Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
Reciprocity Theorems for Ab Initio Force Calculations
Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.
1996-01-01
We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.
Ab Initio Calculations of Oxosulfatovanadates
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...
Ab initio calculation of the Hoyle state
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2011-01-01
The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle^{1} as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago^{2,3}, nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine...
Gas phase ion chemistry of coumarins: ab initio calculations used to ...
Gas phase ion chemistry of coumarins: ab initio calculations used to justify ... and quadrupole mass spectrometer (qMS) coupled to a gas chromatograph is ... Ab Initio calculations, Electron ionization, Positive chemical ionization, Negative ...
Ab initio calculation of tight-binding parameters
McMahan, A.K.; Klepeis, J.E.
1997-12-01
We calculate ab initio values of tight-binding parameters for the f- electron metal Ce and various phases of Si, from local-density functional one-electron Hamiltonian and overlap matrix elements. Our approach allows us to unambiguously test the validity of the common minimal basis and two-center approximations as well as to determine the degree of transferability of both nonorthogonal and orthogonal hopping parameters in the cases considered.
Nuclear forces and ab initio calculations of atomic nuclei
Meißner, Ulf-G.
2014-01-01
Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.
Thermochemical data for CVD modeling from ab initio calculations
Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
Accelerating Ab Initio Nuclear Physics Calculations with GPUs
Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik
2014-01-01
This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.
Quantum plasmonics: from jellium models to ab initio calculations
Varas Alejandro
2016-08-01
Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.
Ab-initio calculations for dilute magnetic semiconductors
Belhadji, Brahim
2008-03-03
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)
Ab initio calculations of the absorption spectrum of chalcone
Oumi, Manabu; Maurice, David; Head-Gordon, Martin
1999-03-01
The excitation energies and excited states of trans-chalcone ( trans-( s-cis)-1,3-diphenylpropenone), and several related molecules ( trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone, propenal, trans-( s-cis)-1-(4-hydroxyphenyl)-3-phenylpropenone, trans-( s-cis)3-(4-hydroxyphenyl)-1-phenylpropenone) have been calculated using single reference ab initio molecular orbital methods, and characterized by attachment-detachment density analysis. The results suggest assignments for the lowest three electronic transitions observed experimentally for trans-( s-cis)-chalcone in solution. The extent of localization of the electronic transitions is established by calculations on the excited states of trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone and propenal, as well as analysis of the chalcone calculations. Contrary to some previous work, none of these excitations are strongly delocalized over the entire molecule. Calculated substituent shifts for the hydroxy chalcones are in qualitative agreement with experimental data, and support the localized interpretation of the main π→ π* transition.
Ab initio calculations and modelling of atomic cluster structure
Solov'yov, Ilia; Lyalin, Andrey G.; Greiner, Walter
2004-01-01
The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...
Ab initio calculation of the potential bubble nucleus 34Si
Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.
2017-03-01
Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to
Engineering Room-temperature Superconductors Via ab-initio Calculations
Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen
The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.
Melting curves of metals by ab initio calculations
Minakov, Dmitry; Levashov, Pavel
2015-06-01
In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).
Ab initio calculation of the potential bubble nucleus $^{34}$Si
Duguet, T; Lecluse, S; Barbieri, C; Navrátil, P
2016-01-01
The possibility that an unconventional depletion in the center of the charge density distribution of certain nuclei occurs due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. We report on ab initio self-consistent Green's function calculations of one of such candidates, $^{34}$Si, together with its Z+2 neighbour $^{36}$S. Binding energies, rms radii and density distributions of the two nuclei as well as low-lying spectroscopy of $^{35}$Si, $^{37}$S, $^{33}$Al and $^{35}$P are discussed. The interpretation of one-nucleon removal and addition spectra in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input inter-nucleon interactions. The prediction regarding the (non-)existence of the bubble structure in $^{34}$Si varies significantly with the nuclear Hamiltonian used. However, demandin...
Rational design of electrolyte components by ab initio calculations
Johansson, Patrik; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)
2006-02-28
This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc. (author)
Uniaxial Phase Transition in Si : Ab initio Calculations
Cheng, C.
2002-01-01
Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing t...
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Ab initio calculations of ^12C and neutron drops
Pieper, Steven C.
2009-10-01
Ab initio calculations of nuclei, which treat a nucleus as a system of A nucleons interacting by realistic two- and three-nucleon forces, have made tremendous progress in the last 15 years. This is a result of better Hamiltonians, rapidly increasing computer power, and new or improved many-body methods. Three methods are principally being used: Green's function Monte Carlo (GFMC), no-core shell model, and coupled cluster. In the limit of large computer resources, all three methods produce exact eigenvalues of a given nuclear Hamiltonian. With DOE SciDAC and INCITE support, all three methods are using the largest computers available today. Under the UNEDF SciDAC grant, the Argonne GFMC program was modified to efficiently use more than 2000 processors. E. Lusk (Argonne), R.M. Butler (Middle Tennessee State U.) and I have developed an Asynchronous Dynamic Load-Balancing (ADLB) library. In addition all the cores in a node are used via OpenMP as one ADLB/MPI client. In this way we obtain very good scalability up to 30,000 processors on Argonne's IBM Blue Gene/P. Two systems of particular interest that require this computer power are ^12C and neutron drops. V.R. Pandharipande (UIUC, deceased), J. Carlson (LANL), R.B. Wiringa (Argonne), and I have developed new trial wave functions that explicitly contain the three-alpha particle structure of ^12C. These are being used with the Argonne V18 and Illinois-7 potentials which reproduce the energies of 51 states in 3energy-density functionals.
Ab initio calculations of reactions of light nuclei
Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr
2017-09-01
An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable as a support tool for accurate evaluations of crucial reaction data for nuclear astrophysics, fusion-energy research, and other applications. We present an efficient many-body approach to nuclear bound and scattering states alike, known as the ab initio no-core shell model with continuum. In this approach, square-integrable energy eigenstates of the A-nucleon system are coupled to (A-A)+A target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges. We show that predictive results for nucleon and deuterium scattering on 4He nuclei can be obtained from the direct solution of the Schröedinger equation with modern nuclear potentials.
Balan, Etienne; Lazzeri, M.; Mauri, F.; Calas, G.
2007-01-01
We review here some recent applications of ab initio calculations to the modelling of spectroscopic and energetic properties of minerals, which are key components of lateritic soils or govern their geochemical properties. Quantum mechanical ab initio calculations are based on density functional theory and density functional perturbation theory. Among the minerals investigated, zircon is a typical resistant primary mineral. Its resistance to weathering is at the origin of the peculiar geochemi...
McKemmish, Laura K; Tennyson, Jonathan
2016-01-01
Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity...
Emergence of rotational bands in ab initio no-core configuration interaction calculations
Caprio, M A; Vary, J P; Smith, R
2015-01-01
Rotational bands have been observed to emerge in ab initio no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. We investigate the ab initio emergence of nuclear rotation in the Be isotopes, focusing on 9Be for illustration, and make use of basis extrapolation methods to obtain ab initio predictions of rotational band parameters for comparison with experiment. We find robust signatures for rotational motion, which reproduce both qualitative and quantitative features of the experimentally observed bands.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations
Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.
2008-01-01
The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.
Ab Initio Calculation on Self-Assembled Base-Functionalized Single-Walled Carbon Nanotubes
SONG Chen; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; LI Ji-Ling; LI Li-Juan; LI Feng; HUANG Bo-Da
2006-01-01
@@ We perform ab initio calculations on the self-assembled base-functionalized single-walled carbon nanotubes (SWNTs) which exhibit the quasi-1D ‘ladder’ structure. The optimized configuration in the ab initio calculation is very similar to that obtainedfrom molecular dynamics simulation. We also calculate the electronic structures of the self-assembled base-functionalized SWNTs that exhibit distinct difference from the single-branch base-functionalized SWNT with a localized state lying just below the Fermi level, which may result from the coupling interaction between the bases accompanied by the self-assembly behaviour.
Lopuszynski, Michal; Majewski, Jacek A.
2007-01-01
We present theoretical studies for the third-order elastic constants $C_{ijk}$ in zinc-blende nitrides AlN, GaN, and InN. Our predictions for these compounds are based on detailed ab initio calculations of strain-energy and strain-stress relations in the framework of the density functional theory. To judge the computational accuracy, we compare the ab initio calculated results for $C_{ijk}$ with experimental data available for Si and GaAs. We also underline the relation of the third-order ela...
Ab initio electronic-structure calculations on the Nb/Zr multilayer system
Leuken, H. v.; Czyżyk, M.T.; Springelkamp, F.; Groot, R.A. de
1990-01-01
Ab initio electronic-structure calculations are performed for the Nb/Zr metallic multilayer system in the coherent bcc structure and in the incoherent bcc/hcp structure, observed for small and larger modulation wavelengths, respectively. A new calculational scheme, the localized-spherical-wave
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...
Ab initio calculations on the inclusion complexation of cyclobis(paraquat- p-phenylene)
Zhang, Ke-Chun; Liu, Lei; Mu, Ting-Wei; Guo, Qing-Xiang
2001-01-01
Semiempirical PM3, ab initio HF/3-21g ∗, and DFT B3LYP/6-31g ∗ calculations in vacuum and in solution were performed on the inclusion complexation of cyclobis(paraquat- p-phenylene) with nine symmetric aromatic substrates. A good correlation was found between the theoretical stabilization energies and experimental free energy changes upon complexation.
Ab initio calculations on the structure of pyridine in its lowest triplet state
Buma, W.J.; Groenen, E.J.J.; Schmidt, J.
1990-01-01
Recently we have experimentally shown that pyridine-d5, as a guest in a single crystal of benzene-d6, adopts a boatlike structure upon excitation into the lowest triplet state T0. Here MRDCI ab initio calculations are presented that reveal that the observed nonplanarity of the molecule is not caused
Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species
Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.
2011-01-01
. The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...
Ab Initio Calculations for the BaTiO3 (001) Surface Structure
XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie
2004-01-01
@@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.
Interatomic potentials for Al and Ni from experimental data and ab initio calculations
Mishin, Y.; Farkas, D.; Miehl, M.J.; Papaconstantopoulos, D.A.
1999-07-01
New embedded-atom potentials for Al and Ni have been developed by fitting to both experimental data and the results of ab initio calculations. The ab initio data were obtained in the form of energies of different alternative computer-generated crystalline structures of these metals. The potentials accurately reproduce basic equilibrium properties of Al and Ni such as the elastic constants, phonon dispersion curves, vacancy formation and migration energies, stacking fault energies, and surface energies. The equilibrium energies of various alternative structures not included in the fitting database are calculated with these potentials. The results are compared with predictions of total-energy tight-binding calculations for the same structures. The embedded-atom potentials correctly reproduce the structural stability trends, which suggests that they are transferable to different local environments encountered in atomistic simulations of lattice defects.
Ab-initio Green's Functions Calculations of Atoms
Barbieri, C
2009-01-01
The Faddeev random phase approximation (FRPA) method is applied to calculate the ground state and ionization energies of simple atoms. First ionization energies agree with the experiment at the level of ~10 mH or less. Calculations with similar accuracy are expected to provide information required for developing the proposed quasiparticle-DFT method.
MP2, DFT and ab initio calculations on thioxanthone.
Beni, Alireza Salimi; Chermahini, Alireza Najafi; Sharghi, Hashem; Monfared, Setareh Mirzaei
2011-11-01
Density functional theory (DFT), HF and MP2 calculations have been carried out to investigate thioxanthone molecule using the standard 6-31+G(d,p) basis set. The results of MP2 calculations show a butterfly structure for thioxanthone. The calculated results show that the predicted geometry can well reproduce the structural parameters. The predicted vibrational frequencies were assigned and compared with experimental IR spectra. A good harmony between theory and experiment is found. The theoretical electronic absorption spectra have been calculated using CIS method. (13)C and (1)H NMR of the title compound have been calculated by means of B3LYP density functional method with 6-31+G(d,p) basis set. The comparison of the experimental and the theoretical results indicate that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Ab initio calculations and modelling of atomic cluster structure
Solov'yov, Ilia; Lyalin, Andrey G.; Greiner, Walter
2004-01-01
framework for modelling the fusion process of noble gas clusters is presented. We report the striking correspondence of the peaks in the experimentally measured abundance mass spectra with the peaks in the size-dependence of the second derivative of the binding energy per atom calculated for the chain...... of the noble gas clusters up to 150 atoms....
Ab initio Sternheimer-GW method for quasiparticle calculations
Lambert, Henry; Giustino, Feliciano
2014-03-01
The GW method has emerged as the standard computational tool for investigating electronic excitations in bulk and nanoscale systems. Recently significant efforts have been devoted to extending the range of applicability of the GW method. With this aim, Ref. introduced the Sternheimer-GW method, reformulating the standard GW approach so that no unoccupied electronic states are required in the calculations. Here we present the implementation of the Sternheimer-GW method using planewaves and norm-conserving pseudopotentials. In our method we calculate the complete position- and energy-dependent GW self-energy operator, and as a by-product we obtain the entire G0W0 quasiparticle spectral function. We have validated our method by calculating the quasiparticle band structures of standard semiconductors and insulators (Si, SiC, diamond, LiCl) and by comparing the results with previous GW calculations. This method is currently being used for investigating the electronic structure of novel materials of reduced dimensionality. This work was supported by the ERC under the EU FP7/ERC Grant No. 239578 and by the UK EPSRC Grant No. EP/J009857/1.
[Photoelectron Spectra of CCl2-: Ab Initio Calculation and Franck-Condon Analysis].
Wu, Jun
2015-12-01
Geometry optimization and harmonic vibrational frequency calculations were performed on the X¹A₁ state of CCl₂ and X²B₁ state of CCl₂⁻ at the B3LYP, MP2, CCSD levels. Franck-Condon analysis and spectral simulations were carried out on the photoelectron band of CCl₂⁻ including Duschinsky effects. The simulated spectra obtained are in excellent agreement with the experiment. Note that Duschinsky effect between bending vibration and the symmetric stretch modes should be considered in the CCl₂ (X¹A₁)-CCl₂⁻ (X²B₁) photodetachment process. By combining ab initio calculations with Franck-Condon analyses, the assignment of spectrum observed is firmly established to the X¹A₁-X²B₁ photodetachment process of the CCl₂⁻ radical, and the recommended geometric parameters of which in the literature are confirmed again base on ab initio theory and IFCA process.
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Ab initio calculations on the magnetic properties of transition metal complexes
Bodenstein, Tilmann; Fink, Karin [Karlsruhe Institute of Technology, Institute of Nanotechnology, POB 3640, 76021 Karlsruhe (Germany)
2015-12-31
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.
Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids
Berg, Rolf W.
2009-01-01
spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti...... systems in the future. A few examples will be discussed. Contents 12.1 Introduction...........307 12.2 Brief introduction to Raman spectroscopy ..............309 12.2.1 Basics .....................309 12.2.2 Experimental, fluorescence and fouriertransform- Raman spectroscopy instrumentation ...... 311 12.......3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4C1Im]+ cation...
Ab Initio Calculations for the Polarizabilities of Small Sulfur Clusters
BAI Yu-Lin; CHEN Xiang-Rong; CHENG Xiao-Hong; YANG Xiang-Dong
2005-01-01
@@ Polarizabilities of small Sn (n = 2-8) clusters are calculated by using the higher-order finite-difference pseudopotential density functional method in real space. We find that the polarizabilities of the clusters are considered to be higher than the value estimated from the "hard sphere" model using the bulk static dielectric constant.The computed polarizabilities per atom tend to decrease with the increasing cluster size. The polarizabilities are closely related to the HOMO-LUMO gaps and the geometrical configurations.
Ab initio calculations of yttrium nitride: structural and electronic properties
Zerroug, S.; Ali Sahraoui, F. [Universite Ferhat Abbas, Laboratoire d' Optoelectronique et Composants, Departement de Physique, Setif (Algeria); Bouarissa, N. [King Khalid University, Department of Physics, Faculty of Science, P.O. Box 9004, Abha (Saudi Arabia)
2009-11-15
Using first principles total energy calculations within the full-potential linearized augmented plane wave method, we have studied the structural and electronic properties of yttrium nitride (YN) in the three phases, namely wurtzite, caesium chloride and rocksalt structures. The calculations are performed at zero and under hydrostatic pressure. In agreement with previous findings, it is found that the favored phase for YN is the rocksalt-like structure. We predict that at zero pressure YN in the rocksalt structure is a semiconductor with an indirect bandgap of 0.8 eV. A phase transition from a rocksalt to a caesium chloride structure is found to occur at {proportional_to}134 GPa. Besides, a transition from an indirect ({gamma}-X) bandgap semiconductor to a direct (X-X) one is predicted at pressure of {proportional_to}84 GPa. For the electron effective mass of rocksalt YN, these are the first results, to our knowledge. The information derived from the present study may be useful for the use of YN as an active layer in electronic devices such as diodes and transistors. (orig.)
Ab Initio Calculations for the Surface Energy of Silver Nanoclusters
Medasani, Bharat; Vasiliev, Igor; Park, Young Ho
2007-03-01
We apply first principles computational methods to study the surface energy and the surface stress of silver nanoparticles. The structures, energies and lattice contractions of spherical Ag nanoclusters are calculated in the framework of density functional theory combined with the generalized gradient approximation. Our calculations predict the surface energies of Ag nanoclusters to be in the range of 1-2 J/m^2. These values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m^2 derived from the Kelvin equation for free Ag nanoparticles. From the lattice contraction and the nearest neighbor interatomic distance, we estimate the surface stress of the silver nanoclusters to be in the the range of 1-1.45 N/m. This result suggests that a liquid droplet model can be employed to evaluate the surface energy and the surface stress of Ag nanoparticles. K. K. Nanda et al., Phys. Rev. Lett. 91, 106102 (2003).
Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids
Berg, Rolf W.
2007-01-01
spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti...... will be applied to many more systems in the future. A few examples will be discussed....
Lattice dynamics of wurtzite CdS: Neutron scattering and ab-initio calculations
Debernardi, A.; Pyka, N. M.; Göbel, A.; Ruf, T.; Lauck, R.; Kramp, S.; Cardona, M.
1997-08-01
We have measured the phonon dispersion of wurtzite CdS by inelastic neutron scattering in a single crystal made from the nonabsorbing isotope 114Cd. One of the two silent B 1-modes occurs at 3.96 THz ( k = 0 ). It is significantly lower and less dispersive than so far assumed. Previous semiempirical lattice dynamical models need to be reanalyzed. However, the observed dispersion branches compare favorably with an ab-initio calculation.
Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei
Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-05-05
Our ultimate goal is to develop a fundamental theory and efficient computational tools to describe dynamic processes between nuclei and to use such tools toward supporting several DOE milestones by: 1) performing predictive calculations of difficult-to-measure landmark reactions for nuclear astrophysics, such as those driving the neutrino signature of our sun; 2) improving our understanding of the structure of nuclei near the neutron drip line, which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University; but also 3) helping to reveal the true nature of the nuclear force. Furthermore, these theoretical developments will support plasma diagnostic efforts at facilities dedicated to the development of terrestrial fusion energy.
Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.
Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya
2016-12-01
An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.
Ab initio Calculations of Optical Properties of Clusters
Shinde, Ravindra
2016-01-01
We have performed systematic large-scale all-electron correlated calculations on boron Bn, aluminum Aln and magnesium Mgn clusters (n=2--5), to study their linear optical absorption spectra. Several possible isomers of each cluster were considered, and their geometries were optimized at the coupled-cluster singles doubles (CCSD) level of theory. Using the optimized ground-state geometries, excited states of different clusters were computed using the multi-reference singles-doubles configuration interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. These CI wavefunctions were used to compute the transition dipole matrix elements connecting the ground and various excited states of different clusters, eventually leading to their linear absorption spectra. The convergence of our results with respect to the basis sets, and the size of the CI expansion was carefully examined. Isomers of a given cluster show a distinct signature spectrum, indicating a strong structure p...
Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions
Navratil, P; Ormand, W E; Forssen, C; Caurier, E
2004-11-30
There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon
Drumm, Daniel W.; Budi, Akin; Per, Manolo C.; Russo, Salvy P.; L Hollenberg, Lloyd C.
2013-02-01
The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.
Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C
2013-02-27
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.
2017-01-01
Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.
Ab initio many-body calculations of the 4He photo-absorption cross section
Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr
2013-01-01
A major goal of nuclear theory is to make quantitative calculations of low-energy nuclear observables starting from microscopic internucleon forces. Computationally, this is complicated by the large model spaces needed to reach convergence in many-body approaches, such as the no-core shell model (NCSM). In recent years, the similarity renormalization group (SRG) has provided a powerful and versatile means to soften interactions for ab initio structure calculations, thus leading to convergence within smaller model spaces. Here we compute the 4He total photo absorption cross section and study, for the first time, the consistency of the SRG approach in a continuum observable.
An accurate potential energy curve for helium based on ab initio calculations
Janzen, A. R.; Aziz, R. A.
1997-07-01
Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.
Thermodynamic assessment of the Ho–Te system supported by ab initio calculations
Ghamri, H.; Belgacem-Bouzida, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Djaballah, Y., E-mail: ydjaballah@yahoo.fr [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Hidoussi, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)
2013-03-05
Highlights: ► We calculated enthalpies of formation of the HoTe and Ho{sub 2}Te{sub 5} compounds by using ab initio method. ► We modeled the Gibbs energy of the HoTe intermediate phase for the first time. ► The thermodynamic parameters of the all phases existing in the system were determined. ► The complete phase diagram of the system (Ho–Te) is calculated. -- Abstract: The phase diagram of the Ho–Te binary system has been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data of the phase equilibria and enthalpies of formation from ab initio electronic-structure calculations within the framework of density-functional theory. Reasonable models were constructed for all the phases of the system. The liquid phase was described as the substitutional solution model with excess energy expressed by Redlich–Kister polynomial. The compounds Ho{sub 2}Te{sub 5} and HoTe{sub 3} were expressed as stoichiometric phases. The (HoTe) phase was modeled by two-sublattices; (Ho,Va){sub 1}(Te){sub 1}. A consistent set of thermodynamic parameters has been derived, and calculated phase diagram was compared with the experimental data. A good agreement between the calculated results and experimental data was obtained.
Ab initio calculation of the spectrum and structure of $^{16}$O
Epelbaum, Evgeny; Lähde, Timo A; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam
2013-01-01
We present ab initio lattice calculations of the low-energy even-parity states of $^{16}$O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 state, we find that the predominant structure is a square configuration of alpha clusters, with rotational excitations that include the first spin-2 state.
Structural Features of Boron-Doped Si(113) Surfaces Simulated by ab initio Calculations
LIAO Long-Zhong; LIU Zheng-Hui; ZHANG Zhao-Hui
2008-01-01
Based on ab initio calculations, boron-doped Si(113) surfaces have been simulated and atomic structures of the surfaces have been proposed. It has been determined that surface features of empty and filled states that are separately localized at pentamers and adatoms indicates a low surface density of B atoms, while it is attributed to heavy doping of B atoms at the second layer that pentamers and adatoms are both present in an image of scanning tunnelling microscopy. B doping at the second layer should be balanced by adsorbed B or Si atoms beside the adatoms and inserted B interstitials below the adatoms.
Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels
2009-01-01
techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...
Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations
Koudriachova, M. V.
2008-06-01
A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.
Thermodynamic modeling of the Fe–Mo system coupled with experiments and ab initio calculations
Rajkumar, V.B.; Hari Kumar, K.C., E-mail: kchkumar@iitm.ac.in
2014-10-25
Highlights: • Gibbs energy functions for all stable phases in the Fe–Mo system obtained using Calphad method. • Ab initio calculation results are employed to improve Gibbs energy functions. • New experimental data have been incorporated in the optimization. • Thermochemical properties: energy of formation, cohesive energy. • Calculated values are compared with experimental results. - Abstract: In this paper we report the Gibbs energy functions for all stable phases in the Fe–Mo system obtained using Calphad method. Newly measured enthalpy increment data, tie-line data and liquidus data for selected compositions are used as input for the Gibbs energy modeling, along with carefully selected thermochemical and phase diagram data from literature. Further, ab initio generated energy of formation at 0 K for the intermetallic phases and end-members of the sublattice model for the μ phase and the σ phase are also used in the optimization of model parameters of the Gibbs energy functions. Calculated phase diagram and the thermochemical properties show good agreement with the experimental data.
Higher-order elastic constants and megabar pressure effects of bcc tungsten: Ab initio calculations
Vekilov, Yu. Kh.; Krasilnikov, O. M.; Lugovskoy, A. V.; Lozovik, Yu. E.
2016-09-01
The general method for the calculation of n th (n ≥2 ) order elastic constants of the loaded crystal is given in the framework of the nonlinear elasticity theory. For the crystals of cubic symmetry under hydrostatic compression, the two schemes of calculation of the elastic constants of second, third, and fourth order from energy-finite strain relations and stress-finite strain relations are implemented. Both techniques are applied for the calculation of elastic constants of orders from second to fourth to the bcc phase of tungsten at a 0-600 GPa pressure range. The energy and stress at the various pressures and deformations are obtained ab initio in the framework of projector augmented wave+generalized gradient approximation (PAW+GGA) method, as implemented in Vienna Ab initio Simulation Package (VASP) code. Using the obtained results, we found the pressure dependence of Grüneisen parameters for long-wave acoustic modes in this interval. The Lamé constants of second and third order were estimated for polycrystalline tungsten. The proposed method is applicable for crystals with arbitrary symmetry.
Ab initio calculations of the optical properties of crystalline and liquid InSb
Sano, Haruyuki, E-mail: h-sano@ishikawa-nct.ac.jp [National Institute of Technology, Ishikawa College, Kitacyujo, Tsubata, Ishikawa 929-0392 (Japan); Mizutani, Goro [School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292 (Japan)
2015-11-15
Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.
Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2
Dorado, Boris; Garcia, Philippe; Torrent, Marc
Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).
Duffy, Daniel J.; Quenneville, Jason; Baumbaugh, T. M.; Kitchener, S. A.; McCormick, R. K.; Dormady, C. N.; Croce, T. A.; Navabi, A.; Stidham, Howard D.; Hsu, Shaw L.; Guirgis, Gamil A.; Deng, Shiping; Durig, James R.
2004-02-01
Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with C s symmetry, has a predicted enthalpy difference of more than 1500 cm -1 from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C 2(GG)>C 1(AG)>C 2v(AA)>C s(GG'), where A indicates the anti form for one of the CH 2Cl groups and G indicates the gauche conformation for the other CH 2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C 2 conformer, and 5 of the fundamentals of the C 2v conformer and 13 those of the C 1 conformer can be confidently assigned.
Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines
Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;
2011-01-01
Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...
A-dependence of the Spectra of the F Isotopes from ab initio Calculations
Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.
2016-03-01
Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.
Rafiee, Marjan A; Hadipour, Nasser L; Naderi-manesh, Hossein
2004-03-01
In this paper, ab initio calculated NQR parameters for some quinoline-containing derivatives are presented. The calculations are carried out in a search for the relationships between the charge distribution of these compounds and their ability to interact with haematin. On the basis of NQR parameters, pi-electron density on the nitrogen atom of the quinoline ring plays a dominant role in determining the ability of quinolines to interact with haematin. This point was confirmed with investigation of Fe+3 cation-pi quinoline ring interactions in 2- and 4-aminoquinoline. However, our results do not show any preference for those carbon atoms of the quinoline ring which previous reports have noted. In order to calculate the NQR parameters, the electric field gradient (EFG) should be evaluated at the site of a quadrupolar nucleus in each compound. EFGs are calculated by the Gaussian 98 program using the B3LYP/6-31 G* level of theory.
ZHANG Zhi-jie; LIU Yu-hua; L(U) Zhong-yuan; LI Ze-sheng
2009-01-01
The rotational isomeric state(RIS) model was constructed for poly(vinylidene chloride)(PVDC) based on quantum chemistry calculations. The statistical weighted parameters were obtained from RIS representations and ab initio energies of conformers for model molecules 2,2,4,4-tetrachloropentane(TCP) and 2,2,4,4,6, 6-hexachlorohep-tane(HCH). By employing the RIS method, the characteristic ratio C∞ was calculated for PVDC. The calculated cha-racteristic ratio for PVDC is in good agreement with experiment result. Additionally, we studied the influence of the statistical weighted parameters on C∞ by calculating δC∞/δlnw. According to the values of δC∞/δlnw, the effects of second-order Cl-CH2 pentane type interaction and Cl-Cl long range interaction on C∞ were found to be important. In contrast, first-order interaction is unimportant.
Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei
2014-06-01
New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
Kimberg, Victor, E-mail: victor.kimberg@pks.mpi.de [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden (Germany); Miron, Catalin, E-mail: miron@synchrotron-soleil.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)
2014-08-15
Highlights: • Some studies related to the vibrational wave functions mapping phenomenon are reviewed. • The core-excited vibrational wave functions were mapped using dissociative and bound final states. • High-resolution experimental data is accompanied by ab initio calculations. • The mapping phenomenon allows one to extract constants of the molecular potentials. • The mapping techniques are general and can be applied for the study of many systems. - Abstract: The recent development of high brightness 3{sup rd} generation soft X-ray sources and high energy resolution electron spectrometers made it possible to accurately trace quantum phenomena associated to the vibrational dynamics in core-excited molecules. The present paper reviews the recent results on mapping of vibrational wave functions and molecular potentials based on electron spectroscopy. We discuss and compare the mapping phenomena in various systems, stressing the advantages of the resonant X-ray scattering for studying of the nuclear dynamics and spectroscopic constants of small molecules. The experimental results discussed in the paper are most often accompanied by state-of-the-art ab initio calculations allowing for a deeper understanding of the quantum effects. Besides its fundamental interest, the vibrational wave function mapping is shown to be useful for the analysis of core- and valence-excited molecular states based on the reflection principle.
Abe, K.; Ito, K.; Suezawa, H.; Hirota, M.; Nishio, M.
1986-10-01
Conformations of a series of acyclic alcohols (CH/sub 3/CH(R)CH(OH)CH/sub 3/, CH/sub 3/CH(R)CH(OH)CH(R')CH/sub 3/, and CH/sub 3/CH(R)CH(OH)Bu/sup t/) were studied (1) by measuring vicinal H-H coupling constants (/sup 3/JH-H), (2) by lanthanoid-induced shift (LIS) analysis, (3) by molecular mechanics calculations (MM2), and (4) by ab initio (STO-3G, 4-31G geometry optimization) calculations. In the case of conformationally flexible alcohols as exemplified by 2-butanol and 3-pentanol, population of conformers determined by the LIS method do not agree with those determined by the /sup 3/JH-H, MM2, and ab initio methods. The discrepancy comes from the fact that the LIS measurement gives the most stable conformation of the alcohol in the LSR-alcohol complex and not of the free alcohol. In some flexible molecules, the most stable conformer in the complex can be different from that of the free molecule. In general, the conformational equilibrium is shifted by coordination of the shift reagent to the conformer whose alkyl chain stretches opposite to the direction of the coordination site of the shift reagent. 21 references, 1 figure, 6 tables.
Iftimie, R; Schofield, J P; Iftimie, Radu; Salahub, Dennis; Schofield, Jeremy
2003-01-01
In this article, we propose an efficient method for sampling the relevant state space in condensed phase reactions. In the present method, the reaction is described by solving the electronic Schr\\"{o}dinger equation for the solute atoms in the presence of explicit solvent molecules. The sampling algorithm uses a molecular mechanics guiding potential in combination with simulated tempering ideas and allows thorough exploration of the solvent state space in the context of an ab initio calculation even when the dielectric relaxation time of the solvent is long. The method is applied to the study of the double proton transfer reaction that takes place between a molecule of acetic acid and a molecule of methanol in tetrahydrofuran. It is demonstrated that calculations of rates of chemical transformations occurring in solvents of medium polarity can be performed with an increase in the cpu time of factors ranging from 4 to 15 with respect to gas-phase calculations.
Convergence from cluster to surface:ab initio calculations of Pd_n clusters
徐昕; 王南钦; 吕鑫; 陈明旦; 张乾二
1995-01-01
The"Metallic State Principle"and a way to constitute the metallic basis set are proposed,the latter is a modification of atomic basis set based on the free electron theory in solid state physics.Pd_n dusters have been carefully studied by means of ab initio calculations with atomic and metallic basis sets.Three rules,namely the"Ground State Principle",the"Lowest-Spin State Principle"and the"Metallic StatePrinciple"have been investigated and the calculation results based on these three rules are compared with eachother in terms of metallic configuration of bulk Pd,d-band width,Fermi level,etc.The calculation resultsdemonstrate that the characteristic properties of bulk Pd may be reproduced to some extent even with a smallduster if the"Metallic State Principle"is adopted.
High-pressure physical properties of magnesium silicate post-perovskite from ab initio calculations
Zi-Jiang Liu; Xiao-Wei Sun; Cai-Rong Zhang; Jian-Bu Hu; Ling-Cang Cai; Qi-Feng Chen
2012-08-01
The structure, thermodynamic and elastic properties of magnesium silicate (MgSiO3) post-perovskite at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density functional theory (DFT). The calculated structural parameters of MgSiO3 post-perovskite are consistent with the available experimental results and the recent theoretical results. The Debye temperature, heat capacity and thermal expansion coefficient at high pressures and temperatures are predicted using the quasi-harmonic Debye model. The elastic constants are calculated using stress–strain relations. A complete elastic tensor of MgSiO3 post-perovskite is determined in the wide pressure range. The calculated elastic anisotropic factors and directional bulk modulus show that MgSiO3 post-perovskite possesses high elastic anisotropy.
Structure and lattice dynamics of rare-earth ferroborate crystals: Ab initio calculation
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.; Serdtsev, A. V.; Kashchenko, M. A.; Klimin, S. A.
2016-08-01
The ab initio calculation of the crystal structure and the phonon spectrum of crystals RFe3(BO3)4 ( R = Pr, Nd, Sm) has been performed in the framework of the density functional theory. The ion coordinates in the unit cell, the lattice parameters, the frequencies and the types of fundamental vibrations, and also the intensities of lines in the Raman spectrum and infrared reflection spectra have been found. The elastic constants of the crystals have been calculated. For low-frequency A 2 mode in PrFe3(BO3)4, a "seed" vibration frequency that strongly interacts with the electronic excitation on a praseodymium ion was found. The calculation results satisfactory agree with the experimental data.
Minimal parameter implicit solvent model for ab initio electronic structure calculations
Dziedzic, Jacek; Skylaris, Chris-Kriton; Mostofi, Arash A; Payne, Mike C
2011-01-01
We present an implicit solvent model for ab initio electronic structure calculations which is fully self-consistent and is based on direct solution of the nonhomogeneous Poisson equation. The solute cavity is naturally defined in terms of an isosurface of the electronic density according to the formula of Fattebert and Gygi (J. Comp. Chem. 23, 6 (2002)). While this model depends on only two parameters, we demonstrate that by using appropriate boundary conditions and dispersion-repulsion contributions, solvation energies obtained for an extensive test set including neutral and charged molecules show dramatic improvement compared to existing models. Our approach is implemented in, but not restricted to, a linear-scaling density functional theory (DFT) framework, opening the path for self-consistent implicit solvent DFT calculations on systems of unprecedented size, which we demonstrate with calculations on a 2615-atom protein-ligand complex.
Ab initio MO calculation of force constants and dipole derivatives for formamide
Sugawara, Yoko; Hamada, Yoshiaki; Hirakawa, Akiko Y.; Tsuboi, Masamichi; Kato, Shigeki; Morokuma, Keiji
1980-08-01
Ab initio SCF MO calculations have been carried out for the equilibrium geometry, vibrational frequencies, force constants, dipole moment and its derivatives of formamide. The energy gradient method was employed and the 4-31G basis set was used. For in-plane vibrations: (1) Calculated normal frequencies were 10-20% greater than the observed fundamental frequencies. (2) Isotope shifts (- d0, - d1, - d2, and - d3 species) were well reproduced. (3) The calculated dipole moment derivatives showed a good correspondence with the infrared intensity pattern. (4) The NH 2 rocking—OCN bending cross term, which should be zero in the Urey—Bradley force field, came out to be as large as -0.18 mdyne A. For out-of-plane vibrations, especially for the NH 2 wagging, it was found to be essential to include polarization functions for N, C and O atoms.
Karl-Heinz Böhm
2014-04-01
Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.
Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides
Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.
One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia; Navrátil, Petr
2009-04-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and the Pauli principle. We outline technical details and present phase-shift results for neutron scattering on H3, He4, and Be10 and proton scattering on He3,4, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-He4S-wave phase shifts. In contrast, the experimental nucleon-He4P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-Be10 continuum is successful in explaining the parity-inverted ground state in Be11.
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia
2009-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on 3He and 4He, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-4He S-wave phase shifts. On the contrary, the experimental nucleon-4He P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground state in 11Be.
The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2: Ab Initio Calculations
Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.
2016-12-01
Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.
Ji, Pengfei
2016-01-01
By combining ab initio quantum mechanics calculation and Drude model, electron temperature and lattice temperature dependent electron thermal conductivity is calculated and implemented into a multiscale model of laser material interaction, which couples the classical molecular dynamics and two-temperature model. The results indicated that the electron thermal conductivity obtained from ab initio calculation leads to faster thermal diffusion than that using the electron thermal conductivity from empirical determination, which further induces deeper melting region, larger number of density waves travelling inside the copper film and more various speeds of atomic clusters ablated from the irradiated film surface.
Ab initio calculation of structure and thermodynamic properties of Zintl aluminide SrAl{sub 2}
Fu, Zhi-Jian [Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing (China); Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics; Jia, Li-Jun [Chongqing Univ. of Arts and Sciences Library (China); Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong [Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; Sun, Xiao-Wei [Lanzhou Jiaotong Univ. (China). School of Mathematics and Physics; Chen, Qi-Feng [China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics
2015-07-01
The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl{sub 2} at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory method within the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl{sub 2} are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations in the thermal expansion a are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.
High-pressure elastic properties of cubic Ir2P from ab initio calculations
Sun, Xiao-Wei; Bioud, Nadhira; Fu, Zhi-Jian; Wei, Xiao-Ping; Song, Ting; Li, Zheng-Wei
2016-10-01
A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C11, C12 and C44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time.
Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.
2017-03-01
The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.
Ab-initio calculations on two-electron ions in strongly coupled plasma environment
Bhattacharyya, S; Mukherjee, T K
2015-01-01
In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with Linac coherent light sources (LCLS) X-ray free electron laser (FEL) and Orion laser has been addressed. In both kind of experiments, helium-like and hydrogen-like spectral lines are used for plasma diagnostics . However, there exist no precise theoretical calculations for He-like ions within dense plasma environment. The strong need for an accurate theoretical estimates for spectral properties of He-like ions in strongly coupled plasma environment leads us to perform ab initio calculations in the framework of Rayleigh-Ritz variation principle in Hylleraas coordinates where ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with extended basis inside a finite domain is presented here. The present values of electron densities corresponding to disappearance of different spectral lines obtained within the fram...
Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations
Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.
2016-06-01
The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.
Tight-binding model for carbon nanotubes from ab initio calculations.
Correa, J D; da Silva, Antônio J R; Pacheco, M
2010-07-14
Here we present a parametrized tight-binding (TB) model to calculate the band structure of single-wall carbon nanotubes (SWNTs). On the basis of ab initio calculations we fit the band structure of nanotubes of different radii with results obtained with an orthogonal TB model to third neighbors, which includes the effects of orbital hybridization by means of a reduced set of parameters. The functional form for the dependence of these parameters on the radius of the tubes can be used to interpolate appropriate TB parameters for different SWNTs and to study the effects of curvature on their electronic properties. Additionally, we have shown that the model gives an appropriate description of the optical spectra of SWNTs, which can be useful for a proper assignation of SWNTs' specific chirality from optical absorption experiments.
An Ab-Initio Calculation of Raman Spectra of Binary Sodium Silicates
尤静林; 蒋国昌; 侯怀宇; 陈辉; 吴永全; 徐匡迪
2004-01-01
Raman spectra of binary sodium silicates are calculated by self-consistent field (SCF) molecular orbital ab initio calculation of the quantum chemical method with several poly silicon-oxygen tetrahedral model clusters when both the basis sets of 6-31 G and 6-31 G(d) are applied. The symmetric stretching vibrational frequency of non-bridging oxygen in a high frequency range and its Raman optical activity and scattering cross section are deduced and analysed. The correlation between this vibrational Raman shift and its microscopic environment of the silicon-oxygen tetrahedron is found based on interior stress of configuration, which depends on the connecting topology of adjacent silicon-oxygen tetrahedra (SiOT). A newly established empirical stress index of tetrahedron is introduced to elucidate the above relationship.
Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi
2000-12-01
We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.
2014-12-01
Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio...Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation Janet Ho and Marco Olguin Sensors...a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation 5a. CONTRACT NUMBER 5b. GRANT
Ab initio calculation of the growth of Te nanorods and Bi2Te3 nanoplatelets
Tian Xiao-Qing; Du Shi-Xuan; Gao Hong-Jun
2008-01-01
In this paper the growth mechanism of a Te/Bi2Te3 novel structure is studied by ab-initio calculations.The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces.The adsorption energy of Te on the Te (001) surface is 3.29 eV,which is about 0.25 eV higher than that of Te on the Te (110).This energy difference makes the preferential growth direction along the ＜ 001＞ direction.In addition,the higher surface energy of Bi2Te3 (110) and the lattice misfit between crystalline Bi2Te3 and Te along ＜ 001＞ direction are considered to explain the growth of the Bi2Te3 nanoplatelets,in which Volmer-Weber model is used.The theoretical results axe in agreement with experimental observation.
A set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data
Eckl, Bernhard; Hasse, Hans
2009-01-01
A parameterization strategy for molecular models on the basis of force fields is proposed, which allows a rapid development of models for small molecules by using results from quantum mechanical (QM) ab initio calculations and thermodynamic data. The geometry of the molecular models is specified according to the atom positions determined by QM energy minimization. The electrostatic interactions are modeled by reducing the electron density distribution to point dipoles and point quadrupoles located in the center of mass of the molecules. Dispersive and repulsive interactions are described by Lennard-Jones sites, for which the parameters are iteratively optimized to experimental vapor-liquid equilibrium (VLE) data, i.e. vapor pressure, saturated liquid density, and enthalpy of vaporization of the considered substance. The proposed modeling strategy was applied to a sample set of ten molecules from different substance classes. New molecular models are presented for iso-butane, cyclohexane, formaldehyde, dimethyl...
Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations
Xiaowei Li
2015-01-01
Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.
Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations
Li, Xiaowei; Ke, Peiling; Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)
2015-01-15
Structure and properties of Cu-doped diamond-like carbon films (DLC) were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.%) on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.
A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations
Blouin, S.; Dufour, P.; Kowalski, P. M.
2017-03-01
Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H2-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H2-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm3.
A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations
Blouin, Simon; Kowalski, Piotr M
2016-01-01
Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H$_2$-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H$_2$-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm$^3$.
Gao, Haiyuan; Li, Meijiao; Guo, Zhendong; Chen, Hongshen; Jin, Zhonghe; Yu, Bin
2011-01-01
Electronic transport properties of monolayer graphene with extreme physical bending up to 90o angle are studied using ab Initio first-principle calculations. The importance of key structural parameters including step height, curvature radius and bending angle are discussed how they modify the transport properties of the deformed graphene sheet comparing to the corresponding flat ones. The local density of state reveals that energy state modification caused by the physical bending is highly localized. It is observed that the transport properties of bent graphene with a wide range of geometrical configurations are insensitive to the structural deformation in the low-energy transmission spectra, even in the extreme case of bending. The results support that graphene, with its superb electromechanical robustness, could serve as a viable material platform in a spectrum of applications such as photovoltaics, flexible electronics, OLED, and 3D electronic chips.
Ab initio calculation and spectral properties of nano- and bulk materials
Kulagin, N. A., E-mail: nkulagin@bestnet.kharkov.ua [Kharkov National University for Radioelectronics (Ukraine)
2013-01-15
This paper presents the development of ab initio calculation of the electronic structure of either clusters, nano-crystals, doped and unperfected bulk crystals. In addition, analysis of selected experimental data for {gamma}- or plasma irradiated pure and doped wide-band gap oxides such as sapphire, {alpha}-Al{sub 2}O{sub 3}, garnet, Y{sub 3}Al{sub 5}O{sub 12}, Gd{sub 3}Sc{sub 2}Al{sub 3}O{sub 12} and perovskites YAlO{sub 3}, SrTiO{sub 3} is presented. Change in the crystals surface morphology and spectroscopic properties of sapphire, perovskites, garnets as well as ion oxidation state in pure and doped {gamma}- and plasma irradiated crystals are discussed in detail using the optical and X ray spectroscopy experimental results.
Verevkin, Sergey P; Emel'yanenko, Vladimir N; Kozlova, Svetlana A
2008-10-23
This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.
AB INITIO CALCULATION OF THE ELASTIC AND OPTICAL PROPERTIES OF AL3SC COMPOUND
M. Song; D.H. Xiao
2007-01-01
The ab initio method has been performed to explore the elastic and optical properties of Al3Sccompound, based on a plane wave pseudopotential method. It can be seen that the calculatedequilibrium lattice parameter and elastic constants are in reasonable agreement with the previousexperimental data. The elastic constants satisfy the requirement for mechanical stability in the cubicstructure of the Al3Sc compound. The optical property calculations show that a strong absorptivepeak exists from 0-15eV and a relative small absorptive peak exists around 30eV. The form iscaused by the optical transitions between high s, p, and d bands, and the latter results from theoptical transitions from high s, p, and d bands to the low 2p band.
Elastic constants of Al and TiN calculated by ab initio method
张铭; 申江; 何家文
2001-01-01
The elastic constants of Al single crystal were calculated by ab initio method for calibration. Three deformation directions were selected in order to obtain the different constants of c11, c12 and c44. The cohesion energy curves of the three deformation directions were calculated. The results of the second order partial differential at the equilibrium point of the cohesion energy curve provide the elastic constants of the Al single crystal. The changes of crystal symmetry and lattice can lead to the deviations of the calculated cohesion energy curves and the accurate elastic constants can not be obtained, but when the correction is taken into calculation, the calculated results are very close to the literature data. It is very difficult to obtain the elastic constants of thin films by experiment and the data from the handbook are scattered in a large scale. However, the elastic constants calculated by this method can be served as a standard. Though the errors of TiN elastic constants calculated by this method are a little higher than that for Al, the results are acceptable.
AB initio calculations of the structure and stability of the non-rigid LiBF 4 molecule
Zakzhevzskii, V. G.; Boldyrev, A. I.; Charkin, O. P.
1980-07-01
Ab initio calculations of the potential energy surface, equilibrium geometry and energetic stability of the non-rigid LiBF4 molecule have been performed using the basis sets of Roos and Siegbahn, and Huzinaga and Dunning in a doublezeta contraction. The results are compared with similar ab initio data for LiBH 4, LiAlH 4, LiBeH -4, LiCH +4, Li 2 F 2, and LiBeF 3 ‡The geometry of the most disadvantageous configuration (m) was not optimized completely
Berg, Rolf W.
-H-Br] [ref 2] and (3) the 1-methylimidazolium ethano-ate, [mim-H-O2CCH3] found [ref 3] to have a less likely existence in the vapor of the corresponding liquid in ampouls at ~200°C (Fig. 2). Experimental Raman results will be compared to ab initio calculated spectra. Fig. 1. Likely gaseous ion pair molecule...
Ab-initio calculation of the photonuclear cross section of $^{10}$B
Kruse, M K G; Johnson, C W
2015-01-01
We present for the first-time the photonuclear cross section of $^{10}$B calculated within the ab-initio No Core Shell Model framework. Realistic two-nucleon (NN) chiral forces up to next-to-next-to-next-order (N3LO), which have been softened by the similarity renormalization group method (SRG) to $\\lambda=2.02$ fm$^{-1}$, were utilized. The electric-dipole response function is calculated using the Lanczos method. The effects of the continuum were accounted for by including neutron escape widths derived from R-matrix theory. The calculated cross section agrees well with experimental data in terms of structure as well as in absolute peak height, $\\sigma_{\\rm max}=4.85~{\\rm mb}$ at photon energy $\\omega=23.61~{\\rm MeV}$, and integrated cross section $85.36\\, {\\rm MeV \\cdotp mb}$. We test the Brink hypothesis by calculating the electric-dipole response for the first five positive-parity states in $^{10}$B and verify that dipole excitations built upon the ground- and excited states have similar characteristics.
Mechanical properties of carbynes investigated by ab initio total-energy calculations
Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola
2012-01-01
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...
Ab initio calculations of the electronic structure and bonding characteristics of LaB6
Hossain, Faruque M.; Riley, Daniel P.; Murch, Graeme E.
2005-12-01
Lanthanum hexaboride ( LaB6 , NIST SRM-660a) is widely used as a standard reference material for calibrating the line position and line shape parameters of powder diffraction instruments. The accuracy of this calibration technique is highly dependent on how completely the reference material is characterized. Critical to x-ray diffraction, this understanding must include the valence of the La atomic position, which in turn will influence the x-ray form factor (f) and hence the diffracted intensities. The electronic structure and bonding properties of LaB6 have been investigated using ab initio plane-wave pseudopotential total energy calculations. The electronic properties and atomic bonding characteristics were analyzed by estimating the energy band structure and the density of states around the Fermi energy level. The calculated energy band structure is consistent with previously reported experimental findings; de Haas-van Alphen and two-dimensional angular correlation of electron-positron annihilation radiation. In addition, the bond strengths and types of atomic bonds in the LaB6 compound were estimated by analyzing the Mulliken charge density population. The calculated result revealed the coexistence of covalent, ionic, and metallic bonding in the LaB6 system and partially explains its high efficiency as a thermionic emitter.
Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)
Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola
Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.
Formation of star nanowires of sulfur-doped zinc oxide: Ab initio calculations
Lin, Qiu-Bao; Wu, Shun-Qing; Zhu, Zi-Zhong
2016-09-01
ZnO nanowires are hexagonally shaped under normal growth conditions, but are transformed from a hexagon to hexagram ones when sulfur dopants are added into the growth solution. The formation mechanism of the hexagram-shaped ZnO nanowires is further studied by the ab initio calculations in this paper. The present calculations support the fact that the hexagonally shaped ZnO nanowires are transformed to hexagram shaped ones when the O atoms on the side surfaces of the nanowires are replaced by S atoms in certain quantities. It indicates that the ratio of sulfur content plays an important role in the hexagram formation. The results of the electronic charge densities indicate that the charge transfer makes the S-Zn bond longer than that of O-Zn. The new charge distribution on the side planes due to the S atoms replacement leads to the formation of the hexagram-shaped nanowires. The calculation on the electronic properties shows that a sulfur-doped hexagram ZnO nanowire is an indirect band gap semiconductor with a narrow gap. When dopant is increased, the gap will decrease.
Integration of ab-initio nuclear calculation with derivative free optimization technique
Sharda, Anurag [Iowa State Univ., Ames, IA (United States)
2008-01-01
Optimization techniques are finding their inroads into the field of nuclear physics calculations where the objective functions are very complex and computationally intensive. A vast space of parameters needs searching to obtain a good match between theoretical (computed) and experimental observables, such as energy levels and spectra. Manual calculation defies the scope of such complex calculation and are prone to error at the same time. This body of work attempts to formulate a design and implement it which would integrate the ab initio nuclear physics code MFDn and the VTDIRECT95 code. VTDIRECT95 is a Fortran95 suite of parallel code implementing the derivative-free optimization algorithm DIRECT. Proposed design is implemented for a serial and parallel version of the optimization technique. Experiment with the initial implementation of the design showing good matches for several single-nucleus cases are conducted. Determination and assignment of appropriate number of processors for parallel integration code is implemented to increase the efficiency and resource utilization in the case of multiple nuclei parameter search.
Ab initio calculation of optical constants from visible to x-ray energies
Prange, M. P.; Rivas, G.; Ankudinov, A. L.; Rehr, J. J.
2004-03-01
We present a semi-automated approach for ab initio calculations of optical constants of materials from the visible to the hard x-ray energies. The approach is based on a generalization of the real space Green's formalism implemented in the FEFF8 spectroscopy code to include optical spectra. The method includes self-consistent potentials, core-hole and self-energy effects, inelastic losses and a full- or high order multiple-scattering. The procedure is based on calculations of the imaginary part of the dielectric function ɛ2 summed over all edges, from which other optical constants are derived using Kramers-Kronig transforms and analytical relations. These constants include the complex index of refraction, the real part of the dielectric function, and energy loss spectra. In contrast to standard atomic tables, the calculations include solid-state corrections, such as fine structure, Debye-Waller factors, lifetime broadening, etc. Typical results for several materials are presented and compared with experiment.
Sawant, Dattatray K.; Klaassen, Joshua J.; Durig, James R.
2013-06-01
The infrared and Raman spectra (3200 to 50 cm^{-1}) of the gas, liquid or solution, and solid have been recorded of isocyanocyclopentane, _{c}-C_{5}H_{9}NC. FT-microwave studies have also been carried out and 23 transitions were recorded for the envelope-axial (Ax) conformer. Variable temperature (-55 to -100°C) studies of the infrared spectra (3200 to 400 cm^{-1}) dissolved in liquid xenon have been carried out. From these data, both the Ax and envelope-equatorial (Eq) conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 102 ± 10 cm^{-1} (1.21 ± 0.03 kJ mol^{-1}) with the Ax conformer the more stable form. The percentage of the Eq conformer is estimated to be 38 ± 1% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing several different basis sets up to aug-cc-pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been made for the observed bands for both conformers with initial predictions by MP2(full)/6-31G(d) ab initio calculations to obtain harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The heavy atom distances (Å): C≡N = 1.176 ; C_{α}-N≡C= 1.432; C_{α}-C_{β},C_{β}' = 1.534; C_{β}-C_{γ}, C_{γ}' = 1.542; C_{γ}-C_{γ}' = 1.554 and angles (°:angleC_{α}-N≡C = 177.8; angleC_{β}C_{α}-N≡C = 110.4; angleC_{β}C_{α}C_{β}'= 102.9; angleC_{α}C_{β}C_{γ} = 103.6; angleC_{β}C_{γ}C_{γ}' = 105.9. The results are discussed and compared to the corresponding properties of some related molecules.
Iwano, Sakae; Kawashima, Yoshiyuki; Hirota, Eizi
2016-06-01
We have systematically investigated the van der Waals complexes consisting of the one from each of the two groups: (Rg, CO, N_2 or CO_2) and (dimethyl ether, dimethyl sulfide, ethylene oxide or ethylene sulfide), by using Fourier transform microwave spectroscopy supplemented by ab initio MO calculations, in order to understand the dynamical behavior of van der Waals complexes and to obtain information on the potential function to internal motions in complexes. Two examples of the N_2 complex were investigated: N_2-DME (dimethyl ether), for which we reported a preliminary result and N_2-EO (ethylene oxide). In the present study we focused attention to the N_2-ES (ethylene sulfide) complex. We have detected two sets of the {b}-type transitions for the 15N_2-ES in ortho and para states, and have analyzed them by using the asymmetric-rotor program of {A}-reduction. In contrast with the N_2-EO, for which each of the ortho and para states were found split into a strong/weak pair, only some transitions of the 15N_2-ES were accompanied by two or three components. The observed spectra of the 14N_2-ES were complicated because of hyperfine splittings due to the nuclear quadrupole coupling of the two nitrogen atoms. We concluded that the N_2 moiety was located in the plane perpendicular to the C-S-C plane and bisecting the CSC angle of the ES. Two isomers were expected to exist for 15NN-ES, one with 15N in the inner and the other in the outer position, and in fact two sets of the spectra were detected. We have carried out ab initio molecular orbital calculations at the level of MP2 with basis sets 6-311++G(d, p), aug-cc-pVDZ, and aug-cc-pVTZ, to complement the information on the intracomplex motions obtained from the observed rotational spectra. Y. Kawashima, A. Sato, Y. Orita, and E. Hirota, J. Phys. Chem. A, 2012 116, 1224 Y. Kawashima, Y. Tatamitani, Y. Morita, and E. Hirota, 61st International Symposium on Molecular Spectroscopy, TE10 (2006) Y. Kawashima and E. Hirota, J
Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations
Gao, Fei; Weber, William J.; Xiao, H. Y.; Zu, Xiaotao T.
2009-09-11
Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the most stable configuration of a di-vacancy cluster consists of two C vacancies located at second nearest neighbor sites, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and n C vacancies (VSi-nVC) are much smaller than those with a C vacancy and n Si vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.
Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations
Gao, F.; Weber, W. J.; Xiao, H. Y.; Zu, X. T.
2009-09-01
Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the di-vacancy cluster consists of two C vacancies located at the second nearest neighbor sites is stable up to 1300 K, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and nC vacancies (VSi-nVC) are much smaller than those with a C vacancy and nSi vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.
Hafner, Jürgen
2010-09-29
During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.
Ab initio calculation of the crystalline structure and IR spectrum of polymers: nylon 6 polymorphs.
Quarti, Claudio; Milani, Alberto; Civalleri, Bartolomeo; Orlando, Roberto; Castiglioni, Chiara
2012-07-19
State-of-the-art computational methods in solid-state chemistry were applied to predict the structural and spectroscopic properties of the α and γ crystalline polymorphs of nylon 6. Density functional theory calculations augmented with an empirical dispersion correction (DFT-D) were used for the optimization of the two different crystal structures and of the isolated chains, characterized by a different regular conformation and described as one-dimensional infinite chains. The structural parameters of both crystalline polymorphs were correctly predicted, and new insight into the interplay of conformational effects, hydrogen bonding, and van der Waals interactions in affecting the properties of the crystal structures of polyamides was obtained. The calculated infrared spectra were compared to experimental data; based on computed vibrational eigenvectors, assignment of the infrared absorptions of the two nylon 6 polymorphs was carried out and critically analyzed in light of previous investigations. On the basis of a comparison of the computed and experimental IR spectra, a set of marker bands was identified and proposed as a tool for detecting and quantifying the presence of a given polymorph in a real sample: several marker bands employed in the past were confirmed, whereas some of the previous assignments are criticized. In addition, some new marker bands are proposed. The results obtained demonstrate that accurate computational techniques are now affordable for polymers characterization, opening the way to several applications of ab initio modeling to the study of many families of polymeric materials.
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Carbon and proton Overhauser DNP from MD simulations and ab initio calculations: TEMPOL in acetone.
Küçük, Sami Emre; Biktagirov, Timur; Sezer, Deniz
2015-10-14
A computational analysis of the Overhauser effect is reported for the proton, methyl carbon, and carbonyl carbon nuclei of liquid acetone doped with the nitroxide radical TEMPOL. A practical methodology for calculating the dynamic nuclear polarization (DNP) coupling factors by accounting for both dipole-dipole and Fermi-contact interactions is presented. The contribution to the dipolar spectral density function of nuclear spins that are not too far from TEMPOL is computed through classical molecular dynamics (MD) simulations, whereas the contribution of distant spins is included analytically. Fermi contacts are obtained by subjecting a few molecules from every MD snapshot to ab initio quantum mechanical calculations. Scalar interaction is found to be an essential part of the (13)C Overhauser DNP. While mostly detrimental to the carbonyl carbon of acetone it is predicted to result in large enhancements of the methyl carbon signal at magnetic fields of 9 T and beyond. In contrast, scalar coupling is shown to be negligible for the protons of acetone. The additional influence of proton polarization on the carbon DNP (three-spin effect) is also analyzed computationally. Its effect, however, is concluded to be practically insignificant for liquid acetone.
Marjan Rafiee
2015-09-01
Full Text Available Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect.
Ab initio calculations for dissociative hydrogen adsorption on lithium oxide surfaces
Sutjianto, A. [Argonne National Lab., IL (United States). Chemical Technology Div.]|[Michigan Technological Univ., Houghton, MI (United States). Physics Dept.; Tam, S.W.; Curtiss, L.A.; Johnson, C.E. [Argonne National Lab., IL (United States). Chemical Technology Div.; Pandey, R. [Michigan Technological Univ., Houghton, MI (United States). Physics Dept.
1994-12-01
Lithium ceramics are one class of materials being considered as tritium breeders for fusion technology,and hydrogen is known to enhance the release of tritium from lithium ceramic materials. Dissociative hydrogen chemisorption on the Li{sub 2}O surfaces of the (100), (110), and (111) planes has been investigated with ab initio Hartree-Fock calculations. Calculations for unrelaxed crystal Li{sub 2}O structures indicated that except for the (100) surface, the (110) and (111) surfaces are stable. Results on the heterolytic sites of n-layer (110) (where n {ge} 2) slabs and three-layer (111) slabs suggest that dissociative hydrogen chemisorption is endothermic. For a one-layer (110) slab at 100% surface coverage, the dissociative hydrogen chemisorption is exothermic, forming OH{sup {minus}} and Li{sup +}H{sup {minus}}Li{sup +}. The results also indicate that the low coordination environment in surface step structures, such as kinks and ledges, may plan an important role in the hydrogen chemisorption process. On the homolytic sites of the (110) and (111) surfaces, there is no hydrogen chemisorption.
Ab initio transport calculations of molecular wires with electron-phonon couplings
Hirose, Kenji; Kobayashi, Nobuhiko
2009-03-01
Understanding of electron transport through nanostructures becomes important with the advancement of fabrication process to construct atomic-scale devices. Due to the drastic change of transport properties by contact conditions to electrodes in local electric fields, first-principles calculation approaches are indispensable to understand and characterize the transport properties of nanometer-scale molecular devices. Here we study the transport properties of molecular wires between metallic electrodes, especially focusing on the effects of contacts to electrodes and of the electron-phonon interactions. We use an ab initio calculation method based on the scattering waves, which are obtained by the recursion-transfer-matrix (RTM) method, combined with non-equilibrium Green's function (NEGF) method including the electron-phonon scatterings. We find that conductance shows exponential behaviors as a function of the length of molecular wires due to tunneling process determined by the HOMO-LUMO energy gap. From the voltage drop behaviors inside the molecular wires, we show that the contact resistances are dominant source for the bias drop and thus are related to local heating. We will present the electron-phonon coupling effects at contact on the inelastic scattering and discuss on the local heating and local temperature, comparing them with those of metallic atomic wires.
Ab initio calculation of structural stability, electronic and optical properties of Ag{sub 2}Se
Rameshkumar, S.; Jayalakshmi, V., E-mail: karthikajayam@yahoo.co.in [Department of Physics, SRM University, Ramapuram Campus, Chennai – 600089 (India); Jaiganesh, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Palanivel, B. [Department of Physics, Pondicherry Engineering College, Puducherry – 605014 (India)
2015-06-24
The structural stability, electronic and optical properties of Ag{sub 2}Se compound is studied using ab initio packages. Ag{sub 2}Se is found to crystallize in orthorhombic structure with two different space groups i.e. P2{sub 1}2{sub 1}2{sub 1} (No. 19) and P222{sub 1} (No. 17). For this compound in these two space groups, the total energy has been computed as a function of volume. Our calculated results suggest that the P2{sub 1}2{sub 1}2{sub 1}–phase is more stable than that of the P222{sub 1}–phase. The band structure calculation show that Ag{sub 2}Se is semimetallic with an overlap of about 0.014 eV in P2{sub 1}2{sub 1}2{sub 1}–phase whereas is metallic in nature in P222{sub 1}–phase. Moreover, the optical properties including the dielectric function, energy loss spectrum are obtained and analysed.
Rafiee, Marjan; Javaheri, Masoumeh
2015-01-01
Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect. PMID:27844007
Band offset of the ZnO/Cu2O heterojunction from ab initio calculations
Zemzemi, M.; Alaya, S.
2013-12-01
The ZnO/Cu2O system has known a recent revival of interest in solar cells for its potential use as a heterojunction able to highly perform under visible light. In this work, we are interested on the characterization of the interface through nanoscale modelization based on ab initio (Density Functional Theory (DFT), Local Density Approximation (LDA), Generalized Gradient Approximation (GGA-PBE), and Pseudopotential (PP)). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconductor to another. We built a zinc oxide in the wurtzite structure along the [0 0 0 1] on which we placed the copper oxide in the hexagonal structure (CdI2-type). We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well with the DFT. Our calculations of the band offset gave us a value that corresponds to other experimental and theoretical values.
Ab initio Calculations of the Linear and Nonlinear Optical Properties of Amino Acids
Tokarz, D; Tuer, A; Cisek, R; Krouglov, S; Barzda, V, E-mail: virgis.barzda@utoronto.ca [Department of Chemical and Physical Sciences, Department of Chemistry, Department of Physics, and Institute for Optical Sciences, University of Toronto, 3359 Mississauga Road North, Mississauga, ON L5L 1C6 (Canada)
2010-11-01
A number of proteins can assemble into chiral structures that display strong nonlinear optical activity. For instance, proteins such as myosin and collagen exhibit intense second harmonic generation (SHG). A large number of experimental studies on the SHG of proteins have been conducted; however few predictive models have been proposed that reliably relate the macroscopic SHG properties to the amino acids present in the peptidic chain. In this study, the linear polarizability ({alpha}), first ({beta}) and second hyperpolarizability ({gamma}) of all twenty amino acids was investigated by time-dependent Hartree-Fock calculations under physiological conditions. Ab initio calculations were performed using the GAMESSUS computational chemistry package. We have found that the aromatic amino acids give rise to the largest mean {alpha}, {beta} and {gamma} values. With this finding, we hope to apply this method to protein structures in order to understand how second harmonic signal is generated from individual amino acids, as well as, recognize how manipulation of the secondary structure of proteins might enhance SHG and third harmonic generation (THG).
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G; Hjorth-Jensen, M; Papenbrock, T
2016-01-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{\\rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-clust...
An effective scheme for selecting basis sets for ab initio calculations
无
2000-01-01
An effective scheme for selecting economical basis sets for ab initio calculations has been proposed for wide-range systems based on the analysis of different functions in the currently used basis sets. Accordingly, the selection of the basis sets should be made according to the different properties and real chemical surrounding of the atoms in the systems. For normal systems, the size and level of the basis sets used for the descriptions of the constituent atoms should be increased from left to right according to the position of the atom in the periodic table. Moreover, the more the atom is negatively charged, the more the basis functions and suitable polarization functions and diffuse functions should be utilized. Whereas, for the positively charged atoms, the size of basis set may be reduced. It is not necessary to use the polarization and diffuse functions for the covalently saturated atoms with normal valence states. However, for the system involving hydrogen-bonding, weak interactions, functional groups, metallic bonding with zero valence or low positive valence, and other sensitive interactions, the polarization and diffuse functions must be used. With this scheme, reliable calculation results may be obtained with suitable basis sets and smaller computational capability. By detailed analysis of a series of systems, it has been demonstrated that this scheme is very practical and effective. This scheme may be used in Hartree-Fock, M?ller-Plesset and density functional theoretical calculations. It is expected that the scheme would find important applications in the extensive calculations of large systems in chemistry, materials science, and life and biological sciences.
Lei Li
2015-01-01
Full Text Available The ab initio calculations about the properties of the interstitials doping in the rutile TiO2 and their impact on the transport coefficients are reported. As the doping of the Zr or Ti interstitials in the TiO2, the lattice Ti4+ ions acquire the excess electrons so reduced to the Ti3+ or Ti2+ ions. However, the Cu interstitials could not lose enough electrons to reduce the lattice Ti4+ ions. Furthermore, the Ti or Cu interstitials in the ZrO2 also are unable to promote the lattice Zr4+ ions to form the lattice Zr3+ or Zr2+ ions. The high transport coefficients are observed in the defected TiO2 with the Ti or Zr interstitials as the high concentration of the Ti3+ or Ti2+ ions. So, the Zr interstitials are the favorable choice for the extra-doping to improve the transport properties in the TiO2-based resistive random access memory.
Experimental and ab initio DFT calculated Raman Spectrum of Sudan I, a Red Dye
Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Liu, Chuan
2011-01-01
The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3-21G and 6-311+G(d,p) basis....... Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different...... of the Sudan I molecule was involved in the majority of the vibrations through N N and C–N stretching and various bending modes. Low-intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the resonance Raman effect when using the 532 nm excitation line...
Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo
2016-06-21
The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.
Giuliani, A. [Synchrotron Soleil, DISCO beamline, L' Orme des Merisiers, 91 - Gif-sur-Yvette (France); Giuliani, A. [Cepia, Institut National de la Recherche Agronomique (INRA), 44 - Nantes (France); Limiao-Vieira, P. [Lisboa Univ. Nova, Lab. de Colisoes Atomicas e Moleculares, CEFITEC, Dept. de Fysica, Caparica (Portugal); Limao-Vieira, P.; Mason, N. [Open Univ., Centre of Molecular and Optical Sciences, Dept. of Physics and Astronomy, Milton Keynes, MK (United Kingdom); Duflot, D. [Lille Univ. des Sciences et Technologies, Lab. de Physique des Lasers, Atomes et Molecules (PhLAM), UMR CNRS 8523, Centre d' Etudes et de Recherches Lasers et Applications, CERLA, FR CNRS 2416, 59 - Villeneuve d' Ascq (France); Milosavljevic, A.R.; Marinkovic, B.P. [Laboratory for atomic collision processes, Institute of Physics, Belgrade, Serbia (Yugoslavia); Hoffmann, S.V. [Aarhus Univ., Institute for Storage Ring Facilities (Denmark); Delwiche, J.; Hubin-Franskin, M.J. [Liege Univ., Laboratoire de Spectroscopie d' Electrons Diffuses, Institut de Chimie (Belgium)
2009-01-15
The electronic spectroscopy of isolated tetrahydrofuran (THF) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 5.8 - 10.6 eV with absolute cross-section measurements derived. In addition, an electron energy loss spectrum was recorded at 100 eV and 10 degrees over the 5 - 11.4 eV range. The He(I) photoelectron spectrum was also collected to quantify ionisation energies in the 9 - 16.1 eV spectral region. These experiments are supported by the first high-level ab initio calculations performed on the excited states of the neutral molecule and on the ground state of the positive ion. The excellent agreement between the theoretical results and the measurements allows us to solve several discrepancies concerning the electronic state spectroscopy of THF. The present work reconsiders the question of the lowest energy conformers of the molecule and its population distribution at room temperature. (authors)
Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations
Salazar, J. M.; Weber, G.; Simon, J. M.; Bezverkhyy, I.; Bellat, J. P.
2015-03-01
Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.
An effective scheme for selecting basis sets for ab initio calculations
张瑞勤; 黄建华; 步宇翔; 韩克利; 李述汤; 何国钟
2000-01-01
An effective scheme for selecting economical basis sets for ab initio calculations has been proposed for wide-range systems based on the analysis of different functions in the currently used basis sets. Accordingly, the selection of the basis sets should be made according to the different properties and real chemical surrounding of the atoms in the systems. For normal systems, the size and level of the basis sets used for the descriptions of the constituent atoms should be increased from left to right according to the position of the atom in the periodic table. Moreover, the more the atom is negatively charged, the more the basis functions and suitable polarization functions and diffuse functions should be utilized. whereas, for the positively charged atoms, the size of basis set may be reduced. it is not necessary to use the polarization and diffuse functions for the covalently saturated atoms with normal valence states. However, for the system involving hy-drogen-bonding, weak interactions, functional
Barker, John R; Nguyen, Thanh Lam; Stanton, John F
2012-06-21
Calculations were carried out for 25 isotopologues of the title reaction for various combinations of (35)Cl, (37)Cl, (12)C, (13)C, (14)C, H, and D. The computed rate constants are based on harmonic vibrational frequencies calculated at the CCSD(T)/aug-cc-pVTZ level of theory and X(ij) vibrational anharmonicity coefficients calculated at the CCSD(T) /aug-cc-pVDZ level of theory. For some reactions, anharmonicity coefficients were also computed at the CCSD(T)/aug-cc-pVTZ level of theory. The classical reaction barrier was taken from Eskola et al. [J. Phys. Chem. A 2008, 112, 7391-7401], who extrapolated CCSD(T) calculations to the complete basis set limit. Rate constants were calculated for temperatures from ∼100 to ∼2000 K. The computed ab initio rate constant for the normal isotopologue is in good agreement with experiments over the entire temperature range (∼10% lower than the recommended experimental value at 298 K). The ab initio H/D kinetic isotope effects (KIEs) for CH(3)D, CH(2)D(2), CHD(3), and CD(4) are in very good agreement with literature experimental data. The ab initio (12)C/(13)C KIE is in error by ∼2% at 298 K for calculations using X(ij) coefficients computed with the aug-cc-pVDZ basis set, but the error is reduced to ∼1% when X(ij) coefficients computed with the larger aug-cc-pVTZ basis set are used. Systematic improvements appear to be possible. The present SCTST results are found to be more accurate than those from other theoretical calculations. Overall, this is a very promising method for computing ab initio kinetic isotope effects.
WU Nan-nan; OUYANG Shun-li; LI Zuo-wei; LIU Jing-yao; GAO Shu-qin
2011-01-01
We analyzed the properties and structures of the hydrogen-bonded complexes of tetrahydrofuran(THF)and water by means of experimental Raman spectra and ab initio calculations.The optimized geometries and vibrational frequencies of the neat THF molecule and its hydrogen-bonded complexes with water(THF/H2O) were calculated at the MP2/6-31 l+G(d,p) level of theory.We found that the intermolecular hydrogen bonds which are formed from the binary mixtures of the neat THF and water with different molar ratios could explain the changes in wavenumber position and linewidth very well.The combination of ab initio calculations and experimental Raman spectral data provides an insight into the hydrogen bonds leading to the concentration dependent changes in the spectral features.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T. [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Louisiana State Univ., Baton Rouge, LA (United States); Maris, Pieter [Iowa State Univ., Ames, IA (United States); Launey, K. D. [Louisiana State Univ., Baton Rouge, LA (United States); Draayer, J. P. [Louisiana State Univ., Baton Rouge, LA (United States); Vary, James [Iowa State Univ., Ames, IA (United States); Langr, D. [Czech Technical Univ., Prague (Czech Republic); Aerospace Research and Test Establishment, Prague (Czech Republic); Saule, E. [Univ. of North Carolina, Charlotte, NC (United States); Caprio, M. A. [Univ. of Notre Dame, IN (United States); Catalyurek, U. [The Ohio State Univ., Columbus, OH (United States). Dept. of Electrical and Computer Engineering; Sosonkina, M. [Old Dominion Univ., Norfolk, VA (United States)
2016-06-09
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for ^{6}Li and ^{12}C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
Hirokazu Takaki
2014-01-01
Full Text Available We present an efficient computation technique for ab-initio electron transport calculations based on density functional theory and the nonequilibrium Green’s function formalism for application to heterostructures with two-dimensional (2D interfaces. The computational load for constructing the Green’s functions, which depends not only on the energy but also on the 2D Bloch wave vector along the interfaces and is thus catastrophically heavy, is circumvented by parallel computational techniques with the message passing interface, which divides the calculations of the Green’s functions with respect to energy and wave vectors. To demonstrate the computational efficiency of the present code, we perform ab-initio electron transport calculations of Al(100-Si(100-Al(100 heterostructures, one of the most typical metal-semiconductor-metal systems, and show their transmission spectra, density of states (DOSs, and dependence on the thickness of the Si layers.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T; Launey, K D; Draayer, J P; Vary, J P; Langr, D; Saule, E; Caprio, M A; Catalyurek, U; Sosonkina, M
2016-01-01
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T.; Maris, P.; Launey, K. D.; Draayer, J. P.; Vary, J. P.; Langr, D.; Saule, E.; Caprio, M. A.; Catalyurek, U.; Sosonkina, M.
2016-10-01
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU3-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
Input/Output of ab-initio nuclear structure calculations for improved performance and portability
Laghave, Nikhil [Iowa State Univ., Ames, IA (United States)
2010-01-01
Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.
Rovibrational states of the H2O-H2 complex: An ab initio calculation
van der Avoird, Ad; Nesbitt, David J.
2011-01-01
All bound rovibrational levels of the H2O-H2 dimer are calculated for total angular momentum J = 0-5 on two recent intermolecular potential surfaces reported by Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] and Hodges et al. [J. Chem. Phys. 120, 710 (2004)] obtained through ab initio calculations. The method used handles correctly the large amplitude internal motions in this complex; it involves a discrete variable representation of the intermolecular distance coordinate R and a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer. The basis is adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H2O and H2 as well as to inversion symmetry. Dimers containing oH2 are more strongly bound than dimers with pH2, as expected, with dissociation energies D_0 of 33.57, 36.63, 53.60, and 59.04 cm^{-1}for pH2O-pH2, oH2O-pH2, pH2O-oH2, and oH2O-oH2, respectively, on the potential of Valiron et al. that corresponds to a binding energy D_e of 235.14 cm^{-1}. Rovibrational wave functions are computed as well and the nature of the bound states in the four different dimer species is discussed. Converged rovibrational levels on both potentials agree well with the high-resolution spectrum reported by Weida and Nesbitt [J. Chem. Phys. 110, 156 (1999)]; the hindered internal rotor model that was used to interpret this spectrum is qualitatively correct.
Ab Initio Calculations and Synthesis of Sc2InC-Y2InC Solid Solution
2010-02-03
tribological materials. It will study a solid solution of this fascinating new class of nanolaminated materials using both theoretical and experimental means...Sc2InC-Y2InC solid solution using ab initio calculations and 2) to synthesize Sc2InC-Y2InC thin films using magnetron sputtering and to determine the correlation between composition, structure, and mechanical properties thereof.
Willaime, F. [Division de l' energie nucleaire, CEA Centre de Saclay, 91191 Gif-sur-Yvette (France); Deutsch, T.; Pochet, P. [INAC, Direction des sciences de la matiere, CEA Centre de Grenoble, 38054 Grenoble Cedex 9 (France)
2010-07-01
Ab-initio calculation methods, for the purposes of computing electronic structures, have made it possible, since the early nineties, to simulate the properties of perfect crystalline materials (materials free of any defect). By improving such methods, and with the increasing power of supercomputers, it has now become feasible to simulate the properties of elementary defects, which may seldom be accessed directly through experiments. This has opened up a vast, fruitful field of multi-scale simulations, where such data yield the basis for realistic simulations of the kinetics of materials evolution. The kinetic Monte-Carlo method thus provides the means to model phenomena acting at the scale of a second, or even of a year. In the issue of self-diffusion in silicon, multi-scale simulation has been successful in predicting an asymmetrical behaviour: a speeding up of vacancy diffusion under compression and a tailing off under tension, and conversely, a speeding up of interstitial diffusion under tension and a falling off under compression. Multi-scale modeling has also been successful in simulating irradiation defects in iron. (A.C.)
Hydration of potassium iodide dimer studied by photoelectron spectroscopy and ab initio calculations
Li, Ren-Zhong; Zeng, Zhen; Hou, Gao-Lei; Xu, Hong-Guang; Zhao, Xiang; Gao, Yi Qin; Zheng, Wei-Jun
2016-11-01
We measured the photoelectron spectra of (KI)2-(H2O)n (n = 0-3) and conducted ab initio calculations on (KI)2-(H2O)n anions and their corresponding neutrals up to n = 6. Two types of spectral features are observed in the experimental spectra of (KI)2-(H2O) and (KI)2-(H2O)2, indicating that two types of isomers coexist, in which the high EBE feature corresponds to the hydrated chain-like (KI)2- while the low EBE feature corresponds to the hydrated pyramidal (KI)2-. In (KI)2-(H2O)3, the (KI)2- unit prefers a pyramidal configuration, and one of the K-I distances is elongated significantly, thus a K atom is firstly separated out from the (KI)2- unit. As for the neutrals, the bare (KI)2 has a rhombus structure, and the structures of (KI)2(H2O)n are evolved from the rhombus (KI)2 unit by the addition of H2O. When the number of water molecules reaches 4, the K-I distances have significant increment and one of the I atoms prefers to leave the (KI)2 unit. The comparison of (KI)2(H2O)n and (NaI)2(H2O)n indicates that it is slightly more difficult to pry apart (KI)2 than (NaI)2 via hydration, which is in agreement with the lower solubility of KI compared to that of NaI.
Douberly, G E; Ricks, A M; Ticknor, B W; Duncan, M A
2008-02-07
The infrared photodissociation spectra (IRPD) in the 700 to 4000 cm(-1) region are reported for H+ (CO2)n clusters (n = 1-4) and their complexes with argon. Weakly bound Ar atoms are attached to each complex upon cluster formation in a pulsed electric discharge/supersonic expansion cluster source. An expanded IRPD spectrum of the H+ (CO2)Ar complex, previously reported in the 2600-3000 cm(-1) range [Dopfer, O.; Olkhov, R.V.; Roth, D.; Maier, J.P. Chem. Phys. Lett. 1998, 296, 585-591] reveals new vibrational resonances. For n = 2 to 4, the vibrational resonances involving the motion of the proton are observed in the 750 to 1500 cm(-1) region of the spectrum, and by comparison to the predictions of theory, the structure of the small clusters are revealed. The monomer species has a nonlinear structure, with the proton binding to the lone pair of an oxygen. In the dimer, this nonlinear configuration is preserved, with the two CO2 units in a trans configuration about the central proton. Upon formation of the trimer, the core CO2 dimer ion undergoes a rearrangement, producing a structure with near C2v symmetry, which is preserved upon successive CO2 solvation. While the higher frequency asymmetric CO2 stretch vibrations are unaffected by the presence of the weakly attached Ar atom, the dynamics of the shared proton motions are substantially altered, largely due to the reduction in symmetry of each complex. For n = 2 to 4, the perturbation due to Ar leads to blue shifts of proton stretching vibrations that involve motion of the proton mostly parallel to the O-H+-O axis of the core ion. Moreover, proton stretching motions perpendicular to this axis exhibit smaller shifts, largely to the red. Ab initio (MP2) calculations of the structures, complexation energies, and harmonic vibrational frequencies are also presented, which support the assignments of the experimental spectra.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Razee, S.S.A.; Staunton, J.B. [Department of Physics, University of Warwick, Coventry (United Kingdom); Ginatempo, B.; Bruno, E. [Dipartimento di Fisica and Unita INFM, Universita di Messina, Messina (Italy); Pinski, F.J. [Department of Physics, University of Cincinnati, OH (United States)
2001-09-24
A theory is presented for describing the effects of annealing magnetic alloys in magnetic fields. It has an ab initio spin-polarized relativistic Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) electronic structure basis and uses the framework of concentration waves. Alloys which would otherwise be soft magnets are found experimentally to develop directional chemical order and significant uniaxial anisotropy when annealed in magnetic fields. Our approach is able to provide a quantitative description of these effects together with the underlying electronic mechanisms. We describe applications to the soft magnetic alloys permalloy and FeCo. (author)
Wang, Shidong; Wang, Zhao; Setyawan, Wahyu; Mingo, Natalio; Curtarolo, Stefano
2011-10-01
Several thousand compounds from the Inorganic Crystal Structure Database have been considered as nanograined, sintered-powder thermoelectrics with the high-throughput ab-initio AFLOW framework. Regression analysis unveils that the power factor is positively correlated with both the electronic band gap and the carrier effective mass, and that the probability of having large thermoelectric power factors increases with the increasing number of atoms per primitive cell. Avenues for further investigation are revealed by this work. These avenues include the role of experimental and theoretical databases in the development of novel materials.
Ab Initio Calculations of Elastic Constants of Li2O under Pressure
LI Xiao-Feng; CHEN Xiang-Rong; JI Guang-Fu; MENG Chuan-Min
2006-01-01
@@ We investigate the equilibrium lattice constant, bulk modulus, elastic constants and Debye temperature of Li2 O under pressure by using ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The obtained results at zero pressure are well consistent with the available experimental data and other theoretical results. It is found that the elastic constants C11, C12 and C44 and bulk modulus B increase monotonously as pressure increases. Also, the anisotropy will weaken and the Debye temperature will rise with pressure increasing.
Knyazev, D V
2014-01-01
This work is devoted to the investigation of transport and optical properties of liquid aluminum in the two-temperature case. At first optical properties, static electrical and thermal conductivities were obtained in the \\textit{ab initio} calculation. The \\textit{ab initio} calculation is based on the quantum molecular dynamics, density functional theory and the Kubo-Greenwood formula. The semiempirical approximation was constructed based on the results of the \\textit{ab initio} caculation. The approximation yields the dependences $\\sigma_{1_\\mathrm{DC}}\\propto1/T_i^{0.25}$ and $K\\propto T_e/T_i^{0.25}$ for the static electrical conductivity and thermal conductivity, respectively. The approximation is valid for liquid aluminum at $\\rho=2.70$~g/cm$^3$, 3~kK~$\\leq T_i\\leq T_e\\leq20$~kK. Our results are well described by the Drude model with the effective relaxation time $\\tau\\propto T_i^{-0.25}$. We have compared our results with a number of other models. They are all reduced in the low-temperature limit to th...
Kawashima, Yoshiyuki; Iwano, Sakae; Hirota, Eizi
2016-06-01
This paper presents an extension of the preceding talk on the FTMW spectroscopy of N_2-ES (ethylene sulfide), namely the results on N_2-DMS (dimethyl sulfide). We have previously investigated two N_2 complexes: N_2-DME (dimethyl ether), for which we reported a prelimanary result, and N_2-EO (ethylene oxide). We have observed the ground-state rotational spectrum of the N_2-DMS complex, i.e. c-type transitions in the frequency region from 5 to 24 GHz, which we assigned to the normal, 15N_2-DMS, and 15NN-DMS species of the N_2-DMS. We have found both the ortho and para states for the 14N_2-DMS and 15N_2-DMS species. In the case of the 15N_2-DMS, some transitions with Ka = 2 and 3 were observed slightly split by the internal rotation of the two methyl tops of the DMS. The observed spectra of the 15N_2-DMS were analyzed by using the XIAM program. In the case of the para state of the 15N_2-DMS, three rotational and five centrifugal distortion constants with the V3 barrier to the methyl group internal rotation, whereas, in the case of the ortho state of the 15N_2-DMS, two more centrifugal distortion constants, ΦJK and ΦKJ, were needed to reproduce the observed spectra. For the N_2-DMS complex, we concluded that the N_2 moiety was located in a plane perpendicular to the C-S-C plane and bisecting the CSC angle of the DMS. We have carried out ab initio molecular orbital calculations at the level of MP2 with basis sets 6-311++G(d, p), aug-cc-pVDZ, and aug-cc-pVTZ, to complement the information on the intracomplex motions obtained from the observed rotational spectra. We have applied a natural bond orbital (NBO) analysis to the N_2-DMS and N_2-ES to calculate the stabilization energy CT (=Δ Eσσ*), which was closely correlated with the binding energy EB, as found for other related complexes. Y. Kawashima, Y. Tatamitani, Y. Morita, and E. Hirota, 61st International Symposium on Molecular Spectroscopy, TE10 (2006) Y. Kawashima and E. Hirota, J. Phys. Chem. A 2013 117, 13855
Wen, Jun, E-mail: wenjunkd@mail.ustc.edu.cn [School of Physics and Electric Engineering, Anqing Normal University, Anqing 246011 (China); Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Reid, Michael F. [Department of Physics and Astronomy and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PB4800 Christchurch (New Zealand); Ning, Lixin [Department of Physics, Anhui Normal University, Wuhu 241000 (China); Zhang, Jie [School of Physics and Electric Engineering, Anqing Normal University, Anqing 246011 (China); Zhang, Yongfan [Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002 (China); Duan, Chang-Kui; Yin, Min [Department of Physics, University of Science and Technology of China, Hefei 230026 (China)
2014-08-01
Wavefunction-based ab-initio calculations of the electric-dipole moments of 4f{sup N}–4f{sup N} transitions of lanthanide ions are performed to extract the A{sub tp}{sup λ} intensity parameters. The extraction method is an extension of our earlier calculations of crystal-field (CF) parameters for lanthanide ions in crystals. The CASSCF/RASSI-SO (Complete-Active-Space Self-Consistent-Field/Restricted-Active-Space State-Interaction Spin-Orbit) calculations have been carried out on the chosen model system of CaF{sub 2}: Ce{sup 3+} with an interstitial fluoride ion (F{sub i}{sup −}) on z-axis (Ce{sup 3+} ion occupying the C{sub 4v} symmetry site). In consideration of the site symmetry and the coordination situation of Ce{sup 3+} ion at C{sub 4v} site in CaF{sub 2} as well as the superposition model (SM), the calculated intensity parameters for Ce{sup 3+} ion can be classified into three categories, and detailed discussions are then given. - Highlights: • Extraction of transition intensity parameters from ab-initio calculations. • CASSCF/RASSI-SO calculations are performed for Ce{sup 3+}-doped CaF{sub 2} crystal (C{sub 4v} case). • Extracted parameters are analyzed and compared with experiment and other calculation.
Fellinger, Michael R; Hector, Louis G; Trinkle, Dallas R
2017-02-01
We present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of bcc Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT) presented in Ref. (M.R. Fellinger, L.G. Hector Jr., D.R. Trinkle, 2017) [1]. All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP) (G. Kresse, J. Furthmüller, 1996) [2]. The data is stored in the NIST dSpace repository (http://hdl.handle.net/11256/671).
The {\\it ab initio} calculation of spectra of open shell diatomic molecules
Tennyson, Jonathan; McKemmish, Laura K; Yurchenko, Sergei N
2016-01-01
The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell ($^1\\Sigma$) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbations with even larger complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an \\emph{ab initio} approach, these areas are ultracold chemistry and the astrophysics of "cool" stars, brown dwarfs and most recently extraso...
Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.
Šipr, O; Ebert, H; Minár, J
2015-02-11
A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.
Ab initio calculations in the symplectic no-core configuration interaction framework
McCoy, Anna; Caprio, Mark; Dytrych, Tomas
2016-09-01
A major challenge in quantitatively predicting nuclear structure directly from realistic nucleon-nucleon interactions, i.e., ab initio, arises due to an explosion in the dimension of the traditional Slater determinant basis as the number of nucleons and included shells increases. The need for including highly excited configurations arises, in large part, because the kinetic energy induces strong coupling across shells. However, the kinetic energy conserves symplectic symmetry. By combining this symplectic symmetry with the no-core configuration interaction (NCCI) framework, we reduce the size of basis necessary to obtain accurate results for p-shell nuclei. Supported by the US DOE under Grants DE-AC05-06OR23100 and DE-FG02-95ER-40934, and the Czech Science Foundation under Grant No. 16-16772S.
Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki
2007-11-01
Path integral molecular dynamics simulations for the H6+ and D6+ cluster cations have been carried out in order to understand the floppy nature of their molecular structure due to quantum-mechanical fluctuation. A full-dimensional analytical potential energy surface for the ground electronic state of H6+ has been developed on the basis of accurate ab initio electronic structure calculations at the CCSD(T)/cc-pVTZ level. It is found that the outer H 2(D 2) nuclei rotate almost freely and that the probability density distributions of the central H 2(D 2) nuclei show strong spatial delocalization.
Ji, Pengfei; Zhang, Yuwen
2016-03-01
On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.
Ji, Pengfei
2016-01-01
On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provide a general way that is accessible to other metals in laser heating.
Kawai, Shigeki; Sadeghi, Ali; Xu, Feng; Feng, Xu; Peng, Lifen; Lifen, Peng; Pawlak, Rémy; Glatzel, Thilo; Willand, Alexander; Orita, Akihiro; Otera, Junzo; Goedecker, Stefan; Meyer, Ernst
2013-10-22
State-of-the art experimental techniques such as scanning tunneling microscopy have great difficulties in extracting detailed structural information about molecules adsorbed on surfaces. By combining atomic force microscopy and Kelvin probe force microscopy with ab initio calculations, we demonstrate that we can obtain a wealth of detailed structural information about the molecule itself and its environment. Studying an FFPB molecule on a gold surface, we are able to determine its exact location on the surface, the nature of its bonding properties with neighboring molecules that lead to the growth of one-dimensional strips, and the internal torsions and bendings of the molecule.
van der Horst, J.-W.; Bobbert, P. A.; Michels, M. A. J.; Brocks, G.; Kelly, P. J.
1999-11-01
We present an ab initio calculation of the electronic and optical excitations of an isolated polythiophene chain as well as of bulk polythiophene. We use the GW approximation for the electronic self-energy and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain screening in the case of bulk polythiophene drastically reduces both the quasiparticle band gap and the exciton binding energies, but the optical gap is hardly affected. This finding is relevant for conjugated polymers in general.
Interatomic Potentials for NiZr Alloys from Experimental and Ab initio Calculations
无
2002-01-01
We applied an approach to the development of many-body interatomic potentials for NiZr alloys, gaining an improved accuracy and reliability. The functional form of the potential is that of the embedded method, but it has been improved as follows. (1) The database used for the development of the potential includes both experimental data and a large set of energies of different structures of the alloys generated by Fab initio calculations. (2) The optimum parametrization of the potential for the given database is obtained by fitting.Using this approach we developed reliable interatomic potentials for Ni and Zr. The potential accurately reproduces basic equilibrium properties of the alloys.
Alipour, Mojtaba, E-mail: malipour@shirazu.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Mohajeri, Afshan, E-mail: amohajeri@shirazu.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)
2011-08-25
Graphical abstract: The electronic properties such as the static dipole polarizability, anisotropy of the polarizability, and dipole moment of yttrium bromide, YBr (X{sup 1}{Sigma}) have been theoretically studied. Highlights: {yields} Conventional ab initio and density functional theory methods were employed to study linear optical properties of YBr molecule. {yields} Properties derivatives and their level of theory dependence were studied. {yields} Electron correlation effects and rovibrational corrections have also been discussed. - Abstract: We have employed conventional ab initio and density functional theory methods to study the electronic properties such as the mean static dipole polarizability, {alpha}-bar, anisotropy of the polarizability, {Delta}{alpha}, and dipole moment, {mu}, of yttrium bromide. The bond length dependence of properties is determined at different levels of theory and appropriate expansions around experimental internuclear distance have been presented. Moreover, the first and second geometrical derivatives for each property are quantified and their level of theory dependence has been analyzed. To study the effect of molecular rotation and vibration on the electronic properties, the rovibrational corrections have also been carried out. It is found that these corrections are less pronounced for considered properties of YBr. In all calculations, the electron correlation effects have been considered and discussed. The obtained results show that the electron correlation is more significant in the calculation of the mean and the anisotropy of dipole polarizability.
Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo
2016-10-27
Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.
Electronic Structure of Hydrogenated and Surface-Modified GaAs Nanocrystals: Ab Initio Calculations
Hamsa Naji Nasir
2012-01-01
Full Text Available Two methods are used to simulate electronic structure of gallium arsenide nanocrystals. The cluster full geometrical optimization procedure which is suitable for small nanocrystals and large unit cell that simulates specific parts of larger nanocrystals preferably core part as in the present work. Because of symmetry consideration, large unit cells can reach sizes that are beyond the capabilities of first method. The two methods use ab initio Hartree-Fock and density functional theory, respectively. The results show that both energy gap and lattice constant decrease in their value as the nanocrystals grow in size. The inclusion of surface part in the first method makes valence band width wider than in large unit cell method that simulates the core part only. This is attributed to the broken symmetry and surface passivating atoms that split surface degenerate states and adds new levels inside and around the valence band. Bond length and tetrahedral angle result from full geometrical optimization indicate good convergence to the ideal zincblende structure at the centre of hydrogenated nanocrystal. This convergence supports large unit cell methodology. Existence of oxygen atoms at nanocrystal surface melts down density of states and reduces energy gap.
Rogers, J. D.; Hillman, J. J.
1982-01-01
Ab initio infrared intensities and dipole moment derivatives expressed in atomic polar tensor form are calculated using the 4-31 and 6-31G(double asterisk) basis sets for the isoelectronic HCN, HNC, CO, HCO(+), and HOC(+) series of molecules. The calculated atomic polar tensors are analyzed in terms of the charge-charge flux-overlap model, which is found to be useful in explaining some of the trends observed in the dipole moment derivatives for this series of molecules. A detailed examination of the dipole moment derivatives for the structural isomers indicates some of the ways in which experimental atomic polar tensors for one isomer should be modified to predict infrared intensities for the other isomer. The absolute intensities calculated for the HCO(+) and HOC(+) ions are believed to be accurate to within a factor of 2 and thus should be useful in astrophysical applications.
Basso Ernani A.
2001-01-01
Full Text Available Axial-equatorial conformational proportions for cyclohexyl-N,N-dimethyl carbamate have been measured, for the first time, by the Eliel method, ¹H and 13C dynamic nuclear magnetic resonance (DNMR. The results were compared against those determined by theoretical calculations. By the Eliel method at least five experimentally independent measureables were used in CCl4, CDCl3 and CD3CN. The ¹H and 13C low temperature experiments were performed in CF2Br2/CD2Cl2 . Semiempirical methods MNDO, AM1 and PM3 and ab initio molecular orbital calculations at the HF/STO-3G and HF/6-31G(d,p levels have been performed on the axial and equatorial conformers populations. All applied methods correctly predict the equatorial conformer preference over the axial one. The resulting equatorial preferences determined by NMR data and theoretical calculations are in good agreement.
Feng, Yuan; Cheng, Min; Kong, Xiang-Yu; Xu, Hong-Guang; Zheng, Wei-Jun
2011-09-21
We investigated the microscopic solvation of NaBO(2) in water by conducting photoelectron spectroscopy and ab initio studies on NaBO(2)(-)(H(2)O)(n) (n = 0-4) clusters. The vertical detachment energy (VDE) of NaBO(2)(-) is estimated to be 1.00 ± 0.08 eV. The photoelectron spectra of NaBO(2)(-)(H(2)O)(1) and NaBO(2)(-)(H(2)O)(2) are similar to that of bare NaBO(2)(-), except that their VDEs shift to higher electron binding energies (EBE). For the spectra of NaBO(2)(-)(H(2)O)(3) and NaBO(2)(-)(H(2)O)(4), a low EBE feature appears dramatically in addition to the features observed in the spectra of NaBO(2)(-)(H(2)O)(0-2). Our study shows that the water molecules mainly interact with the BO(2)(-) unit in NaBO(2)(-)(H(2)O)(1) and NaBO(2)(-)(H(2)O)(2) clusters to form Na-BO(2)(-)(H(2)O)(n) type structures, while in NaBO(2)(-)(H(2)O)(3) and NaBO(2)(-)(H(2)O)(4) clusters, the water molecules can interact strongly with the Na atom, therefore, the Na-BO(2)(-)(H(2)O)(n) and Na(H(2)O)(n)···BO(2)(-) types of structures coexist. That can be seen as an initial step of the transition from a contact ion pair (CIP) structure to a solvent-separated ion pair (SSIP) structure for the dissolution of NaBO(2).
The ab initio calculation of spectra of open shell diatomic molecules
Tennyson, Jonathan; Lodi, Lorenzo; McKemmish, Laura K.; Yurchenko, Sergei N.
2016-05-01
The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell (1Σ ) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbed spectra of even greater complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an ab initio approach; these areas are ultracold chemistry and the astrophysics of ‘cool’ stars, brown dwarfs and most recently extrasolar planets. However, the complex electronic structure of these molecules combined with the accuracy requirements of high-resolution spectroscopy render such an approach particularly challenging. This review describes recent progress in developing methods for directly solving the effective Schrödinger equation for open-shell diatomic molecules, with a focus on molecules containing a transtion metal. It considers four aspects of the problem: (i) the electronic structure problem; (ii) non-perturbative treatments of the curve couplings; (iii) the solution of the nuclear motion Schrödinger equation; (iv) the generation of accurate electric dipole transition intensities. Examples of applications are used to illustrate these issues.
LAN nai-Ping; ZHANG Shuang
2009-01-01
Recently, a new switching characteristic of double-walled carbon nanotubes (DWNTs) transistors is found in during experiments. We carry out a series of ab intio calculations on DWNTs' electronic properities, together with verification on the electronic response under the electric field. Our results reveal that the peculiar energy states relation in DWNTs and related contact modes should account for the distinct switching behavior of DWNT transistors. We believe these results have important implications in the fabrication and understanding of electronic devices with DWNTs.
Phonon spectra of elpasolites Cs2NaRF6 (R=Y,Yb): Ab initio calculations
Chernyshev, Vladimir; Petrov, Vladislav; Nikiforov, Anatoliy; Zakiryanov, Dmitriy
2015-12-01
The influence of hydrostatic pressure on structure and dynamics of a crystal lattice of elpasolites Cs2NaYbF6 and Cs2NaYF6 (S.G. 225) within ab initio approach is investigated. Frequencies and irreducible representations (irreps) of phonon modes are determined. Elastic constants are calculated. The calculations are carried out within MO LCAO approach using DFT method with hybrid functionalities of B3LYP and PBE0 in CRYSTAL09 periodic code. For the description of rare earth ion the pseudopotential replacing internal orbitals including 4f orbitals was used. External 5s and 5p orbitals defining chemical bond were described by valence basis sets.
Phonon spectra of elpasolites Cs{sub 2}NaRF{sub 6} (R=Y,Yb): Ab initio calculations
Chernyshev, Vladimir, E-mail: Vladimir.Chernyshev@urfu.ru; Petrov, Vladislav; Nikiforov, Anatoliy; Zakiryanov, Dmitriy [Ural Federal University, Ekaterinburg (Russian Federation)
2015-12-07
The influence of hydrostatic pressure on structure and dynamics of a crystal lattice of elpasolites Cs{sub 2}NaYbF{sub 6} and Cs{sub 2}NaYF{sub 6} (S.G. 225) within ab initio approach is investigated. Frequencies and irreducible representations (irreps) of phonon modes are determined. Elastic constants are calculated. The calculations are carried out within MO LCAO approach using DFT method with hybrid functionalities of B3LYP and PBE0 in CRYSTAL09 periodic code. For the description of rare earth ion the pseudopotential replacing internal orbitals including 4f orbitals was used. External 5s and 5p orbitals defining chemical bond were described by valence basis sets.
Tatemizo, N.; Imada, S.; Miura, Y.; Yamane, H.; Tanaka, K.
2017-03-01
The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.
Le Page, Yvon; Saxe, Paul
2002-03-01
A symmetry-general approach for the least-squares, therefore precise, extraction of elastic coefficients for strained materials is reported. It analyzes stresses calculated ab initio for properly selected strains. The problem, its implementation, and its solution strategy all differ radically from a previous energy-strain approach that we published last year, but the normal equations turn out to be amenable to the same constrainment scheme that makes both approaches symmetry general. The symmetry considerations governing the automated selection of appropriately strained models and their Cartesian systems are detailed. The extension to materials under general stress is discussed and implemented. VASP was used for ab initio calculation of stresses. A comprehensive range of examples includes a triclinic material (kyanite) and simple materials with a range of symmetries at zero pressure, MgO under hydrostatic pressure, Ti4As3 under [001] uniaxial strain, and Si under [001] uniaxial stress. The MgO case agrees with recent experimental work including elastic coefficients as well as their first and second derivatives. The curves of elastic coefficients for Si show a gradual increase in the 33 compliance coefficient, leading to a collapse of the material at -11.7 GPa, compared with -12.0 GPa experimentally. Interpretation of results for Be using two approximations [local density (LDA), generalized gradient (GGA)], two approaches (stress strain and energy strain), two potential types (projector augmented wave and ultrasoft), and two quantum engines (VASP and ORESTES) expose the utmost importance of the cell data used for the elastic calculations and the lesser importance of the other factors. For stiffness at relaxed cell data, differences are shown to originate mostly in the considerable overestimation of the residual compressive stresses at x-ray cell data by LDA, resulting in a smaller relaxed cell, thus larger values for diagonal stiffness coefficients. The symmetry
Alam, T.M.
1998-09-01
The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.
Martin, Jan M. L.
The quartic force fields of a number of small polyatomic molecules (specifically, rm H _2O, NH_2, NH_3, CH_4, BH_3, BeH_2, H_2CO, N_2O, CO_2, CS_2, OCS, H_2S, FNO, ClNO, and H_2CS) have been computed ab initio using large basis sets and augmented coupled cluster methods. It has been established throughout that harmonic and fundamental frequencies can consistently be reproduced to within about 10 cm^{ -1} of experimental using spdf basis sets, except in such inherently problematic cases as the umbrella motion in NH_3; such problems are solved by recomputing the harmonic frequencies with an spdf g basis set. Coupled cluster frequencies using small basis sets of spd quality agree surprisingly well with experiment (mean absolute error of 26 cm^ {-1}), but bond distances are generally seriously overestimated. Using spdf basis sets, they are consistently overestimated by 0.002 and 0.006-7 A for single and multiple bonds, respectively; for spdf g basis sets this drops to 0.001 and 0.003-4 A, respectively. Geometries and harmonic frequencies for highly polar fluorine compounds such as HF and FNO are qualitatively wrong unless special anion functions are added to the fluorine basis set. Anharmonicity, rovibrational coupling, and centrifugal distortion constants are consistently predicted well; the anharmonic portions of the computed force fields are probably more reliable than their experimental counterparts in many cases. Remaining errors in the computed geometries and harmonic frequencies are shown to be almost entirely due to a combination of core correlation and residual deficiencies in the electron correlation treatment. A 3-term correction for remaining basis set incompleteness to computed total atomization energies is proposed by the author, and is shown to result in mean absolute errors of as little as 0.5 kcal/mol for spdf g basis sets. Example applications on rm HCO^+, HOC^+, B_2C, BCN, and BNC testify to the predictive power of the methods used in this work.
Pagès, O.; Souhabi, J.; Torres, V. J. B.; Postnikov, A. V.; Rustagi, K. C.
2012-07-01
We report on the detailed assignment of various features observed in the Raman spectra of SiGe alloys along the linear chain approximation (LCA), as achieved based on remarkable intensity interplays with composition between such neighboring features known from the literature but which so far have not been fully exploited. Such an assignment is independently supported by ab initio calculation of the frequencies of bond-stretching modes taking place in different local environments, which we define at one dimension (1D) for consistency with the LCA. Fair contour modeling of the SiGe Raman spectra is eventually obtained via a so-called 1D-cluster version of the phenomenological (LCA-based) percolation scheme, as originally developed for zincblende alloys, after ab initio calibration of the intrinsic Si-Si, Si-Ge, and Ge-Ge Raman efficiencies. The 1D-cluster scheme introduces a seven-oscillator [1 × (Ge-Ge), 4 × (Si-Ge), 2 × (Si-Si)] Raman behavior for SiGe, which considerably deviates from the currently accepted six-oscillator [1 × (Ge-Ge), 1 × (Si-Ge), 4 × (Si-Si)] behavior. Different numbers of Raman modes per bond are interpreted as different sensitivities to the local environment of Ge-Ge (insensitive), Si-Si (sensitive to first neighbors), and Si-Ge (sensitive to second neighbors) bond stretching. The as-obtained SiGe 1D-cluster/percolation scheme is also compared with the current version for zincblende alloys, using GaAsP as a natural reference. A marked deviation is concerned with an inversion of the like phonon branches in each multiplet. This is attributed either to the considerable Si and Ge phonon dispersions (Si-Si doublet) or to a basic difference in the lattice relaxations of diamond and zincblende alloys (Si-Ge multiplet). The SiGe vs GaAsP comparison is supported by ab initio calculation of the local lattice relaxation/dynamics related to prototype impurity motifs that are directly transposable to the two crystal structures.
González-Cataldo, F. [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Wilson, Hugh F.; Militzer, B., E-mail: fgonzalez@lpmd.cl [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 (United States)
2014-05-20
By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we determine the free energy of metallic hydrogen and silica, SiO{sub 2}, at megabar pressures and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter, Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.
Fujii, Toshiyuki; Albarède, Francis
2012-01-01
Stable Zn isotopes are fractionated in roots and leaves of plants. Analyses demonstrate that the heavy Zn isotopes are enriched in the root system of plants with respect to shoots and leaves as well as the host soil, but the fractionation mechanisms remain unclear. Here we show that the origin of this isotope fractionation is due to a chemical isotope effect upon complexation by Zn malates and citrates in the aerial parts and by phosphates in the roots. We calculated the Zn isotope effect in aqueous citrates, malates, and phosphates by ab initio methods. For pHphosphates, with respect to leaves, which concentrate malates and citrates, by about one permil. It is proposed that Zn isotope fractionation represents a useful tracer of Zn availability and mobility in soils.
Ichikawa, Kazuhide; Fukushima, Akinori; Ishihara, Yoshio; Isaki, Ryuichiro; Takeguchi, Toshio; Tachibana, Akitomo; 10.1016/j.theochem.2009.08.026
2009-01-01
We investigate a reaction of boron trichloride (BCl3) with iron(III) hydroxide (Fe(OH)3) by ab initio quantum chemical calculation as a simple model for a reaction of iron impurities in BCl3 gas. We also examine a reaction with water. We find that compounds such as Fe(Cl)(OBCl2)2(OHBCl2) and Fe(Cl)2(OBCl2)(OHBCl2) are formed while producing HCl and reaction paths to them are revealed. We also analyze the stabilization mechanism of these paths using newly-developed interaction energy density derived from electronic stress tensor in the framework of the Regional DFT (Density Functional Theory) and Rigged QED (Quantum ElectroDynamics).
Orlando, Roberto, E-mail: roberto.orlando@unito.it; Erba, Alessandro; Dovesi, Roberto [Dipartimento di Chimica, Università di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); De La Pierre, Marco [Dipartimento di Chimica, Università di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Zicovich-Wilson, Claudio M. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, 62209 Cuernavaca (Morelos) (Mexico)
2014-09-14
Use of symmetry can dramatically reduce the computational cost (running time and memory allocation) of self-consistent-field ab initio calculations for molecular and crystalline systems. Crucial for running time is symmetry exploitation in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices (overlap, Fock, and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation from the packed AO to the symmetry adapted crystalline orbital basis is performed, so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. Quantitative examples, referring to the implementation in the CRYSTAL code, are given for high symmetry families of compounds such as carbon fullerenes and nanotubes.
Li, Lei; Li, Wen-Shi; Yang, Jian-Feng; Li, Hai-Xia; Mao, Ling-Feng
2016-12-01
Ab initio calculations are performed about the dependent characteristics of the conductive path on Ti/Cu/Zr interstitials and oxygen vacancies in rutile-type titanium dioxide. It is found that eight oxygen vacancies in two columns around five Ti-ions could lead to a conductive path. Besides, the conductive path will occur when additional four oxygen vacancies exist at the third column in ⟨ 110 ⟩ direction rather than on (110) facet. Oxygen vacancies at the third and fourth columns on (110) facet are considered and lead to a conductive path. Furthermore, one or three metal interstitials, such as Ti, Cu or Zr, are doped in titanium dioxide with three columns of oxygen vacancies on (110) facet, respectively. The conductive path is only found in the structure above with three Ti interstitials. We conclude that more Ti interstitials doping in reduced TiO2 benefit the formation of stable conductive path in resistive random access memory.
Bertoldi, Dalía S.; Ramos, Susana B.; Guillermet, Armando Fernández
2017-08-01
We present a theoretical analysis of the equation of state (EOS) of metals using a quasi-harmonic Einstein model with a dimensionless cohesive energy versus distance function (F(z)) involving the Wigner-Seitz radius and a material-dependent scaling length, as suggested in classical works by Rose, Ferrante, Smith and collaborators. Using this model, and ;universal; values for the function and its first and second derivatives at the equilibrium distance (z=0), three general interrelations between EOS parameters and the cohesive energy are obtained. The first correlation involves the bulk modulus, and the second, the thermal expansion coefficient. In order to test these results an extensive database is developed, which involves available experimental data, and results of current ab initio density-functional-theory calculations using the VASP code. In particular, the 0 K values for volume, bulk modulus, its pressure derivative, and the cohesive energy of 27 elements belonging to the first (Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn), second (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd) and third (Hf, Ta, W, Re, Os, Ir, Pt, Au) transition row of the Periodic Table are calculated ab initio and used to test the present results. The third correlation obtained, allows an evaluation of the third derivative of F(z) at z=0 for the current elements. With this new information, a discussion is presented of the possibility of finding a ;universal; F(z) versus z function able to account accurately for the pressure derivative of the bulk modulus of the transition elements.
Ab initio calculation of electron-phonon coupling in monoclinic β-Ga2O3 crystal
Ghosh, Krishnendu; Singisetti, Uttam
2016-08-01
The interaction between electrons and vibrational modes in monoclinic β-Ga2O3 is theoretically investigated using ab-initio calculations. The large primitive cell of β-Ga2O3 gives rise to 30 phonon modes all of which are taken into account in transport calculation. The electron-phonon interaction is calculated under density functional perturbation theory and then interpolated using Wannier-Fourier interpolation. The long-range interaction elements between electrons and polar optical phonon (POP) modes are calculated separately using the Born effective charge tensor. The direction dependence of the long-range POP coupling in a monoclinic crystal is explored and is included in the transport calculations. Scattering rate calculations are done using the Fermi golden rule followed by solving the Boltzmann transport equation using the Rode's method to estimate low field mobility. A room temperature mobility of 115 cm2/V s is observed. Comparison with recent experimentally reported mobility is done for a wide range of temperatures (30 K-650 K). It is also found that the POP interaction dominates the electron mobility under low electric field conditions. The relative contribution of the different POP modes is analyzed and the mode 21 meV POP is found to have the highest impact on low field electron mobility at room temperature.
Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren
2000-01-01
Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules......, the experimental singlet π → π* transitions are reproduced for a set of azobenzene dyes with different electron donor and acceptor groups and the correct shifts in excitation energy are obtained for the different substituents. It has also been demonstrated that ab initio methods can be used to determine suitable...... candidates for azo components used in materials for data storage....
Agrawal, P M; Malshe, M; Narulkar, R; Raff, L M; Hagan, M; Bukkapatnum, S; Komanduri, R
2009-02-05
Previous methods proposed for obtaining analytic potential-energy surfaces (PES) from ab initio electronic structure calculations are not self-starting. They generally require that the sampling of configuration space important in the reaction dynamics of the process being investigated be initiated by using chemical intuition or a previously developed semiempirical potential-energy surface. When the system under investigation contains four or more atoms undergoing three- and four-center reactions in addition to bond scission processes, obtaining a sufficiently converged initial sampling can be very difficult due to the extremely large volume of configuration space that is important in the reaction dynamics. It is shown that by combining direct dynamics (DD) with previously reported molecular dynamics (MD), novelty sampling (NS), and neural network (NN) methods, an analytical surface suitable for MD computations for large systems may be obtained. Application of the method to the investigation of N-O bond scission and cis-trans isomerization reactions of HONO followed by comparison of the resulting neural network potential-energy surface to one obtained by using a semiempirical potential to initiate the sampling shows that the two potential surfaces are the same within the fitting accuracy of the surfaces. It is concluded that the combination of direct dynamics, molecular dynamics, novelty sampling, and neural network fitting provides a self-starting, robust, and accurate DD/MD/NS/NN method for the execution of first-principles, ab initio, molecular dynamics studies in systems containing four or more atoms which are undergoing simultaneous two-, three-, and four-center reactions.
Moura, Gustavo L C; Simas, Alfredo M
2012-04-05
In this article, we advance the foundations of a strategy to develop a molecular mechanics method based not on classical mechanics and force fields but entirely on quantum mechanics and localized electron-pair orbitals, which we call quantum molecular mechanics (QMM). Accordingly, we introduce a new manner of calculating Hartree-Fock ab initio wavefunctions of closed shell systems based on variationally preoptimized nonorthogonal electron pair orbitals constructed by linear combinations of basis functions centered on the atoms. QMM is noniterative and requires only one extremely fast inversion of a single sparse matrix to arrive to the one-particle density matrix, to the electron density, and consequently, to the ab initio electrostatic potential around the molecular system, or cluster of molecules. Although QMM neglects the smaller polarization effects due to intermolecular interactions, it fully takes into consideration polarization effects due to the much stronger intramolecular geometry distortions. For the case of methane, we show that QMM was able to reproduce satisfactorily the energetics and polarization effects of all distortions of the molecule along the nine normal modes of vibration, well beyond the harmonic region. We present the first practical applications of the QMM method by examining, in detail, the cases of clusters of helium atoms, hydrogen molecules, methane molecules, as well as one molecule of HeH(+) surrounded by several methane molecules. We finally advance and discuss the potentialities of an exact formula to compute the QMM total energy, in which only two center integrals are involved, provided that the fully optimized electron-pair orbitals are known.
Jaeger, C.R.; Debowski, M.A.; Manners, I.; Vancso, G.J.
1999-01-01
Ab initio molecular orbital calculations at the MP2/6-31G* level of theory have been used to study the molecular geometry, electronic structure, and the thermal stability of six-membered phosphazene and heterophosphazene rings. The studies included the phosphazene ring [NPCl2]3, the carbophosphazene
Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren
2000-01-01
Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules. ...
Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.
1986-01-01
In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...
Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies
Hebeler, K; Epelbaum, E; Golak, J; Skibinski, R
2015-01-01
We present a novel framework to decompose three-nucleon forces in a momentum space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei and nuclear matter based on higher-order chiral 3N forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon force contributions for $^3$H. For nonlocal regulators, we find that the sub-leading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.
Z-Contrast STEM Imaging and Ab-Initio Calculations of Grain Boundaries in SrTiO
Kim, M.; Browning, N.D.; Pennyscook, S.J.; Sohlberg, K.; Pantelides, S.T.
1999-11-29
The understanding of electrical properties of grain boundaries in perovskites is essential for their application to capacitors, varistors and positive-temperature coefficient resistors. The origin of the electrical activity is generally attributed to the existence of charged defects in grain boundaries, usually assumed to be impurities, which set up a double Schottky barrier as they are screened by dopants in the adjacent bulk crystal. Microscopic understanding of the origin of the grain boundary charge, however, has not been achieved. It is not known yet if the charged grain boundary states are an intrinsic property of a stoichiometric grain boundary, arise from nonstoichiometry, or are caused by impurities. Here, the relation between atomic structure and electronic properties is studied by combining experiment with ab-initio calculations. The starting structures for theoretical calculations were obtained from Z-contrast images combined with electron energy loss spectroscopy to res olve the dislocation Core structures comprising the boundary. Dislocation core reconstructions are typical of all grain boundaries so far observed in this material. They avoid like-ion repulsion, and provide alternative sites for cation occupation in the grain boundaries. Optimized atomic positions are found by total energy calculations. Calculated differences in vacancy formation energies between the grain boundaries and the bulk suggest that vacancy segregation can account for the postulated grain boundary charge.
Åstrand, P.-O.; Bak, K.L.; Sauer, S.P.A.
2001-01-01
The two lowest singlet excitation energies of 26 2-imidazolyl-2-thiazolylazo compounds have been investigated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Various combinations of 4- and 5-substituents at both the imidazole and thiazole units have bee...
Schnitzler, Elijah G; Jäger, Wolfgang
2014-02-14
The pure rotational, high-resolution spectrum of the benzoic acid-water complex was measured in the range of 4-14 GHz, using a cavity-based molecular beam Fourier-transform microwave spectrometer. In all, 40 a-type transitions and 2 b-type transitions were measured for benzoic acid-water, and 12 a-type transitions were measured for benzoic acid-D2O. The equilibrium geometry of benzoic acid-water was determined with ab initio calculations, at the B3LYP, M06-2X, and MP2 levels of theory, with the 6-311++G(2df,2pd) basis set. The experimental rotational spectrum is most consistent with the B3LYP-predicted geometry. Narrow splittings were observed in the b-type transitions, and possible tunnelling motions were investigated using the B3LYP/6-311++G(d,p) level of theory. Rotation of the water moiety about the lone electron pair hydrogen-bonded to benzoic acid, across a barrier of 7.0 kJ mol(-1), is the most likely cause for the splitting. Wagging of the unbound hydrogen atom of water is barrier-less, and this large amplitude motion results in the absence of c-type transitions. The interaction and spectroscopic dissociation energies calculated using B3LYP and MP2 are in good agreement, but those calculated using M06-2X indicate excess stabilization, possibly due to dispersive interactions being over-estimated. The equilibrium constant of hydration was calculated by statistical thermodynamics, using ab initio results and the experimental rotational constants. This allowed us to estimate the changes in percentage of hydrated benzoic acid with variations in the altitude, region, and season. Using monitoring data from Calgary, Alberta, and the MP2-predicted dissociation energy, a yearly average of 1% of benzoic acid is expected to be present in the form of benzoic acid-water. However, this percentage depends sensitively on the dissociation energy. For example, when using the M06-2X-predicted dissociation energy, we find it increases to 18%.
Liu Ye-Chao; Zhang Shu-Dong; Zhang Ming-Xia; Sun Miao; Kong Xiang-He
2009-01-01
The one-colour resonant two-photon ionization (R2PI) spectrum of the 1-fluoronaphthalene (1FN) dimer has been studied in the wavelength range of 304 to 322 nm by using a supersonic molecular beam and time-of-flight mass spectrometry. Compared with the original band 000 (at 313.8 nm) of the S1 ← S0 transition of the 1FN monomer,a red-shifted band was observed in the 1FN dimer spectrum at about 315 nm with a relatively large linewidth,nearly 2 nm. Based on the consideration of inductive effect and ab initio calculations,this red-shifted band is assigned to the first electronic excited transition of the 1FN dimer. A possible geometric structure of the 1FN dimer is also obtained with calculations that the two 1FN molecules are combined through two hydrogen bonds which are formed between the hydrogen atom of a molecule and the fluorine atom of a neighbouring molecule. A time-dependent calculation was also carried out and the results are consistent with the experimental data.
Scholes, G.D.; Fleming, G.R. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Physical Biosciences Div.; Gould, I.R. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemistry; Cogdell, R.J. [Univ. of Glasgow (United Kingdom). Div. of Biochemistry and Molecular Biology
1999-04-01
The results of ab initio molecular orbital calculations of excited states and electronic couplings (for energy transfer) between the B800 and B850 bacteriochlorophyll a (Bchl) chromophores in the peripheral light-harvesting complex (LH2) of the purple photosynthetic bacterium Rhodopseudomonas acidophila are reported. Electronic couplings are estimated from supermolecule calculations of Bchl dimers using the Ci-singles methodology and 3-21G{sup *} or 6-31G{sup *} basis sets. A scheme for dissecting the coupling into contributions from the Coulombic coupling and the short-range coupling (i.e., dependent on interchromophore orbital overlap) is reported. B850 couplings are calculated to be [total (Coulombic + short)]: intrapolypeptide dimer 320 (265 + 55) cm{sup {minus}1} and interpolypeptide dimer 255 (195 + 60) cm{sup {minus}1} at the CIS/6-31G{sup *} level. These results differ significantly from those estimated using the point dipole approximation. The effect of including Mg ligands (His residues) and H-bonding residues (Trp and Tyr) is also investigated. The consequences for superradiance and energy transfer dynamics and mechanism are discussed.
Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul
2006-01-27
We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.
Todd M. Alam
2002-08-01
Full Text Available Abstract: Ring formation in phosphate systems is expected to influence both the magnitude and orientation of the phosphorus (31P nuclear magnetic resonance (NMR chemical shielding anisotropy (CSA tensor. Ab initio calculations of the 31P CSA tensor in both cyclic and acyclic phosphate clusters were performed as a function of the number of phosphate tetrahedral in the system. The calculation of the 31P CSA tensors employed the GAUSSIAN 98 implementation of the gauge-including atomic orbital (GIAO method at the Hartree-Fock (HF level. It is shown that both the 31P CSA tensor anisotropy, and the isotropic chemical shielding can be used for the identification of cyclic phosphates. The differences between the 31P CSA tensor in acyclic and cyclic phosphate systems become less pronounced with increasing number of phosphate groups within the ring. The orientation of the principal components for the 31P CSA tensor shows some variation due to cyclization, most notably with the smaller, highly strained ring systems.
Albaalbaky, Ahmed; Kvashnin, Yaroslav; Ledue, Denis; Patte, Renaud; Frésard, Raymond
2017-08-01
Motivated by the discovery of multiferroicity in the geometrically frustrated triangular antiferromagnet CuCrO2 below its Néel temperature TN, we investigate its magnetic and ferroelectric properties using ab initio calculations and Monte Carlo simulations. Exchange interactions up to the third nearest neighbors in the a b plane, interlayer interaction, and single ion anisotropy constants in CuCrO2 are estimated by a series of density functional theory calculations. In particular, our results evidence a hard axis along the [110] direction due to the lattice distortion that takes place along this direction below TN. Our Monte Carlo simulations indicate that the system possesses a Néel temperature TN≈27 K very close to the ones reported experimentally (TN=24 -26 K). Also we show that the ground state is a proper-screw magnetic configuration with an incommensurate propagation vector pointing along the [110] direction. Moreover, our work reports the emergence of spin helicity below TN which leads to ferroelectricity in the extended inverse Dzyaloshinskii-Moriya model. We confirm the electric control of spin helicity by simulating P -E hysteresis loops at various temperatures.
Toshiyuki Fujii
Full Text Available Stable Zn isotopes are fractionated in roots and leaves of plants. Analyses demonstrate that the heavy Zn isotopes are enriched in the root system of plants with respect to shoots and leaves as well as the host soil, but the fractionation mechanisms remain unclear. Here we show that the origin of this isotope fractionation is due to a chemical isotope effect upon complexation by Zn malates and citrates in the aerial parts and by phosphates in the roots. We calculated the Zn isotope effect in aqueous citrates, malates, and phosphates by ab initio methods. For pH<5, the Zn isotopic compositions of the various parts of the plants are expected to be similar to those of groundwater. In the neutral to alkaline region, the calculations correctly predict that (66Zn is enriched over (64Zn in roots, which concentrate phosphates, with respect to leaves, which concentrate malates and citrates, by about one permil. It is proposed that Zn isotope fractionation represents a useful tracer of Zn availability and mobility in soils.
Mohamed, Tarek A.; Shaltout, I.; Al Yahyaei, K. M.
2006-05-01
Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO 2 + 5%Fe 2O 3 + 10%TMO], where transition metal oxides (TMO) are TiO 2, V 2O 5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm -1) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO 44- triagonal bipyramid ( C2v) and Te 2O 76- bridged tetrahedra ( Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO 3+1 binds to TeO 3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).
Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, Igor A.
2016-08-01
We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations of elastic properties using the recently introduced method: symmetry imposed force constant temperature-dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as a model system. This is done due to its technological importance and its demonstrated strong coupling between magnetic and lattice degrees of freedom. We have studied the temperature-dependent single-crystal and polycrystalline elastic constants of paramagentic CrN up to 1200 K. The obtained results at T = 300 K agree well with the experimental values of polycrystalline elastic constants as well as the Poisson ratio at room temperature. We observe that the Young's modulus is strongly dependent on temperature, decreasing by ˜14 % from T = 300 K to 1200 K. In addition we have studied the elastic anisotropy of CrN as a function of temperature and we observe that CrN becomes substantially more isotropic as the temperature increases. We demonstrate that the use of Birch law may lead to substantial errors for calculations of temperature induced changes of elastic moduli. The proposed methodology can be used for accurate predictions of mechanical properties of magnetic materials at temperatures above their magnetic order-disorder phase transition.
Roemelt, Michael
2015-07-01
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.
Ahlstrand, Emma; Hermansson, Kersti; Friedman, Ran
2017-03-24
Zinc plays important roles in structural stabilization of proteins, enzyme catalysis, and signal transduction. Many Zn binding sites are located at the interface between the protein and the cellular fluid. In aqueous solutions, Zn ions adopt an octahedral coordination, while in proteins zinc can have different coordinations, with a tetrahedral conformation found most frequently. The dynamics of Zn binding to proteins and the formation of complexes that involve Zn are dictated by interactions between Zn and its binding partners. We calculated the interaction energies between Zn and its ligands in complexes that mimic protein binding sites and in Zn complexes of water and one or two amino acid moieties, using quantum mechanics (QM) and molecular mechanics (MM). It was found that MM calculations that neglect or only approximate polarizability did not reproduce even the relative order of the QM interaction energies in these complexes. Interaction energies calculated with the CHARMM-Drude polarizable force field agreed better with the ab initio results, although the deviations between QM and MM were still rather large (40-96 kcal/mol). In order to gain further insight into Zn-ligand interactions, the free energies of interaction were estimated by QM calculations with continuum solvent representation, and we performed energy decomposition analysis calculations to examine the characteristics of the different complexes. The ligand-types were found to have high impact on the relative strength of polarization and electrostatic interactions. Interestingly, ligand-ligand interactions did not play a significant role in the binding of Zn. Finally, analysis of ligand exchange energies suggests that carboxylates could be exchanged with water molecules, which explains the flexibility in Zn binding dynamics. An exchange between carboxylate (Asp/Glu) and imidazole (His) is less likely.
Sanson, Andrea, E-mail: andrea.sanson@unipd.it [Department of Physics and Astronomy, University of Padova, Padova (Italy); Giarola, Marco; Mariotto, Gino [Department of Computer Science, University of Verona, Verona (Italy); Hu, Lei; Chen, Jun; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing (China)
2016-09-01
Very recently it has been found that CaZrF{sub 6} exhibits a very large and isotropic negative thermal expansion (NTE), even greater than the current most popular NTE materials. In this work, the vibrational dynamics of CaZrF{sub 6} has been investigated by temperature-dependent Raman spectroscopy combined with ab initio calculations. As expected on the basis of the group theory for CaZrF{sub 6}, three Raman-active modes were identified: the F{sub 2g} mode peaked at about 236 cm{sup −1}, the E{sub g} mode at around 550–555 cm{sup −1}, and the A{sub g} mode peaked at about 637 cm{sup −1}. The temperature dependence of their frequencies follows an unusual trend: the F{sub 2g} mode, due to bending vibrations of fluorine atoms in the linear Ca-F-Zr chain, is hardened with increasing temperature, while the A{sub g} mode, corresponding to Ca-F-Zr bond stretching vibrations, is softened. We explain this anomalous behavior by separating implicit and explicit anharmonicity for both F{sub 2g} and A{sub g} modes. In fact, cubic anharmonicity (three-phonon processes) is observed to dominate the higher-frequency A{sub g} phonon-mode, quartic anharmonicity (four-phonon processes) is found to dominate the lower-frequency F{sub 2g} phonon-mode. As a result, the large NTE of CaZrF{sub 6} cannot be accurately predicted through the quasi-harmonic approximation. - Highlights: • A Raman and ab initio study of the lattice dynamics of CaZrF{sub 6} was performed. • All the Raman-active modes expected on the basis of the group theory were identified. • The temperature-dependence of the CaZrF{sub 6} Raman frequencies follows an unusual trend. • Explicit anharmonicity dominates for both F{sub 2g} and A{sub g} Raman modes. • The NTE of CaZrF{sub 6} cannot be accurately predicted by the quasi-harmonic approximation.
Partovi-Azar, Pouya
2015-01-01
We present a computational method to accurately calculate Raman spectra from first principles with an at least one order of magnitude higher efficiency. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of \\textit{ab-initio} molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra.
Nguyen Thanh Duoc
2015-12-01
Full Text Available The results presented in this paper are the ab initio intermolecular potentials and the second virial coefficient, B2 (T of the dimer Cl2-Cl2. These ab initio potentials were proposed by the quantum chemical calculations at high level of theory CCSD (T with basis sets of Dunning’s valence correlation-consistent aug-cc-pVmZ (m = 2, 3; these results were extrapolated to complete basis set limit aug-cc-pV23Z. The ab initio energies of complete basis set limit aug-cc-pV23Z resulted from the exponential extrapolation were used to construct the 5-site pair potential functions. The second virial coefficients for this dimer were predicted from those with four-dimensional integration. The second virial coefficients were also corrected to first-order quantum effects. The results turn out to be in good agreement with experimental data, if available, or with those from empirical correlation. The quality of ab initio 5-site potentials proved the reliability for prediction of molecular thermodynamic properties.
Olsson, Paer
2004-04-01
The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature.
Ab initio calculation of X-ray emission and IR spectra of the hydrofullerene C 60H 36
Bulusheva, L. G.; Okotrub, A. V.; Antich, A. V.; Lobach, A. S.
2001-05-01
Two isomers of the hydrofullerene C 60H 36 with T and D3 d symmetry were calculated using ab initio Hartree-Fock self-consistent field (HF-SCF). The T symmetry isomer in which the benzenoid rings occupy tetrahedral positions is predicted to be lower in energy than the other considered isomer. Simulated CK α spectra of the isomers were compared with the X-ray fluorescence spectrum of the hydrofullerene C 60H 36 prepared by the transfer hydrogenation method. The short-wave maximum intensity of the CK α spectrum of C 60H 36 was shown to be sensitive to the number of π electrons in the high-occupied levels of the molecule. Although the theoretical spectra are similar in appearance, the T isomer seems to be in better accordance with the experiment. Furthermore, the computed infrared frequencies and intensities for this isomer were found to correlate well with features in the measured spectrum of C 60H 36. The most intense peak in the low-frequency spectral region was shown to correspond to the skeletal vibrations of the benzenoid rings.
Ab initio Sternheimer-GW method for quasiparticle calculations using plane waves
Lambert, Henry; Giustino, Feliciano
2013-08-01
We report on the extension and implementation of the Sternheimer-GW method introduced by Giustino [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.115105 81, 115105 (2010)] to the case of first-principles pseudopotential calculations based on a plane-waves basis. The Sternheimer-GW method consists of calculating the GW self-energy operator without resorting to the standard expansion over unoccupied Kohn-Sham electronic states. The Green's function is calculated by solving linear systems for frequencies along the real axis. The screened Coulomb interaction is calculated for frequencies along the imaginary axis by using the Sternheimer equation. Analytic continuation to the real axis is performed using Padé approximants. The generalized plasmon-pole approximation is avoided by performing explicit calculations at multiple frequencies using Frommer's multishift solver. We demonstrate our methodology by reporting tests on common insulators and semiconductors, including Si, diamond, LiCl, and SiC. Our calculated quasiparticle energies are in agreement with the results of fully converged calculations based on the sum-over-states approach. As the Sternheimer-GW method yields the complete self-energy Σ(r,r',ω) and not only its expectation values on Kohn-Sham states, this work opens the way to nonperturbative GW calculations and to direct calculations of spectral functions for angle-resolved photoemission spectroscopy. As an example of the capabilities of the method we calculate the G0W0 spectral functions of silicon and diamond.
Ab initio calculation of conformation and vibrational spectrum for the pyrosulfate ion
Dyekjær, Jane Dannow; Berg, Rolf W.; Johansen, Helge
2003-01-01
Theoretical calculations have been performed and applied to determine the most likely geometry for the pyrosulfate ion. The main question was to determine as to whether the system has C-2 or C-2, conformation. The present study favors C-2 symmetry. Bond lengths and angles have been calculated...
Ab initio calculations of phonon dispersion and lattice dynamics in TlGaTe{sub 2}
Jafarova, Vusala; Orudzhev, Guseyn; Alekperov, Oktay; Mamedov, Nazim; Abdullayev, Nadir; Najafov, Arzu [Institute of Physics (Innovation Sector), 33 H. Javid ave, Baku 1143 (Azerbaijan); Paucar, Raul [Institute of Physics (Innovation Sector), 33 H. Javid ave, Baku 1143 (Azerbaijan); Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan); Shim, YongGu [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Wakita, Kazuki [Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan)
2015-06-15
This work reports the results of DFT-based calculations of phonon spectra of TlGaTe{sub 2}. The dispersion of phonon bands was calculated along the directions of Brillouin zone (BZ) that include symmetry points. The calculated phonon frequencies at the centre of BZ were compared with those obtained by Raman spectroscopy with the aid of a confocal laser microscopy system. A fairly good agreement between the calculated and experimental data was found. Complimentary, molar heat capacity at constant volume and Debye temperature were calculated in the range 5/500 K on the base of the obtained phonon density of states. The obtained temperature dependencies were compared with available experimental data.The results of comparison were satisfactory. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Ab-initio calculations of electronic structure and optical properties of TiAl alloy
Hussain, Altaf; Sikandar Hayat, Sardar; Choudhry, M. A.
2011-05-01
The electronic structures and optical properties of TiAl intermetallic alloy system are studied by the first-principle orthogonalized linear combination of atomic orbitals method. Results on the band structure, total and partial density of states, localization index, effective atomic charges, and optical conductivity are presented and discussed in detail. Total density of states spectra reveal that (near the Fermi level) the majority of the contribution is from Ti-3d states. The effective charge calculations show an average charge transfer of 0.52 electrons from Ti to Al in primitive cell calculations of TiAl alloy. On the other hand, calculations using supercell approach reveal an average charge transfer of 0.48 electrons from Ti to Al. The localization index calculations, of primitive cell as well as of supercell, show the presence of relatively localized states even above the Fermi level for this alloy. The calculated optical conductivity spectra of TiAl alloy are rich in structures, showing the highest peak at 5.73 eV for supercell calculations. Calculations of the imaginary part of the linear dielectric function show a prominent peak at 5.71 eV and a plateau in the range 1.1-3.5 eV.
“Ab Initio Calculation of Conformation and vibrational Spectrum for the Pyrosulfate Ion.”
Dyekjær, Jane Dannow; Berg, Rolf W.; Johansen, Helge
2003-01-01
Theoretical calculations have been performed and applied to determine the most likely geometry for the pyrosulfate ion. The main question was to determine as to whether the system has C$-2$/ or C$-2v$/ conformation. The present study favors C$-2$/ symmetry. Bond lengths and angles have been...... calculated for the isolated ion, and the results compare well with experimental results for the ion in solid-state salts. Also, the vibrational spectrum of the S$-2$/O$-7$/$+2-$/ ion has been calculated and compared with experimental results, obtained by extrapolation from Raman spectra of salt melts of M$-2...
Ab initio calculation of conformation and vibrational spectrum for the pyrosulfate ion
Dyekjær, Jane Dannow; Berg, Rolf W.; Johansen, Helge
2003-01-01
Theoretical calculations have been performed and applied to determine the most likely geometry for the pyrosulfate ion. The main question was to determine as to whether the system has C-2 or C-2, conformation. The present study favors C-2 symmetry. Bond lengths and angles have been calculated...... for the isolated ion, and the results compare well with experimental results for the ion in solid-state salts. Also, the vibrational spectrum of the S2O72- ion has been calculated and compared with experimental results, obtained by extrapolation from Raman spectra of salt melts of M2S2O7, M = Na, K, Rb, and Cs....
Swerts, Ben; Chibotaru, Liviu F; Lindh, Roland; Seijo, Luis; Barandiaran, Zoila; Clima, Sergiu; Pierloot, Kristin; Hendrickx, Marc F A
2008-04-01
In this article, we present a fragment model potential approach for the description of the crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs). The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials. This poses problems as soon as the method is applied to crystals containing strongly covalently bonded structures with highly nonspherical electron densities. The newly proposed method addresses this problem by keeping the full electron density as its model potential, thus allowing one to group sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum chemistry package of the new method, which we call the embedding fragment ab inito model potential method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations. The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand field states (2)A1 and (2)B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest ligand field and ligand-metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms, including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units surrounding the CrO4(3-) cluster increases the excitation energy (2)B1 → (2)A1 by ca. 1000 cm(-1) at the CASSCF level of calculation. In the case of the Mn(CO3)6(10-) cluster, the FAIMP treatment of the CO3(2-) units of the environment give smaller corrections, of ca. 100 cm(-1), for the ligand-field excitation energies, which is explained by the larger ligands of this cluster. However, the correction for the energy of the lowest LMCT transition is found to be ca. 600 cm(-1) for the CASSCF and ca. 1300 cm(-1) for the CASPT2 calculation.
Kong, Bo; Zhang, Yachao
2016-07-01
The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.
Four-faceted nanowires generated from densely-packed TiO2 rutile surfaces: Ab initio calculations
Evarestov, R. A.; Zhukovskii, Yu. F.
2013-02-01
Two-dimensional (2D) slabs and monoperiodic (1D) nanowires orthogonal to the slab surface of rutile-based TiO2 structure terminated by densely-packed surfaces and facets, respectively, have been simulated in the current study. The procedure of structural generation of nanowires (NWs) from titania slabs (2D → 1D) is described. We have simulated: (i) (110), (100), (101) and (001) slabs of different thicknesses as well as (ii) [001]- and [110]-oriented nanowires of different diameters terminated by either four types of related {110} facets or alternating {11¯0} and {001} facets, respectively. Nanowires have been described using both the Ti atom-centered rotation axes as well as the hollow site-centered axes passing through the interstitial sites between the Ti and O atoms closest to the axes. For simulations on TiO2 slabs and NWs, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with the total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO) implemented in CRYSTAL09 code. Both structural and electronic properties of enumerated rutile-based titania slabs and nanowires have been calculated. According to the results of our surface energy calculations, the most stable rutile-based titania slab is terminated by (110) surfaces whereas the energetically favorable [001]-oriented NWs are also terminated by {110} facets only, thus confirming results of previous studies.
Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Ave., 634050 Tomsk (Russian Federation); Faure, A.; Rist, C. [University Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)
2015-10-21
The rotational spectrum of the van der Waals complex CH{sub 4}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110–145 GHz. Newly observed and assigned transitions belong to the K = 2–1 subband correlating with the rotationless j{sub CH4} = 0 ground state and the K = 2–1 and K = 0–1 subbands correlating with the j{sub CH4} = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH{sub 4}–CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH{sub 4}–CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH{sub 4} face closest to the CO subunit and binding energy D{sub e} = 177.82 cm{sup −1}. The bound rovibrational levels of the CH{sub 4}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 91.32, 94.46, and 104.21 cm{sup −1} for A (j{sub CH4} = 0), F (j{sub CH4} = 1), and E (j{sub CH4} = 2) nuclear spin modifications of CH{sub 4}–CO, respectively.
Wong, Kin-Yiu; Xu, Yuqing; York, Darrin M
2014-06-30
Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2'-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This article significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and nonenzymatic 2'-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a "gold-standard" coupled-cluster level of theory [CCSD(T)]. In addition to the widely used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently developed ab initio path-integral method, that is, automated integration-free path-integral method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis. Copyright © 2014 Wiley Periodicals, Inc.
Ab initio calculations of electronic structure of anatase TiO2
Chen Qiang; Cao Hong-Hong
2004-01-01
This paper presents the results of the self-consistent calculations on the electronic structure of anatase phase of TiO2. The calculations were performed using the full potential-linearized augmented plane wave method (FP-LAPW)in the framework of the density functional theory (DFT) with the generalized gradient approximation (GGA). The fully optimized structure, obtained by minimizing the total energy and atomic forces, is in good agreement with experiment.We also calculated the band structure and the density of states. In particular, the calculated band structure prefers an indirect transition between wlence and conduction bands of anatase TiO2, which may be helpful for clarifying the ambiguity in other theoretical works.
AB Initio calculations of thermodynamic parameters of lithium, sodium and potassium peroxides
Zhuravlev, Yu. N.; Aleinikova, M. V.; Korabelnikov, D. V.
2012-11-01
Using a linear combination of atomic orbitals within the CRYSTAL09 software code, the oscillation frequencies of the atoms of lithium, sodium, and potassium peroxides are calculated. In a quasiharmonic approximation of the Debye model, the thermodynamic potentials, entropy, thermal capacity, and the coefficient of thermal expansion are calculated, and their dependence on pressure and temperature is investigated. Using sodium peroxide as an example, the critical point for the sublimation process is found.
Ab initio calculation of the dynamical properties of PPP and PPV
2006-01-01
In this work, we have calculated the vibrational modes and frequencies of the crystalline PPP (in both the Pbam and Pnnm symmetries) and PPV (in the P21/c symmetry). Our results are in good agreement with the available experimental data. Also, we have calculated the temperature dependence of their specific heats at constant volume, and of their vibrational entropies. Based on our results, at high temperatures, the PPP is more stable in the Pnnm structure than in the Pbam one.
Ab initio calculations of the elastic and thermodynamic properties of gold under pressure
Smirnov, N. A.
2017-03-01
The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin–orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: fcc\\to hcp\\to bcc . The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.
Douillard, J M; Henry, M
2003-07-15
A very simple route to calculation of the surface energy of solids is proposed because this value is very difficult to determine experimentally. The first step is the calculation of the attractive part of the electrostatic energy of crystals. The partial charges used in this calculation are obtained by using electronegativity equalization and scales of electronegativity and hardness deduced from physical characteristics of the atom. The lattice energies of the infinite crystal and of semi-infinite layers are then compared. The difference is related to the energy of cohesion and then to the surface energy. Very good results are obtained with ice, if one compares with the surface energy of liquid water, which is generally considered a good approximation of the surface energy of ice.
Zhuravlev, Yu. N.; Korabel'nikov, D. V.; Aleinikova, M. V.
2012-07-01
The parameters of the equation of state and Grüneisen parameters for lithium, sodium, and potassium oxides have been calculated in the generalized gradient approximation of the density functional theory using a linear combination of atomic orbitals with the CRYSTAL09 software package. The frequencies of long-wavelength normal mode vibrations have also been calculated and the dependence of these frequencies on the pressure has been established. The Debye temperature has been determined from the elastic characteristics of the compounds. The dependences of the Debye temperature, compressibility, thermodynamic potential, entropy, specific heat, thermal expansion coefficient, and thermal conductivity coefficient on the pressure in the range from -3 to -15 GPa and on the temperature have been calculated in the quasi-harmonic Debye model. The results obtained are in satisfactory agreement with the available reference and experimental data.
Ab initio calculations of optical constants of GaSe and InSe layered crystals
Sarkisov, S. Yu.; Kosobutsky, A. V.; Brudnyi, V. N.; Zhuravlev, Yu. N.
2015-09-01
The dielectric functions, refractive indices, and extinction coefficients of GaSe and InSe layered crystals have been calculated within the density functional theory. The calculations have been performed for the values of theoretical structural parameters optimized using the exchange-correlation functional, which allows one to take into account the dispersion interactions. It has been found that optical functions are characterized by the most pronounced polarization anisotropy in the range of photon energies of ˜4-7 eV. The frequency dependences for InSe compound in the range up to 4 eV demonstrate the more pronounced anisotropy as compared to GaSe. The results obtained for GaSe crystal agree better with the experimental data as compared to the previous calculations.
Ab-initio calculation of ZnGeAs{sub 2} semiconductor
Tripathy, S. K., E-mail: susanta96@gmail.com; Kumar, V., E-mail: susanta96@gmail.com [Department of Electronics Engineering, Indian School of Mines, Dhanbad 826004 (India)
2014-04-24
The structural, electronic, optical and elastic properties of ZnGeAs{sub 2} semiconductor have been investigated using pseudopotential plane wave method within the density functional theory (DFT). The optimized lattice constants, energy gap and crystal field splitting parameter are calculated. The optical properties such as dielectric function, optical reflectivity,, extinction coefficient, absorption spectra, refractive index and electron energy loss spectrum have been studied. The values of bulk modulus (B), elastic constants (C{sub ij}), Young’s modulus (Y), Zener anisotropic factor (A), Poisson’s ratio (ν) and Debye temperature (Θ{sub D}) have been calculated. The calculated values of all these parameters are compared with the available experimental values and the values reported by different workers. A fairly good agreement has been found between them.
Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.
Kussmann, Jörg; Ochsenfeld, Christian
2017-06-13
We present an extension of our graphics processing units (GPU)-accelerated quantum chemistry package to employ OpenCL compute kernels, which can be executed on a wide range of computing devices like CPUs, Intel Xeon Phi, and AMD GPUs. Here, we focus on the use of AMD GPUs and discuss differences as compared to CUDA-based calculations on NVIDIA GPUs. First illustrative timings are presented for hybrid density functional theory calculations using serial as well as parallel compute environments. The results show that AMD GPUs are as fast or faster than comparable NVIDIA GPUs and provide a viable alternative for quantum chemical applications.
Ab initio calculation of mechanical and thermal properties of U{sub 2}Mo intermetallic
Jaroszewicz, S., E-mail: jaroszew@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Losada, E.L.; Garcés, J.E. [DAEE, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina)
2013-10-15
We present a study of structural, elastic and thermodynamic properties of tetragonal (C11{sub b}) U{sub 2}Mo by means of density-functional theory based calculations using full-potential linearized augmented plane wave method. In this approach the generalized gradient approximation were used for the exchange–correlation potential calculation. The optimized lattice parameters are in excellent agreement with the experimental data. Through the Debye–Grüneisen model the temperature and pressure dependence of equation of state, bulk modulus, thermal expansion and specific heat have been obtained and discussed in the range of pressure 0–20 GPa and the temperature 0–800 K.
Modeling reaction pathways of low energy particle deposition on thiophene via ab initio calculations
Crenshaw, Jasmine D.; Phillpot, Simon R.; Iordanova, Nedialka; Sinnott, Susan B.
2011-07-01
Chemical reactions of thiophene with organic molecules are of interest to modify thermally deposited coatings of conductive polymers. Here, energy barriers for reactions involving thiophene and small hydrocarbon radicals are identified. Enthalpies of formation involving reactants are also calculated using the B3LYP, BMK, and B98 hybrid functionals within the G AUSSIAN03 program. Experimental values, G3, and CBS-QB3 calculations are used as standards, due to their accurate thermochemistry parameters. The BMK functional is found to perform best for the selected organic molecules. These results provide insights into the reactivity of several polymerization and deposition processes.
Perlov, A.; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.I.; Katsnelson, M.I.
2004-01-01
An approach for the calculation of the optical and magneto-optical properties of solids based on the one-particle Green function is introduced in the framework of the linear muffin-tin orbital (LMTO) method. The approach keeps all advantages of the more accurate Korringa-Kohn-Rostoker (KKR) scheme a
Ab initio calculation of the voltage profile for LiC6
Kganyago, KR
2003-03-01
Full Text Available Energetics of the anode system LiC6 compared to metallic lithium is calculated within the framework of local-density functional theory (LDA-DFT) techniques. Our results suggest that the energy of anode intercalation results in a small change...
“Ab Initio Calculation of Conformation and vibrational Spectrum for the Pyrosulfate Ion.”
Dyekjær, Jane Dannow; Berg, Rolf W.; Johansen, Helge
2003-01-01
Theoretical calculations have been performed and applied to determine the most likely geometry for the pyrosulfate ion. The main question was to determine as to whether the system has C$-2$/ or C$-2v$/ conformation. The present study favors C$-2$/ symmetry. Bond lengths and angles have been...
Ab initio calculations of partial molar properties in the single-site approximation
Ruban, Andrei; Skriver, Hans Lomholt
1997-01-01
We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g., impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation of the composition of an alloy or its nonequivalent parts. We demonstrate...
Bak, KL; Bludsky, O.; Jorgensen, P
1995-01-01
A priori theory is derived for anharmonic calculations of vibrational circular dichroism (VCD). The anharmonic VCD expression is gauge origin independent and reduce to the magnetic field perturbation theory expression in the double-harmonic approximation. The theory has been implemented using...
Bludsky, O.; Bak, Keld L.; JORGENSEN, P
1995-01-01
The quartic force field and the cubic dipole moment surface are calculated for trans-2,3-dideuteriooxirane at the self-consistent field and the second order Moller-Plesset levels of theory using a triple zeta plus two polarization functions basis set. Contact transformation theory is used to dete...... for frequencies. (C) 1995 American Institute of Physics....
Diffusion Monte Carlo ab initio calculations to study wetting properties of graphene
Wu, Yanbin; Zheng, Huihuo; Wagner, Lucas; Aluru, N. R.
2013-11-01
For applications of graphene in water, including for example desalination and DNA sequencing, it is critical to understand the wetting properties of graphene. In this work, we investigate the wetting properties using data from highly accurate diffusion quantum Monte Carlo (DMC) calculations, which treat electron correlation explicitly. Our DMC data show a strong graphene-water interaction, indicating graphene surface is more hydrophilic than previously believed. This has been recently confirmed by experiments [Li et al. Nat. Mater. 2013, doi:10.1038/nmat3709]. The unusually strong interaction can be attributed to weak bonding formed between graphene and water. Besides its inadequate description of dispersion interactions as commonly reported in the literature, density function theory (DFT) fails to describe the correct charge transfer, which leads to an underestimate of graphene-water binding energy. Our DMC calculations can provide insight to experimentalists seeking to understand water-graphene interfaces and to theorists improving DFT for weakly bound systems.
Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study
Lee, Donghyun; Sarovar, Mohan; Whaley, K Birgitta
2013-01-01
We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by e...
Lin, Lin; Ying, Lexing
2016-01-01
Phonon calculations based on first principle electronic structure theory, such as the Kohn-Sham density functional theory, have wide applications in physics, chemistry and material science. The computational cost of first principle phonon calculations typically scales steeply as $\\mathcal{O}(N_e^4)$, where $N_e$ is the number of electrons in the system. In this work, we develop a new method to reduce the computational complexity of computing the full dynamical matrix, and hence the phonon spectrum, to $\\mathcal{O}(N_e^3)$. The key concept for achieving this is to compress the polarizability operator adaptively with respect to the perturbation of the potential due to the change of the atomic configuration. Such adaptively compressed polarizability operator (ACP) allows accurate computation of the phonon spectrum. The reduction of complexity only weakly depends on the size of the band gap, and our method is applicable to insulators as well as semiconductors with small band gaps. We demonstrate the effectiveness...
Spataru, Catalin D.; Ismail-Beigi, Sohrab; Capaz, Rodrigo B.; Louie, Steven G.
2005-01-01
We present theoretical analysis and first-principles calculation of the radiative lifetime of excitons in semiconducting carbon nanotubes. An intrinsic lifetime of the order of 10 ps is computed for the lowest optically active bright excitons. The intrinsic lifetime is however a rapid increasing function of the exciton momentum. Moreover, the electronic structure of the nanotubes dictates the existence of dark excitons nearby in energy to each bright exciton. Both effects strongly influence m...
Ab Initio Calculation of 19F NMR Chemical Shielding for Alkaline-earth-metal Fluorides
CAI,Shu-Hui(蔡淑惠); CHEN,Zhong,(陈忠); LU,Xin(吕鑫); CHEN,Zhi-Wei(陈志伟); WAN,Hui-Lin(万惠霖)
2001-01-01
Gauge-independent atomic orbital (GIAO) method atHartree-Fock (HF) and density functional theory (DFr) lev-els,respectively,was employed to calculate 19F NMR chemi-cal shieldings of solid state alkaline-earth-metal fluorides MF2 (M = Mg,Ca,Sr,Ba).The results show that,although thecalculated19F chemical shieldings tend to be larger than the experinental values,they have a fairly good linear relation-ship with the observed ones.The calculated results based on different combinations of basis sets show that the B3LYP (ahybrid of DFT with HF) predictions are greatly superior tothe I-IF predictions.When a basis set of metal atom with ef- fecfive core potential (ECP) has well representation of valencewavefunction,especially wavefuncfion of d component,andproper definition of core electron nmnher,it can be applied toobtain 19F chemical shielding which is dose to that of all-elec-tron calculation.Tne variation of 19F chemical shielding of al-kaline-earth-metal fluorides correlates well with the latticefactor A/R2.``
Numerical Exact Ab Initio Four-Nucleon Scattering Calculations: from Dream to Reality
Fonseca, A. C.; Deltuva, A.
2017-03-01
In the present manuscript we review the work of the last ten years on the pursuit to obtain numerical exact solutions of the four-nucleon scattering problem using the most advanced force models that fit two nucleon data up to pion production threshold with a χ ^2 per data point approximately one, together with the Coulomb interaction between protons; three- and four-nucleon forces are also included in the framework of a meson exchange potential model where NN couples to NΔ. Failure to describe the world data on four-nucleon scattering observables in the framework of a non relativistic scattering approach falls necessarily on the force models one uses. Four-nucleon observables pose very clear challenges, particular in the low energy region where there are a number of resonances whose position and width needs to be dynamically generated by the nucleon-nucleon (NN) interactions one uses. In addition, our calculations constitute the most advance piece of work where observables for all four-nucleon reactions involving isospin I=0, I=0 coupled to I=1 and isospin I=1 initial states are calculated at energies both below and above breakup threshold. We also present a very extensive comparison between calculated results and data for cross sections and spin observables. Therefore the present work reveals both the shortcomings and successes of some of the present NN force models in describing four-nucleon data and serve as a benchmark for future developments.
Nam, Kwangho
2014-10-14
Development of multiscale ab initio quantum mechanical and molecular mechanical (AI-QM/MM) method for periodic boundary molecular dynamics (MD) simulations and their acceleration by multiple time step approach are described. The developed method achieves accuracy and efficiency by integrating the AI-QM/MM level of theory and the previously developed semiempirical (SE) QM/MM-Ewald sum method [J. Chem. Theory Comput. 2005, 1, 2] extended to the smooth particle-mesh Ewald (PME) summation method. In the developed methods, the total energy of the simulated system is evaluated at the SE-QM/MM-PME level of theory to include long-range QM/MM electrostatic interactions, which is then corrected on the fly using the AI-QM/MM level of theory within the real space cutoff. The resulting energy expression enables decomposition of total forces applied to each atom into forces determined at the low-level SE-QM/MM method and correction forces at the AI-QM/MM level, to integrate the system using the reversible reference system propagator algorithm. The resulting method achieves a substantial speed-up of the entire calculation by minimizing the number of time-consuming energy and gradient evaluations at the AI-QM/MM level. Test calculations show that the developed multiple time step AI-QM/MM method yields MD trajectories and potential of mean force profiles comparable to single time step QM/MM results. The developed method, together with message passing interface (MPI) parallelization, accelerates the present AI-QM/MM MD simulations about 30-fold relative to the speed of single-core AI-QM/MM simulations for the molecular systems tested in the present work, making the method less than one order slower than the SE-QM/MM methods under periodic boundary conditions.
Vibrational spectra, ab initio calculations and vibrational assignments of 3-butyn-1-ol
Nielsen, Claus J.; Horn, Anne; Klaeboe, Peter; Guirgis, Gamil A.
2008-08-01
The infrared spectra of 3-butyn-1-ol, HC tbnd CCH 2CH 2OH, have been recorded as a vapour in the range 3600-50 cm -1 and as a liquid between 3600 and 400 cm -1. Additional spectra of the alcohol isolated in an argon matrix at ca. 5 K were obtained and spectra were recorded after annealing to various temperatures between 10 and 35 K. Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 143 K. Spectra of an amorphous solid were recorded at 78 K. In spite of several attempts and many different annealing temperatures, the sample crystallized neither in the IR nor in the Raman cryostats. In the variable temperature Raman spectra, some bands of the liquid changed in relative intensity and were interpreted in terms of conformational equilibria between two of the five possible conformers. Complete assignments were made for all the bands of the most stable conformer gg, in which the OH group is approaching the triple bond, forming an intramolecular hydrogen bond. From various bands assigned to a second conformer aa, in which OH is oriented anti to the sbnd C tbnd C sbnd bond, or a third conformer ag, the conformational enthalpy difference was found to be Δ confH( ag-gg) = 0.9 kJ mol -1 in the liquid. The two highest energy conformers g'g and ag were not detected. Quantum-chemical calculations have been carried out at the MP2 and B3LYP levels with a variety of basis sets. The calculations revealed that gg was the low energy conformer and CBS-QB3 calculations suggested the gg conformer was more stable by 5.4 and 4.2 kJ mol -1 relative to ag and aa, respectively, in the vapour. Vibrational wavenumbers and infrared and Raman band intensities for the three low energy conformers are reported from B3LYP/cc-pVTZ calculations.
Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code
Perger, W. F.; Criswell, J.; Civalleri, B.; Dovesi, R.
2009-10-01
An automated procedure for calculating second-order elastic constants for crystalline systems of any symmetry using the CRYSTAL program is described. Second derivatives with respect to strain are evaluated numerically from analytical gradients. The internal co-ordinates are re-optimized with each applied strain. Point group symmetry is exploited to reduce the number of needed deformations according to Laue classes. A set of test cases covering many of the crystal classes is used to document the numerical accuracy of the scheme, and to define default values of the computational parameters so as to reduce the input file to a single keyword.
Ab initio Calculations of the Formation Energies of Lithium Intercalations in SnSb
Zhufeng HOU; Aiyu LI; Zizhong ZHU; Meichun HUANG; Yong YANG
2004-01-01
SnSb has attracted a great attention in recent investigations as an anode material for Li ion batteries. The formation energies and electronic properties of the Li intercalations in SnSb have been calculated within the framework of local density functional theory and the first-principles pseudopotential technique. The changes of volumes, band structures, charge density analysis and the electronic density of states for the Li intercalations are presented. The results show that the average Li intercalation formation energy per Li atom is around 2.7 eV.
Optimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations
Ørnsø, Kristian Baruël; Pedersen, Christian S.; García Lastra, Juan Maria;
2014-01-01
different side and anchoring groups. Based on the calculated frontier orbital energies and optical gaps we quantify the energy level alignment with the TiO2 conduction band and different redox mediators. An analysis of the energy level-structure relationship reveals a significant structural diversity among......In the search for sustainable energy sources, dye sensitized solar cells (DSSCs) represent an attractive solution due to their low cost, relatively high efficiencies, and flexible design. Porphyrin-based dyes are characterized by strong absorption in the visible part of the spectrum and easy...
Electronic structure calculations of rare-earth intermetallic compound YAg using ab initio methods
(S).U(g)ur; G.U(g)ur; F.Soyalp; R.Ellialtio(g)lu
2009-01-01
The structural,elastic and electronic properties of YAg-B2(CsC1) were investigated using the first-principles calculations.The energy band structure and the density of states were studied in detail,including partial density of states (PDOS),in order to identify the character of each band.The structural parameters (lattice constant,bulk modulus,pressure derivative of bulk modulus) and elastic constants were also obtained.The results were consistent with the experimental data available in the literature,as well as other theoretical results.
Raman spectra and ab initio calculation of a structure of aqueous solutions of methanol
Hushvaktov, H. A.; Tukhvatullin, F. H.; Jumabaev, A.; Tashkenbaev, U. N.; Absanov, A. A.; Hudoyberdiev, B. G.; Kuyliev, B.
2017-03-01
Small amount of low molecular weight alcohols leads to appearance of some special properties of alcohol-water solutions. In the literature it is associated with structural changes in solution with changing concentration. However, the problem special properties and structure of solutions at low concentration of alcohol is not very clear. Accordingly, we carried out quantum-chemical calculations and experimental studies of aqueous solutions of methyl alcohol. The calculations performed for ten molecular alcohol-water mixtures showed that with a low concentration of methyl alcohol in water the solubility of alcohol is poor: the alcohol molecules are displaced from the water structure and should form a particular structure. Thus, with low concentration of alcohol in the aqueous solution there are two types of structures: the structure of water and the structure of alcohol that should lead to the presence of specific properties. At high concentration of alcohol the structure of water is destroyed and there is just the structure made of alcohol-water aggregates. This interpretation is consistent with the experimental data of Raman spectroscopy. The band of Csbnd O vibrations of alcohol is detected to be of complex character just in the region of the presence of specific properties. Formation of intermolecular H-bonds also complicates the Raman spectra of Osbnd H or O-D vibrations of pure alcohol: a non-coincidence of peak frequencies, a shift of the band towards low-frequency region, a strong broadening of the band.
CHE XingLai; LI diaHao; DAI Ye; LIU BaiXin
2009-01-01
The self-consistent electronic structure calculations were carried out with the accurate frozen-core full-potential projector augmented-wave method on 13 Ni-Pt intermetallic compounds of simple crys-talline structures, i.e. A15, D019, D03 and L12 Ni3Pt and NiPt3, and α-NiAs, B1, B2, L28, and L10 NiPt. The calculations reveal that the L12 Ni3Pt, L10 NiPt and L12 NiPt3 are energetically more stable than their respective competitive structures, indicating that the three structures may be formed in some appro-priate conditions. The obtained results match well with the experimental observation or other theory predictions. It is found that there is hybridization between Ni 3d and Pt 5d states, which may signifi-cantly affect the structural stability and magnetism of metastable Ni-Pt intermetallic compounds.
Precise ab initio calculations of the 3d transition-metal clusters: Sc2
Ilya G. Kaplan
2011-06-01
Full Text Available The ground 5Σu− state of Sc2 was studied by the valence multireference configuration interaction method with single and double excitations plus Davidson correction (MRCISD(+Q at the complete basis set limit. The calculations were made under C2v symmetry restrictions, which allowed us to obtain at the dissociation limit the Sc atoms in different states (in all previous studies of Sc2 the D2h symmetry group was employed. From the Mulliken population analysis and energy calculations follows that in the ground state Sc2 dissociates in one Sc in the ground state and the other in the second excited quartet state, 4Fu. The corrected parameters of the ground potential curve are the following: Re = 5.2 bohr, De = 50.37 kcal/mol, and ωe = 234.5 cm-1. The dissociation energy in respect to the dissociation on two Sc in the ground states was estimated as De = 9.98 kcal/mol.
Ab initio calculation of H + He$^+$ charge transfer cross sections for plasma physics
Loreau, J; Lauvergnat, D; Desouter-Lecomte, M; Vaeck, N
2010-01-01
The charge transfer in low energy (0.25 to 150 eV/amu) H($nl$) + He$^+(1s)$ collisions is investigated using a quasi-molecular approach for the $n=2,3$ as well as the first two $n=4$ singlet states. The diabatic potential energy curves of the HeH$^+$ molecular ion are obtained from the adiabatic potential energy curves and the non-adiabatic radial coupling matrix elements using a two-by-two diabatization method, and a time-dependent wave-packet approach is used to calculate the state-to-state cross sections. We find a strong dependence of the charge transfer cross section in the principal and orbital quantum numbers $n$ and $l$ of the initial or final state. We estimate the effect of the non-adiabatic rotational couplings, which is found to be important even at energies below 1 eV/amu. However, the effect is small on the total cross sections at energies below 10 eV/amu. We observe that to calculate charge transfer cross sections in a $n$ manifold, it is only necessary to include states with $n^{\\prime}\\leq n$...
AB INITIO CALCULATIONS OF ELASTIC CONSTANTS OF BCC V-NB SYSTEM AT HIGH PRESSURES
Landa, A; Klepeis, J; Soderlind, P; Naumov, I; Velikokhatnyi, O; Vitos, L; Ruban, A
2005-05-02
First-principles total energy calculation based on the exact muffin-tin orbital and full potential linear muffin-tin orbital methods were used to calculate the equation of state and shear elastic constants of bcc V, Nb, and the V{sub 95}Nb{sub 05} disordered alloy as a function of pressure up to 6 Mbar. We found a mechanical instability in C{sub 44} and a corresponding softening in C at pressures {approx} 2 Mbar for V. Both shear elastic constants show softening at pressures {approx} 0.5 Mbar for Nb. Substitution of 5 at. % of V with Nb removes the instability of V with respect to trigonal distortions in the vicinity of 2 Mbar pressure, but still leaves the softening of C{sub 44} in this pressure region. We argue that the pressure induced shear instability (softening) of V (Nb) originates from the electronic system and can be explained by a combination of the Fermi surface nesting, electronic topological transition, and band Jahn-Teller effect.
无
2009-01-01
The self-consistent electronic structure calculations were carried out with the accurate frozen-core full-potential projector augmented-wave method on 13 Ni-Pt intermetallic compounds of simple crystalline structures,i.e. A15,D019,D03 and L12 Ni3Pt and NiPt3,and α-NiAs,B1,B2,L2a,and L10 NiPt. The calculations reveal that the L12 Ni3Pt,L10 NiPt and L12 NiPt3 are energetically more stable than their respective competitive structures,indicating that the three structures may be formed in some appropriate conditions. The obtained results match well with the experimental observation or other theory predictions. It is found that there is hybridization between Ni 3d and Pt 5d states,which may significantly affect the structural stability and magnetism of metastable Ni-Pt intermetallic compounds.
Laser Spectroscopy and AB Initio Calculations on the TaF Molecule
Ng, Kiu Fung; Zou, Wenli; Liu, Wenjian; Cheung, Allan S. C.
2016-06-01
Electronic transition spectrum of the tantalum monoflouride (TaF) molecule in the spectral region between 448 and 520 nm has been studied using the technique of laser-ablation/reaction free jet expansion and laser induced fluorescence spectroscopy. TaF molecule was produced by reacting laser-ablated tantalum atoms with sulfur hexafluoride gas seeded in argon. Sixteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into six electronic transition systems and the ground state has been identified to be the X3Σ-(0+) state with bond length, ro, and equilibrium vibrational frequency, ωe, determined to be 1.8209 Å and 700.1 wn respectively. In addition, four vibrational bands belong to another transition system involving lower state with Ω = 2 component has also been analyzed. All observed transitions are with ΔΩ = 0. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The Λ-S and Ω states of TaF were calculated at the state-averaged complete active space self-consistent field (SA-CASSCF) and the subsequent internally contracted multi-reference configuration interaction with singles and doubles and Davidson's cluster correction (MRCISD+Q) levels of theory with the active space of 4 electrons in 6 orbitals, that is, the molecular orbitals corresponding to Ta 5d6s are active. The spin-orbit coupling (SOC) is calculated by the state-interaction approach at the SA-CASSCF level via the relativistic effective core potentials (RECPs) spin-orbit operator, where the diagonal elements of the spin-orbit matrix are replaced by the above MRCISD+Q energies. The spectroscopic properties of the ground and many low-lying electronic states of the TaF molecule will be reported. With respect to the observed electronic states in this work, the calculated results are in good agreement with our experimental determinations. This work represents the first experimental
Palmer, Michael H.; Guest, Martyn F
2003-07-01
The gas-phase VUV absorption spectrum of pyrazole, which we reported recently, has been further assigned in the light of multi-reference multi-root CI calculations, using basis sets of varying size up to quadruple zeta quality, and containing both valence and Rydberg type functions. A very intense VUV band centred near 7.8 eV appears to arise from the summation of three calculated bands of {pi}{pi}* character, of which the first and third are the most intense. The window resonance near the band maximum is ascribed to mutual annihilation of a Rydberg state and valence state, and a probable assignment is discussed. The electron energy loss (EEL) spectrum also obtained previously, showed low-lying triplet states at about 3.9 and 5.1 eV, respectively; the present computations suggest that two triplet ({sup 3}{pi}{pi}*) states lie within the 3.9 eV band, and identifies the species involved. The assignment of the UV-photoelectron spectrum has been reconsidered, but the identity of the first three IPs as {pi}{sub 3}<{pi}{sub 2}
Ab initio calculation of the Gilbert damping parameter via the linear response formalism.
Ebert, H; Mankovsky, S; Ködderitzsch, D; Kelly, P J
2011-08-05
A Kubo-Greenwood-like equation for the Gilbert damping parameter α is presented that is based on the linear response formalism. Its implementation using the fully relativistic Korringa-Kohn-Rostoker band structure method in combination with coherent potential approximation alloy theory allows it to be applied to a wide range of situations. This is demonstrated with results obtained for the bcc alloy system Fe(1-x)Co(x) as well as for a series of alloys of Permalloy with 5d transition metals. To account for the thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. The corresponding calculations for Ni correctly describe the rapid change of α when small amounts of substitutional Cu are introduced.
pKa predictions of some aniline derivatives by ab initio calculations
Reza Behjatmanesh-Ardakani
2014-04-01
Full Text Available In this work, different levels of theory containing HF, B3LYP, and MP2 with different basis sets such as 6-31G, 6-31G*, 6-311G, 6-311+G, 6-31+G*, 6-31+G are used to predict relative acidity constants of some aniline derivatives. Three different kinds of radii containing UAHF, Bondi, and Pauling are used to study how cavity forms change acidity constants. In all cases, DPCM model is used to simulate solvation Gibbs free energy. Furthermore, one similar level and basis set has been linked to IEFPCM and DPCM models to compare the results. To relate gas-phase Gibbs free energy to the solution Gibbs free energy, a simple thermodynamic cycle is used. Results show that quantum chemical calculations are robust techniques for estimating acidity constants.
Perlov, A. E-mail: alexander.perlov@cup.uni-muenchen.de; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.I.; Katsnelson, M.I
2004-05-01
An approach for the calculation of the optical and magneto-optical properties of solids based on the one-particle Green function is introduced in the framework of the linear muffin-tin orbital (LMTO) method. The approach keeps all advantages of the more accurate Korringa-Kohn-Rostoker (KKR) scheme as the possibility to account for many-body effects in terms of the non-local energy-dependent self-energy but is numerically much more efficient. In particular an incorporation of the single-site self-energy coming from the dynamical mean-field theory (DMFT) is implemented. An application of the approach to bulk Ni and Fe showed rather good agreement with the experimental data, in contrast with the results of standard local spin density approximation (LSDA) computations.
Energy gap of extended states in SiC-doped graphene nanoribbon: Ab initio calculations
Liu, Xiaoshi; Wu, Yong; Li, Zhongyao; Gao, Yong
2017-04-01
The energy gap of extended states in zigzag graphene nanoribbons (ZGNRs) was examined on the basis of density-functional theory. In isolated ZGNRs, the energy gap is inversely proportional to the width of ribbon. It agrees well with the results from the Dirac equation in spin-unpolarized ZGNRs, although the considered ZGNRs have spin-polarized edges. However, the energy gap in SiC-doped ZGNRs cannot be modeled by effective width approximation. The doping also lifts the spin-degenerate of edge states and results in a metallic-like band structure near the Fermi level in SiC-doped ZGNRs. Our calculations may be helpful for understanding the origin of the reported single-channel ballistic transport in epitaxial graphene nanoribbons.
Ab initio calculation of thermodynamic potentials and entropies for superionic water
French, Martin; Desjarlais, Michael P.; Redmer, Ronald
2016-02-01
We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII and X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. Differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.
Ortenzi, Luciano
2013-10-17
In this thesis I study the interplay between magnetism and superconductivity in itinerant magnets and superconductors. I do this by applying a semiphenomenological method to four representative compounds. In particular I use the discrepancies (whenever present) between density functional theory (DFT) calculations and the experiments in order to construct phenomenological models which explain the magnetic, superconducting and optical properties of four representative systems. I focus my attention on the superconducting and normal state properties of the recently discovered APt3P superconductors, on superconducting hole-doped CuBiSO, on the optical properties of LaFePO and finally on the ferromagnetic-paramagnetic transition of Ni3Al under pressure. At the end I present a new method which aims to describe the effect of spin fluctuations in itinerant magnets and superconductors that can be used to monitor the evolution of the electronic structure from non magnetic to magnetic in systems close to a quantum critical point.
Klaeboe, Peter; Nielsen, Claus J.; Horn, Anne; Guirgis, Gamil A.; Wurrey, Charles J.
2010-07-01
Raman spectra of ethylmethyldichlorogermane (CH 3CH 2GeCl 2CH 3) as a liquid were recorded at 293 K and polarization data were obtained. Additional Raman spectra were recorded at various temperatures between 293 and 154 K, and intensity changes of certain bands with temperature were detected. The sample was also investigated as amorphous and crystalline solids on a cold finger of copper at 78 K. The infrared spectra have been studied as a vapour in the 4000-400 and 500-100 cm -1 regions and as amorphous and crystalline solids at 78 K. No Raman or infrared bands present in the liquid seemed to vanish completely upon crystallization, but considerable intensity changes were observed, indicating a partly crystallization. The compound exists a priori in two conformers, anti and gauche, and the experimental results suggest an equilibrium in which the anti conformer has 0.6 kJ mol -1 lower enthalpy than gauche in the liquid. In the partly crystalline solid, however, the results indicate gauche to be preferred in the crystal lattice. DFT/B3LYP, CBS-QB3 and G2 calculations were carried out indicating a conformational enthalpy difference Δ H( gauche- anti) between 0.8 and 1.5 kJ mol -1, somewhat higher than the experimental value. Vibrational frequencies, infrared and Raman intensities, and polarization ratios for the anti and gauche conformers were calculated. Anharmonic vibrational wavenumbers were derived in B3LYP/cc-pVTZ. In most cases these values gave a good agreement with the experimental results for the anti and gauche conformers.
Ab initio calculations of non-stoichiometric copper nitride, pure and with palladium
Moreno-Armenta, Maria G., E-mail: moreno@cnyc.unam.mx [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 14, Ensenada Baja California, CP 22800 Mexico (Mexico); Soto, Gerardo, E-mail: gerardo@cnyn.unam.mx [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 14, Ensenada Baja California, CP 22800 Mexico (Mexico); Takeuchi, Noboru, E-mail: takeuchi@cnyc.unam.mx [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 14, Ensenada Baja California, CP 22800 Mexico (Mexico)
2011-02-03
Research highlights: > The most stable arrangement corresponds to the Cu{sub 3}N-anti ReO{sub 3} structure. > Formation energy of Cu{sub 32}Vac{sub 0}N{sub 8} and Cu{sub 24}Pd{sub 8}Vac{sub 0}N{sub 8} are very similar. > The biggest volume in the compound is Cu{sub 31}Pd{sub 1}Vac{sub 0}N{sub 8/}. > Small amount introduction of extra metal atoms in copper nitride is possible. - Abstract: We present first principles calculations of copper nitride by using periodic density functional theory within a plane-wave ultrasoft pseudopotential scheme. The insertions of extra Cu and/or Pd atoms in the empty sites, vacancy reorganization, and substitution of Cu by Pd atoms were studied. We have used an equivalent reduced-symmetry 2 x 2 x 2 Cu{sub 3}N-like cubic super-cell. Small Cu and/or Pd concentrations and vacancy rearrangements in the copper sub-lattice were conveniently calculated in these low-symmetry cells. We cover probable situations like: the occupation of the initially empty copper sites by (1) copper atoms, and by (2) palladium; (3) the relocation of vacancies in the copper sub-lattice; and (4) the substitution of small quantities of copper by palladium atoms in the copper sub-lattice. The equilibrium volumes and energies after relaxing the atomic positions are compared to those of intrinsic copper nitride. We found that the most stable arrangement corresponds to the ideal stoichiometric Cu{sub 3}N. We also found that any deviation from this ideal configuration shift the semiconductor state to a metallic or semi-metallic one.
Magnetic properties of Mn-doped GaN with defects: ab-initio calculations
E.Salmani; Benyoussef; H.Ez-Zahraouy; E.H.Saidi
2011-01-01
According to first-principles density functional calculations,we have investigated the magnetic properties of Mn-doped GaN with defects,Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites,nitrogen vacancies VN,gallium vacancies VG and oxygen substituted at nitrogen sites.The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism.The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions.The effect of defects on ferromagnetic coupling is investigated.It is found that in the presence of donor defects,such as oxygen substituted at nitrogen sites,nitrogen vacancy antiferromagnetic interactions appear,while in the case of Ga vacancies,the interactions remain ferromagnetic;in the case of acceptor defects like Mg and Zn codoping,ferromagnetism is stabilized.The formation energies of these defects are computed.Furthermore,the half-metallic behaviours appear in some studied compounds.
Wu, Hai-Ying; Zhou, Ping; Han, Xiang-Yu [Jiaotong Univ., Chongqing (China). School of Science; Chen, Ya-Hong [North Univ. of China, Taiyuan (China). Scholl of Chemical Engineering and Environment; Liu, Zi-Jiang [Lanzhou City Univ. (China). Dept. of Physics
2014-08-15
The structural, electronic, and mechanical stability properties of magnesium sulfide in different phases are presented using the plane wave pseudopotential method within the generalized gradient approximation. Eight different phases such as rocksalt (B1), zincblende (B3), wurtzite (B4), nickel arsenide (B8), cesium chloride (B2), PH{sub 4}I-type (B11), FeSi-type (B28), and MnP-type (B31) are considered in great detail. The calculated ground-state properties of these phases are consistent with available experimental and theoretical data. It is found that MgS in the B1 and B8 phases are indirect band gap materials, the B3, B4, B11, B28, and B31 phases are all direct gap materials, while the B2 phase displays the metallic character. The B1, B3, B4, B8, B28, and B31 phases are mechanically stable at ambient conditions, but the B2 and B11 phases are mechanically unstable under zero pressure and zero temperature.
Ab initio Calculation of The Magnetic Properties of Oxygen Impurity Complexes in CdSe
Cheng, W.; Liu, L.; Yu, P. Y.
2017-06-01
We have investigated the magnetic dipole moments of interstitial oxygen molecules (O2) and their interactions in CdSe by using spin-dependent first-principle calculations based on the local density functional (DFT) theory. We constructed supercells of Cd64Se64 by repeating the primitive cell Cd2Se2 4×4×2 times. Then an O2 molecule aligned along c-axis was added to the center of the CdSe cage. The charge densities of the complexes were then computed for both spin-up and spin-down electrons. Their difference indicates that O2 molecule in CdSe is paramagnetic, although its magnetic dipole moment is lower than that in free space. Two such O2 molecules were then placed either (a) parallel to each other in side-by-side supercells or (b) in neighboring supercells on top of each other. The computed energies of the resultant magnetic structures suggest that the two O2 magnetic moments interact anti-ferromagnetically in case (a) but do not interact in (b).
Properties of the Fe/GaAs(110) interface investigated by ab initio calculations
Gruenebohm, Anna; Herper, Heike C.; Entel, Peter [Fachbereich Physik, Universitaet Duisburg-Essen, Duisburg (Germany)
2009-07-01
Fe/GaAs is a widely used system for spintronic devices. For example the small lattice mismatch (<2%) and the cheap preparation of layered systems are promising. Because of this many studies on Fe/GaAs have been performed in the last decades mostly on the (001) direction. Recently the (110) direction has attracted plenty of attention as the free GaAs(110) surface doesn't reconstruct and allows to grow flat interfaces. Unfortunately, diffusion and alloy formation occur at both interfaces which may lead to reduced spin injection and magnetic inactive regions. To get an insight into the interface properties we do calculations within the PAW method using VASP adopting the GGA/PBE form for the exchange-correlation potential. To simulate the free surface the slap method is used thereby one side of the slab is passivated through pseudo-hydrogen to guarantee a bulk-like behavior in a moderate sized slap. The adsorption of single Fe-atoms as well as the first monolayers of iron are investigated with respect to the energy landscape for different structures and the magnetic moments. While diffusion of atoms through the interface was shown to be low in energy no magnetic inactive phase could be observed. Hence our results don't show any fundamental limitations for spintronic applications.
Ab initio calculation of pentacene-PbSe hybrid interface for photovoltaic applications.
Roy, P; Nguyen, Thao P
2016-07-21
We perform density functional theory (DFT) quantum chemical calculations for the pentacene-PbSe hybrid interface at both molecular and crystal levels. At the interface, the parallel orientation of pentacene on the PbSe surface is found to be the most favorable, analogous to a pentacene-gold interface. The molecule-surface distance and the value of charge transfer from one pentacene molecule to the PbSe surface are estimated at around 4.15 Å and 0.12 e(-) respectively. We found that, standard-LDA/GGA-PBE/hybrid/meta-GGA xc-functionals incorrectly determine the band gaps of both pentacene and PbSe and leads to a failed prediction of the energy alignment in this system. So, we use a relativistic G0W0 functional and accurately model the electronic properties of pentacene and PbSe in both bulk material and near the interface. An energy shift of 0.23 eV, due to the difference in work function at the interface was supplemented after a detailed analysis of the electrostatic potential. The highest occupied molecular orbital level of pentacene is 0.01 eV above PbSe while the lowest unoccupied molecular orbital of pentacene lies 1.70 eV above PbSe, allowing both electrons and holes to transfer along the donor-acceptor junction. Our results provide additional insights into the electronic structure properties of the pentacene-PbSe heterojunction and establish it as a promising and efficient candidate for photovoltaic applications.
Chevalier, Katharina; Wolf, Matthias M N; Funk, Andreas; Andres, Marko; Gerhards, Markus; Diller, Rolf
2012-11-21
Femtosecond polarization resolved UV/Vis and mid-infrared spectroscopy was used to thoroughly identify and characterize the relevant elementary chemical and physical processes in the photocycle of 3-hydroxyflavone (3-HF) in solution. In one set of experiments with the polar aprotic solvent acetonitrile-d(3), for the first time excited state intramolecular proton transfer (ESIPT), vibrational cooling/relaxation and rotational diffusion could be separated, and furthermore mid IR vibrational spectra of 3-HF excited states in solution phase were obtained. UV/Vis transient absorption data yield the time constant τ(Rot) = 22 ps for rotational diffusion and the time constant τ(VR) = 8.5 ps for vibrational cooling/relaxation in the tautomer excited state (S(1)'). Biphasic ESIPT with τ ps as well as slow ground state recovery with τ > 500 ps was found. The time resolved mid IR data yield a time constant of ≈3.4 ps for the slow ESIPT step as well as the vibrational frequencies of S(0,) S(1)' and, in particular those of the short lived excited state S(1). Via quantum chemical calculations, structural parameters of these states are obtained. Various models were used, namely for the isolated molecule, aggregates with solvent as well as a polarizable continuum, that allow us to correlate the two ESIPT components with two mechanisms. Results are compared to those from previously published gas-phase experiments and indicate that the observed slow ESIPT is mediated by solute-solvent interaction via a hydrogen bond with the hydroxyl group of 3-HF.
Benrekia, A.R., E-mail: benrekia.ahmed@yahoo.com [Faculty of Science and Technology, University of Medea (Algeria); Benkhettou, N. [Laboratoire des Materiaux Magnetiques, Faculte des Sciences, Universite Djillali Liabes de Sidi Bel Abbes (Algeria); Nassour, A. [Laboratoire de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Nancy Universite BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy (France); Driz, M. [Applied Material Laboratory (AML), Electronics Department, University of Sidi bel Abbes (DZ 22000) (Algeria); Sahnoun, M. [Laboratoire de Physique Quantique de la Matiere et Modelisations Mathematique (LPQ3M), Faculty of Science and Technology,University of Mascara (Algeria); Lebegue, S. [Laboratoire de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Nancy Universite BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy (France)
2012-07-01
We present first-principles VASP calculations of the structural, electronic, vibrational, and optical properties of paraelectric SrTiO{sub 3} and KTaO{sub 3}. The ab initio calculations are performed in the framework of density functional theory with different exchange-correlation potentials. Our calculated lattice parameters, elastic constants, and vibrational frequencies are found to be in good agreement with the available experimental values. Then, the bandstructures are calculated with the GW approximation, and the corresponding band gap is used to obtain the optical properties of SrTiO{sub 3} and KTaO{sub 3}.
Durig, James R; Panikar, Savitha S; Obenchain, Daniel A; Bills, Brandon J; Lohan, Patrick M; Peebles, Rebecca A; Peebles, Sean A; Groner, Peter; Guirgis, Gamil A; Johnston, Michael D
2012-01-28
The microwave spectrum (6500-18 ,500 MHz) of 1-fluoro-1-silacyclopentane, c-C(4)H(8)SiHF has been recorded and 87 transitions for the (28)Si, (29)Si, (30)Si, and (13)C isotopomers have been assigned for a single conformer. Infrared spectra (3050-350 cm(-1)) of the gas and solid and Raman spectrum (3100-40 cm(-1)) of the liquid have also been recorded. The vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twist form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but much lower energy than the planar conformer. By utilizing the microwave rotational constants for seven isotopomers ((28)Si, (29)Si, (30)Si, and four (13)C) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the twist conformer. The heavy atom distances in Å are: r(0)(SiC(2)) = 1.875(3); r(0)(SiC(3)) = 1.872(3); r(0)(C(2)C(4)) = 1.549(3); r(0)(C(3)C(5)) = 1.547(3); r(0)(C(4)C(5)) = 1.542(3); r(0)(SiF) = 1.598(3) and the angles in degrees are: [angle]CSiC = 96.7(5); [angle]SiC(2)C(4) = 103.6(5); [angle]SiC(3)C(5) = 102.9(5); [angle]C(2)C(4)C(5) = 108.4(5); [angle]C(3)C(5)C(4) = 108.1(5); [angle]F(6)Si(1)C(2) = 110.7(5); [angle]F(6)Si(1)C(3) = 111.6(5). The heavy atom ring parameters are compared to the corresponding r(s) parameters. Normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, and infrared band contours. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.
Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J
2014-08-07
Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the
Ab Initio Many-Body Calculations of n-3H, n-4He, p-{3,4}He, and n-10Be Scattering
Quaglioni, Sofia
2008-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We present phase shifts for neutron scattering on 3H, 4He and 10Be and proton scattering on {3,4}He, using realistic nucleon-nucleon potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is essential to explain the parity-inverted ground state in 11Be.
Ab initio Bogoliubov coupled cluster theory
Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas
2014-09-01
Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.
Joubert, J.-M., E-mail: jean-marc.joubert@icmpe.cnrs.fr [Chimie Metallurgique des Terres Rares, Institut de Chimie et des Materiaux Paris-Est, CNRS, Universite Paris-Est, UMR 7182, 2-8 rue Henri Dunant, F-94320 Thiais, France. (France); Colinet, C. [Science et Ingenierie des Materiaux et Procedes, Grenoble INP, UJF, CNRS, 38402 Saint Martin d' Heres Cedex (France); Rodrigues, G. [Laboratorio de Materiais e Metalurgia, Instituto de Engenharia Mecanica, Universidade Federal de Itajuba, Av. BPS 1303, 37500-903 Itajuba-MG (Brazil); Mestrado Profissional em Materiais, Centro Universitario de Volta Redonda, Av. Paulo Erlei Alves Abrantes 1325, 27240-560 Volta Redonda-RJ (Brazil); Suzuki, P.A.; Nunes, C.A. [Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena, Universidade de Sao Paulo, Caixa Posta 116, 12600-970 Lorena-SP (Brazil); Coelho, G.C. [Mestrado Profissional em Materiais, Centro Universitario de Volta Redonda, Av. Paulo Erlei Alves Abrantes 1325, 27240-560 Volta Redonda-RJ (Brazil); Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena, Universidade de Sao Paulo, Caixa Posta 116, 12600-970 Lorena-SP (Brazil); Tedenac, J.-C. [Institut de Chimie Moleculaire et des Materiaux I.C.G., UMR-CNRS 5253, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)
2012-06-15
The solid solution based on Nb{sub 5}Si{sub 3} (Cr{sub 5}B{sub 3} structure type, D8{sub l}, tI32, I4/mcm, No140, a=6.5767 A, c=11.8967 A) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. - Graphial abstract: Valence-charge electron localization function in the z=0 plane of the D8{sub l} structure for the ordered compound Nb{sub 5}SiB{sub 2}. Highlights: Black-Right-Pointing-Pointer Coupling between ab initio data and experimental results from synchrotron powder diffraction. Black-Right-Pointing-Pointer Excellent agreement between the two techniques for the site occupancies and internal coordinates. Black-Right-Pointing-Pointer Explanation of the phase stability up to Nb{sub 5}SiB{sub 2}.
Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow (Russian Federation); Potapov, A.; Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Cologne (Germany); Dolgov, A. A.; Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow (Russian Federation); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin av., 634050 Tomsk (Russian Federation); Faure, A. [Université de Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)
2015-03-21
The rotational spectrum of the van der Waals complex NH{sub 3}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112–139 GHz. Newly observed and assigned transitions belong to the K = 0–0, K = 1–1, K = 1–0, and K = 2–1 subbands correlating with the rotationless (j{sub k}){sub NH3} = 0{sub 0} ground state of free ortho-NH{sub 3} and the K = 0–1 and K = 2–1 subbands correlating with the (j{sub k}){sub NH3} = 1{sub 1} ground state of free para-NH{sub 3}. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH{sub 3}–CO and para-NH{sub 3}–CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH{sub 3}–CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy D{sub e} = 359.21 cm{sup −1}. The bound rovibrational levels of the NH{sub 3}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 210.43 and 218.66 cm{sup −1} for ortho-NH{sub 3}–CO and para-NH{sub 3}–CO, respectively.
Berg, Rolf W.
2007-01-01
The oxide complexation chemistry in molten tetrachloroaluminate salts and ionic liquids is discussed with respect to what possible structures that may be formed in addition to [AlCl4]-: [Al2OCl6]2-, [Al3OCl8]-, [Al2O2Cl4]2-, [Al3O2Cl6]- and [Al4O2Cl10]2-. Ab initio Molecular Orbital (MO) calculat......The oxide complexation chemistry in molten tetrachloroaluminate salts and ionic liquids is discussed with respect to what possible structures that may be formed in addition to [AlCl4]-: [Al2OCl6]2-, [Al3OCl8]-, [Al2O2Cl4]2-, [Al3O2Cl6]- and [Al4O2Cl10]2-. Ab initio Molecular Orbital (MO...... system of staggered (approximate D3d symmetry), in analogy with the linear Al-O-Al geometry of the analogous [Al2OF6]2- ion, found previously. The calculations included determination of the vibrational harmonic normal modes and the infrared and Raman spectra, (vibrational band wavenumbers and intensities......), without any empiric adjustments of the harmonic force constants, using constants directly predicted from the Gaussian 03W program. Previously obtained IR absorption and Raman scattering spectra of melts are assigned, by comparing to the ab initio quantum mechanical vibrational analysis results...
Zapukhlyak, Myroslav
2008-12-05
The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation in the time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He{sup 2+}-He, and Ar{sup q+}-He (q=15-18). [German] Die vorliegende Arbeit leistet einen theoretischen Beitrag zum Verstaendnis der Vielteilchendynamik in inelastischen Ion-Atom-Stoessen. Vielelektronendynamik in Ion-Helium-Stoessen und Proton-Natrium-Stoessen wurde theoretisch untersucht. Die Beschreibung basiert auf der semiklassischen Naeherung mit der geraden Bahn fuer die Projektilbewegung. Das Ion-Atom- Stossproblem wird damit auf ein zeitabhaengiges Vielelektronenproblem reduziert und in der nichtrelativistischen Naeherung mit der zeitabhaengigen Schroedinger-Gleichung beschrieben. Die Loesung des Vielelektronenproblems erfolgt im
Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M
2013-06-19
The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.
Ribeiro, M., E-mail: ribeiro.jr@oorbit.com.br [Office of Operational Research for Business Intelligence and Technology, Principal Office, Buffalo, Wyoming 82834 (United States)
2015-06-21
Ab initio calculations of hydrogen-passivated Si nanowires were performed using density functional theory within LDA-1/2, to account for the excited states properties. A range of diameters was calculated to draw conclusions about the ability of the method to correctly describe the main trends of bandgap, quantum confinement, and self-energy corrections versus the diameter of the nanowire. Bandgaps are predicted with excellent accuracy if compared with other theoretical results like GW, and with the experiment as well, but with a low computational cost.
Ab initio materials physics and microscopic electrodynamics of media
2016-01-01
We argue that the amazing progress of first-principles materials physics necessitates a revision of the Standard Approach to electrodynamics of media. We hence subject this Standard Approach to a thorough critique, which shows both its inherent conceptual problems and its practical inapplicability to modern ab initio calculations. We then go on to show that the common practice in ab initio materials physics has overcome these difficulties by taking a different, microscopic approach to electro...
Zhou, J.; Sun, Z.; Pan, Y.; Song, Z.; Ahuja, R.
2011-07-01
Rocksalt-structured GeSbTe (GST) phase-change materials contain significant amounts of intrinsic vacancies at one sublattice. On the basis of ab initio total energy calculations, we have shown that the so-called intrinsic vacancies result from geometrical voids that originate from packing spaces for lone pairs of electrons tightly bound to specific Te layers where a weak bonding exists. The existence of such geometrical voids is concomitant with a narrow band gap. The present results will shed new insights on the intrinsic vacancies in rocksalt-structured GST.
Abe, Akihiro; Furuya, Hidemine; Ichimura, Noriko; Kawauchi, Susumu
1997-02-01
The gas-phase NMR analysis of 5-methoxy-1,3-dioxanes was carried out. The conformational energies estimated from the observed coupling constant data were compared with the results of ab initio MO calculations using d95 + (2df,p) basis set at the MP2 level. While the energy difference between the axial-out and equatorial-out forms was in a reasonable agreement, the 1,5 interaction energy between the methoxy methyl and the ring oxygens was not in accord.
Durig, J. R.; Zhu, X.; Shen, S.
2001-08-01
Variable temperature (-55 to -150°C) studies of the infrared spectra (3500-400 cm -1) of 1-chloropropane (CH 3CH 2CH 2Cl) and 1-bromopropane (CH 3CH 2CH 2Br) dissolved in liquid krypton and xenon, respectively, have been recorded. Utilizing two conformer pairs in krypton solution for chloride and three conformer pairs in xenon solution for bromide, enthalpy differences of 52±3 cm -1 (0.62±0.06 kJ/mol) and 72±7 cm -1 (0.86±0.08 kJ/mol) were obtained for the chloride and bromide, respectively, with the gauche form being the more stable conformer for both molecules. From these data, it is estimated that 28 and 26% of trans form are present at ambient temperature for the chloride and bromide, respectively. The conformation stabilities, harmonic force constants, fundamental frequencies, infrared intensities and Raman activities have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations for both halopropanes and these quantities have been compared to the experimental values when appropriate. The optimized geometries have also been obtained with several different ab initio basis sets with full electron correlation by the perturbation method up to MP2/6-311+G(2d,2p). The r0 structural parameters of both halopropanes have been obtained by combining the ab initio data with the previously reported microwave rotational constants for both conformers. The quantities are compared to the corresponding results for some similar molecules.
Prasad Yedlapalli
2010-01-01
Full Text Available Structure II clathrate hydrates of pure hydrogen and binary hydrates of THF+H2 are studied using ab initio calculations to determine the stable occupancies of small cavities. Ab initio calculations are carried out for a double cavity consisting of one dodecahedron (small cavity and one hexakaidecahedron (large cavity. These two cavities are attached to each other as in sII hydrates to form a double cavity. One or two H2 molecules are placed in the small cavity and one THF (or 4H2 molecules molecule is placed in the large cavity. We have determined the binding energies of the double cavities at the MP2 level using various basis sets (3-21G, 3-21G(2p, 3-21++G(2p, 6-31G, 6-31G(2p, and 6-31++G(2p. Different basis sets yield different stable occupancies of the small cavity. The results from the highest basis set (6-31++G(2p with zero point energy corrections indicate that the single occupancy is slightly more favorable than the double occupancy in both the cases of pure H2 hydrates and THF + H2 double hydrates.
Kornobis, Karina; Wong, Bryan M; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M; 10.1021/jp110914y
2011-01-01
Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B12 was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e. B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of relative contributions of DFT and HF to the exchange-correlation functional ...
Ohyama, Tatsuya; Hayakawa, Masato; Nishikawa, Shin; Kurita, Noriyuki
2011-06-01
Transcription mechanisms of gene information from DNA to mRNA are essentially controlled by regulatory proteins such as a lactose repressor (LacR) protein and ligand molecules. Biochemical experiments elucidated that a ligand binding to LacR drastically changes the mechanism controlled by LacR, although the effect of ligand binding has not been clarified at atomic and electronic levels. We here investigated the effect of ligand binding on the specific interactions between LacR and operator DNA by the molecular simulations combined with classical molecular mechanics and ab initio fragment molecular orbital methods. The results indicate that the binding of anti-inducer ligand strengthens the interaction between LacR and DNA, which is consistent with the fact that the binding of anti-inducer enhances the repression of gene transcription by LacR. It was also elucidated that hydrating water molecules existing between LacR and DNA contribute to the specific interactions between LacR and DNA. Copyright © 2011 Wiley Periodicals, Inc.
Luo, Ye, E-mail: xw111luoye@gmail.com; Sorella, Sandro, E-mail: sorella@sissa.it [International School for Advanced Studies (SISSA), and CRS Democritos, CNR-INFM, Via Bonomea 265, I-34136 Trieste (Italy); Zen, Andrea, E-mail: zen.andrea.x@gmail.com [Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale Aldo Moro 2, I-00185 Rome (Italy)
2014-11-21
We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.
Zhang, Ping
Measurements of the relative abundance of anionic species, commonly described as Qn species in silicate glasses are essential for any structure-based model of thermodynamic or transport properties of silicate liquids and magmas. Solid-state 29Si NMR has provided the most convincing evidence that the Qn species distribution in alkali glasses is not random but closer to binary. Unfortunately, for most silicate glasses 29Si MAS NMR spectra are incompletely resolved. A 2D NMR technique is reported that cannot only determine the distribution of Qn species without any a priori assumptions about the lineshapes, but also provide over an order of magnitude improvement in the precision of Qn species quantification. Results of this approach on a few carefully chosen composition should lead to a major improvement of structure-based thermodynamic models of silicate liquids. Another important aspect of structure of silicate glasses is the environment of nonbridging oxygen atoms. In other words, how the cations are distributed around non-bridging oxygen atoms. 17O solid-state NMR has been shown to be a powerful probe for studying the local structure of non-bridging oxygen. One challenge in exploiting techniques such as DOR, DAS, or MQ-MAS is the development of appropriate models to describe the relationships between NMR parameters and local structure. Ab initio calculations on the model cluster [(OH)3Si-OMn] OH 3Si-OMn n-1 + (M = Na, K; n = 3,4,5) have been performed. A point charge model is also used to derive approximate expressions to describe the dependence of the 17O quadrupole coupling parameters on the cation-non-bridging oxygen distance and its orientation. Solid-state NMR and ab initio quantum mechanical methods are used to characterize the possible molecular conformations of trehalose. Combining ab initio derived maps and using the 13 C lineshape as constraints, the torsion angle distribution map for alpha-alpha ' trehalose was constructed. Measurements of 13C isotropic
Richter, M.; Forstreuter, J.; Koepernik, K.; Eschrig, H. [Univ. of Technol., Dresden (Germany). MPG Res. Group Electron Systems; Divis, M. [Univ. of Technol., Dresden (Germany). MPG Res. Group Electron Systems]|[Karlova Univ., Prague (Czechoslovakia). Dept. of Metal Physics; Steinbeck, L. [Univ. of Technol., Dresden (Germany). MPG Res. Group Electron Systems]|[York Univ. (United Kingdom). Dept. of Physics
1997-02-01
In the framework of the self-interaction corrected local density approximation, ab initio calculations have been carried out to obtain crystal field parameters for the paramagnetic state of UGa{sub 2} and UPd{sub 2}Al{sub 3}. In two sets of calculations localized 5f states with occupation two and three, respectively, have been assumed. Using these parameters and adjusted anisotropic molecular field constants, the paramagnetic susceptibility for both compounds and the Schottky contribution to the specific heat in UPd{sub 2}Al{sub 3} have been obtained by crystal field model calculations. Very good agreement between theoretical and experimental data is found for 5f{sup 2} occupation in UGa{sub 2}. For UPd{sub 2}Al{sub 3}, the 5f{sup 2} assumption yields qualitatively reasonable results as well, but it does not explain the T = 50 K maximum in the experimental data. (orig.).
Richter, Manuel; Diviš, Martin; Forstreuter, Jörg; Koepernik, Klaus; Steinbeck, Lutz; Eschrig, Helmut
1997-02-01
In the framework of the self-interaction corrected local density approximation, ab initio calculations have been carried out to obtain crystal field parameters for the paramagnetic state of UGa 2 and UPd 2Al 3. In two sets of calculations localized 5f states with occupation two and three, respectively, have been assumed. Using these parameters and adjusted anisotropic molecular field constants, the paramagnetic susceptibility for both compounds and the Schottky contribution to the specific heat in UPd 2Al 3 have been obtained by crystal field model calculations. Very good agreement between theoretical and experimental data is found for 5f 2 occupation in UGa 2. For UPd 2Al 3, the 5f 2 assumption yields qualitatively reasonable results as well, but it does not explain the T = 50 K maximum in the experimental data.
Ucun, Fatih; Sağlam, Adnan; Güçlü, Vesile
2007-06-01
The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the CS symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.
Mauney, Christopher; Lazzati, Davide
2014-01-01
The binding energies of n < 100 carbon clusters are calculated using the ab-initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen poor environments, such as the inner layers of c...
Ab initio many-body calculations of the (3)H(d,n)(4)He and (3)He(d,p)(4)He fusion reactions.
Navrátil, Petr; Quaglioni, Sofia
2012-01-27
We apply the ab initio no-core shell model combined with the resonating-group method approach to calculate the cross sections of the (3)H(d,n)(4)He and (3)He(d,p)(4)He fusion reactions. These are important reactions for the big bang nucleosynthesis and the future of energy generation on Earth. Starting from a selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon data, we performed many-body calculations that predict the S factor of both reactions. Virtual three-body breakup effects are obtained by including excited pseudostates of the deuteron in the calculation. Our results are in satisfactory agreement with experimental data and pave the way for microscopic investigations of polarization and electron-screening effects, of the (3)H(d,γn)(4)He bremsstrahlung and other reactions relevant to fusion research.
Cole, Jacqueline M.; Hickstein, Daniel D.
2013-11-01
Structure-property relationships are established in the nonlinear optical (NLO) material, zinc tris(thiourea)sulfate (ZTS), via an experimental charge-density study, x-ray constrained wave-function refinement, and quantum-mechanical calculations. The molecular charge-transfer characteristics of ZTS, that are important for NLO activity, are topologically analyzed via a multipolar refinement of high-resolution x-ray diffraction data, which is supported by neutron diffraction measurements. The extent to which each chemical bond is ionic or covalent in nature is categorized by Laplacian-based bonding classifiers of the electron density; these include bond ellipticities, energy densities, and the local source function. Correspondingly, the NLO origins of ZTS are judged to best resemble those of organic NLO materials. The molecular dipole moment, μi, and (hyper)polarizability coefficients, αij and βijk, are calculated from the experimental diffraction data using the x-ray constrained wave-function method. Complementary gas-phase ab initio quantum-mechanical calculations of μi, αij, and βijk offer a supporting comparison. When taken alone, the experimental charge-density analysis does not fare well in deriving μi, αij, or βijk, which is not entirely surprising given that the associated calculations are only generally valid for organic molecules. However, by refining the x-ray data within the constrained wave-function method, the evaluations of μi, αij, and βijk are shown to agree very well with those from ab initio calculations and show remarkable normalization to experimental refractive index measurements. The small differences observed between ab initio and x-ray constrained wave-function refinement results can be related directly to gas- versus solid-state phase differences. μi is found to be 28.3 Debye (gas phase) and 29.7 Debye (solid state) while βijk coefficients are not only significant but are also markedly three dimensional in form. Accordingly
Pozzi, C. G.; Fantoni, A. C.; Goeta, A. E.; Wilson, C. C.; Autino, J. C.; Punte, G.
2005-10-01
The molecular and crystal structures of the title compound have been determined from a single crystal neutron diffraction experiment at 100 K. A comparison between the main geometrical features and related properties of the in-crystal and the ab initio optimized free molecule structures has shown that crystal packing induces a significant distortion in the molecular geometry. Packing instead would only have a moderate effect on the observed intramolecular resonance assisted hydrogen bond. Supermolecular ab initio molecular orbital calculations have been performed on the six different dimers one molecule forms with its nine nearest neighbours. The obtained results clearly show that dispersion contributions dominate in the most strongly interacting dimers, in good qualitative accord with the predictions made by using different empirical potentials. A qualitative description of the most prominent inductive effects determined from the electron density deformation upon dimer formation is presented. Topological analyses of the dimers charge densities have been performed in the framework of the Bader's AIM theory and all the intermolecular bond critical points have been identified. An attempt to determine some of the interaction energies only from topological quantities made evident the practical limitations of such an approach.
Pohl, Gábor; Beke, Tamás; Borbély, János; Perczel, András
2006-11-15
Because of their great flexibility and strength resistance, both spider silks and silkworm silks are of increasing scientific and commercial interest. Despite numerous spectroscopic and theoretical studies, several structural properties at the atomic level have yet to be identified. The present theoretical investigation focuses on these issues by studying three silk-like model peptides: (AG)(64), [(AG)(4)EG](16), and [(AG)(4)PEG](16), using a Lego-type approach to construct these polypeptides. On the basis of these examples it is shown that thermoneutral isodesmic reactions and ab initio calculations provide a capable method to investigate structural properties of repetitive polypeptides. The most probable overall fold schema of these molecules with respect to the type of embedded hairpin structures were determined at the ab initio level of theory (RHF/6-311++G(d,p)//RHF/3-21G). Further on, analysis is carried out on the possible hairpin and turn regions and on their effect on the global fold. In the case of the (AG)(64) model peptide, the optimal beta-sheet/turn ratio was also determined, which provided good support for experimental observations. In addition, lateral shearing of a hairpin "folding unit" was investigated at the quantum chemical level to explain the mechanical properties of spider silk. The unique mechanical characteristics of silk bio-compounds are now investigated at the atomic level.
Operator evolution for ab initio nuclear theory
Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr
2014-01-01
The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range and find at short ranges an increased contribution from such ind...
An ab initio study of hydroxylated graphane
Buonocore, Francesco; Capasso, Andrea; Lisi, Nicola
2017-09-01
Graphene-based derivatives with covalent functionalization and well-defined stoichiometry are highly desirable in view of their application as functional surfaces. Here, we have evaluated by ab initio calculations the energy of formation and the phase diagram of hydroxylated graphane structures, i.e., fully functionalized graphene derivatives coordinated with -H and -OH groups. We compared these structures to different hydrogenated and non-hydrogenated graphene oxide derivatives, with high level of epoxide and hydroxyl groups functionalization. Based on our calculations, stable phases of hydroxylated graphane with low and high contents of hydrogen are demonstrated for high oxygen and hydrogen partial pressure, respectively. Stable phases of graphene oxide with a mixed carbon hybridization are also found. Notably, the synthesis of hydroxylated graphane has been recently reported in the literature.
Giant magnetoresistance An ab-initio description
Binder, J
2000-01-01
A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened KORRINGA-KOHNROSTOKER method. Scattering at impurity atoms in the multilayers is described by means of a GREEN's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the BOLTZMANN equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the BOLTZMANN equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the...
Vaccher, Claude; Berthelot, Pascal; Debaert, Michel; Vermeersch, Gaston; Guyon, René; Pirard, Bernard; Vercauteren, Daniel P.; Dory, Magdalena; Evrard, Guy; Durant, François
1993-12-01
The conformations of 3-(substituted furan-2-yl) and 3-(substituted thien-2-yl)-γ-aminobutyric acid 1-9 in solution (D 2O) are estimated from high-resolution (300 MHz) 1H NMR coupling data. Conformations and populations of conformers are calculated by means of a modified Karplus-like relationship for the vicinal coupling constants. The results are compared with X-ray crystallographic investigations (torsion angles) and ab initio HF MO ST-3G or STO-3G* calculations. 1H NMR spectral analysis shows how 1-9 in solution retain the preferred g- conformation around the C3C4 bond, as found in the solid state, while a partial rotation is set up around the C2C3 bond: the conformations about C2C3 are all highly populated in solution. The 13C spin-lattice relaxation times are also discussed.
Sánchez, C; Baruzzi, A M; Leiva, E P M
1997-01-01
A series of calculations on the energetics of complexation of alkaline metals with 1,10-phenanthroline are presented. It is an experimental fact that the ordering of the free energy of transfer across the water - 1,2-dichloroethane interphase is governed by the charge / size ratio of the diferent cations; the larger cations showing the lower free energy of transfer. This ordering of the free energies of transfer is reverted in the presence of 1,10-phenanthroline in the organic phase. We have devised a thermodynamic cycle for the transfer process and by means of ab-initio calculations have drawn the conclusion that in the presence of phen the free energy of transfer is governed by the stability of the PHEN/M $^{+}$complex, which explains the observed tendency from a theoretical point of view.
Lattice dynamics of Cs2NaYbF6 and Cs2NaYF6 elpasolites: Ab initio calculation
Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.
2015-06-01
The ab initio calculations of the crystal structure and the phonon spectrum of Cs2NaYbF6 and Cs2NaYF6 crystals with the elpasolite structure have been performed. The frequencies and types of fundamental vibrations have been determined. The calculations have been performed in the framework of the density functional theory using the molecular orbital method with hybrid functionals in the CRYSTAL09 program developed for the simulation of periodic structures. The outer 5 s and 5 p shells of the rare-earth ion have been described in Gaussian-type basis sets. The influence of inner shells, including 4 f electron shells, on the outer shells has been described using the pseudopotential. It has been shown that this approach allows the description of the phonon spectrum with the inclusion of the splitting of the longitudinal and transverse optical modes.
I. Ando
2002-08-01
Full Text Available Abstract: NMR chemical shifts of the amide proton of a supermolecule, an Nmethylacetamide hydrogen-bonded with a formamide, were calculated as functions of hydrogen-bond length RNÃ¢Â€Â¦O and hydrogen-bond angles by FPT-GIAO method within the framework of HF/STO 6-31++G(d,p ab initio MO method. The calculations explained reasonably the experimental data reported previously that the isotropic proton chemical shifts move downfield with a decrease in RNÃ¢Â€Â¦O. Further, the behavior of proton chemical shift tensor components depending on the hydrogen-bond length and hydrogen-bond angle was discussed.
Soltani, N. [Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad (Iran, Islamic Republic of); Hosseini, S.M., E-mail: sma_hosseini@yahoo.co [Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad (Iran, Islamic Republic of); Kompany, A. [Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad (Iran, Islamic Republic of)
2009-11-15
We report nanoscale ab-initio calculations of the linear optical and electronic properties of LaCrO{sub 3} in nonmagnetic cubic and rhombohedral phases using the full potential linear augmented plane wave (FP-LAPW) method. In this work the generalized gradient approximation is used for exchange-correlation potential. The dielectric tensor is derived within random-phase approximation. We present results for the band structure, density of states, imaginary and real parts of dielectric tensor, electron energy loss spectroscopy, sum rules, reflectivity, refractive index and extinction coefficient. The regions of transparent, absorption and reflection are discussed. We are not aware of any published experimental or theoretical data for these phases, so our calculations can be used to cover this lack of data for these phases.
Farahani, Pooria; Lundberg, Marcus; Karlsson, Hans O.
2013-11-01
The SN2 substitution reactions at phosphorus play a key role in organic and biological processes. Quantum molecular dynamics simulations have been performed to study the prototype reaction Cl-+PH2Cl→ClPH2+Cl-, using one and two-dimensional models. A potential energy surface, showing an energy well for a transition complex, was generated using ab initio electronic structure calculations. The one-dimensional model is essentially reflection free, whereas the more realistic two-dimensional model displays involved resonance structures in the reaction probability. The reaction rate is almost two orders of magnitude smaller for the two-dimensional compared to the one-dimensional model. Energetic errors in the potential energy surface is estimated to affect the rate by only a factor of two. This shows that for these types of reactions it is more important to increase the dimensionality of the modeling than to increase the accuracy of the electronic structure calculation.
Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha
2011-11-01
Yohimbine hydrochloride (YHCl) is an aphrodisiac and promoted for erectile dysfunction, weight loss and depression. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of yohimbine hydrochloride have been determined using ab initio, Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. A complete vibrational assignment is provided for the observed Raman and IR spectra of YHCl. The UV absorption spectrum was examined in ethanol solvent and compared with the calculated one in gas phase as well as in solvent environment (polarizable continuum model, PCM) using TD-DFT/6-31G basis set. These methods are proposed as a tool to be applied in the structural characterization of YHCl. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap are presented.
Kubas, Adam; Blumberger, Jochen, E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hoffmann, Felix [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum (Germany); Heck, Alexander; Elstner, Marcus [Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Oberhofer, Harald [Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching (Germany)
2014-03-14
We introduce a database (HAB11) of electronic coupling matrix elements (H{sub ab}) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H{sub ab} values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.
Ab-Initio Theory of Charge Transport in Organic Crystals
Hannewald, K.; Bobbert, P. A.
2005-06-01
A theory of charge transport in organic crystals is presented. Using a Holstein-Peierls model, an explicit expression for the charge-carrier mobilities as a function of temperature is obtained. Calculating all material parameters from ab initio calculations, the theory is applied to oligo-acene crystals and a brief comparison to experiment is given.
Josefsson, Ida; Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; de Groot, Frank; Wernet, Philippe; Odelius, Michael
2012-01-01
A new ab initio approach to the calculation of X-ray spectra is demonstrated. It combines a high-level quantum chemical description of the chemical interactions and local atomic multiplet effects. We show here calculated L-edge X-ray absorption (XA) and resonant inelastic X-ray scattering spectra fo
A Comparative X-ray Diffraction Study and Ab Initio Calculation on RU60358, a New Pyrethroid
GÃƒÂ©rard Vergoten
2006-08-01
Full Text Available The crystal structure of RU60358, C20H21NO3, has been determined using X-raydiffraction to establish the configuration and stereochemistry of the molecule around theC15-C16 triple bond. The compound crystallises in the orthorhombic space group P212121, a= 7.7575, b = 11.3182, c = 21.3529ÃƒÂ¥, V = 1874.80ÃƒÂ¥3 and Z = 4. The structure has beenrefined to a final R = 0.068 for the observed structure factors with I Ã¢Â‰Â¥ 3ÃÂƒ (I. The refinedstructure was found to be significantly non planar. A comparative study, using the ab initiocalculations of the structure at B3LYP/6-31G** levels of theory, shows good geometricalagreement with the X-ray diffraction data. Standard deviations between the calculated andexperimental bond values have been shown to be 0.01 ÃƒÂ¥ and 0.5Ã‚Â° for bond angles.Vibrational wavenumbers were obtained from a normal mode analysis using the ab initiocalculations.
Ab initio alpha-alpha scattering
Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-01-01
Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.
Cheam, T. C.; Krimm, S.
1985-02-01
The infrared intensities of the amide modes in N-methylacetamide (NMA) and poly(glycine I) (PGI) have been studied using ab initio dipole moment derivatives obtained for the peptide group in NMA and an empirical force field refined for PGI. Good agreement is found between the calculated transition moment magnitudes and directions of the amide I and II modes and experimental intensity and dichroism data. By analyzing the separate contributions of each internal coordinate to the total intensity, we are able to understand in detail the origins of the IR intensities of the amide modes. Besides demonstrating one approach by which IR intensities can be studied in complex molecules and polymers, our results also provide a basis for using IR intensities in structural studies of peptides and polypeptides.
Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.
2015-06-01
The effect of hydrostatic compression on the lattice structure and dynamics of elpasolites Cs2NaYbF6 and Cs2NaYF6 (sp. gr. 225) has been investigated ab initio. The frequencies and types of fundamental oscillations are determined, and elastic constants are calculated. The computation is performed within the molecular orbitals-linear combinations of atomic orbitals (MO LCAO) approach using the density functional theory (DFT) method with hybrid functionals B3LYP and PBE0 in the CRYSTAL09 program. The rare-earth ion was described by representing the inner (in particular, 4 f) orbitals in the form of a pseudopotential. The outer 5 s and 5 p orbitals, which determine chemical bonding, were described using valence basis sets.
Sathiyanarayanan, Rajesh; Einstein, T. L.
2009-08-01
We have parameterized the various interactions between Cu adatoms on Cu(1 1 0) using density-functional theory based ab-initio calculations. Our results indicate that in addition to pair interactions, 3-adatom and 4-adatom interactions of significant strengths are present in this system. This further stresses the importance of multi-site interactions in constructing a complete lattice-gas picture. Even though adding these multi-site interactions leads to good convergence in interaction energies, we find that some multi-site interactions are very sensitive to adatom relaxations. This makes the application of a simple lattice-gas picture inadequate for such surfaces. We also parameterize adatom interactions on this surface using the recently developed connector model. The connector model parameterization is as efficient as the parameterization using lattice-gas model. Further, we present diffusion barriers for nearest-neighbor (NN) and next-nearest-neighbor (NNN) hops on this surface.
Ermakova, Olga; López-Solano, Javier; Minikayev, Roman; Carlson, Stefan; Kamińska, Agata; Głowacki, Michał; Berkowski, Marek; Mujica, Andrés; Muñoz, Alfonso; Paszkowicz, Wojciech
2014-06-01
Lanthanum orthovanadate (LaVO4) is the only stable monazite-type rare-earth orthovanadate. In the present paper the equation of state of LaVO4 is studied using in situ high-pressure powder diffraction at room temperature, and ab initio calculations within the framework of the density functional theory. The parameters of a second-order Birch-Murnaghan equation of state, i.e. those fitted to the experimental and theoretical data, are found to be in perfect agreement - in particular, the bulk moduli are almost identical, with values of 106 (1) and 105.8 (5) GPa, respectively. In agreement with recent reported experimental data, the compression is shown to be anisotropic. Its nature is comparable to that of some other monazite-type compounds. The softest compression direction is determined.
Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
He, P; Ma, X; Zhang, J W; Zhao, H B; Lüpke, G; Shi, Z; Zhou, S M
2013-02-15
The dependence of the intrinsic Gilbert damping parameter α(0) on the spin-orbital coupling strength ξ is investigated in L1(0) ordered FePd(1-x) Pt(x) films by time-resolved magneto-optical Kerr effect measurements and spin-dependent ab initio calculations. Continuous tuning of α(0) over more than one order of magnitude is realized by changing the Pt/Pd concentration ratio showing that α(0) is proportional to ξ(2) as changes of other leading parameters are found to be negligible. The perpendicular magnetic anisotropy is shown to have a similar variation trend with x. The present results may facilitate the design and fabrication of new magnetic alloys with large perpendicular magnetic anisotropy and tailored damping properties.
Somà, V.; Duguet, T.; Barbieri, C.
2011-12-01
An ab initio calculation scheme for finite nuclei based on self-consistent Green's functions in the Gorkov formalism is developed. It aims at describing properties of doubly magic and semimagic nuclei employing state-of-the-art microscopic nuclear interactions and explicitly treating pairing correlations through the breaking of U(1) symmetry associated with particle number conservation. The present paper introduces the formalism necessary to undertake applications at (self-consistent) second order using two-nucleon interactions in a detailed and self-contained fashion. First applications of such a scheme will be reported soon in a forthcoming publication. Future works will extend the present scheme to include three-nucleon interactions and implement more advanced truncation schemes.
Soma, V; Barbieri, C
2011-01-01
An ab-initio calculation scheme for finite nuclei based on self-consistent Green's functions in the Gorkov formalism is developed. It aims at describing properties of doubly-magic and semi-magic nuclei employing state-of-the-art microscopic nuclear interactions and explicitly treating pairing correlations through the breaking of U(1) symmetry associated with particle number conservation. The present paper introduces the formalism, necessary to undertake applications at (self-consistent) second-order using two-nucleon interactions, in a detailed and self-contained fashion. First applications of such a scheme will be reported soon in a forthcoming publication. Future works will extend the present scheme to include three-nucleon interactions and implement more advanced truncation schemes.
Sun, Zhen-Dong; Xu, Li-Hong; Lees, R. M.; Jiang, Xing-Jie; Perry, Sean; Craig, Norman C.
2005-05-01
The infrared spectrum of the ν11 ( au) out-of-plane CH 2-wagging vibrational mode of the environmentally important 1,3-butadiene molecule has been investigated at sub-Doppler resolution with a CO 2-laser/microwave-sideband spectrometer in order to fully resolve the rotational structure in a number of compact RQ-branch heads. The center frequencies of over 90 saturation Lamb dips in the 11 μm region have been measured with an estimated absolute accuracy of 200 kHz. The new data have been combined with previous Fourier transform results to refine the parameters in the molecular Hamiltonian. A value of |d μc/d Q11|=0.3135 debye has been obtained for the transition dipole derivative for the ν11 mode on the basis of ab initio calculations.
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.
2015-10-01
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
Kishi, Ryohei; Fujii, Hiroaki; Kishimoto, Shingo; Murata, Yusuke; Ito, Soichi; Okuno, Katsuki; Shigeta, Yasuteru; Nakano, Masayoshi
2012-05-03
We develop novel calculation and analysis methods for the dynamic first hyperpolarizabilities β [the second-order nonlinear optical (NLO) properties at the molecular level] in the second-harmonic generation based on the quantum master equation method combined with the ab initio molecular orbital (MO) configuration interaction method. As examples, we have evaluated off-resonant dynamic β values of donor (NH(2))- and/or acceptor (NO(2))-substituted benzenes using these methods, which are shown to reproduce those by the conventional summation-over-states method well. The spatial contributions of electrons to the dynamic β of these systems are also analyzed using the dynamic β density and its partition into the MO contributions. The present results demonstrate the advantage of these methods in unraveling the mechanism of dynamic NLO properties and in building the structure-dynamic NLO property relationships of real molecules.
Johnson, Clive; Moore, Elaine A; Mortimer, Michael
2005-05-01
Periodic ab initio HF calculations using the CRYSTAL code have been used to calculate (23)Na NMR quadrupole parameters for a wide range of crystalline sodium compounds including Na(3)OCl. An approach is developed that can be used routinely as an alternative to point-charge modelling schemes for the assignment of distinct lines in (23)Na NMR spectra to specific crystallographic sodium sites. The calculations are based on standard 3-21 G and 6-21 G molecular basis sets and in each case the same modified basis set for sodium is used for all compounds. The general approach is extendable to other quadrupolar nuclei. For the 3-21 G calculations a 1:1 linear correlation between experimental and calculated values of C(Q)((23)Na) is obtained. The 6-21 G calculations, including the addition of d-polarisation functions, give better accuracy in the calculation of eta((23)Na). The sensitivity of eta((23)Na) to hydrogen atom location is shown to be useful in testing the reported hydrogen-bonded structure of Na(2)HPO(4).
Bittner, Dror M.; Zaleski, Daniel P.; Stephens, Susanna L.; Walker, Nicholas R., E-mail: nick.walker@newcastle.ac.uk, E-mail: a.c.legon@bristol.ac.uk [School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne, Tyne and Wear NE1 7RU (United Kingdom); Tew, David P.; Legon, Anthony C., E-mail: nick.walker@newcastle.ac.uk, E-mail: a.c.legon@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)
2015-04-14
The H{sub 3}N⋯CuCl monomer has been generated and isolated in the gas phase through laser vaporisation of a copper sample in the presence of low concentrations of NH{sub 3} and CCl{sub 4} in argon. The resulting complex cools to a rotational temperature approaching 2 K during supersonic expansion of the gas sample and is characterised by broadband rotational spectroscopy between 7 and 18.5 GHz. The spectra of six isotopologues are measured and analysed to determine rotational, B{sub 0}; centrifugal distortion, D{sub J}, D{sub JK}; and nuclear quadrupole coupling constants of Cu, Cl, and {sup 14}N nuclei, χ{sub aa} (X). The geometry of the complex is C{sub 3v} with the N, Cu, and Cl atoms located on the a inertial axis. Bond distances and the ∠(H —N⋯Cu) bond angle within the complex are precisely evaluated through fitting of geometrical parameters to the experimentally determined moments of inertia and through ab initio calculations at the CCSD(T)(F12*)/AVQZ level. The r(Cu —Cl), r(Cu —N), and ∠(H —N⋯Cu) parameters are, respectively, evaluated to be 2.0614(7) Å, 1.9182(13) Å, and 111.40(6)° in the r{sub 0} geometry, in good agreement with the ab initio calculations. Geometrical parameters evaluated for the isolated complex are compared with those established crystallographically for a solid-state sample of [Cu(NH{sub 3})Cl].
Qureshi, N.; Zbiri, M.; Rodríguez-Carvajal, J.; Stunault, A.; Ressouche, E.; Hansen, T. C.; Fernández-Díaz, M. T.; Johnson, M. R.; Fuess, H.; Ehrenberg, H.; Sakurai, Y.; Itou, M.; Gillon, B.; Wolf, Th.; Rodríguez-Velamazan, J. A.; Sánchez-Montero, J.
2009-03-01
We present a combination of ab initio calculations, magnetic Compton scattering, and polarized neutron experiments, which elucidate the density distribution of unpaired electrons in the kagome staircase system Co3V2O8 . Ab initio wave functions were used to calculate the spin densities in real and momentum spaces, which show good agreement with the respective experiments. It has been found that the spin polarized orbitals are equally distributed between the t2g and the eg levels for the spine (s) Co ions while the eg orbitals of the cross-tie (c) Co ions only represent 30% of the atomic spin density. Furthermore, the results reveal that the magnetic moments of the cross-tie Co ions, which are significantly smaller than those of the spine Co ions in the zero-field ferromagnetic structure, do not saturate by applying an external magnetic field of 2 T along the easy axis a . In turn, the increasing bulk magnetization, which can be observed by field dependent macroscopic measurements, originates from induced magnetic moments on the O and V sites. The refined individual magnetic moments are μ(Coc)=1.54(4)μB , μ(Cos)=2.87(3)μB , μ(V)=0.41(4)μB , μ(O1)=0.05(5)μB , μ(O2)=0.35(5)μB , and μ(O3)=0.36(5)μB combining to the same macroscopic magnetization value, which was previously only attributed to the Co ions.
Use of ab initio quantum chemical methods in battery technology
Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.
WANG Dajun; XIA Shangda; YIN Min
2008-01-01
The ab initio self-consistent DV-Xα (discrete variational Xα) method was used in its relativistic and spin-polarized model to investigate the ground-state electronic structures of the crystal YPO4 and YPO4:RE3+ (RE=Ce, Pr and Sm) and f-d transition energies of the lattice. The calculation was performed on the clusters Y5P10O32 and REY4P10O32 embedded in a microcrystal containing about 1500 ions, respectively. The ground-state calculation provided the locations of the 4f and 5d crystal-field one-electron levels of RE3+ relative to the valence and conduction bands of host, the curve of total and the partial density of states, and the corresponding occupation numbers, etc. Especially, the transition-state calculation was performed to obtain the 4f→5d transition energies of RE3+ in comparison to the experimental observations. The lattice relaxation caused by the dopant ion RE3+ was discussed based on the total energy calculation and the transition-state calculation of the f-d transition energies.
Ciftci, Yasemin Oe. [Gazi Univ., Ankara (Turkey). Dept. of Physics; Coban, Cansu [Balikesir Univ. (Turkey). Dept. of Physics
2016-05-01
The structural, mechanical, electronic, dynamic, and optical properties of the ZrPdSn compound crystallising into the MgAgAs structure are investigated by the ab initio calculations based on the density functional theory. The lattice constant, bulk modulus, and first derivative of bulk modulus were obtained by fitting the calculated total energy-atomic volume results to the Murnaghan equation of state. These results were compared to the previous data. The band structure and corresponding density of states (DOS) were also calculated and discussed. The elastic properties were calculated by using the stress-strain method, which shows that the MgAgAs phase of this compound is mechanically stable. The presented phonon dispersion curves and one-phonon DOS confirms that this compound is dynamically stable. In addition, the heat capacity, entropy, and free energy of ZrPdSn were calculated by using the phonon frequencies. Finally, the optical properties, such as dielectric function, reflectivity function, extinction coefficient, refractive index, and energy loss spectrum, were obtained under different pressures.
Resonance and Aromaticity : An Ab Initio Valence Bond Approach
Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A.
2012-01-01
Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wav
Ab initio study of alanine polypeptide chain twisting
Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.
2006-01-01
chains. These particular degrees of freedom are essential for the characterization of the proteins folding process. Calculations have been carried out within the ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined...
Relaxation of Small Molecules: an ab initio Study
CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2
2002-01-01
Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.
Baesjou, PJ; Driessen, WL; Challa, G; Reedijk, J
1997-01-01
Ab initio unrestricted Hartree-Fock calculations with a 6-31G* basis set were performed on 2, 6-dimethylphenol (DMP or monomer) and 4-(2, 6-dimethylphenoxy)-2, 6-dimethylphenol (dimer) to gain more insight into the mechanism of the copper-catalyzed oxidative phenol coupling reaction. Atomic charges
Homes, C. C.; Tranquada, J. M.; Buttrey, D. J.
2007-01-01
The optical properties of the static charge- and stripe-ordered material La2NiO4+δ for δ=(2)/(15) have been measured over a wide frequency and temperature range for light polarized within the a-b planes and along the c axis. Below the charge-ordering temperature, Tco≃319K , a charge gap opens and the electronic background, upon which four strong infrared-active phonons are superimposed, drops towards zero. As the temperature decreases, many new spectral features are observed in response to the ordering of interstitial oxygen as well as the formation of a superlattice due to the charge order in the NiO2 planes. In particular, the prominent mode at 354cm-1 splits into three components; while the frequencies do not shift below the magnetic-ordering transition at Tm=110K , there is a transfer of oscillator strength in response to the change in registry of the charge stripes with respect to the underlying lattice. Ab initio calculations have been performed using density-functional theory, and the phonon dispersion curves were obtained using the direct method. Likely assignments of the new modes activated by stripe order are discussed. In some crystals, two antiresonances are observed in the conductivity for T≃Tco , which change to a resonant character for T≲Tm ; these modes are shown to be due to longitudinal optic c -axis modes which appear as a result of surface misorientation.
Hahn, Seungsoo
2016-10-01
The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.
Ab-initio calculations of Co-based diluted magnetic semiconductors Cd 1-xCoxX (X=S, Se, Te)
Saeed, Yasir
2010-10-01
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic semiconductors composed of IIVI compounds Cd1-xCoxX (X=S, Se, Te) at x=0.25. From the calculated results of band structure and density of states, the half-metallic character and stability of ferromagnetic state for Cd1-xCoxS, Cd1-xCoxSe and Cd 1-xCoxTe alloys are determined. It is found that the tetrahedral crystal field gives rise to triple degeneracy t2g and double degeneracy eg. Furthermore, we predict the values of spin-exchange splitting energies Δx(d) and Δ x(p-d) and exchange constants N0α and N 0β produced by the Co 3d states. Calculated total magnetic moments and the robustness of half-metallicity of Cd1-xCo xX (X=S, Se, Te) with respect to the variation in lattice parameters are also discussed. We also extend our calculations to x=0.50, 0.75 for S compounds in order to observe the change due to increase in Co. © 2010 Elsevier B.V.
S N MISHRA
2017-08-01
The nuclear quadrupole moments, $\\mathcal{Q}$, for the ground and first excited states in $^{99}$Ru and ground state of $^{101}$Ru have been determined by comparing the experimentally observed quadrupole interaction frequencies $\\mathcal{ν_{Q}}$ with calculated electric field gradient (EFG) for a large number of Ru-based compounds. The $\\it{ab-initio}$ calculations of EFG were performed using the all-electron augmented plane wave + local orbital (APW + lo) method of the density functional theory (DFT). From the slope of the linear correlation between theoretically calculated EFGs and experimentally observed $\\mathcal{ν_{Q}}$, we obtain the quadrupole moment for the $(5/2^{+})$ ground state in $^{99}$Ru and $^{101}$Ru as 0.0734(17) b and 0.431(14) b respectively, showing excellent agreement with the values reported in literature. For $3/2^{+}$, the quadrupole moment of the first excited state in $^{99}$Ru is obtained as +0.203(3) b, which is considerably lower than the commonly accepted literature value of +0.231(12) b. The results presented in this paper would be useful for the precise determination of quadrupole moment of high spin states in other Ru isotopes and is likely to stimulate further shell model calculations for an improved understanding of nuclear shape in these nuclei.
Nishioka, Hirotaka; Ando, Koji
2011-05-28
By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling T(DA) of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate T(DA). Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable T(DA) for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.
Mishra, S. N.
2017-08-01
The nuclear quadrupole moments, Q, for the ground and first excited states in ^{99}Ru and ground state of ^{101}Ru have been determined by comparing the experimentally observed quadrupole interaction frequencies ν _Q with calculated electric field gradient (EFG) for a large number of Ru-based compounds. The ab-initio calculations of EFG were performed using the all-electron augmented plane wave + local orbital (APW + lo) method of the density functional theory (DFT). From the slope of the linear correlation between theoretically calculated EFGs and experimentally observed ν _Q, we obtain the quadrupole moment for the (5/2^+) ground state in ^{99}Ru and ^{101}Ru as 0.0734(17) b and 0.431(14) b respectively, showing excellent agreement with the values reported in literature. For 3/2^+, the quadrupole moment of the first excited state in ^{99}Ru is obtained as +0.203(3) b, which is considerably lower than the commonly accepted literature value of +0.231(12) b. The results presented in this paper would be useful for the precise determination of quadrupole moment of high spin states in other Ru isotopes and is likely to stimulate further shell model calculations for an improved understanding of nuclear shape in these nuclei.
Nikhil Guchhait
2001-06-01
Laser-induced fluorescence excitation and IR-UV double resonance spectroscopy have been used to determine the hydrogen-bonded structure of benzyl alcohol-ammonia (1:1) cluster in a jet-cooled molecular beam. In addition, ab initio quantum chemical calculations have been performed at HF/6-31G and HF/6-31G(d, p) levels for different ground state equilibrium structures of the cluster to correlate the calculated OH and NH frequencies and their intensities with experimental results. The broad red-shifted OH-stretching mode in the IR-UV double resonance spectrum suggests strong hydrogen bonding between the hydroxyl hydrogen and the lone pair of the ammonia nitrogen. The position and intensity distribution of the calculated NH and OH modes for the minimum-energy gauche form at HF/6-31 level have better correlation with the experimental results compared to other calculated ground state equilibrium conformers. These results lead to the conclusion that the minimum energy gauche form of the cluster is populated in the jet-cooled condition.
Li, Hui; Le Roy, Robert J
2007-07-19
A three-dimensional potential energy surface for the ground electronic state of MgH2 has been constructed from 9030 symmetry-unique ab initio points calculated using the icMRCI+Q method with aug-cc-pVnZ basis sets for n=3, 4, and 5, with core-electron correlation calculated at the MR-ACPF level of theory using cc-pCVnZ basis sets, with both calculations being extrapolated to the complete basis set limit. Calculated spectroscopic constants of MgH2 and MgD2 are in excellent agreement with recent experimental results: for four bands of MgH2 and one band of MgD2 the root-mean-square (rms) band origin discrepancies were only 0.44 and 0.06 cm(-1), respectively, and the rms relative discrepancies in the inertial rotational constants (B[v]) were only 0.0196% and 0.0058%, respectively. Spectroscopic constants for MgHD were predicted using the same potential surface.
Tsuzuki, Seiji; Hayamizu, Kikuko; Seki, Shiro; Ohno, Yasutaka; Kobayashi, Yo; Miyashiro, Hajime
2008-08-14
Interactions of the lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) complex with N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME), 1-ethyl-3-methylimidazolium (EMIM) cations, neutral diethylether (DEE), and the DEMETFSA complex were studied by ab initio molecular orbital calculations. An interaction energy potential calculated for the DEME cation with the LiTFSA complex has a minimum when the Li atom has contact with the oxygen atom of DEME cation, while potentials for the EMIM cation with the LiTFSA complex are always repulsive. The MP2/6-311G**//HF/6-311G** level interaction energy calculated for the DEME cation with the LiTFSA complex was -18.4 kcal/mol. The interaction energy for the neutral DEE with the LiTFSA complex was larger (-21.1 kcal/mol). The interaction energy for the DEMETFSA complex with LiTFSA complex is greater (-23.2 kcal/mol). The electrostatic and induction interactions are the major source of the attraction in the two systems. The substantial attraction between the DEME cation and the LiTFSA complex suggests that the interaction between the Li cation and the oxygen atom of DEME cation plays important roles in determining the mobility of the Li cation in DEME-based room temperature ionic liquids.
Veinardi Suendo
2012-07-01
Full Text Available Chlorophyll a is one the most abundant pigment on Earth that responsible for trapping the light energy to perform photosynthesis in green plants. This molecule has been studied for many years from different point of views in both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS, time-dependent density functional theory (TDDFT and several semi-empirical methods (CNDO/s and ZINDO calculations were carried out to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on single molecule approach were succeeded to reconstruct the absorption spectra but required to be rescaled to fit the experimental one. In general, the semi-empirical methods provide better energy scaling factor that closer to unity. However, they lack of vertical transition fine features with respect to the spectrum obtained experimentally. Here, the ab initio calculations provide more complete features, especially the TDDFT at high level of basis sets that also has a good accuracy in the transition energies. The contribution of ground states and excited states orbitals in the main vertical transitions is discussed based on delocalization nature of the wavefunctions and the presence of solvent through polarizable continuum model (PCM.
Janicki, Rafał; Kędziorski, Andrzej; Mondry, Anna
2016-10-12
Crystal structures and photophysical properties (IR and UV-vis-NIR) of two compounds, [C(NH2)3]5[Eu(DOTP)]·12.5H2O and K5[Eu(DOTP)]·11H2O (DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylenephosphonic acid)), were determined. The DOTP ligand is bonded to Eu(3+)via four O and four N atoms, filling thus eight coordination sites of Eu(3+). The experimental structures of two [K4Eu(DOTP)](-) clusters were used as a starting point for theoretical ab initio calculations based on a multireference wavefunction approach. Positions of the energy levels of the 4f(6) configuration of the Eu(3+) ion have been calculated and compared with those derived from the experimental spectra. This enabled us to tentatively assign energy levels of the Eu(3+) ion. The relationship between calculated energies of excited states and Eu-N and Eu-O bond lengths was discussed with respect to the nephelauxetic effect.
Suendo, Veinardi
2011-01-01
Chlorophyll a is one the most abundant pigment on Earth, which is responsible for trapping the light energy to perform the photosynthesis process in green plants. This molecule is a metal-complex compound that consists of a porphyrins ring with high symmetry that acts as ligands with magnesium as the central ion. Chlorophyll a has been studied for many years from different point of views for both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS), time-dependent density functional theory (TDDFT) and some semi-empirical methods (CNDO/s and ZINDO) calculations were carried out and compared to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on a single molecule calculation were succeeded to reconstruct the absorption spectra but required to be scaling and broaden to match the experimental one. Different computational methods (ab initio and semi-empirical) exhibits the differences i...
Buenker, Robert J; Liebermann, Heinz-Peter
2012-07-15
Ab initio multireference single- and double-excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e(+)CaO, and e(+)SrO. The adiabatic dissociation limit for the (2)Σ(+) lowest states of the latter systems consists of the positive metal ion ground state (M(+)) and the OPs complex (e(+)O(-)), although the lowest energy limit is thought to be e(+)M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed-shell X (1)Σ(+) ground states of both systems is found to lie in the 0.16-0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e(+)SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance. Copyright © 2012 Wiley Periodicals, Inc.
Liu, Y. H.; Ma, Y. M.; He, Z.; Cui, T.; Liu, B. B.; Zou, G. T.
2007-10-01
We present a detailed investigation of CaCl2 under high pressure in CaCl2 (Pnnm,Z = 2) and α-PbO2 (Pbcn, Z = 4) phases, respectively. Theoretical calculations are performed by using the ab initio pseudopotential plane-wave method based on the density functional method. We estimate the transition pressure between the two phases by the crossing point of their enthalpies, which are equivalent to the Gibbs free energy at zero temperature, after optimizing the structures under high pressure. Our results show that the transition happens at about 2.9 GPa, which is in agreement with the experimental data. We calculate the structural parameters, charge transfers, bond structures, density of states and optical properties. The calculated results show that there are no charge transfers in CaCl2 structure under high pressure. It is found that the transitions from the Cl 3p to Ca 4s and Cl 3s to Ca 3p orbitals contribute mainly to the dielectric function. The optical properties of CaCl2 (Pnnm, Z = 2) do not vary much under pressure. However, some of the dispersion curves of optical constants in the α-PbO2 (Pbcn, Z = 4) phase are changed significantly under pressure.
Liu, Y H; Ma, Y M; He, Z; Cui, T; Liu, B B; Zou, G T [National Lab of Superhard Materials, Jilin University, Changchun 130012 (China)
2007-10-24
We present a detailed investigation of CaCl{sub 2} under high pressure in CaCl{sub 2} (Pnnm,Z = 2) and {alpha}-PbO{sub 2} (Pbcn, Z = 4) phases, respectively. Theoretical calculations are performed by using the ab initio pseudopotential plane-wave method based on the density functional method. We estimate the transition pressure between the two phases by the crossing point of their enthalpies, which are equivalent to the Gibbs free energy at zero temperature, after optimizing the structures under high pressure. Our results show that the transition happens at about 2.9 GPa, which is in agreement with the experimental data. We calculate the structural parameters, charge transfers, bond structures, density of states and optical properties. The calculated results show that there are no charge transfers in CaCl{sub 2} structure under high pressure. It is found that the transitions from the Cl 3p to Ca 4s and Cl 3s to Ca 3p orbitals contribute mainly to the dielectric function. The optical properties of CaCl{sub 2} (Pnnm, Z = 2) do not vary much under pressure. However, some of the dispersion curves of optical constants in the {alpha}-PbO{sub 2} (Pbcn, Z = 4) phase are changed significantly under pressure.
Liu Yu-Fang; Sun Jin-Feng; Ma Heng; Zhu Zun-Lue
2007-01-01
The accurate dissociation energy and harmonic frequency for the highly excited 21 Πu state of dimer 7Li2 have been calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space.The calculated results are in excellent agreement with experimental measurements.The potential energy curves at numerous basis sets for this state are obtained over a wide internuclear separation range from about 2.4ao to 37.0ao.And the conclusion is gained that the basis set 6-311++G(d,p) is a most suitable one.The calculated spectroscopic constants De,Re,ωe,ωeχe,αe and Be at 6-311++G(d,p) are 0.9670 eV,0.3125 nm,238.6 cm-1,1.3705cm-1,0.0039 cm-1 and 0.4921 cm-1.respectively.The vibrational levels are calculated by solving the radial Schr(o)dinger equation of nuclear motion.A total of 53 vibrational levels are found and reported for the first time.The classical turning points have been computed.Comparing with the measurements,in which only the first nine vibrational levels have been obtained so far,the present calculations are very encouraging.A careful comparison of the present results of the parameters De and ωe with those obtained from previous theories clearly shows that the present calculations are much closer to the measurements than previous theoretical results,thus representing an improvement on the accuracy of the ab initio calculations of the potentials for this state.
Dakkouri, Marwan; Grosser, Martin
2002-06-01
As a continuation of our systematic investigation of the effect of substituents on the ring geometry and dynamics in silacyclobutanes and in order to explore the role of the silicon atom as a mediator for electronic interactions between the attached fragments, we studied the molecular structure of 1,1-diethynylsilacyclobutane (DESCB) by means of gas-phase electron diffraction and ab initio calculations. The structural refinement of the electron diffraction data yielded the following bond lengths (ra) and bond angles (uncertainties are 3σ): r(Si-C)=1.874(2) Å,r(Si-Ctbnd)=1.817(1) Å,r(-Ctbnd C-)=1.209(1)Å,r(C-C)=1.563(2)Å, ∠(C-Si-C)=79.2(6)°, ∠(tbnd C-Si-Ctbnd)=106.5(6)°. The geminal Si-Ctbnd C moieties were found to be bent outwards by 3.1(15)° and the puckering angle was determined to be 30.0(15)°. The evidently short Si-Ctbnd bond length, which was also reproduced by the ab initio calculations, could be rationalized as being the consequence of the electronic interaction between the outer π charges of the triple bond and the 3pπ orbitals at the silicon atom. It is also likely that the conjugation of the geminal ethynyl groups leads to an enhancement of this bond contraction. Electrostatic interactions and the subsequent reduction of the covalent radius of the silicon atom may also contribute to this bond shortening. It has been found that the endocyclic Si-C bond length fits nicely within a scheme describing a monotonous decrease of the Si-C bond length with the increase of the electronegativity of the substituent in various geminally substituted silacyclobutanes. A series of related silacyclobutanes and acyclic diethynylsilanes have been studied by applying various ab initio methods and their optimized structures were compared to the structure of DESCB. Among these compounds are 1,1-dicyanosilacyclobutane (DCYSCB), which is isoelectronic to DESCB, 1,1-diethynylcyclobutane (DECB) which is isovalent to DESCB, monoethynylsilacyclobutane (MESCB) and
de la Mora, Pablo; Cosio-Castañeda, Carlos; Martinez-Anaya, Oliver; Morales, Francisco; Tavizon, Gustavo
2016-09-01
In this work, a theoretical study of the electrical properties of the Bi2-ySryIr2O7 (Bi2-ySryIr2O16O2) α-pyrochlore-type solid solution is presented. Quantum ab initio DFT(WIEN2k) calculations were performed in order to understand the electrical resistivity changes associated to the Bi substitution by Sr in this system. The main crystallographic modification associated to this substitution is the x position of the 48f oxygen (x, 1/8 , 1/8 ) (O1); this substitution substantially modifies the Bi/Sr-O1 and Ir-O1 atomic distances, increasing the former and diminishing the latter. Experimentally, the Bi2-ySryIr2O7 samples are metallic and the electrical resistivity increases with the Sr content. Electronic structure calculations for Bi2Ir2O7 and BiSrIr2O7 show that, regardless of structural changes, there is only a small change of electrical conductivity with the Sr substitution, and the experimentally observed increase of the resistivity can be explained in terms of a larger impact on the electronic structure of both; the Sr 'impurities' as well as of the thermal Sr oscillations.
Tomza, Michał; Musiał, Monika; González-Férez, Rosario; Koch, Christiane P; Moszynski, Robert
2013-01-01
In this paper we formulate the theory of the interaction of a diatomic linear molecule in a spatially degenerate state with the non-resonant laser field and of the rovibrational dynamics in the presence of the field. We report on \\textit{ab initio} calculations employing the double electron attachment intermediate Hamiltonian Fock space coupled cluster method restricted to single and double excitations for all electronic states of the Rb$_2$ molecule up to $5s+5d$ dissociation limit of about 26.000$\\,$cm$^{-1}$. In order to correctly predict the spectroscopic behavior of Rb$_2$, we have also calculated the electric transition dipole moments, non-adiabatic coupling and spin-orbit coupling matrix elements, and static dipole polarizabilities, using the multireference configuration interaction method. When a molecule is exposed to a strong non-resonant light, its rovibrational levels get hybridized. We study the spectroscopic signatures of this effect for transitions between the X$^1\\Sigma_g^+$ electronic ground ...
Sridevi, C; Shanthi, G; Velraj, G
2012-04-01
This study represents an integrated approach towards understanding the vibrational, electronic, NMR, reactivity and structural aspects of 2-amino-4H-chromene-3-carbonitrile (ACC). A detailed interpretation of the FT IR, UV and NMR spectra were reported. Theoretical calculations were performed by ab initio HF and density functional theory (DFT)/B3LYP method using 6-311++G(d,p) basis sets. The electronic properties was also studied and the most prominent transition corresponds to π→π*. The lower frontier orbital energy gap and high dipole moment illustrates the high reactivity of the title molecule. The NMR results indicated that the observed chemical shifts depend not only on the structure of the molecule being studied, but also on the solvent used. ACC exhibited good nonlinear optical activity and was much greater than that of urea. Molecular electrostatic potential (MEP) results predicted that the enaminonitrile fragment of ACC to be the most reactive site for both electrophilic and nucleophilic attack. In addition, the thermodynamic properties of the compound were calculated at different temperatures and corresponding relations between the properties and temperature were also studied. Copyright © 2011 Elsevier B.V. All rights reserved.
Kraisler, Eli; Kelson, Itzhak
2010-01-01
The total energies and the spin states for atoms and their first ions with Z = 1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable, are treated as ensemble v- representable with fractional occupations of the Kohn-Sham system. A newly developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab-initio electronic configuration in the Kohn-Sham reference system does not always equ...
Mancini, John S; Bowman, Joel M
2013-03-28
We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.
Ab initio interatomic potentials and the thermodynamic properties of fluids
Vlasiuk, Maryna; Sadus, Richard J.
2017-07-01
Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.
Bicanonical ab Initio Molecular Dynamics for Open Systems.
Frenzel, Johannes; Meyer, Bernd; Marx, Dominik
2017-08-08
Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.
Ab initio phase diagram of iridium
Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.
2016-09-01
The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.
Phonocatalysis. An ab initio simulation experiment
Kwangnam Kim
2016-06-01
Full Text Available Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.
Ab initio phonon scattering by dislocations
Wang, Tao; Carrete, Jesús; van Roekeghem, Ambroise; Mingo, Natalio; Madsen, Georg K. H.
2017-06-01
Heat management in thermoelectric and power devices as well as in random access memories poses a grand challenge and can make the difference between a working and an abandoned device design. Despite the prevalence of dislocations in all these technologies, the modeling of their thermal resistance is based on 50-year-old analytical approximations, whose simplicity was driven by practical limitations rather than physical insight. We introduce an efficient ab initio approach based on Green's functions computed by two-dimensional reciprocal space integration. By combining elasticity theory and density functional theory, we calculate the scattering strength of a 90∘ misfit edge dislocation in Si. Because of the breakdown of the Born approximation, earlier literature models fail, even qualitatively. We find that a dislocation density larger than 109cm-2 is necessary to substantially influence thermal conductivity at room temperature and above. We quantify how much of the reduction of thermal conductivity measured in nanograined samples can be explained by realistic dislocation concentrations.
Homes,C.; Tranquada, J.; Buttrey, D.
2007-01-01
The optical properties of the static charge- and stripe-ordered material La{sub 2}NiO{sub 4+{delta}} for {delta} = 2/15 have been measured over a wide frequency and temperature range for light polarized within the a-b planes and along the c axis. Below the charge-ordering temperature, T{sub co} 319 K, a charge gap opens and the electronic background, upon which four strong infrared-active phonons are superimposed, drops towards zero. As the temperature decreases, many new spectral features are observed in response to the ordering of interstitial oxygen as well as the formation of a superlattice due to the charge order in the NiO{sub 2} planes. In particular, the prominent mode at 354 cm{sup -1} splits into three components; while the frequencies do not shift below the magnetic-ordering transition at T{sub m} = 110 K, there is a transfer of oscillator strength in response to the change in registry of the charge stripes with respect to the underlying lattice. Ab initio calculations have been performed using density-functional theory, and the phonon dispersion curves were obtained using the direct method. Likely assignments of the new modes activated by stripe order are discussed. In some crystals, two antiresonances are observed in the conductivity for T {approx_equal} T{sub co}, which change to a resonant character for T {approx}< T{sub m}; these modes are shown to be due to longitudinal optic c-axis modes which appear as a result of surface misorientation.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-01-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerat...
Abadias, G.; Kanoun, M. B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S. N.; Djemia, Ph.
2014-10-01
The structure, phase stability, and mechanical properties of ternary alloys of the Zr-Ta-N system are investigated by combining thin-film growth and ab initio calculations. Zr1-xTaxN films with 0≤x≤1 were deposited by reactive magnetron cosputtering in Ar +N2 plasma discharge and their structural properties characterized by x-ray diffraction. We considered both ordered and disordered alloys, using supercells and special quasirandom structure approaches, to account for different possible metal atom distributions on the cation sublattice. Density functional theory within the generalized gradient approximation was employed to calculate the electronic structure as well as predict the evolution of the lattice parameter and key mechanical properties, including single-crystal elastic constants and polycrystalline elastic moduli, of ternary Zr1-xTaxN compounds with cubic rocksalt structure. These calculated values are compared with experimental data from thin-film measurements using Brillouin light scattering and nanoindentation tests. We also study the validity of Vegard's empirical rule and the effect of growth-dependent stresses on the lattice parameter. The thermal stability of these Zr1-xTaxN films is also studied, based on their structural and mechanical response upon vacuum annealing at 850 °C for 3 h. Our findings demonstrate that Zr1-xTaxN alloys with Ta fraction 0.51⩽x⩽0.78 exhibit enhanced toughness, while retaining high hardness ˜30 GPa, as a result of increased valence electron concentration and phase stability tuning. Calculations performed for disordered or ordered structures both lead to the same conclusion regarding the mechanical behavior of these nitride alloys, in agreement with recent literature findings [H. Kindlund, D. G. Sangiovanni, L. Martinez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J. E. Greene, V. Chirita, and L. Hultman, APL Materials 1, 042104 (2013), 10.1063/1.4822440].
Chen, K X; Wu, J A; Ji, R Y
1987-09-01
We investigated the cis- and trans-isomers of Pt(NH3)2Cl2 and [Pt(NH3)2]2+ using a quantum chemical non-empirical calculation method, the pseudopotential valence electron-only ab initio method. The electronic structure and electrostatic potential counter maps were in turn determined through the wave functions so obtained. There was a sharp difference between the dipole moments of the cis- and trans-isomers. The electrostatic counter maps of the isomers also had remarkably different features. Based on the interaction between the platinum (II) coordination compound and the base pairs of nucleic acid, the difference in antitumour activity of the isomeric compounds was discussed. It is pointed out that the key factor for antitumour activity is that the platinum (II) coordination compound must be mutually complementary with the target acceptor in both configuration and bonding activity. This mutual-complementary requirement includes a bonding ability of the platinum complex with two negative centers in DNA, so as to form an intrastrand crosslink with two neighbouring guanines.
Wang, Tianfang; Bowie, John H
2011-01-01
A number of linear cumulenes and heterocumulenes have been made by charge stripping of anions of known bond connectivity in the source of a mass spectrometer. Some of these reactive molecules have been identified in interstellar molecular clouds. The structures of these neutrals may be investigated by reionization to a decomposing positive ion [the neutralization-reionization technique ((-)NR(+))], and/or by ab initio calculations. Energized linear cumulenes and heterocumulenes may undergo cyclization to form stable cyclic isomers. To cite a selection of the examples described in this review: (i) four-atom systems CCCC and some heterocumulenes CCCX (X=B, N, Al, Si, P) involve the formation of stable four-membered ring rhombic (also called kite and fan) structures. One of the cyclic molecules, cyclo-C(3) Si, has been detected in interstellar molecular clouds, (ii) five-atom cumulene and heterocumulene systems are more complex. Linear CCCCC rearranges the carbon skeleton by forming a C substituted rhomboid system, CCCCO forms a three-membered cyclic isomer, while nitrogen containing five-atom cumulenes effect nitrile to isonitrile interconversion via three-centered cyclized intermediates, and (iii) CCCCCC and CCCCBO cyclize to give unique six-membered ring systems.
Nattino, Francesco, E-mail: f.nattino@chem.leidenuniv.nl; Genova, Alessandro; Guijt, Marieke; Kroes, Geert-Jan [Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden (Netherlands); Muzas, Alberto S.; Díaz, Cristina [Departamento de Química Módulo 13, Universitad Autónoma de Madrid, 28049 Madrid (Spain); Auerbach, Daniel J. [Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden (Netherlands); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany)
2014-09-28
Obtaining quantitative agreement between theory and experiment for dissociative adsorption of hydrogen on and associative desorption of hydrogen from Cu(111) remains challenging. Particularly troubling is the fact that theory gives values for the high energy limit to the dissociative adsorption probability that is as much as two times larger than experiment. In the present work we approach this discrepancy in three ways. First, we carry out a new analysis of the raw experimental data for D{sub 2} associatively desorbing from Cu(111). We also perform new ab initio molecular dynamics (AIMD) calculations that include effects of surface atom motion. Finally, we simulate time-of-flight (TOF) spectra from the theoretical reaction probability curves and we directly compare them to the raw experimental data. The results show that the use of more flexible functional forms for fitting the raw TOF spectra gives fits that are in slightly better agreement with the raw data and in considerably better agreement with theory, even though the theoretical reaction probabilities still achieve higher values at high energies. The mean absolute error (MAE) for the energy E{sub 0} at which the reaction probability equals half the experimental saturation value is now lower than 1 kcal/mol, the limit that defines chemical accuracy, while a MAE of 1.5 kcal/mol was previously obtained. The new AIMD results are only slightly different from the previous static surface results and in slightly better agreement with experiment.
Plat, A.; Cornette, J.; Colas, M.; Mirgorodsky, A.P. [Laboratoire de Science des Procédés Céramiques et de Traitements de Surface UMR 7315 CNRS, Centre Européen de la Céramique, Université de Limoges, 12 rue Atlantis, 87068 Limoges Cedex (France); Smirnov, M.B. [Physical Department, Saint Petersburg State University, 198504 Petrodvorets, Saint Petersburg (Russian Federation); Noguera, O.; Masson, O. [Laboratoire de Science des Procédés Céramiques et de Traitements de Surface UMR 7315 CNRS, Centre Européen de la Céramique, Université de Limoges, 12 rue Atlantis, 87068 Limoges Cedex (France); Thomas, P., E-mail: philippe.thomas@unilim.fr [Laboratoire de Science des Procédés Céramiques et de Traitements de Surface UMR 7315 CNRS, Centre Européen de la Céramique, Université de Limoges, 12 rue Atlantis, 87068 Limoges Cedex (France)
2014-02-25
Highlights: • Minor role of the electron lone pairs of Te atom on non-linear optic properties. • Te{sup IV}O{sub 4} → Te{sup VI}O{sub 6} evolution induces an augmentation of the χ{sup 3} susceptibility. • The Te-O-Te chain -length influences on the lattice χ{sup 3} susceptibility. -- Abstract: The ab initio calculations performed for the TeO{sub 2} → Te{sub 4}O{sub 9} → Te{sub 2}O{sub 5} → TeO{sub 3} series of crystal lattices have revealed that, in this series, the average χ{sup 3} non-linear susceptibility increases for about 10 times. Such a huge effect is attributed to the strong augmentation of the Te atom d-function contributions in valence molecular orbitals, which accompanies the Te{sup 4+} → Te{sup 6+} transformation. The results obtained allow concluding that the TeO{sub 3}-related materials can be of interest in non-linear optic device engineering.
Stroppa, Daniel G.; Montoro, Luciano A.; Ramirez, Antonio J. [Brazilian Synchrotron Light Laboratory, Campinas, SP (Brazil); Beltran, Armando; Andres, Juan [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Quimica Fisica i Analitica; Conti, Tiago G.; Silva, Rafael O. da; Longo, Elson; Leite, Edson R. [Federal Univ. of Sao Carlos (UFSSCAR), SP (Brazil). Dept. of Chemistry
2009-07-01
Modeling of nanocrystals supported by advanced morphological and chemical characterization is a unique tool for the development of reliable nanostructured devices, which depends on the ability to synthesize and characterize material on the atomic scale. Among the most significant challenges in nanostructural characterization is the evaluation of crystal growth mechanisms and their dependence on the shape of nanoparticles and the distribution of doping elements. This work presents a new strategy to characterize nanocrystals, applied here to antimony-doped tin oxide (Sb-SnO{sub 2}) (ATO) by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface energy ab initio calculations. The results show that the Wulff construction can not only describe the shape of nanocrystals as a function of surface energy distribution but also retrieve quantitative information on dopant distribution by the dimensional analysis of nanoparticle shapes. In addition, a novel three-dimensional evaluation of an oriented attachment growth mechanism is provided in the proposed methodology. This procedure is a useful approach for faceted nanocrystal shape modeling and indirect quantitative evaluation of dopant spatial distribution, which are difficult to evaluate by other techniques. (author)
Wann, E. T. H.; Vočadlo, L.; Wood, I. G.
2017-02-01
The Fe-Ni-Si system is potentially a very important component of terrestrial planetary cores. However, at present, even the behaviour of the FeSi and NiSi end members is poorly understood, especially at low to moderate pressures—the data for FeSi are contradictory and NiSi has been little studied. For FeSi, there is general agreement that there is a phase transition from the ɛ-FeSi to the CsCl structure with increasing pressure, but, in experiments, there is disagreement as to the position and slope of the phase boundary and the range of coexistence of the two phases. In this paper we have used ab initio lattice dynamics calculations to determine the phase boundary between the ɛ-FeSi and CsCl structures as a function of pressure and temperature in both FeSi and NiSi. For FeSi, we find that the transition pressure at zero Kelvin is 11 GPa and that the boundary between the ɛ-FeSi and CsCl phases varies little with temperature, having a slight negative Clapeyron slope, going from 11 GPa at 300 K to 3 GPa at 2000 K. For NiSi, there is much greater variation of the transition pressure with temperature, with a much shallower negative Clapeyron slope, going from 156 GPa at 300 K to 94 GPa at 2000 K.
Mukherjee, Saikat; Bandyopadhyay, Sudip; Paul, Amit Kumar; Adhikari, Satrajit
2013-04-25
We present the molecular symmetry (MS) adapted treatment of nonadiabatic coupling terms (NACTs) for the excited electronic states (2(2)E' and 1(2)A1') of Na3 cluster, where the adiabatic potential energy surfaces (PESs) and the NACTs are calculated at the MRCI level by using an ab initio quantum chemistry package (MOLPRO). The signs of the NACTs at each point of the configuration space (CS) are determined by employing appropriate irreducible representations (IREPs) arising due to MS group, and such terms are incorporated into the adiabatic to diabatic transformation (ADT) equations to obtain the ADT angles. Since those sign corrected NACTs and the corresponding ADT angles demonstrate the validity of curl condition for the existence of three-state (2(2)E' and 1(2)A1') sub-Hilbert space, it becomes possible to construct the continuous, single-valued, symmetric, and smooth 3 × 3 diabatic Hamiltonian matrix. Finally, nuclear dynamics has been carried out on such diabatic surfaces to explore whether our MS-based treatment of diabatization can reproduce the pattern of the experimental spectrum for system B of Na3 cluster.
Demkov, Alexander A.; Navrotsky, Alexandra
2001-03-01
The International Technology Roadmap for Semiconductors (ITRS) predicts that the strategy of scaling complementary metal-oxide-semiconductor (CMOS) devices will come to an abrupt end around the year 2012. The main reason for this will be the unacceptably high leakage current through the silicon dioxide gate with a thickness below 20 ÅFinding a gate insulator alternative to SiO2 has proven to be far from trivial. Hafnium and zirconium dioxides and silicates have been recently considered as gate dielectrics with intermediate dielectric constants. Hafnia and ziconia are important ceramic materials as well, and their phase relations are rather well studied. There is also interest in hafnia as a constituent of ceramic waste forms for plutonium, based on its refractory nature and high neutron absorption cross section. We use a combination of the ab-initio calculations and calorimetry to investigate thermodynamic and electronic properties of hafnia and zirconia. We describe the cubic to tetragonal phase transition in the fluorite structure by computing the total energy surface for zone-edge distortions correct to fourth order in the soft-mode displacement with the strain coupling renormalization included. We compare the two materials using some simple chemical concepts.
Li, Quan-Song; Zhang, Feng; Fang, Wei-Hai; Yu, Jian-Guo
2006-02-07
In the present work, the wavelength-dependent mechanistic photochemistry of glyoxal in the gas phase has been explored by ab initio calculations of potential-energy surfaces, surface crossing points, and adiabatic and nonadiabatic rates. The CHOCHO molecules in S1 by photoexcitation at 393-440 nm mainly decay to the ground state via internal conversion, which is followed by molecular eliminations to form CO, H2CO,H2, and HCOH. Upon photodissociation of CHOCHO at 350-390 nm, intersystem crossing to T1 followed by the C-C bond cleavage is the dominant process in this wavelength range, which is responsible for the formation of the CHO radicals. The C-C and C-H bond cleavages along the S1 pathway are energetically accessible upon photodissociation of CHOCHO at 290-310 nm, which can compete with the S1-->T1 intersystem crossing process. The present study predicts that the C-H bond cleavage on the S1 surface is probably a new photolysis pathway at high excitation energy, which has not been observed experimentally. In addition, the trans-cis isomerization is predicted to occur more easily in the ground state than in the excited states.
Highly scalable Ab initio genomic motif identification
Marchand, Benoit
2011-01-01
We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.
High Level Ab Initio Kinetics as a Tool for Astrochemistry
Klippenstein, Stephen
2015-05-01
We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.
Ab initio potential for solids
Chetty, N.; Stokbro, Kurt; Jacobsen, Karsten Wedel
1992-01-01
thus be tested independently. The theory is applied to calculations of the surface energies and vacancy formation energy of Al. At the most accurate level, the theory gives results that are in almost complete agreement with self-consistent calculations. At the more approximate, but also computationally...... much less demanding, level, the theory gives results that are still in excellent agreement with the self-consistent results....
Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M
2015-08-05
Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.
Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien
2013-05-01
Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.
Gatial, Anton; Herich, Peter; Tarabová, Denisa; Milata, Viktor; Prónayová, Nadežda
2017-07-01
The conformers of push-pull 3-[(2,2-dimethylhydrazinyl)methylene]-pentane-2,4-dione (CH3)2Nsbnd NHsbnd CHdbnd C(COCH3)2 (DMHMP) have been studied experimentally by NMR and vibrational spectroscopy and theoretically by ab initio calculations at MP2 and DFT B3LYP levels in various basis sets. The NMR spectra were obtained in chloroform and dimethylsulfoxide and the IR and Raman spectra of DMHMP as a solid and as a solute in various less and more polar solvents at room temperature have been recorded. DMHMP was prepared as a pure solid and the data from X-ray analysis revealed that DMHMP exists in solid state as EZa conformer with an intramolecular hydrogen bond. The geometries and relative energies of possible conformers of DMHMP were evaluated at the both levels of theory in several basis sets and compared with the data from X-ray analysis. According to the NMR spectra the studied compound exists as a single entity. On the other hand vibrational spectra revealed that in less polar DMHMP solutions the presence of the second less polar ZZa conformer is possible, whereas in more polar solvent only one EZa conformer is observed. The influence of the environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using IEFPCM model. The observed IR and Raman bands were compared with calculated MP2/cc-pVTZ harmonic vibrational frequencies and assigned on the basis of potential energy distribution.
Coccia, Emanuele; Guidoni, Leonardo
2014-01-01
In this letter we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) {\\AA}, larger than the values obtained by DFT (PBE, B3LYP and CAM-B3LYP) and shorter than that calculated at the Hartree-Fock (HF) level. TDDFT and EOM-CCSD calculations on a reduced peridinin model confirm the HOMO-LUMO major contribution of the Bu+-like (S2) bright excited state. Many Body Green's Function Theory (MBGFT) calculations of the vertical excitation energy of the Bu+-like state for the VMC structure (VMC/MBGFT) provide excitation energy of 2.62 eV, in agreement with experimental results in n-hexane (2.72 eV). The dependence of the excitation energy on the bond length alternation in the MBGFT and TDDFT calculations with different functionals is discussed.
Gümüs Hacer Pir
2015-06-01
Full Text Available Quantum chemical calculations have been performed to study the molecular geometry, 1H and 13C NMR chemical shifts, conformational, natural bond orbital (NBO and nonlinear optical (NLO properties of the 2-chloro-5-(2-hydroxyethyl-4- methoxy-6-methylpyrimidine molecule in the ground state using DFT and HF methods with 6-311++G(d,p basis set. The optimized geometric parameters and 1H and 13C NMR chemical shifts have been compared with the experimental values of the title molecule. The results of the calculations show excellent agreement between the experimental and calculated frequencies at B3LYP/6-311++G(d,p level. In order to provide a full understanding of the properties of the title molecule in the context of molecular orbital picture, the highest occupied molecular energy level (EHOMO, the lowest unoccupied molecular energy level (ELUMO, the energy difference (DE between EHOMO and ELUMO, electronegativity (χ, hardness (η and softness (S have been calculated using B3LYP/6-311++G(d,p and HF/6-311++G(d,p levels. The calculated HOMO and LUMO energies show that the charge transfer occurs within the title molecule.
Sundberg, K. R.
1976-01-01
A method is developed to optimize the separated-pair independent particle (SPIP) wave function; it is a special case of the separated-pair theory obtained by using two-term natural expansions of the geminals. The orbitals are optimized by a theory based on the generalized Brillouin theorem and iterative configuration interaction (CI) calculations in the space of the SPIP function and its single excitations. The geminal expansion coefficients are optimized by serial 2 x 2 CI calculations. Formulas are derived for the matrix elements. An algorithm to implement the method is presented, and the work needed to evaluate the molecular integrals is discussed. (auth)
Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko
2017-04-01
Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one
Ab initio calculations of fundamental properties of SrTe$_{1−x}$O$_x$ alloys
J ZEROUAL; S LABIDI; H MERADJI; M LABIDI; F EL HAJ HASSAN
2016-06-01
Structural, electronic, optical and thermodynamic properties of the SrTe$_{1−x}$O$_x$ alloys ($0 ≤ x ≤ 1$) in rock-salt phase are calculated using the full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential for structural properties was calculated by the standard local density approximation (LDA) and GGA (PBE) and the new form of GGA (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE), while for electronic properties, in addition to LDA, GGA corrections; Engel–Vosko GGA (EV-GGA) and modified Becke–Johnson (mBJ) schemes were also applied. The results show that the use of GGA (WC) in our calculations is more appropriate than GGA and LDA and gives a good description of structural properties such as lattice parameters and bulk modulus. Our investigation on the effect of composition on lattice constant, bulk modulus and band gap for ternary alloys shows almost nonlinear dependence on the composition. In addition to FP-LAPW method, the composition dependence of the refractive index and the dielectric constant was studied by different models. On the other hand, the thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing $\\Delta H_m$ as well as the phase diagram.
Electronic states and nature of bonding in the molecule MoC by all electron ab initio calculations
Shim, Irene; Gingerich, Karl A.
1997-01-01
by solving the Schrodinger equation for the nuclear motion numerically. Based on the results of the CASSCF calculations the (3) Sigma(-) ground state of MoC is separated from the excited states (3) Delta, (5) Sigma-, (1) Sigma, (1) Delta, (5) Pi, (1) Sigma(+), and (3) Pi by transition energies of 4500, 6178...
Holland, D.M.P.; Shaw, D.A.; Stener, Mauro
2016-01-01
absorption bands due to excitation from the 1e00 or 6e0 orbitals. The interpretation of the experimental spectrum has been guided by transition energies and oscillator strengths, for Rydberg and valence states, calculated with the time-dependent version of density functional theory and with the coupled...
Thermal conductivity of wurtzite and zinc blende cubic phases of BeO from ab initio calculations
Malakkal, Linu; Szpunar, Barbara; Siripurapu, Ravi Kiran; Zuniga, Juan Carlos; Szpunar, Jerzy A.
2017-03-01
The structural, mechanical, thermal and thermodynamic properties of Beryllium oxide (BeO) in the zinc blende (ZB) and wurtzite (WZ) form have been calculated using the density functional theory (DFT) in the general gradient approximation (GGA). The ground state structural and elastic properties of wurtzite BeO (w-BeO) is calculated using the new GGA ultrasoft pseudopotentials for solids (pbesol); the simulated results have shown excellent agreement with the experiments. The thermodynamic properties are studied using quasi-harmonic approximation (QHA), and the predicted properties agree well for the WZ phase for which the experimental data are available, while for ZB phase it remains to be validated with future experiments. Both Boltzmann transport equation (BTE) and Slack model were used to calculate the lattice thermal conductivity of wurtzite BeO (w-BeO). Furthermore, the thermal conductivity along the crystallographic 'a' and 'c' axis of wurtzite BeO is investigated using BTE. Our calculation of w-BeO agrees well with the available experimental measurements. Apart from these studies on w-BeO, we have also compared the mechanical, structural and phonon dispersions of z-BeO with previously reported theoretical studies. Additionally we report the volume thermal expansion and the heat capacity at constant pressure of z-BeO for the first time and the bulk thermal conductivity of zinc blende BeO (z-BeO) using BTE.
H. Koc; A. Yildirim; E. Deligoz
2012-01-01
The structural,elastic,electronic,optical,and vibrational properties of cubic PdGa compound are investigated using the norm-conserving pseudopotentials within the local density approximation (LDA) in the framework of the density functional theory.The calculated lattice constant has been compared with the experimental value and has been found to be in good agreement with experimental data.The obtained electronic band structures show that PdGa compound has no band gap.The second-order elastic constants have been calculated,and the other related quantities such as the Young's modulus,shear modulus,Poisson's ratio,anisotropy factor,sound velocities,and Debye temperature have also been estimated.Our calculated results of elastic constants show that this compound is mechanically stable.Furthermore,the real and imaginary parts of the dielectric function and the optical constants such as the electron energy-loss function,the optical dielectric constant and the effective number of electrons per unit cell are calculated and presented in the study.The phonon dispersion curves are also derived using the direct method.
Lee, S.; Doyle, C. S.; Stebbins, J. F.
2001-12-01
Aluminosilicate melts are one of the dominant components in upper mantle and crust. Essential to the thermodynamic and transport properties of these systems is the full understanding on the atomic arrangements and the extent of disorder. Recent quantification of the extent of disorder among 'framework cations' in silicate melts using NMR provided improved prospects on the atomic structure of the glasses and melt and their corresponding properties and allowed the degree of randomness to be evaluated in terms of the degree of Al-avoidance (Q) and degree of phase separations (P) (Lee and Stebbins, J. Phys. Chem. B 104, 4091; Lee and Stebbins, GCA in press). Quantitative estimation of the extent of disorder among 'charge-balancing cations' including Na in aluminosilicate glasses, however, has remained an unsolved problem and these cations have often been assumed to be randomly distributed. Here, we explore the intermediate range order around Na in charge-balanced aluminosilicate glasses using Na-23 NMR and Near-edge X-ray absorption fine structure (NEXAFS) with full multiple scattering (FMS) simulations combined with ab initio molecular orbital calculations. We also quantify the extent of disorder in charge balancing cations as a function of Na-O bond length (d(Na-O)) distribution with composition and present a structural model favoring ordered Na distributions. Peak position in Na-23 magic angle spinning (MAS) spectra of aluminosilicate glasses with varying R (Si/Al) at 14.1 T varies from -10.28 ppm (R = 0.7) to -19.98 ppm (R = 6). These results suggest that average d(Na-O) increases with increasing R, which is confirmed by Na-23 multiple quantum MAS spectra where the chemical shift moves toward lower frequency with increasing Si and shows the individual Gaussian components of Na-O distributions such as Na-(Al-O-Al), Na-(Si-O-Al) and Na-(Si-O-Si). Calculated d(Na-(Al-O-Al)) of 2.57 Å is shorter than d(Na-(Si-O-Si)) of 2.88 Å. Strong compositional dependence is
Accurate ab initio spin densities
Boguslawski, Katharina; Legeza, Örs; Reiher, Markus
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CA...
The geometry of the chlorine dioxide anion ClO2-: Ab initio calculation and Franck-Condon analysis
Zheng, Haiyan; Zhang, Xiaowei; Li, Renzhong; Liang, Jun; Cui, Zhifeng
2007-11-01
Geometry optimization and harmonic vibrational frequency calculations were performed on the XB state of ClO 2 and XA state of ClO2-. The electron affinity energies of ClO 2 were calculated up to CCSD(T) level. Franck-Condon analyses and spectral simulations were carried out on the ClO(XB)-ClO2-(XA) photodetachment process. In addition, the equilibrium geometry parameters, r(ClO) = 1.567 ± 0.002 Å and ∠(OClO) = 116.5 ± 0.5°, of the XA state of ClO2-, were derived in the spectral simulation. Our conclusions regarding the anion geometry suggest a reinterpretation of the results of Gilles et al. [M.K. Gilles, M.L. Polak, W.C. Lineberger, J. Chem. Phys. 96 (1992) 8012].
Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study
Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya
2016-12-01
We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.
Ab initio calculation of ZnSiAs{sub 2} and CdSiAs{sub 2} semiconductor compounds
Boukabrine, F., E-mail: bk_fouzia@yahoo.f [Applied Materials Laboratory, Electronics Department, Djillali Liabes University of Sidi Bel-Abbes (Algeria); Physics Department, Djillali Liabes University Of Sidi Bel-Abbes (Algeria); Chiker, F. [Physics Department, Djillali Liabes University Of Sidi Bel-Abbes (Algeria); Khachai, H., E-mail: h_khachai@yahoo.f [Applied Materials Laboratory, Electronics Department, Djillali Liabes University of Sidi Bel-Abbes (Algeria); Physics Department, Djillali Liabes University Of Sidi Bel-Abbes (Algeria); Haddou, A. [Applied Materials Laboratory, Electronics Department, Djillali Liabes University of Sidi Bel-Abbes (Algeria); Physics Department, Djillali Liabes University Of Sidi Bel-Abbes (Algeria); Baki, N. [Physics Department, Djillali Liabes University Of Sidi Bel-Abbes (Algeria); Khenata, R. [Department of Physics and Astronomy, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 (Algeria); Abbar, B. [Laboratoire de Modelisation et de Simulation en Sciences des Materiaux, Physics Department, Djillali Liabes University of Sidi Bel-Abbes (Algeria); Khalfi, A [Laboratory of Catalysis and Reactive Systems, Djillali Liabes University of Sidi Bel-Abbes (Algeria)
2011-01-15
In order to get a good overall description of the structural, electronic and optical properties of ternary chalcopyrite semiconductors especially for ZnSiAs{sub 2} and CdSiAs{sub 2}, they have been calculated self consistently using the full potential augmented plane wave plus local orbital method (FPAPW+lo). The calculations are presented within the local density approximation (LDA), where we clarify the electronic and optical properties for both compounds. Since, we prove the existence of the direct band gap and also the efficiency of the method to give more details about the optical properties. We found that the most important features of the band gap is pseudo-direct for ZnSiAs{sub 2}, and direct for CdSiAs{sub 2}; then the contribution of the different transitions peaks are analyzed from the imaginary part of the dielectric function and the reflectivity spectra.
Sarmiento-Pérez, Rafael; Botti, Silvana; Schnohr, Claudia S.; Lauermann, Iver; Rubio, Angel; Johnson, Benjamin
2014-09-01
Element-specific unoccupied electronic states of Cu(In, Ga)S2 were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.
Sarmiento-Pérez, Rafael; Botti, Silvana, E-mail: silvana.botti@univ-lyon1.fr [Institut Lumière Matière and ETSF, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Schnohr, Claudia S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lauermann, Iver [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Rubio, Angel [Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Centro de Física de Materiales CSIC-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 San Sebastián (Spain); Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Johnson, Benjamin, E-mail: benjamin.johnson@alumni.tu-berlin.de [Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)
2014-09-07
Element-specific unoccupied electronic states of Cu(In, Ga)S{sub 2} were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.
Kanai, Yosuke [Univ. of North Carolina, Chapel Hill, NC (United States); Tang, M [Univ. of North Carolina, Chapel Hill, NC (United States); Wood, B C [Univ. of North Carolina, Chapel Hill, NC (United States)
2013-10-25
We have began the project “Multiscale Capability for Exploring Transport Phenomena in Battery”, which is sponsored by Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory in February 2012 as the subcontract was approved. We have been performing first-principles quantum-mechanical calculations to first establish the general modeling framework. It was found that it is essential to employ advanced Density Functional Theory (DFT) calculations with Hubbard U correction, in order to describe the battery material, in particular, LiFePO4 (Figure 1). The presence of localized d-electrons at Fe ion sites requires the better treatment of non-local correlation beyond that of standard DFT. As our aim was to first identify and investigate key transport/reaction mechanisms affecting the performance of Lithium-ion based batteries, we have began out work by characterizing the standard structures and how the defects influence the important electronic structure.
Ayma, D; Lichanot, A
1998-01-01
Compton profiles, polarizabilities and related functions of diamond and cubic boron nitride have been investigated within the Hartree-Fock approximation and the density functional theory, calculated within the local density approximation and generalized gradient approximation, but without any explicit correlation correction for the Compton profiles. The correlation part already included in the standard uncorrected density functional theory is deduced from the comparison of the two types of calculation. The Compton profile and reciprocal-form-factor anisotropies, polarizability, dielectric constant and energy loss function of the two compounds are compared at the same level of accuracy. These properties are very close in spite of the rather different chemical bonds due to the charge transfer occurring in cubic boron nitride and gaps. (author)
Serine Proteases an Ab Initio Molecular Dynamics Study
De Santis, L
1999-01-01
In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.
Spin-orbit decomposition of ab initio wavefunctions
Johnson, Calvin W
2014-01-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulting wavefunctions into their component $L$- and $S$-components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly fifty years and six orders of magnitude in basis dimensions. I suggest $L$-$S$ may be a useful tool for analyzing \\textit{ab initio} wavefunctions of light nuclei, for example in the case of rotational bands.
Spin-orbit decomposition of ab initio nuclear wave functions
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
Toward the Ab-initio Description of Medium Mass Nuclei
Barbieri, C; Soma, V; Duguet, T; Navratil, P
2012-01-01
As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.
$\\it{Ab}$ $\\it{initio}$ nuclear many-body perturbation calculations in the Hartree-Fock basis
Hu, Baishan; Sun, Zhonghao; Vary, James P; Li, Tong
2016-01-01
Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity renormalization group transformation while JISP16 is adopted without renormalization. The MBPT calculations are performed within the Hartree-Fock (HF) bases. The angular momentum coupled scheme is used, which can reduce the computational task. Corrections up to the third order in energy and up to the second order in radius are evaluated. Higher-order corrections in the HF basis are small relative to the leading-order perturbative result. Using the anti-symmetrized Goldstone diagram expansions of the wave function, we directly correct the one-body density for the calculation of the radius, rather than calculate corrections to the occupation propabilities of single-particle orbits as found in other treatments. We compare our results with other methods where available a...
Liu, Xiaojie; Wang, C. Z.; Hupalo, M.; Yao, Y. X.; Tringides, M. C.; Lu, W. C.; Ho, K. M.
2010-12-01
Adsorption of rare-earth (RE) adatoms (Nd, Gd, Eu, and Yb) on graphene was studied by first-principles calculations based on the density-functional theory. The calculations show that the hollow site of graphene is the energetically favorable adsorption site for all the RE adatoms studied. The adsorption energies and diffusion barriers of Nd and Gd on graphene are found to be larger than those of Eu and Yb. Comparison with scanning tunneling microscopy experiments for Gd and Eu epitaxially grown on graphene confirms these calculated adsorption and barrier differences, since fractal-like islands are observed for Gd and flat-topped crystalline islands for Eu. The formation of flat Eu islands on graphene can be attributed to its low diffusion barrier and relatively larger ratio of adsorption energy to its bulk cohesive energy. The interactions between the Nd and Gd adatoms and graphene cause noticeable in-plane lattice distortions in the graphene layer. Adsorption of the RE adatoms on graphene also induces significant electric dipole and magnetic moments.
Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun
2016-04-14
NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.
Zarhri, Z.; Ziat, Y.; El Rhazouani, O.; Benyoussef, A.; Elkenz, A.
2016-07-01
The ab-initio calculations based on the Korringa Kohn Rostoker approximation approach combined with coherent potential approximation (KKR-CPA), were used to study the magnetic properties of the titanium anti-site (TiO) and chromium (Cr) doped TiO2. In the considered systems, we used different concentrations for TiO defect and Cr doping. In TiO2(0.98)(TiO)0.02, the obtained results indicate that TiO is a donor having half-metal behavior. TiO[3d] band is located at the Fermi level, although isn't 100% polarized, the ferromagnetic (FM) state is verified as being more stable than disordered local moment (DLM) state. For Ti0.98Cr0.02O2 the Cr doping introduced new states which give the material half-metallic feature. The majority spin of Cr impurities are located at the Fermi level and the conduction electrons around the Fermi level are 100% spin polarized. This indicates the stability of (FM) state. Moreover, in Ti0.98Cr0.02O2(0.98)(TiO)0.02, the top of the valence band is shifted to lower energy compared to pure TiO2, and the n-type of TiO2 is verified. The majority spin of Cr[3d] are located at 0.025 Ry close to the Fermi level. The predicted Curie temperatures (Tc) were calculated using the mean field approximation (MFA) and we predicted that TiO defect in Cr doped TiO2 makes Tc higher. This kind of defect makes the material useful for spinotronics's applications and devices.
Martin, Ned H; Caldwell, Brian W; Carlson, Katie P; Teague, Matthew R
2009-02-01
GIAO-HF within Gaussian 03 was employed to compute the NMR isotropic shielding values of a diatomic hydrogen probe above a series of acenes (linear polycyclic aromatic hydrocarbons). Subtraction of the isotropic shielding of diatomic hydrogen by itself allowed the determination of computed through-space proton NMR shielding increment surfaces for these systems. Shielding was observed above the center of each aromatic ring, but the magnitude of calculated shielding above each ring center depends on the number of fused benzenoid rings. The computed shielding increments above each ring center were correlated to other measures of extent of aromaticity, including geometric, energetic, and magnetic measurements.
Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules
Shiga, Motoyuki; Nakayama, Akira
2008-01-01
The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.
吴军
2015-01-01
Geometry optimization and harmonic vibrational frequency calculations were performed on the ~X1 A1 state of CCl2 and~X2B1 state of CCl-2 at the B3LYP ,MP2 ,CCSD levels .Franck-Condon analysis and spectral simulations were carried out on the photoelectron band of CCl2- including Duschinsky effects .The simulated spectra obtained are in excellent agreement with the ex-periment .Note that Duschinsky effect between bending vibration and the symmetric stretch modes should be considered in the CCl2 (~X1 A1 )-CCl-2 (~X2 B1 ) photodetachment process .By combining ab initio calculations with Franck-Condon analyses ,the as-signment of spectrum observed is firmly established to the ~X1 A1-~X2 B1 photodetachment process of the CCl-2 radical ,and the rec-ommended geometric parameters of which in the literature are confirmed again base on ab initio theory and IFCA process .%在B3LYP ，M P2，CCSD水平理论下，分别对CCl2分子~X1 A1态和CCl2-分子~X2 B1态进行了几何结构优化和谐振频率分析。在考虑“Duschinsky效应”情况下，通过Franck-Condon因子计算模拟了CCl2-离子的光电子能谱带。计算表明弯曲振动模与对称伸缩模发生了模式混合，即“Duschinsky效应”在该体系中不能简单忽略。数值模拟的CCl2-在~X1 A1-~X2 B1电子态跃迁中振动分辨的理论谱与实验测量到的光电子能谱能够较好吻合，并对其中的振动谱线进行了归属和标识。结合 ab initio计算和 IFCA 方法，对 M urray ， Leopold ，Miller和Lineberger推荐的CCl2-的几何构型参数进行了再确认。
Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.
2008-12-05
In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.
Matar, Samir F. [CNRS, ICMCB, UPR 9048, Pessac (France); Bordeaux Univ., Pessac (France). ICMCB, UPR 9048; Al Alam, Adel F.; Ouaini, Naim [Univ. Saint Esprit de Kaslik (USEK), Jounieh (Lebanon). URA GREVE, CSR-USEK
2013-01-15
For equiatomic MgNi which can be hydrogenated up to the composition MgNiH{sub 1.6} at an absorption/desorption temperature of 200 C, the effects of hydrogen absorption are approached with the model structures MgNiH, MgNiH{sub 2} and MgNiH{sub 3}. From full geometry optimization and calculated cohesive energies obtained within DFT, the MgNiH{sub 2} composition close to the experimental limit is identified as most stable. Charge density analysis shows an increasingly covalent character of hydrogen: MgNiH(H{sup -0.67}) {yields} MgNiH{sub 2}(H{sup -0.63}) {yields} MgNiH{sub 3}(H{sup -0.55}). While Mg-Ni bonding prevails in MgNi and hydrogenated model phases, extra itinerant low-energy Ni states appear when hydrogen is introduced signaling Ni-H bonding which prevails over Mg-H as evidenced from total energy calculations and chemical bonding analyses. (orig.)
Jung, Julie; Guennic, Boris Le; Fedin, Matvey V; Ovcharenko, Victor I; Calzado, Carmen J
2015-07-20
The gradual magnetostructural transition in breathing crystals based on copper(II) and pyrazolyl-substituted nitronyl nitroxides has been analyzed by means of DDCI quantum chemistry calculations. The magnetic coupling constants (J) within the spin triads of Cu(hfac)2L(Bu)·0.5C8H18 have been evaluated for the X-ray structures reported at different temperatures. The coupling is strongly antiferromagnetic at low temperature and becomes ferromagnetic when the temperature increases. The intercluster magnetic coupling (J') is antiferromagnetic and shows a marked dependence on temperature. The magnetostructural transition can be reproduced using the calculated J values for each structure in the simulation of the magnetic susceptibility. However, the μ(T) curve can be improved nicely by considering the coexistence of two phases in the transition region, whose ratio varies with temperature corresponding to both the weakly and strongly coupled spin states. These results complement a recent VT-FTIR study on the parent Cu(hfac)2L(Pr) compound with a gradual magnetostructural transition.
Rustad, James R.; Dixon, David A.; Felmy, Andrew R.
2000-05-01
Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.
GAUSSIAN 76: An ab initio Molecular Orbital Program
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Ab initio calculations on the a3∑+u state properties of dimer 7Li2
Shi De-Heng; Sun Jin-Feng; Zhu Zun-Lue; Liu Yu-Fang
2007-01-01
The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometry of the a3∑u+ state for 7Li2 is made at numerous basis sets such as 6-311++G(2df), cc-PVTZ,6-311++G(2df, p), 6-311G(3df,3pd), 6-311++G(2df,2pd), D95(3df, 3pd), 6-311++G, DGDZVP, 6-311++G(3df,2pd),6-311G(2df,2pd), D95V++, CEP-121G, 6-311++G(d,p), 6-311++G(2df, pd) and 6-311++G(3df,3pd) in full active space using a symmetry-adapted-cluster/ symmetry-adapted-cluster configuration-interaction (SAC/SAC-CI) method presented in Gaussian03 program package. The difference of the equilibrium geometries obtained by SPES and by OPT is reported. Analyses show that the results obtained by SPES are more reasonable than those obtained by OPT. We have calculated the complete potential energy curves at these sets over a wide internuclear distance range from about 3.0a0to 37.0a0, and the conclusion is that the basis set cc-PVTZ is the most suitable one. With the potential obtained at cc-PVTZ, the spectroscopic data (Te, De, Do, ωe, ωeχe, αe and Be) are computed and they are 1.006 eV, 338.71 cm-1,307.12 cm-1, 64.88 cm-1, 3.41 cm-1, 0.0187 cm-1 and 0.279 cm-1, respectively, which are in good agreement with recent measurements. The total 11 vibrational states are found at J=0. Their corresponding vibrational levels and classical turning points are computed and compared with available RKR data, and good agreement is found. One inertial rotation constant (By) and six centrifugal distortion constants (Dy Hv, Lv, My, Nv and Ov) are calculated.The scattering length is calculated to be -27.138a0, which is in good accord with the experimental data.
Ab initio calculations of martensitic phase behavior in Ni{sub 2}FeGa magnetic shape memory alloys
Soykan, C. [Department of Physics, Pamukkale University, Denizli, TR 20020 (Turkey); Özdemir Kart, S., E-mail: ozsev@pau.edu.tr [Department of Physics, Pamukkale University, Denizli, TR 20020 (Turkey); Sevik, C. [Department of Mechanical Engineering, Anadolu University, Eskişehir, TR 26470 (Turkey); Çağın, T. [Department of Material Science and Engineering, Texas A and M University, Texas, TX 77843-3003 (United States)
2014-10-25
Highlights: • L2{sub 1}, NM and 5M phases have the energy minimum at a = 5.76 Å, c/a = 1.33 and c/a = 0.99. • Decrement in moment of Ni and increment in that of Fe reflect electrons transfer. • Differences in minority DOS over MT lead to stabilize the final structure. • C' taking small value in L2{sub 1} leads to elastic instability in MT. - Abstract: A series of spin polarized energy calculations based on density functional theory (DFT) have been carried out to investigate the structural, magnetic, electronic and mechanical properties of Ni{sub 2}FeGa magnetic shape memory alloys (MSMA’s) in the austenitic and martensitic structures. We report that L2{sub 1} austenitic phase is metastable at a = 5.76 Å, the NM tetragonal and 5M monoclinic martensitic structures are stable at c/a = 1.33 and c/a = 0.99, respectively. That the electron removes from Ni to Fe site during phase transformation to martensite is confirmed by the increment in the magnetic moment of Ni, while decrement in that of Fe. The analysis of the partial density of states show that some distinguishable differences in the minority spin states occur upon martensitic phase transformation, such as, the replacement of the Fe states (e{sub g} and t{sub 2g}) above Fermi level by only Fe-t{sub 2g} states during L2{sub 1}-5M transformation and the splitting of Fe-t{sub 2g} states near Fermi level during 5M-NM transformation (through 7M). These changes lower the energy of the system, indicating that the final structure becomes stable. The soft tetragonal shear constant C′ of the austenitic phase designates the ease of the phase transition into martensitic phase. It is shown that the results calculated in this study are in good agreement with the previous calculations and the available experiments.
V.O. Kharchenko
2015-06-01
Full Text Available Within this paper we have the studied structural and electronic properties of zirconium crystal with vacancies from the first principles. We have defined the optimal values for the lattice constants. The corresponding densities of states and energetic spectrum were calculated. These results gave a possibility to define the Fermi structure of the zirconium crystal with vacancies. In the framework of the molecular dynamics simulations we have studied the dynamics of the ensemble of periodically located vacancies in the zirconium crystal with an increase in temperature. We have analyzed the reconstruction of atomic structure and change in the total volume of the crystal with the temperature growth. The dependencies of the volume expansion coefficient for the pure zirconium without vacancies end zirconium crystal with different vacancies concentration on the temperature were studied.
Vast, Nathalie; Baroni, Stefano
2000-04-01
We present a method to study the effects of isotopic composition on the Raman spectra of crystals, in which disorder is treated exactly without resorting to any kind of mean-field approximation. The Raman cross section is expressed in terms of a suitable diagonal element of the vibrational Green's function, which is accurately and efficiently calculated using the recursion technique. This method can be used in conjunction with both semiempirical lattice-dynamical models and with first-principles interatomic force constants. We have applied our technique to diamond and germanium using the most accurate interatomic force constants presently available, obtained from density-functional perturbation theory. Our method correctly reproduces the light scattering in diamond-where isotopic effects dominates over the anharmonic ones-as well as in germanium, where anharmonic effects are larger.
Bensadiq, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.
2016-09-01
Using the density functional theory, the electronic structure; density of states, band structure and exchange couplings of Tb Ni4 Si compound have been investigated. Magnetic and magnetocaloric properties of this material have been studied using Monte Carlo Simulation (MCS) and Mean Field Approximation (MFA) within a three dimensional Ising model. We calculated the isothermal magnetic entropy change, adiabatic temperature change and relative cooling power (RCP) for different external magnetic field and temperature. The highest obtained isothermal magnetic entropy change is of -14.52 J kg-1 K-1 for a magnetic field of H=4 T. The adiabatic temperature reaches a maximum value equal to 3.7 K and the RCP maximum value is found to be 125.12 J kg-1 for a field magnetic of 14 T.
Chi, C.-C.; Hsiao, C.-H.; Ouyang, Chuenhou, E-mail: houyang@mx.nthu.edu.tw [Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Skoropata, E.; Lierop, J. van [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)
2015-05-07
Significant efforts towards understanding bi-magnetic core-shell nanoparticles are underway currently as they provide a pathway towards properties unavailable with single-phased systems. Recently, we have demonstrated that the magnetism of γ-Fe2O3/CoO core-shell nanoparticles, in particular, at high temperatures, originates essentially from an interfacial doped iron-oxide layer that is formed by the migration of Co{sup 2+} from the CoO shell into the surface layers of the γ-Fe2O3 core [Skoropata et al., Phys. Rev. B 89, 024410 (2014)]. To examine directly the nature of the intermixed layer, we have used high-resolution transmission electron microscopy (HRTEM) and first-principles calculations to examine the impact of the core-shell intermixing at the atomic level. By analyzing the HRTEM images and energy dispersive spectra, the level and nature of intermixing was confirmed, mainly as doping of Co into the octahedral site vacancies of γ-Fe2O3. The average Co doping depths for different processing temperatures (150 °C and 235 °C) were 0.56 nm and 0.78 nm (determined to within 5% through simulation), respectively, establishing that the amount of core-shell intermixing can be altered purposefully with an appropriate change in synthesis conditions. Through first-principles calculations, we find that the intermixing phase of γ-Fe2O3 with Co doping is ferromagnetic, with even higher magnetization as compared to that of pure γ-Fe2O3. In addition, we show that Co doping into different octahedral sites can cause different magnetizations. This was reflected in a change in overall nanoparticle magnetization, where we observed a 25% reduction in magnetization for the 235 °C versus the 150 °C sample, despite a thicker intermixed layer.
Haskopoulos, Anastasios; Maroulis, George
2016-08-01
We have obtained a quantitative, synthetic picture of the interaction-induced (hyper)polarizability in the sequence of the weakly bound complexes CO2⋯Rg, Rg = He, Ne, Ar, Kr, Xe. The properties are calculated from finite-field Møller-Plesset perturbation theory and coupled cluster calculations. We rely on flexible, prepared purpose-oriented atom- and molecule-specific basis set of Gaussian-type functions. We obtained interaction-induced electric properties for both the most stable T-shaped configuration and the less stable L-shaped one. Our interaction-induced first and second hyperpolarizabilities for the most stable (T-shaped) configurations, at the second order Møller-Plesset perturbation theory level are βbarint /e3 a03 Eh-2 (CO2⋯Rg) = 1.14 (He), 2.02 (Ne), 2.50 (Ar), 0.50 (Kr) and -5.32 (Xe). For the second hyperpolarizability at the same level of theory γbarint /e4a04 Eh-3 (CO2⋯Rg) = -11.66 (He), -25.88 (Ne), -108.16 (Ar), -206.75 (Kr) and -460.42 (Xe). In the vicinity of the equilibrium configuration, with the Rg atom displaced on the x axis for T-shaped configuration, the first hyperpolarizability changes as (dβ bar/dR )/e e3 a02 Eh-2 (CO2⋯Rg) = -1.07 (He), -1.86 (Ne), -0.71 (Ar), 2.65 (Kr) and 9.96 (Xe). For the second hyperpolarizability (d γ ‾/dR ) /e e4 a03 E h - 3 (CO2⋯Rg) = 7.94 (He), 20.34 (Ne), 65.00 (Ar), 118.48 (Kr) and 239.84 (Xe).
Martins-Costa, Marilia T C; García-Prieto, Francisco F; Ruiz-López, Manuel F
2015-02-14
Understanding the influence of solute-solvent interactions on chemical reactivity has been a subject of intense research in the last few decades. Theoretical studies have focused on bulk solvation phenomena and a variety of models and methods have been developed that are now widely used by both theoreticians and experimentalists. Much less attention has been paid, however, to processes that occur at liquid interfaces despite the important role such interfaces play in chemistry and biology. In this study, we have carried out sequential molecular dynamics simulations and quantum mechanical calculations to analyse the influence of the air-water interface on the reactivity of formaldehyde, acetaldehyde and benzaldehyde, three simple aldehydes of atmospheric interest. The calculated free-energy profiles exhibit a minimum at the interface, where the average reactivity indices may display large solvation effects. The study emphasizes the role of solvation dynamics, which are responsible for large fluctuations of some molecular properties. We also show that the photolysis rate constant of benzaldehyde in the range 290-308 nm increases by one order of magnitude at the surface of a water droplet, from 2.7 × 10(-5) s(-1) in the gas phase to 2.8 × 10(-4) s(-1) at the air-water interface, and we discuss the potential impact of this result on the chemistry of the troposphere. Experimental data in this domain are still scarce and computer simulations like those presented in this work may provide some insights that can be useful to design new experiments.
Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente
2016-07-01
To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W1-x-y Re x Os y (0 ⩽ x, y ⩽ 6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young’s modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11, the other elastic parameters including C 12, C 44, Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W1-y Os y than in W1-x Re x . A strong correlation between C‧ and the fcc-bcc structural energy difference for W1-x-y Re x Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C‧. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.
Ab initio calculations of half-metallic ferromagnetism in Cr-doped MgSe and MgTe semiconductors
Noor, N.A. [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Alay-e-Abbas, S.M. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Sohaib, M.U. [Lahore Development Authority, 54590 Lahore (Pakistan); Ghulam Abbas, S.M. [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Shaukat, A., E-mail: schaukat@gmail.com [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan)
2015-01-15
The full-potential linear-augmented-plane-waves plus local-orbitals (FP-LAPW+lo) method has been employed for investigation of half-metallic ferromagnetism in Cr-doped ordered zinc-blende MgSe and MgTe semiconductors. Calculations of exchange and correlation (XC) effects have been carried out using generalized gradient approximation (GGA) and orbital independent modified Becke–Johnson potential coupled with local (spin) density approximation (mBJLDA). The thermodynamic stability of the compounds and their preferred magnetic orders have been analyzed in terms of the heat of formation and minimum total energy difference in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering, respectively. Calculated electronic properties reveal that the Cr-doping induces ferromagnetism in MgSe and MgTe which gives rise to a half-metallic (HM) gap at Fermi level (E{sub F}). Further, the electronic band structure is discussed in terms of s (p)–d exchange constants that are consistent with typical magneto-optical experiment and the behavior of charge spin densities is presented for understanding the bonding nature. Our results demonstrate that the higher effective potential for the spin-down case is responsible for p–d exchange splitting. Total magnetic moment (mainly due to Cr-d states) of these compounds is 4µ{sub B}. Importantly, the electronic properties and HM gap obtained using mBJLDA show remarkable improvement as compared to the results obtained using standard GGA functional. - Highlights: • Spin effect theoretical study on Cr-doped MgSe and MgTe is performed. • Half-metallic ferromagnetism in Cr{sub x}Mg{sub 1−x}Se and Cr{sub x}Mg{sub 1−x}Te is established. • Results of WC-GGA and mBJLDA are compared for performance. • HM gaps for Cr{sub x}Mg{sub 1−x}Se and Cr{sub x}Mg{sub 1−x}Te show nonlinear variation with x. • Important values of exchange splitting/constants and moments are reported.
Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente
2016-06-03
To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W1-x-y Re x Os y (0 ⩽ x, y ⩽ 6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11, the other elastic parameters including C 12, C 44, Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W1-y Os y than in W1-x Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W1-x-y Re x Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.
Rafique, Muhammad; Shuai, Yong; Xu, Meng; Zhang, Guohua; Guo, Yanming
2017-09-01
Graphene-based magnetic materials have revealed great potential for developing high-performance electronic units at sub-nanometer such as spintronic data storage devices. However, a significant ferromagnetism behavior and ample band gap in the electronic structure of graphene is required before it can be used for actual engineering applications. Based on first-principles calculations, here we demonstrate the structural, electronic and magnetic behaviors of 5d transition metal (TM) atom-substituted nitrogenized monolayer graphene. We find that, during TMN(3)4 cluster-substitution, tight bonding occurs between impurity atoms and graphene with significant binding energies. Charge transfer occurs from graphene layer to the TMN(3)4 clusters. Interestingly, PtN3, TaN4 and ReN4 cluster-doped graphene structures exhibit dilute magnetic semiconductor behavior with 1.00 μB, 1.04 μB and 1.05 μB magnetic moments, respectively. While, OsN4 and PtN4 cluster-doped structures display nonmagnetic direct band gap semiconductor behavior. Remaining, TMN(3)4 cluster-doped graphene complexes exhibit half metal properties. Detailed analysis of density of states (DOS) plots indicate that d orbitals of TM atoms should be responsible for arising magnetic moments in graphene. Given results pave a new route for potential applications of dilute magnetic semiconductors and half-metals in spintronic devices by employing TMN(3)4 cluster-doped graphene complexes.
Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX
Liu, Lin-Lin; Liu, Pei-Jin; Hu, Song-Qi; He, Guo-Qiang
2017-01-01
NO2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa HMX I HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10-10 s-1) when the temperature was less than 1000 K.
Jiang Ying; Zeng Zhi; Xia Shangda; Yin Min
2005-01-01
The electronic structures of LiYF4:Ce3+ and LiYF4 crystals simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5Li8F24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa(discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4p of Y mixed with 5d of Ce, even for the wavefunctions (WFS) of Ed under BCB there are still 24% of Y-4p and 9% of F-2p as components. Furthermore, transition state (TS) calculation was performed in this work to obtain the 4f→5d transition energies Efd, to improve the calculation of Ref.[6] in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare directly with the observed 4f→5d transition energies. The ionic radius of Ce3+ is larger than that of Y3+, for modeling approximately the lattice relaxation, we simply let the eight fluorine ions of the nearest-neighbor and next-nearest-neighbor move out radially and simultaneously. As results, the CeY4Li8F24 cluster with 4.56% outward relaxation of the eight fluorines has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the calculated ground-state Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is somehow around 4.56%～7.36% outward, not as large as 10%.
Mozaffar Asadi; Mohammad Hadi Ghatee; Susan Torabi; Khosro Mohammadi; Fatemeh Moosavi
2010-07-01
Some oxovanadium(IV) complexes, namely bis(1,1,1-trifluro-2,4-pentanedionato-,') oxovanadium (IV), [VO(tfac)2(H2O)], bis(1-phenyl-2,4-pentanedionato-,')oxovanadium(IV), [VO(phac)2(H2O)], bis(1,3-diphenyl-2,4-pentanedionato-,')oxovanadium(IV), [VO(dphac)2 (H2O)], of the type [VO(O4)] and bis(pyrolidineaniline)oxovanadium(IV), [VO(pyran)2(H2O)], bis(-hydroxypyrolidineaniline) oxovanadium(IV), [VO(-hydroxypyran)2(H2O)], bis(-methoxypyrolidineaniline)oxovanadium(IV), [VO(-MeOpyran)2 (H2O)], bis(-chloropyrolidineaniline)oxovanadium(IV), [VO(-chloropyran)2(H2O)], bis(-bromopyrolidineaniline)oxovanadium(IV), [VO(-bromopyran)2(H2O)], bis(-cyano pyrolidineaniline)oxovanadium(IV), [VO(-cyanopyran)2(H2O)], and bis(pyrolidinebenzylamine)oxovanadium(IV), [VO(pyrbz)2(H2O)], of the type [VO(N4)] were synthesized and characterized by IR, UV-Vis, mass spectrometry, elemental analysis, magnetic moment and thermogravimetry in order to evaluate their thermal stability and thermal decomposition pathways. The number of steps and, in particular, the starting temperature of decomposition of these complexes depends on the equatorial ligand. Also, formation constants of the complexes have been determined by UV-Vis absorption spectroscopy through titration of the ligands with the metal ions at constant ionic strength (0.1 M NaClO4) and at 25°C. According to the thermodynamic studies, as the steric character of the ligand increases, the complexation tendency to VO(IV) center decreases. Also, the ab initio calculations were carried out to determine the structural and the geometrical properties of the complexes.
Wiest, Roland; Demuynck, Jean; Bénard, Marc; Rohmer, Marie-Madeleine; Ernenwein, René
1991-01-01
This series of three papers presents a program system for ab initio molecular orbital calculations on vector and parallel computers. Part III is devoted to the four-index transformation on a molecular orbital basis of size NMO of the file of two-electron integrals ( pq∥ rs) generated by a contracted Gaussian set of size NATO (number of atomic orbitals). A fast Yoshimine algorithm first sorts the ( pq∥ rs) integrals with respect to index pq only. This file of half-sorted integrals labelled by their rs-index can be processed without further modification to generate either the transformed integrals or the supermatrix elements. The large memory available on the CRAY-2 has made possible to implement the transformation algorithm proposed by Bender in 1972, which requires a core-storage allocation varying as (NATO) 3. Two versions of Bender's algorithm are included in the present program. The first version is an in-core version, where the complete file of accumulated contributions to transformed integrals is stored and updated in central memory. This version has been parallelized by distributing over a limited number of logical tasks the NATO steps corresponding to the scanning of the most external loop. The second version is an out-of-core version, in which twin fires are alternatively used as input and output for the accumulated contributions to transformed integrals. This version is not parallel. The choice of one or another version and (for version 1) the determination of the number of tasks depends upon the balance between the available and the requested amounts of storage. The storage management and the choice of the proper version are carried out automatically using dynamic storage allocation. Both versions are vectorized and take advantage of the molecular symmetry.
2017-01-01
A critical step toward the rational design of new catalysts that achieve selective and efficient reduction of CO2 to specific hydrocarbons and oxygenates is to determine the detailed reaction mechanism including kinetics and product selectivity as a function of pH and applied potential for known systems. To accomplish this, we apply ab initio molecular metadynamics simulations (AIMμD) for the water/Cu(100) system with five layers of the explicit solvent under a potential of −0.59 V [reversible hydrogen electrode (RHE)] at pH 7 and compare with experiment. From these free-energy calculations, we determined the kinetics and pathways for major products (ethylene and methane) and minor products (ethanol, glyoxal, glycolaldehyde, ethylene glycol, acetaldehyde, ethane, and methanol). For an applied potential (U) greater than −0.6 V (RHE) ethylene, the major product, is produced via the Eley–Rideal (ER) mechanism using H2O + e–. The rate-determining step (RDS) is C–C coupling of two CO, with ΔG‡ = 0.69 eV. For an applied potential less than −0.60 V (RHE), the rate of ethylene formation decreases, mainly due to the loss of CO surface sites, which are replaced by H*. The reappearance of C2H4 along with CH4 at U less than −0.85 V arises from *CHO formation produced via an ER process of H* with nonadsorbed CO (a unique result). This *CHO is the common intermediate for the formation of both CH4 and C2H4. These results suggest that, to obtain hydrocarbon products selectively and efficiency at pH 7, we need to increase the CO concentration by changing the solvent or alloying the surface. PMID:28167767
Sunahori, Fumie X.; Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo
2015-05-01
The spectroscopy of gas phase BH2 has not been explored experimentally since the pioneering study of Herzberg and Johns in 1967. In the present work, laser-induced fluorescence (LIF) spectra of the A ˜ 2 B 1 ( Π u ) - X ˜ 2A1 band system of 11BH2, 10BH2, 11BD2, and 10BD2 have been observed for the first time. The free radicals were "synthesized" by an electric discharge through a precursor mixture of 0.5% diborane (B2H6 or B2D6) in high pressure argon at the exit of a pulsed valve. A total of 67 LIF bands have been measured and rotationally analyzed, 62 of them previously unobserved. These include transitions to a wide variety of excited state bending levels, to several stretch-bend combination levels, and to three ground state levels which gain intensity through Renner-Teller coupling to nearby excited state levels. As an aid to vibronic assignment of the spectra, very high level hybrid ab initio potential energy surfaces were built starting from the coupled cluster singles and doubles with perturbative triples (CCSD(T))/aug-cc-pV5Z level of theory for this seven-electron system. In an effort to obtain the highest possible accuracy, the potentials were corrected for core correlation, extrapolation to the complete basis set limit, electron correlation beyond CCSD(T), and diagonal Born-Oppenheimer effects. The spin-rovibronic states of the various isotopologues of BH2 were calculated for energies up to 22 000 cm-1 above the X ˜ (000) level without any empirical adjustment of the potentials or fitting to experimental data. The agreement with the new LIF data is excellent, approaching near-spectroscopic accuracy (a few cm-1) and has allowed us to understand the complicated spin-rovibronic energy level structure even in the region of strong Renner-Teller resonances.
Carter, Stuart; Wang, Yimin; Bowman, Joel M
2017-02-17
The code MULTIMODE is used in its reaction path version, along with ab initio potential energy and dipole moment surfaces introduced earlier, to predict the infrared spectra of both trans and cis forms of HOCO at temperatures 296 and 15 K. All six fundamentals are isolated for each isomer and temperature, and their main features examined, paying particular attention to the OH stretch fundamental, whose spectrum has been reported experimentally for trans-HOCO. The current spectra for cis-HOCO, while not of "spectroscopic" accuracy, should be sufficient to aid in new experimental efforts to record the spectrum of this isomer.
Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili
2017-07-24
The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O2. The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.
Levesque, M.
2010-11-15
Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that
Hydrogen adsorption on boron doped graphene: an {\\it ab initio} study
Miwa, R. H.; Martins, T B; Fazzio, A.
2007-01-01
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {\\it ab initio} total energy calculations.
Antušek, Andrej; Šulka, Martin
2016-09-01
Ab initio calculations of NMR shielding constants for water solvated trivalent scandium, yttrium and lanthanum cations are presented. The solvent effects of the first solvation shell are calculated explicitly using coupled cluster theory. The relativistic correction is calculated at non-correlated level. The influence of the second solvation shell is estimated at DFT level. The final NMR shielding constants define new NMR absolute shielding scales of scandium, yttrium and lanthanum and these shieldings were used for re-derivation of the nuclear magnetic dipole moments, eliminating long standing errors of ≈ 0.005μN .
Hellmann, Robert
2009-06-16
Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)
An ab initio Non-Equilibrium Green Function Approach to Charge Transport: Dithiolethine
Alexander Schnurpfeil; SONG Bo; Martin Albrecht
2006-01-01
@@ We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wavefunction-based full ab initio description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Green function formalism. Our procedure is demonstrated for a dithiolethine molecule located between silver electrodes. The main conducting channel is identified and the full current-voltage characteristic is calculated.
Ab initio molecular dynamics using hybrid density functionals
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost
2008-06-01
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Ab initio study of phase equilibria in TiCx
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti......3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures....
Tailoring magnetoresistance at the atomic level: An ab initio study
Tao, Kun
2012-01-05
The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.
Ab-initio study of transition metal hydrides
Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
Rennie, Emma E; Mayer, Paul M
2004-06-08
Tetra-nitrogen (N(4)), which has been the subject of recent controversy [Cacace, d. Petris, and Troiani, Science 295, 480 (2002); Cacace, Chem. Eur. J. 8, 3839 (2002); Nguyen et al., J. Phys. Chem. A 107, 5452 (2003); Nguyen, Coord. Chem. Rev. 244, 93 (2003)] as well as of great theoretical interest, has been prepared from the N(4) (+) cation and then detected as a reionized gaseous metastable molecule with a lifetime exceeding 0.8 micros in experiments based on neutralization-reionization mass spectrometry. Moreover, we have used the nature of the charge-transfer reaction which occurs between a beam of fast N(4) (+) ions (8 keV translational energy) and various stationary gas targets to identify the vertical neutralization energy of the N(4) (+) ion. The measured value, 10.3+/-0.5, most closely matches that of the lowest energy azidonitrene (4)N(4) (+)C(s)((4)A(')) ion, resulting in the formation of the neutral bound azidonitrene (3)N(4)C(s)((3)A(")). Neutralization of the global minimum (2)N(4) (+)D( infinity h)((2)Sigma(u) (+)) ion leads to a structure 166 kJ mol(-1) above the dissociation products [N(2)((1)Sigma(g) (+))+N(2)((1)Sigma(g) (+))]; moreover, it was not possible to find a minimum on the (1)N(4) neutral potential energy surface for a covalently bonded structure. Ab initio calculations at the G3, QCISD/6-31G(d), and MP2/AUG-cc-pVTZ levels of theory have been used to determine geometries and both vertical neutralization energies of ions (doublet and quartet) and ionization energies of neutrals (singlet and triplet). In addition, we have also described in detail the EI ion source for the Ottawa VG ZAB mass spectrometer [Holmes and Mayer, J. Phys. Chem. A 99, 1366 (1995)] which was modified for high-pressure use, i.e., for the production of dimer and higher number cluster ions.
Stangarone, C.; Helbert, J.; Tribaudino, M.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Prencipe, M.
2015-12-01
Spectral signatures of minerals are intimately related to the crystal structure; therefore they may represent a remote sensing model to determine surface composition of planetary bodies, by analysing their spectral reflectance and emission. However, one of the most critical point is data interpretation considering planetary surfaces, as Mercury, where the changes in spectral characteristics are induced by the high temperatures conditions (Helbert et al., 2013). The aim of this work is to interpret the experimental thermal emissivity spectra with an innovative approach: simulating IR spectra of the main mineral families that compose the surface of Mercury, focusing on pyroxenes (Sprague et al., 2002), both at room and high temperature, exploiting the accuracy of ab initio quantum mechanical calculations, by means of CRYSTAL14 code (Dovesi et al., 2014). The simulations will be compared with experimental emissivity measurements of planetary analogue samples at temperature up to 1000K, performed at Planetary Emissivity Laboratory (PEL) by Institute of Planetary Research (DLR, Berlin). Results will be useful to create a theoretical background to interpret HT-IR emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO) scheduled for 2017. The goal is to point out the most interesting spectral features for a geological mapping of Mercury and other rocky bodies, simulating the environmental conditions of the inner planets of Solar System. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D'Arco P., Llunell M., Causà M. & Noël Y. 2014. CRYSTAL14 User's Manual, University of Torino. Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K., & Mazuk, A. L. (2002). Mercury: Mid-infrared (3-13.5
Discovering chemistry with an ab initio nanoreactor
Martinez, Todd
Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-12-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.
Merawa, Mohammadou [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, FR ' IPREM' 2606, BP 27540 IFR-rue Jules Ferry 64075 Pau-Cedex (France); Noel, Yves [Laboratoire de Petrologie et Modelisation des Materiaux et des Processus, Universite P and M Curie Paris 6, 4 place Jussieu 75252 Paris Cedex 05 (France); Civalleri, Bartolomeo [Dipartimento di Chimica IFM, University of Torino, Via Giuria 7, I-10125 Torino (Italy); Brown, Ross [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, FR ' IPREM' 2606, BP 27540 IFR-rue Jules Ferry 64075 Pau-Cedex (France); Dovesi, Roberto [Dipartimento di Chimica IFM, University of Torino, Via Giuria 7, I-10125 Torino (Italy)
2005-01-26
The structural, elastic, vibrational and electronic properties of barium fluorochloride (BaFCl) have been investigated for the first time at the ab initio level, by using the periodic CRYSTAL program. Both Hartree-Fock (HF) and density functional theory (DFT) Hamiltonians have been used, with the latter in its local density (LV), gradient-corrected (PP), and hybrid (B3LYP) versions. All properties, and in particular the phonon frequencies and the elastic constants, are strongly Hamiltonian dependent. The structural features are in reasonable agreement with experiment, the percentage deviation being smaller than 5% in all cases. The B3LYP elastic constants are in good agreement with experiment, whereas LV systematically overestimates them. PP and B3LYP provide the best results for the vibrational frequencies, the mean percentage absolute difference with respect to experiment being 2.9 and 4.3%, for Raman and 4.8 and 6.3%, for infrared mode frequencies, respectively.
Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)
2005-07-01
The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)
Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice
2012-10-30
Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH.
Karton, Amir; Martin, Jan M. L.
2012-10-01
Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3 kcal mol-1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal mol-1. Isomers involving highly-strained fused rings or long cumulenic chains provide a 'torture test' for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1 kcal mol-1.
Quantum-Chemical Ab Initio Calculations on Ala-(C5H5Al) and Galabenzene (C5H5Ga)
Mersmann, Stefanie; Mouhib, Halima; Baldofski, Matthias; Raabe, Gerhard
2014-07-01
Quantum-chemical ab initio and time-dependent density functional theory (TD-DFT) calculations employing various basis sets were used to elucidate the spatial as well as the electronic structure of C5H5Al () and C5H5Ga (2) (ala- and galabenzene). The lowest closed shell singlet states of both compounds were found to have a non-planar structure of CS symmetry with C-X-C bond angles of about 116° (MP2/6-311++G**) and 125° (CCSD/aug-cc-pVDZ). At approximately 103°, the corresponding angles of the lowest triplets are significantly smaller. The lowest triplet state of alabenzene is also non-planar (CS) at the MP2 level while optimization with the CCSD and the CASPT2 method resulted in planar structures with C2v symmetry. The corresponding state of galabenzene has C2v symmetry at all levels of optimization. The relative stability of the lowest closed shell singlet and the lowest triplet (ΔE(T1-S0)) state is small and its sign even strongly method-dependent. However, according to the highest levels of theory applied in this study the singlet states of both molecules are slightly lower in energy than the corresponding triplets with singlet/triplet gaps between about 0.5 and 5.8 kcal/mol in favour of the singlet states. Most of the applied methods give a slightly smaller splitting for ala- than for galabenzene. Independent of the applied method (TD-DFT/CAM-B3LYP/6-311++G(3df,3pd)//MP2/6- 311++G** or SAC-CI/6-31++G(3df,3pd)//MP2/6-311++G**), the general shape of the calculated UV/VIS spectral curves are quite similar for the lowest singlet states of ala- and galabenzene, and the same applies to the spectra of the normal modes. The calculated UV/VIS spectra of C5H5Al and C5H5Ga are featured by long wavelength bands of moderate intensity around 900 nm at the TD-DFT and between 1300 and 1500 nm at the SAC-CI level. According to both methods these bands are predominantly due to HOMO(π)→LUMO(σ*) transitions. The results of isodesmic bond separation reactions for the
Ab initio electronic properties of dual phosphorus monolayers in silicon
Drumm, Daniel W.; Per, Manolo C.; Budi, Akin
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon......, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device...
Spin-orbit decomposition of ab initio wavefunctions
Johnson, Calvin W.
2014-01-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulti...
Hydrogen Desorption from Mg Hydride: An Ab Initio Study
Simone Giusepponi
2012-07-01
Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.
On the hierarchical parallelization of ab initio simulations
Ruiz-Barragan, Sergi; Shiga, Motoyuki
2016-01-01
A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.
Skomorowski, Wojciech; Pawłowski, Filip; Koch, Christiane P; Moszynski, Robert
2012-05-21
State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the electronic states in the A(1)Σ(u)(+), c(3)Π(u), and a(3)Σ(u)(+) manifold of the strontium dimer, the spin-orbit and nonadiabatic coupling matrix elements between the states in the manifold, and the electric transition dipole moment from the ground X(1)Σ(g)(+) to the nonrelativistic and relativistic states in the A+c+a manifold. The potential energy curves and transition moments were obtained with the linear response (equation of motion) coupled cluster method limited to single, double, and linear triple excitations for the potentials and limited to single and double excitations for the transition moments. The spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction method limited to single and double excitations. Our results for the nonrelativistic and relativistic (spin-orbit coupled) potentials deviate substantially from recent ab initio calculations. The potential energy curve for the spectroscopically active (1)0(u)(+) state is in quantitative agreement with the empirical potential fitted to high-resolution Fourier transform spectra [A. Stein, H. Knöckel, and E. Tiemann, Eur. Phys. J. D 64, 227 (2011)]. The computed ab initio points were fitted to physically sound analytical expressions, and used in converged coupled channel calculations of the rovibrational energy levels in the A+c+a manifold and line strengths for the A(1)Σ(u)(+)←X(1)Σ(g (+) transitions. Positions and lifetimes of quasi-bound Feshbach resonances lying above the (1)S(0) + (3)P(1) dissociation limit were also obtained. Our results reproduce (semi)quantitatively the experimental data observed thus far. Predictions for on-going and future experiments are also reported.
Ab initio study of alanine polypeptide chains twisting
Solovyov, I A; Solovyov, A V; Yakubovitch, A V; Greiner, Walter; Solov'yov, Andrey V.; Solov'yov, Ilia A.; Yakubovitch, Alexander V.
2005-01-01
We have investigated the potential energy surfaces for alanine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles Phi and Psi, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable corres...
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-01-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...
Nattino, Francesco; Galparsoro, Oihana; Costanzo, Francesca; Díez Muiño, Ricardo; Alducin, Maite; Kroes, Geert-Jan
2016-06-01
Accurately modeling surface temperature and surface motion effects is necessary to study molecule-surface reactions in which the energy dissipation to surface phonons can largely affect the observables of interest. We present here a critical comparison of two methods that allow to model such effects, namely, the ab initio molecular dynamics (AIMD) method and the generalized Langevin oscillator (GLO) model, using the dissociation of N2 on W(110) as a benchmark. AIMD is highly accurate as the surface atoms are explicitly part of the dynamics, but this advantage comes with a large computational cost. The GLO model is much more computationally convenient, but accounts for lattice motion effects in a very approximate way. Results show that, despite its simplicity, the GLO model is able to capture the physics of the system to a large extent, returning dissociation probabilities which are in better agreement with AIMD than static-surface results. Furthermore, the GLO model and the AIMD method predict very similar energy transfer to the lattice degrees of freedom in the non-reactive events, and similar dissociation dynamics.
Li, Jin-Feng; Li, Miao-Miao; Bai, Hongcun; Sun, Yin-Yin; Li, Jian-Li; Yin, Bing
2015-12-01
An ab initio study of the superhalogen properties of eighteen binuclear double-bridged [Mg2 (CN)5 ](-1) clusters is reported herein by using various theoretical methods. High-level CCSD(T) results indicate that all the clusters possess strong superhalogen properties owing to their high vertical electron detachment energies (VDEs), which exceed 6.8 eV (highest: 8.15 eV). The outer valence Green's function method provides inaccurate relative VDE values; hence, this method is not suitable for this kind of polynuclear superhalogens. Both the HF and MP2 results are generally consistent with the CCSD(T) level regarding the relative VDE values and-especially interesting-the average values of the HF and MP2 VDEs are extremely close to the CCSD(T) results. The distributions of the extra electrons of the anions are mainly aggregated into the terminal CN units. These distributions are apparently different from those of previously reported triple-bridged isomers and may be the reason for the decreased VDE values of the clusters. In addition, comparisons of the VDEs of binuclear and mononuclear superhalogens as well as studies of the thermodynamic stabilities with respect to the detachment of various CN(-1) ligands are also performed. These results confirm that polynuclear structures with pseudohalogen ligands can be considered as probable new superhalogens with enhanced properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chrysos, Michael, E-mail: michel.chrysos@univ-angers.fr; Rachet, Florent [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers (France); Dixneuf, Sophie [Centre du Commissariat à l’Énergie Atomique de Grenoble, Laboratoire CEA-bioMérieux, Bât 40.20, 17 rue des Martyrs, 38054 Grenoble (France)
2015-07-14
This is the long-overdue answer to the discrepancies observed between theory and experiment in Ar{sub 2} regarding both the isotropic Raman spectrum and the second refractivity virial coefficient, B{sub R} [Gaye et al., Phys. Rev. A 55, 3484 (1997)]. At the origin of this progress is the advent (posterior to 1997) of advanced computational methods for weakly interconnected neutral species at close separations. Here, we report agreement between the previously taken Raman measurements and quantum lineshapes now computed with the employ of large-scale CCSD or smartly constructed MP2 induced-polarizability data. By using these measurements as a benchmark tool, we assess the degree of performance of various other ab initio computed data for the mean polarizability α, and we show that an excellent agreement with the most recently measured value of B{sub R} is reached. We propose an even more refined model for α, which is solution of the inverse-scattering problem and whose lineshape matches exactly the measured spectrum over the entire frequency-shift range probed.
Shalabi, A. S.; Eid, Kh M.; El-Mahdy, A. M.; Kamel, M. A.; El-Barbary, A. A.
2001-03-01
An ab initio embedded cluster method was used to examine the bulk dislocation-U defect interaction, surface excitons and the adsorptivity of atomic H on dislocated surfaces of LiH using the Hartree-Fock approximation and the second-order Moller-Plesset perturbation correction. In the LiH crystal bulk, the results confirm: (1) U1 and U2 centres make dislocations more facile, (2) dislocation processes do not reduce the ionic conductivity of highly populated edge centred hydride interstitials and (3) the dislocation-U defect interaction increases monotonically in the series face→volume→edge centred interstitial structures. On LiH crystal surfaces the results confirm: (1) the exclusive dependence of band gaps and exciton bands on dislocation, (2) the strongest adsorption of atomic H on a surface is associated with X-dislocations, (3) dislocations are unable to change the nature of physical adsorption to chemical adsorption and (4) the mobility of atomic H over the Z-dislocated surface is more facile than that over the X-dislocated surface. As X-surface dislocation proceeds, the HOMO and LUMO levels of the substrate shift to higher energies and the band gap becomes narrower. This change in the electronic structure suggests that charge transfer from the X-dislocated surface is more facile in the course of adsorbate-substrate interaction.
Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto
Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.
Śmiałek, M. A., E-mail: smialek@pg.gda.pl [Department of Control and Energy Engineering, Faculty of Ocean Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk (Poland); Łabuda, M.; Guthmuller, J. [Department of Theoretical Physic and Quantum Information, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk (Poland); Hubin-Franskin, M.-J.; Delwiche, J. [Département de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège (Belgium); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), UMR CNRS 8523, Université Lille1 Sciences et Technologies, F-59655 Villeneuve d' Ascq Cedex (France); Mason, N. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hoffmann, S. V.; Jones, N. C. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Building 1520, DK-8000 Aarhus C (Denmark); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)
2014-09-14
The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)
Finite Elements in Ab Initio Electronic-Structure Calulations
Pask, J. E.; Sterne, P. A.
Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.
X-ray absorption Debye-Waller factors from ab initio molecular dynamics
Vila, F. D.; Lindahl, V. E.; Rehr, J. J.
2012-01-01
An ab initio equation of motion method is introduced to calculate the temperature-dependent mean-square vibrational amplitudes σ2 which appear in the Debye-Waller factors in x-ray absorption, x-ray scattering, and related spectra. The approach avoids explicit calculations of phonon modes, and is based instead on calculations of the displacement-displacement time correlation function from ab initio density functional theory molecular dynamics simulations. The method also yields the vibrational density of states and thermal quantities such as the lattice free energy. Illustrations of the method are presented for a number of systems and compared with other methods and experiment.
Ab initio Molecular Dynamics Study on Small Carbon Nanotubes
叶林晖; 刘邦贵; 王鼎盛
2001-01-01
Ab initio molecular dynamics simulations are performed on small single wall nanotubes. By structural relaxation,the equilibrium C-C bond lengths and bond angles are determined. Our result shows that for both zigzag and armchair nanotubes there are two nonequivalent bond lengths. One bond stretches from that of the graphene sheet, while the other shrinks. Small variations on bond angles are also shown. Energy bands are calculated for the optimized structures. It is found that the intrinsic curvature of the very small nanotube greatly modifies the energy band which can no longer be well described in the tight-binding zone-folding picture. In our calculation very small nanotubes are metallic. The energy per atom fits quite well with the relation of E(R) = E0 + f/R2 even for the extreme small radius. The implications of the results on the properties of small nanotubes are discussed.
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
Ab initio and kinetic modeling studies of formic acid oxidation
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute....... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...
Ab initio electronic structure and optical conductivity of bismuth tellurohalides
Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens
2016-01-01
We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.
Fowler, P. W.; Peebles, S. A.; Legon, A. C.; Sadlej, A. J.
1996-07-01
The generalised polarisabilities describing the response to an applied field of the electric field gradients at the nuclei of BrCl are calculated ab initio using the correlated CCSD(T) method with relativistic corrections estimated by the Douglas-Kroll 'no-pair' model. The magnitudes of 86.9 and 42.3 α0-1 for the electric field derivatives of the gradients at Br and Cl include substantial and opposing correlation and relativistic corrections amounting to -12% and -16% of the respective non-relativistic self-consistent-field values. Relevance of the calculations to the Townes-Dailey model of the measured nuclear quadrupole coupling constants of complexes B ⋯ BrCl of BrCl with a base B is discussed.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.
Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials
Anil Thakur; N S Negi; P K Ahluwalla
2005-08-01
The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.
Ab initio I-V characteristics of short C-20 chains
Roland, C.; Larade, B.; Taylor, Jeremy Philip
2002-01-01
We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both on the orien......We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both...
An ab initio study on single electron transfer between ClO2 and phenol
崔崇威; 黄君礼
2004-01-01
The SET mechanism between chlorine dioxide (ClO2 ) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given. The SET mechanism between ClO2 and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200. 88 k J/mol.
van Setten, M.J.; de Wijs, G.A.; Popa, V.A.; Popa, V.A.; Brocks, G.
2005-01-01
Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation
Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc
Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy
2009-01-01
The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation energi
Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc
Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy
2009-01-01
The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation
Setten, van M.J.; Wijs, de G.A.; Popa, V.A.; Brocks, G.
2005-01-01
Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation (G
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Pham Van, Tat [Faculty of Science and Technology, Hoa Sen University (Viet Nam); Deiters, Ulrich K. [Institute of Physical Chemistry, University of Cologne, Luxemburger Str. 116, D-50939 Köln (Germany)
2015-08-18
Highlights: • We construct the angular orientations of dimers H{sub 2}−H{sub 2} and H{sub 2}−O{sub 2}. • We calculate the ab initio intermolecular interaction energies for all built orientations. • Extrapolating the interaction energies to the complete basis set limit aug-cc-pV23Z. • We develop two 5-site ab initio intermolecular potentials of dimers H{sub 2}−H{sub 2}, H{sub 2}−O{sub 2}. • Calculating the virial coefficients of dimer H{sub 2}−H{sub 2} and H{sub 2}−O{sub 2}. - Abstract: The intermolecular interaction potentials of the dimers H{sub 2}−H{sub 2} and H{sub 2}−O{sub 2} were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The interaction energies were corrected for the basis set superposition error with the counterpoise scheme. For comparison also Møller–Plesset perturbation theory (at levels 2–4) with the basis sets aug-cc-pVTZ were considered, but the results proved inferior. The quantum mechanical results were used to construct analytical pair potential functions. From these functions the second virial coefficients of hydrogen and the cross virial coefficients of the hydrogen–oxygen system were obtained by integration; in both cases corrections for quantum effects were included. The results agree well with experimental data, if available, or with empirical correlations.
Ab initio quantum dynamics using coupled-cluster.
Kvaal, Simen
2012-05-21
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.
Ab initio investigation of the mechanical properties of copper
Liu Yue-Lin; Gui Li-Jiang; Jin Shuo
2012-01-01
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation,we have systematically investigated the theoretical mechanical properties of copper (Cu).The theoretical tensile strengths are calculated to be 25.3 GPa,5.9 GPa,and 37.6 GPa for the fcc Cu single crystal in the [001],[110],and [111] directions,respectively.Among the three directions,the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes,while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes.In terms of the elastic constants of Cu single crystal,we also estimate some mechanical quantities of polycrystalline Cu,including bulk modulus B,shear modulus G,Young's modulus Ep,and Poisson's ratio v.
Ab initio study of II-(VI){sub 2} dichalcogenides
Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)
Ab initio quantum dynamics using coupled-cluster
Kvaal, Simen
2012-01-01
The curse of dimensionality (COD) limits the current state-of-the-art {\\it ab initio} propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schr\\"odinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.
Ab initio study of the transition-metal carbene cations
李吉海; 冯大诚; 冯圣玉
1999-01-01
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory （HF/LANL2DZ）. All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.
Neves, Amanda P; Vargas, Maria D; Téllez Soto, Claudio A; Ramos, Joanna M; Visentin, Lorenzo do C; Pinheiro, Carlos B; Mangrich, Antônio S; de Rezende, Edivaltrys I P
2012-08-01
Zinc(II) and copper(II) complexes of a tridentate Mannich base L1 derived from 2-hydroxy-1,4-naphthoquinone, pyridinecarboxyaldehyde and 2-aminomethylpyridine, [ZnL1Cl(2)]·H(2)O 1 and [CuL1Cl(2)]·2H(2)O 2, have been synthesized and fully characterized. The structure of complex 1 has been elucidated by a single crystal X-ray diffraction study: the zinc atom is pentacoordinate and the coordination geometry is a distorted square base pyramid, with a geometric structural parameter τ equal to 0.149. Vibrational spectroscopy and ab initio DFT calculations of both compounds have confirmed that the two complexes exhibit similar structures. Full assignment of the vibrational spectra was also supported by careful analysis of the distorted geometries generated by the normal modes. Copyright © 2012 Elsevier B.V. All rights reserved.
Yoo, Dong Su; Chae, Kisung; Chung, Yong-Chae
2012-04-01
Ab initio calculations were performed on a fully epitaxial bcc Co (001)/rock salt MgO (001)/bcc Co (001) magnetic tunnel junction system for two cases where the magnetization is parallel to bcc Co [100] and to bcc Co [110]. Structural optimization reveals that the two cases are equivalent systems and that the Co electrodes contract in the z-direction whereas the MgO insulating barrier expands. The magnetic moments of each monolayer vary slightly in each case; furthermore, only the magnetic moment at the surface of the Co atom shows any enhancement (12%). The layer decomposed density of states profiles reveals that the bonding character of the junction interface is derived mainly from the 2p-3d hybridization of the MgO and Co interfacial atoms.
Recent achievements in ab initio modelling of liquid water
Khaliullin, Rustam Z
2013-01-01
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.