition in FeSi and FeGe. Ab Initio investigations of the electronic structure; Magnetismus und Metall-Isolator-Uebergang in FeSi und FeGe. Ab-initio-Untersuchungen der elektronischen Struktur

    Energy Technology Data Exchange (ETDEWEB)

    Neef, Matthias

    2007-03-19

    Aim of this thesis was to reach by a systematic study of different ab initio procedures an improved description of the electronic properties of FeSi and FeGe. Central result is the itinerant description of FeSi as a semiconductor in the neighbourhood of a ferromagnetic instability. The regardment of the nonlocal exchange in the effective one-particle approximation leads to a metastable magnetic state scarcely above the magnetic ground state. The application of the hybrid functional leads to a 1st order metal-isolator transition for large lattice parameters: FeSi transforms at increasement of the lattice parameter from an unmagnetic isolator to a magnetic metal. A similar behavior is found in the isostructural compound FeGe. The two systems FeSi and FeGe were systematically and detailedly analyzed by means of ab initio procedures. Thereby the structural, electronic, and magnetic properties were studied with DFT and HF calculations. Both calculations with spin polarization and without spin polarization were performed.

  13. A Review on Ab Initio Approaches for Multielectron Dynamics

    CERN Document Server

    Ishikawa, Kenichi L

    2015-01-01

    In parallel with the evolution of femtosecond and attosecond laser as well as free-electron laser technology, a variety of theoretical methods have been developed to describe the behavior of atoms, molecules, clusters, and solids under the action of those laser pulses. Here we review major ab initio wave-function-based numerical approaches to simulate multielectron dynamics in atoms and molecules driven by intense long-wavelength and/or ultrashort short-wavelength laser pulses. Direct solution of the time-dependent Schr\\"odinger equation (TDSE), though its applicability is limited to He, ${\\rm H}_2$, and Li, can provide an exact description and has been greatly contributing to the understanding of dynamical electron-electron correlation. Multiconfiguration self-consistent-field (MCSCF) approach offers a flexible framework from which a variety of methods can be derived to treat both atoms and molecules, with possibility to systematically control the accuracy. The equations of motion of configuration interactio...

  14. Ab initio Molecular Dynamics Study on Small Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    叶林晖; 刘邦贵; 王鼎盛

    2001-01-01

    Ab initio molecular dynamics simulations are performed on small single wall nanotubes. By structural relaxation,the equilibrium C-C bond lengths and bond angles are determined. Our result shows that for both zigzag and armchair nanotubes there are two nonequivalent bond lengths. One bond stretches from that of the graphene sheet, while the other shrinks. Small variations on bond angles are also shown. Energy bands are calculated for the optimized structures. It is found that the intrinsic curvature of the very small nanotube greatly modifies the energy band which can no longer be well described in the tight-binding zone-folding picture. In our calculation very small nanotubes are metallic. The energy per atom fits quite well with the relation of E(R) = E0 + f/R2 even for the extreme small radius. The implications of the results on the properties of small nanotubes are discussed.

  15. An Efficient Approach to Ab Initio Monte Carlo Simulation

    CERN Document Server

    Leiding, Jeff

    2013-01-01

    We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...

  16. High-throughput ab-initio dilute solute diffusion database

    Science.gov (United States)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  17. Ab initio quantum dynamics using coupled-cluster.

    Science.gov (United States)

    Kvaal, Simen

    2012-05-21

    The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.

  18. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  19. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute....... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...

  20. Ab initio study of II-(VI){sub 2} dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)

  1. Ab initio quantum dynamics using coupled-cluster

    CERN Document Server

    Kvaal, Simen

    2012-01-01

    The curse of dimensionality (COD) limits the current state-of-the-art {\\it ab initio} propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schr\\"odinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.

  2. Quantum plasmonics: from jellium models to ab initio calculations

    Directory of Open Access Journals (Sweden)

    Varas Alejandro

    2016-08-01

    Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  3. The ab-initio density matrix renormalization group in practice.

    Science.gov (United States)

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  4. The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2: Ab Initio Calculations

    Science.gov (United States)

    Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.

    2016-12-01

    Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.

  5. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    Science.gov (United States)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  6. Ab initio calculation of the potential bubble nucleus 34Si

    Science.gov (United States)

    Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.

    2017-03-01

    Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to

  7. Synchrotron-based far-infrared spectroscopic investigation and ab initio calculations of 3-oxetanone: observation and analysis of the ν7 band and the Coriolis coupled ν16 and ν20 bands.

    Science.gov (United States)

    Chen, Ziqiu; van Wijngaarden, Jennifer

    2012-09-27

    Rotationally resolved vibrational spectra of the four-membered heterocycle 3-oxetanone (c-C(3)H(4)O(2)) have been investigated in the 360-720 cm(-1) region with a resolution of 0.000 959 cm(-1) using synchrotron radiation from the Canadian Light Source. The observed bands correspond to motions best described as C═O deformation out-of-plane (ν(20)) at 399.6 cm(-1), C═O deformation in-plane (ν(16)) at 448.2 cm(-1), and the ring deformation (ν(7)) at 685.0 cm(-1). Infrared ground state combination differences along with previously reported pure rotational transitions were used to obtain the ground state spectroscopic parameters. Band centers, rotational and centrifugal distortion constants for the ν(7), ν(16), and ν(20) vibrational excited states were accurately determined by fitting a total of 10,319 assigned rovibrational transitions in a global analysis. The two adjacent carbonyl deformation bands, ν(16) and ν(20), were found to be mutually perturbed through a first-order a-type Coriolis interaction which was accounted for in the multiband analysis. The band centers agree within 3% of the ab initio estimates using DFT theory.

  8. Ab Initio Investigation on Structural, Elastic and Electronic Properties of η-Phase Cu4.5Ni1Au0.5Sn5 and Cu5Ni1Sn4.5In0.5 Intermetallic Compounds

    Science.gov (United States)

    Li, Xuezheng; Ma, Yong; Zhou, Wei; Wu, Ping

    2017-10-01

    The structural, elastic and electronic properties of quaternary intermetallic compounds η-Cu4.5Ni1Au0.5Sn5 and η-Cu5Ni1Sn4.5In0.5 are investigated by an ab initio method. The calculated heat of formation determines preferential occupancy sites for Ni, Au and In atoms which lead to thermodynamically stable compounds. Variation of lattice constants reveals that the change of atomic bonding has a directional discrepancy in η-Cu4.5Ni1Au0.5Sn5; the polycrystalline moduli obtained from single-crystal elastic stiffness show an increase after both Ni/Au and Ni/In additions. Also, the anisotropy of Young's modulus and shear modulus is significantly weakened in η-Cu4.5Ni1Au0.5Sn5. The density of states and maps of charge density distribution suggest that the atomic bonding in the quaternary intermetallic compounds is strengthened by the addition of Ni and Au but weakened by the addition of In.

  9. Ab initio electronic structure and correlations in pristine and potassium-doped molecular crystals of copper phthalocyanine

    NARCIS (Netherlands)

    Giovannetti, Gianluca; Brocks, Geert; Brink, van den Jeroen

    2008-01-01

    We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic mome

  10. Ab initio electronic structure and correlations in pristine and potassium-doped molecular crystals of copper phthalocyanine

    NARCIS (Netherlands)

    Giovannetti, G.; Brocks, G.; van den Brink, J.

    2008-01-01

    We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic

  11. Ab initio electronic structure and correlations in pristine and potassium-doped molecular crystals of copper phthalocyanine

    NARCIS (Netherlands)

    Giovannetti, G.; Brocks, G.; van den Brink, J.

    2008-01-01

    We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic mome

  12. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  13. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  14. Hydrogen adsorption on boron doped graphene: an {\\it ab initio} study

    OpenAIRE

    Miwa, R. H.; Martins, T B; Fazzio, A.

    2007-01-01

    The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {\\it ab initio} total energy calculations.

  15. Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures

    Science.gov (United States)

    Debernardi, Alberto; Marchetti, Luigi

    2016-06-01

    Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.

  16. Ab initio studies of niobium defects in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, S; Huang, H; Hsiung, L

    2007-06-01

    Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.

  17. Engineering Room-temperature Superconductors Via ab-initio Calculations

    Science.gov (United States)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  18. An efficient approach to ab initio Monte Carlo simulation.

    Science.gov (United States)

    Leiding, Jeff; Coe, Joshua D

    2014-01-21

    We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.

  19. Ab initio modelling of boron related defects in amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tiago A.; Torres, Vitor J.B. [Department of Physics, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal)

    2012-10-15

    We have modeled boron related point defects in amorphous silicon, using an ab initio method, the Density functional theory-pseudopotential code Aimpro. The boron atoms were embedded in 64 atom amorphous silicon cubic supercells. The calculations were performed using boron defects in 15 different supercells. These supercells were developed using a modified Wooten-Winer-Weaire bond switching mechanism. In average, the properties of the 15 supercells agree with the observed radial and bond angle distributions, as well the electronic and vibrational density of states and Raman spectra. In amorphous silicon it has been very hard to find real self-interstitials, since for almost all the tested configurations, the amorphous lattice relaxes overall. We found that substitutional boron prefers to be 4-fold coordinated. We find also an intrinsic hole-trap in the non-doped amorphous lattice, which may explain the low efficiency of boron doping. The local vibrational modes are, in average, higher than the correspondent crystalline values (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Exploring the free energy surface using ab initio molecular dynamics

    Science.gov (United States)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  1. Ab initio calculation of the potential bubble nucleus $^{34}$Si

    CERN Document Server

    Duguet, T; Lecluse, S; Barbieri, C; Navrátil, P

    2016-01-01

    The possibility that an unconventional depletion in the center of the charge density distribution of certain nuclei occurs due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. We report on ab initio self-consistent Green's function calculations of one of such candidates, $^{34}$Si, together with its Z+2 neighbour $^{36}$S. Binding energies, rms radii and density distributions of the two nuclei as well as low-lying spectroscopy of $^{35}$Si, $^{37}$S, $^{33}$Al and $^{35}$P are discussed. The interpretation of one-nucleon removal and addition spectra in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input inter-nucleon interactions. The prediction regarding the (non-)existence of the bubble structure in $^{34}$Si varies significantly with the nuclear Hamiltonian used. However, demandin...

  2. Ab initio evaluations of the He solubility in liquid Li

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, Luis A. [EURATOM-CIEMAT Assoc., Materials for Fusion Program, Bd. 43 P0.04, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: luis.sedano@ciemat.es; Hassanein, Ahmed [Argonne Nat. Lab, 9700 South Class Av., Argonne, IL (United States)]. E-mail: hassanein@anl.gov; Sanz, Javier [ETSII-UNED, c/Juan del Rosal, 12, 28040 Madrid (E) (Spain)]. E-mail: jsanz@ind.UNED.es

    2005-11-15

    Modified embedding atom methods (MEAM) are developed to have predictions of the partial molar heat of solution (-H{sub s}) by direct simulation of metal cohesion, He-metal and He-He interaction. Transitions from crystalline Li to configurations, having the liquid Li structure's factors (h-bar (q)), are simulated ab initio. Once h-bar (q) reproduced, He atoms are added, one by one, to the Li system. Parallel lines for each case, with slopes clearly independent on the number of He atoms in the system, are obtained for energy versus pressure at given temperatures. Average differences between two adjacent parallels at zero pressure, once kinetic energy of the system discounted, represents the energy gained by an He atom when added to the Li system, related to the solution energy -H{sub s}. The molar excess entropy of gas in solution (S-bar {sub l}{sup ex}) is previously evaluated following diverse fundamental approaches: a 'thermodynamic liquid-hole' (TL-H) model for alkali liquids and a statistical-mechanics (Neff and McQuarrie's) model (SMM). Between 600 and 900 deg. C, a typical range of interest for the use of Li in fusion technology, the computed values for the (He) Henry's constant in Li range from 8x10{sup -14} to 10{sup -13} at. fr. Pa{sup -1}.

  3. Ab initio predictions of the symmetry energy and recent constraints

    Science.gov (United States)

    Sammarruca, Francesca

    2017-01-01

    The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.

  4. Ab initio modeling of decomposition in iron based alloys

    Science.gov (United States)

    Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.

    2016-12-01

    This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.

  5. The Hydration Structure of Carbon Monoxide by Ab Initio Methods

    CERN Document Server

    Awoonor-Williams, Ernest

    2016-01-01

    The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO--H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface it incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration is in good agreement with experiment (9.3 kJ/mol calc. vs 10.7 kJ/mol exptl.). The calculated diffusivity of CO(aq) in TIP3P-model water was 5.19 x 10-5 cm2/s ...

  6. Ab initio calculations of the absorption spectrum of chalcone

    Science.gov (United States)

    Oumi, Manabu; Maurice, David; Head-Gordon, Martin

    1999-03-01

    The excitation energies and excited states of trans-chalcone ( trans-( s-cis)-1,3-diphenylpropenone), and several related molecules ( trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone, propenal, trans-( s-cis)-1-(4-hydroxyphenyl)-3-phenylpropenone, trans-( s-cis)3-(4-hydroxyphenyl)-1-phenylpropenone) have been calculated using single reference ab initio molecular orbital methods, and characterized by attachment-detachment density analysis. The results suggest assignments for the lowest three electronic transitions observed experimentally for trans-( s-cis)-chalcone in solution. The extent of localization of the electronic transitions is established by calculations on the excited states of trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone and propenal, as well as analysis of the chalcone calculations. Contrary to some previous work, none of these excitations are strongly delocalized over the entire molecule. Calculated substituent shifts for the hydroxy chalcones are in qualitative agreement with experimental data, and support the localized interpretation of the main π→ π* transition.

  7. Ab initio thermodynamic results for warm dense matter

    Science.gov (United States)

    Bonitz, Michael

    2016-10-01

    Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.

  8. Local structure analysis in ab initio liquid water

    Science.gov (United States)

    Santra, Biswajit; DiStasio, Robert A., Jr.; Martelli, Fausto; Car, Roberto

    2015-09-01

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyse the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I ), was unimodal with most water molecules characterised by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I ) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high-density- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water. Analysis of the LSI autocorrelation function uncovered a persistence time of ∼ 4 ps - a finding consistent with the fact that natural thermal fluctuations are responsible for transitions between these distinct yet transient local aqueous environments in ambient liquid water.

  9. Local Environment Distribution in Ab Initio Liquid Water

    Science.gov (United States)

    Santra, Biswajit; Distasio, Robert A., Jr.; Car, Roberto

    2013-03-01

    We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500

  10. An ab initio Non-Equilibrium Green Function Approach to Charge Transport: Dithiolethine

    Institute of Scientific and Technical Information of China (English)

    Alexander Schnurpfeil; SONG Bo; Martin Albrecht

    2006-01-01

    @@ We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wavefunction-based full ab initio description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Green function formalism. Our procedure is demonstrated for a dithiolethine molecule located between silver electrodes. The main conducting channel is identified and the full current-voltage characteristic is calculated.

  11. Carbon dioxide capture in 2-aminoethanol aqueous solution from ab initio molecular dynamics simulations

    Science.gov (United States)

    Kubota, Yoshiyuki; Ohnuma, Toshiharu; Bučko, Tomáš

    2017-03-01

    The reaction of carbon dioxide (CO2) with aqueous 2-aminoethanol (MEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. The AIMD simulations predicted the spontaneous deprotonation of the intermediate compound, MEA zwitterion, and they were used to study two possible routes for subsequent proton transfer reactions: the formation of the protonated MEA and the formation of MEA carbamic acid. The free-energy curve depicted by blue moon ensemble technique supported the favorable deprotonation of MEA zwitterion. The overall free-energy profile showed the favorable formation of the ionic products of MEA carbamate ion and protonated MEA.

  12. Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations

    Science.gov (United States)

    Wang, Shidong; Wang, Zhao; Setyawan, Wahyu; Mingo, Natalio; Curtarolo, Stefano

    2011-10-01

    Several thousand compounds from the Inorganic Crystal Structure Database have been considered as nanograined, sintered-powder thermoelectrics with the high-throughput ab-initio AFLOW framework. Regression analysis unveils that the power factor is positively correlated with both the electronic band gap and the carrier effective mass, and that the probability of having large thermoelectric power factors increases with the increasing number of atoms per primitive cell. Avenues for further investigation are revealed by this work. These avenues include the role of experimental and theoretical databases in the development of novel materials.

  13. Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method

    Science.gov (United States)

    Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori

    2009-10-01

    We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.

  14. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    Science.gov (United States)

    Xiao, H. Y.; Weber, W. J.; Zhang, Y.; Zu, X. T.; Li, S.

    2015-01-01

    The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations. PMID:25660219

  15. Superconductivity in an expanded phase of ZnO: an ab initio study

    Science.gov (United States)

    Hapiuk, D.; Marques, M. A. L.; Mélinon, P.; Botti, S.; Masenelli, B.; Flores-Livas, J. A.

    2015-04-01

    It is known that covalent semiconductors become superconducting if conveniently doped with large concentration of impurities. In this article we investigate, using ab initio methods, if the same situation is possible for an ionic, large-band gap semiconductor such as ZnO. We concentrate on the cage-like sodalite phase, with very similar electronic and phononic properties as wurtzite ZnO, but allow for endohedral doping of the cages. We find that sodalite ZnO becomes superconducting for a variety of dopants, reaching a maximum critical temperature of 7 K. This value is comparable to the transition temperatures of doped silicon clathrates, cubic silicon, and diamond.

  16. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    Science.gov (United States)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  17. Ab-initio density functional theory study of a WO3 NH3-sensing mechanism

    Institute of Scientific and Technical Information of China (English)

    Hu Ming; Zhang Jie; Wang Wei-Dan; Qin Yu-Xiang

    2011-01-01

    WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO3 bulk are investigated.The surface energies of different WO3 surfaces are compared and then the(002)surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c,the NH3 sensing mechanism is obtained.

  18. Ab initio studies on the mechanic and magnetic properties of PdHx

    Institute of Scientific and Technical Information of China (English)

    Cui Xin; Liang Xi-Xia; Wang Jian-Tao; Zhao Guo-Zhong

    2011-01-01

    Based on ab initio total energy calculations, the structural, electronic, mechanic, and magnetic properties of PdHx are investigated. It is found that bulk modulus of PdHx is larger than the metal Pd with the hydrogen storage except Pd4H2. The calculated results for the magnetic moments show that the hydrogen addition weakens the magnetic properties of the PdHx systems. A strong magneto-volume effect is found in PdHx structures as well as Pd. The transition from paramagnetism to ferromagnetism is discussed. The corresponding densities of states for both structures are also shown to understand the magnetic behaviour.

  19. Ab-initio Study of Known and Hypothetical Metal-Organic Frameworks

    Science.gov (United States)

    Fuentes-Cabrera, Miguel; Nicholson, Don M.

    2004-03-01

    Rosi et al. [1] have found that microporous Metal-Organic Frameworks (MOF) materials are candidates for hydrogen storage applications. In particular, MOF-5 was found to adsorb hydrogen up to 4.5 weight percent at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. We use ab-initio techniques to investigate hydrogen adsorption, stability, and the electronic properties of known and hypothetical Metal-Organic Frameworks. [1] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, and O.M. Yaghi

  20. Ab initio study of the epitaxial growth of Ge on Si(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Milman, V.; Pennycook, S.J.; Jesson, D.E. [Oak Ridge National Lab., TN (United States); Payne, M.C.; Stich, I. [Cambridge Univ. (United Kingdom). Dept. of Physics

    1993-11-01

    We identify the binding sites for adsorption of a single Ge atom on the Si(100) surface using ab initio total energy calculations. The calculated diffusion barriers are in excellent agreement with experimental estimates. Using a large supercell we resolve the controversy regarding the binding geometry and migration path for the adatom, and investigate the influence of the adatom on the buckling of Si dimers. The adatom induces a buckling defect that is frequently observed using scanning tunneling microscopy (STM); therefore the study of single adatoms may be experimentally accessible.

  1. Ab Initio Calculations of Elastic Constants of Li2O under Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Feng; CHEN Xiang-Rong; JI Guang-Fu; MENG Chuan-Min

    2006-01-01

    @@ We investigate the equilibrium lattice constant, bulk modulus, elastic constants and Debye temperature of Li2 O under pressure by using ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The obtained results at zero pressure are well consistent with the available experimental data and other theoretical results. It is found that the elastic constants C11, C12 and C44 and bulk modulus B increase monotonously as pressure increases. Also, the anisotropy will weaken and the Debye temperature will rise with pressure increasing.

  2. Ab initio aqueous thermochemistry: application to the oxidation of hydroxylamine in nitric acid solution.

    Science.gov (United States)

    Ashcraft, Robert W; Raman, Sumathy; Green, William H

    2007-10-18

    Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are

  3. Combined crossed molecular beam and ab initio investigation of the multichannel reaction of boron monoxide (BO; X2Σ+) with Propylene (CH3CHCH2; X1A'): competing atomic hydrogen and methyl loss pathways.

    Science.gov (United States)

    Maity, Surajit; Dangi, Beni B; Parker, Dorian S N; Kaiser, Ralf I; An, Yi; Sun, Bing-Jian; Chang, A H H

    2014-10-16

    The reaction dynamics of boron monoxide ((11)BO; X(2)Σ(+)) with propylene (CH(3)CHCH(2); X(1)A') were investigated under single collision conditions at a collision energy of 22.5 ± 1.3 kJ mol(-1). The crossed molecular beam investigation combined with ab initio electronic structure and statistical (RRKM) calculations reveals that the reaction follows indirect scattering dynamics and proceeds via the barrierless addition of boron monoxide radical with its radical center located at the boron atom. This addition takes place to either the terminal carbon atom (C1) and/or the central carbon atom (C2) of propylene reactant forming (11)BOC(3)H(6) intermediate(s). The long-lived (11)BOC(3)H(6) doublet intermediate(s) underwent unimolecular decomposition involving at least three competing reaction mechanisms via an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group elimination to form cis-/trans-1-propenyl-oxo-borane (CH(3)CHCH(11)BO), 3-propenyl-oxo-borane (CH(2)CHCH(2)(11)BO), and ethenyl-oxo-borane (CH(2)CH(11)BO), respectively. Utilizing partially deuterated propylene (CD(3)CHCH(2) and CH(3)CDCD(2)), we reveal that the loss of a vinyl hydrogen atom is the dominant hydrogen elimination pathway (85 ± 10%) forming cis-/trans-1-propenyl-oxo-borane, compared to the loss of a methyl hydrogen atom (15 ± 10%) leading to 3-propenyl-oxo-borane. The branching ratios for an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group loss are experimentally derived to be 26 ± 8%:5 ± 3%:69 ± 15%, respectively; these data correlate nicely with the branching ratios calculated via RRKM theory of 19%:5%:75%, respectively.

  4. Five-membered rings as diazo components in optical data storage devices: An ab initio investigation of the lowest singlet excitation energies

    DEFF Research Database (Denmark)

    Åstrand, P.-O.; Sommer-Larsen, P.; Hvilsted, Søren;

    2000-01-01

    been investigated as diazo components for a potential use in optical das storage materials. It is found that the diazo compounds with two heterocyclic five-membered rings have pi --> pi* excitation energies corresponding to laser wavelengths in the region 450-500 nm whereas one five-membered ring...

  5. Cosmic-Ray Modulation: an Ab Initio Approach

    Science.gov (United States)

    Engelbrecht, N. E.; Burger, R. A.

    2014-10-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.

  6. Lithium Insertion In Silicon Nanowires: An ab Initio Study

    KAUST Repository

    Zhang, Qianfan

    2010-09-08

    The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.

  7. Efficient conformational space exploration in ab initio protein folding simulation.

    Science.gov (United States)

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  8. Ab initio calculations of ^12C and neutron drops

    Science.gov (United States)

    Pieper, Steven C.

    2009-10-01

    Ab initio calculations of nuclei, which treat a nucleus as a system of A nucleons interacting by realistic two- and three-nucleon forces, have made tremendous progress in the last 15 years. This is a result of better Hamiltonians, rapidly increasing computer power, and new or improved many-body methods. Three methods are principally being used: Green's function Monte Carlo (GFMC), no-core shell model, and coupled cluster. In the limit of large computer resources, all three methods produce exact eigenvalues of a given nuclear Hamiltonian. With DOE SciDAC and INCITE support, all three methods are using the largest computers available today. Under the UNEDF SciDAC grant, the Argonne GFMC program was modified to efficiently use more than 2000 processors. E. Lusk (Argonne), R.M. Butler (Middle Tennessee State U.) and I have developed an Asynchronous Dynamic Load-Balancing (ADLB) library. In addition all the cores in a node are used via OpenMP as one ADLB/MPI client. In this way we obtain very good scalability up to 30,000 processors on Argonne's IBM Blue Gene/P. Two systems of particular interest that require this computer power are ^12C and neutron drops. V.R. Pandharipande (UIUC, deceased), J. Carlson (LANL), R.B. Wiringa (Argonne), and I have developed new trial wave functions that explicitly contain the three-alpha particle structure of ^12C. These are being used with the Argonne V18 and Illinois-7 potentials which reproduce the energies of 51 states in 3energy-density functionals.

  9. Cd hyperfine interactions in DNA bases and DNA of mouse strains infected with Trypanosoma cruzi investigated by perturbed angular correlation spectroscopy and ab initio calculations.

    Science.gov (United States)

    Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M

    2014-06-01

    In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.

  10. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    Science.gov (United States)

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-01

    Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.

  11. Ab initio investigations of the strontium gallium nitride ternaries Sr 3GaN3 and Sr6GaN5: Promising materials for optoelectronic

    KAUST Repository

    Goumri-Said, Souraya

    2013-05-31

    Sr3GaN3 and Sr6GaN5 could be promising potential materials for applications in the microelectronics, optoelectronics and coating materials areas of research. We studied in detail their structural, elastic, electronic, optical as well as the vibrational properties, by means of density functional theory framework. Both of these ternaries are semiconductors, where Sr3GaN3 exhibits a small indirect gap whereas Sr6GaN5 has a large direct gap. Indeed, their optical properties are reported for radiation up to 40 eV. Charge densities contours, Hirshfeld and Mulliken populations, are reported to investigate the role of each element in the bonding. From the mechanical properties calculation, it is found that Sr6GaN5 is harder than Sr3GaN3, and the latter is more anisotropic than the former. The phonon dispersion relation, density of phonon states and the vibrational stability are reported from the density functional perturbation theory calculations. © 2013 IOP Publishing Ltd.

  12. An ab-initio density functional theory investigation of fullerene/Zn-phthalocyanine (C60/ZnPc) interface with face-on orientation

    Energy Technology Data Exchange (ETDEWEB)

    Javaid, Saqib [EMMG, Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre of Physics, Islamabad (Pakistan); Javed Akhtar, M., E-mail: javedakhtar6@gmail.com [EMMG, Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2015-07-28

    We have employed density functional theory to study the C60/ZnPc interface with face-on orientation, which has recently been tailored experimentally. For this purpose, adsorption of ZnPc on C60 has been studied, while taking into account different orientations of C60. Out of various adsorption sites investigated, 6:6 C-C bridge position in apex configuration of C60 has been found energetically the most favourable one with C60-ZnPc adsorption distance of ∼2.77 Å. The adsorption of ZnPc on C60 ensues both charge re-organization and charge transfer at the interface, resulting in the formation of interface dipole. Moreover, by comparing results with that of C60/CuPc interface, we show that the direction of interface dipole can be tuned by the change of the central atom of the phthalocyanine molecule. These results highlight the complexity of electronic interactions present at the C60/Phthalocyanine interface.

  13. Ab-initio investigation of adsorption of CO and CO2 molecules on graphene: Role of intrinsic defects on gas sensing

    Science.gov (United States)

    Tit, Nacir; Said, Khadija; Mahmoud, Nadin M.; Kouser, Summayya; Yamani, Zain H.

    2017-02-01

    We determine the chemical activity of (a) carbon site of pristine graphene (pG), (b) Stone-Wales (SW) defect site, and (c) Single-vacancy of graphene (vG) site towards the adsorption of CO and CO2 molecules, through comparative analysis based on first-principles density-functional calculations incorporating van der Waals (vdW) interactions, but excluding the heat effects (i.e., at T = 0 °K). The results show that the chemisorption of both latter molecules to possibly occur only on vG. The response (sensitivity) of vG towards detecting CO molecule was confirmed by the rise of conductance with the increasing CO gas dose. The selectivity was investigated by testing the response of vG towards detecting eight different gases (i.e., CO, CO2, N2, O2, H2O, H2S, H2, and NH3). Three gases are found to exhibit physisorption (namely: N2, H2O, and H2S) and the other five gases alter chemisorption (namely: CO, CO2, O2, H2, and NH3). The chemisorption of CO molecule is distinct by being direct and not involving dissociation. This fact made defected graphene have the highest sensitivity and selectivity towards the detection of CO molecules.

  14. Ab initio density functional theory investigation of the structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases

    Energy Technology Data Exchange (ETDEWEB)

    Arghavani Nia, Borhan, E-mail: b.arghavani@gmail.com [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Sedighi, Matin [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Shahrokhi, Masoud [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam [Nano-Science and Nano-Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physics Science Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-1795, Tehran (Iran, Islamic Republic of)

    2013-11-15

    A density functional theory study of structural, electronical and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. In the exchange–correlation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca{sub 3}Sb{sub 2} has an indirect gap in the Γ→N direction; while in the cubic phase there is a direct-gap at the Γ point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: • Physical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases are investigated. • It is found that the hexagonal phase is an indirect gap semiconductor. • Ca{sub 3}Sb{sub 2} is a direct-gap semiconductor at the Γ point in the cubic phase. • By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased.

  15. An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu

    Energy Technology Data Exchange (ETDEWEB)

    Jomard, G.; Bottin, F.; Amadon, B

    2007-07-01

    By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)

  16. From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia

    CERN Document Server

    Boese, A D; Martin, J M L; Marx, D; Chandra, Amalendu; Martin, Jan M.L.; Marx, Dominik

    2003-01-01

    The ammonia dimer (NH3)2 has been investigated using high--level ab initio quantum chemistry methods and density functional theory (DFT). The structure and energetics of important isomers is obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed C_s symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by about 20 degrees. In addition, the so-called cyclic C_{2h} structure is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available (GGA, meta--GGA, and hybrid) density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to e.g. the widely used BLYP functional. This improved functional is employed in Car-Parrinello ab initio molecular dynamics simulations of liq...

  17. Ab initio determination of an extended Heisenberg Hamiltonian in CuO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Calzado, C.J.; Malrieu, J.P. [Lab. de Physique Quantique, IRSAMC, Univ. Paul Sabatier, Toulouse (France)

    2001-06-01

    Accurate ab initio calculations on embedded Cu{sub 4}O{sub 12} square clusters, fragments of the La{sub 2}CuO{sub 4} lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J = 124 meV) previously obtained from ab initio calculations on bicentric clusters and in good agreement with experiment. These calculations predict non negligible antiferromagnetic second-neighbor interaction (J' = 6.5 meV) and four-spin cyclic exchange (K = 14 meV), which may affect the thermodynamic and spectroscopic properties of these materials. The dependence of the magnetic coupling on local lattice distortions has also been investigated. Among them the best candidate to induce a spin-phonon effect seems to be the movement of the Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor magnetic coupling with the Cu-O distance is {delta}J/{delta}d{sub Cu} {sub -} {sub O} {proportional_to} 1700 cm {sup -1} A {sup -1}. (orig.)

  18. Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization

    Science.gov (United States)

    Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng

    With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.

  19. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    Science.gov (United States)

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  20. Matrix Product Operators, Matrix Product States, and ab initio Density Matrix Renormalization Group algorithms

    CERN Document Server

    Chan, Garnet Kin-Lic; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-01-01

    Current descriptions of the ab initio DMRG algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab-initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational par...

  1. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, Ronan M. [STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Bibby, Jaclyn; Thomas, Jens [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Xu, Dong [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Zhang, Yang [University of Michigan, Ann Arbor, MI 48109 (United States); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom); STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom)

    2015-02-01

    Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  2. Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials

    Indian Academy of Sciences (India)

    Anil Thakur; N S Negi; P K Ahluwalla

    2005-08-01

    The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.

  3. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    Science.gov (United States)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  4. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.

    Science.gov (United States)

    Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin

    2011-01-14

    Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.

  5. Relaxation of the excited -(2-hydroxy benzylidene) aniline molecule: An ab initio and TD DFT study

    Indian Academy of Sciences (India)

    Biswajit Chowdhury; Rina De; Pinaky Sett; Joydeep Chowdhury

    2010-11-01

    The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer in the ground state and is marked by the twisting of the phenolic and anilino rings of the molecule. The geometry optimizations and the subsequent frequency calculations of the excited singlet electronic states of the various tautomeric forms of SA molecule were performed with the CIS level of theory. A detail theoretical investigation on the relaxation dynamics of the SA molecule has been presented. Possible explanation on the excitation wavelength dependence of the photochromic yield of the molecule is also reported.

  6. Ab Initio Assessment of the Bonding in Disulfonates Containing Divalent Nitrogen and Phosphorus Atoms

    DEFF Research Database (Denmark)

    Andersen, Vinca Bonde; Berg, Rolf W.; Shim, Irene

    2017-01-01

    The iminodisulfonate, [N(SO3)2]3–, and phosphinodisulfonate, [P(SO3)2]3–, ions have been investigated by performing ab initio MP2/6-311+G**calculations. The nitrogen and phosphorus atoms as part of the ions are shown to be divalent with a negative charge and two lone pairs on the nitrogen...... and phosphorus atoms. The experimentally known calcium sodium iminodisulfonate trihydrate and the analogous unknown compound calcium sodium phosphinodisulfonate trihydrate have also been investigated using the MP2/6-311+G** calculations. For the nitrogen compound, only minor changes occur in the iminodisulfonate...... phosphinodisulfonate trihydrate are quite different from those of the phosphinodisulfonate ion. For calcium sodium iminodisulfonate trihydrate, the Raman spectrum has been measured, and it compares well with the spectrum derived using HF/6-311+G** calculations....

  7. Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects

    Science.gov (United States)

    Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-05-01

    Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.

  8. Ab-initio molecular dynamics study of lanthanides in liquid sodium

    Science.gov (United States)

    Li, Xiang; Samin, Adib; Zhang, Jinsuo; Unal, C.; Mariani, R. D.

    2017-02-01

    To mitigate the fuel cladding chemical interaction (FCCI) phenomena in liquid sodium cooled fast reactors, a fundamental understanding of the lanthanide (Ln) transport through liquid Nasbnd Cs filled pores in Usbnd Zr fuel is necessary. In this study, we investigate three abundant Ln fission products diffusion coefficients in liquid Na at multiple temperatures. By utilization of Ab-initio Molecular Dynamics, the Ln diffusivities are found to be in the magnitude order of liquid diffusion (10-5cm2 /s) and the temperature dependence of the diffusivity for different lanthanides in liquid sodium was explored. It is also observed that dilute concentration of Pr and Nd led to a significant change in Na diffusivity. The structural and electronic properties of Nasbnd Ln metallic systems have been investigated. The total coordination number shows dependence on both the temperature and the composition.

  9. X-ray absorption Debye-Waller factors from ab initio molecular dynamics

    Science.gov (United States)

    Vila, F. D.; Lindahl, V. E.; Rehr, J. J.

    2012-01-01

    An ab initio equation of motion method is introduced to calculate the temperature-dependent mean-square vibrational amplitudes σ2 which appear in the Debye-Waller factors in x-ray absorption, x-ray scattering, and related spectra. The approach avoids explicit calculations of phonon modes, and is based instead on calculations of the displacement-displacement time correlation function from ab initio density functional theory molecular dynamics simulations. The method also yields the vibrational density of states and thermal quantities such as the lattice free energy. Illustrations of the method are presented for a number of systems and compared with other methods and experiment.

  10. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models.

    Science.gov (United States)

    Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J

    2015-02-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  11. Ab Initio Calculation on Self-Assembled Base-Functionalized Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    SONG Chen; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; LI Ji-Ling; LI Li-Juan; LI Feng; HUANG Bo-Da

    2006-01-01

    @@ We perform ab initio calculations on the self-assembled base-functionalized single-walled carbon nanotubes (SWNTs) which exhibit the quasi-1D ‘ladder’ structure. The optimized configuration in the ab initio calculation is very similar to that obtainedfrom molecular dynamics simulation. We also calculate the electronic structures of the self-assembled base-functionalized SWNTs that exhibit distinct difference from the single-branch base-functionalized SWNT with a localized state lying just below the Fermi level, which may result from the coupling interaction between the bases accompanied by the self-assembly behaviour.

  12. Atomic carbon chains as spin-transmitters: An ab initio transport study

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...

  13. Ab initio quantum-enhanced optical phase estimation using real-time feedback control

    DEFF Research Database (Denmark)

    Berni, Adriano; Gehring, Tobias; Nielsen, Bo Melholt

    2015-01-01

    as demonstrated in a variety of different optical systems(3-8). Most of these accounts, however, deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab initio phase estimation where the initial phase is unknown(9-12). Here, we report on the realization...... of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot...

  14. Ab initio I-V characteristics of short C-20 chains

    DEFF Research Database (Denmark)

    Roland, C.; Larade, B.; Taylor, Jeremy Philip

    2002-01-01

    We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both on the orien......We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both...

  15. Ab initio calculations of third-order elastic constants and related properties for selected semiconductors

    OpenAIRE

    Lopuszynski, Michal; Majewski, Jacek A.

    2007-01-01

    We present theoretical studies for the third-order elastic constants $C_{ijk}$ in zinc-blende nitrides AlN, GaN, and InN. Our predictions for these compounds are based on detailed ab initio calculations of strain-energy and strain-stress relations in the framework of the density functional theory. To judge the computational accuracy, we compare the ab initio calculated results for $C_{ijk}$ with experimental data available for Si and GaAs. We also underline the relation of the third-order ela...

  16. An ab initio study on single electron transfer between ClO2 and phenol

    Institute of Scientific and Technical Information of China (English)

    崔崇威; 黄君礼

    2004-01-01

    The SET mechanism between chlorine dioxide (ClO2 ) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given. The SET mechanism between ClO2 and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200. 88 k J/mol.

  17. Ab initio theory of charge-carrier conduction in ultrapure organic crystals

    Science.gov (United States)

    Hannewald, K.; Bobbert, P. A.

    2004-08-01

    We present an ab initio description of charge-carrier mobilities in organic molecular crystals of high purity. Our approach is based on Holstein's original concept of small-polaron bands but generalized with respect to the inclusion of nonlocal electron-phonon coupling. By means of an explicit expression for the mobilities as a function of temperature in combination with ab initio calculations of the material parameters, we demonstrate the predictive power of our theory by applying it to naphthalene. The results show a good qualitative agreement with experiment and provide insight into the difference between electron and hole mobilities as well as their peculiar algebraic and anisotropic temperature dependencies.

  18. Modelling of nuclear glasses by classical and ab initio molecular dynamics; Modelisation de verres intervenant dans le conditionnement des dechets radioactifs par dynamiques moleculaires classique et ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Ganster, P

    2004-10-15

    A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)

  19. Two-step spin-switchable tetranuclear Fe(II) molecular solid: Ab initio theory and predictions

    Science.gov (United States)

    Maldonado, Pablo; Kanungo, Sudipta; Saha-Dasgupta, Tanusri; Oppeneer, Peter M.

    2013-07-01

    Using density functional theory supplemented with on-site Coulomb U interaction in combination with ab initio molecular dynamics simulations, we investigate the spin-crossover (SCO) properties of a Fe(II) based cyanide-bridged square molecular system, [FeII4(μ-CN)4(bpy)4(tpa)2](PF6)4 (where bpy = 2,2'-bipyridine and tpa = tris(2-pyridylmethyl)amine], exhibiting a two-step SCO transition. The ab initio calculated SCO temperatures are found to show remarkably good agreement with experimentally measured spin conversion temperatures [M. Nihei , Angew. Chem., Int. Ed.1433-785110.1002/anie.200502216 44, 6484 (2005)]. Our theoretical study predicts further chemo switching of the spin state by introduction of guest molecules such as CO2, CS2, and H2O into the porous topology of the system, which would add another dimensionality to this interesting material.

  20. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Science.gov (United States)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  1. Probing defects and correlations in the hydrogen-bond network of ab initio water

    CERN Document Server

    Gasparotto, Piero; Ceriotti, Michele

    2016-01-01

    The hydrogen-bond network of water is characterized by the presence of coordination defects relative to the ideal tetrahedral network of ice, whose fluctuations determine the static and time-dependent properties of the liquid. Because of topological constraints, such defects do not come alone, but are highly correlated coming in a plethora of different pairs. Here we discuss in detail such correlations in the case of ab initio water models and show that they have interesting similarities to regular and defective solid phases of water. Although defect correlations involve deviations from idealized tetrahedrality, they can still be regarded as weaker hydrogen bonds that retain a high degree of directionality. We also investigate how the structure and population of coordination defects is affected by approximations to the inter-atomic potential, finding that in most cases, the qualitative features of the hydrogen bond network are remarkably robust.

  2. Structure and dynamics of liquid Zn: an analysis of ab-initio simulations

    Directory of Open Access Journals (Sweden)

    del Rio B. G.

    2017-01-01

    Full Text Available The static and dynamic properties of liquid Zn have been studied using an ab initio molecular dynamics method. Results are reported for the thermodynamic states at 723K near which inelastic neutron and x-ray scattering data are available. The calculated static structure shows very good agreement with experimental measurements, including an asymmetric main peak. The dynamic structure reveals the existence of propagating density fluctuations, and the associated dispersion relation has also been calculated. The possible coupling between longitudinal and transverse excitation modes has been investigated by looking at specific signatures in two wavevector regions: the first one is located around the position of the main peak of the structure factor, qp, as suggested by the recently reported appearance of high frequency transverse waves in several liquid metals under high pressures; the second region is around qp/2, as suggested by inelastic scattering experiments for liquid Zn and other metals.

  3. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.

  4. Pressure-induced phase transition in wurtzite ZnTe: an ab initio study.

    Science.gov (United States)

    Alptekin, Sebahaddin

    2012-03-01

    A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in wurtzite ZnTe. A first-order phase transition from the wurtzite structure to a Cmcm structure was successfully observed in a constant-pressure molecular dynamics simulation. This phase transformation was also analyzed using enthalpy calculations. We also investigated the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy-volume calculations, and found that both structures show quite similar equations of state and transform into a Cmcm structure at 16 GPa using enthalpy calculations, in agreement with experimental observations. The transition phase, lattice parameters and bulk properties we obtained are comparable with experimental and theoretical data.

  5. Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC

    Science.gov (United States)

    Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina

    2016-11-01

    New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.

  6. Convergence from cluster to surface:ab initio calculations of Pd_n clusters

    Institute of Scientific and Technical Information of China (English)

    徐昕; 王南钦; 吕鑫; 陈明旦; 张乾二

    1995-01-01

    The"Metallic State Principle"and a way to constitute the metallic basis set are proposed,the latter is a modification of atomic basis set based on the free electron theory in solid state physics.Pd_n dusters have been carefully studied by means of ab initio calculations with atomic and metallic basis sets.Three rules,namely the"Ground State Principle",the"Lowest-Spin State Principle"and the"Metallic StatePrinciple"have been investigated and the calculation results based on these three rules are compared with eachother in terms of metallic configuration of bulk Pd,d-band width,Fermi level,etc.The calculation resultsdemonstrate that the characteristic properties of bulk Pd may be reproduced to some extent even with a smallduster if the"Metallic State Principle"is adopted.

  7. High-pressure physical properties of magnesium silicate post-perovskite from ab initio calculations

    Indian Academy of Sciences (India)

    Zi-Jiang Liu; Xiao-Wei Sun; Cai-Rong Zhang; Jian-Bu Hu; Ling-Cang Cai; Qi-Feng Chen

    2012-08-01

    The structure, thermodynamic and elastic properties of magnesium silicate (MgSiO3) post-perovskite at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density functional theory (DFT). The calculated structural parameters of MgSiO3 post-perovskite are consistent with the available experimental results and the recent theoretical results. The Debye temperature, heat capacity and thermal expansion coefficient at high pressures and temperatures are predicted using the quasi-harmonic Debye model. The elastic constants are calculated using stress–strain relations. A complete elastic tensor of MgSiO3 post-perovskite is determined in the wide pressure range. The calculated elastic anisotropic factors and directional bulk modulus show that MgSiO3 post-perovskite possesses high elastic anisotropy.

  8. Ab initio calculation of structure and thermodynamic properties of Zintl aluminide SrAl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zhi-Jian [Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing (China); Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics; Jia, Li-Jun [Chongqing Univ. of Arts and Sciences Library (China); Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong [Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; Sun, Xiao-Wei [Lanzhou Jiaotong Univ. (China). School of Mathematics and Physics; Chen, Qi-Feng [China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics

    2015-07-01

    The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl{sub 2} at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory method within the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl{sub 2} are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations in the thermal expansion a are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.

  9. A-dependence of the Spectra of the F Isotopes from ab initio Calculations

    Science.gov (United States)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.

    2016-03-01

    Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.

  10. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    Science.gov (United States)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  11. Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements

    Science.gov (United States)

    Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen

    2005-11-01

    The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.

  12. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2015-01-01

    Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  13. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Ke, Peiling; Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-01-15

    Structure and properties of Cu-doped diamond-like carbon films (DLC) were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.%) on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  14. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations.

    Science.gov (United States)

    Brandt, Erik G; Agosta, Lorenzo; Lyubartsev, Alexander P

    2016-07-21

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.

  15. Ab initio study of the electronic structure andelastic properties of Al5C3N

    Institute of Scientific and Technical Information of China (English)

    Xu Xue-Wen; Hu Long; Yu Xiao; Lu Zun-Ming; Fan Ying; Li Yang-xian; Tang Cheng-Chun

    2011-01-01

    We investigate the electronic structure,chemical bonding and elastic properties of the hexagonal aluminum carbonitride,Al5C3N,by ab initio calculations.Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV.The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and Al p-N p states.The calculated bulk and Young's moduli are 201 GPa and 292 GPa,which are slightly lower than those of Ti3SiC2.The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97,respectively,which axe higher than those of Ti2AlCand Ti2AlN,indicating that Al5C3N is a ductile ceramic.

  16. Ab initio determination of coarse-grained interactions in double stranded DNA

    Science.gov (United States)

    Hsu, Chia Wei; Fyta, Maria; Lakatos, Greg; Melchionna, Simone; Kaxiras, Efthimios

    2012-02-01

    We derive the coarse-grained interactions between DNA nucleotides from ab initio calculations using density functional theory (DFT). The interactions take into account the base and sequence specificity, and are decomposed into physically distinct contributions. The interactions energies calculated from DFT for a wide range of configurations are fitted to simple analytical expressions for use in the coarse-grained model, which reduces each nucleotide into two sites. This non-empirical model accurately yields structural properties of B-DNA even in extreme conditions, and predicts persistence length in excellent agreement with experiments. The model enables quantitative an efficient investigations of the dynamics of long DNA strands in various environments, making it possible to reach microsecond time scales and beyond.

  17. Ab initio molecular dynamics study of hydrogen removal by ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Johanna [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany); Larsson, Karin [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Schneider, Jochen M [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany)

    2005-04-20

    The energy dependence of surface reactions has been investigated through ab initio MD simulations for collisions between Al{sup 1+} and a gibbsite surface. No change in surface composition was observed for 0 eV initial kinetic energy of Al{sup 1+}. An increase in energy to 3.5 eV resulted in extended surface migration of hydrogen, subsequent H{sub 2} formation and desorption from the surface. These results may be understood based on thermodynamics and an increase in entropy upon H{sub 2} formation. They are of fundamental importance for an increased understanding of thin film growth through the correlation between ion energy and film composition. They may also indicate a pathway to affect impurity incorporation during film growth. (letter to the editor)

  18. Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheolhee; Kim, Eunae [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Yeom, Min Sun [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of)

    2016-01-15

    The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.

  19. Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation

    CERN Document Server

    Becquart, C S

    2003-01-01

    Cu plays an important role in the embrittlement of pressure vessel steels under radiation and entities containing both Cu atoms and vacancies seem to appear as a consequence of displacement cascades. The characterisation of the stability as well as the migration of small Cu-vacancy complexes is thus necessary to understand and simulate the formation of these entities. For instance, cascade ageing studied by kinetic Monte Carlo or by rate theory models requires a good characterisation of such complexes which are parameters for these methods. We have investigated, by ab initio calculations based on the density functional theory, point defects and small defects in dilute FeCu alloys. The structure of small Cu clusters and Cu-vacancy complexes has been determined, as well as their formation and binding energies. Their relative stability is discussed. Vacancy migration energies in the presence of Cu atoms have been calculated and analysed. All the results are compared to the figures obtained with empirical interat...

  20. Ab initio study of Ni2MnGa under shear deformation

    Directory of Open Access Journals (Sweden)

    Zelený Martin

    2015-01-01

    Full Text Available The effect of shear deformation on Ni2MnGa magnetic shape memory alloy has been investigated using ab initio electronic structure calculations. We used the projector-augmented wave method for the calculations of total energies and stresses as functions of applied affine shear deformation. The studied nonmodulated martensite (NM phase exhibits a tetragonally distorted L21 structure with c/a > 1. A large strain corresponding to simple shears in {001}, {100} and {100} systems was applied to describe a full path between two equivalent NM lattices. We also studied {101} shear which is related to twining of NM phase. Twin reorientation in this system is possible, because applied positive shear results in path with significantly smaller energetic barrier than for negative shear and for shears in other studied systems. When the full relaxation of lattice parameters is allowed, the barriers further strongly decrease and the structures along the twinning path can be considered as orthorhombic.

  1. Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study

    CERN Document Server

    Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco

    2015-01-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...

  2. Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.

    Science.gov (United States)

    Enlow, Mark A

    2012-03-01

    Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.

  3. A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations

    Science.gov (United States)

    Blouin, S.; Dufour, P.; Kowalski, P. M.

    2017-03-01

    Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H2-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H2-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm3.

  4. A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations

    CERN Document Server

    Blouin, Simon; Kowalski, Piotr M

    2016-01-01

    Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H$_2$-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H$_2$-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm$^3$.

  5. A correlation study of quinoline derivatives and their pharmaceutical behavior by ab initio calculated NQR parameters.

    Science.gov (United States)

    Rafiee, Marjan A; Hadipour, Nasser L; Naderi-manesh, Hossein

    2004-03-01

    In this paper, ab initio calculated NQR parameters for some quinoline-containing derivatives are presented. The calculations are carried out in a search for the relationships between the charge distribution of these compounds and their ability to interact with haematin. On the basis of NQR parameters, pi-electron density on the nitrogen atom of the quinoline ring plays a dominant role in determining the ability of quinolines to interact with haematin. This point was confirmed with investigation of Fe+3 cation-pi quinoline ring interactions in 2- and 4-aminoquinoline. However, our results do not show any preference for those carbon atoms of the quinoline ring which previous reports have noted. In order to calculate the NQR parameters, the electric field gradient (EFG) should be evaluated at the site of a quadrupolar nucleus in each compound. EFGs are calculated by the Gaussian 98 program using the B3LYP/6-31 G* level of theory.

  6. Ab initio-based fracture toughness estimates and transgranular traction-separation modelling of zirconium hydrides

    Science.gov (United States)

    Olsson, P. A. T.; Kese, K.; Kroon, M.; Alvarez Holston, A.-M.

    2015-06-01

    In this work we report the results of an ab initio study of the transgranular fracture toughness and cleavage of brittle zirconium hydrides. We use the Griffith-Irwin relation to assess the fracture toughness using calculated surface energy and estimated isotropic Voigt-Reuss-Hill averages of the elastic constants. The calculated fracture toughness values are found to concur well with experimental data, which implies that fracture is dominated by cleavage failure. To investigate the cleavage energetics, we model the decohesion process. To describe the interplanar interaction we adopt Rose’s universal binding energy relation, which is found to reproduce the behaviour accurately. The modelling shows that the work of fracture and ductility decreases with increasing hydrogen content.

  7. Thermal Conductivity of Pure Noble Gases at Low Density from Ab Initio Prandtl Number

    Science.gov (United States)

    Song, Bo; Wang, Xiaopo; Liu, Zhigang

    2013-03-01

    The experimental data reported in the literature after 2000 have been investigated for the viscosity and thermal conductivity of helium-4, neon, and argon at low density. The well-established values of thermal conductivity by transient hot-wire measurements are not reliable enough for noble gases in the low-pressure gas region. These facts motivate us to determine the thermal conductivity from accurate viscosity data and the ab initio Prandtl number, with an uncertainty of 0.25 % for temperatures ranging between 200 K and 700 K. The theoretical accuracy is superior to the accuracy of the best measurements. The calculated results are accurate enough to be applied as standard values for the thermal conductivity of helium-4, neon, and argon over the considered temperature range.

  8. The ideal strength of gold under uniaxial stress: an ab initio study.

    Science.gov (United States)

    Wang, Hao; Li, Mo

    2010-07-28

    We employ an ab initio calculation based on density functional theory to investigate the ideal strength of face-centered cubic crystal Au under uniaxial stress along the [100] direction. We show that the stability of the perfect Au crystal under tensile stress is determined by the tetragonal shear stiffness modulus, with an ideal tensile strength of 4.2 GPa and the corresponding Lagrangian tensile strain of ∼ 0.07. The potential bifurcation from the primary uniaxial loading path is along the tetragonal shear. Under compressive stress, there is a stress-free body-centered cubic phase, which is unstable and ready to transform to a stress-free body-centered tetragonal phase with lower internal energy. The stable region is from - 1.6 to 4.2 GPa in the ideal strength, or from - 0.07 to 0.07 in the Lagrangian strain.

  9. Impact of oxygen on the 300-K isotherm of Laser Megajoule ablator using ab initio simulation

    Science.gov (United States)

    Colin-Lalu, P.; Recoules, V.; Salin, G.; Huser, G.

    2015-11-01

    The ablator material for inertial confinement fusion (ICF) capsules on the Laser Mégajoule is a glow-discharge polymer (GDP) plastic. Its equation of state (EOS) is of primary importance for the design of such capsules, since it has direct consequences on shock timing and is essential to mitigate hydrodynamic instabilities. Using ab initio molecular dynamics (AIMD), we have investigated the 300-K isotherm of amorphous CH1.37O0.08 plastic, whose structure is close to GDP plastic. The 300-K isotherm, which is often used as a cold curve within tabular EOS, is an important contribution of the EOS in the multimegabar pressure range. AIMD results are compared to analytic models within tabular EOS, pointing out large discrepancies. In addition, we show that the effect of oxygen decreases 300-K isotherm pressure by 10%-15%. The implication of these observations is the ability to improve ICF target performance, which is essential to achieve fusion ignition.

  10. HCO+ dissociation in a strong laser field: An ab initio classical trajectory study

    Science.gov (United States)

    Lee, Suk Kyoung; Li, Wen; Bernhard Schlegel, H.

    2012-05-01

    We have investigated the photodissociation of HCO+ in a strong field with a wavelength of 10 μm using ab initio molecular dynamics. Classical trajectories were calculated at three field intensities. At 2.9 × 1014 W/cm2 and phase ϕ = 0, protons have two distinct dissociation times, mainly due to the reorientation of HCO+ relative to the field direction prior to dissociation. The kinetic energy distribution at this intensity agrees with Wardlaw's wagging tail model, suggesting that dissociation occurs through barrier-suppression. At 1.7 × 1014 and 8.8 × 1013 W/cm2, barrier suppression is incomplete and the maximum kinetic energy is less than predicted by the wagging tail model.

  11. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  12. Ab Initio Simulation of Electrical Currents Induced by Ultrafast Laser Excitation of Dielectric Materials

    Science.gov (United States)

    Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Sato, Shunsuke A.; Tong, Xiao-Min; Yabana, Kazuhiro

    2014-08-01

    We theoretically investigate the generation of ultrafast currents in insulators induced by strong few-cycle laser pulses. Ab initio simulations based on time-dependent density functional theory give insight into the atomic-scale properties of the induced current signifying a femtosecond-scale insulator-metal transition. We observe the transition from nonlinear polarization currents during the laser pulse at low intensities to tunnelinglike excitation into the conduction band at higher laser intensities. At high intensities, the current persists after the conclusion of the laser pulse considered to be the precursor of the dielectric breakdown on the femtosecond scale. We show that the transferred charge sensitively depends on the orientation of the polarization axis relative to the crystal axis, suggesting that the induced charge separation reflects the anisotropic electronic structure. We find good agreement with very recent experimental data on the intensity and carrier-envelope phase dependence [A. Schiffrin et al., Nature (London) 493, 70 (2013)].

  13. Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

    Science.gov (United States)

    Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.

    2016-06-01

    The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.

  14. Ab initio study on the dynamics of furfural at the liquid-solid interfaces

    Science.gov (United States)

    Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers

  15. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    CERN Document Server

    Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...

  16. Ab-initio Hartree-Fock study of tritium desorption from Li{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1998-03-01

    Dissociative adsorption of hydrogen on Li{sub 2}O (110) surface has been investigated with ab-initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and potential energy surface for H{sub 2} dissociative adsorption was evaluated by calculating the total energy of the system. Calculation results on adsorption heat indicated that H{sub 2} adsorption is endothermic. However, when oxygen vacancy exists adjacent to the adsorption sites, heat of adsorption energy became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (author)

  17. Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study.

    Science.gov (United States)

    Tachikawa, Hiroto

    2006-01-12

    Ionization processes of chlorobenzene-ammonia 1:1 complex (PhCl-NH3) have been investigated by means of full dimensional direct ab initio molecular dynamics (MD) method, static ab initio calculations, and density functional theory (DFT) calculations. The static ab initio and DFT calculations of neutral PhCl-NH3 complex showed that one of the hydrogen atoms of NH3 orients toward a carbon atom in the para-position of PhCl. The dynamics calculation for ionization of PhCl-NH3 indicated that two reaction channels are competitive with each other as product channels: one is an intramolecular SN2 reaction expressed by a reaction scheme [PhCl-NH3]+-->SN2 intermediate complex-->PhNH3++Cl, and the other is ortho-NH3 addition complex (ortho complex) in which NH3 attacks the ortho-carbon of PhCl+ and the trajectory leads to a bound complex expressed by (PhCl-NH3)+. The mechanism of the ionization of PhCl-NH3 is discussed on the basis of the theoretical results.

  18. Transport and optical properties of warm dense aluminum in the two-temperature regime: Ab initio calculation and semiempirical approximation

    CERN Document Server

    Knyazev, D V

    2014-01-01

    This work is devoted to the investigation of transport and optical properties of liquid aluminum in the two-temperature case. At first optical properties, static electrical and thermal conductivities were obtained in the \\textit{ab initio} calculation. The \\textit{ab initio} calculation is based on the quantum molecular dynamics, density functional theory and the Kubo-Greenwood formula. The semiempirical approximation was constructed based on the results of the \\textit{ab initio} caculation. The approximation yields the dependences $\\sigma_{1_\\mathrm{DC}}\\propto1/T_i^{0.25}$ and $K\\propto T_e/T_i^{0.25}$ for the static electrical conductivity and thermal conductivity, respectively. The approximation is valid for liquid aluminum at $\\rho=2.70$~g/cm$^3$, 3~kK~$\\leq T_i\\leq T_e\\leq20$~kK. Our results are well described by the Drude model with the effective relaxation time $\\tau\\propto T_i^{-0.25}$. We have compared our results with a number of other models. They are all reduced in the low-temperature limit to th...

  19. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  20. Ab initio and work function and surface energy anisotropy of LaB6

    NARCIS (Netherlands)

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of

  1. Ab initio study of Mg(AlH4)2

    NARCIS (Netherlands)

    van Setten, M.J.; de Wijs, G.A.; Popa, V.A.; Popa, V.A.; Brocks, G.

    2005-01-01

    Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation

  2. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...

  3. Ab initio study of energy-level alignments in polymer-dye blends

    NARCIS (Netherlands)

    Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.

    2003-01-01

    Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene

  4. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...

  5. Ab initio electronic-structure calculations on the Nb/Zr multilayer system

    NARCIS (Netherlands)

    Leuken, H. v.; Czyżyk, M.T.; Springelkamp, F.; Groot, R.A. de

    1990-01-01

    Ab initio electronic-structure calculations are performed for the Nb/Zr metallic multilayer system in the coherent bcc structure and in the incoherent bcc/hcp structure, observed for small and larger modulation wavelengths, respectively. A new calculational scheme, the localized-spherical-wave

  6. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    Science.gov (United States)

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  7. An ab initio Valence Bond Study on Cyclopenta-Fused Naphthalenes and Fluoranthenes

    NARCIS (Netherlands)

    Havenith, R.W.A.; van Lenthe, J.H.; Jenneskens, L.W.

    2005-01-01

    To probe the effect of external cyclopenta-fusion on a naphthalene core, ab initio valence bond (VB) calculations have been performed, using strictly atomic benzene p-orbitals and p-orbitals that are allowed to delocalize, on naphthalene (1), acenaphthylene (2), pyracylene (3), cyclopenta[b,c]-acena

  8. Ab initio study of energy-level alignments in polymer-dye blends

    NARCIS (Netherlands)

    Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.

    2003-01-01

    Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and

  9. POLY-ANIONS IN LIQUID CSPB - AN AB-INITIO MOLECULAR-DYNAMICS SIMULATION

    NARCIS (Netherlands)

    DEWIJS, GA; PASTORE, G; SELLONI, A; VANDERLUGT, W

    1994-01-01

    Most alkali-group-IV liquid alloys exhibit strong chemical effects leading to well-defined equiatomic compounds. This is generally explained by the survival of particular clusters of lead-''Zintl'' ions-in the liquid state. We report on an ab initio simulation of liquid CsPb, for which the chemical

  10. The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Perron, A., E-mail: perron1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Turchi, P.E.A.; Landa, A.; Söderlind, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ravat, B.; Oudot, B.; Delaunay, F. [CEA-Centre de Valduc, 21120 Is sur Tille (France)

    2015-03-15

    Highlights: • The ab initio informed CALPHAD assessment of the Am–U system has been realized. • A strong tendency toward phase separation across the whole composition range is predicted. • The ab initio informed Pu–U–Am thermodynamic database has been developed. • The solubility of Am and U in the liquid phase is improved by adding Pu. • The δ-Pu (fcc) phase is strongly stabilized by Am, on the contrary to the bcc phase. - Abstract: Phase diagram and thermodynamic properties of the Am–U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu–U and Am–Pu thermodynamic assessments are combined to build a Pu–U–Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.

  11. Ab initio calculations on the inclusion complexation of cyclobis(paraquat- p-phenylene)

    Science.gov (United States)

    Zhang, Ke-Chun; Liu, Lei; Mu, Ting-Wei; Guo, Qing-Xiang

    2001-01-01

    Semiempirical PM3, ab initio HF/3-21g ∗, and DFT B3LYP/6-31g ∗ calculations in vacuum and in solution were performed on the inclusion complexation of cyclobis(paraquat- p-phenylene) with nine symmetric aromatic substrates. A good correlation was found between the theoretical stabilization energies and experimental free energy changes upon complexation.

  12. Ab initio study of long-period superstructures in close-packed A3B compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the stability of one-dimensional long-period superstructures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The ene...

  13. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  14. Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    DEFF Research Database (Denmark)

    Zhang, Hao; Lund, Ole; Nielsen, Morten

    2010-01-01

    potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data...

  15. Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc

    NARCIS (Netherlands)

    Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy

    2009-01-01

    The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation energi

  16. Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc

    NARCIS (Netherlands)

    Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy

    2009-01-01

    The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation

  17. Ab initio study of Mg(AlH4)2

    NARCIS (Netherlands)

    Setten, van M.J.; Wijs, de G.A.; Popa, V.A.; Brocks, G.

    2005-01-01

    Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation (G

  18. Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds

    CERN Document Server

    Vrubel, I I; Ivanov, V K

    2015-01-01

    A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.

  19. Ab initio calculations on the structure of pyridine in its lowest triplet state

    NARCIS (Netherlands)

    Buma, W.J.; Groenen, E.J.J.; Schmidt, J.

    1990-01-01

    Recently we have experimentally shown that pyridine-d5, as a guest in a single crystal of benzene-d6, adopts a boatlike structure upon excitation into the lowest triplet state T0. Here MRDCI ab initio calculations are presented that reveal that the observed nonplanarity of the molecule is not caused

  20. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  1. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    Science.gov (United States)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  2. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    Science.gov (United States)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  3. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  4. New ab initio based pair potential for accurate simulation of phase transitions in ZnO

    NARCIS (Netherlands)

    Wang, Shuaiwei; Fan, Zhaochuan; Koster, Rik S.; Fang, Changming; Van Huis, Marijn A.; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; Vlugt, Thijs J H

    2014-01-01

    A set of interatomic pair potentials is developed for ZnO based on the partially charged rigid ion model (PCRIM). The derivation of the potentials combines lattice inversion, empirical fitting, and ab initio energy surface fitting. We show that, despite the low number of parameters in this model (8)

  5. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.

    2011-01-01

    . The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...

  6. Ab initio and work function and surface energy anisotropy of LaB6

    NARCIS (Netherlands)

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of th

  7. Vibrational spectral investigation, NBO, first hyperpolarizability and UV-Vis spectral analysis of 3,5-dichlorobenzonitrile and m-bromobenzonitrile by ab initio and density functional theory methods.

    Science.gov (United States)

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-05

    The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated.

  8. Relaxation of Small Molecules:an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    CAOYi-Gang; A.Antons; 等

    2002-01-01

    Using an ab inito total energy and force method,we have relaxed several group IV and group V elemental clusters,in detail the arsenic and antimony dimers,silicon,phosphorus,arsenic and antimony tetraners,The obtained bond lengths and cohesive energies are more accurate than other calculating methods,and in excellent agreement with the experimental results.

  9. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    Science.gov (United States)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  10. Molecular tailoring approach: a route for ab initio treatment of large clusters.

    Science.gov (United States)

    Sahu, Nityananda; Gadre, Shridhar R

    2014-09-16

    Conspectus Chemistry on the scale of molecular clusters may be dramatically different from that in the macroscopic bulk. Greater understanding of chemistry in this size regime could greatly influence fields such as materials science and atmospheric and environmental chemistry. Recent advances in experimental techniques and computational resources have led to accurate investigations of the energies and spectral properties of weakly bonded molecular clusters. These have enabled researchers to learn how the physicochemical properties evolve from individual molecules to bulk materials and to understand the growth patterns of clusters. Experimental techniques such as infrared, microwave, and photoelectron spectroscopy are the most popular and powerful tools for probing molecular clusters. In general, these experimental techniques do not directly reveal the atomistic details of the clusters but provide data from which the structural details need to be unearthed. Furthermore, the resolution of the spectral properties of energetically close cluster conformers can be prohibitively difficult. Thus, these investigations of molecular aggregates require a combination of experiments and theory. On the theoretical front, researchers have been actively engaged in quantum chemical ab initio calculations as well as simulation-based studies for the last few decades. To obtain reliable results, there is a need to use correlated methods such as Møller-Plesset second order method, coupled cluster theory, or dispersion corrected density functional theory. However, due to nonlinear scaling of these methods, optimizing the geometry of large clusters still remains a formidable quantum chemistry challenge. Fragment-based methods, such as divide-and-conquer, molecular tailoring approach (MTA), fragment molecular orbitals, and generalized energy-based fragmentation approach, provide alternatives for overcoming the scaling problem for spatially extended molecular systems. Within MTA, a large

  11. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75 Alloys

    Directory of Open Access Journals (Sweden)

    Amel Laref

    2017-07-01

    Full Text Available Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75 ternary alloys. In order to perceive viable half-metallic (HM states and unprecedented diluted magnetic semiconductors (DMSs such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA. In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level (EF in the spin–down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga1−xMnxP alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  12. {\\it Ab initio} nuclear structure - the large sparse matrix eigenvalue problem

    CERN Document Server

    Vary, James P; Ng, Esmond; Yang, Chao; Sosonkina, Masha

    2009-01-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several {\\it ab initio} methods have now emerged that provide nearly exact solutions for some nuclear properties. The {\\it ab initio} no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds $10^{10}$ and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving t...

  13. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  14. [Photoelectron Spectra of CCl2-: Ab Initio Calculation and Franck-Condon Analysis].

    Science.gov (United States)

    Wu, Jun

    2015-12-01

    Geometry optimization and harmonic vibrational frequency calculations were performed on the X¹A₁ state of CCl₂ and X²B₁ state of CCl₂⁻ at the B3LYP, MP2, CCSD levels. Franck-Condon analysis and spectral simulations were carried out on the photoelectron band of CCl₂⁻ including Duschinsky effects. The simulated spectra obtained are in excellent agreement with the experiment. Note that Duschinsky effect between bending vibration and the symmetric stretch modes should be considered in the CCl₂ (X¹A₁)-CCl₂⁻ (X²B₁) photodetachment process. By combining ab initio calculations with Franck-Condon analyses, the assignment of spectrum observed is firmly established to the X¹A₁-X²B₁ photodetachment process of the CCl₂⁻ radical, and the recommended geometric parameters of which in the literature are confirmed again base on ab initio theory and IFCA process.

  15. A highly accurate {\\it ab initio} potential energy surface for methane

    CERN Document Server

    Owens, Alec; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-01-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art \\textit{ab initio} theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include: core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of $^{12}$CH$_4$ reproduced with a root-mean-square error of $0.70{\\,}$cm$^{-1}$. The computed \\textit{ab initio} equilibrium C{--}H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as $J$ (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the e...

  16. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  17. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    Science.gov (United States)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  18. Ab initio calculations on the magnetic properties of transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bodenstein, Tilmann; Fink, Karin [Karlsruhe Institute of Technology, Institute of Nanotechnology, POB 3640, 76021 Karlsruhe (Germany)

    2015-12-31

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  19. Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

    Directory of Open Access Journals (Sweden)

    Daniele Binosi

    2015-03-01

    Full Text Available Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.

  20. Structural properties of liquid N-methylacetamide via ab initio, path integral, and classical molecular dynamics

    Science.gov (United States)

    Whitfield, T. W.; Crain, J.; Martyna, G. J.

    2006-03-01

    In order to better understand the physical interactions that stabilize protein secondary structure, the neat liquid state of a peptidic fragment, N-methylacetamide (NMA), was studied using computer simulation. Three different descriptions of the molecular liquid were examined: an empirical force field treatment with classical nuclei, an empirical force field treatment with quantum mechanical nuclei, and an ab initio density functional theory (DFT) treatment. The DFT electronic structure was evaluated using the BLYP approximate functional and a plane wave basis set. The different physical effects probed by the three models, such as quantum dispersion, many-body polarization, and nontrivial charge distributions on the liquid properties, were compared. Much of the structural ordering in the liquid is characterized by hydrogen bonded chains of NMA molecules. Modest structural differences are present among the three models of liquid NMA. The average molecular dipole in the liquid under the ab initio treatment, however, is enhanced by 60% over the gas phase value.

  1. Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective

    Science.gov (United States)

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge

    2013-03-01

    Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.

  2. Ab Initio Calculations for the BaTiO3 (001) Surface Structure

    Institute of Scientific and Technical Information of China (English)

    XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie

    2004-01-01

    @@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.

  3. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Rio, B. G. del; González, L. E. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  4. Ab initio simulations and neutron scattering studies of structure and dynamics in PdH

    CERN Document Server

    Totolici, I E

    2001-01-01

    The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calcu...

  5. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Andrea, E-mail: a.zen@ucl.ac.uk [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Luo, Ye, E-mail: xw111luoye@gmail.com; Mazzola, Guglielmo, E-mail: gmazzola@phys.ethz.ch; Sorella, Sandro, E-mail: sorella@sissa.it [SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste (Italy); Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste (Italy); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’ Aquila, via Vetoio, 67100 L’ Aquila (Italy)

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  6. Melting of sodium under high pressure. An ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    González, D. J.; González, L. E. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  7. An ab initio potential function for the ν13 vibrational mode of 1,3-butadiene

    Science.gov (United States)

    Senent, M. L.

    1995-06-01

    The restricted potential of the ν13 torsional mode of 1,3-butadiene has been determined from ab initio calculations. The relative energy and geometry of the second rotamer were calculated with the optimized couple cluster method with double substitutions. This ab initio level provides that the second stable structure attaches to a gauche form situated at 140.8°. The potential energy function was obtained by fitting to a symmetry-adapted Fourier series the total electronic energies of several selected conformations. These energies were calculated by the Möller-Plesset perturbation theory up to the second order (MP2) with full and partial optimization of the geometry. Torsional Raman band positions and fundamental frequencies were determined from the periodic potentials with a good agreement with experimental data. The convenience of performing fully optimized calculations to determine the restricted function is also refuted.

  8. Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2009-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti...... systems in the future. A few examples will be discussed. Contents 12.1 Introduction...........307 12.2 Brief introduction to Raman spectroscopy ..............309 12.2.1 Basics .....................309 12.2.2 Experimental, fluorescence and fouriertransform- Raman spectroscopy instrumentation ...... 311 12.......3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4C1Im]+ cation...

  9. Interatomic potentials for Al and Ni from experimental data and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mishin, Y.; Farkas, D.; Miehl, M.J.; Papaconstantopoulos, D.A.

    1999-07-01

    New embedded-atom potentials for Al and Ni have been developed by fitting to both experimental data and the results of ab initio calculations. The ab initio data were obtained in the form of energies of different alternative computer-generated crystalline structures of these metals. The potentials accurately reproduce basic equilibrium properties of Al and Ni such as the elastic constants, phonon dispersion curves, vacancy formation and migration energies, stacking fault energies, and surface energies. The equilibrium energies of various alternative structures not included in the fitting database are calculated with these potentials. The results are compared with predictions of total-energy tight-binding calculations for the same structures. The embedded-atom potentials correctly reproduce the structural stability trends, which suggests that they are transferable to different local environments encountered in atomistic simulations of lattice defects.

  10. Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo

    CERN Document Server

    Zen, Andrea; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2014-01-01

    Despite liquid water is ubiquitous in chemical reactions at roots of life and climate on earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in excellent agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous Density Functional Theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab-initio simulations of complex chemical systems.

  11. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

    Science.gov (United States)

    Drumm, Daniel W.; Budi, Akin; Per, Manolo C.; Russo, Salvy P.; L Hollenberg, Lloyd C.

    2013-02-01

    The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.

  12. Ab initio calculations to support accurate modelling of the rovibronic spectroscopy calculations of vanadium monoxide (VO)

    CERN Document Server

    McKemmish, Laura K; Tennyson, Jonathan

    2016-01-01

    Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity...

  13. Emergent properties of nuclei from ab initio coupled-cluster calculations

    CERN Document Server

    Hagen, G; Hjorth-Jensen, M; Papenbrock, T

    2016-01-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{\\rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-clust...

  14. Electrical Resistivity of Na-K Binary Liquid Alloy Using Ab-Initio Pseudopotentials

    Institute of Scientific and Technical Information of China (English)

    Anil Thakur; P. K. Ahluwalia

    2005-01-01

    @@ The study of electrical resistivity of simple binary liquid alloy Na-K is presented as a function of concentration.Hard sphere diameters of sodium (Na) and potassium (K) are obtained through the inter ionic pair potentials evaluated using Troullier and Martins ab-initio pseudopotentials, which have been used to calculate partial structure factors S(q). The Ziman formula for calculating resistivity of binary liquid alloys has been used. Form factors are calculated using ab-initio pseudopotentials. The results suggest that the first principle approach for calculating pseudopotentials with in the frame work of Ziman formalism is quite successful in explaining the electrical resistivity data of compound forming binary liquid alloys.

  15. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    Science.gov (United States)

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  16. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.

    Science.gov (United States)

    Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C

    2013-02-27

    : The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.

  17. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    Energy Technology Data Exchange (ETDEWEB)

    Halasyamani, Shiv [Univ. of Houston, TX (United States); Fennie, Craig [Cornell Univ., Ithaca, NY (United States)

    2016-11-03

    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  18. Ab initio molecular dynamics with nuclear quantum effects at classical cost: ring polymer contraction for density functional theory

    CERN Document Server

    Marsalek, Ondrej

    2015-01-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...

  19. First fully ab initio potential energy surface of methane with a spectroscopic accuracy

    Science.gov (United States)

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2016-09-01

    Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.

  20. Optical and other material properties of SiO2 from ab initio studies

    Science.gov (United States)

    Warmbier, Robert; Mohammed, Faris; Quandt, Alexander

    2014-07-01

    The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.

  1. Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states

    DEFF Research Database (Denmark)

    Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen;

    2003-01-01

    Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...... as its static and dynamic properties. The results obtained show good agreement with well established data, and, moreover, we were able to show significant changes within the structure depending on the system's temperature and density....

  2. Projector augmented wave method: ab initio molecular dynamics with full wave functions

    Indian Academy of Sciences (India)

    Peter E Blöchl; Clemens J Först; Johannes Schimpl

    2003-01-01

    A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.

  3. Simulation of Ab Initio Molecular Dynamics of Shock Wave on Copper

    Institute of Scientific and Technical Information of China (English)

    张林; 蔡灵仓; 向士凯; 经福谦; 陈栋泉

    2003-01-01

    The relation between particle velocity Up, up to 4 km/s, and shock wave velocity Us in copper has been simulated with ab initio molecular dynamics. The simulated relationship without considering the correction of zero-point and finite temperature effects is Us = 4.23 + 1.53Up. After considering the correction the relation becomes Us = 4.08 + 1.53Up, which is consistent with the experimental result.

  4. Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids

    DEFF Research Database (Denmark)

    Berg, R.W.; Deetlefs, M.; Seddon, K.R.

    2005-01-01

    Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...... bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems....

  5. Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2007-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti...... will be applied to many more systems in the future. A few examples will be discussed....

  6. Ab Initio Study on the Anti-HIV Activities of Hydroxyflavones

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu

    2005-01-01

    Flavone and 95 hydroxyflavones have been studied with ab initio method, and their total energies, atomic charges, dipole moments, multipole moments, molecular orbital compositions, orbital energies etc. were obtained. Among them the relationship between total atomic charges and activities against HIV is basically in accordance with the experimental results. The beneficial references are provided for the extraction and synthesis of strong active anti-HIV medicines.

  7. Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green's funct......'s function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations....

  8. Influence of the ab-initio nd cross sections in the critical heavy-water benchmarks

    CERN Document Server

    Morillon, B; Carbonell, J

    2013-01-01

    The n-d elastic and breakup cross sections are computed by solving the three-body Faddeev equations for realistic and semi-realistic Nucleon-Nucleon potentials. These cross sections are inserted in the Monte Carlo simulation of the nuclear processes considered in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP). The results obtained using thes ab initio n-d cross sections are compared with those provided by the most renown international libraries.

  9. Ab initio verification of the analytical R-matrix theory for strong field ionization

    Science.gov (United States)

    Torlina, Lisa; Morales, Felipe; Muller, H. G.; Smirnova, Olga

    2014-10-01

    We summarize the key aspects of the recently developed analytical R-matrix (ARM) theory for strong field ionization (Torlina and Smirnova 2012 Phys. Rev. A 86 043408; Kaushal and Smirnova 2013 Phys. Rev. A 88 013421), and present tests of this theory using ab initio numerical simulations for hydrogen and helium atoms in long circularly polarized laser pulses. We find excellent agreement between the predictions of ARM and the numerical calculations.

  10. Lattice dynamics of wurtzite CdS: Neutron scattering and ab-initio calculations

    Science.gov (United States)

    Debernardi, A.; Pyka, N. M.; Göbel, A.; Ruf, T.; Lauck, R.; Kramp, S.; Cardona, M.

    1997-08-01

    We have measured the phonon dispersion of wurtzite CdS by inelastic neutron scattering in a single crystal made from the nonabsorbing isotope 114Cd. One of the two silent B 1-modes occurs at 3.96 THz ( k = 0 ). It is significantly lower and less dispersive than so far assumed. Previous semiempirical lattice dynamical models need to be reanalyzed. However, the observed dispersion branches compare favorably with an ab-initio calculation.

  11. Steady state Ab-initio Theory of Lasers with Injected Signals

    CERN Document Server

    Cerjan, Alexander

    2013-01-01

    We present an ab-initio treatment of steady-state lasing with injected signals that treats both multimode lasing and spatial hole burning, and describes the transition to injection locking or partial locking in the multimode case. The theory shows that spatial hole burning causes a shift in the frequency of free-running laser modes away from the injection frequency, in contrast to standard approaches.

  12. Ab initio molecular dynamics simulations of the Li4F4 cluster

    Science.gov (United States)

    Heidenreich, A.; Sauer, J.

    1995-12-01

    Molecular dynamics simulations have been performed directly on the ab initio potential energy surface of Li4F4, which was generated within the Hartree-Fock approximation using a Gaussian basis set (split valence contraction). Trajectories at different temperatures yield the temperature dependence of the infrared spectra and the photoelectron spectra. For the infrared spectra comparison is made with MD results using a shell model ion pair potential function.

  13. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    Science.gov (United States)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and

  14. Condensed-matter ab initio approach for strongly correlated electrons: Application to a quantum spin liquid candidate

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Youhei [Quantum-Phase Electronics Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2015-12-31

    Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.

  15. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, Illinois 61801 (United States)

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  16. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    CERN Document Server

    Geng, Hua Y

    2014-01-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...

  17. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Hua Y., E-mail: huay.geng@gmail.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang, Sichuan, 621900 (China); Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853 (United States)

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  18. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Science.gov (United States)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  19. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  20. Ab initio nuclear structure and reactions with chiral three-body forces

    Energy Technology Data Exchange (ETDEWEB)

    Langhammer, Joachim; Roth, Robert; Calci, Angelo [Institut fuer Kernphysik - Theoriezentrum, TU Darmstadt (Germany); Navratil, Petr [TRIUMF, Vancouver (Canada)

    2014-07-01

    One major ambition of ab initio nuclear theory is the description of nuclear-structure and reaction observables on equal footing. This is accomplished by combining the no-core shell model (NCSM) with the resonating-group method (RGM) to a unified ab initio approach to bound and continuum states, which is developed further to the no-core shell model with continuum (NCSMC). We present the formal developments to include three-nucleon interactions in both the NCSM/RGM and NCSMC formalism. This provides the possibility to assess the predictive power of chiral two- and three-nucleon forces in the variety of scattering observables. We study three-nucleon force effects on phase-shifts, cross sections and analyzing powers in first ab-initio studies of nucleon-{sup 4}He scattering with chiral two- and three-nucleon forces. Finally, we focus on heavier target nuclei using the NCSMC, e.g., in neutron-{sup 8}Be scattering and study the impact of the continuum on the spectrum of {sup 9}Be.

  1. Physical properties of ternary silicide superconductors Li2XSi3 (X = Rh, Os): An ab initio study

    Science.gov (United States)

    Alam, M. A.; Zilani, M. A. K.; Parvin, F.; Hadi, M. A.

    2017-08-01

    An ab initio method, based on the plane wave pseudopotential and the generalized gradient approximation (GGA), is performed to investigate the physical properties such as structural, elastic, electronic and bonding properties of newly synthesized Li2RhSi3 and predicted Li2OsSi3 ternary silicide superconductors for the first time. Both of these compounds are mechanically stable and are brittle in nature. They also have good machinability. Electronic band structures reveal that these compounds have metallic characteristics. They possess complex bonding nature (metallic, covalent and ionic). According to theoretical Vickers hardness, Li2RhSi3 is softer than Li2OsSi3.

  2. Amino acid anions in organic ionic compounds. An ab initio study of selected ion pairs.

    Science.gov (United States)

    Benedetto, A; Bodo, E; Gontrani, L; Ballone, P; Caminiti, R

    2014-03-06

    The combination of amino acids in their deprotonated and thus anionic form with a choline cation gives origin to a new and potentially important class of organic ionic compounds. A series of such neutral ion pairs has been investigated by first principle methods. The results reveal intriguing structural motives as well as regular patterns in the charge distribution and predict a number of vibrational and optical properties that could guide the experimental investigation of these compounds. The replacement of choline with its phosphocholine analogue causes the spontaneous reciprocal neutralization of cations and anions, taking place through the transfer of a proton between the two ions. Systems of this kind, therefore, provide a wide and easily accessible playground to probe the ionic/polar transition in organic systems, while the easy transfer of H(+) among neutral and ionic species points to their potential application as proton conductors. The analysis of the ab initio data highlights similarities as well as discrepancies from the rigid-ions force-field picture and suggests directions for the improvement of empirical models.

  3. Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study

    Science.gov (United States)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo

    2016-07-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.

  4. Ab initio study of charge, spin and orbital ordering in manganites

    CERN Document Server

    Tyer, R

    2001-01-01

    The subject of this thesis was the calculation of the electronic structure for the manganites LaMnO sub 3 and CaMnO sub 3. The implementation of the Self-Interaction Corrected Local Spin Density (SIC-LSD) formalism within the Tight Binding Linear Muffin-Tin Orbital method in conjunction with the Atomic Sphere Approximation was used for these calculations. The SIC-LSD total energy functional has been used to investigate the spin ordering and valency of CaMnO sub 3 and LaMnO sub 3. In order to assess the role of the structural distortion in LaMnO sub 3 , these calculations were performed for an idealised cubic structure as well as for the observed distorted orthorhombic structure. Orbital rotations of the localised (SIC corrected) states were implemented. These orbital rotations were then used to perform the first ab-initio investigation of orbital ordering in LaMnO sub 3. For the experimentally observed A-type antiferromagnetic ordering, the correct orbital structure of alternating manganese d sub 3 sub x sub ...

  5. Ab initio studies on the structure of and atomic interactions in cellulose III(I) crystals.

    Science.gov (United States)

    Ishikawa, Tetsuya; Hayakawa, Daichi; Miyamoto, Hitomi; Ozawa, Motoyasu; Ozawa, Tomonaga; Ueda, Kazuyoshi

    2015-11-19

    The crystal structure of cellulose III(I)was analyzed using first-principles density functional theory (DFT). The geometry was optimized using variable-cell relaxation, as implemented in Quantum ESPRESSO. The Perdew-Burke-Ernzerhof (PBE) functional with a correction term for long-range van der Waals interactions (PBE-D) reproduced the experimental structure well. By using the optimized crystal structure, the interactions existed among the cellulose chains in the crystal were precisely investigated using the NBO analysis. The results showed that the weak bonding nature of CH/O and the hydrogen bonding occur among glucose molecules in the optimized crystal structure. To investigate the strength of interaction, dimeric and trimeric glucose units were extracted from the crystal, and analyzed using MP2 ab initio counterpoise methods with BSSE correction. The results estimated the strength of the interactions. That is, the packed chains along with a-axis interacts with weak bonding nature of CH/O and dispersion interactions by -7.50 kcal/mol, and two hydrogen bonds of O2HO2…O6 and O6HO6…O2 connect the neighboring packed chains with -11.9 kcal/mol. Moreover, FMO4 calculation was also applied to the optimized crystal structure to estimate the strength of the interactions. These methods can well estimate the interactions existed in the crystal structure of cellulose III(I).

  6. Ab initio study of structural, electronic, and thermal properties of Pt1-xPdx alloys

    Science.gov (United States)

    Ahmed, Shabbir; Zafar, Muhammad; Shakil, M.; Choudhary, M. A.; Hashmi, Muhammad Raza-Ur-Rehman

    2017-01-01

    We report a systematic theoretical study of Pt1-xPdx alloys using ab initio density functional theory (DFT) by pseudo potential method. We have used super cell approach to investigate structural, electronic and thermal properties of Platinum (Pt), Palladium (Pd) and their alloys Pt1-xPdx(x = 0.00, 0.25, 0.50, 0.75, 1.00). The calculated lattice constants and bulk moduli are in good agreement with available literature data. The results of electronic properties revealed that the alloys are metallic in nature. The thermal properties were investigated through density functional perturbation theory (DFPT) and quasi-harmonic approximation. The contribution to the free energy from the lattice vibration was calculated using the phonon densities of states (DOS) derived by means of the linear-response theory. The DFPT with quasi-harmonic approximation methods was applied to determine the phonon DOS and thermal quantities i.e., the Debye temperatures, vibration energy, entropy and constant-volume specific heat.

  7. Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory.

    Science.gov (United States)

    Aravena, Daniel; Atanasov, Mihail; Neese, Frank

    2016-05-01

    Regularities among electronic configurations for common oxidation states in lanthanide complexes and the low involvement of f orbitals in bonding result in the appearance of several periodic trends along the lanthanide series. These trends can be observed on relatively different properties, such as bonding distances or ionization potentials. Well-known concepts like the lanthanide contraction, the double-double (tetrad) effect, and the similar chemistry along the lanthanide series stem from these regularities. Periodic trends on structural and spectroscopic properties are examined through complete active space self-consistent field (CASSCF) followed by second-order N-electron valence perturbation theory (NEVPT2) including both scalar relativistic and spin-orbit coupling effects. Energies and wave functions from electronic structure calculations are further analyzed in terms of ab initio ligand field theory (AILFT), which allows one to rigorously extract angular overlap model ligand field, Racah, and spin-orbit coupling parameters directly from high-level ab initio calculations. We investigated the elpasolite Cs2NaLn(III)Cl6 (Ln(III) = Ce-Nd, Sm-Eu, Tb-Yb) crystals because these compounds have been synthesized for most Ln(III) ions. Cs2NaLn(III)Cl6 elpasolites have been also thoroughly characterized with respect to their spectroscopic properties, providing an exceptionally vast and systematic experimental database allowing one to analyze the periodic trends across the lanthanide series. Particular attention was devoted to the apparent discrepancy in metal-ligand covalency trends between theory and spectroscopy described in the literature. Consistent with earlier studies, natural population analysis indicates an increase in covalency along the series, while a decrease in both the nephelauxetic (Racah) and relativistic nephelauxetic (spin-orbit coupling) reduction with increasing atomic number is calculated. These apparently conflicting results are discussed on the

  8. An ab initio HCN/HNC rotational-vibrational line list and opacity function for astronomy

    Science.gov (United States)

    Harris, Gregory John

    HCN/HNC is an important molecule which is found throughout the universe. For example HCN/HNC is known to exist in comets, planetary atmospheres and the interstellar medium. HCN is also an important opacity source in carbon rich stars (C-stars). HCN masers have been observed in the circumstellar material around these C-stars and also in galaxies. Jorgensen and co-workers investigated model carbon star atmospheres in which they included HCN as an opacity source. They found that including a HCN opacity function had a remarkable effect: the atmosphere expanded by five times and the pressure of the atmosphere in the surface layers dropped by one or two orders of magnitude. This suggests that a full and detailed treatment of the rotational-vibrational spectrum of HCN/HNC could have a profound effect on the models of carbon stars, this provides the main motivation in this work. The temperatures of the stars in which HCN is an important opacity source Teff = 2000 - 3000 K. If HCN and HNC are in thermodynamic equilibrium it would be expected that HNC as well as HCN are found in significant populations. The transition dipoles of the fundamental bands of HNC are more than twice as strong as their HCN counter parts. These factors mean that both HCN and HNC will be considered, which makes a semiglobal treatment of the [H,C,N] system necessary. In this thesis an ab initio HCN/HNC linelist, from which accurate spectra and opacity functions can be calculated, is computed. Within this thesis I present least squares fits for ab initio semiglobal potential energy, dipole moment, relativistic correction and adiabatic correction surfaces. The potential energy surface (PES) is morphed for HNC geometries of the potential to improve the HNC representation of the surface. The PES and dipole moment surface (DMS) are used to perform quantum mechanical nuclear motion (rotational-vibrational) calculations with the DVR3D suite of codes. Preliminary calculations are made to optimise a ro

  9. Ab initio and DFT Studies of Be(BH42

    Directory of Open Access Journals (Sweden)

    J. S. Al-Otaibi

    2016-03-01

    Full Text Available In this study, the Ab inito and DFT calculations of optimized geometries, energy and vibrational spectra for the Beryllium borohydride Be(BH42 at different levels are achieved by Hartre – Fock (HF, perturbation theory (MP2 and density functional theory (B3LYP methods. They utilize the 6-31G(d, 6-311G(d,p, 6-311+G(d,p and 6-311++G(d,p basis sets. The theoretical results showed that Beryllium borohydride with the D2d structure which contains two identical groups of double bridging hydrogen has the lowest energy at all levels. Consequently, this compound is considered as the most stable one and the results of IR and Raman Spectra at all levels support that. We found that both structures Cs, C3v have the structure of D2d kind at all levels. The values of bond lengths for these two structures are identical for the bond lengths to the structure D2d kind which confirms this theory.

  10. Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Weber, William J.; Xiao, H. Y.; Zu, Xiaotao T.

    2009-09-11

    Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the most stable configuration of a di-vacancy cluster consists of two C vacancies located at second nearest neighbor sites, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and n C vacancies (VSi-nVC) are much smaller than those with a C vacancy and n Si vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.

  11. Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations

    Science.gov (United States)

    Gao, F.; Weber, W. J.; Xiao, H. Y.; Zu, X. T.

    2009-09-01

    Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the di-vacancy cluster consists of two C vacancies located at the second nearest neighbor sites is stable up to 1300 K, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and nC vacancies (VSi-nVC) are much smaller than those with a C vacancy and nSi vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.

  12. Experimental and ab initio DFT calculated Raman Spectrum of Sudan I, a Red Dye

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Liu, Chuan

    2011-01-01

    The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3-21G and 6-311+G(d,p) basis....... Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different...... of the Sudan I molecule was involved in the majority of the vibrations through N N and C–N stretching and various bending modes. Low-intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the resonance Raman effect when using the 532 nm excitation line...

  13. Protonation sites in gaseous pyrrole and imidazole: a neutralization-reionization and ab initio study.

    Science.gov (United States)

    Nguyen, V Q; Turecek, F

    1996-10-01

    Mild gas-phase acids C4H9+ and NH4+ protonate pyrrole at C-2 and C-3 but not at the nitrogen atom, as determined by deuterium labeling and neutralization-reionization mass spectrometry. Proton affinities in pyrrole are calculated by MP2/6-311G(2d,p) as 866, 845 and 786 kJ mol-1 for protonation at C-2, C-3 and N, respectively. Vertical neutralization of protonated pyrrole generates bound radicals that in part dissociate by loss of hydrogen atoms. Unimolecular loss of hydrogen atom from C-2- and C-3-protonated pyrrole cations is preceded by proton migration in the ring. Protonation of gaseous imidazole is predicted to occur exclusively at the N-3 imine nitrogen to yield a stable aromatic cation. Proton affinities in imidazole are calculated as 941, 804, 791, 791 and 724 for the N-3, C-4, C-2, C-5 and N-1 positions, respectively. Radicals derived from protonated imidazole are only weakly bound. Vertical neutralization of N-3-protonated imidazole is accompanied by large Franck-Condon effects which deposit on average 183 kJ mol-1 vibrational energy in the radicals formed. The radicals dissociate unimolecularly by loss of hydrogen atom, which involves both direct N-H bond cleavage and isomerization to the more stable C-2 H-isomer. Potential energy barriers to isomerizations and dissociations in protonated pyrrole and imidazole isomers and their radicals were investigated by ab initio calculations.

  14. SGO: A fast engine for ab initio atomic structure global optimization by differential evolution

    Science.gov (United States)

    Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.

  15. Ab initio calculation of the crystalline structure and IR spectrum of polymers: nylon 6 polymorphs.

    Science.gov (United States)

    Quarti, Claudio; Milani, Alberto; Civalleri, Bartolomeo; Orlando, Roberto; Castiglioni, Chiara

    2012-07-19

    State-of-the-art computational methods in solid-state chemistry were applied to predict the structural and spectroscopic properties of the α and γ crystalline polymorphs of nylon 6. Density functional theory calculations augmented with an empirical dispersion correction (DFT-D) were used for the optimization of the two different crystal structures and of the isolated chains, characterized by a different regular conformation and described as one-dimensional infinite chains. The structural parameters of both crystalline polymorphs were correctly predicted, and new insight into the interplay of conformational effects, hydrogen bonding, and van der Waals interactions in affecting the properties of the crystal structures of polyamides was obtained. The calculated infrared spectra were compared to experimental data; based on computed vibrational eigenvectors, assignment of the infrared absorptions of the two nylon 6 polymorphs was carried out and critically analyzed in light of previous investigations. On the basis of a comparison of the computed and experimental IR spectra, a set of marker bands was identified and proposed as a tool for detecting and quantifying the presence of a given polymorph in a real sample: several marker bands employed in the past were confirmed, whereas some of the previous assignments are criticized. In addition, some new marker bands are proposed. The results obtained demonstrate that accurate computational techniques are now affordable for polymers characterization, opening the way to several applications of ab initio modeling to the study of many families of polymeric materials.

  16. Longitudinal, transverse, and single-particle dynamics in liquid Zn: Ab initio study and theoretical analysis

    Science.gov (United States)

    del Rio, B. G.; González, L. E.

    2017-06-01

    We perform ab initio molecular dynamics simulations of liquid Zn near the melting point in order to study the longitudinal and transverse dynamic properties of the system. We find two propagating excitations in both of them in a wide range of wave vectors. This is in agreement with some experimental observations of the dynamic structure factor in the region around half the position of the main peak. Moreover, the two-mode structure in the transverse and longitudinal current correlation functions had also been previously observed in high pressure liquid metallic systems. We perform a theoretical analysis in order to investigate the possible origin of such two components by resorting to mode-coupling theories. They are found to describe qualitatively the appearance of two modes in the dynamics, but their relative intensities are not quantitatively reproduced. We suggest some possible improvements of the theory through the analysis of the structure of the memory functions. We also analyze the single-particle dynamics embedded in the velocity autocorrelation function, and explain its characteristics through mode-coupling concepts.

  17. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    Science.gov (United States)

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Ab initio calculation of the electronic absorption spectrum of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  19. Ab initio calculations of the electronic structure and bonding characteristics of LaB6

    Science.gov (United States)

    Hossain, Faruque M.; Riley, Daniel P.; Murch, Graeme E.

    2005-12-01

    Lanthanum hexaboride ( LaB6 , NIST SRM-660a) is widely used as a standard reference material for calibrating the line position and line shape parameters of powder diffraction instruments. The accuracy of this calibration technique is highly dependent on how completely the reference material is characterized. Critical to x-ray diffraction, this understanding must include the valence of the La atomic position, which in turn will influence the x-ray form factor (f) and hence the diffracted intensities. The electronic structure and bonding properties of LaB6 have been investigated using ab initio plane-wave pseudopotential total energy calculations. The electronic properties and atomic bonding characteristics were analyzed by estimating the energy band structure and the density of states around the Fermi energy level. The calculated energy band structure is consistent with previously reported experimental findings; de Haas-van Alphen and two-dimensional angular correlation of electron-positron annihilation radiation. In addition, the bond strengths and types of atomic bonds in the LaB6 compound were estimated by analyzing the Mulliken charge density population. The calculated result revealed the coexistence of covalent, ionic, and metallic bonding in the LaB6 system and partially explains its high efficiency as a thermionic emitter.

  20. Ab initio study of C14 laves phases in Fe-based systems

    Directory of Open Access Journals (Sweden)

    Pavlu J.

    2012-01-01

    Full Text Available Structural properties and energetics of Fe-based C14 Laves phases at various compositions (i.e. Fe2Fe, Fe2X, X2Fe, X2X, where X stands for Si, Cr, Mo, W, Ta were investigated using the pseudopotential VASP (Vienna Ab initio Simulation Package code employing the PAW-PBE (Projector Augmented Wave - Perdew Burke-Ernzerhof pseudopotentials. Full relaxation was performed for all structures studied including the reference states of elemental constituents and the equilibrium structure parameters as well as bulk moduli were found. The structure parameters of experimentally found structures were very well reproduced by our calculations. It was also found that the lattice parameters and volumes of the unit cell decrease with increasing molar fraction of iron. Thermodynamic analysis shows that the Fe2X configurations of Laves phases are more stable than the X2Fe ones. Some of the X2Fe configurations are even unstable with respect to the weighted average of the Laves phases of elemental constituents. Our calculations predict the stability of Fe2Ta. On the other hand, Fe2Mo and Fe2W are slightly unstable (3.19 and 0.68 kJ.mol-1, respectively and hypothetical structures Fe2Cr and Fe2Si are found unstable as well.

  1. Ab initio computational study of vincristine as a biological active compound: NMR and NBO analyses

    Directory of Open Access Journals (Sweden)

    Shiva Joohari

    2015-06-01

    Full Text Available Vincristine is a biological active alkaloid that has been used clinically against a variety of neoplasms. In the current study we have theoretically investigated the magnetic properties of titled compound to predict physical and chemical properties of vincristine as a biological inhibitor. Ab initio computation using HF and B3LYP with 3-21G(d and 6-31G(d level of theory have been performed and then magnetic shielding tensor (, ppm, shielding asymmetry (, magnetic shielding anisotropy (aniso, ppm, the skew of a tensor (K, chemical shift anisotropy ( and chemical shift ( were calculated to indicate the details of the interaction mechanism between microtubules and vincristine. Moreover, EHOMO, ELUMO and Ebg were evaluated. The maximum and minimum values of Ebg were found in HF/3-21g and B3LYP/3-21g respectively. It was also uggested that O24, O37, O49 and O55 with minimum values of iso, are active sites of titled compound. Furthermore the calculated chemical shifts were compared with experimental data in DMSO and CDCl3 solvents.

  2. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    Directory of Open Access Journals (Sweden)

    Marjan Rafiee

    2015-09-01

    Full Text Available Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect.

  3. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation

    Science.gov (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-01

    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  4. Ab initio calculations for dissociative hydrogen adsorption on lithium oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sutjianto, A. [Argonne National Lab., IL (United States). Chemical Technology Div.]|[Michigan Technological Univ., Houghton, MI (United States). Physics Dept.; Tam, S.W.; Curtiss, L.A.; Johnson, C.E. [Argonne National Lab., IL (United States). Chemical Technology Div.; Pandey, R. [Michigan Technological Univ., Houghton, MI (United States). Physics Dept.

    1994-12-01

    Lithium ceramics are one class of materials being considered as tritium breeders for fusion technology,and hydrogen is known to enhance the release of tritium from lithium ceramic materials. Dissociative hydrogen chemisorption on the Li{sub 2}O surfaces of the (100), (110), and (111) planes has been investigated with ab initio Hartree-Fock calculations. Calculations for unrelaxed crystal Li{sub 2}O structures indicated that except for the (100) surface, the (110) and (111) surfaces are stable. Results on the heterolytic sites of n-layer (110) (where n {ge} 2) slabs and three-layer (111) slabs suggest that dissociative hydrogen chemisorption is endothermic. For a one-layer (110) slab at 100% surface coverage, the dissociative hydrogen chemisorption is exothermic, forming OH{sup {minus}} and Li{sup +}H{sup {minus}}Li{sup +}. The results also indicate that the low coordination environment in surface step structures, such as kinks and ledges, may plan an important role in the hydrogen chemisorption process. On the homolytic sites of the (110) and (111) surfaces, there is no hydrogen chemisorption.

  5. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    Energy Technology Data Exchange (ETDEWEB)

    Monteseguro, V. [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto de Materiales y Nanotecnología. Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain)

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  6. Ab initio velocity-field curves in monoclinic β-Ga2O3

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-07-01

    We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.

  7. Thermal decomposition of propargyl alcohol: single pulse shock tube experimental and ab initio theoretical study.

    Science.gov (United States)

    Sharath, N; Reddy, K P J; Arunan, E

    2014-08-07

    Thermal decomposition of propargyl alcohol (C3H3OH), a molecule of interest in interstellar chemistry and combustion, was investigated using a single pulse shock tube in the temperature ranging from 953 to 1262 K. The products identified include acetylene, propyne, vinylacetylene, propynal, propenal, and benzene. The experimentally observed overall rate constant for thermal decomposition of propargyl alcohol was found to be k = 10((10.17 ± 0.36)) exp(-(39.70 ± 1.83)/RT) s(-1). Ab initio theoretical calculations were carried out to understand the potential energy surfaces involved in the primary and secondary steps of propargyl alcohol thermal decomposition. Transition state theory was used to predict the rate constants, which were then used and refined in a kinetic simulation of the product profile. The first step in the decomposition is C-O bond dissociation, leading to the formation of two important radicals in combustion, OH and propargyl. This has been used to study the reverse OH + propargyl radical reaction, about which there appears to be no prior work. Depending on the site of attack, this reaction leads to propargyl alcohol or propenal, one of the major products at temperatures below 1200 K. A detailed mechanism has been derived to explain all the observed products.

  8. Laser spectroscopy and ab initio studies of metal-containing free radicals

    CERN Document Server

    Greetham, G M

    2000-01-01

    strontium-containing free radical is reported, that of SrCCH. This new excited electronic state is accessed by the orbitally-forbidden B-tilde' sup 2 DELTA-X-tilde sup 2 SIGMA sup + transition. Spin-orbit and vibrational structure have been seen in spectra of SrCCH and SrCCD and confirmed the assignment. Finally, observation of a new transition in an unidentified gallium-containing molecule is reported. Two progressions corresponding to two different vibrational modes of the molecule are seen in the spectrum. Potential spectral carriers, including Ga sub x clusters and other gallium-containing molecules formed by reaction with impurities, are discussed in an attempt to explain the observed spectrum. This work describes the use of laser spectroscopy and ab initio calculations in the investigation of several new electronic transitions in metal-containing free radicals. These free radicals were prepared in a supersonic jet by laser ablation of solid metal samples in the presence of appropriate precursor molecule...

  9. Elastic Properties of CaSiO3 Perovskite from ab initio Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Shigeaki Ono

    2013-10-01

    Full Text Available Ab initio molecular dynamics simulations were performed to investigate the elasticity of cubic CaSiO3 perovskite at high pressure and temperature. All three independent elastic constants for cubic CaSiO3 perovskite, C11, C12, and C44, were calculated from the computation of stress generated by small strains. The elastic constants were used to estimate the moduli and seismic wave velocities at the high pressure and high temperature characteristic of the Earth’s interior. The dependence of temperature for sound wave velocities decreased as the pressure increased. There was little difference between the estimated compressional sound wave velocity (VP in cubic CaSiO3 perovskite and that in the Earth’s mantle, determined by seismological data. By contrast, a significant difference between the estimated shear sound wave velocity (VS and that in the Earth’s mantle was confirmed. The elastic properties of cubic CaSiO3 perovskite cannot explain the properties of the Earth’s lower mantle, indicating that the cubic CaSiO3 perovskite phase is a minor mineral in the Earth’s lower mantle.

  10. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    Science.gov (United States)

    Rafiee, Marjan; Javaheri, Masoumeh

    2015-01-01

    Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect. PMID:27844007

  11. Switchable magnetic moment in cobalt-doped graphene bilayer on Cu(111): An ab initio study

    Science.gov (United States)

    Souza, Everson S.; Scopel, Wanderlã L.; Miwa, R. H.

    2016-06-01

    In this work, we have performed an ab initio theoretical investigation of substitutional cobalt atoms in the graphene bilayer supported on the Cu(111) surface (Co/GBL/Cu). Initially, we examined the separated systems, namely, graphene bilayer adsorbed on Cu(111) (GBL/Cu) and a free standing Co-doped GBL (Co/GBL). In the former system, the GBL becomes n -type doped, where we map the net electronic charge density distribution along the GBL-Cu(111) interface. The substitutional Co atom in Co/GBL lies between the graphene layers, and present a net magnetic moment mostly due to the unpaired Co-3 dz2 electrons. In Co/GBL/Cu, we found that the Cu(111) substrate rules (i) the energetic stability, and (ii) the magnetic properties of substitutional Co atoms in the graphene bilayer. In (i), the substitutional Co atom becomes energetically more stable lying on the GBL surface, and in (ii), the magnetic moment of Co/GBL has been quenched due to the Cu(111) → Co/GBL electronic charge transfer. We verify that such a charge transfer can be tuned upon the application of an external electric field, and thus mediated by a suitable change on the electronic occupation of the Co-dz2 orbitals, we found a way to switch-on and -off the magnetization of the Co-doped GBL adsorbed on the Cu(111) surface.

  12. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    Science.gov (United States)

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.

  13. Electronic states of neutral and ionized tetrahydrofuran studied by VUV spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A. [Synchrotron Soleil, DISCO beamline, L' Orme des Merisiers, 91 - Gif-sur-Yvette (France); Giuliani, A. [Cepia, Institut National de la Recherche Agronomique (INRA), 44 - Nantes (France); Limiao-Vieira, P. [Lisboa Univ. Nova, Lab. de Colisoes Atomicas e Moleculares, CEFITEC, Dept. de Fysica, Caparica (Portugal); Limao-Vieira, P.; Mason, N. [Open Univ., Centre of Molecular and Optical Sciences, Dept. of Physics and Astronomy, Milton Keynes, MK (United Kingdom); Duflot, D. [Lille Univ. des Sciences et Technologies, Lab. de Physique des Lasers, Atomes et Molecules (PhLAM), UMR CNRS 8523, Centre d' Etudes et de Recherches Lasers et Applications, CERLA, FR CNRS 2416, 59 - Villeneuve d' Ascq (France); Milosavljevic, A.R.; Marinkovic, B.P. [Laboratory for atomic collision processes, Institute of Physics, Belgrade, Serbia (Yugoslavia); Hoffmann, S.V. [Aarhus Univ., Institute for Storage Ring Facilities (Denmark); Delwiche, J.; Hubin-Franskin, M.J. [Liege Univ., Laboratoire de Spectroscopie d' Electrons Diffuses, Institut de Chimie (Belgium)

    2009-01-15

    The electronic spectroscopy of isolated tetrahydrofuran (THF) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 5.8 - 10.6 eV with absolute cross-section measurements derived. In addition, an electron energy loss spectrum was recorded at 100 eV and 10 degrees over the 5 - 11.4 eV range. The He(I) photoelectron spectrum was also collected to quantify ionisation energies in the 9 - 16.1 eV spectral region. These experiments are supported by the first high-level ab initio calculations performed on the excited states of the neutral molecule and on the ground state of the positive ion. The excellent agreement between the theoretical results and the measurements allows us to solve several discrepancies concerning the electronic state spectroscopy of THF. The present work reconsiders the question of the lowest energy conformers of the molecule and its population distribution at room temperature. (authors)

  14. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    CERN Document Server

    Signoracci, Angelo; Hagen, Gaute; Jansen, Gustav

    2014-01-01

    Ab initio many-body methods address closed-shell nuclei up to mass A ~ 130 on the basis of realistic two- and three-nucleon interactions. Several routes to address open-shell nuclei are currently under investigation, including ideas which exploit spontaneous symmetry breaking. Singly open-shell nuclei can be efficiently described via the sole breaking of $U(1)$ gauge symmetry associated with particle number conservation, to account for their superfluid character. The present work formulates and applies Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wavefunction of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in $m$-scheme, wh...

  15. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations

    Science.gov (United States)

    Salazar, J. M.; Weber, G.; Simon, J. M.; Bezverkhyy, I.; Bellat, J. P.

    2015-03-01

    Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.

  16. The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations.

    Science.gov (United States)

    Erba, A; Ferrabone, M; Baima, J; Orlando, R; Rérat, M; Dovesi, R

    2013-02-07

    The vibration spectrum of single-walled zigzag boron nitride (BN) nanotubes is simulated with an ab initio periodic quantum chemical method. The trend towards the hexagonal monolayer (h-BN) in the limit of large tube radius R is explored for a variety of properties related to the vibrational spectrum: vibration frequencies, infrared intensities, oscillator strengths, and vibration contributions to the polarizability tensor. The (n,0) family is investigated in the range from n = 6 (24 atoms in the unit cell and tube radius R = 2.5 Å) to n = 60 (240 atoms in the cell and R = 24.0 Å). Simulations are performed using the CRYSTAL program which fully exploits the rich symmetry of this class of one-dimensional periodic systems: 4n symmetry operators for the general (n,0) tube. Three sets of infrared active phonon bands are found in the spectrum. The first one lies in the 0-600 cm(-1) range and goes regularly to zero when R increases; the connection between these normal modes and the elastic and piezoelectric constants of h-BN is discussed. The second (600-800 cm(-1)) and third (1300-1600 cm(-1)) sets tend regularly, but with quite different speed, to the optical modes of the h-BN layer. The vibrational contribution of these modes to the two components (parallel and perpendicular) of the polarizability tensor is also discussed.

  17. Ca- and Sr-tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination.

    Science.gov (United States)

    Al-Terkawi, Abdal-Azim; Scholz, Gudrun; Buzanich, Ana Guilherme; Reinsch, Stefan; Emmerling, Franziska; Kemnitz, Erhard

    2017-05-09

    New fluorinated coordination polymers were prepared mechanochemically by milling the alkaline earth metal hydroxides M(II)(OH)2·xH2O (M(II): Ca, Sr) with tetrafluoroisophthalic acid (H2mBDC-F4). The structures of [{Ca(mBDC-F4)(H2O)2}·H2O] (1) and [{Sr(mBDC-F4)(H2O)2}·H2O] (2) were determined based on ab initio calculations and their powder X-ray diffraction (PXRD) data. The compounds are isomorphous and crystallize in the orthorhombic space group P212121. The determined structures were validated by using extended X-ray absorption (EXAFS) data. The new materials were thoroughly characterized using elemental analysis, thermal analysis, magic angle spinning NMR, and attenuated total reflection-infrared spectroscopy. Further characterization methods such as BET, dynamic vapor sorption, and scanning electron microscopy imaging were also used. Our investigations indicate that mechanochemistry is an efficient method for preparing such materials.

  18. Ab-initio optimization of the crystal structure ksi and ksi* in Al- Mn-Pd

    Energy Technology Data Exchange (ETDEWEB)

    Sanatana Bonilla, Alejandro [Universitaet Stuttgart (Germany). Institut fuer Theoretische und Angewandte Physik; Grupo de Sistemas Complejos, Universidad Antonio, Bogota (Colombia); Engel, Michael [Univ. of Michigan, Ann Arbor (United States); Trebin, Hans-Rainer [Universitaet Stuttgart (Germany). Institut fuer Theoretische und Angewandte Physik; Mihalkovic, Marek [Inst. of Physics, Slovak Academy of Sciences Bratslava (Slovakia)

    2010-07-01

    A structural model is given for two approximants, {xi} and {xi}{sup *}, of the decagonal Al-Mn-Pd phase. Both structures were shown to be completely described by two sorts of interpenetrating clusters, namely ''Distorted Bergman Cluster'' (DBC) and by ''Pseudo Mackay Cluster'' (PMC). On the basis of these two atomic clusters the two phases can be characterized as some simple periodic tiling of assembly of the column clusters projected onto the plane perpendicular to the 1.6 nm stacking axis. From crystallographic studies the skeleton of heavy atoms was fully described, whereas the inner shell from PMC was poorly detailed. The structural models have been investigated using ab initio and molecular dynamics numerical methods. For this study, suitable improved pair potentials were used in order to determine the ideal cluster structure and the interactions between adjacent clusters. Plausibility of the suggested structures was tested using competing crystalline phases obtained through convex hull calculations and allowing us to suggest a reliable atomic model for the inner shell of the PMC. 3.

  19. Ab initio Calculations of the Linear and Nonlinear Optical Properties of Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Tokarz, D; Tuer, A; Cisek, R; Krouglov, S; Barzda, V, E-mail: virgis.barzda@utoronto.ca [Department of Chemical and Physical Sciences, Department of Chemistry, Department of Physics, and Institute for Optical Sciences, University of Toronto, 3359 Mississauga Road North, Mississauga, ON L5L 1C6 (Canada)

    2010-11-01

    A number of proteins can assemble into chiral structures that display strong nonlinear optical activity. For instance, proteins such as myosin and collagen exhibit intense second harmonic generation (SHG). A large number of experimental studies on the SHG of proteins have been conducted; however few predictive models have been proposed that reliably relate the macroscopic SHG properties to the amino acids present in the peptidic chain. In this study, the linear polarizability ({alpha}), first ({beta}) and second hyperpolarizability ({gamma}) of all twenty amino acids was investigated by time-dependent Hartree-Fock calculations under physiological conditions. Ab initio calculations were performed using the GAMESSUS computational chemistry package. We have found that the aromatic amino acids give rise to the largest mean {alpha}, {beta} and {gamma} values. With this finding, we hope to apply this method to protein structures in order to understand how second harmonic signal is generated from individual amino acids, as well as, recognize how manipulation of the secondary structure of proteins might enhance SHG and third harmonic generation (THG).

  20. The ab initio study of laser cooling of BBr and BCl.

    Science.gov (United States)

    Yang, Rong; Gao, Yufeng; Tang, Bin; Gao, Tao

    2015-01-21

    We investigate the feasibility of laser cooling BBr and BCl using ab initio quantum chemistry. The multi-reference configuration interaction method (MRCI) is used to calculate the ground state X(1)Σ(+) and the low-lying excited state A(1)Π, where Davidson modification with the Douglas-Kroll scalar relativistic correction is also taken into account. The calculated spectroscopic constants are in good agreement with available experimental values. The potential energy curves, permanent dipole moments (PDMs), transition dipole moments (TDMs) followed by Franck-Condon factors and radiative times for the transitions from the A(1)Π state to the ground state X(1)Σ(+) are obtained as well. The determined Franck-Condon factors are highly diagonally distributed and the evaluated radiative lifetimes are of the order of nanoseconds. Furthermore, the a(3)Π→ X(1)Σ(+) transitions of BBr and BCl are also strongly diagonal and the X(1)Σ(+)→ A(1)Π transitions perhaps can be followed by the X(1)Σ(+)→ a(3)Π transitions to attain a lower Doppler temperature. Long-range behavior of BBr and BCl has also been studied, and a double well is found in the A(1)Π state of BBr. The shallow long-range well might open up even more channels for laser cooling of BBr. The results demonstrate the possibility of laser cooling BBr and BCl, and provide a promising theoretical reference for further research on BBr and BCl.

  1. An ab-initio coupled mode theory for near field radiative thermal transfer.

    Science.gov (United States)

    Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L

    2014-12-01

    We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.

  2. Ab-Initio Modelling Of Surface Site Reactivity And Fluid Transport In Clay Minerals Case Study: Pyrophyllite

    Energy Technology Data Exchange (ETDEWEB)

    Churakov, S.V

    2005-03-01

    Pyrophyllite, Al{sub 2}[Si{sub 4}O{sub 10}](OH){sub 2}, is the simplest structural prototype for 2:1 dioctahedral phyllosilicate. Because the net electric charge in pyrophyllite is zero, it is the best candidate for investigating the non electrostatic contribution to sorption and transport phenomena in clays. Using ab-initio simulations, we have investigated the reactivity and structure of the water-solid interface on the basal plane and edge sites of pyrophyllite. The calculations predict slightly hydrophobic behaviour of the basal plane. For the high water coverage (100), (110) and (-110), lateral facets have a lower energy than for the (010), (130) and (-130) surfaces. Analysis of the surface reactivity reveals that the =Al-OH groups are most easily protonated on the (010), (130) and (-130) facets. The =Al-O-Si= sites will be protonated on the (100), (130), (110), (-110) and (-130) surfaces. The =Al-OH{sub 2} complexes are more easily de-protonated than the =Si-OH and =Al-OH sites. A spontaneous, reversible exchange of the protons between the solution and the edge sites has been observed in ab-initio molecular dynamics simulations at 300 K. Such near-surface proton diffusion may result in a significant contribution to the diffusion coefficients measured in neutron scattering experiments. (author)

  3. Ab initio molecular simulations for proposing novel peptide inhibitors blocking the ligand-binding pocket of urokinase receptor.

    Science.gov (United States)

    Mizushima, Tatsuroh; Sugimoto, Takuya; Kasumi, Tomoyo; Araki, Kohta; Kobayashi, Hiroshi; Kurita, Noriyuki

    2014-06-01

    Recent biochemical experiments have revealed that a variety of proteases play important roles in cancer invasion and metastasis. Among these proteases, urokinase-type plasminogen activator (uPA) is particularly important, since its specific binding to the receptor (uPAR) existing on the surface of a cancer cell is considered to be a trigger for cancer invasion. It is thus expected that the blocking of the binding can inhibit cancer invasion in the cancer patients and improve their prognosis dramatically. To develop a potent inhibitor for the binding, many types of peptides of amino acids were produced and their effect on the cancer invasion was investigated in the previous biochemical experiments. On the other hand, our previous ab initio molecular simulations have clarified that some amino acid residues of uPA play important roles in the specific binding between uPA and uPAR. In the present study, we propose some peptides composed of these important residues and investigate the specific interactions and the binding affinity between uPAR and the peptides at an electronic level, using ab initio molecular simulations. Base on the results simulated, we elucidate which peptide can bind more strongly to uPAR and propose a novel potent peptide which can inhibit the binding between uPAR and uPA efficiently.

  4. Ab initio electronic properties of dual phosphorus monolayers in silicon

    DEFF Research Database (Denmark)

    Drumm, Daniel W.; Per, Manolo C.; Budi, Akin;

    2014-01-01

    , investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device...

  5. Ab initio molecular dynamics study of Fe-containing smectites

    NARCIS (Netherlands)

    Liu, X.; Meijer, E.J.; Lu, X.; Wang, R.

    2010-01-01

    In order to identify the influences imposed by Fe substitution, density functional theory-based Car-Parrinello molecular dynamics simulations were employed to study both oxidized and reduced Fe-bearing smectites. The following basic properties were investigated: local structures in the clay layer, h

  6. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands

    Science.gov (United States)

    Tyuterev, Vladimir G.; Kochanov, Roman V.; Tashkun, Sergey A.

    2017-02-01

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to Δ V = 6. A particular challenge was a correct description of the B-type bands (even Δ V3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μ m range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm-1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  7. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands.

    Science.gov (United States)

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A

    2017-02-14

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of (16)O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm(-1) is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  8. Ab-Initio Study of the Group 2 Hydride Anions

    Science.gov (United States)

    Harris, Joe P.; Wright, Timothy G.; Manship, Daniel R.

    2013-06-01

    The beryllium hydride (BeH)- dimer has recently been shown to be surprisingly strongly bound, with an electronic structure which is highly dependent on internuclear separation. At the equilibrium distance, the negative charge is to be found on the beryllium atom, despite the higher electronegativity of the hydrogen. The current study expands this investigation to the other Group 2 hydrides, and attempts to explain these effects. M. Verdicchio, G. L. Bendazzoli, S. Evangelisti, T. Leininger J. Phys. Chem. A, 117, 192, (2013)

  9. Ab initio theory of spin entanglement in atoms and molecules

    Science.gov (United States)

    Pittalis, S.; Troiani, F.; Rozzi, C. A.; Vignale, G.

    2015-02-01

    We investigate spin entanglement in many-electron systems within the framework of density functional theory. We show that the entanglement length, which is extracted from the spatial dependence of the local concurrence, is a sensitive indicator of atomic shells and reveals the character, covalent or metallic, of chemical bonds. These findings shed light on the remarkable success of modern density functionals, which tacitly employ the entanglement length as a variable. This opens the way to further research on entanglement-based functionals.

  10. Widely tunable band gaps of graphdiyne: an ab initio study.

    Science.gov (United States)

    Koo, Jahyun; Park, Minwoo; Hwang, Seunghyun; Huang, Bing; Jang, Byungryul; Kwon, Yongkyung; Lee, Hoonkyung

    2014-05-21

    Functionalization of graphdiyne, a two-dimensional atomic layer of sp-sp(2) hybrid carbon networks, was investigated through first-principles calculations. Hydrogen or halogen atoms preferentially adsorb on sp-bonded carbon atoms rather than on sp(2)-bonded carbon atoms, forming sp(2)- or sp(3)-hybridization. The energy band gap of graphdiyne is increased from ~0.5 eV to ~5.2 eV through the hydrogenation or halogenation. Unlike graphene, segregation of adsorbing atoms is energetically unfavourable. Our results show that hydrogenation or halogenation can be utilized for modifying the electronic properties of graphdiyne for applications to nano-electronics and -photonics.

  11. Molecular Dipole Moment Computed with Ab Initio MKS Charges

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Molecular dipole moments computed at the levels of HF/STO-3G, HF/6-31G(d, p), HF/6-311+G(2d, 2p), MP2/6-31G(d, p) and MP2/6-311+G(2d, 2p) have been investigated. HF/6-311+G(2d, 2p) was found to be the relatively good choice to compute MKS charges for reproducing the experimental values of molecular dipole moments. Root mean square deviation of computed dipole moments for 21 small polar molecules is about 0.1969 D.

  12. Ab Initio Study of Electronic States of Astrophysically Important Molecules

    Science.gov (United States)

    Valiev, R. R.; Berezhnoy, A. A.; Minaev, B. F.; Chernov, V. E.; Cherepanov, V. N.

    2016-08-01

    A study of electronic states of LiO, NaO, KO, MgO, and CaO molecules has been performed. Potential energy curves of the investigated molecules have been constructed within the framework of the XMC-QDPT2 method. Lifetimes and efficiencies of photolysis mechanisms of these monoxides have been estimated within the framework of an analytical model of photolysis. The results obtained show that oxides of the considered elements in the exospheres of the Moon and Mercury are destroyed by solar photons during the first ballistic flight.

  13. Ab-initio study of thermal expansion in pure graphene

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Sarita; Kumar, Ranjan; Jindal, V. K., E-mail: jindal@pu.ac.in [Department of Physics, Panjab University, Chandigarh-160014 (India); Rani, Pooja [D.A.V. College, Sec-10, Chandigarh-160010 (India)

    2016-05-23

    Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPT and the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to be strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of −1.44×10{sup −6}. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.

  14. Ab-initio study of thermal expansion in pure graphene

    Science.gov (United States)

    Mann, Sarita; Rani, Pooja; Kumar, Ranjan; Jindal, V. K.

    2016-05-01

    Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPTand the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to be strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of -1.44×10-6. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.

  15. Ab initio Sternheimer-GW method for quasiparticle calculations

    Science.gov (United States)

    Lambert, Henry; Giustino, Feliciano

    2014-03-01

    The GW method has emerged as the standard computational tool for investigating electronic excitations in bulk and nanoscale systems. Recently significant efforts have been devoted to extending the range of applicability of the GW method. With this aim, Ref. introduced the Sternheimer-GW method, reformulating the standard GW approach so that no unoccupied electronic states are required in the calculations. Here we present the implementation of the Sternheimer-GW method using planewaves and norm-conserving pseudopotentials. In our method we calculate the complete position- and energy-dependent GW self-energy operator, and as a by-product we obtain the entire G0W0 quasiparticle spectral function. We have validated our method by calculating the quasiparticle band structures of standard semiconductors and insulators (Si, SiC, diamond, LiCl) and by comparing the results with previous GW calculations. This method is currently being used for investigating the electronic structure of novel materials of reduced dimensionality. This work was supported by the ERC under the EU FP7/ERC Grant No. 239578 and by the UK EPSRC Grant No. EP/J009857/1.

  16. Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation

    Science.gov (United States)

    2014-12-01

    Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio...Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation Janet Ho and Marco Olguin Sensors...a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation 5a. CONTRACT NUMBER 5b. GRANT

  17. Ab initio study of the thermopower of biphenyl-based single-molecule junctions

    Science.gov (United States)

    Bürkle, M.; Zotti, L. A.; Viljas, J. K.; Vonlanthen, D.; Mishchenko, A.; Wandlowski, T.; Mayor, M.; Schön, G.; Pauly, F.

    2012-09-01

    By employing ab initio electronic-structure calculations combined with the nonequilibrium Green's function technique, we study the dependence of the thermopower Q on the conformation in biphenyl-based single-molecule junctions. For the series of experimentally available biphenyl molecules, alkyl side chains allow us to gradually adjust the torsion angle ϕ between the two phenyl rings from 0∘ to 90∘ and to control in this way the degree of π-electron conjugation. Studying different anchoring groups and binding positions, our theory predicts that the absolute values of the thermopower decrease slightly towards larger torsion angles, following an a+bcos2ϕ dependence. The anchoring group determines the sign of Q and a,b simultaneously. Sulfur and amine groups give rise to Q,a,b>0, while for cyano, Q,a,bbinding positions can lead to substantial variations of the thermopower mostly due to changes in the alignment of the frontier molecular orbital levels and the Fermi energy. We explain our ab initio results in terms of a π-orbital tight-binding model and a minimal two-level model, which describes the pair of hybridizing frontier orbital states on the two phenyl rings. The variations of the thermopower with ϕ seem to be within experimental resolution.

  18. MP2, DFT and ab initio calculations on thioxanthone.

    Science.gov (United States)

    Beni, Alireza Salimi; Chermahini, Alireza Najafi; Sharghi, Hashem; Monfared, Setareh Mirzaei

    2011-11-01

    Density functional theory (DFT), HF and MP2 calculations have been carried out to investigate thioxanthone molecule using the standard 6-31+G(d,p) basis set. The results of MP2 calculations show a butterfly structure for thioxanthone. The calculated results show that the predicted geometry can well reproduce the structural parameters. The predicted vibrational frequencies were assigned and compared with experimental IR spectra. A good harmony between theory and experiment is found. The theoretical electronic absorption spectra have been calculated using CIS method. (13)C and (1)H NMR of the title compound have been calculated by means of B3LYP density functional method with 6-31+G(d,p) basis set. The comparison of the experimental and the theoretical results indicate that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. AB INITIO PULSAR MAGNETOSPHERE: THE ROLE OF GENERAL RELATIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A.; Cerutti, Benoit; Spitkovsky, Anatoly [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08544 (United States); Tchekhovskoy, Alexander, E-mail: sashaph@princeton.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2015-12-20

    It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this conclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetosphere with pair formation. We find that the addition of the frame-dragging effect makes the local current density along the magnetic field larger than the Goldreich–Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in the open field bundle, which could be related to pulsar radio emission. We conclude that general-relativistic effects are essential for the existence of the pulsar mechanism in low-obliquity rotators.

  20. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.

    Science.gov (United States)

    Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya

    2016-12-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.

  1. Unified ab initio treatment of attosecond photoionization and Compton scattering

    Science.gov (United States)

    Yudin, G. L.; Bondar, D. I.; Patchkovskii, S.; Corkum, P. B.; Bandrauk, A. D.

    2009-10-01

    We present a new theoretical approach to attosecond laser-assisted photo- and Compton ionization. Attosecond x-ray absorption and scattering are described by \\hat{\\mathscr{S}}^{(1,2)} -matrices, which are coherent superpositions of 'monochromatic' \\skew{3}\\hat{S}^{(1,2)} -matrices in a laser-modified Furry representation. Besides refining the existing theory of the soft x-ray photoelectron attosecond streak camera and spectral phase interferometry (ASC and ASPI), we formulate a theory of hard x-ray photoelectron and Compton ASC and ASPI. The resulting scheme has a simple structure and leads to closed-form expressions for ionization amplitudes. We investigate Compton electron interference in the separable Coulomb-Volkov continuum with both Coulomb and laser fields treated non-perturbatively. We find that at laser-field intensities below 1013 Wcm-2 normalized Compton lines almost coincide with the lines obtained in the laser-free regime. At higher intensities, attosecond interferences survive integration over electron momenta, and feature prominently in the Compton lines themselves. We define a regime where the electron ground-state density can be measured with controllable accuracy in an attosecond time interval. The new theory provides a firm basis for extracting photo- and Compton electron phases and atomic and molecular wavefunctions from experimental data.

  2. Interaction of a pseudo-π C—C bond with cuprous and argentous chlorides: Cyclopropane⋯CuCl and cyclopropane⋯AgCl investigated by rotational spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Daniel P.; Mullaney, John C.; Bittner, Dror M.; Walker, Nicholas R., E-mail: a.c.legon@bristol.ac.uk, E-mail: nick.walker@newcastle.ac.uk [School of Chemistry, Newcastle University, Bedson Building, Newcastle-Upon-Tyne NE1 7RU (United Kingdom); Tew, David P.; Legon, Anthony C., E-mail: a.c.legon@bristol.ac.uk, E-mail: nick.walker@newcastle.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)

    2015-10-28

    Strongly bound complexes (CH{sub 2}){sub 3}⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH{sub 2}){sub 3}⋯CuCl and (CH{sub 2}){sub 3}⋯AgCl. The geometry of each of these complexes was established unambiguously to have C{sub 2v} symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C{sub 3} triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH{sub 2}){sub 3}⋯MCl. The M atom interacts with the pseudo-π bond linking the pair of equivalent carbon atoms {sup F}C (F = front) nearest to it, so that M forms a non-covalent bond to one C—C edge of the cyclopropane molecule. The (CH{sub 2}){sub 3}⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH{sub 2}){sub 3}⋯HCl and (CH{sub 2}){sub 3}⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the {sup F}C—{sup F}C bond and the shrinkage of the two equivalent {sup B}C—{sup F}C (B = back) bonds relative to the C—C bond in cyclopropane itself. The expansions of the {sup F}C—{sup F}C bond are 0

  3. Ab initio Study of Naptho-Homologated DNA Bases

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Vazquez-Mayagoitia, Alvaro [ORNL; Huertas, Oscar [Universitat de Barcelona; Fuentes-Cabrera, Miguel A [ORNL; Orozco, Modesto [Institut de Recerca Biomedica, Parc Cientific de Barcelona, Barcelona, Spain; Luque, Javier [Universitat de Barcelona

    2008-01-01

    Naptho-homologated DNA bases have been recently used to build a new type of size expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naptho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like form of naptho-thymine (yyT) and naptho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naptho-guanine (yyG) and naptho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphto-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naptho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC.

  4. Structural transformation between long and short-chain form of liquid sulfur from \\textit{ab initio} molecular dynamics

    CERN Document Server

    Plašienka, Dušan; Martoňák, Roman

    2014-01-01

    We present results of \\textit{ab initio} molecular dynamics study of a structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the chain-breakage phenomenon recently observed experimentally by Liu \\textit{et al.} [1] and to the electronic transition reported by Brazhkin \\textit{et al.} [2,3]. We performed an extensive \\textit{ab initio} study and confirmed the existence of one transformation separating two distinct liquid polymeric phases: one composed of short chain-like fragments and another one with very long chains. We have not observed additional transformations reported in Refs. [2,3] and in the recent theoretical study by Zhao and Mu [4] and our findings are in agreement with the most recent experiment [1]. We offer a structural description of this liquid-liquid transformation in terms of chain lengths, cross-linking and geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in configurational energy...

  5. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    Science.gov (United States)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  6. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    Science.gov (United States)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  7. The effects of magnetic annealing of transition metal alloys deduced from ab initio electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Razee, S.S.A.; Staunton, J.B. [Department of Physics, University of Warwick, Coventry (United Kingdom); Ginatempo, B.; Bruno, E. [Dipartimento di Fisica and Unita INFM, Universita di Messina, Messina (Italy); Pinski, F.J. [Department of Physics, University of Cincinnati, OH (United States)

    2001-09-24

    A theory is presented for describing the effects of annealing magnetic alloys in magnetic fields. It has an ab initio spin-polarized relativistic Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) electronic structure basis and uses the framework of concentration waves. Alloys which would otherwise be soft magnets are found experimentally to develop directional chemical order and significant uniaxial anisotropy when annealed in magnetic fields. Our approach is able to provide a quantitative description of these effects together with the underlying electronic mechanisms. We describe applications to the soft magnetic alloys permalloy and FeCo. (author)

  8. Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations

    Science.gov (United States)

    Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.

    2008-01-01

    The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.

  9. Ab initio calculation of the spectrum and structure of $^{16}$O

    CERN Document Server

    Epelbaum, Evgeny; Lähde, Timo A; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam

    2013-01-01

    We present ab initio lattice calculations of the low-energy even-parity states of $^{16}$O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 state, we find that the predominant structure is a square configuration of alpha clusters, with rotational excitations that include the first spin-2 state.

  10. Heat capacities of xenotime-type ceramics: An accurate ab initio prediction

    Science.gov (United States)

    Ji, Yaqi; Beridze, George; Bosbach, Dirk; Kowalski, Piotr M.

    2017-10-01

    Because of ability to incorporate actinides into their structure, the lanthanide phosphate ceramics (LnPO4) are considered as potential matrices for the disposal of nuclear waste. Here we present highly reliable ab initio prediction of the variation of heat capacities and the standard entropies of these compounds in zircon structure along lanthanide series (Ln = Dy, …,Lu) and validate them against the existing experimental data. These data are helpful for assessment of thermodynamic parameters of these materials in the context of using them as matrices for immobilization of radionuclides for the purpose of nuclear waste management.

  11. Improved Ab Initio Molecular Dynamics by Minimal Biasing with Experimental Data

    CERN Document Server

    White, Andrew D; Hocky, Glen M; Voth, Gregory A

    2016-01-01

    Accounting for electrons and nuclei simultaneously is a key goal of computer simulation via ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce the properties of systems such as water due to inaccuracies in the underlying electronic density functionals, shortcomings that are often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy-based approach to directly incorporate limited experimental data via a minimal bias. The biased AIMD simulations of both water and of an excess proton in water are shown to give significantly improved properties for both the biased and unbiased observables.

  12. Prediction of adsorption of small molecules in porous materials based on ab initio force field method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.

  13. Structural Features of Boron-Doped Si(113) Surfaces Simulated by ab initio Calculations

    Institute of Scientific and Technical Information of China (English)

    LIAO Long-Zhong; LIU Zheng-Hui; ZHANG Zhao-Hui

    2008-01-01

    Based on ab initio calculations, boron-doped Si(113) surfaces have been simulated and atomic structures of the surfaces have been proposed. It has been determined that surface features of empty and filled states that are separately localized at pentamers and adatoms indicates a low surface density of B atoms, while it is attributed to heavy doping of B atoms at the second layer that pentamers and adatoms are both present in an image of scanning tunnelling microscopy. B doping at the second layer should be balanced by adsorbed B or Si atoms beside the adatoms and inserted B interstitials below the adatoms.

  14. Ab Initio MO Studies on the Reaction Mechanism for Carbonyl Insertion Catalyzed by Carbonyl Cobalt Complex

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ab initio method, under the effective core potential(ECP) approximation at HF/LANL2DZ level, has been employed to study the reaction mechanism of the carbonyl insertion of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3. The two reaction paths have been discussed. The calculated potential energy barriers for the carbonyl migration and the ethyl group migration are 105.0 kJ/mol and 39.17 kJ/mol, respectively. The results indicate that the reaction path via ethyl migration is more energetically favorable than that via carbonyl insertion.

  15. Ab initio many-body calculations of the 4He photo-absorption cross section

    CERN Document Server

    Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr

    2013-01-01

    A major goal of nuclear theory is to make quantitative calculations of low-energy nuclear observables starting from microscopic internucleon forces. Computationally, this is complicated by the large model spaces needed to reach convergence in many-body approaches, such as the no-core shell model (NCSM). In recent years, the similarity renormalization group (SRG) has provided a powerful and versatile means to soften interactions for ab initio structure calculations, thus leading to convergence within smaller model spaces. Here we compute the 4He total photo absorption cross section and study, for the first time, the consistency of the SRG approach in a continuum observable.

  16. Ab initio adiabatic and quasidiabatic potential energy surfaces of H++ CN system

    Indian Academy of Sciences (India)

    Bhargava Anusuri; Sanjay Kumar

    2016-02-01

    We present restricted geometry (collinear and perpendicular approaches of proton) ab initio three dimensional potential energy surfaces for H++ CN system. The calculations were performed at the internally contracted multi-reference configuration interaction level of theory using Dunning’s correlation consistent polarized valence triple zeta basis set. Adiabatic and quasidiabatic surfaces have been computed for the ground and the first excited electronic states. Nonadiabatic effects arising from radial coupling have been analyzed in terms of nonadiabatic coupling matrix elements and coupling potentials.

  17. Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules

    CERN Document Server

    Lester, William A; Reynolds, PJ

    1994-01-01

    This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n

  18. Ab initio studies of ionization potentials of hydrated hydroxide and hydronium

    CERN Document Server

    Swartz, Charles W

    2013-01-01

    The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.

  19. Thermodynamic Study of Hydrolysis Reactions in Aqueous Solution from Ab Initio Potential and Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    S. Tolosa

    2013-01-01

    Full Text Available A procedure for the theoretical study of chemical reactions in solution by means of molecular dynamics simulations of aqueous solution at infinite dilution is described using ab initio solute-solvent potentials and TIP3P water model to describe the interactions. The procedure is applied to the study of neutral hydrolysis of various molecules (HCONH2, HNCO, HCNHNH2, and HCOOCH3 via concerted and water-assisted mechanisms. We used the solvent as a reaction coordinate and the free energy curves for the calculation of the properties related with the reaction mechanism, namely, reaction and activation energies.

  20. Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids

    DEFF Research Database (Denmark)

    Berg, R.W.; Deetlefs, M.; Seddon, K.R.

    2005-01-01

    Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...... calculations. The previously reported anti and gauche forms of the [C(4)mim](+) cation have been observed, and this study reveals this to be a general feature of the long-chain I-alkyl derivatives. Analysis of mixtures Of [C(6)mim]Cl and [C(6)mim][PF6] has provided information on the nature of the hydrogen...

  1. Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.

  2. Ab-initio simulation of photoinduced transformation of small rings in amorphous silica

    OpenAIRE

    Bernasconi, D. Donadio M.

    2004-01-01

    We have studied the photoinduced transformation of small rings (3-membered) in amorphous silica by Car-Parrinello simulations. The process of ring opening leading to the formation of a couple of paramagnetic centers, namely an E' and a non-bridging-oxygen hole center (NBOHC), has been proposed experimentally to occur in silica exposed to F2 laser irradiation (at 7.9 eV). By using a new scheme for the simulation of rare events in ab-initio molecular dynamics (Iannuzzi, Laio and Parrinello, Phy...

  3. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...

  4. Atomic ionization of germanium by neutrinos from an ab initio approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiunn-Wei [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); National Center for Theoretical Sciences and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chi, Hsin-Chang [Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan (China); Huang, Keh-Ning [Department of Physics, Sichuan University, Chengdu, Sichuan (China); Department of Physics, Fuzhou University, Fuzhou, Fujian (China); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C.-P. [Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan (China); Shiao, Hao-Tse [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Singh, Lakhwinder [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Wong, Henry T. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Wu, Chih-Liang; Wu, Chih-Pan [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-04-04

    An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.

  5. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    Energy Technology Data Exchange (ETDEWEB)

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  6. Novel silicon allotropes for photovoltaic applications from ab initio structure prediction

    Science.gov (United States)

    Amsler, Maximilian; Goedecker, Stefan; Botti, Silvana; Marques, Miguel A. L.

    2015-03-01

    Sophisticated structure prediction methods have been developed and become essential tools when theoretically designing new materials with desired properties. Their successful applications to many systems at various conditions and increasing computational power have strongly contributed to their popularity. However, an accurate prediction from ab initio calculations still remains an extremely challenging task. The Minima Hopping Method is a powerful tool to find low energy structures given only the chemical composition of a system and allows the prediction of structures at any boundary condition. I will present the results of our studies on low density silicon phases with potential use in photovoltaic applications.

  7. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    Science.gov (United States)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru

    2016-04-01

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.

  8. Communication: GAIMS—Generalized Ab Initio Multiple Spawning for both internal conversion and intersystem crossing processes

    Science.gov (United States)

    Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.

    2016-03-01

    Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.

  9. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    Science.gov (United States)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.

  10. Graph theory meets ab initio molecular dynamics: atomic structures and transformations at the nanoscale.

    Science.gov (United States)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-19

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  11. Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ailin; Yan, Tianying; Shen, Panwen [Department of Material Chemistry, Institute of New Energy Material Chemistry, Nankai University, Tianjin, 300071 (China)

    2011-02-01

    Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer. (author)

  12. Reactive molecular dynamics models from ab initio molecular dynamics data using relative entropy minimization

    Science.gov (United States)

    Arntsen, Christopher; Chen, Chen; Voth, Gregory A.

    2017-09-01

    We present two new multiscale molecular dynamics (MS-RMD) models for the hydrated excess proton in water developed directly from ab initio molecular dynamics (AIMD) simulation data of the same system. The potential of mean force along the proton transfer reaction coordinate and radial distribution functions for the MS-RMD models are shown to faithfully reproduce those of AIMD. The models are developed using an algorithm based on relative entropy minimization, thus demonstrating the ability of the method to rapidly generate accurate and highly efficient reactive MD force fields.

  13. Paired-permanent approach for VB theory (II) -An ab initio spin-free VB program

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Paired-permanent approach for VB theory is extensively developed. Canonical expan sion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub-paired-permanents of any given order and their corre sponding minors. An ab initio spin-free valence bond program, called Xiamen, is implemented by using paired-permanent approach. Test calculation shows that Xiamen package is more efficient than some other programs based on the traditional VB algorithm, and it provides a new practical tool for quantum chemistry.

  14. Ab initio study of the EFG at the N sites in imidazole

    Energy Technology Data Exchange (ETDEWEB)

    Brown Goncalves, Marcos, E-mail: browngon@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Di Felice, R. [National Center on Nanostructures and Biosystems at Surfaces (S3) of INFM-CNR (Italy); Poleshchuk, O. Kh. [Tomsk State Pedagogical University (Russian Federation); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)

    2008-01-15

    We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.

  15. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...... replaced by ‘‘hydrogen atoms’’ having mass 15 and TRPES spectra were calculated. These showed an induction time of (108 10) fs which could directly be assigned to progress along a torsional mode leading to the intersection seam with the molecular ground state. In a stepladder-type approach, the close...

  16. Ab-initio study of several static and dynamic properties of liquid palladium and platinum

    Directory of Open Access Journals (Sweden)

    González L. E.

    2017-01-01

    Full Text Available We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.

  17. Orbital free ab initio study of static and dynamic properties of some liquid transition metals

    Directory of Open Access Journals (Sweden)

    Bhuiyan G. M.

    2017-01-01

    Full Text Available Several static and dynamic properties of liquid transition metals Cr, Mn and Co are studied for the first time using the orbital free ab-initio molecular dynamics simulation (OF-AIMD. This method is based on the density functional theory (DFT which accounts for the electronic energy of the system whereas the interionic forces are derived from the electronic energy via the Hellman-Feynman theorem. The external energy functional is treated with a local pseudopotential. Results are reported for static structure factors, isothermal compressibility, diffusion coeffcients, sound velocity and viscosity and comparison is performed with the available experimental data and other theoretical calculations.

  18. Structure of alcohol cluster ions in the gas phase, according to spectrometry and ab initio calculations

    Science.gov (United States)

    Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.

    2017-01-01

    Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.

  19. Relativistic k .p Hamiltonians for centrosymmetric topological insulators from ab initio wave functions

    Science.gov (United States)

    Nechaev, I. A.; Krasovskii, E. E.

    2016-11-01

    We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.

  20. Ab initio quasiparticle energies in 2H, 4H, and 6H SiC

    Science.gov (United States)

    Ummels, R. T. M.; Bobbert, P. A.; van Haeringen, W.

    1998-09-01

    Ab initio quasiparticle energies are calculated for the 2H, 4H, and 6H polytypes of SiC within the GW approximation for the self-energy. The starting point is a calculation within the pseudopotential local-density approximation framework. The calculated fundamental gaps of 3.15, 3.35, and 3.24 eV for 2H, 4H, and 6H SiC, respectively, show very good agreement with experimental data. The energy dependence of the screened interaction is modeled by a plasmon pole model from which the plasmon band structures are obtained.

  1. Ab initio study of energy-level alignments in polymer-dye blends

    Science.gov (United States)

    Pasveer, W. F.; Bobbert, P. A.; Michels, M. A. J.; Langeveld-Voss, B. M. W.; Schoo, H. F. M.; Bastiaansen, J. J. A. M.

    2003-11-01

    Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene. Special attention is paid to the trends in these energies with variation of the sidegroups of the dyes as observed in cyclic-voltammetry measurements. From the energy-level alignments between dye and polymer we can understand and predict electron and hole trapping, crucial processes for the functioning of light-emitting devices based on these blends.

  2. Ab initio MO study of reaction mechanism for carbonyl migration of Co complex

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ab initio method under the effective core potential (ECP) approximation is employed to study the reaction mechanism of carbonyl migration of the cycle of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3 at Hartree-Fock (HF) level. The structures of the reactant, transition state and product for the reaction are determined. The energy of each stationary point is corrected at MP2/LAN2DZ//LANL2DZ+ZPE (zero-point energy) level. The calculated activation barrier is 28.89 kJ/mol.

  3. An accurate potential energy curve for helium based on ab initio calculations

    Science.gov (United States)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  4. Ab initio research on DNA base alkylation by the β-position metabolite of methylethylnitrosamine

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lijiao; ZHONG Rugang; YUAN Xiaolong; CUI Yasong; DAI Qianhuan

    2004-01-01

    Ab initio calculation is carried out to study the different supposed mechanisms of DNA base alkylation by β-sulphate-nitrosamines at RHF/6-31G(d) and MP2/6-31G(d)levels. Full geometric structure optimization is done for all reactants, intermediates, products and transition states. The activation energy and IRC are obtained. The results show that the anchimeric assistant effect promotes the alkylation of DNA base by β-sulphate-nitrosamines. Solvent calculation is carried out with Onsager model of SCRF method at the same level. The results indicate that the activation energy is decreased obviously in water.

  5. Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations

    Science.gov (United States)

    Koudriachova, M. V.

    2008-06-01

    A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.

  6. Trivacancy in silicon: A combined DLTS and ab-initio modeling study

    Science.gov (United States)

    Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Coutinho, J.; Markevich, A. V.; Torres, V. J. B.; Briddon, P. R.; Dobaczewski, L.; Monakhov, E. V.; Svensson, B. G.

    2009-12-01

    Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V3) in Si. It is found that in the neutral charge state the V3 is bistable, with the "fourfold" configuration being lower in energy than the (1 1 0) planar configuration. V3 in the (1 1 0) planar configuration gives rise to two acceptor levels at Ec-0.36 eV and Ec-0.46 eV in the gap, while in the "fourfold" configuration the defect has trigonal symmetry and an acceptor level at Ec-0.075 eV.

  7. Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2008-01-01

    We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance...... (majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling. We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction...

  8. Detecting weak interactions between Au- and gas molecules: a photoelectron spectroscopic and ab initio study.

    Science.gov (United States)

    Gao, Yi; Huang, Wei; Woodford, Jeffrey; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2009-07-15

    We show that anion photoelectron spectroscopy can be a very sensitive probe for weak intermolecular interactions between gold anion and a noble-gas atom or other nonreactive molecule. High-level ab initio calculations support the measured trend of relatively weak intermolecular interactions among various gold anion-atom complexes. The interaction between Au(-) and H(2)O is much stronger, comparable to a strong hydrogen bond. The interaction between Au(-) and O(2) is weaker than that between Au(-) and a noble-gas atom (Ar, Kr, or Xe).

  9. Quantum chemistry the development of ab initio methods in molecular electronic structure theory

    CERN Document Server

    Schaefer III, Henry F

    2004-01-01

    This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi

  10. Ab initio intermolecular potential energy surface of He-LiH

    Institute of Scientific and Technical Information of China (English)

    鄢国森; 杨明晖; 谢代前

    1997-01-01

    The intermolecular potential energy surface of He-LiH complex was studied using the full-electronic complete forth-order Miller-Plesset perturbation (MPPT) method.In ab initio calculations,the bond length of LiH was fixed at 0 159 5 nm.The potential has two local minima of Vm=-179.93 cm for the linear He LiH geormetrv at Rm=0.227 nm and Vm=-10.44 cm-1 for the linear He-HL1 geometry at Rm=0.516 nm The potemal exhibits strong anisotropy The analytic potential function with 31 parameters was determined by fitting to the calculated ab,mtio potentials The influence of variation of LiH bond length on the potential energy surface was also studied

  11. Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.

    Science.gov (United States)

    Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons

    2007-01-01

    Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.

  12. SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations

    KAUST Repository

    Gongora, J. S. Totero

    2016-03-14

    Integrating coherent light sources at the nanoscale with spasers is one of the most promising applications of plasmonics. A spaser is a nano-plasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and the resonant cavity replaced by a nanoparticle supporting localized plasmonic modes. Despite the large body of experimental and theoretical studies, the understanding of the fundamental properties of the spaser emission is still challenging. In this work, we investigated the ultrafast dynamics of the emission from a core-shell spaser by developing a rigorous first-principle numerical model. Our results show that the spaser is a highly nonlinear system with many interacting degrees of freedom, whose emission sustain a rich manifold of different spatial phases. In the regime of strong interaction we observed that the spaser emission manifests an irreversible ergodic evolution, where energy is equally shared among all the available degrees of freedom. Under this condition, the spaser generates ultrafast vortex lasing modes that are spinning on the femtosecond scale, acquiring the character of a nanoparticle with an effective spin. Interestingly, the spin orientation is defined by spontaneous symmetry breaking induced by quantum noise, which is a fundamental component of our ab-initio model. This opens up interesting possibilities of achieving unidirectional emission from a perfectly spherical nanoparticle, stimulating a broad range of applications for nano-plasmonic lasers as unidirectional couplers, random information sources and novel form of photonics neural-networks. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  13. Ab initio determination of dark structures in radiationless transitions for aromatic carbonyl compounds.

    Science.gov (United States)

    Fang, Wei-Hai

    2008-03-01

    photoexcitation of aromatic carbonyl compounds. The importance of ab initio determination of transient structures in the photodissociation dynamics has been demonstrated for the case of the aromatic carbonyl compounds. In addition, the detailed knowledge of mechanistic photochemistry for aromatic carbonyl compounds forms the basis for further investigating photodissociation dynamics of a polyatomic molecule.

  14. Rings and ladders in biology - fast ab initio simulations of polypeptides and DNA.

    Science.gov (United States)

    Lewis, James P.

    1996-03-01

    Throughout the years, developments of first principles methods have allowed a theoretical investigation of a wide variety of materials from semiconductors to zeolites. However, ab initio methods have not been widespread in the area of large biological systems. Several recent advances in theoretical techniques have prompted us to examine the possibility of simulating large biological systems. Linear scaling methods have been developed to avoid the N^3 computational roadblock due to matrix diagonalization, and a hydrogen-bonding model has been developed to correctly model weak intermolecular interactions within a tight-binding like local orbital framework.(J. Ortega, J. P. Lewis, O. F. Sankey Phys. Rev. B. 50), 10516 (1994); J. P. Lewis and O. F. Sankey, Biophys. J. 69, 1068 (1995). With these developments, a simulation of a dehydrated 10 basepair poly(dG) -- poly(dC) segment of DNA will be described. Results for the electronic structure of this relaxed structure will be discussed. In addition, a simulation of this relaxed structure, involving 1932 steps, was performed to determine the dynamical matrix. The corresponding vibrational spectrum was found and trends will be compared with experimental work.(Work done in collaboration with Otto F. Sankey and Pablo Ordejón) In addition, theoretical results on the energetics, electronic, vibrational and elastic properties of cyclic peptide systems cyclo[(D-Ala-Glu-D-Ala-Gln)_m], where m=1-4, will be presented. Experimentally, these cyclic peptide nanotubes have been shown to be excellent for transporting of ions and glucose across membranes, the attempt to simulate the placement of a dopant into the nanotube structure and the effects on the electronic structure will be discussed.(Work done in collaboration with Otto F. Sankey and Norma H. Pawley)

  15. Microscopic solvation of NaBO2 in water: anion photoelectron spectroscopy and ab initio calculations.

    Science.gov (United States)

    Feng, Yuan; Cheng, Min; Kong, Xiang-Yu; Xu, Hong-Guang; Zheng, Wei-Jun

    2011-09-21

    We investigated the microscopic solvation of NaBO(2) in water by conducting photoelectron spectroscopy and ab initio studies on NaBO(2)(-)(H(2)O)(n) (n = 0-4) clusters. The vertical detachment energy (VDE) of NaBO(2)(-) is estimated to be 1.00 ± 0.08 eV. The photoelectron spectra of NaBO(2)(-)(H(2)O)(1) and NaBO(2)(-)(H(2)O)(2) are similar to that of bare NaBO(2)(-), except that their VDEs shift to higher electron binding energies (EBE). For the spectra of NaBO(2)(-)(H(2)O)(3) and NaBO(2)(-)(H(2)O)(4), a low EBE feature appears dramatically in addition to the features observed in the spectra of NaBO(2)(-)(H(2)O)(0-2). Our study shows that the water molecules mainly interact with the BO(2)(-) unit in NaBO(2)(-)(H(2)O)(1) and NaBO(2)(-)(H(2)O)(2) clusters to form Na-BO(2)(-)(H(2)O)(n) type structures, while in NaBO(2)(-)(H(2)O)(3) and NaBO(2)(-)(H(2)O)(4) clusters, the water molecules can interact strongly with the Na atom, therefore, the Na-BO(2)(-)(H(2)O)(n) and Na(H(2)O)(n)···BO(2)(-) types of structures coexist. That can be seen as an initial step of the transition from a contact ion pair (CIP) structure to a solvent-separated ion pair (SSIP) structure for the dissolution of NaBO(2).

  16. Electronic absorption and resonance Raman spectroscopy from ab initio quantum molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Nun, M.; Martinez, T.J.

    1999-12-09

    The absorption and resonance Raman excitation profiles of ethylene following {pi} {yields} {pi}* excitation and taking full account of anharmonicity and Duschinsky rotation effects are calculated from first principles molecular dynamics using the ab initio multiple spawning (AIMS) method and a correlation function approach. The AIMS method solves the nuclear and electronic Schroedinger equations simultaneously and it associates a unique nuclear wave function with each electronic state. The compound absorption spectrum has a full width at half maximum of 9,800 and 1,300 cm{sup {minus}1} (in agreement with the experimental value, 9,500 cm{sup {minus}1}) and a high-frequency structure spaced by 800 and 10 cm{sup {minus}1}, attributed to C{double{underscore}bond}C stretching. The resonance Raman excitation profile exhibits fundamental activity in all totally symmetric modes with the C{double{underscore}bond}C stretching mode being the most dominant. In addition, overtone activity is observed in the torsional motion, out-of-plane wagging motions and the out-of-plane rocking motions. The activity is consistent with the observation that the first excited state is twisted and one of the CH{sub 2} groups is pyramidalized. The coordinate dependence of the electronic transition dipole is investigated, and they find that it depends very strongly on the torsional coordinate and less so on the pyramidalization and C{double{underscore}bond}C stretching coordinates. However, within the approximations used in this paper this dependence does not influence the spectra significantly and the Condon approximation is quite accurate.

  17. Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.

    Science.gov (United States)

    You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2016-07-20

    The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme.

  18. The role of metals in amyloid aggregation - Experiments and ab initio simulations

    Science.gov (United States)

    Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.; Christian, N.; Jansen, K.

    With a combination of modern spectroscopic techniques and numerical first principle simulations it is possible to investigate the physico-chemical basis of the beta-amyloid aggregation phenomenon, which is suspected to be at the basis of the development of the Alzheimer disease. On the experimental side, in fact, X-ray absorption spectroscopy can be successfully used to determine the atomic structure around the metal binding site in samples where beta-amyloid peptides are complexed with either Cu2+ or Zn2+ ions. Exploiting spectroscopic information obtained on a selected set of fragments of the natural Abeta-peptide, the residues that along the sequence are coordinated to the metal are identified. Although copper data can be consistently interpreted assuming that oligopeptides encompassing the minimal 1-16 amino acidic sequence display a metal coordination mode which involves three Histidines (His6, His13, and His14), in complexes with zinc a four Histidines coordination mode is seen to be preferred. Lacking a fourth Histidine in the Abeta1-16 fragment, this geometrical arrangement hints to a Zn2+ promoted inter-peptide aggregation mode. On the theoretical side, first principle ab initio molecular dynamics simulations of the Car-Parrinello type, which have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid-state physics and structural biophysics, have been employed in an effort to give a microscopic basis and find a phenomenological interpretation of the body of available experimental data on Abeta-peptides-metal complexes. Using medium size PC-clusters as well as larger parallel platforms, it is possible to deal with systems comprising 300-500 atoms and 1,000-2,000 electrons for simulation times as long as 2-3 ps. We present structural results that nicely compare with NMR and XAS data.

  19. Laser cooling of BH and GaF: insights from an ab initio study.

    Science.gov (United States)

    Gao, Yu-feng; Gao, Tao

    2015-04-28

    The feasibility of laser cooling BH and GaF is investigated using ab initio quantum chemistry. The ground state X (1)Σ(+) and first two excited states (3)Π and (1)Π of BH and GaF are calculated using the multireference configuration interaction (MRCI) level of theory. For GaF, the spin-orbit coupling effect is also taken into account in the electronic structure calculations at the MRCI level. Calculated spectroscopic constants for BH and GaF show good agreement with available theoretical and experimental results. The highly diagonal Franck-Condon factors (BH: f00 = 0.9992, f11 = 0.9908, f22 = 0.9235; GaF: f00 = 0.997, f11 = 0.989, f22 = 0.958) for the (1)Π (v' = 0-2) → X (1)Σ(+) (v = 0-2) transitions in BH and GaF are determined, which are found to be in good agreement with the theoretical and experimental data. Radiative lifetime calculations of the (1)Π (v' = 0-2) state (BH: 131, 151, and 187 ns; GaF: 2.26, 2.36, and 2.48 ns) are found to be short enough for rapid laser cooling. The proposed laser cooling schemes that drive the (1)Π (v' = 0) → X (1)Σ(+) (v = 0) transition use just one laser wavelength λ00 (BH: 436 nm, GaF: 209 nm). Though the cooling wavelength of GaF is deep in the UVC, a frequency quadrupled Ti:sapphire laser (189-235 nm) could be capable of generating useful quantities of light at this wavelength. The present results indicate that BH and GaF are two good choices of molecules for laser cooling.

  20. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    Science.gov (United States)

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.