WorldWideScience

Sample records for aav retinal transduction

  1. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous.

    Science.gov (United States)

    Dalkara, Deniz; Kolstad, Kathleen D; Caporale, Natalia; Visel, Meike; Klimczak, Ryan R; Schaffer, David V; Flannery, John G

    2009-12-01

    Adeno-associated viral gene therapy has shown great promise in treating retinal disorders, with three promising clinical trials in progress. Numerous adeno-associated virus (AAV) serotypes can infect various cells of the retina when administered subretinally, but the retinal detachment accompanying this injection induces changes that negatively impact the microenvironment and survival of retinal neurons. Intravitreal administration could circumvent this problem, but only AAV2 can infect retinal cells from the vitreous, and transduction is limited to the inner retina. We therefore sought to investigate and reduce barriers to transduction from the vitreous. We fluorescently labeled several AAV serotype capsids and followed their retinal distribution after intravitreal injection. AAV2, 8, and 9 accumulate at the vitreoretinal junction. AAV1 and 5 show no accumulation, indicating a lack of appropriate receptors at the inner limiting membrane (ILM). Importantly, mild digestion of the ILM with a nonspecific protease enabled substantially enhanced transduction of multiple retinal cell types from the vitreous, with AAV5 mediating particularly remarkable expression in all retinal layers. This protease treatment has no effect on retinal function as shown by electroretinogram (ERG) and visual cortex cell population responses. These findings may help avoid limitations, risks, and damage associated with subretinal injections currently necessary for clinical gene therapy.

  2. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant -7m8.

    Science.gov (United States)

    Khabou, Hanen; Desrosiers, Mélissa; Winckler, Céline; Fouquet, Stéphane; Auregan, Gwenaëlle; Bemelmans, Alexis-Pierre; Sahel, José-Alain; Dalkara, Deniz

    2016-12-01

    Recently, we described a modified AAV2 vector-AAV2-7m8-having a capsid-displayed peptide insertion of 10 amino acids with enhanced retinal transduction properties. The insertion of the peptide referred to as 7m8 is responsible for high-level gene delivery into deep layers of the retina when virus is delivered into the eye's vitreous. Here, we further characterize AAV2-7m8 mediated gene delivery to neural tissue and investigate the mechanisms by which the inserted peptide provides better transduction away from the injection site. First, in order to understand if the peptide exerts its effect on its own or in conjunction with the neighboring amino acids, we inserted the 7m8 peptide at equivalent positions on three other AAV capsids, AAV5, AAV8, and AAV9, and evaluated its effect on their infectivity. Intravitreal delivery of these peptide insertion vectors revealed that only AAV9 benefited from 7m8 insertion in the context of the retina. We then investigated AAV2-7m8 and AAV9-7m8 properties in the brain, to better evaluate the spread and efficacy of viral transduction in view of the peptide insertion. While 7m8 insertion led to higher intensity gene expression, the spread of gene expression remained unchanged compared to the parental serotypes. Our results indicate that the 7m8 peptide insertion acts by increasing efficacy of cellular entry, with little effect on the spread of viral particles in neural tissue. The effects of peptide insertion are capsid and tissue dependent, highlighting the importance of the microenvironment in gene delivery using AAV. Biotechnol. Bioeng. 2016;113: 2712-2724. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Improved Intravitreal AAV-Mediated Inner Retinal Gene Transduction after Surgical Internal Limiting Membrane Peeling in Cynomolgus Monkeys.

    Science.gov (United States)

    Takahashi, Kazuhisa; Igarashi, Tsutomu; Miyake, Koichi; Kobayashi, Maika; Yaguchi, Chiemi; Iijima, Osamu; Yamazaki, Yoshiyuki; Katakai, Yuko; Miyake, Noriko; Kameya, Shuhei; Shimada, Takashi; Takahashi, Hiroshi; Okada, Takashi

    2017-01-04

    The retina is an ideal target for gene therapy because of its easy accessibility and limited immunological response. We previously reported that intravitreally injected adeno-associated virus (AAV) vector transduced the inner retina with high efficiency in a rodent model. In large animals, however, the efficiency of retinal transduction was low, because the vitreous and internal limiting membrane (ILM) acted as barriers to transduction. To overcome these barriers in cynomolgus monkeys, we performed vitrectomy (VIT) and ILM peeling before AAV vector injection. Following intravitreal injection of 50 μL triple-mutated self-complementary AAV serotype 2 vector encoding EGFP, transduction efficiency was analyzed. Little expression of GFP was detected in the control and VIT groups, but in the VIT+ILM group, strong GFP expression was detected within the peeled ILM area. To detect potential adverse effects, we monitored the retinas using color fundus photography, optical coherence tomography, and electroretinography. No serious side effects associated with the pretreatment were observed. These results indicate that surgical ILM peeling before AAV vector administration would be safe and useful for efficient transduction of the nonhuman primate retina and provide therapeutic benefits for the treatment of retinal diseases. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Impact of Vital Dyes on Cell Viability and Transduction Efficiency of AAV Vectors Used in Retinal Gene Therapy Surgery: An In Vitro and In Vivo Analysis.

    Science.gov (United States)

    Salvetti, Anna P; Patrício, Maria I; Barnard, Alun R; Orlans, Harry O; Hickey, Doron G; MacLaren, Robert E

    2017-07-01

    Treatment of inherited retinal degenerations using adeno-associated viral (AAV) vectors involves delivery by subretinal injection. In the latter stages, alteration of normal anatomy may cause difficulty in visualizing the retinotomy, retinal detachment extension, and vector diffusion. Vital dyes may be useful surgical adjuncts, but their safety and impact on AAV transduction are largely unknown. The effects of Sodium Fluorescein (SF), Membrane Blue (MB), and Membrane Blue Dual (DB) at a range of dilutions were assessed on human embryonic kidney cells in vitro using an AAV2-green fluorescent protein (GFP) reporter at different multiplicities of infection. Flow cytometry analysis was performed to assess both cell viability and transduction efficiency. The effect on quantitative (q)PCR titer was determined. Balanced salt solution (BSS) or dilute DB (1:5 in BSS) were delivered subretinally into left/right eyes of C57BL/6J mice (n = 12). Retinal structure and function were analyzed by optical coherence tomography, autofluorescence, dark-and light-adapted full-field electroretinography. DB and MB were not toxic at any concentration tested, SF only when undiluted. The presence of dyes did not adversely affect the genomic titer. DB even increased the values, due to presence of surfactant in the formulation. AAV2-GFP transduction efficiency was not reduced by the dyes. No structural and functional toxic effects were observed following subretinal delivery of DB. Only undiluted SF affected cell viability. No effects on qPCR titer and transduction efficiency were observed. DB does not appear toxic when delivered subretinally and improves titer accuracy. DB may therefore be a safe and helpful adjunct during gene therapy surgery. This paper might be of interest to the retinal gene therapy community: it is a "bench to bedside" research paper about the potential use of dyes as a surgical adjunct during the gene therapy surgery. We have tested the potential toxicity and impact on

  5. AAV-6 mediated efficient transduction of mouse lower airways

    OpenAIRE

    Li, Wuping; Zhang, Liqun; Wu, Zhijian; Pickles, Raymond J.; Samulski, R. Jude

    2011-01-01

    AAV1 and AAV6 are two closely related AAV serotypes. In the present study, we found AAV6 was more efficient in transducing mouse lower airway epithelia in vitro and in vivo than AAV1. To further explore the mechanism of this difference, we found that significantly more AAV1 bound to mouse airway epithelia than AAV6, yet transduction by AAV6 was far superior. Lectin competition assays demonstrated that both AAV1 and AAV6 similarly utilize α-2, 3-, and to a lesser extend α-2, 6- linked sialic a...

  6. AAV-6 mediated efficient transduction of mouse lower airways.

    Science.gov (United States)

    Li, Wuping; Zhang, Liqun; Wu, Zhijian; Pickles, Raymond J; Samulski, R Jude

    2011-09-01

    AAV1 and AAV6 are two closely related AAV serotypes. In the present study, we found AAV6 was more efficient in transducing mouse lower airway epithelia in vitro and in vivo than AAV1. To further explore the mechanism of this difference, we found that significantly more AAV1 bound to mouse airway epithelia than AAV6, yet transduction by AAV6 was far superior. Lectin competition assays demonstrated that both AAV1 and AAV6 similarly utilize α-2, 3-, and to a lesser extend α-2, 6- linked sialic acids as the receptors for transduction. Furthermore, the rates of AAV endocytosis could not account for the transduction differences of AAV1 and AAV6. Finally, it was revealed that AAV6 was less susceptible to ubiquitin/proteasome-mediated blocks than AAV1 when transducing mouse airway epithelia. Thus compared with AAV1, AAV6 has a unique ability to escape proteasome-mediated degradation, which is likely responsible for its higher transduction efficiency in mouse airway epithelium. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Retinal gene delivery by adeno-associated virus (AAV) vectors: Strategies and applications.

    Science.gov (United States)

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2015-09-01

    Adeno-associated virus (AAV) vectors are the most widely used vehicle systems for neuronal gene transfer. This popularity is based on the non-pathogenic nature of AAVs and their versatility making them a multifunctional vector system for basic research and clinical applications. AAVs are successfully applied in clinical and pre-clinical gene therapy studies for inherited retinal disorders. Their excellent transduction profile and efficiency also boosted the use of AAV vectors in basic research. The AAV vector system can be easily modified and adjusted at multiple levels to allow for optimized and specific gene expression in target cells. Here, we will provide an overview on the AAV vector system and its applications focusing on gene transfer into retinal cells. Furthermore, we will outline and discuss strategies for the optimization of AAV gene transfer by modifications to the AAV vector expression cassette, the AAV capsid or the routes of vector administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Rod Outer Segment Development Influences AAV-Mediated Photoreceptor Transduction After Subretinal Injection.

    Science.gov (United States)

    Petit, Lolita; Ma, Shan; Cheng, Shun-Yun; Gao, Guangping; Punzo, Claudio

    2017-06-01

    Vectors based on the adeno-associated virus (AAV) are currently the preferred tools for delivering genes to photoreceptors (PR) in small and large animals. AAVs have been applied successfully in various models of PR dystrophies. However, unknown barriers still limit AAV's efficient application in several forms of severe PR degenerations due to insufficient transgene expression and/or treated cells at the time of injection. Optimizations of PR gene therapy strategies will likely benefit from the identification of the cellular factors that influence PR transduction. Interestingly, recent studies have shown that the AAV transduction profile of PRs differs significantly between neonatal and adult mouse retinas after subretinal injection. This phenomenon may provide clues to identify host factors that influence the efficiency of AAV-mediated PR transduction. This study demonstrates that rod outer segments are critical modulators of efficient AAV-mediated rod transduction. During retinal development, rod transduction correlated temporally and spatially with the differentiation order of PRs when vectors were introduced subretinally but not when introduced intravitreally. All subretinally injected vectors had an initial preference to transduce cones in the absence of formed rod outer segments and then displayed a preference for rods as the cells matured, independently of the expression cassette or AAV serotype. Consistent with this observation, altered development of rod outer segments was associated with a strong reduction of rod transduction and an increase in the percentage of transduced cones by 2- to 2.8-fold. A similar increase of cone transduction was observed in the adult retinal degeneration 1 (rd1) retina compared to wild-type mice. These results suggest that the loss of rod outer segments in diseased retinas could markedly affect gene transfer efficiency of AAV vectors by limiting the ability of AAVs to infect dying rods efficiently. This information could be

  9. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors.

    Science.gov (United States)

    Petrs-Silva, Hilda; Dinculescu, Astra; Li, Qiuhong; Min, Seok-Hong; Chiodo, Vince; Pang, Ji-Jing; Zhong, Li; Zolotukhin, Sergei; Srivastava, Arun; Lewin, Alfred S; Hauswirth, William W

    2009-03-01

    Vectors derived from adeno-associated viruses (AAVs) have become important gene delivery tools for the treatment of many inherited ocular diseases in well-characterized animal models. Previous studies have determined that the viral capsid plays an essential role in the cellular tropism and efficiency of transgene expression. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV2 capsid targets the viral particles for ubiquitination and proteasome- mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo. Because the tyrosine residues are highly conserved in other AAV serotypes, in this study we evaluated the intraocular transduction characteristics of vectors containing point mutations in surface- exposed capsid tyrosine residues in AAV serotypes 2, 8, and 9. Several of these novel AAV mutants were found to display a strong and widespread transgene expression in many retinal cells after subretinal or intravitreal delivery compared with their wild-type counterparts. For the first time, we show efficient transduction of the ganglion cell layer by AAV serotype 8 or 9 mutant vectors, thus providing additional tools besides AAV2 for targeting these cells. These enhanced AAV vectors have a great potential for future therapeutic applications for retinal degenerations and ocular neovascular diseases.

  10. Identification of PDGFR as a receptor for AAV-5 transduction.

    Science.gov (United States)

    Di Pasquale, Giovanni; Davidson, Beverly L; Stein, Colleen S; Martins, Inês; Scudiero, Dominic; Monks, Anne; Chiorini, John A

    2003-10-01

    Understanding the process of vector transduction has important implications for the application and optimal use of a vector system for human gene therapy. Recent studies with vectors based on adeno-associated virus type 5 (AAV-5) have shown utility of this vector system in the lung, central nervous system, muscle and eye. To understand the natural tropism of this virus and to identify proteins necessary for AAV-5 transduction, we characterized 43 cell lines as permissive or nonpermissive for AAV-5 transduction and compared the gene expression profiles derived from cDNA microarray analyses of those cell lines. A statistically significant correlation was observed between expression of the platelet-derived growth factor receptor (PDGFR-alpha-polypeptide) and AAV-5 transduction. Subsequent experiments confirmed the role of PDGFR-alpha and PDGFR-beta as receptors for AAV-5. The tropism of AAV-5 in vivo also correlated with the expression pattern of PDGFR-alpha.

  11. Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration.

    Science.gov (United States)

    Pang, Ji-jing; Lauramore, Amanda; Deng, Wen-tao; Li, Qiuhong; Doyle, Thomas J; Chiodo, Vince; Li, Jie; Hauswirth, William W

    2008-02-01

    The specificity of retinal cells transduced by AAV serotype 1, 2 or 5 vectors was determined in vivo versus in vitro in the normal P7 mouse in order to develop a rapid and accurate way to anticipate the behavior of AAV vectors in the retina. In vivo results confirm that AAV1 transduces retinal pigment epithelial cells, while AAV2 and AAV5 transduce both RPE and photoreceptor cells by subretinal injection. AAV2 was the only serotype to efficiently transduce inner retinal cells by intravitreal injection. Parallel analysis employing in vitro retinal organ culture showed qualitatively similar AAV-mediated GFP expression as seen in vivo suggesting that organ culture substitute is a useful method to screen new vector transduction patterns, particular in retinal cells in neonatal mice.

  12. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Science.gov (United States)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  13. Efficient retrograde neuronal transduction utilizing self-complementary AAV1.

    Science.gov (United States)

    Hollis, Edmund R; Kadoya, Ken; Hirsch, Matthew; Samulski, Richard J; Tuszynski, Mark H

    2008-02-01

    Adeno-associated virus (AAV) is frequently used for gene transfer into the central nervous system (CNS). Similar to adenovirus and rabies virus, AAV can be taken up by axons and retrogradely transported, resulting in neuronal gene expression distant from the injection site. We investigated the retrograde transport properties of self-complementary AAV (scAAV) serotypes 1-6 following peripheral injection. Injection of scAAV into either rat extensor carpi muscle or sciatic nerve resulted in detectable retrograde vector transport and reporter gene expression in spinal cord motor neurons (MNs). Serotype 1 resulted in the highest level of retrograde transport, with 4.1 +/- 0.3% of cervical MNs projecting to the extensor carpi transduced following intramuscular injection, and 7.5 +/- 3.1% of lumbar MNs transduced after sciatic nerve injection. In contrast to scAAV1, retrograde transduction with scAAV2 was undetectable following intramuscular injection, and was detected in only 0.81 +/- 0.15% of MNs projecting to the sciatic nerve following intranerve injection. Furthermore, sciatic injection of single-stranded AAV1 required injection of tenfold higher numbers of viral particles for detectable transgene expression compared to scAAV1, and then only 0.91 +/- 0.24% of lumbar MNs were transduced. Our data provide the basis for increased retrograde transduction efficiency using peripheral injections of scAAV1 vectors for therapeutic gene delivery to the spinal cord.

  14. Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications.

    Science.gov (United States)

    Wang, M; Sun, J; Crosby, A; Woodard, K; Hirsch, M L; Samulski, R J; Li, C

    2017-01-01

    Recent hemophilia B clinical trials using adeno-associated virus (AAV) gene delivery have demonstrated much lower coagulation factor IX (FIX) production in patients compared with the high levels observed in animal models and AAV capsid-specific cytotoxic T lymphocyte response elicited at high doses of AAV vectors. These results emphasize the necessity to explore effective approaches for enhancement of AAV transduction. Initially, we found that incubation of all AAV vectors with human serum enhanced AAV transduction. Complementary analytical experiments demonstrated that human serum albumin (HSA) directly interacted with the AAV capsid and augmented AAV transduction. The enhanced transduction was observed with clinical grade HSA. Mechanistic studies suggest that HSA increases AAV binding to target cells, and that the interaction of HSA with AAV does not interfere with the AAV infection pathway. Importantly, HSA incubation during vector dialysis also increased transduction. Finally, HSA enhancement of AAV transduction in a model of hemophilia B displayed greater than a fivefold increase in vector-derived circulating FIX, which improved the bleeding phenotype correction. In conclusion, incubation of HSA with AAV vectors supports a universal augmentation of AAV transduction and, more importantly, this approach can be immediately transitioned to the clinic for the treatment of hemophilia and other diseases.

  15. Syngeneic AAV Pseudo-particles Potentiate Gene Transduction of AAV Vectors.

    Science.gov (United States)

    Wang, Qizhao; Dong, Biao; Pokiniewski, Katie A; Firrman, Jenni; Wu, Zhongren; Chin, Mario P S; Chen, Xiongwen; Liu, LinShu; Xu, Ruian; Diao, Yong; Xiao, Weidong

    2017-03-17

    Adeno-associated virus (AAV) vectors have emerged as a safe and efficient gene therapy platform. One complication is that a significant amount of empty particles have always been generated as impurities during AAV vector production. However, the effects of such particles on AAV vector performance remain unclear. Here we systemically evaluated the biological properties of three types of "empty" AAV particles: syngeneic pseudo-vectors with partial AAV genomes derived from DNA of the corresponding full particles, allogeneic pseudo-vectors with partial genomes different from the corresponding full particles, and null pseudo-vectors with no DNA inside the capsids. The syngeneic particles in excess increased the corresponding full AAV vector transgene expression both in vivo and in vitro. However, such effects were not observed with null or allogeneic particles. The observed differences among these pseudo-AAV particles may be ascribed to the syngeneic pseudo-vector DNA facilitating the complementary DNA synthesis of the corresponding full AAV particles. Our study suggests that the DNA content in the pseudo-vectors plays a key role in dictating their effects on AAV transduction. The effects of residual "empty" particles should be adequately assessed when comparing AAV vector performance. The syngeneic AAV pseudo-vectors may be used to enhance the efficacy of gene therapy.

  16. Syngeneic AAV Pseudo-particles Potentiate Gene Transduction of AAV Vectors

    Directory of Open Access Journals (Sweden)

    Qizhao Wang

    2017-03-01

    Full Text Available Adeno-associated virus (AAV vectors have emerged as a safe and efficient gene therapy platform. One complication is that a significant amount of empty particles have always been generated as impurities during AAV vector production. However, the effects of such particles on AAV vector performance remain unclear. Here we systemically evaluated the biological properties of three types of “empty” AAV particles: syngeneic pseudo-vectors with partial AAV genomes derived from DNA of the corresponding full particles, allogeneic pseudo-vectors with partial genomes different from the corresponding full particles, and null pseudo-vectors with no DNA inside the capsids. The syngeneic particles in excess increased the corresponding full AAV vector transgene expression both in vivo and in vitro. However, such effects were not observed with null or allogeneic particles. The observed differences among these pseudo-AAV particles may be ascribed to the syngeneic pseudo-vector DNA facilitating the complementary DNA synthesis of the corresponding full AAV particles. Our study suggests that the DNA content in the pseudo-vectors plays a key role in dictating their effects on AAV transduction. The effects of residual “empty” particles should be adequately assessed when comparing AAV vector performance. The syngeneic AAV pseudo-vectors may be used to enhance the efficacy of gene therapy.

  17. The Signalling Role of the avβ5-Integrin Can Impact the Efficacy of AAV in Retinal Gene Therapy

    Directory of Open Access Journals (Sweden)

    Jean Bennett

    2012-05-01

    Full Text Available Sub-retinal injection of the common AAV2 pseudotypes frequently results in strong transduction of the retinal pigment epithelium (RPE as well as the retina itself. This has been of benefit to date in human clinical trials using AAV, where the disease target is in the RPE. However, many mutations predisposing to retinal disease are located in the photoreceptor cells, present in the neural retina and not the RPE; in this case the sub-retinal injection route may cause an effective “loss” of therapeutic AAV to the RPE. The avβ5 integrin receptor is highly expressed on the apical surface of the RPE, and is essential to the daily phagocytosis of the outer segment tips of photoreceptor cells. The transduction efficiency of AAV was tested in the retinas of β5−/− mice lacking this receptor and showing defects in photoreceptor outer segment phagocytosis. Following sub-retinal injection of AAV2/5-eGFP, fluorescence was found to be stronger and more widespread in the neural retina of β5−/− mice compared to wild-types with greatly reduced fluorescence in the RPE. Increased levels of the phagocytic signalling protein MFG-E8, the ligand for the avβ5 integrin receptor, is found to have a moderate inhibitory effect on AAV transduction of the retina. However the opposite effect is found when only the integrin-binding domain of MFG-E8, the RGD (Arginine-Glycine-Aspartic acid domain, was increased. In this case RGD enhanced AAV-mediated retinal transduction relative to RPE transduction. These results are presented for their relevance for the design of AAV-based retinal gene therapy strategies strategies targeting retinal/photoreceptor cells.

  18. Quantifying transduction efficiencies of unmodified and tyrosine capsid mutant AAV vectors in vitro using two ocular cell lines.

    Science.gov (United States)

    Ryals, Renee C; Boye, Sanford L; Dinculescu, Astra; Hauswirth, William W; Boye, Shannon E

    2011-04-29

    With the increasing number of retinal gene-based therapies and therapeutic constructs, in vitro bioassays characterizing vector transduction efficiency and quality are becoming increasingly important. Currently, in vitro assays quantifying vector transduction efficiency are performed predominantly for non-ocular tissues. A human retinal pigment epithelial cell line (ARPE19) and a mouse cone photoreceptor cell line, 661W, have been well characterized and are used for many retinal metabolism and biologic pathway studies. The purpose of this study is to quantify transduction efficiencies of a variety of self-complementary (sc) adeno-associated virus (AAV) vectors in these biologically relevant ocular cell lines using high-throughput fluorescence-activated cell sorting (FACS) analysis. ARPE19 and 661W cells were infected with sc-smCBA-mCherry packaged in unmodified AAV capsids or capsids containing single/multiple tyrosine-phenylalanine (Y-F) mutations at multiplicity of infections (MOIs) ranging from 100 to 10,000. Three days post infection fluorescent images verified mCherry expression. Following microscopy, FACS analysis was performed to quantify the number of positive cells and the mean intensity of mCherry fluorescence, the product of which is reported as transduction efficiency for each vector. The scAAV vectors containing cone-specific (sc-mCARpro-green fluorescent protein [GFP]), rod-specific (sc-MOPS500-eGFP), retinal pigment epithelium (RPE)-specific (sc-VMD2-GFP), or ubiquitous (sc-smCBA-GFP) promoters were used to infect both cell lines at an MOI of 10,000. Three days post infection, cells were immunostained with an antibody raised against GFP and imaged. Finally, based on our in vitro results, we tested a prediction of transduction efficiency in vivo. Expression from unmodified scAAV1, scAAV2, scAAV5, and scAAV8 vectors was detectable by FACS in both ARPE19 and 661W cells, with scAAV1 and scAAV2 being the most efficient in both cell lines. scAAV5 showed

  19. Heparin-binding correlates with increased efficiency of AAV1- and AAV6-mediated transduction of striated muscle, but negatively impacts CNS transduction.

    Science.gov (United States)

    Arnett, A L H; Beutler, L R; Quintana, A; Allen, J; Finn, E; Palmiter, R D; Chamberlain, J S

    2013-05-01

    Gene delivery vectors derived from adeno-associated virus (AAV) have great potential as therapeutic agents. rAAV1 and rAAV6, efficiently target striated muscle, but the mechanisms that determine their tropism remain unclear. It is known that AAV6, but not AAV1, interacts with heparin-sulfate proteoglycans (HSPG). HSPGs are not primary receptors for AAV6, but heparin interactions may affect tissue tropism and transduction. To investigate these possibilities, we generated rAAV1 and rAAV6 capsids that do or do not bind heparin. We evaluated the transduction profile of these vectors in vivo across multiple routes of administration, and found that heparin-binding capability influences tissue transduction in striated muscle and neuronal tissues. Heparin-binding capsids transduce striated muscle more efficiently than non-binding capsids, via both intramuscular and intravenous injection. However, rAAV6 achieved greater muscle transduction than the heparin-binding rAAV1 variant, suggesting that there are additional factors that influence differences in transduction efficiency between AAV1 and AAV6. Interestingly, the opposite trend was found when vectors were delivered via intracranial injection. Non-binding vectors achieved robust and widespread gene expression, whereas transduction via heparin-binding serotypes was substantially reduced. These data indicate that heparin-binding capability is an important determinant of transduction that should be considered in the design of rAAV-mediated gene therapies.

  20. Heparin-binding correlates with increased efficiency of AAV1- and AAV6-mediated transduction of striated muscle, but negatively impacts CNS transduction

    OpenAIRE

    Arnett, Andrea L. H.; Lisa R Beutler; Quintana, Albert; Allen, James; Finn, Eric; Richard D Palmiter; Chamberlain, Jeffrey S.

    2012-01-01

    Gene delivery vectors derived from adeno-associated virus (AAV) have great potential as therapeutic agents. rAAV1 and rAAV6, efficiently target striated muscle, but the mechanisms that determine their tropism remain unclear. It is known that AAV6, but not AAV1, interacts with heparin-sulfate proteoglycans (HSPG). HSPGs are not primary receptors for AAV6, but heparin interactions may affect tissue tropism and transduction. To investigate these possibilities, we generated rAAV1 and rAAV6 capsid...

  1. Comparative biology of rAAV transduction in ferret, pig and human airway epithelia.

    Science.gov (United States)

    Liu, X; Luo, M; Guo, C; Yan, Z; Wang, Y; Engelhardt, J F

    2007-11-01

    Differences between rodent and human airway cell biology have made it difficult to translate recombinant adeno-associated virus (rAAV)-mediated gene therapies to the lung for cystic fibrosis (CF). As new ferret and pig models for CF become available, knowledge about host cell/vector interactions in these species will become increasingly important for testing potential gene therapies. To this end, we have compared the transduction biology of three rAAV serotypes (AAV1, 2 and 5) in human, ferret, pig and mouse-polarized airway epithelia. Our results indicate that apical transduction of ferret and pig airway epithelia with these rAAV serotypes closely mirrors that observed in human epithelia (rAAV1>rAAV2 congruent withrAAV5), while transduction of mouse epithelia was significantly different (rAAV1>rAAV5>rAAV2). Similarly, ferret, pig and human epithelia also shared serotype-specific differences in the polarity (apical vs basolateral) and proteasome dependence of rAAV transduction. Despite these parallels, N-linked sialic acid receptors were required for rAAV1 and rAAV5 transduction of human and mouse airway epithelia, but not ferret or pig airway epithelia. Hence, although the airway tropisms of rAAV serotypes 1, 2 and 5 are conserved better among ferret, pig and human as compared to mouse, viral receptors/co-receptors appear to maintain considerable species diversity.

  2. Directing integrin-linked endocytosis of recombinant AAV enhances productive FAK-dependent transduction.

    Science.gov (United States)

    Kaminsky, Paul M; Keiser, Nicholas W; Yan, Ziying; Lei-Butters, Diana C M; Engelhardt, John F

    2012-05-01

    Recombinant adeno-associated virus (rAAV) is a widely used gene therapy vector. Although a wide range of rAAV serotypes can effectively enter most cell types, their transduction efficiencies (i.e., transgene expression) can vary widely depending on the target cell type. Integrins play important roles as coreceptors for rAAV infection, however, it remains unclear how integrin-dependent and -independent mechanisms of rAAV endocytosis influence the efficiency of intracellular virus processing and ultimately transgene expression. In this study, we examined the contribution of integrin-mediated endocytosis to transduction of fibroblasts by rAAV2. Mn(++)-induced integrin activation significantly enhanced (~17-fold) the efficiency of rAAV2 transduction, without altering viral binding or endocytosis. rAAV2 subcellular localization studies demonstrated that Mn(++) promotes increased clustering of rAAV2 on integrins and recruitment of intracellular vinculin (an integrin effector) to sites of rAAV2 binding at the cell surface. Focal adhesion kinase (FAK), a downstream effector of integrin signals, was essential for rAAV2/integrin complex internalization and transduction. These findings support a model whereby integrin activation at the cell surface can redirect rAAV2 toward a FAK-dependent entry pathway that is more productive for cellular transduction. This pathway appears to be conserved for other rAAV serotypes that contain a capsid integrin-binding domain (AAV1 and AAV6).

  3. Unique biologic properties of recombinant AAV1 transduction in polarized human airway epithelia.

    Science.gov (United States)

    Yan, Ziying; Lei-Butters, Diana C M; Liu, Xiaoming; Zhang, Yulong; Zhang, Liang; Luo, Meihui; Zak, Roman; Engelhardt, John F

    2006-10-06

    The choice of adeno-associated virus serotypes for clinical applications is influenced by the animal model and model system used to evaluate various serotypes. In the present study, we sought to compare the biologic properties of rAAV2/1, rAAV2/2, and rAAV2/5 transduction in polarized human airway epithelia using viruses purified by a newly developed common column chromatography method. Results demonstrated that apical transduction of human airway epithelia with rAAV2/1 was 100-fold more efficient than rAAV2/2 and rAAV2/5. This transduction profile in human airway epithelia (rAAV2/1 > rAAV2/2 = rAAV2/5) was significantly different from that seen following nasal administration of these vectors to mouse lung (rAAV2/5 > rAAV2/1 > rAAV2/2), emphasizing differences in transduction of these serotypes between these two species. In stark contrast to rAAV2/2 and rAAV2/5, rAAV2/1 transduced both the apical and basolateral membrane of human airway epithelia with similar efficiency. However, the overall level of transduction across serotypes did not correlate with vector internalization. We hypothesized that differences in post-entry processing of these serotypes might influence the efficiency of apical transduction. To this end, we tested the effectiveness of proteasome inhibitors to augment nuclear translocation and gene expression from the three serotypes. Augmentation of rAAV2/1 apical transduction of human polarized airway epithelia was 10-fold lower than that for rAAV2/2 and rAAV2/5. Cellular fractionation studies demonstrated that proteasome inhibitors more significantly enhanced rAAV2/2 and rAAV2/5 translocation to the nucleus than rAAV2/1. These results demonstrate that AAV1 transduction biology in human airway epithelia differs from that of AAV2 and AAV5 by virtue of altered ubiquitin/proteasome sensitivities that influence nuclear translocation.

  4. Adeno-Associated Virus Serotype 4 (AAV4) and AAV5 Both Require Sialic Acid Binding for Hemagglutination and Efficient Transduction but Differ in Sialic Acid Linkage Specificity

    OpenAIRE

    Kaludov, Nikola; Brown, Kevin E.; Walters, Robert W.; Zabner, Joseph; Chiorini, John A.

    2001-01-01

    Adeno-associated virus serotype 4 (AAV4) and AAV5 have different tropisms compared to AAV2 and to each other. We recently reported that α2-3 sialic acid is required for AAV5 binding and transduction. In this study, we characterized AAV4 binding and transduction and found it also binds sialic acid, but the specificity is significantly different from AAV5. AAV4 can hemagglutinate red blood cells from several species, whereas AAV5 hemagglutinates only rhesus monkey red blood cells. Treatment of ...

  5. Unique Biologic Properties of Recombinant AAV1 Transduction in Polarized Human Airway Epithelia

    National Research Council Canada - National Science Library

    Ziying Yan; Diana C. M. Lei-Butters; Xiaoming Liu; Yulong Zhang; Liang Zhang; Meihui Luo; Roman Zak; John F. Engelhardt

    2006-01-01

    .... In the present study, we sought to compare the biologic properties of rAAV2/1, rAAV2/2, and rAAV2/5 transduction in polarized human airway epithelia using viruses purified by a newly developed common...

  6. Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain.

    Science.gov (United States)

    Wang, C; Wang, C-M; Clark, K R; Sferra, T J

    2003-08-01

    Recombinant adeno-associated virus serotype 2 (rAAV2) vectors have shown promise as therapeutic agents for neurologic disorders. However, intracerebral administration of this vector leads to preferential transduction of neurons and a restricted region of transgene expression. The recently developed rAAV vectors based upon nonserotype 2 viruses have the potential to overcome these limitations. Therefore, we directly compared a rAAV type 1 to a type 2 vector in the murine brain. The vectors were engineered to carry identical genomes (AAV2 terminal repeat elements flanking an enhanced green fluorescent protein expression cassette) and were administered by stereotaxic-guided intracerebral injection. We found that the rAAV1 vector (rAAV1-GFP) had a 13- to 35-fold greater transduction efficiency than that of the rAAV2 vector (rAAV2-GFP). Also, rAAV1-transduced cells were observed at a greater distance from the injection site than rAAV2-transduced cells. Neurons were the predominant cell type transduced by both vector types. However, in contrast to rAAV2-GFP, rAAV1-GFP was capable of transducing glial and ependymal cells. Thus, rAAV1-based vectors have biologic properties within the brain distinct from that of rAAV2. These differences might be capitalized upon to develop novel gene transfer strategies for neurologic disorders.

  7. Rationally Engineered AAV Capsids Improve Transduction and Volumetric Spread in the CNS.

    Science.gov (United States)

    Kanaan, Nicholas M; Sellnow, Rhyomi C; Boye, Sanford L; Coberly, Ben; Bennett, Antonette; Agbandje-McKenna, Mavis; Sortwell, Caryl E; Hauswirth, William W; Boye, Shannon E; Manfredsson, Fredric P

    2017-09-15

    Adeno-associated virus (AAV) is the most common vector for clinical gene therapy of the CNS. This popularity originates from a high safety record and the longevity of transgene expression in neurons. Nevertheless, clinical efficacy for CNS indications is lacking, and one reason for this is the relatively limited spread and transduction efficacy in large regions of the human brain. Using rationally designed modifications of the capsid, novel AAV capsids have been generated that improve intracellular processing and result in increased transgene expression. Here, we sought to improve AAV-mediated neuronal transduction to minimize the existing limitations of CNS gene therapy. We investigated the efficacy of CNS transduction using a variety of tyrosine and threonine capsid mutants based on AAV2, AAV5, and AAV8 capsids, as well as AAV2 mutants incapable of binding heparan sulfate (HS). We found that mutating several tyrosine residues on the AAV2 capsid significantly enhanced neuronal transduction in the striatum and hippocampus, and the ablation of HS binding also increased the volumetric spread of the vector. Interestingly, the analogous tyrosine substitutions on AAV5 and AAV8 capsids did not improve the efficacy of these serotypes. Our results demonstrate that the efficacy of CNS gene transfer can be significantly improved with minor changes to the AAV capsid and that the effect is serotype specific. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. AAV Gene Augmentation Therapy for CRB1-Associated Retinitis Pigmentosa

    NARCIS (Netherlands)

    Alves, C Henrique; Wijnholds, J.

    2018-01-01

    Mutations in the CRB1 gene account for around 10,000 persons with Leber congenital amaurosis (LCA) and 70,000 persons with retinitis pigmentosa (RP) worldwide. Therefore, the CRB1 gene is a key target in the fight against blindness. A proof-of-concept for an adeno-associated virus (AAV)-mediated

  9. AAV Serotype Testing on Cultured Human Donor Retinal Explants

    NARCIS (Netherlands)

    Buck, Thilo M; Pellissier, Lucie P; Vos, Rogier M; van Dijk, Elon H C; Boon, Camiel J F; Wijnholds, J.

    2018-01-01

    This protocol details on a screening method for infectivity and tropism of different serotypes of adeno-associated viruses (AAVs) on human retinal explants with cell-type specific or ubiquitous green fluorescent protein (GFP) expression vectors. Eyes from deceased adult human donors are enucleated

  10. Evaluating Efficiencies of Dual AAV Approaches for Retinal Targeting.

    Science.gov (United States)

    Carvalho, Livia S; Turunen, Heikki T; Wassmer, Sarah J; Luna-Velez, María V; Xiao, Ru; Bennett, Jean; Vandenberghe, Luk H

    2017-01-01

    Retinal gene therapy has come a long way in the last few decades and the development and improvement of new gene delivery technologies has been exponential. The recent promising results from the first clinical trials for inherited retinal degeneration due to mutations in RPE65 have provided a major breakthrough in the field and have helped cement the use of recombinant adeno-associated viruses (AAV) as the major tool for retinal gene supplementation. One of the key problems of AAV however, is its limited capacity for packaging genomic information to a maximum of around 4.8 kb. Previous studies have demonstrated that homologous recombination and/or inverted terminal repeat (ITR) mediated concatemerization of two overlapping AAV vectors can partially overcome the size limitation and help deliver larger transgenes. The aim of this study was to investigate and compare the use of different AAV dual-vector approaches in the mouse retina using a systematic approach comparing efficiencies in vitro and in vivo using a unique oversized reporter construct. We show that the hybrid approach relying on vector genome concatemerization by highly recombinogenic sequences and ITRs sequence overlap offers the best levels of reconstitution both in vitro and in vivo compared to trans-splicing and overlap strategies. Our data also demonstrate that dose and vector serotype do not affect reconstitution efficiency but a discrepancy between mRNA and protein expression data suggests a bottleneck affecting translation.

  11. Evaluating Efficiencies of Dual AAV Approaches for Retinal Targeting

    Directory of Open Access Journals (Sweden)

    Livia S. Carvalho

    2017-09-01

    Full Text Available Retinal gene therapy has come a long way in the last few decades and the development and improvement of new gene delivery technologies has been exponential. The recent promising results from the first clinical trials for inherited retinal degeneration due to mutations in RPE65 have provided a major breakthrough in the field and have helped cement the use of recombinant adeno-associated viruses (AAV as the major tool for retinal gene supplementation. One of the key problems of AAV however, is its limited capacity for packaging genomic information to a maximum of around 4.8 kb. Previous studies have demonstrated that homologous recombination and/or inverted terminal repeat (ITR mediated concatemerization of two overlapping AAV vectors can partially overcome the size limitation and help deliver larger transgenes. The aim of this study was to investigate and compare the use of different AAV dual-vector approaches in the mouse retina using a systematic approach comparing efficiencies in vitro and in vivo using a unique oversized reporter construct. We show that the hybrid approach relying on vector genome concatemerization by highly recombinogenic sequences and ITRs sequence overlap offers the best levels of reconstitution both in vitro and in vivo compared to trans-splicing and overlap strategies. Our data also demonstrate that dose and vector serotype do not affect reconstitution efficiency but a discrepancy between mRNA and protein expression data suggests a bottleneck affecting translation.

  12. Preferred transduction with AAV8 and AAV9 via thalamic administration in the MPS IIIB model: A comparison of four rAAV serotypes

    Directory of Open Access Journals (Sweden)

    J.A. Gilkes

    2016-03-01

    Full Text Available Sanfilippo syndrome type B (MPS IIIB is a lysosomal storage disease caused by a deficiency of N-acetyl-glucosaminidase (NAGLU activity. Since early therapeutic intervention is likely to yield the most efficacious results, we sought to determine the possible therapeutic utility of rAAV in early gene therapy based interventions. Currently, the application of recombinant adeno-associated virus (AAV vectors is one of the most widely used gene transfer systems, and represents a promising approach in the treatment of MPS IIIB. From a translational standpoint, a minimally invasive, yet highly efficient method of vector administration is ideal. The thalamus is thought to be the switchboard for signal relay in the central nervous system (CNS and therefore represents an attractive target. To identify an optimal AAV vector for early therapeutic intervention, and establish whether thalamic administration represents a feasible therapeutic approach, we performed a comprehensive assessment of transduction and biodistribution profiles of four green fluorescent protein (GFP bearing rAAV serotypes, -5, -8, -9 and -rh10, administered bilaterally into the thalamus. Of the four serotypes compared, AAV8 and -9 proved superior to AAV5 and -rh10 both in biodistribution and transduction efficiency profiles. Genotype differences in transduction efficiency and biodistribution patterns were also observed. Importantly, we conclude that AAV8 and to a lesser extent, AAV9 represent preferable candidates for early gene therapy based intervention in the treatment of MPS IIIB. We also highlight the feasibility of thalamic rAAV administration, and conclude that this method results in moderate rAAV biodistribution with limited treatment capacity, thus suggesting a need for alternate methods of vector delivery.

  13. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells.

    Science.gov (United States)

    Leaver, S G; Cui, Q; Plant, G W; Arulpragasam, A; Hisheh, S; Verhaagen, J; Harvey, A R

    2006-09-01

    We compared the effects of intravitreal injection of bi-cistronic adeno-associated viral (AAV-2) vectors encoding enhanced green fluorescent protein (GFP) and either ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43) on adult retinal ganglion cell (RGC) survival and regeneration following (i) optic nerve (ON) crush or (ii) after ON cut and attachment of a peripheral nerve (PN). At 7 weeks after ON crush, quantification of betaIII-tubulin immunostaining revealed that, compared to AAV-GFP controls, RGC survival was not enhanced by AAV-GAP43-GFP but was increased in AAV-CNTF-GFP (mean RGCs/retina: 17 450+/-358 s.e.m.) and AAV-BDNF-GFP injected eyes (10 200+/-4064 RGCs/retina). Consistent with increased RGC viability in AAV-CNTF-GFP and AAV-BDNF-GFP injected eyes, these animals possessed many betaIII-tubulin- and GFP-positive fibres proximal to the ON crush. However, only in the AAV-CNTF-GFP group were regenerating RGC axons seen in distal ON (1135+/-367 axons/nerve, 0.5 mm post-crush), some reaching the optic chiasm. RGCs were immunoreactive for CNTF and quantitative RT-PCR revealed a substantial increase in CNTF mRNA expression in retinas transduced with AAV-CNTF-GFP. The combination of AAV-CNTF-GFP transduction of RGCs with autologous PN-ON transplantation resulted in even greater RGC survival and regeneration. At 7 weeks after PN transplantation there were 27 954 (+/-2833) surviving RGCs/retina, about 25% of the adult RGC population. Of these, 13 352 (+/-1868) RGCs/retina were retrogradely labelled after fluorogold injections into PN grafts. In summary, AAV-mediated expression of CNTF promotes long-term survival and regeneration of injured adult RGCs, effects that are substantially enhanced by combining gene and cell-based therapies/interventions.

  14. Development of Optimized AAV Serotype Vectors for High-Efficiency Transduction at Further Reduced Doses.

    Science.gov (United States)

    Ling, Chen; Li, Baozheng; Ma, Wenqin; Srivastava, Arun

    2016-08-01

    We have described the development of capsid-modified next-generation AAV vectors for both AAV2 and AAV3 serotypes, in which specific surface-exposed tyrosine (Y), serine (S), threonine (T), and lysine (K) residues on viral capsids were modified to achieve high-efficiency transduction at lower doses. We have also described the development of genome-modified AAV vectors, in which the transcriptionally inactive, single-stranded AAV genome was modified to achieve improved transgene expression. Here, we describe that combination of capsid modifications and genome modifications leads to the generation of optimized AAV serotype vectors, which transduce cells and tissues more efficiently, both in vitro and in vivo, at ∼20-30-fold reduced doses. These studies have significant implications in the potential use of the optimized AAV serotype vectors in human gene therapy.

  15. Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain.

    Directory of Open Access Journals (Sweden)

    Paramita Chakrabarty

    Full Text Available Adeno-associated virus (AAV mediated gene expression is a powerful tool for gene therapy and preclinical studies. A comprehensive analysis of CNS cell type tropism, expression levels and biodistribution of different capsid serotypes has not yet been undertaken in neonatal rodents. Our previous studies show that intracerebroventricular injection with AAV2/1 on neonatal day P0 results in widespread CNS expression but the biodistribution is limited if injected beyond neonatal day P1. To extend these observations we explored the effect of timing of injection on tropism and biodistribution of six commonly used pseudotyped AAVs delivered in the cerebral ventricles of neonatal mice. We demonstrate that AAV2/8 and 2/9 resulted in the most widespread biodistribution in the brain. Most serotypes showed varying biodistribution depending on the day of injection. Injection on neonatal day P0 resulted in mostly neuronal transduction, whereas administration in later periods of development (24-84 hours postnatal resulted in more non-neuronal transduction. AAV2/5 showed widespread transduction of astrocytes irrespective of the time of injection. None of the serotypes tested showed any microglial transduction. This study demonstrates that both capsid serotype and timing of injection influence the regional and cell-type distribution of AAV in neonatal rodents, and emphasizes the utility of pseudotyped AAV vectors for translational gene therapy paradigms.

  16. Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain.

    Science.gov (United States)

    Chakrabarty, Paramita; Rosario, Awilda; Cruz, Pedro; Siemienski, Zoe; Ceballos-Diaz, Carolina; Crosby, Keith; Jansen, Karen; Borchelt, David R; Kim, Ji-Yoen; Jankowsky, Joanna L; Golde, Todd E; Levites, Yona

    2013-01-01

    Adeno-associated virus (AAV) mediated gene expression is a powerful tool for gene therapy and preclinical studies. A comprehensive analysis of CNS cell type tropism, expression levels and biodistribution of different capsid serotypes has not yet been undertaken in neonatal rodents. Our previous studies show that intracerebroventricular injection with AAV2/1 on neonatal day P0 results in widespread CNS expression but the biodistribution is limited if injected beyond neonatal day P1. To extend these observations we explored the effect of timing of injection on tropism and biodistribution of six commonly used pseudotyped AAVs delivered in the cerebral ventricles of neonatal mice. We demonstrate that AAV2/8 and 2/9 resulted in the most widespread biodistribution in the brain. Most serotypes showed varying biodistribution depending on the day of injection. Injection on neonatal day P0 resulted in mostly neuronal transduction, whereas administration in later periods of development (24-84 hours postnatal) resulted in more non-neuronal transduction. AAV2/5 showed widespread transduction of astrocytes irrespective of the time of injection. None of the serotypes tested showed any microglial transduction. This study demonstrates that both capsid serotype and timing of injection influence the regional and cell-type distribution of AAV in neonatal rodents, and emphasizes the utility of pseudotyped AAV vectors for translational gene therapy paradigms.

  17. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  18. Adeno-Associated Virus Type 12 (AAV12): a Novel AAV Serotype with Sialic Acid- and Heparan Sulfate Proteoglycan-Independent Transduction Activity▿

    Science.gov (United States)

    Schmidt, Michael; Voutetakis, Antonis; Afione, Sandra; Zheng, Changyu; Mandikian, Danielle; Chiorini, John A.

    2008-01-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy. Recent isolations of novel AAV serotypes have led to significant advances by broadening the tropism and increasing the efficiency of gene transfer to the desired target cell. However, a major concern that remains is the strong preexisting immune responses to several vectors. In this paper, we describe the isolation and characterization of AAV12, an AAV serotype with unique biological and immunological properties. In contrast to those of all other reported AAVs, AAV12 cell attachment and transduction do not require cell surface sialic acids or heparan sulfate proteoglycans. Furthermore, rAAV12 is resistant to neutralization by circulating antibodies from human serum. The feasibility of rAAV12 as a vector was demonstrated in a mouse model in which muscle and salivary glands were transduced. These characteristics make rAAV12 an interesting candidate for gene transfer applications. PMID:18045941

  19. The influence of epileptic neuropathology and prior peripheral immunity on CNS transduction by rAAV2 and rAAV5.

    Science.gov (United States)

    Weinberg, M S; Blake, B L; Samulski, R J; McCown, T J

    2011-10-01

    Adeno-associated virus (AAV) provides a promising platform for clinical treatment of neurological disorders owing to its established efficacy and lack of apparent pathogenicity. To use viral vectors in treating neurological disease, however, transduction must occur under neuropathological conditions. Previous studies in rodents have shown that AAV5 more efficiently transduces cells in the hippocampus and piriform cortex than AAV2. Using the kainic acid (KA) model of temporal lobe epilepsy and AAV2 and 5 carrying a hybrid chicken β-actin promoter driving green fluorescent protein (GFP), we found that limbic seizure activity caused substantial neuropathology and resulted in a significant reduction in subsequent AAV5 transduction. Nonetheless, this reduced transduction still was greater than AAV2 transduction in control rats. Although KA seizures compromise blood-brain barrier function, potentially increasing exposure of target tissue to circulating neutralizing antibodies, we observed no interaction between KA seizure-induced damage and immunization status on AAV transduction. Finally, while we confirmed the near total neuronal-specific transgene expression for both serotypes in control rats, AAV5-GFP expression was increasingly localized to astrocytes in seizure-damaged areas. Thus, the pathological milieu of the injured brain can reduce transduction efficacy and alter viral tropism- both relevant concerns when considering viral vector gene therapy for neurological disorders.

  20. Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo.

    Directory of Open Access Journals (Sweden)

    Stefan Michelfelder

    Full Text Available Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT. Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes.

  1. Comparative biology of rAAV transduction in ferret, pig and human airway epithelia

    OpenAIRE

    Liu, X.; Luo, M.; Guo, C.; Yan, Z.; Wang, Y.; Engelhardt, JF

    2007-01-01

    Differences between rodent and human airway cell biology have made it difficult to translate recombinant adeno-associated virus (rAAV)-mediated gene therapies to the lung for cystic fibrosis (CF). As new ferret and pig models for CF become available, knowledge about host cell/vector interactions in these species will become increasingly important for testing potential gene therapies. To this end, we have compared the transduction biology of three rAAV serotypes (AAV1, 2 and 5) in human, ferre...

  2. AAV9 supports wide-scale transduction of the CNS and TDP-43 disease modeling in adult rats

    Directory of Open Access Journals (Sweden)

    Kasey L Jackson

    Full Text Available AAV9 has emerged as an efficient adeno-associated virus (AAV serotype for gene transfer to the central nervous system. We have used this technique to study aspects of amyotrophic lateral sclerosis (ALS by administering AAV encoding the ALS-related gene transactive response DNA binding protein of 43 kDa (TDP-43 to neonatal rats. However, inducing the expression in adult subjects would be preferable to mimic the adult onset of symptoms in ALS. We expressed either green fluorescent protein (GFP or TDP-43 in adult rats after an intravenous (i.v. route of administration to attempt wide-scale transduction of the spinal cord for disease modeling. In order to optimize the gene transfer, we made comparisons of efficiency by age, gender, and across several AAV serotypes (AAV1, AAV8, AAV9, and AAV10. The data indicate more efficient neuronal transduction in neonates, with little evidence of glial transduction at either age, no gender-related differences in transduction, and that AAV9 was efficient in adults relative to the other serotypes tested. Based on these data, AAV9 TDP-43 was expressed at three vector doses in adult female rats yielding highly consistent, dose-dependent motor deficits. AAV9 can be delivered i.v. to adult rats to achieve consistent pathophysiological changes and a relevant adult-onset system for disease modeling.

  3. Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs.

    Science.gov (United States)

    Hakim, Chady H; Yue, Yongping; Shin, Jin-Hong; Williams, Regina R; Zhang, Keqing; Smith, Bruce F; Duan, Dongsheng

    2014-03-05

    The muscular dystrophies are a group of devastating genetic disorders that affect both skeletal and cardiac muscle. An effective gene therapy for these diseases requires bodywide muscle delivery. Tyrosine mutant adeno-associated virus (AAV) has been considered as a class of highly potent gene transfer vectors. Here, we tested the hypothesis that systemic delivery of tyrosine mutant AAV can result in bodywide muscle transduction in newborn dogs. Three tyrosine mutant AAV vectors (Y445F/Y731F AAV-1, Y445F AAV-6, and Y731F AAV-9) were evaluated. These vectors expressed the alkaline phosphatase reporter gene under transcriptional regulation of either the muscle-specific Spc5-12 promoter or the ubiquitous Rous sarcoma virus promoter. Robust skeletal and cardiac muscle transduction was achieved with Y445F/Y731F AAV-1. However, Y731F AAV-9 only transduced skeletal muscle. Surprisingly, Y445F AAV-6 resulted in minimal muscle transduction. Serological study suggests that the preexisting neutralization antibody may underlie the limited transduction of Y445F AAV-6. In summary, we have identified Y445F/Y731F AAV-1 as a potentially excellent systemic gene transfer vehicle to target both skeletal muscle and the heart in neonatal puppies. Our findings have important implications in exploring systemic neonatal gene therapy in canine models of muscular dystrophy.

  4. Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs

    Directory of Open Access Journals (Sweden)

    Chady H Hakim

    2014-01-01

    Full Text Available The muscular dystrophies are a group of devastating genetic disorders that affect both skeletal and cardiac muscle. An effective gene therapy for these diseases requires bodywide muscle delivery. Tyrosine mutant adeno-associated virus (AAV has been considered as a class of highly potent gene transfer vectors. Here, we tested the hypothesis that systemic delivery of tyrosine mutant AAV can result in bodywide muscle transduction in newborn dogs. Three tyrosine mutant AAV vectors (Y445F/Y731F AAV-1, Y445F AAV-6, and Y731F AAV-9 were evaluated. These vectors expressed the alkaline phosphatase reporter gene under transcriptional regulation of either the muscle-specific Spc5-12 promoter or the ubiquitous Rous sarcoma virus promoter. Robust skeletal and cardiac muscle transduction was achieved with Y445F/Y731F AAV-1. However, Y731F AAV-9 only transduced skeletal muscle. Surprisingly, Y445F AAV-6 resulted in minimal muscle transduction. Serological study suggests that the preexisting neutralization antibody may underlie the limited transduction of Y445F AAV-6. In summary, we have identified Y445F/Y731F AAV-1 as a potentially excellent systemic gene transfer vehicle to target both skeletal muscle and the heart in neonatal puppies. Our findings have important implications in exploring systemic neonatal gene therapy in canine models of muscular dystrophy.

  5. AAV9 supports wide-scale transduction of the CNS and TDP-43 disease modeling in adult rats.

    Science.gov (United States)

    Jackson, Kasey L; Dayton, Robert D; Klein, Ronald L

    2015-01-01

    AAV9 has emerged as an efficient adeno-associated virus (AAV) serotype for gene transfer to the central nervous system. We have used this technique to study aspects of amyotrophic lateral sclerosis (ALS) by administering AAV encoding the ALS-related gene transactive response DNA binding protein of 43 kDa (TDP-43) to neonatal rats. However, inducing the expression in adult subjects would be preferable to mimic the adult onset of symptoms in ALS. We expressed either green fluorescent protein (GFP) or TDP-43 in adult rats after an intravenous (i.v.) route of administration to attempt wide-scale transduction of the spinal cord for disease modeling. In order to optimize the gene transfer, we made comparisons of efficiency by age, gender, and across several AAV serotypes (AAV1, AAV8, AAV9, and AAV10). The data indicate more efficient neuronal transduction in neonates, with little evidence of glial transduction at either age, no gender-related differences in transduction, and that AAV9 was efficient in adults relative to the other serotypes tested. Based on these data, AAV9 TDP-43 was expressed at three vector doses in adult female rats yielding highly consistent, dose-dependent motor deficits. AAV9 can be delivered i.v. to adult rats to achieve consistent pathophysiological changes and a relevant adult-onset system for disease modeling.

  6. Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro.

    Science.gov (United States)

    Limberis, Maria P; Vandenberghe, Luk H; Zhang, Liqun; Pickles, Raymond J; Wilson, James M

    2009-02-01

    We have characterized the ability of adeno-associated virus (AAV) serotypes 1-9 in addition to nineteen novel vectors isolated from various tissues, to transduce mouse and human ciliated airway epithelium (HAE). Vectors expressing alpha-1-antitrypsin (AAT) and beta-galactosidase were co-instilled into the mouse lung. Of all the vectors tested rh.64R1, AAV5 and AAV6 were the most efficient. The high transduction observed in mouse was reproduced in HAE cell cultures for both rh.64R1 and AAV6 but not for AAV5. Since AAV6 was the most efficient vector in mouse and HAE we also tested the transduction efficiencies of the AAV6 singleton vectors (i.e., AAV6 variants with targeted mutations) in these models. Of these, AAV6.2 transduced mouse airway epithelium and HAE with greater efficiency than all other AAV vectors tested. We demonstrated that AAV6.2 exhibits improved transduction efficiency compared to previously reported AAVs in mouse airways and in culture models of human airway epithelium and that this vector requires further development for preclinical and clinical testing.

  7. The influence of epileptic neuropathology and prior peripheral immunity on CNS transduction by rAAV2 and rAAV5

    OpenAIRE

    Weinberg, MS; Blake, BL; Samulski, RJ; McCown, TJ

    2011-01-01

    Adeno-associated virus (AAV) provides a promising platform for clinical treatment of neurological disorders owing to its established efficacy and lack of apparent pathogenicity. To use viral vectors in treating neurological disease, however, transduction must occur under neuropathological conditions. Previous studies in rodents have shown that AAV5 more efficiently transduces cells in the hippocampus and piriform cortex than AAV2. Using the kainic acid (KA) model of temporal lobe epilepsy and...

  8. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction.

    Science.gov (United States)

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-09-08

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.

  9. High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency.

    Science.gov (United States)

    Ayuso, E; Mingozzi, F; Montane, J; Leon, X; Anguela, X M; Haurigot, V; Edmonson, S A; Africa, L; Zhou, S; High, K A; Bosch, F; Wright, J F

    2010-04-01

    The purity of adeno-associated virus (AAV) vector preparations has important implications for both safety and efficacy of clinical gene transfer. Early-stage screening of candidates for AAV-based therapeutics ideally requires a purification method that is flexible and also provides vectors comparable in purity and potency to the prospective investigational product manufactured for clinical studies. The use of cesium chloride (CsCl) gradient-based protocols provides the flexibility for purification of different serotypes; however, a commonly used first-generation CsCl-based protocol was found to result in AAV vectors containing large amounts of protein and DNA impurities and low transduction efficiency in vitro and in vivo. Here, we describe and characterize an optimized, second-generation CsCl protocol that incorporates differential precipitation of AAV particles by polyethylene glycol, resulting in higher yield and markedly higher vector purity that correlated with better transduction efficiency observed with several AAV serotypes in multiple tissues and species. Vectors purified by the optimized CsCl protocol were found to be comparable in purity and functional activity to those prepared by more scalable, but less flexible serotype-specific purification processes developed for manufacture of clinical vectors, and are therefore ideally suited for pre-clinical studies supporting translational research.

  10. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain.

    Science.gov (United States)

    Cearley, Cassia N; Vandenberghe, Luk H; Parente, Michael K; Carnish, Erin R; Wilson, James M; Wolfe, John H

    2008-10-01

    A wide diversity of adeno-associated virus (AAV) structural proteins uncovered from latent genomes in primate tissue has expanded the number of AAV vector serotypes, which can potentially confer unique cell tropism to the vector. We evaluated 17 of these vectors in the mouse brain using green fluorescent protein (GFP) as a reporter gene. A rapid initial evaluation was performed by neonatal lateral ventricle injections. Vectors made with capsids hu.32, hu.37, pi.2, hu.11, rh.8, hu.48R3, and AAV9 for comparison were selected for further analysis based on their ability to transduce large numbers of cells and result in novel patterns of cell transduction. These vectors were injected into adult brains in four major structures (cortex, striatum, hippocampus, and thalamus), and all were found to transduce neurons. In addition, hu.32, hu.11, pi.2, hu.48R3, and rh.8 resulted in GFP expression in some astrocytes or oligodendrocytes. AAVs rh.8, pi.2, hu.32, and hu.11 also appeared to result in neuronal transport of the vector genome. Vector transport was studied by a single unilateral injection into the hippocampus and vector genome was found in projection sites of the hippocampus. These unique patterns of cell transduction expand the potential repertoire for targeting AAV vectors to selected subsets of brain cells.

  11. Neutralizing Antibodies Against Adeno-Associated Virus (AAV): Measurement and Influence on Retinal Gene Delivery.

    Science.gov (United States)

    Desrosiers, Mélissa; Dalkara, Deniz

    2018-01-01

    Adeno-associated viral vectors have become widely used in the clinic for retinal gene therapy. Thanks to AAVs impeccable safety profile and positive functional outcomes in its clinical application, interest in retinal gene therapy has increased exponentially over the past decade. Although early clinical trials have shown there is little influence of neutralizing antibodies on the performance of AAV when vector is administered into the subretinal space, recent findings suggest neutralizing antibodies may play a role when AAV is delivered via the intravitreal route. These findings highlight the importance of microenvironment on gene delivery and stress the need for a versatile assay to screen subjects for the presence of AAV-neutralizing antibodies. Measuring NAb titers against AAV prior and after gene therapy will help us better understand the impact of preexisting immunity on gene transfer, especially when the vector is administered intravitreally.

  12. Trans-neuronal transduction of spinal neurons following cortical injection and anterograde axonal transport of a bicistronic AAV1 vector.

    Science.gov (United States)

    Hutson, T H; Kathe, C; Moon, L D F

    2016-02-01

    Adeno-associated viral (AAV) vectors are one of the most promising gene delivery systems to the central nervous system. We now report, that AAV1 can be used to express transgenes trans-neuronally in neurons distant from the injection site. Specifically, intracortical injection of a bicistronic AAV1 vector trans-neuronally transduced spinal neurons as shown by fluorescence microscopy, the presence of AAV genome and AAV transcript in the contralateral spinal cord. Prior pyramidotomy abolished spinal transduction, confirming anterograde axonal transport of AAV1 in the corticospinal tract. These observations demonstrate the potential of bicistronic AAV1 for trans-neuronal expression of therapeutic transgenes in neurological disorders or reporter genes in connectivity studies.

  13. Analysis of Transduction Efficiency, Tropism and Axonal Transport of AAV Serotypes 1, 2, 5, 6, 8 and 9 in the Mouse Brain

    OpenAIRE

    Dominik F Aschauer; Sebastian Kreuz; Simon Rumpel

    2013-01-01

    Recombinant Adeno-associated virus vectors (rAAV) are widely used for gene delivery and multiple naturally occurring serotypes have been harnessed to target cells in different tissues and organs including the brain. Here, we provide a detailed and quantitative analysis of the transduction profiles of rAAV vectors based on six of the most commonly used serotypes (AAV1, AAV2, AAV5, AAV6, AAV8, AAV9) that allows systematic comparison and selection of the optimal vector for a specific application...

  14. Transduction efficiency of AAV 2/6, 2/8 and 2/9 vectors for delivering genes in human corneal fibroblasts

    OpenAIRE

    Sharma, Ajay; Ghosh, Arkasubhra; Hansen, Eric T.; Newman, Jason M.; Mohan, Rajiv R.

    2009-01-01

    In the present study, cellular tropism and relative transduction efficiency of AAV2/6, AAV2/8 and AAV2/9 vectors have been tested for the cornea using primary cultures of human corneal fibroblasts. The AAV6, AAV8 and AAV9 serotypes having AAV2 ITR plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Primary cultures of human corneal fibroblasts were exposed to AAV infectious particles at two different d...

  15. Biological Differences in rAAV Transduction of Airway Epithelia in Humans and in Old World Non-human Primates.

    Science.gov (United States)

    Liu, Xiaoming; Luo, Meihui; Trygg, Cyndi; Yan, Ziying; Lei-Butters, Diana C M; Smith, Carolina I; Fischer, Anne C; Munson, Keith; Guggino, William B; Bunnell, Bruce A; Engelhardt, John F

    2007-12-01

    Non-human primates (NHPs) are considered to be among the most relevant animal models for pre-clinical testing of human therapies, on the basis of their close evolutionary relatedness to humans in terms of organ cell biology and physiology. In this study, we sought to investigate whether NHP models accurately reflect the effectiveness of recombinant adeno-associated virus (rAAV)-mediated gene delivery to the airway in humans. In order to do this, we utilized an identical model system of differentiated airway epithelia from Indian Rhesus monkeys and from humans, cultured at an air-liquid interface (ALI). In addition to assessing the biology of rAAV-mediated transduction for three serotypes, we characterized the bioelectric properties as a reference for biological similarities and differences between the cell cultures from the two species. Our results demonstrate that airway epithelia from NHPs and humans have very similar Na(+) and Cl(-) transport properties. In contrast, rAAV transduction of airway epithelia of NHPs demonstrated significant differences to those in humans with regard to the efficiency of apical and/or basal transduction with three rAAV serotypes (AAV1, AAV2, AAV5). These findings suggest that the IndianRhesusmonkey may not be the best model for preclinical testing of rAAV-mediated gene therapy to the airway in humans.

  16. Quantifying transduction efficiencies of unmodified and tyrosine capsid mutant AAV vectors in vitro using two ocular cell lines

    National Research Council Canada - National Science Library

    Ryals, Renee C; Boye, Sanford L; Dinculescu, Astra; Hauswirth, William W; Boye, Shannon E

    2011-01-01

    With the increasing number of retinal gene-based therapies and therapeutic constructs, in vitro bioassays characterizing vector transduction efficiency and quality are becoming increasingly important...

  17. Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF

    Directory of Open Access Journals (Sweden)

    Chrisna J LeVaillant

    2016-01-01

    Full Text Available Use of viral vectors to deliver therapeutic genes to the central nervous system holds promise for the treatment of neurodegenerative diseases and neurotrauma. Adeno-associated viral (AAV vectors encoding brain-derived neurotrophic factor (BDNF or ciliary derived neurotrophic factor (CNTF promote the viability and regeneration of injured adult rat retinal ganglion cells. However, these growth-inducing transgenes are driven by a constitutively active promoter, thus we examined whether long-term AAV-mediated secretion of BDNF or CNTF affected endogenous retinal gene expression. One year after the intravitreal injection of AAV-green fluorescent protein (GFP, bi-cistronic AAV-BDNF-GFP or AAV-CNTF-GFP, mRNA was extracted and analyzed using custom 96 well polymerase chain reaction arrays. Of 93 test genes, 56% showed significantly altered expression in AAV-BDNF-GFP and/or AAV-CNTF-GFP retinas compared with AAV-GFP controls. Of these genes, 73% showed differential expression in AAV-BDNF versus AAV-CNTF injected eyes. To focus on retinal ganglion cell changes, quantitative polymerase chain reaction was undertaken on mRNA (16 genes obtained from fixed retinal sections in which the ganglion cell layer was enriched. The sign and extent of fold changes in ganglion cell layer gene expression differed markedly from whole retinal samples. Sustained and global alteration in endogenous mRNA expression after gene therapy should be factored into any interpretation of experimental/clinical outcomes, particularly when introducing factors into the central nervous system that require secretion to evoke functionality.

  18. Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF.

    Science.gov (United States)

    LeVaillant, Chrisna J; Sharma, Anil; Muhling, Jill; Wheeler, Lachlan Pg; Cozens, Greg S; Hellström, Mats; Rodger, Jennifer; Harvey, Alan R

    2016-01-01

    Use of viral vectors to deliver therapeutic genes to the central nervous system holds promise for the treatment of neurodegenerative diseases and neurotrauma. Adeno-associated viral (AAV) vectors encoding brain-derived neurotrophic factor (BDNF) or ciliary derived neurotrophic factor (CNTF) promote the viability and regeneration of injured adult rat retinal ganglion cells. However, these growth-inducing transgenes are driven by a constitutively active promoter, thus we examined whether long-term AAV-mediated secretion of BDNF or CNTF affected endogenous retinal gene expression. One year after the intravitreal injection of AAV-green fluorescent protein (GFP), bi-cistronic AAV-BDNF-GFP or AAV-CNTF-GFP, mRNA was extracted and analyzed using custom 96 well polymerase chain reaction arrays. Of 93 test genes, 56% showed significantly altered expression in AAV-BDNF-GFP and/or AAV-CNTF-GFP retinas compared with AAV-GFP controls. Of these genes, 73% showed differential expression in AAV-BDNF versus AAV-CNTF injected eyes. To focus on retinal ganglion cell changes, quantitative polymerase chain reaction was undertaken on mRNA (16 genes) obtained from fixed retinal sections in which the ganglion cell layer was enriched. The sign and extent of fold changes in ganglion cell layer gene expression differed markedly from whole retinal samples. Sustained and global alteration in endogenous mRNA expression after gene therapy should be factored into any interpretation of experimental/clinical outcomes, particularly when introducing factors into the central nervous system that require secretion to evoke functionality.

  19. Transduction efficiency of AAV 2/6, 2/8 and 2/9 vectors for delivering genes in human corneal fibroblasts.

    Science.gov (United States)

    Sharma, Ajay; Ghosh, Arkasubhra; Hansen, Eric T; Newman, Jason M; Mohan, Rajiv R

    2010-02-15

    In the present study, cellular tropism and relative transduction efficiency of AAV2/6, AAV2/8 and AAV2/9 vectors have been tested for the cornea using primary cultures of human corneal fibroblasts. The AAV6, AAV8 and AAV9 serotypes having AAV2 ITR plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Primary cultures of human corneal fibroblasts were exposed to AAV infectious particles at two different doses (1 x 10(5) and 2 x 10(5) MOI). Cytochemistry and enzyme assays were used to measure delivered transgene expression in samples collected at 4 and 30 h after AAV infection by counting AP-stained cells or quantifying AP enzyme activity. Cellular toxicity of AAVs was evaluated with TUNEL and trypan blue assays. All three AAV serotypes transduced human corneal fibroblasts. The order of transduction efficiency was AAV2/6>AAV2/9>AAV2/8. The transduction efficiency of AAV2/6 was 30-50-fold higher (p AAV2/8 or AAV2/9 at two tested doses. The level of transgene expression at 4h was considerably low compared to 30 h suggesting that the transgene delivery did not reach its peak at 4h. Cultures exposed to any of the three AAV serotypes showed more than 97% cellular viability and less than 5 TUNEL positive cells suggesting that tested AAV serotypes do not induce significant cell death and are safe for corneal gene therapy. Copyright 2009 Elsevier Inc. All rights reserved.

  20. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector

    Directory of Open Access Journals (Sweden)

    Giridhar Murlidharan

    2016-01-01

    Full Text Available Gene therapy using recombinant adeno-associated viral (AAV vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9, which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137 in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities.

  1. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector.

    Science.gov (United States)

    Murlidharan, Giridhar; Sakamoto, Kensuke; Rao, Lavanya; Corriher, Travis; Wang, Dan; Gao, Guangping; Sullivan, Patrick; Asokan, Aravind

    2016-07-19

    Gene therapy using recombinant adeno-associated viral (AAV) vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9), which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137) in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities.

  2. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo.

    Science.gov (United States)

    Wu, Chaowen; Ivanova, Elena; Zhang, Yi; Pan, Zhuo-Hua

    2013-01-01

    Expression of optogenetic tools in surviving inner retinal neurons to impart retinal light sensitivity has been a new strategy for restoring vision after photoreceptor degeneration. One potential approach for restoring retinal light sensitivity after photoreceptor degeneration is to express optogenetic tools in retinal ganglion cells (RGCs). For this approach, restoration of ON and OFF center-surround receptive fields in RGCs, a key feature of visual information processing, may be important. A possible solution is to differentially express depolarizing and hyperpolarizing optogenetic tools, such as channelrhodopsin-2 and halorhodopsin, to the center and peripheral regions of the RGC dendritic field by using protein targeting motifs. Recombinant adeno-associated virus (rAAV) vectors have proven to be a powerful vehicle for in vitro and in vivo gene delivery, including in the retina. Therefore, the search for protein targeting motifs that can achieve rAAV-mediated subcellular targeted expression would be particularly valuable for developing therapeutic applications. In this study, we identified two protein motifs that are suitable for rAAV-mediated subcellular targeting for generating center-surround receptive fields while reducing the axonal expression in RGCs. Resulting morphological dendritic field and physiological response field by center-targeting were significantly smaller than those produced by surround-targeting. rAAV motif-mediated protein targeting could also be a valuable tool for studying physiological function and clinical applications in other areas of the central nervous system.

  3. Optimizing the transduction efficiency of human hematopoietic stem cells using capsid-modified AAV6 vectors in vitro and in a xenograft mouse model in vivo

    Science.gov (United States)

    Song, Liujiang; Kauss, M. Ariel; Kopin, Etana; Chandra, Manasa; Ul-Hasan, Taihra; Miller, Erin; Jayandharan, Giridhara R.; Rivers, Angela E.; Aslanidi, George V.; Ling, Chen; Li, Baozheng; Ma, Wenqin; Li, Xiaomiao; Andino, Lourdes M.; Zhong, Li; Tarantal, Alice F.; Yoder, Mervin C.; Wong, Kamehameha K.; Tan, Mengqun; Chatterjee, Saswati; Srivastava, Arun

    2013-01-01

    Background Although recombinant adeno-associated virus serotype 2 (AAV2) vectors have gained attention owing to their safety and efficacy in number of Phase I/II clinical trials, their transduction efficiency in hematopoietic stem cells (HSCs) has been reported to be low. Only a handful of additional AAV serotype vectors have been evaluated, and comparative analyses of their transduction efficiency in HSCs from different species have not been performed. Methods Here, we evaluated the transduction efficiency of all available AAV serotype vectors (AAV1 through AAV10) in primary mouse, cynomolgus monkey, and human HSCs, respectively. The transduction efficiency of the optimized AAV vectors was also evaluated in human HSCs in a murine xenograft model in vivo. Results We observed that although there are only six amino acid differences between AAV1 and AAV6, AAV1, but not AAV6, transduce mouse HSCs cells well, whereas AAV6, but not AAV1, transduce human HSCs well. None of the 10 serotypes transduce cynomolgus monkey HSCs in vitro. We also evaluated the transduction efficiency of AAV6 vectors containing mutations in surface-exposed tyrosine residues, and observed that tyrosine (Y) to phenylalanine (F) point mutations in residues 445, 705, and 731, led to a significant increase in transgene expression in human HSCs in vitro and in a mouse xenograft model in vivo. Discussion These studies suggest that the tyrosine-mutant AAV6 serotype vectors are the most promising vectors for transducing human HSCs, and that it is possible to further increase the transduction efficiency of these vectors for their potential use in HSC-based gene therapy in humans. PMID:23830234

  4. Optimizing the transduction efficiency of capsid-modified AAV6 serotype vectors in primary human hematopoietic stem cells in vitro and in a xenograft mouse model in vivo.

    Science.gov (United States)

    Song, Liujiang; Kauss, M Ariel; Kopin, Etana; Chandra, Manasa; Ul-Hasan, Taihra; Miller, Erin; Jayandharan, Giridhara R; Rivers, Angela E; Aslanidi, George V; Ling, Chen; Li, Baozheng; Ma, Wenqin; Li, Xiaomiao; Andino, Lourdes M; Zhong, Li; Tarantal, Alice F; Yoder, Mervin C; Wong, Kamehameha K; Tan, Mengqun; Chatterjee, Saswati; Srivastava, Arun

    2013-08-01

    Although recombinant adeno-associated virus serotype 2 (AAV2) vectors have gained attention because of their safety and efficacy in numerous phase I/II clinical trials, their transduction efficiency in hematopoietic stem cells (HSCs) has been reported to be low. Only a few additional AAV serotype vectors have been evaluated, and comparative analyses of their transduction efficiency in HSCs from different species have not been performed. We evaluated the transduction efficiency of all available AAV serotype vectors (AAV1 through AAV10) in primary mouse, cynomolgus monkey and human HSCs. The transduction efficiency of the optimized AAV vectors was also evaluated in human HSCs in a murine xenograft model in vivo. We observed that although there are only six amino acid differences between AAV1 and AAV6, AAV1, but not AAV6, transduced mouse HSCs well, whereas AAV6, but not AAV1, transduced human HSCs well. None of the 10 serotypes transduced cynomolgus monkey HSCs in vitro. We also evaluated the transduction efficiency of AAV6 vectors containing mutations in surface-exposed tyrosine residues. We observed that tyrosine (Y) to phenylalanine (F) point mutations in residues 445, 705 and 731 led to a significant increase in transgene expression in human HSCs in vitro and in a mouse xenograft model in vivo. These studies suggest that the tyrosine-mutant AAV6 serotype vectors are the most promising vectors for transducing human HSCs and that it is possible to increase further the transduction efficiency of these vectors for their potential use in HSC-based gene therapy in humans. Copyright © 2013 International Society for Cellular Therapy. All rights reserved.

  5. Impact of Heparan Sulfate Binding on Transduction of Retina by Recombinant Adeno-Associated Virus Vectors

    Science.gov (United States)

    Boye, Sanford L.; Bennett, Antonette; Scalabrino, Miranda L.; McCullough, K. Tyler; Van Vliet, Kim; Choudhury, Shreyasi; Ruan, Qing; Peterson, James

    2016-01-01

    ABSTRACT Adeno-associated viruses (AAVs) currently are being developed to efficiently transduce the retina following noninvasive, intravitreal (Ivt) injection. However, a major barrier encountered by intravitreally delivered AAVs is the inner limiting membrane (ILM), a basement membrane rich in heparan sulfate (HS) proteoglycan. The goal of this study was to determine the impact of HS binding on retinal transduction by Ivt-delivered AAVs. The heparin affinities of AAV2-based tyrosine-to-phenylalanine (Y-F) and threonine-to-valine (T-V) capsid mutants, designed to avoid proteasomal degradation during cellular trafficking, were established. In addition, the impact of grafting HS binding residues onto AAV1, AAV5, and AAV8(Y733F) as well as ablation of HS binding by AAV2-based vectors on retinal transduction was investigated. Finally, the potential relationship between thermal stability of AAV2-based capsids and Ivt-mediated transduction was explored. The results show that the Y-F and T-V AAV2 capsid mutants bind heparin but with slightly reduced affinity relative to that of AAV2. The grafting of HS binding increased Ivt transduction by AAV1 but not by AAV5 or AAV8(Y733F). The substitution of any canonical HS binding residues ablated Ivt-mediated transduction by AAV2-based vectors. However, these same HS variant vectors displayed efficient retinal transduction when delivered subretinally. Notably, a variant devoid of canonical HS binding residues, AAV2(4pMut)ΔHS, was remarkably efficient at transducing photoreceptors. The disparate AAV phenotypes indicate that HS binding, while critical for AAV2-based vectors, is not the sole determinant for transduction via the Ivt route. Finally, Y-F and T-V mutations alter capsid stability, with a potential relationship existing between stability and improvements in retinal transduction by Ivt injection. IMPORTANCE AAV has emerged as the vector of choice for gene delivery to the retina, with attention focused on developing vectors

  6. Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient.

    Science.gov (United States)

    Cereso, Nicolas; Pequignot, Marie O; Robert, Lorenne; Becker, Fabienne; De Luca, Valerie; Nabholz, Nicolas; Rigau, Valerie; De Vos, John; Hamel, Christian P; Kalatzis, Vasiliki

    2014-01-01

    Inherited retinal dystrophies (IRDs) comprise a large group of genetically and clinically heterogeneous diseases that lead to progressive vision loss, for which a paucity of disease-mimicking animal models renders preclinical studies difficult. We sought to develop pertinent human cellular IRD models, beginning with choroideremia, caused by mutations in the CHM gene encoding Rab escort protein 1 (REP1). We reprogrammed REP1-deficient fibroblasts from a CHM (-/y) patient into induced pluripotent stem cells (iPSCs), which we differentiated into retinal pigment epithelium (RPE). This iPSC-derived RPE is a polarized monolayer with a classic morphology, expresses characteristic markers, is functional for fluid transport and phagocytosis, and mimics the biochemical phenotype of patients. We assayed a panel of adeno-associated virus (AAV) vector serotypes and showed that AAV2/5 is the most efficient at transducing the iPSC-derived RPE and that CHM gene transfer normalizes the biochemical phenotype. The high, and unmatched, in vitro transduction efficiency is likely aided by phagocytosis and mimics the scenario that an AAV vector encounters in vivo in the subretinal space. We demonstrate the superiority of AAV2/5 in the human RPE and address the potential of patient iPSC-derived RPE to provide a proof-of-concept model for gene replacement in the absence of an appropriate animal model.

  7. Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient

    Directory of Open Access Journals (Sweden)

    Nicolas Cereso

    2014-01-01

    Full Text Available Inherited retinal dystrophies (IRDs comprise a large group of genetically and clinically heterogeneous diseases that lead to progressive vision loss, for which a paucity of disease-mimicking animal models renders preclinical studies difficult. We sought to develop pertinent human cellular IRD models, beginning with choroideremia, caused by mutations in the CHM gene encoding Rab escort protein 1 (REP1. We reprogrammed REP1-deficient fibroblasts from a CHM-/y patient into induced pluripotent stem cells (iPSCs, which we differentiated into retinal pigment epithelium (RPE. This iPSC-derived RPE is a polarized monolayer with a classic morphology, expresses characteristic markers, is functional for fluid transport and phagocytosis, and mimics the biochemical phenotype of patients. We assayed a panel of adeno-associated virus (AAV vector serotypes and showed that AAV2/5 is the most efficient at transducing the iPSC-derived RPE and that CHM gene transfer normalizes the biochemical phenotype. The high, and unmatched, in vitro transduction efficiency is likely aided by phagocytosis and mimics the scenario that an AAV vector encounters in vivo in the subretinal space. We demonstrate the superiority of AAV2/5 in the human RPE and address the potential of patient iPSC–derived RPE to provide a proof-of-concept model for gene replacement in the absence of an appropriate animal model.

  8. Better Targeting, Better Efficiency for Wide-scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    Directory of Open Access Journals (Sweden)

    Kasey L Jackson

    2016-11-01

    Full Text Available Widespread genetic modification of cells in the central nervous system (CNS with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin hybrid (CBA promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered AAV-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS-related protein TDP-43 with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  9. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    Science.gov (United States)

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  10. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.

    Science.gov (United States)

    Hung, Sandy S C; Chrysostomou, Vicki; Li, Fan; Lim, Jeremiah K H; Wang, Jiang-Hui; Powell, Joseph E; Tu, Leilei; Daniszewski, Maciej; Lo, Camden; Wong, Raymond C; Crowston, Jonathan G; Pébay, Alice; King, Anna E; Bui, Bang V; Liu, Guei-Sheung; Hewitt, Alex W

    2016-06-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) has recently been adapted to enable efficient editing of the mammalian genome, opening novel avenues for therapeutic intervention of inherited diseases. In seeking to disrupt yellow fluorescent protein (YFP) in a Thy1-YFP transgenic mouse, we assessed the feasibility of utilizing the adeno-associated virus 2 (AAV2) to deliver CRISPR/Cas for gene modification of retinal cells in vivo. Single guide RNA (sgRNA) plasmids were designed to target YFP, and after in vitro validation, selected guides were cloned into a dual AAV system. One AAV2 construct was used to deliver Streptococcus pyogenes Cas9 (SpCas9), and the other delivered sgRNA against YFP or LacZ (control) in the presence of mCherry. Five weeks after intravitreal injection, retinal function was determined using electroretinography, and CRISPR/Cas-mediated gene modifications were quantified in retinal flat mounts. Adeno-associated virus 2-mediated in vivo delivery of SpCas9 with sgRNA targeting YFP significantly reduced the number of YFP fluorescent cells of the inner retina of our transgenic mouse model. Overall, we found an 84.0% (95% confidence interval [CI]: 81.8-86.9) reduction of YFP-positive cells in YFP-sgRNA-infected retinal cells compared to eyes treated with LacZ-sgRNA. Electroretinography profiling found no significant alteration in retinal function following AAV2-mediated delivery of CRISPR/Cas components compared to contralateral untreated eyes. Thy1-YFP transgenic mice were used as a rapid quantifiable means to assess the efficacy of CRISPR/Cas-based retinal gene modification in vivo. We demonstrate that genomic modification of cells in the adult retina can be readily achieved by viral-mediated delivery of CRISPR/Cas.

  11. A Novel Retinal Ganglion Cell Promoter for Utility in AAV Vectors

    Directory of Open Access Journals (Sweden)

    Killian S. Hanlon

    2017-09-01

    Full Text Available Significant advances in gene therapy have enabled exploration of therapies for inherited retinal disorders, many of which are in preclinical development or clinical evaluation. Gene therapy for retinal conditions has led the way in this growing field. The loss of retinal ganglion cells (RGCs is a hallmark of a number of retinal disorders. As the field matures innovations that aid in refining therapies and optimizing efficacy are in demand. Gene therapies under development for RGC-related disorders, when delivered with recombinant adeno associated vectors (AAV, have typically been expressed from ubiquitous promoter sequences. Here we describe how a novel promoter from the murine Nefh gene was selected to drive transgene expression in RGCs. The Nefh promoter, in an AAV2/2 vector, was shown to drive preferential EGFP expression in murine RGCs in vivo following intravitreal injection. In contrast, EGFP expression from a CMV promoter was observed not only in RGCs, but throughout the inner nuclear layer and in amacrine cells located within the ganglion cell layer (GCL. Of note, the Nefh promoter sequence is sufficiently compact to be readily accommodated in AAV vectors, where transgene size represents a significant constraint. Moreover, this promoter should in principle provide a more targeted and potentially safer alternative for RGC-directed gene therapies.

  12. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain.

    Science.gov (United States)

    Aschauer, Dominik F; Kreuz, Sebastian; Rumpel, Simon

    2013-01-01

    Recombinant Adeno-associated virus vectors (rAAV) are widely used for gene delivery and multiple naturally occurring serotypes have been harnessed to target cells in different tissues and organs including the brain. Here, we provide a detailed and quantitative analysis of the transduction profiles of rAAV vectors based on six of the most commonly used serotypes (AAV1, AAV2, AAV5, AAV6, AAV8, AAV9) that allows systematic comparison and selection of the optimal vector for a specific application. In our studies we observed marked differences among serotypes in the efficiency to transduce three different brain regions namely the striatum, hippocampus and neocortex of the mouse. Despite the fact that the analyzed serotypes have the general ability to transduce all major cell types in the brain (neurons, microglia, astrocytes and oligodendrocytes), the expression level of a reporter gene driven from a ubiquitous promoter varies significantly for specific cell type / serotype combinations. For example, rAAV8 is particularly efficient to drive transgene expression in astrocytes while rAAV9 appears well suited for the transduction of cortical neurons. Interestingly, we demonstrate selective retrograde transport of rAAV5 along axons projecting from the ventral part of the entorhinal cortex to the dentate gyrus. Furthermore, we show that self-complementing rAAV can be used to significantly decrease the time required for the onset of transgene expression in the mouse brain.

  13. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dominik F Aschauer

    Full Text Available Recombinant Adeno-associated virus vectors (rAAV are widely used for gene delivery and multiple naturally occurring serotypes have been harnessed to target cells in different tissues and organs including the brain. Here, we provide a detailed and quantitative analysis of the transduction profiles of rAAV vectors based on six of the most commonly used serotypes (AAV1, AAV2, AAV5, AAV6, AAV8, AAV9 that allows systematic comparison and selection of the optimal vector for a specific application. In our studies we observed marked differences among serotypes in the efficiency to transduce three different brain regions namely the striatum, hippocampus and neocortex of the mouse. Despite the fact that the analyzed serotypes have the general ability to transduce all major cell types in the brain (neurons, microglia, astrocytes and oligodendrocytes, the expression level of a reporter gene driven from a ubiquitous promoter varies significantly for specific cell type / serotype combinations. For example, rAAV8 is particularly efficient to drive transgene expression in astrocytes while rAAV9 appears well suited for the transduction of cortical neurons. Interestingly, we demonstrate selective retrograde transport of rAAV5 along axons projecting from the ventral part of the entorhinal cortex to the dentate gyrus. Furthermore, we show that self-complementing rAAV can be used to significantly decrease the time required for the onset of transgene expression in the mouse brain.

  14. Self-complementary adeno-associated virus 2 (AAV)-T cell protein tyrosine phosphatase vectors as helper viruses to improve transduction efficiency of conventional single-stranded AAV vectors in vitro and in vivo.

    Science.gov (United States)

    Zhong, Li; Chen, Linyuan; Li, Yanjun; Qing, Keyun; Weigel-Kelley, Kirsten A; Chan, Rebecca J; Yoder, Mervin C; Srivastava, Arun

    2004-11-01

    Recombinant vectors based on adeno-associated virus type 2 (AAV) target the liver efficiently, but the transgene expression is limited to approximately 5% of hepatocytes. The lack of efficient transduction is due, in part, to the presence of a cellular protein, FKBP52, phosphorylated forms of which inhibit the viral second-strand DNA synthesis. We have documented that dephosphorylation of FKBP52 at tyrosine residues by the cellular T cell protein tyrosine phosphatase (TC-PTP) enhances AAV-mediated transduction in primary murine hematopoietic cells from TC-PTP-transgenic mice. We have also documented that AAV-mediated transduction is significantly enhanced in hepatocytes in TC-PTP-transgenic as well as in FKBP52-deficient mice because of efficient viral second-strand DNA synthesis. In this study, we evaluated whether co-infection of conventional single-stranded AAV vectors with self-complementary AAV-TC-PTP vectors leads to increased transduction efficiency of conventional AAV vectors in established human cell lines in vitro and in primary murine hepatocytes in vivo. We demonstrate here that scAAV-TC-PTP vectors serve as a helper virus in augmenting the transduction efficiency of conventional AAV vectors in vitro as well as in vivo which correlates directly with the extent of second-strand DNA synthesis of conventional single-stranded AAV vectors. Toxicological studies following tail-vein injections of scAAV-TC-PTP vectors in experimental mice show no evidence of any adverse effect in any of the organs in any of the mice for up to 13 weeks. Thus, this novel co-infection strategy should be useful in circumventing one of the major obstacles in the optimal use of recombinant AAV vectors in human gene therapy.

  15. Unique characteristics of AAV1, 2, and 5 viral entry, intracellular trafficking, and nuclear import define transduction efficiency in HeLa cells.

    Science.gov (United States)

    Keiser, Nicholas W; Yan, Ziying; Zhang, Yulong; Lei-Butters, Diana C M; Engelhardt, John F

    2011-11-01

    Biological differences between recombinant adeno-associated virus (rAAV) serotypes define their efficiencies in expressing a transgene in a particular target cell. Few studies have directly compared how differences in viral entry, intracellular trafficking, and nuclear import of rAAV serotypes influence the effectiveness of transduction in the same cell type. We evaluated these characteristics for three rAAV serotypes in HeLa cells, using biochemical techniques and fluorescence-based detection of multiple serotypes in the same cell. Although rAAV2 exhibited the slowest entry, intracellular trafficking, and nuclear import among the three serotypes, it elicited the highest levels of transduction. Conversely, rAAV1 exhibited more rapid entry and nuclear import than the other serotypes, yet was ineffective at transducing HeLa cells due to impaired capsid disassembly in the nucleus. rAAV5, which entered the cell less rapidly than rAAV1, was imported efficiently into the nucleus, but then rapidly degraded, resulting in poor transduction of HeLa cells. We conclude that rAAV1, 2, and 5 utilize distinct mechanisms for intracellular trafficking, and that post-nuclear events play an important role in determining the efficiency of HeLa cell transduction by these serotypes. Thus, overcoming post-nuclear barriers that limit uncoating and/or promote virion degradation may enhance the efficiency of certain AAV serotypes.

  16. Unique Characteristics of AAV1, 2, and 5 Viral Entry, Intracellular Trafficking, and Nuclear Import Define Transduction Efficiency in HeLa Cells

    OpenAIRE

    Keiser, Nicholas W; Yan, Ziying; Zhang, Yulong; Diana C M Lei-Butters; Engelhardt, John F.

    2011-01-01

    Biological differences between recombinant adeno-associated virus (rAAV) serotypes define their efficiencies in expressing a transgene in a particular target cell. Few studies have directly compared how differences in viral entry, intracellular trafficking, and nuclear import of rAAV serotypes influence the effectiveness of transduction in the same cell type. We evaluated these characteristics for three rAAV serotypes in HeLa cells, using biochemical techniques and fluorescence-based detectio...

  17. Adeno-associated virus (AAV) serotypes 2, 4 and 5 display similar transduction profiles and penetrate solid tumor tissue in models of human glioma.

    Science.gov (United States)

    Thorsen, Frits; Afione, Sandra; Huszthy, Peter C; Tysnes, Berit B; Svendsen, Agnete; Bjerkvig, Rolf; Kotin, Robert M; Lønning, Per Eystein; Hoover, Frank

    2006-09-01

    Adeno-associated viral (AAV) vectors are potent delivery vehicles for gene transfer strategies directed at the central nervous system (CNS), muscle and liver. However, comparatively few studies have described AAV-mediated gene transfer to tumor tissues. We have previously demonstrated that while AAV2 and Adenoviral (Ad) 5 vectors have similar broad host ranges in tumor-derived cell lines, AAV2 was able to penetrate human glioblastoma biopsy spheroids and xenografts more efficiently than Ad 5 vectors. These results suggested that AAV vectors could be suitable for therapeutic gene delivery to solid tumor tissue. In the present work, the transduction efficacy of AAV serotypes 4 and 5 were compared to AAV2, both in vitro and in intracranial GBM xenografts derived from patient biopsies implanted into nude rats. AAV vector serotypes 2, 4, and 5 containing either the green fluorescent protein (GFP) or the bacterial beta-galactosidase (lacZ) reporter gene were added to five different human glioma cell lines, to multicellular spheroids generated from glioblastoma patient biopsies, and to spheroids xenografted intracranially in nude rats. Transduction efficiency was assessed by fluorescence imaging, histochemistry, immunohistochemistry and flow cytometry. While all three AAV serotypes were able to transduce the glioma cell lines when added individually or when they were administered in concert, AAV2 transduced the glioma cells most effectively compared to AAV4 or AAV5. Upon infecting glioblastoma spheroids in vitro, all three AAV serotypes efficiently transduced cells located at the surface as well as within deeper layers of the spheroids. In addition, similarly to what was observed for AAV2 16, both AAV4 and AAV5 were able to transduce human glioblastoma xenografts implanted intracranially. In addition to the widely used AAV2 serotype, AAV4 and AAV5 serotypes may also be used to transduce biologically diverse glioma cell lines. They also penetrate and transduce solid human

  18. Gene delivery GAD 500 autoantigen by AAV serotype 1 prevented diabetes in NOD mice: transduction efficiency do not play important roles.

    Science.gov (United States)

    Han, Gencheng; Wang, Renxi; Chen, Guojiang; Wang, Jianan; Xu, Ruonan; Feng, Jiannan; Yu, Ming; Wu, Xiaobing; Qian, Jiahua; Shen, Beifen; Li, Yan

    2008-01-29

    We previously found that adeno-associated viral vector serotype 2 (AAV-2) muscle gene delivery of GAD 500-585 autoantigen efficiently prevented autoimmune diabetes in NOD mice. Recent reports suggest that AAV vectors based on serotype 1 (AAV-1) transduce murine skeletal muscle much more efficiently than AAV-2, with reported increases in expression ranging from 2 to 1000-fold. To determine whether this increased efficacy of AAV-1 could result in increased therapeutic effects in mice, we constructed rAAV1/GAD 500-585 vectors and compared their effects in preventing autoimmune diabetes in NOD mice with those of rAAV2/GAD 500-585 after muscle injection. rAAV(1)/GAD(500-585) gene therapy prevented diabetes in NOD mice. However, although much higher level of GAD 500-585 expression was found in mice using AAV-1 as gene delivery vector than those using AAV-2, no increased efficiency of AAV-1 vectors were found in their capability to prevent autoimmune diabetes, as higher titers of rAAV1/GAD 500-585 virus (3x10(11)v.g./mouse) were needed to obtain therapeutic effects in NOD mice, a titer not different from that of AAV-2. Protection resulted from rAAV1/GAD 500-585 gene therapy were marked by enhanced Th2 immune response and up-regulated CD4+ Foxp3+T regulatory cells, which might actively suppress effector T cells in NOD mice. As here we found that the therapeutic effects of AAV1 were not positively correlated to it's transduction efficiency, our data suggested that the safety and other factors besides efficiency should be considered when use different AAV serotype to treat autoimmune disease.

  19. Targeting Visceral Fat by Intraperitoneal Delivery of Novel AAV Serotype Vector Restricting Off-Target Transduction in Liver

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-09-01

    Full Text Available It is challenging to genetically manipulate fat in adults. We demonstrate that intraperitoneal (i.p. injection of an engineered adeno-associated virus (AAV serotype Rec2 leads to high transduction of multiple visceral fat depots at a dose of 1 to 2 orders lower than commonly used doses for systemic gene delivery. To target adipose tissue, we develop a single AAV vector harboring two expression cassettes: one using the CBA promoter to drive transgene expression and one using the liver-specific albumin promoter to drive a microRNA-targeting WPRE sequence that only exists in this AAV vector. This dual-cassette vector achieves highly selective transduction of visceral fat while severely restricting off-target transduction of liver. As proof of efficacy, i.p. administration of an adipose-targeting Rec2 vector harboring the leptin gene corrects leptin deficiency, obesity, and metabolic syndromes of ob/ob mice. This study provides a powerful tool to genetically manipulate fat for basic research and gene therapies of genetic and acquired diseases.

  20. Inclusion of the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances AAV2-Driven Transduction of Mouse and Human Retina

    Directory of Open Access Journals (Sweden)

    Maria I. Patrício

    2017-03-01

    Full Text Available The woodchuck hepatitis virus posttranscriptional regulatory element (WPRE has been included in the transgene cassette of adeno-associated virus (AAV in several gene therapy clinical trials, including those for inherited retinal diseases. However, the extent to which WPRE increases transgene expression in the retina is still unclear. To address this question, AAV2 vectors containing a reporter gene with and without WPRE were initially compared in vitro and subsequently in vivo by subretinal delivery in mice. In both instances, the presence of WPRE led to significantly higher levels of transgene expression as measured by fundus fluorescence, western blot, and immunohistochemistry. The two vectors were further compared in human retinal explants derived from patients undergoing clinically indicated retinectomy, where again the presence of WPRE resulted in an enhancement of reporter gene expression. Finally, an analogous approach using a transgene currently employed in a clinical trial for choroideremia delivered similar results both in vitro and in vivo, confirming that the WPRE effect is transgene independent. Our data fully support the inclusion of WPRE in ongoing and future AAV retinal gene therapy trials, where it may allow a therapeutic effect to be achieved at an overall lower dose of vector.

  1. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins.

    Science.gov (United States)

    Lovric, Jasmina; Mano, Miguel; Zentilin, Lorena; Eulalio, Ana; Zacchigna, Serena; Giacca, Mauro

    2012-11-01

    Gene therapy vectors based on the adeno-associated virus (AAV) are extremely efficient for gene transfer into post-mitotic cells of heart, muscle, brain, and retina. The reason for their exquisite tropism for these cells has long remained elusive. Here, we show that upon terminal differentiation, cardiac and skeletal myocytes downregulate proteins of the DNA damage response (DDR) and that this markedly induces permissivity to AAV transduction. We observed that expression of members of the MRN complex (Mre11, Rad50, Nbs1), which bind the incoming AAV genomes, faded in cardiomyocytes at ~2 weeks after birth, as well as upon myoblast differentiation in vitro; in both cases, withdrawal of the cells from the cell cycle coincided with increased AAV permissivity. Treatment of proliferating cells with short-interfering RNAs (siRNAs) against the MRN proteins, or with microRNA-24, which is normally upregulated upon terminal differentiation and negatively controls the Nbs1 levels, significantly increased permissivity to AAV transduction. Consistently, delivery of these small RNAs to the juvenile liver concomitant with AAV markedly improved in vivo hepatocyte transduction. Collectively, these findings support the conclusion that cellular DDR proteins inhibit AAV transduction and that terminal cell differentiation relieves this restriction.

  2. Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors.

    Science.gov (United States)

    Blits, Bas; Derks, Sanne; Twisk, Jaap; Ehlert, Erich; Prins, Jolanda; Verhaagen, Joost

    2010-01-15

    Recombinant adeno-associated viral vectors (AAVs) are very promising gene transfer tools for the nervous system. We have compared the efficiency of gene expression of seven AAV serotypes in young adult rats following a single injection in a major nucleus of the mid brain, the red nucleus, which is the origin of the rubrospinal tract. AAV serotypes 1-6 and 8 and a lentiviral vector (LV) were used, all encoding green fluorescent protein (GFP) under control of the cytomegalovirus (CMV) promoter. AAV vectors were titer matched at 5x10(11) genomic copies (GC)/ml and 1mul was injected into the red nucleus. The proportion of transduced neurons in the red nucleus was determined at 1 and 4 weeks post-injection. AAV1 would be the vector of choice if the aim would be to overexpress a transgene at high level for a longer period of time. AAV5 and AAV8 would be the preferred serotype if onset of expression is should be somewhat delayed. The use of lentiviral vectors should be considered when transduction of both glial cells and neurons is required. Serotypes 3 and 4 did not transduce red nucleus neurons. AAV1, AAV6 and LV would be the vectors of choice if the aim of the experiment would be to rapidly express a transgene. The current data are important for the design of experiments that aim to study the effects of transgene products on the regenerative capacity of injured red nucleus neurons.

  3. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction.

    Science.gov (United States)

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H; Liberman, M Charles

    2017-04-03

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a "designer" AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.

  4. Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF

    OpenAIRE

    Chrisna J LeVaillant; Sharma, Anil; Muhling, Jill; Wheeler, Lachlan PG; Cozens, Greg S.; Hellström, Mats; Rodger, Jennifer; Harvey, Alan R.

    2016-01-01

    Use of viral vectors to deliver therapeutic genes to the central nervous system holds promise for the treatment of neurodegenerative diseases and neurotrauma. Adeno-associated viral (AAV) vectors encoding brain-derived neurotrophic factor (BDNF) or ciliary derived neurotrophic factor (CNTF) promote the viability and regeneration of injured adult rat retinal ganglion cells. However, these growth-inducing transgenes are driven by a constitutively active promoter, thus we examined whether long-t...

  5. Transduction efficiency of neurons and glial cells by AAV-1, -5, -9, -rh10 and -hu11 serotypes in rat spinal cord following contusion injury.

    Science.gov (United States)

    Petrosyan, H A; Alessi, V; Singh, V; Hunanyan, A S; Levine, J M; Arvanian, V L

    2014-12-01

    Adeno-associated viruses (AAVs) are a promising system for therapeutic gene delivery to neurons in a number of neurodegenerative conditions including spinal cord injuries (SCIs). Considering the role of macrophages and glia in the progression of 'secondary damage', we searched for the optimal vectors for gene transfer to both neurons and glia following contusion SCI in adult rats. Contusion models share many similarities to most human spinal cord traumas. Several AAV serotypes known for their neuronal tropism expressing enhanced green-fluorescent protein (GFP) were injected intraspinally following thoracic T10 contusion. We systematically compared the transduction efficacy and cellular tropism of these vectors for neurons, macrophages/microglia, oligodendrocytes, astrocytes and NG2-positive glial cells following contusion SCI. No additional changes in inflammatory responses or behavioral performance were observed for any of the vectors. We identified that AAV-rh10 induced robust transduction of both neuronal and glial cells. Even though efficacy to transduce neurons was comparable to already established AAV-1, AAV-5 and AAV-9, AAV-rh10 transduced significantly higher number of macrophages/microglia and oligodendrocytes in damaged spinal cord compared with other serotypes tested. Thus, AAV-rh10 carries promising potential as a gene therapy vector, particularly if both the neuronal and glial cell populations in damaged spinal cord are targeted.

  6. Enhanced transduction of mouse salivary glands with AAV5-based vectors

    NARCIS (Netherlands)

    Katano, H.; Kok, M. R.; Cotrim, A. P.; Yamano, S.; Schmidt, M.; Afione, S.; Baum, B. J.; Chiorini, J. A.

    2006-01-01

    We previously demonstrated that recombinant adeno-associated virus vectors based on serotype 2 (rAAV2) can direct transgene expression in salivary gland cells in vitro and in vivo. However, it is not known how other rAAV serotypes perform when infused into salivary glands. The capsids of serotypes 4

  7. High density recombinant AAV particles are competent vectors for in vivo transduction

    Science.gov (United States)

    Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed heavier particles found in AAV preparations have traditionally been ignored due to its low in vitro infectivity. In this study, we systemically compared t...

  8. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells

    NARCIS (Netherlands)

    Leaver, Simone G; Cui, Qi; Plant, Giles W; Arulpragasam, A.; Hisheh, S; Verhaagen, J; Harvey, Alan R

    We compared the effects of intravitreal injection of bi-cistronic adeno-associated viral (AAV-2) vectors encoding enhanced green fluorescent protein (GFP) and either ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43) on adult retinal

  9. A Preclinical Study in Rhesus Macaques for Cystic Fibrosis to Assess Gene Transfer and Transduction by AAV1 and AAV5 with a Dual-Luciferase Reporter System.

    Science.gov (United States)

    Guggino, William B; Benson, Janet; Seagrave, JeanClare; Yan, Ziying; Engelhardt, John; Gao, Guangping; Conlon, Thomas J; Cebotaru, Liudmila

    2017-09-01

    Cystic fibrosis (CF) is an autosomal recessive disease that is potentially treatable by gene therapy. Since the identification of the gene encoding CF transmembrane conductance regulator, a number of preclinical and clinical trials have been conducted using the first generation of adeno-associated virus, AAV2. All these studies showed that AAV gene therapy for CF is safe, but clinical benefit was not clearly demonstrated. Thus, a new generation of AAV vectors based on other serotypes is needed to move the field forward. This study tested two AAV serotypes (AAV1 and AAV5) using a dual-luciferase reporter system with firefly and Renilla luciferase genes packaged into AAV1 or AAV5, respectively. Two male and two female Rhesus macaques were each instilled in their lungs with both serotypes using a Penn-Century microsprayer. Both AAV1 and AAV5 vector genomes were detected in all the lung samples when measured at the time of necropsy, 45 days after instillation. However, the vector genome number for AAV1 was at least 10-fold higher than for AAV5. Likewise, luciferase activity was also detected in the same samples at 45 days. AAV1-derived activity was not statistically greater than that derived from AAV5. These data suggest that gene transfer is greater for AAV1 than for AAV5 in macaque lungs. Serum neutralizing antibodies were increased dramatically against both serotypes but were less abundant with AAV1 than with AAV5. No adverse events were noted, again indicating that AAV gene therapy is safe. These results suggest that with more lung-tropic serotypes such as AAV1, new clinical studies of gene therapy using AAV are warranted.

  10. Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Jenny A Greig

    2016-01-01

    Full Text Available Systemically delivered adeno-associated viral (AAV vectors are now in early-phase clinical trials for a variety of diseases. While there is a general consensus on inclusion and exclusion criteria for each of these trials, the conditions under which vectors are infused vary significantly. In this study, we evaluated the impact of intravenous infusion rate of AAV8 vector in cynomolgus macaques on transgene expression, vector clearance from the circulation, and potential activation of the innate immune system. The dose of AAV8 vector in terms of genome copies per kilogram body weight and its concentration were fixed, while the rate of infusion varied to deliver the entire dose over different time periods, including 1, 10, or 90 minutes. Analyses during the in-life phase of the experiment included sequential evaluation of whole blood for vector genomes and appearance of proinflammatory cytokines. Liver tissues were analyzed at the time of necropsy for enhanced green fluorescent protein (eGFP expression and vector genomes. The data were remarkable with a relative absence of any statistically significant effect of infusion time on vector transduction, safety, and clearance. However, some interesting and unexpected trends did emerge.

  11. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs.

    Science.gov (United States)

    Ellis, B L; Hirsch, M L; Porter, S N; Samulski, R J; Porteus, M H

    2013-01-01

    An emerging strategy for the treatment of monogenic diseases uses genetic engineering to precisely correct the mutation(s) at the genome level. Recent advancements in this technology have demonstrated therapeutic levels of gene correction using a zinc-finger nuclease (ZFN)-induced DNA double-strand break in conjunction with an exogenous DNA donor substrate. This strategy requires efficient nucleic acid delivery and among viral vectors, recombinant adeno-associated virus (rAAV) has demonstrated clinical success without pathology. However, a major limitation of rAAV is the small DNA packaging capacity and to date, the use of rAAV for ZFN gene delivery has yet to be reported. Theoretically, an ideal situation is to deliver both ZFNs and the repair substrate in a single vector to avoid inefficient gene targeting and unwanted mutagenesis, both complications of a rAAV co-transduction strategy. Therefore, a rAAV format was generated in which a single polypeptide encodes the ZFN monomers connected by a ribosome skipping 2A peptide and furin cleavage sequence. On the basis of this arrangement, a DNA repair substrate of 750 nucleotides was also included in this vector. Efficient polypeptide processing to discrete ZFNs is demonstrated, as well as the ability of this single vector format to stimulate efficient gene targeting in a human cell line and mouse model derived fibroblasts. Additionally, we increased rAAV-mediated gene correction up to sixfold using a combination of Food and Drug Administration-approved drugs, which act at the level of AAV vector transduction. Collectively, these experiments demonstrate the ability to deliver ZFNs and a repair substrate by a single AAV vector and offer insights for the optimization of rAAV-mediated gene correction using drug therapy.

  12. AAV-mediated lysophosphatidylcholine acyltransferase 1 (Lpcat1) gene replacement therapy rescues retinal degeneration in rd11 mice.

    Science.gov (United States)

    Dai, Xufeng; Han, Juanjuan; Qi, Yan; Zhang, Hua; Xiang, Lue; Lv, Jineng; Li, Jie; Deng, Wen-Tao; Chang, Bo; Hauswirth, William W; Pang, Ji-jing

    2014-03-20

    The retinal degeneration 11 (rd11) mouse is a newly discovered, naturally occurring animal model with early photoreceptor dysfunction and rapid rod photoreceptor degeneration followed by cone degeneration. The rd11 mice carry a spontaneous mutation in the lysophosphatidylcholine acyltransferase 1 (Lpcat1) gene. Here, we evaluate whether gene replacement therapy using the fast-acting tyrosine-capsid mutant AAV8 (Y733F) can arrest retinal degeneration and restore retinal function in this model. The AAV8 (Y733F)-smCBA-Lpcat1 was delivered subretinally to postnatal day 14 (P14) rd11 mice in one eye only. At 10 weeks after injection, treated rd11 mice were examined by visually-guided behavior, electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT), and then killed for morphologic and biochemical examination. Substantial scotopic and photopic ERG signals were maintained in treated rd11 eyes, whereas untreated eyes in the same animals showed extinguished signals. The SD-OCT (in vivo) and light microscopy (in vitro) showed a substantial preservation of the outer nuclear layer in most parts of the treated retina only. Almost wild-type LPCAT1 expression in photoreceptors with strong rod rhodopsin and M/S cone opsin staining, and normal visually-guided water maze behavioral performances were observed in treated rd11 mice. The results demonstrate that the tyrosine-capsid mutant AAV8 (Y733F) vector is effective for treating rapidly degenerating models of retinal degeneration and, moreover, is more therapeutically effective than AAV2 (Y444, 500, 730F) vector with the same promoter-cDNA payload. To our knowledge, this is the first demonstration of phenotypic rescue by gene therapy in an animal model of retinal degeneration caused by Lpcat1 mutation.

  13. Stability and Safety of an AAV Vector for Treating RPGR-ORF15 X-Linked Retinitis Pigmentosa.

    Science.gov (United States)

    Deng, Wen-Tao; Dyka, Frank M; Dinculescu, Astra; Li, Jie; Zhu, Ping; Chiodo, Vince A; Boye, Sanford L; Conlon, Thomas J; Erger, Kirsten; Cossette, Travis; Hauswirth, William W

    2015-09-01

    Our collaborative successful gene replacement therapy using AAV vectors expressing a variant of human RPGR-ORF15 in two canine models provided therapeutic proof of concept for translation into human treatment. The ORF15 sequence contained within this AAV vector, however, has ORF15 DNA sequence variations compared to the published sequence that are likely due to its unusual composition of repetitive purine nucleotides. This mutability is a concern for AAV vector production and safety when contemplating a human trial. In this study, we establish the safety profile of AAV-hIRBP-hRPGR and AAV-hGRK1-hRPGR vectors used in the initial canine proof-of-principle experiments by demonstrating hRPGR-ORF15 sequence stability during all phases of manipulation, from plasmid propagation to vector production to its stability in vivo after subretinal administration to animals. We also evaluate potential toxicity in vivo by investigating protein expression, retinal structure and function, and vector biodistribution. Expression of hRPGR is detected in the inner segments and synaptic terminals of photoreceptors and is restricted to the connecting cilium when the vector is further diluted. Treated eyes exhibit no toxicity as assessed by retinal histopathology, immunocytochemistry, optical coherence tomography, fundoscopy, electroretinogram, and vector biodistribution. Therefore, the hRPGR-ORF15 variant in our AAV vectors appears to be a more stable form than the endogenous hRPGR cDNA when propagated in vitro. Its safety profile presented here in combination with its proven efficacy supports future gene therapy clinical trials.

  14. Dual AAV Vectors for Stargardt Disease.

    Science.gov (United States)

    Trapani, Ivana

    2018-01-01

    Stargardt disease (STGD1), due to mutations in the large ABCA4 gene, is the most common inherited macular degeneration in humans. Attempts at developing gene therapy approaches for treatment of STGD1 are currently ongoing. Among all the vectors available for gene therapy of inherited retinal diseases, those based on adeno-associated viruses (AAV) are the most promising given the efficacy shown in various animal models and their excellent safety profile in humans, as confirmed in many ongoing clinical trials. However, one of the main obstacles for the use of AAV is their limited effective packaging capacity of about 5 kb. Taking advantage of the AAV genome's ability to concatemerize , others and we have recently developed dual AAV vectors to overcome this limit. We tested dual AAV vectors for ABCA4 delivery, and found that they transduce efficiently both mouse and pig photoreceptors , and rescue the Abca4-/- mouse retinal phenotype, indicating their potential for gene therapy of STGD1. This chapter details how we designed dual AAV vectors for the delivery of the ABCA4 gene and describes the techniques that can be explored to evaluate dual AAV transduction efficiency in vitro and in the retina, and their efficacy in the mouse model of STGD1.

  15. AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration.

    Science.gov (United States)

    Cen, Ling-Ping; Liang, Jia-Jian; Chen, Jian-Huan; Harvey, Alan R; Ng, Tsz Kin; Zhang, Mingzhi; Pang, Chi Pui; Cui, Qi; Fan, You-Ming

    2017-02-20

    The aim of the present study was to determine whether adeno-associated viral vector (AAV) mediated transfer of ciliary neurotrophic factor (CNTF) and RhoA shRNA has additive effects on promoting the survival and axon regeneration of retinal ganglion cells (RGCs) after optic nerve crush (ONC). Silencing effects of AAV-RhoA shRNA were confirmed by examining neurite outgrowth in PC12 cells, and by quantifying RhoA expression levels with western blotting. Young adult Fischer rats received an intravitreal injection of (i) saline, (ii) AAV green fluorescent protein (GFP), (iii) AAV-CNTF, (iv) AAV-RhoA shRNA, or (v) a combination of both AAV-CNTF and AAV-RhoA shRNA. Two weeks later, the ON was completely crushed. Three weeks after ONC, RGC survival was estimated by counting βIII-tubulin-positive neurons in retinal whole mounts. Axon regeneration was evaluated by counting GAP-43-positive axons in the crushed ON. It was found that AAV-RhoA shRNA decreased RhoA expression levels and promoted neurite outgrowth in vitro. In the ONC model, AAV-RhoA shRNA by itself had only weak beneficial effects on RGC axon regeneration. However, when combined with AAV-CNTF, AAV-RhoA shRNA significantly improved the therapeutic effect of AAV-CNTF on axon regeneration by nearly two fold, even though there was no significant change in RGC viability. In sum, this combination of vectors increases the regenerative response and can lead to more successful therapeutic outcomes following neurotrauma. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Trans-neuronal transduction of spinal neurons following cortical injection and anterograde axonal transport of a bicistronic AAV1 vector

    OpenAIRE

    Hutson, Thomas Haynes; Kathe, Claudia; Moon, Lawrence David Falcon

    2015-01-01

    Adeno-associated viral (AAV) vectors are one of the most promising gene delivery systems to the central nervous system. We now report, that AAV1 can be used to express transgenes trans-neuronally in neurons distant from the injection site. Specifically, intracortical injection of a bicistronic AAV1 vector trans-neuronally transduced spinal neurons as shown by fluorescence microscopy, the presence of AAV genome and AAV transcript in the contralateral spinal cord. Prior pyramidotomy abolished s...

  17. Intraventricular Brain Injection of Adeno-Associated Virus Type 1 (AAV1) in Neonatal Mice Results in Complementary Patterns of Neuronal Transduction to AAV2 and Total Long-Term Correction of Storage Lesions in the Brains of β-Glucuronidase-Deficient Mice

    Science.gov (United States)

    Passini, Marco A.; Watson, Deborah J.; Vite, Charles H.; Landsburg, Daniel J.; Feigenbaum, Alyson L.; Wolfe, John H.

    2003-01-01

    Inherited metabolic disorders that affect the central nervous system typically result in pathology throughout the brain; thus, gene therapy strategies need to achieve widespread delivery. We previously found that although intraventricular injection of the neonatal mouse brain with adeno-associated virus serotype 2 (AAV2) results in dispersed gene delivery, many brain structures were poorly transduced. This limitation may be overcome by using different AAV serotypes because the capsid proteins use different cellular receptors for entry, which may allow enhanced global targeting of the brain. We tested this with AAV1 and AAV5 vectors. AAV5 showed very limited brain transduction after neonatal injection, even though it has different transduction patterns than AAV2 in adult brain injections. In contrast, AAV1 vectors, which have not been tested in the brain, showed robust widespread transduction. Complementary patterns of transduction between AAV1 and AAV2 were established and maintained in the adult brain after neonatal injection. In the majority of structures, AAV1 transduced many more cells than AAV2. Both vectors transduced mostly neurons, indicating that differential expression of receptors on the surfaces of neurons occurs in the developing brain. The number of cells positive for a vector-encoded secreted enzyme (β-glucuronidase) was notably greater and more widespread in AAV1-injected brains. A comprehensive analysis of AAV1-treated brains from β-glucuronidase-deficient mice (mucopolysaccharidosis type VII) showed complete reversal of pathology in all areas of the brain for at least 1 year, demonstrating that the combination of this serotype and experimental strategy is therapeutically effective for treating global neurometabolic disorders. PMID:12768022

  18. Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice.

    Science.gov (United States)

    Passini, Marco A; Watson, Deborah J; Vite, Charles H; Landsburg, Daniel J; Feigenbaum, Alyson L; Wolfe, John H

    2003-06-01

    Inherited metabolic disorders that affect the central nervous system typically result in pathology throughout the brain; thus, gene therapy strategies need to achieve widespread delivery. We previously found that although intraventricular injection of the neonatal mouse brain with adeno-associated virus serotype 2 (AAV2) results in dispersed gene delivery, many brain structures were poorly transduced. This limitation may be overcome by using different AAV serotypes because the capsid proteins use different cellular receptors for entry, which may allow enhanced global targeting of the brain. We tested this with AAV1 and AAV5 vectors. AAV5 showed very limited brain transduction after neonatal injection, even though it has different transduction patterns than AAV2 in adult brain injections. In contrast, AAV1 vectors, which have not been tested in the brain, showed robust widespread transduction. Complementary patterns of transduction between AAV1 and AAV2 were established and maintained in the adult brain after neonatal injection. In the majority of structures, AAV1 transduced many more cells than AAV2. Both vectors transduced mostly neurons, indicating that differential expression of receptors on the surfaces of neurons occurs in the developing brain. The number of cells positive for a vector-encoded secreted enzyme (beta-glucuronidase) was notably greater and more widespread in AAV1-injected brains. A comprehensive analysis of AAV1-treated brains from beta-glucuronidase-deficient mice (mucopolysaccharidosis type VII) showed complete reversal of pathology in all areas of the brain for at least 1 year, demonstrating that the combination of this serotype and experimental strategy is therapeutically effective for treating global neurometabolic disorders.

  19. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype

    National Research Council Canada - National Science Library

    Ellis, Brian L; Hirsch, Matthew L; Barker, Jenny C; Connelly, Jon P; Steininger, 3rd, Robert J; Porteus, Matthew H

    2013-01-01

    .... Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity...

  20. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina.

    Science.gov (United States)

    Charbel Issa, Peter; De Silva, Samantha R; Lipinski, Daniel M; Singh, Mandeep S; Mouravlev, Alexandre; You, Qisheng; Barnard, Alun R; Hankins, Mark W; During, Matthew J; Maclaren, Robert E

    2013-01-01

    Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4(-/-) mouse which is a model for Stargardt disease and in the Pde6b(rd1/rd1) mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4(-/-) mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.

  1. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina.

    Directory of Open Access Journals (Sweden)

    Peter Charbel Issa

    Full Text Available Adeno-associated viral vectors (AAV have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4(-/- mouse which is a model for Stargardt disease and in the Pde6b(rd1/rd1 mouse in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4(-/- mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.

  2. Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration.

    Science.gov (United States)

    Jomary, C; Vincent, K A; Grist, J; Neal, M J; Jones, S E

    1997-07-01

    Knowledge of the mutations leading to inherited retinal degenerations provides a foundation for the development of somatic gene therapy in which potentially corrective genes are transferred to the target photoreceptor cells. Towards this end, we have evaluated the efficacy of a recombinant adeno-associated virus (AAV) vector to deliver and express the correct form of the cGMP phosphodiesterase-beta (PDE-beta) gene in the retinas of rd mice, which suffer rapid retinal degeneration due to recessive mutation in the endogenous gene. A truncated murine opsin promoter was used to drive expression of the PDE-beta cDNA. Following intraocular injection of AAV. PDE-beta, increased retinal expression of immunoreactive PDE protein was observed, including within photoreceptor cell bodies. Compared with age-matched controls, treated eyes showed increased numbers of photoreceptors and a two-fold increase in sensitivity to light as measured by in vitro electroretinography. These findings provide evidence that rescue of functional photoreceptor neurons can be achieved by somatic gene therapy.

  3. Retinal Gene Therapy for Choroideremia: In Vitro Testing for Gene Augmentation Using an Adeno-Associated Viral (AAV) Vector.

    Science.gov (United States)

    Patrício, Maria I; MacLaren, Robert E

    2018-01-01

    As gene therapy of choroideremia is becoming a clinical reality, there is a need for reliable and sensitive assays to determine the expression of exogenously delivered Rab Escort Protein-1 (REP1), in particular to test new gene therapy vectors and as a quality control screen for clinical vector stocks. Here we describe an in vitro protocol to test transgene expression following AAV2/2-REP1 transduction of a human cell line. Gene augmentation can be confirmed by western blot and quantification of the fold-increase of human REP1 levels over untransduced controls.

  4. Advances in AAV vector development for gene therapy in the retina.

    Science.gov (United States)

    Day, Timothy P; Byrne, Leah C; Schaffer, David V; Flannery, John G

    2014-01-01

    Adeno-associated virus (AAV) is a small, non-pathogenic dependovirus that has shown great potential for safe and long-term expression of a genetic payload in the retina. AAV has been used to treat a growing number of animal models of inherited retinal degeneration, though drawbacks-including a limited carrying capacity, slow onset of expression, and a limited ability to transduce some retinal cell types from the vitreous-restrict the utility of AAV for treating some forms of inherited eye disease. Next generation AAV vectors are being created to address these needs, through rational design efforts such as the creation of self-complementary AAV vectors for faster onset of expression and specific mutations of surface-exposed residues to increase transduction of viral particles. Furthermore, directed evolution has been used to create, through an iterative process of selection, novel variants of AAV with newly acquired, advantageous characteristics. These novel AAV variants have been shown to improve the therapeutic potential of AAV vectors, and further improvements may be achieved through rational design, directed evolution, or a combination of these approaches, leading to broader applicability of AAV and improved treatments for inherited retinal degeneration.

  5. Novel adeno-associated viral vectors for retinal gene therapy.

    Science.gov (United States)

    Vandenberghe, L H; Auricchio, A

    2012-02-01

    Vectors derived from adeno-associated virus (AAV) are currently the most promising vehicles for therapeutic gene delivery to the retina. Recently, subretinal administration of AAV2 has been demonstrated to be safe and effective in patients with a rare form of inherited childhood blindness, suggesting that AAV-mediated retinal gene therapy may be successfully extended to other blinding conditions. This is further supported by the great versatility of AAV as a vector platform as there are a large number of AAV variants and many of these have unique transduction characteristics useful for targeting different cell types in the retina including glia, epithelium and many types of neurons. Naturally occurring, rationally designed or in vitro evolved AAV vectors are currently being utilized to transduce several different cell types in the retina and to treat a variety of animal models of retinal disease. The continuous and creative development of AAV vectors provides opportunities to overcome existing challenges in retinal gene therapy such as efficient transfer of genes exceeding AAV's cargo capacity, or the targeting of specific cells within the retina or transduction of photoreceptors following routinely used intravitreal injections. Such developments should ultimately advance the treatment of a wide range of blinding retinal conditions.

  6. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype

    OpenAIRE

    Ellis, Brian L.; Hirsch, Matthew L.; Barker, Jenny C.; Connelly, Jon P; Steininger, Robert J; Matthew H Porteus

    2013-01-01

    Background The ability to deliver a gene of interest into a specific cell type is an essential aspect of biomedical research. Viruses can be a useful tool for this delivery, particularly in difficult to transfect cell types. Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity. There are now a number of natural for that designed AAV ser...

  7. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype.

    Science.gov (United States)

    Ellis, Brian L; Hirsch, Matthew L; Barker, Jenny C; Connelly, Jon P; Steininger, Robert J; Porteus, Matthew H

    2013-03-06

    The ability to deliver a gene of interest into a specific cell type is an essential aspect of biomedical research. Viruses can be a useful tool for this delivery, particularly in difficult to transfect cell types. Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity. There are now a number of natural for that designed AAV serotypes that each has a differential ability to infect a variety of cell types. Although transduction studies have been completed, the bulk of the studies have been done in vivo, and there has never been a comprehensive study of transduction ex vivo/in vitro. Each cell type was infected with each serotype at a multiplicity of infection of 100,000 viral genomes/cell and transduction was analyzed by flow cytometry + . We found that AAV1 and AAV6 have the greatest ability to transduce a wide range of cell types, however, for particular cell types, there are specific serotypes that provide optimal transduction. In this work, we describe the transduction efficiency of ten different AAV serotypes in thirty-four different mammalian cell lines and primary cell types. Although these results may not be universal due to numerous factors such as, culture conditions and/ or cell growth rates and cell heterogeneity, these results provide an important and unique resource for investigators who use AAV as an ex vivo gene delivery vector or who work with cells that are difficult to transfect.

  8. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs.

    Science.gov (United States)

    Boyd, R F; Sledge, D G; Boye, S L; Boye, S E; Hauswirth, W W; Komáromy, A M; Petersen-Jones, S M; Bartoe, J T

    2016-02-01

    Delivery of therapeutic transgenes to retinal photoreceptors using adeno-associated virus (AAV) vectors has traditionally required subretinal injection. Recently, photoreceptor transduction efficiency following intravitreal injection (IVT) has improved in rodent models through use of capsid-mutant AAV vectors; but remains limited in large animal models. Thickness of the inner limiting membrane (ILM) in large animals is thought to impair retinal penetration by AAV. Our study compared two newly developed AAV vectors containing multiple capsid amino acid substitutions following IVT in dogs. The ability of two promoter constructs to restrict reporter transgene expression to photoreceptors was also evaluated. AAV vectors containing the interphotoreceptor-binding protein (IRBP) promoter drove expression exclusively in rod and cone photoreceptors, with transduction efficiencies of ~4% of cones and 2% of rods. Notably, in the central region containing the cone-rich visual streak, 15.6% of cones were transduced. Significant regional variation existed, with lower transduction efficiencies in the temporal regions of all eyes. This variation did not correlate with ILM thickness. Vectors carrying a cone-specific promoter failed to transduce a quantifiable percentage of cone photoreceptors. The newly developed AAV vectors containing the IRBP promoter were capable of producing photoreceptor-specific transgene expression following IVT in the dog.

  9. Evaluation of Dose and Safety of AAV7m8 and AAV8BP2 in the Non-Human Primate Retina.

    Science.gov (United States)

    Ramachandran, Pavitra S; Lee, Vivian; Wei, Zhangyong; Song, Ji Yun; Casal, Giulia; Cronin, Therese; Willett, Keirnan; Huckfeldt, Rachel; Morgan, Jessica I W; Aleman, Tomas S; Maguire, Albert M; Bennett, Jean

    2017-02-01

    Within the next decade, we will see many gene therapy clinical trials for eye diseases, which may lead to treatments for thousands of visually impaired people around the world. To target retinal diseases that affect specific cell types, several recombinant adeno-associated virus (AAV) serotypes have been generated and used successfully in preclinical mouse studies. Because there are numerous anatomic and physiologic differences between the eyes of mice and "men" and because surgical delivery approaches and immunologic responses also differ between these species, this study evaluated the transduction characteristics of two promising new serotypes, AAV7m8 and AAV8BP2, in the retinas of animals that are most similar to those of humans: non-human primates (NHPs). We report that while AAV7m8 efficiently targets a variety of cell types by subretinal injection in NHPs, transduction after intravitreal delivery was mostly restricted to the inner retina at lower doses that did not induce an immune response. AAV8BP2 targets the cone photoreceptors efficiently but bipolar cells inefficiently by subretinal injection. Additionally, transduction by both serotypes in the anterior chamber of the eye and the optic pathway of the brain was observed post-intravitreal delivery. Finally, we assessed immunogenicity, keeping in mind that these AAV capsids may be used in future clinical trials. We found that AAV8BP2 had a better safety profile compared with AAV7m8, even at the highest doses administered. These studies underscore the differences in AAV transduction between mice and primates, highlighting the importance of careful evaluation of therapeutic vectors in NHPs prior to moving to clinical trials.

  10. Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure.

    Science.gov (United States)

    Ren, Ruotong; Li, Ying; Liu, Zhiping; Liu, Kegao; He, Shigang

    2012-02-27

    To evaluate the ability of increased expression of brain-derived neurotrophic factor (BDNF) using adenoassociated viral (AAV) vector to prevent the loss of rat retinal ganglion cells (RGCs) and visual function after acute elevation of intraocular pressure (IOP). AAV vectors (expressing BDNF or GFP) were injected into the vitreous 6 hours after a transient IOP elevation to 130 mm Hg for 45 minutes. Protective effects were evaluated by counting RGCs retrogradely labeled with fluorogold (FG) from the superior colliculus, measuring the amplitude and the latency of the P1 component of the visual evoked potential (VEP), and observing the visual acuity and contrast sensitivity in awake and behaving animals. RGC numbers decreased continuously to 9 weeks after the elevation of IOP. FG-positive RGC loss was significantly decreased in the retinas treated with AAV-BDNF at 3, 6, and 9 weeks after the insult, with corresponding improvements in VEP parameters. Supplementing BDNF protein once to compensate for the slow onset of AAV-mediated gene expression rescued a larger number of RGCs and the parameters of the VEP. Visual acuity and contrast sensitivity were significantly improved in all treated groups, with the largest improvement in the combined-therapy group, and were maintained for up to 70 weeks. The authors further demonstrated that BDNF rescued the RGCs by activating TrkB receptors through both autocrine and paracrine mechanisms. AAV-mediated BDNF expression in the rat retina achieved a sustained rescue of RGCs and visual function after an acute elevation of IOP.

  11. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy.

    Science.gov (United States)

    Choudhury, Sourav R; Fitzpatrick, Zachary; Harris, Anne F; Maitland, Stacy A; Ferreira, Jennifer S; Zhang, Yuanfan; Ma, Shan; Sharma, Rohit B; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Alonso, Laura C; Punzo, Claudio; Wagner, Kathryn R; Maguire, Casey A; Kotin, Robert M; Martin, Douglas R; Sena-Esteves, Miguel

    2016-08-01

    Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, β-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.

  12. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells

    National Research Council Canada - National Science Library

    Leaver, S G; Cui, Q; Plant, G W; Arulpragasam, A; Hisheh, S; Verhaagen, J; Harvey, A R

    2006-01-01

    ....) and AAV-BDNF-GFP injected eyes (10 200+/-4064 RGCs/retina). Consistent with increased RGC viability in AAV-CNTF-GFP and AAV-BDNF-GFP injected eyes, these animals possessed many betaIII-tubulin- and GFP-positive fibres proximal to the ON...

  13. In vitro cell subtype-specific transduction of adeno-associated virus in mouse and marmoset retinal explant culture.

    Science.gov (United States)

    Baba, Yukihiro; Satoh, Shinya; Otsu, Makoto; Sasaki, Erika; Okada, Takashi; Watanabe, Sumiko

    2012-12-01

    Adeno-associated virus (AAV) is a non-pathogenic human parvovirus that can infect both non-proliferating and proliferating cells. Owing to its favorable safety profile, AAV is regarded as suitable for clinical purposes such as gene therapy. The target cell types of AAV depend largely on the serotype. In the retina, AAV has been used to introduce exogenous genes into photoreceptors, and photoreceptor-specific enhancers/promoters are used in most cases. Therefore, serotype specificity of AAV in retinal subtypes is unclear, particularly in vitro. We compared its infection profile in mouse and monkey retinas using EGFP under the control of the CAG promoter, which expressed the gene ubiquitously and strongly regardless of cell type. AAV1, 8, and 9 infected the horizontal cells when an embryonic day-17 retina was used as a host. Amacrine cell was also a major target of AAVs, and a small number of rod photoreceptors were infected. When adult retinas were used as a host, the main target of AAV was Müller glia. A small number of rod photoreceptors were also infected. In the adult common marmoset retina, rod and cone photoreceptors were efficiently infected by AAV1, 8, and 9. A portion of the Müller glia and amacrine cells were also infected. In summary, the infection specificity of different AAV serotypes did not differ, but was dependent on the stage of the host retina. In addition, infection specificities differed between mature marmoset retinas and mature mouse retinas. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa.

    Science.gov (United States)

    Zhong, H; Eblimit, A; Moayedi, Y; Boye, S L; Chiodo, V A; Chen, Y; Li, Y; Nichols, R M; Hauswirth, W W; Chen, R; Mardon, G

    2015-08-01

    Loss of SPATA7 function causes the pathogenesis of Leber congenital amaurosis and retinitis pigmentosa. Spata7 knockout mice mimic human SPATA7-related retinal disease with apparent photoreceptor degeneration observed as early as postnatal day 15 (P15). To test the efficacy of adeno-associated virus (AAV)-mediated gene therapy for rescue of photoreceptor survival and function in Spata7 mutant mice, we employed the AAV8(Y733F) vector carrying hGRK1-driven full-length FLAG-tagged Spata7 cDNA to target both rod and cone photoreceptors. Following subretinal injection of this vector, FLAG-tagged SPATA7 was found to colocalize with endogenous SPATA7 in wild-type mice. In Spata7 mutant mice initially treated at P15, we observed improvement of photoresponse, photoreceptor ultrastructure and significant alleviation of photoreceptor degeneration. Furthermore, we performed treatments at P28 and P56 and found that all treatments (P15-P56) can ameliorate rod and cone loss in the long term (1 year); however, none efficiently protect photoreceptors from degeneration by 86 weeks of age as only a small amount of treated photoreceptors can survive to this time. This study demonstrates long-term improvement of photoreceptor function by AAV8(Y733F)-introduced Spata7 expression in a mouse model as potential treatment of the human disease, but also suggests that treated mutant photoreceptors still undergo progressive degeneration.

  15. High-efficiency transduction of primary human hematopoietic stem cells and erythroid lineage-restricted expression by optimized AAV6 serotype vectors in vitro and in a murine xenograft model in vivo.

    Directory of Open Access Journals (Sweden)

    Liujiang Song

    Full Text Available We have observed that of the 10 AAV serotypes, AAV6 is the most efficient in transducing primary human hematopoietic stem cells (HSCs, and that the transduction efficiency can be further increased by specifically mutating single surface-exposed tyrosine (Y residues on AAV6 capsids. In the present studies, we combined the two mutations to generate a tyrosine double-mutant (Y705+731F AAV6 vector, with which >70% of CD34(+ cells could be transduced. With the long-term objective of developing recombinant AAV vectors for the potential gene therapy of human hemoglobinopathies, we generated the wild-type (WT and tyrosine-mutant AAV6 vectors containing the following erythroid cell-specific promoters: β-globin promoter (βp with the upstream hyper-sensitive site 2 (HS2 enhancer from the β-globin locus control region (HS2-βbp, and the human parvovirus B19 promoter at map unit 6 (B19p6. Transgene expression from the B19p6 was significantly higher than that from the HS2-βp, and increased up to 30-fold and up to 20-fold, respectively, following erythropoietin (Epo-induced differentiation of CD34(+ cells in vitro. Transgene expression from the B19p6 or the HS2-βp was also evaluated in an immuno-deficient xenograft mouse model in vivo. Whereas low levels of expression were detected from the B19p6 in the WT AAV6 capsid, and that from the HS2-βp in the Y705+731F AAV6 capsid, transgene expression from the B19p6 promoter in the Y705+731F AAV6 capsid was significantly higher than that from the HS2-βp, and was detectable up to 12 weeks post-transplantation in primary recipients, and up to 6 additional weeks in secondary transplanted animals. These data demonstrate the feasibility of the use of the novel Y705+731F AAV6-B19p6 vectors for high-efficiency transduction of HSCs as well as expression of the b-globin gene in erythroid progenitor cells for the potential gene therapy of human hemoglobinopathies such as β-thalassemia and sickle cell disease.

  16. Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors.

    Science.gov (United States)

    Colella, P; Trapani, I; Cesi, G; Sommella, A; Manfredi, A; Puppo, A; Iodice, C; Rossi, S; Simonelli, F; Giunti, M; Bacci, M L; Auricchio, A

    2014-04-01

    Gene therapy with adeno-associated viral (AAV) vectors is limited by AAV cargo capacity that prevents their application to the inherited retinal diseases (IRDs), such as Stargardt disease (STGD) or Usher syndrome type IB (USH1B), which are due to mutations in genes larger than 5 kb. Trans-splicing or hybrid dual AAV vectors have been successfully exploited to reconstitute large gene expression in the mouse retina. Here, we tested them in the large cone-enriched pig retina that closely mimics the human retina. We found that dual AAV trans-splicing and hybrid vectors transduce pig photoreceptors, the major cell targets for treatment of IRDs, to levels that were about two- to threefold lower than those obtained with a single AAV vector of normal size. This efficiency is significantly higher than that in mice, and is potentially due to the high levels of dual AAV co-transduction we observe in pigs. We also show that subretinal delivery in pigs of dual AAV trans-splicing and hybrid vectors successfully reconstitute, albeit at variable levels, the expression of the large genes ABCA4 and MYO7A mutated in STGD and USH1B, respectively. Our data support the potential of dual AAV vectors for large gene reconstitution in the cone-enriched pig retina that is a relevant preclinical model.

  17. (Pro)renin Receptor–Mediated Signal Transduction and Tissue Renin-Angiotensin System Contribute to Diabetes-Induced Retinal Inflammation

    National Research Council Canada - National Science Library

    Shingo Satofuka; Atsuhiro Ichihara; Norihiro Nagai; Kousuke Noda; Yoko Ozawa; Akiyoshi Fukamizu; Kazuo Tsubota; Hiroshi Itoh; Yuichi Oike; Susumu Ishida

    2009-01-01

    (Pro)renin Receptor–Mediated Signal Transduction and Tissue Renin-Angiotensin System Contribute to Diabetes-Induced Retinal Inflammation Shingo Satofuka 1 , 2 , Atsuhiro Ichihara 3 , Norihiro Nagai 1 , 2 , Kousuke Noda 1...

  18. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV.

    Science.gov (United States)

    György, Bence; Sage, Cyrille; Indzhykulian, Artur A; Scheffer, Deborah I; Brisson, Alain R; Tan, Sisareuth; Wu, Xudong; Volak, Adrienn; Mu, Dakai; Tamvakologos, Panos I; Li, Yaqiao; Fitzpatrick, Zachary; Ericsson, Maria; Breakefield, Xandra O; Corey, David P; Maguire, Casey A

    2017-02-01

    Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs-/-]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  19. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors.

    Directory of Open Access Journals (Sweden)

    Christine N Kay

    Full Text Available Development of viral vectors capable of transducing photoreceptors by less invasive methods than subretinal injection would provide a major advancement in retinal gene therapy. We sought to develop novel AAV vectors optimized for photoreceptor transduction following intravitreal delivery and to develop methodology for quantifying this transduction in vivo. Surface exposed tyrosine (Y and threonine (T residues on the capsids of AAV2, AAV5 and AAV8 were changed to phenylalanine (F and valine (V, respectively. Transduction efficiencies of self-complimentary, capsid-mutant and unmodified AAV vectors containing the smCBA promoter and mCherry cDNA were initially scored in vitro using a cone photoreceptor cell line. Capsid mutants exhibiting the highest transduction efficiencies relative to unmodified vectors were then injected intravitreally into transgenic mice constitutively expressing a Rhodopsin-GFP fusion protein in rod photoreceptors (Rho-GFP mice. Photoreceptor transduction was quantified by fluorescent activated cell sorting (FACS by counting cells positive for both GFP and mCherry. To explore the utility of the capsid mutants, standard, (non-self-complementary AAV vectors containing the human rhodopsin kinase promoter (hGRK1 were made. Vectors were intravitreally injected in wildtype mice to assess whether efficient expression exclusive to photoreceptors was achievable. To restrict off-target expression in cells of the inner and middle retina, subsequent vectors incorporated multiple target sequences for miR181, an miRNA endogenously expressed in the inner and middle retina. Results showed that AAV2 containing four Y to F mutations combined with a single T to V mutation (quadY-F+T-V transduced photoreceptors most efficiently. Robust photoreceptor expression was mediated by AAV2(quadY-F+T-V -hGRK1-GFP. Observed off-target expression was reduced by incorporating target sequence for a miRNA highly expressed in inner/middle retina, miR181c. Thus

  20. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors.

    Science.gov (United States)

    Kay, Christine N; Ryals, Renee C; Aslanidi, George V; Min, Seok Hong; Ruan, Qing; Sun, Jingfen; Dyka, Frank M; Kasuga, Daniel; Ayala, Andrea E; Van Vliet, Kim; Agbandje-McKenna, Mavis; Hauswirth, William W; Boye, Sanford L; Boye, Shannon E

    2013-01-01

    Development of viral vectors capable of transducing photoreceptors by less invasive methods than subretinal injection would provide a major advancement in retinal gene therapy. We sought to develop novel AAV vectors optimized for photoreceptor transduction following intravitreal delivery and to develop methodology for quantifying this transduction in vivo. Surface exposed tyrosine (Y) and threonine (T) residues on the capsids of AAV2, AAV5 and AAV8 were changed to phenylalanine (F) and valine (V), respectively. Transduction efficiencies of self-complimentary, capsid-mutant and unmodified AAV vectors containing the smCBA promoter and mCherry cDNA were initially scored in vitro using a cone photoreceptor cell line. Capsid mutants exhibiting the highest transduction efficiencies relative to unmodified vectors were then injected intravitreally into transgenic mice constitutively expressing a Rhodopsin-GFP fusion protein in rod photoreceptors (Rho-GFP mice). Photoreceptor transduction was quantified by fluorescent activated cell sorting (FACS) by counting cells positive for both GFP and mCherry. To explore the utility of the capsid mutants, standard, (non-self-complementary) AAV vectors containing the human rhodopsin kinase promoter (hGRK1) were made. Vectors were intravitreally injected in wildtype mice to assess whether efficient expression exclusive to photoreceptors was achievable. To restrict off-target expression in cells of the inner and middle retina, subsequent vectors incorporated multiple target sequences for miR181, an miRNA endogenously expressed in the inner and middle retina. Results showed that AAV2 containing four Y to F mutations combined with a single T to V mutation (quadY-F+T-V) transduced photoreceptors most efficiently. Robust photoreceptor expression was mediated by AAV2(quadY-F+T-V) -hGRK1-GFP. Observed off-target expression was reduced by incorporating target sequence for a miRNA highly expressed in inner/middle retina, miR181c. Thus we have

  1. In Vivo AAV1 Transduction With hRheb(S16H) Protects Hippocampal Neurons by BDNF Production

    Science.gov (United States)

    Jeon, Min-Tae; Nam, Jin Han; Shin, Won-Ho; Leem, Eunju; Jeong, Kyoung Hoon; Jung, Un Ju; Bae, Young-Seuk; Jin, Young-Ho; Kholodilov, Nikolai; Burke, Robert E; Lee, Seok-Geun; Jin, Byung Kwan; Kim, Sang Ryong

    2015-01-01

    Recent evidence has shown that Ras homolog enriched in brain (Rheb) is dysregulated in Alzheimer's disease (AD) brains. However, it is still unclear whether Rheb activation contributes to the survival and protection of hippocampal neurons in the adult brain. To assess the effects of active Rheb in hippocampal neurons in vivo, we transfected neurons in the cornu ammonis 1 (CA1) region in normal adult rats with an adeno-associated virus containing the constitutively active human Rheb (hRheb(S16H)) and evaluated the effects on thrombin-induced neurotoxicity. Transduction with hRheb(S16H) significantly induced neurotrophic effects in hippocampal neurons through activation of mammalian target of rapamycin complex 1 (mTORC1) without side effects such as long-term potentiation impairment and seizures from the alteration of cytoarchitecture, and the expression of hRheb(S16H) prevented thrombin-induced neurodegeneration in vivo, an effect that was diminished by treatment with specific neutralizing antibodies against brain-derived neurotrophic factor (BDNF). In addition, our results showed that the basal mTORC1 activity might be insufficient to mediate the level of BDNF expression, but hRheb(S16H)-activated mTORC1 stimulated BDNF production in hippocampal neurons. These results suggest that viral vector transduction with hRheb(S16H) may have therapeutic value in the treatment of neurodegenerative diseases such as AD. PMID:25502903

  2. In vivo AAV1 transduction with hRheb(S16H) protects hippocampal neurons by BDNF production.

    Science.gov (United States)

    Jeon, Min-Tae; Nam, Jin Han; Shin, Won-Ho; Leem, Eunju; Jeong, Kyoung Hoon; Jung, Un Ju; Bae, Young-Seuk; Jin, Young-Ho; Kholodilov, Nikolai; Burke, Robert E; Lee, Seok-Geun; Jin, Byung Kwan; Kim, Sang Ryong

    2015-03-01

    Recent evidence has shown that Ras homolog enriched in brain (Rheb) is dysregulated in Alzheimer's disease (AD) brains. However, it is still unclear whether Rheb activation contributes to the survival and protection of hippocampal neurons in the adult brain. To assess the effects of active Rheb in hippocampal neurons in vivo, we transfected neurons in the cornu ammonis 1 (CA1) region in normal adult rats with an adeno-associated virus containing the constitutively active human Rheb (hRheb(S16H)) and evaluated the effects on thrombin-induced neurotoxicity. Transduction with hRheb(S16H) significantly induced neurotrophic effects in hippocampal neurons through activation of mammalian target of rapamycin complex 1 (mTORC1) without side effects such as long-term potentiation impairment and seizures from the alteration of cytoarchitecture, and the expression of hRheb(S16H) prevented thrombin-induced neurodegeneration in vivo, an effect that was diminished by treatment with specific neutralizing antibodies against brain-derived neurotrophic factor (BDNF). In addition, our results showed that the basal mTORC1 activity might be insufficient to mediate the level of BDNF expression, but hRheb(S16H)-activated mTORC1 stimulated BDNF production in hippocampal neurons. These results suggest that viral vector transduction with hRheb(S16H) may have therapeutic value in the treatment of neurodegenerative diseases such as AD.

  3. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells.

    Directory of Open Access Journals (Sweden)

    Ryan R Klimczak

    2009-10-01

    Full Text Available The pathologies of numerous retinal degenerative diseases can be attributed to a multitude of genetic factors, and individualized treatment options for afflicted patients are limited and cost-inefficient. In light of the shared neurodegenerative phenotype among these disorders, a safe and broad-based neuroprotective approach would be desirable to overcome these obstacles. As a result, gene delivery of secretable-neuroprotective factors to Müller cells, a type of retinal glia that contacts all classes of retinal neurons, represents an ideal approach to mediate protection of the entire retina through a simple and innocuous intraocular, or intravitreal, injection of an efficient vehicle such as an adeno-associated viral vector (AAV. Although several naturally occurring AAV variants have been isolated with a variety of tropisms, or cellular specificities, these vectors inefficiently infect Müller cells via intravitreal injection.We have previously applied directed evolution to create several novel AAV variants capable of efficient infection of both rat and human astrocytes through iterative selection of a panel of highly diverse AAV libraries. Here, in vivo and in vitro characterization of these isolated variants identifies a previously unreported AAV variant ShH10, closely related to AAV serotype 6 (AAV6, capable of efficient, selective Müller cell infection through intravitreal injection. Importantly, this new variant shows significantly improved transduction relative to AAV2 (>60% and AAV6.Our findings demonstrate that AAV is a highly versatile vector capable of powerful shifts in tropism from minor sequence changes. This isolated variant represents a new therapeutic vector to treat retinal degenerative diseases through secretion of neuroprotective factors from Müller cells as well as provides new opportunities to study their biological functions in the retina.

  4. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells.

    Science.gov (United States)

    Klimczak, Ryan R; Koerber, James T; Dalkara, Deniz; Flannery, John G; Schaffer, David V

    2009-10-14

    The pathologies of numerous retinal degenerative diseases can be attributed to a multitude of genetic factors, and individualized treatment options for afflicted patients are limited and cost-inefficient. In light of the shared neurodegenerative phenotype among these disorders, a safe and broad-based neuroprotective approach would be desirable to overcome these obstacles. As a result, gene delivery of secretable-neuroprotective factors to Müller cells, a type of retinal glia that contacts all classes of retinal neurons, represents an ideal approach to mediate protection of the entire retina through a simple and innocuous intraocular, or intravitreal, injection of an efficient vehicle such as an adeno-associated viral vector (AAV). Although several naturally occurring AAV variants have been isolated with a variety of tropisms, or cellular specificities, these vectors inefficiently infect Müller cells via intravitreal injection. We have previously applied directed evolution to create several novel AAV variants capable of efficient infection of both rat and human astrocytes through iterative selection of a panel of highly diverse AAV libraries. Here, in vivo and in vitro characterization of these isolated variants identifies a previously unreported AAV variant ShH10, closely related to AAV serotype 6 (AAV6), capable of efficient, selective Müller cell infection through intravitreal injection. Importantly, this new variant shows significantly improved transduction relative to AAV2 (>60%) and AAV6. Our findings demonstrate that AAV is a highly versatile vector capable of powerful shifts in tropism from minor sequence changes. This isolated variant represents a new therapeutic vector to treat retinal degenerative diseases through secretion of neuroprotective factors from Müller cells as well as provides new opportunities to study their biological functions in the retina.

  5. New recombinant serotypes of AAV vectors.

    Science.gov (United States)

    Gao, Guangping; Vandenberghe, Luk H; Wilson, James M

    2005-06-01

    AAV based vectors can achieve stable gene transfer with minimal vector related toxicities. AAV serotype 2 (AAV2) is the first AAV that was vectored for gene transfer applications. However, the restricted tissue tropism of AAV and its low transduction efficiency have limited its further development as vector. Recent studies using vectors derived from alternative AAV serotypes such as AAV1, 4, 5 and 6 have shown improved potency and broadened tropism of the AAV vector by packaging the same vector genome with different AAV capsids. In an attempt to search for potent AAV vectors with enhanced performance profiles, molecular techniques were employed for the detection and isolation of endogenous AAVs from a variety of human and non-human primate (NHP) tissues. A family of novel primate AAVs consisting of 110 non-redundant species of proviral sequences was discovered and turned to be prevalent in 18-19% of the tissues evaluated. Phylogenetic and functional analyses revealed that primate AAVs are segregated into clades based on phylogenetic relatedness. The members within a clade share functional and serological properties. Initial evaluation in mouse models of vectors based on these novel AAVs for tissue tropism and gene transfer potency led to the identification of some vector with improved gene transfer to different target tissues. Gene therapy treatment of several mouse and canine models with novel AAV vectors achieved long term phenotypic corrections. Vectors based on new primate AAVs could become the next generation of efficient gene transfer vehicles for various gene therapy applications.

  6. Adeno-associated Virus (AAV) Serotypes Have Distinctive Interactions with Domains of the Cellular AAV Receptor

    Science.gov (United States)

    Pillay, Sirika; Zou, Wei; Cheng, Fang; Puschnik, Andreas S.; Meyer, Nancy L.; Ganaie, Safder S.; Deng, Xuefeng; Wosen, Jonathan E.; Davulcu, Omar; Yan, Ziying; Engelhardt, John F.; Brown, Kevin E.; Chapman, Michael S.

    2017-01-01

    ABSTRACT Adeno-associated virus (AAV) entry is determined by its interactions with specific surface glycans and a proteinaceous receptor(s). Adeno-associated virus receptor (AAVR) (also named KIAA0319L) is an essential cellular receptor required for the transduction of vectors derived from multiple AAV serotypes, including the evolutionarily distant serotypes AAV2 and AAV5. Here, we further biochemically characterize the AAV-AAVR interaction and define the domains within the ectodomain of AAVR that facilitate this interaction. By using a virus overlay assay, it was previously shown that the major AAV2 binding protein in membrane preparations of human cells corresponds to a glycoprotein with a molecular mass of 150 kDa. By establishing a purification procedure, performing further protein separation by two-dimensional electrophoresis, and utilizing mass spectrometry, we now show that this glycoprotein is identical to AAVR. While we find that AAVR is an N-linked glycosylated protein, this glycosylation is not a strict requirement for AAV2 binding or functional transduction. Using a combination of genetic complementation with deletion constructs and virus overlay assays with individual domains, we find that AAV2 functionally interacts predominantly with the second Ig-like polycystic kidney disease (PKD) repeat domain (PKD2) present in the ectodomain of AAVR. In contrast, AAV5 interacts primarily through the first, most membrane-distal, PKD domain (PKD1) of AAVR to promote transduction. Furthermore, other AAV serotypes, including AAV1 and -8, require a combination of PKD1 and PKD2 for optimal transduction. These results suggest that despite their shared dependence on AAVR as a critical entry receptor, different AAV serotypes have evolved distinctive interactions with the same receptor. IMPORTANCE Over the past decade, AAV vectors have emerged as leading gene delivery tools for therapeutic applications and biomedical research. However, fundamental aspects of the AAV life

  7. Humoral immune response to AAV

    Directory of Open Access Journals (Sweden)

    Roberto eCalcedo

    2013-10-01

    Full Text Available Adeno-associated virus (AAV is a member of the family parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  8. Humoral Immune Response to AAV.

    Science.gov (United States)

    Calcedo, Roberto; Wilson, James M

    2013-10-18

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  9. AAV serotype influences gene transfer in corneal stroma in vivo

    OpenAIRE

    Sharma, Ajay; Jonathan C K Tovey; Ghosh, Arkasubhra; Mohan, Rajiv R.

    2010-01-01

    This study evaluated the cellular tropism and relative transduction efficiency of three AAV serotypes, AAV6, AAV8 and AAV9, for corneal gene delivery using mouse cornea in vivo and donor human cornea ex vivo. The AAV6, AAV8 and AAV9 serotypes having AAV2 plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Viral vectors (109 vg/μl) were topically applied onto mouse cornea in vivo and human cornea ex viv...

  10. Enhanced gene transfer efficiency in the murine striatum and an orthotopic glioblastoma tumor model, using AAV-7- and AAV-8-pseudotyped vectors.

    Science.gov (United States)

    Harding, Thomas C; Dickinson, Peter J; Roberts, Byron N; Yendluri, Satya; Gonzalez-Edick, Melissa; Lecouteur, Richard A; Jooss, Karin U

    2006-08-01

    In this study, recombinant AAV vectors pseudotyped with viral capsids derived from AAV serotypes 7 and 8 were evaluated for gene transfer in the murine striatum relative to vectors pseudotyped with AAV serotypes 2, 5, and 6. In comparison with rAAV serotype 2, pseudotyped vectors derived from AAV-7 and AAV-8 have increased transduction efficiency in the murine CNS, with the rank order rAAV-7 > rAAV-8 > rAAV-5 > rAAV-2 = rAAV-6, with all vectors demonstrating a marked tropism for neuronal transduction. Pseudotyped rAAV vector gene transfer in the brain after preimplantation of a murine 4C8 glioblastoma tumor was also evaluated. Efficiency of gene transfer to the orthotopic tumor was increased when using AAV-6, -7, and -8 capsid proteins in comparison with serotype 2, with the order rAAV-8 = rAAV-7 > rAAV-6 > rAAV-2 > rAAV-5. The increased gene transfer efficiency of rAAV vectors pseudotyped with the rAAV-8 capsid also provided enhanced therapeutic efficacy in a mouse model of glioblastoma multiforme, using vectors encoding an inhibitor of the vascular endothelial growth factor pathway. These studies demonstrate that rAAV vectors pseudotyped with capsids derived from AAV serotypes 7 and 8 provide enhanced gene transfer in the murine CNS and may offer increased therapeutic efficacy in the treatment of neurological disease.

  11. Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants.

    Science.gov (United States)

    Benskey, Matthew J; Kuhn, Nathan C; Galligan, James J; Garcia, Joanna; Boye, Shannon E; Hauswirth, William W; Mueller, Christian; Boye, Sanford L; Manfredsson, Fredric P

    2015-03-01

    Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent protein (GFP) into the descending colon. AAV serotypes tested included; AAV 1, 2, 5, 6, 8, or 9 and the AAV2 and AAV8 capsid mutants, AAV2-Y444F, AAV2-tripleY-F, AAV2-tripleY-F+T-V, AAV8-Y733F, and AAV8-doubeY-F+T-V. Transduction, as determined by GFP-positive cells, occurred in neurons and enteric glia within the myenteric and submucosal plexuses of the ENS. AAV6 and AAV9 showed the highest levels of transduction within the ENS. Transduction efficiency scaled with titer and time, was translated to the murine ENS, and produced no vector-related immune response. A single injection of AAV into the colon covered an area of ~47 mm(2). AAV9 primarily transduced neurons, while AAV6 transduced enteric glia and neurons. This is the first report on targeted AAV transduction of neurons and glia in the ENS.

  12. Recombinant AAV-transduced iris pigment epithelial cell transplantation may transfer vector to native RPE but suppress systemic dissemination.

    Science.gov (United States)

    Yoshioka, Yuki; Abe, Toshiaki; Wakusawa, Ryosuke; Moriya, Takuya; Mochizuki, Shizue; Saigo, Yoko; Saito, Takae; Murata, Hiromi; Tokita, Yumi; Iseya, Takashi; Sugano, Eriko; Tomita, Hiroshi; Sagara, Yoshiko; Tamai, Makoto

    2006-02-01

    To determine whether adenoassociated virus (AAV) vectors transduced into iris pigment epithelial (IPE) cells and transplanted into the subretinal space of rats will transfer the AAV genome to the host cells and whether the vectors are disseminated systemically. Recombinant (r)AAV was transduced into rat IPE cells and transplanted into the subretinal space of rats. For the control, rAAVs alone were injected subretinally. The transplanted IPE cells were detected by LacZ staining. Immunohistochemistry, electron microscopy, electroretinography, and fluorescein-dextran angiography were performed. DNA was extracted from various organs and blood and examined for the AAV genome by polymerase chain reaction. No toxicity from rAAV transduction was observed in vitro. LacZ was expressed in the transplanted cells 1 and 2 weeks after transplantation. At 4 and 12 weeks, fewer transplanted cells were detected than at 1 week, and LacZ expression was occasionally detected at the level of host retinal pigment epithelial (RPE) cells. Expression was also detected in ciliary body epithelial cells. The electroretinograms and fluorescein-dextran angiography were only mildly altered. Significantly lower levels of AAV genome were detected in the organs and blood of rats receiving rAAV-IPE cell transplants than with direct intravenous injection of AAV vectors. AAV-mediated LacZ was expressed in the transplanted cells after subretinal transplantation, and the transplanted IPE cells may transfer the rAAV to host tissues, such as RPE cells, long after the transplantation. This method of gene delivery did not lead to systemic dissemination of the vectors.

  13. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery.

    Science.gov (United States)

    Giannelli, Serena G; Luoni, Mirko; Castoldi, Valerio; Massimino, Luca; Cabassi, Tommaso; Angeloni, Debora; Demontis, Gian Carlo; Leocani, Letizia; Andreazzoli, Massimiliano; Broccoli, Vania

    2018-03-01

    P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.

  14. Peptide affinity reagents for AAV capsid recognition and purification.

    Science.gov (United States)

    Pulicherla, N; Asokan, A

    2011-10-01

    We report the discovery of AAV capsid-binding peptides identified through phage panning. The heptapeptide motif GYVSRHP selectively recognized AAV serotype 8 capsids and blocked transduction in vitro. Recombinant AAV8 vectors were purified directly from crude cell lysate and supernatant through sequential application of peptide affinity and anion exchange chromatography. Peptide affinity reagents may serve as useful alternatives to monoclonal antibodies in AAV capsid recognition, and offer readily scalable solutions for purification of clinical grade AAV vectors.

  15. AAV-8 is more efficient than AAV-9 in transducing neonatal dog heart.

    Science.gov (United States)

    Pan, Xiufang; Yue, Yongping; Zhang, Keqing; Hakim, Chady H; Kodippili, Kasun; McDonald, Thomas; Duan, Dongsheng

    2015-04-01

    Adeno-associated virus serotype-8 and 9 (AAV-8 and 9) are the leading candidate vectors to test bodywide neonatal muscle gene therapy in large mammals. We have previously shown that systemic injection of 2-2.5×10(14) viral genome (vg) particles/kg of AAV-9 resulted in widespread skeletal muscle gene transfer in newborn dogs. However, nominal transduction was observed in the heart. In contrast, robust expression was achieved in both skeletal muscle and heart in neonatal dogs with 7.14-9.06×10(14) vg particles/kg of AAV-8. To determine whether superior cardiac transduction of AAV-8 is because of the higher vector dose, we delivered 6.14×10(14) and 9.65×10(14) vg particles/kg of AAV-9 to newborn puppies via the jugular vein. Transduction was examined 2.5 months later. Consistent with our previous reports, we observed robust bodywide transduction in skeletal muscle. However, increased AAV dose only moderately improved heart transduction. It never reached the level achieved by AAV-8. Our results suggest that differential cardiac transduction by AAV-8 and AAV-9 is likely because of the intrinsic property of the viral capsid rather than the vector dose.

  16. Analysis of Transduction Efficiency, Tropism and Axonal Transport of AAV Serotypes 1, 2, 5, 6, 8 and 9 in the Mouse Brain: e76310

    National Research Council Canada - National Science Library

    Dominik F Aschauer; Sebastian Kreuz; Simon Rumpel

    2013-01-01

      Recombinant Adeno-associated virus vectors (rAAV) are widely used for gene delivery and multiple naturally occurring serotypes have been harnessed to target cells in different tissues and organs including the brain...

  17. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain

    National Research Council Canada - National Science Library

    Aschauer, Dominik F; Kreuz, Sebastian; Rumpel, Simon

    2013-01-01

    Recombinant Adeno-associated virus vectors (rAAV) are widely used for gene delivery and multiple naturally occurring serotypes have been harnessed to target cells in different tissues and organs including the brain...

  18. AAV-mediated gene therapy in Dystrophin-Dp71 deficient mouse leads to blood-retinal barrier restoration and oedema reabsorption.

    Science.gov (United States)

    Vacca, Ophélie; Charles-Messance, Hugo; El Mathari, Brahim; Sene, Abdoulaye; Barbe, Peggy; Fouquet, Stéphane; Aragón, Jorge; Darche, Marie; Giocanti-Aurégan, Audrey; Paques, Michel; Sahel, José-Alain; Tadayoni, Ramin; Montañez, Cecilia; Dalkara, Deniz; Rendon, Alvaro

    2016-07-15

    Dystrophin-Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells that provide a mechanical link at the Müller cell membrane by direct binding to actin and a transmembrane protein complex. Its absence has been related to blood-retinal barrier (BRB) permeability through delocalization and down-regulation of the AQP4 and Kir4.1 channels (1). We have previously shown that the adeno-associated virus (AAV) variant, ShH10, transduces Müller cells in the Dp71-null mouse retina efficiently and specifically (2,3). Here, we use ShH10 to restore Dp71 expression in Müller cells of Dp71 deficient mouse to study molecular and functional effects of this restoration in an adult mouse displaying retinal permeability. We show that strong and specific expression of exogenous Dp71 in Müller cells leads to correct localization of Dp71 protein restoring all protein interactions in order to re-establish a proper functional BRB and retina homeostasis thus preventing retina from oedema. This study is the basis for the development of new therapeutic strategies in dealing with diseases with BRB breakdown and macular oedema such as diabetic retinopathy (DR). © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model.

    Science.gov (United States)

    Rey-Rico, Ana; Frisch, Janina; Venkatesan, Jagadesh Kumar; Schmitt, Gertrud; Rial-Hermida, Isabel; Taboada, Pablo; Concheiro, Angel; Madry, Henning; Alvarez-Lorenzo, Carmen; Cucchiarini, Magali

    2016-08-17

    Gene therapy is an attractive strategy for the durable treatment of human osteoarthritis (OA), a gradual, irreversible joint disease. Gene carriers based on the small human adeno-associated virus (AAV) exhibit major efficacy in modifying damaged human articular cartilage in situ over extended periods of time. Yet, clinical application of recombinant AAV (rAAV) vectors remains complicated by the presence of neutralizing antibodies against viral capsid elements in a majority of patients. The goal of this study was to evaluate the feasibility of delivering rAAV vectors to human OA chondrocytes in vitro and in an experimental model of osteochondral defect via polymeric micelles to protect gene transfer from experimental neutralization. Interaction of rAAV with micelles of linear (poloxamer PF68) or X-shaped (poloxamine T908) poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) copolymers (PEO-PPO-PEO micelles) was characterized by means of isothermal titration calorimetry. Micelle encapsulation allowed an increase in both the stability and bioactivity of rAAV vectors and promoted higher levels of safe transgene (lacZ) expression both in vitro and in experimental osteochondral defects compared with that of free vector treatment without detrimental effects on the biological activity of the cells or their phenotype. Remarkably, protection against antibody neutralization was also afforded when delivering rAAV via PEO-PPO-PEO micelles in all systems evaluated, especially when using T908. Altogether, these findings show the potential of PEO-PPO-PEO micelles as effective tools to improve current gene-based treatments for human OA.

  20. Establishment of an AAV reverse infection-based array.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Dong

    Full Text Available BACKGROUND: The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited. PRINCIPAL FINDINGS: We established an AAV reverse infection (RI-based method in which cells were transduced by quantified recombinant AAVs (rAAVs pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments. CONCLUSIONS/SIGNIFICANCE: Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays.

  1. Establishment of an AAV reverse infection-based array.

    Science.gov (United States)

    Dong, Xiaoyan; Tian, Wenhong; Wang, Gang; Dong, Zheyue; Shen, Wei; Zheng, Gang; Wu, Xiaobing; Xue, Jinglun; Wang, Yue; Chen, Jinzhong

    2010-10-19

    The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited. We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments. Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays.

  2. Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway.

    Science.gov (United States)

    Hirsch, Matthew L; Li, Chengwen; Bellon, Isabella; Yin, Chaoying; Chavala, Sai; Pryadkina, Marina; Richard, Isabelle; Samulski, Richard Jude

    2013-12-01

    A drawback of gene therapy using adeno-associated virus (AAV) is the DNA packaging restriction of the viral capsid (AAV genome transduction through an unknown mechanism. Herein, AAV production using an oversized reporter (6.2 kb) resulted in chloroform and DNase-resistant particles harboring distinct "fragment" AAV (fAAV) genomes (5.0, 2.4, and 1.6 kb). Fractionation experiments determined that only the larger "fragments" mediated transduction in vitro, and relatively efficient transduction was also demonstrated in the muscle, the eye, and the liver. In contrast with concatemerization-dependent large-gene delivery by split AAV, fAAV transduction is independent of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in vitro and in vivo while disproportionately reliant on the DNA strand-annealing protein Rad51C. Importantly, fAAV's unique dependence on DNA repair proteins, compared with intact AAV, strongly suggests that the majority of oversized AAV transduction is mediated by fragmented genomes. Although fAAV transduction is less efficient than intact AAV, it is enhanced fourfold in muscle and sevenfold in the retina compared with split AAV transduction. Furthermore, fAAV carrying codon-optimized therapeutic dysferlin cDNA in a 7.5 kb expression cassette restored dysferlin levels in a dystrophic model. Collectively, oversized AAV genome transduction requires unique DNA repair pathways and offers an alternative, more efficient strategy for large-gene therapy.

  3. Distinct transduction difference between adeno-associated virus type 1 and type 6 vectors in human polarized airway epithelia.

    Science.gov (United States)

    Yan, Z; Lei-Butters, D C M; Keiser, N W; Engelhardt, J F

    2013-03-01

    Of the many biologically isolated adeno-associated virus (AAV) serotypes, AAV1 and AAV6 share the highest degree of sequence homology, with only six different capsid residues. We compared the transduction efficiencies of rAAV1 and rAAV6 in primary polarized human airway epithelia and found significant differences in their abilities to transduce epithelia from the apical and basolateral membranes. rAAV1 transduction was ~10-fold higher than rAAV6 following apical infection, whereas rAAV6 transduction was ~10-fold higher than rAAV1 following basolateral infection. Furthermore, rAAV6 demonstrated significant polarity of transduction (100-fold; basolateral » apical), whereas rAAV1 transduced from both membranes with equal efficiency. To evaluate capsid residues responsible for the observed serotype differences, we mutated the six divergent amino acids either alone or in combination. Results from these studies demonstrated that capsid residues 418 and 531 most significantly controlled membrane polarity differences in transduction between serotypes, with the rAAV6-D418E/K531E mutant demonstrating decreased (~10-fold) basolateral transduction and the rAAV1-E418D/E531K mutant demonstrating a transduction polarity identical to rAAV6-WT (wild type). However, none of the rAAV6 mutants obtained apical transduction efficiencies of rAAV1-WT, suggesting that all six divergent capsid residues in AAV1 act in concert to improve apical transduction of HAE.

  4. Peptide affinity reagents for AAV capsid recognition and purification

    OpenAIRE

    Pulicherla, N; Asokan, A

    2011-01-01

    We report the discovery of AAV capsid-binding peptides identified through phage panning. The heptapeptide motif GYVSRHP selectively recognized AAV serotype 8 capsids and blocked transduction in vitro. Recombinant AAV8 vectors were purified directly from crude cell lysate and supernatant through sequential application of peptide affinity and anion exchange chromatography. Peptide affinity reagents may serve as useful alternatives to monoclonal antibodies in AAV capsid recognition, and offer re...

  5. Distinct Transduction Difference Between Adeno-Associated Virus Type 1 and Type 6 Vectors in Human Polarized Airway Epithelia

    OpenAIRE

    Yan, Ziying; Lei-Butters, Diana Chi Man; Keiser, Nicholas W; Engelhardt, John F.

    2012-01-01

    Of the many biologically isolated AAV serotypes, AAV1 and AAV6 share the highest degree of sequence homology, with only six different capsid residues. We compared the transduction efficiencies of rAAV1 and rAAV6 in primary polarized human airway epithelia (HAE) and found significant differences in their abilities to transduce epithelia from the apical and basolateral membranes. rAAV1 transduction was ~10-fold higher than rAAV6 following apical infection, while rAAV6 transduction was ~10-fold ...

  6. Targeted Gene Delivery to the Enteric Nervous System Using AAV: A Comparison Across Serotypes and Capsid Mutants

    OpenAIRE

    Benskey, Matthew J; Nathan C Kuhn; James J Galligan; Garcia, Joanna; Boye, Shannon E.; William W Hauswirth; Mueller, Christian; Boye, Sanford L.; Manfredsson, Fredric P.

    2015-01-01

    Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent prot...

  7. Engineering AAV receptor footprints for gene therapy.

    Science.gov (United States)

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Adeno-Associated Virus Type 2 (AAV2) Capsid-Specific Cytotoxic T Lymphocytes Eliminate Only Vector-Transduced Cells Coexpressing the AAV2 Capsid In Vivo▿

    OpenAIRE

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R. Jude

    2007-01-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kil...

  9. Transduction of pancreatic islets with pseudotyped adeno-associated virus: effect of viral capsid and genome conversion.

    Science.gov (United States)

    Zhang, Nan; Clément, Nathalie; Chen, Dongmei; Fu, Shuang; Zhang, Haojiang; Rebollo, Patricia; Linden, R Michael; Bromberg, Jonathan S

    2005-09-15

    Recombinant adeno-associated viral (rAAV) vectors currently show promise for islet gene therapy. In the presence of complementing AAV2 Rep proteins, AAV2 genomes can be packaged with other serotype capsids to assemble infectious virions. During transduction, the ssDNA to dsDNA conversion is one of the major rate-limiting steps that contribute to the slow onset of transgene expression. Using pseudotyping strategy, we produced double-stranded (dsAAV) and single-stranded (ssAAV) rAAV2 genomes carrying the GFP reporter gene packaged into AAV1, AAV2, and AAV5 capsids. The ability of cross-packaged AAV1, AAV2, and AAV5 at the same genome containing particle (gcp) concentration to transduce murine and human pancreatic islets was evaluated by GFP positive cell percentage. Transgenic expression was also determined by transplant transduced human islet into SCID mice. Pseudotyped rAAV2/1 based vectors transduced murine islets at greater efficiency than either rAAV2/2 or rAAV2/5 vectors. For human islets transduction, the rAAV2/2 vector was more efficient than rAAV2/1 or rAAV2/5 vectors. rAAV2/2 transduced human islets more efficiently than murine islets, while rAAV2/1 transducted murine islets more efficiently than human islets. dsAAV, which do not require second strand synthesis and thus are potentially more efficient, evidenced 5 fold higher transduction ability than ssAAV vectors. Pseudotyped rAAV transduced islet grafts maintained normal function, expressed transgenic product persistently in vivo, and reversed diabetes. The transduction efficiency of rAAV vectors was dependent on the cross-packaged capsid. The vector capsids permit species-specific transduction. For human islets, dsAAV2/2 vectors may be the most efficient vector for clinical development.

  10. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments.

    Science.gov (United States)

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N P; Riedmayr, Lisa M; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types.

  11. Recombinant Adeno-Associated Virus Serotype 6 (rAAV6 Potently and Preferentially Transduces Rat Astrocytes in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Alexandra L. Schober

    2016-11-01

    Full Text Available Recombinant AAV vectors are an increasingly popular tool for gene delivery to the CNS because of their non-pathological nature, low immunogenicity, and ability to stably transduce dividing and non-dividing cells. One of the limitations of rAAVs is their preferential tropism for neuronal cells. Glial cells, specifically astrocytes, appear to be infected at low rates. To overcome this limitation, previous studies utilized rAAVs with astrocyte-specific promoters or assorted rAAV serotypes and pseudotypes with purported selectivity for astrocytes. Yet, the reported glial infection rates are not consistent from study to study. In the present work, we tested seven commercially available recombinant serotypes– rAAV1, 2, and 5 through 9, for their ability to transduce primary rat astrocytes (visualized via viral expression of GFP. In cell cultures, rAAV6 consistently demonstrated the highest infection rates, while rAAV2 showed astrocytic transduction in some, but not all, of the tested viral batches. To verify that all rAAV constructs utilized by us were viable and effective, we confirmed high infectivity rates in retinal pigmented epithelial cells (ARPE-19, which are known to be transduced by numerous rAAV serotypes. Based on the in vitro results, we next tested the cell type tropism of rAAV6 and rAAV2 in vivo, which were both injected in the barrel cortex at approximately equal doses. Three weeks later, the brains were sectioned and immunostained for viral GFP and the neuronal marker NeuN or the astrocytic marker GFAP. We found that rAAV6 strongly and preferentially transduced astrocytes (>90% of cells in the virus-infected areas, but not neurons (~10% infection rate. On the contrary, rAAV2 preferentially infected neurons (~65%, but not astrocytes (~20%. Overall, our results suggest that rAAV6 can be used as a tool for manipulating gene expression (either delivery or knockdown in rat astrocytes in vivo.

  12. Characterization of naturally-occurring humoral immunity to AAV in sheep.

    Science.gov (United States)

    Tellez, Joseph; Van Vliet, Kim; Tseng, Yu-Shan; Finn, Jonathan D; Tschernia, Nick; Almeida-Porada, Graça; Arruda, Valder R; Agbandje-McKenna, Mavis; Porada, Christopher D

    2013-01-01

    AAV vectors have shown great promise for clinical gene therapy (GT), but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA). Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9), with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity.

  13. Characterization of naturally-occurring humoral immunity to AAV in sheep.

    Directory of Open Access Journals (Sweden)

    Joseph Tellez

    Full Text Available AAV vectors have shown great promise for clinical gene therapy (GT, but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA. Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9, with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity.

  14. Subretinal Fluid Levels of Signal-Transduction Proteins and Apoptosis Molecules in Macula-Off Retinal Detachment Undergoing Scleral Buckle Surgery.

    Science.gov (United States)

    Carpineto, Paolo; Aharrh-Gnama, Agbeanda; Ciciarelli, Vincenzo; Borrelli, Enrico; Petti, Francesco; Aloia, Raffaella; Lamolinara, Alessia; Di Nicola, Marta; Mastropasqua, Leonardo

    2016-12-01

    To evaluate signal transduction and early apoptosis protein levels in subretinal fluid collected during scleral buckling surgery for macula-off rhegmatogenous retinal detachment (RRD). Our aim was to assess both their relation with RRD features and their influence on the posttreatment outcome. Thirty-three eyes of 33 RRD patients scheduled for scleral buckle surgery were enrolled in the study. Undiluted subretinal fluid samples were collected during surgery and analyzed via magnetic bead-based immunoassay. All patients underwent a complete ophthalmologic evaluation at baseline and at each follow-up visit (months 1, 3, and 6). Moreover, both at baseline and at the postsurgery month 6 visit, the patients were tested by means of spectral-domain optical coherence tomography (SD-OCT) in order to evaluate the average ganglion cell-inner plexiform complex thickness, as well as the photoreceptor inner segment/outer segment junction status. Patients' clinical features (retinal detachment size, detachment duration, and occurrence of proliferative vitreoretinopathy) were associated with several early apoptotic factors (caspase-8, caspase-9, and B-cell lymphoma 2 [Bcl-2]-associated death promoter [BAD]). Furthermore, both early apoptosis factors (caspase-8, Bcl-2, and p53) and signal-transduction proteins (ERK 1/2) were found to influence the postsurgery month 3 OCT characteristics. Signal-transduction proteins and early apoptosis proteins are associated with different clinical features and postsurgery outcomes.

  15. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids.

    Science.gov (United States)

    Wang, Lili; Bell, Peter; Somanathan, Suryanarayan; Wang, Qiang; He, Zhenning; Yu, Hongwei; McMenamin, Deirdre; Goode, Tamara; Calcedo, Roberto; Wilson, James M

    2015-12-01

    Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors.

  16. AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid.

    Science.gov (United States)

    Su, H; Yeghiazarians, Y; Lee, A; Huang, Y; Arakawa-Hoyt, J; Ye, J; Orcino, G; Grossman, W; Kan, Y W

    2008-01-01

    Adeno-associated virus (AAV) has many properties of an ideal vector for delivery of therapeutic genes into the myocardium. Previous studies in a mouse model of myocardial infarction showed that AAV serotype 1 (AAV1) is superior to AAV serotypes 2-5 to transfer genes into the myocardium by direct injection. Since vectors may behave differently in humans and because the human and the pig hearts resemble each other closely, we tested whether AAV1 is also superior to AAV2 in transferring genes into the pig myocardium. We also compared gene transduction efficiency between AAV vectors and plasmid. We injected CMVLacZ and CMVVEGF (vectors with the cytomegalovirus (CMV) promoter driving LacZ and VEGF gene expression) unpackaged or packaged in AAV serotypes 1 or 2 capsids into pig myocardium. Hearts were collected 3, 14 and 28 days after the injection. Gene expression was analyzed by real-time reverse-transcription polymerase chain reaction (RT-PCR) and histological staining. Capillaries and smooth muscle alpha-actin (SMA)-positive vessels were quantified. Potential lymphocyte infiltration at the injection sites was analyzed by immunostaining using specific antibodies. As in the mouse, AAV1 mediated better gene transduction than AAV2. Plasmid mediated minimal gene expression only. More capillaries and SMA-positive vessels were detected at AAV1CMVVEGF- and AAV2CMVVEGF-injected than AAV1CMVLacZ-injected sites. We did not detect inflammatory cell infiltration at the injection sites. In conclusion, by direct injection, AAV1 is more efficient than AAV2, and plasmid is inefficient in mediating gene transfer into the pig myocardium. AAV-mediated VEGF gene transfer can also induce neovascular formation in the pig myocardium. (c) 2007 John Wiley & Sons, Ltd.

  17. AAV serotypes have distinctive interactions with domains of the cellular receptor AAVR.

    Science.gov (United States)

    Pillay, Sirika; Zou, Wei; Cheng, Fang; Puschnik, Andreas S; Meyer, Nancy L; Ganaie, Safder S; Deng, Xuefeng; Wosen, Jonathan E; Davulcu, Omar; Yan, Ziying; Engelhardt, John F; Brown, Kevin E; Chapman, Michael S; Qiu, Jianming; Carette, Jan E

    2017-07-05

    Adeno-associated virus (AAV) entry is determined by its interactions with specific surface glycans and proteinaceous receptor(s). Adeno-associated virus receptor (AAVR; also named KIAA0319L) is an essential cellular receptor required for the transduction of vectors derived from multiple AAV serotypes including the evolutionary distant serotypes, AAV2 and AAV5. Here, we further biochemically characterize the AAV-AAVR interaction and define the domains within the ectodomain of AAVR that facilitate this interaction. Using a virus overlay assay, it was previously shown that the major AAV2 binding protein in membrane preparations of human cells corresponds to a glycoprotein with a 150-kDa molecular mass. By establishing a purification procedure, performing further protein separation through two-dimensional electrophoresis and utilizing mass spectrometry, we now show that this glycoprotein is identical to AAVR. While we find that AAVR is N-linked glycosylated, this glycosylation is not a strict requirement for AAV2 binding or functional transduction. Using a combination of genetic complementation with deletion constructs and viral overlay assays with individual domains, we find that AAV2 functionally interacts predominantly with the second Ig-like PKD repeat domain (PKD2) present in the ectodomain of AAVR. By contrast, AAV5 interacts primarily through the first, most membrane distal, PKD domain (PKD1) of AAVR to promote transduction. Furthermore, other AAV serotypes including AAV1 and 8 require a combination of PKD1 and PKD2 for optimal transduction. These results suggest that despite their shared dependence on AAVR as a critical entry receptor, different AAV serotypes have evolved distinctive interactions with the same receptor.IMPORTANCE Over the past decade, AAV vectors have emerged as leading gene delivery tools for therapeutic applications and biomedical research. Yet, fundamental aspects of the AAV life cycle, including how AAV interacts with host cellular factors

  18. AAV serotype influences gene transfer in corneal stroma in vivo.

    Science.gov (United States)

    Sharma, Ajay; Tovey, Jonathan C K; Ghosh, Arkasubhra; Mohan, Rajiv R

    2010-09-01

    This study evaluated the cellular tropism and relative transduction efficiency of three AAV serotypes, AAV6, AAV8 and AAV9, for corneal gene delivery using mouse cornea in vivo and donor human cornea ex vivo. The AAV6, AAV8 and AAV9 serotypes having AAV2 plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK 293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Viral vectors (10(9) vg/microl) were topically applied onto mouse cornea in vivo and human cornea ex vivo after removing the epithelium. Human corneas were processed for transgene delivery at day 5 after viral vector application. Mouse corneas were harvested at 4, 14 and 30 days after vector application for AP staining. Transduction efficiency was calculated by quantifying pixels of AP-stained area using Image J software and also confirmed by functional AP enzyme activity in the corneal lysates. Cellular toxicity of the three AAV serotypes was tested with TUNEL assay. Inflammatory response was detected by immunostaining for CD11b and F4/80. All three AAV serotypes successfully transduced mouse and human corneas. The order of transduction efficiency was AAV9 > AAV8 > AAV6. The transduction efficiency of AAV9 was 1.1-1.4 fold higher (p > 0.05) as compared to AAV8 and 3.5-5.5 fold higher (p AAV6. The level of transgene expression for all the three serotypes was greater at 14 days compared to 4 days and this high level of transgene expression was maintained up to the tested time point of 30 days. Corneas exposed to any of the three AAV serotypes did not show significant TUNEL positive cells or any inflammatory response as tested by CD11b or F4/80 staining suggesting that tested AAV serotypes do not induce cell death or inflammation and are safe for corneal gene therapy. Published by Elsevier Ltd.

  19. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo.

    Science.gov (United States)

    György, Bence; Fitzpatrick, Zachary; Crommentuijn, Matheus H W; Mu, Dakai; Maguire, Casey A

    2014-08-01

    Recently adeno-associated virus (AAV) became the first clinically approved gene therapy product in the western world. To develop AAV for future clinical application in a widespread patient base, particularly in therapies which require intravenous (i.v.) administration of vector, the virus must be able to evade pre-existing antibodies to the wild type virus. Here we demonstrate that in mice, AAV vectors associated with extracellular vesicles (EVs) can evade human anti-AAV neutralizing antibodies. We observed different antibody evasion and gene transfer abilities with populations of EVs isolated by different centrifugal forces. EV-associated AAV vector (ev-AAV) was up to 136-fold more resistant over a range of neutralizing antibody concentrations relative to standard AAV vector in vitro. Importantly in mice, at a concentration of passively transferred human antibodies which decreased i.v. administered standard AAV transduction of brain by 80%, transduction of ev-AAV transduction was not reduced and was 4000-fold higher. Finally, we show that expressing a brain targeting peptide on the EV surface allowed significant enhancement of transduction compared to untargeted ev-AAV. Using ev-AAV represents an effective, clinically relevant approach to evade human neutralizing anti-AAV antibodies after systemic administration of vector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo.

    Science.gov (United States)

    Geoghegan, James C; Keiser, Nicholas W; Okulist, Anna; Martins, Inês; Wilson, Matthew S; Davidson, Beverly L

    2014-10-14

    Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

  1. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo

    Directory of Open Access Journals (Sweden)

    James C Geoghegan

    2014-01-01

    Full Text Available Recently, we described a peptide-modified AAV2 vector (AAV-GMN containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

  2. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium.

    Science.gov (United States)

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-12-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.

  3. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors

    Directory of Open Access Journals (Sweden)

    Chen Ling

    2016-01-01

    Full Text Available Although recombinant adeno-associated virus serotype 3 (AAV3 vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs from AAV3 (ITR3, as well as the trans-acting Rep proteins from AAV3 (Rep3 in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ∼10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492 were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of

  4. Adeno-associated virus (AAV) vectors in cancer gene therapy.

    Science.gov (United States)

    Santiago-Ortiz, Jorge L; Schaffer, David V

    2016-10-28

    Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of adeno-associated virus serotype and genomic structure on liver transduction and biodistribution in mice of both genders.

    Science.gov (United States)

    Pañeda, Astrid; Vanrell, Lucia; Mauleon, Itsaso; Crettaz, Julien S; Berraondo, Pedro; Timmermans, Eric J; Beattie, Stuart G; Twisk, Jaap; van Deventer, Sander; Prieto, Jesus; Fontanellas, Antonio; Rodriguez-Pena, Maria Sol; Gonzalez-Aseguinolaza, Gloria

    2009-08-01

    Recombinant adeno-associated viral (AAV) vectors have unique properties, which make them suitable vectors for gene transfer. Here we assess the liver transduction efficiency and biodistribution of AAV-pseudotyped capsids (serotypes) 1, 5, 6, and 8, combined with single-stranded and double-stranded genomic AAV2 structures carrying the luciferase reporter gene after systemic administration. The analysis was performed in vivo and ex vivo, in male and female mice. Gender-related differences in AAV-mediated transduction and biodistribution were shown for the four serotypes. Our data confirm the superiority of AAV8 over the rest of the serotypes, as well as a significant advantage of double-stranded genomes in terms of liver transduction efficiency, particularly in females. Regarding biodistribution, AAV5 displayed a narrower tropism than the other serotypes tested, transducing, almost exclusively, the liver. Interestingly, AAV1 and AAV8, in particular those having single-stranded genomes, showed high transduction efficiency of female gonads. However, no inadvertent germ line transmission of AAV genomes was observed after breeding single-stranded AAV8-injected female mice with untreated males. In conclusion, double-stranded AAV8 vectors led to the highest levels of liver transduction in mice, as demonstrated by luciferase expression. Nevertheless, the transduction of other organs with AAV8 vectors could favor the use of less efficient serotypes, such as AAV5, which display a narrow tropism.

  6. Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer.

    Science.gov (United States)

    Li, Chengwen; Wu, Shuqing; Albright, Blake; Hirsch, Matthew; Li, Wuping; Tseng, Yu-Shan; Agbandje-McKenna, Mavis; McPhee, Scott; Asokan, Aravind; Samulski, R Jude

    2016-02-01

    A major hindrance in gene therapy trials with adeno-associated virus (AAV) vectors is the presence of neutralizing antibodies (NAbs) that inhibit AAV transduction. In this study, we used directed evolution techniques in vitro and in mouse muscle to select novel NAb escape AAV chimeric capsid mutants in the presence of individual patient serum. AAV mutants isolated in vitro escaped broad patient-specific NAb activity but had poor transduction ability in vivo. AAV mutants isolated in vivo had enhanced NAb evasion from cognate serum and had high muscle transduction ability. More importantly, structural modeling identified a 100 amino acid motif from AAV6 in variable region (VR) III that confers this enhanced muscle tropism. In addition, a predominantly AAV8 capsid beta barrel template with a specific preference for AAV1/AAV9 in VR VII located at threefold symmetry axis facilitates NAb escape. Our data strongly support that chimeric AAV capsids composed of modular and nonoverlapping domains from various serotypes are capable of evading patient-specific NAbs and have enhanced muscle transduction.

  7. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons.

    Science.gov (United States)

    Mason, Matthew R J; Ehlert, Erich M E; Eggers, Ruben; Pool, Chris W; Hermening, Stephan; Huseinovic, Angelina; Timmermans, Eric; Blits, Bas; Verhaagen, Joost

    2010-04-01

    For many experiments in the study of the peripheral nervous system, it would be useful to genetically manipulate primary sensory neurons. We have compared vectors based on adeno-associated virus (AAV) serotypes 1, 2, 3, 4, 5, 6, and 8, and lentivirus (LV), all expressing green fluorescent protein (GFP), for efficiency of transduction of sensory neurons, expression level, cellular tropism, and persistence of transgene expression following direct injection into the dorsal root ganglia (DRG), using histological quantification and qPCR. Two weeks after injection, AAV1, AAV5, and AAV6 had transduced the most neurons. The time course of GFP expression from these three vectors was studied from 1 to 12 weeks after injection. AAV5 was the most effective serotype overall, followed by AAV1. Both these serotypes showed increasing neuronal transduction rates at later time points, with some injections of AAV5 yielding over 90% of DRG neurons GFP(+) at 12 weeks. AAV6 performed well initially, but transduction rates declined dramatically between 4 and 12 weeks. AAV1 and AAV5 both transduced large-diameter neurons, IB4(+) neurons, and CGRP(+) neurons. In conclusion, AAV5 is a highly effective gene therapy vector for primary sensory neurons following direct injection into the DRG.

  8. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors.

    Science.gov (United States)

    Varadi, K; Michelfelder, S; Korff, T; Hecker, M; Trepel, M; Katus, H A; Kleinschmidt, J A; Müller, O J

    2012-08-01

    We have demonstrated the potential of random peptide libraries displayed on adeno-associated virus (AAV)2 to select for AAV2 vectors with improved efficiency for cell type-directed gene transfer. AAV9, however, may have advantages over AAV2 because of a lower prevalence of neutralizing antibodies in humans and more efficient gene transfer in vivo. Here we provide evidence that random peptide libraries can be displayed on AAV9 and can be utilized to select for AAV9 capsids redirected to the cell type of interest. We generated an AAV9 peptide display library, which ensures that the displayed peptides correspond to the packaged genomes and performed four consecutive selection rounds on human coronary artery endothelial cells in vitro. This screening yielded AAV9 library capsids with distinct peptide motifs enabling up to 40-fold improved transduction efficiencies compared with wild-type (wt) AAV9 vectors. Incorporating sequences selected from AAV9 libraries into AAV2 capsids could not increase transduction as efficiently as in the AAV9 context. To analyze the potential on endothelial cells in the intact natural vascular context, human umbilical veins were incubated with the selected AAV in situ and endothelial cells were isolated. Fluorescence-activated cell sorting analysis revealed a 200-fold improved transduction efficiency compared with wt AAV9 vectors. Furthermore, AAV9 vectors with targeting sequences selected from AAV9 libraries revealed an increased transduction efficiency in the presence of human intravenous immunoglobulins, suggesting a reduced immunogenicity. We conclude that our novel AAV9 peptide library is functional and can be used to select for vectors for future preclinical and clinical gene transfer applications.

  9. Single amino acid modification of adeno-associated virus capsid changes transduction and humoral immune profiles.

    Science.gov (United States)

    Li, Chengwen; Diprimio, Nina; Bowles, Dawn E; Hirsch, Matthew L; Monahan, Paul E; Asokan, Aravind; Rabinowitz, Joseph; Agbandje-McKenna, Mavis; Samulski, R Jude

    2012-08-01

    Adeno-associated virus (AAV) vectors have the potential to promote long-term gene expression. Unfortunately, humoral immunity restricts patient treatment and in addition provides an obstacle to the potential option of vector readministration. In this study, we describe a comprehensive characterization of the neutralizing antibody (NAb) response to AAV type 1 (AAV1) through AAV5 both in vitro and in vivo. These results demonstrated that NAbs generated from one AAV type are unable to neutralize the transduction of other types. We extended this observation by demonstrating that a rationally engineered, muscle-tropic AAV2 mutant containing 5 amino acid substitutions from AAV1 displayed a NAb profile different from those of parental AAV2 and AAV1. Here we found that a single insertion of Thr from AAV1 into AAV2 capsid at residue 265 preserved high muscle transduction, while also changing the immune profile. To better understand the role of Thr insertion at position 265, we replaced all 20 amino acids and evaluated both muscle transduction and the NAb response. Of these variants, 8 mutants induced higher muscle transduction than AAV2. Additionally, three classes of capsid NAb immune profile were defined based on the ability to inhibit transduction from AAV2 or mutants. While no relationship was found between transduction, amino acid properties, and NAb titer or its cross-reactivity, these studies map a critical capsid motif involved in all steps of AAV infectivity. Our results suggest that AAV types can be utilized not only as templates to generate mutants with enhanced transduction efficiency but also as substrates for repeat administration.

  10. Safety of Liver Gene Transfer Following Peripheral Intravascular Delivery of Adeno-Associated Virus (AAV)-5 and AAV-6 in a Large Animal Model

    Science.gov (United States)

    Favaro, Patricia; Finn, Jonathan D.; Siner, Joshua I.; Wright, J. Fraser; High, Katherine A.

    2011-01-01

    Abstract Intravascular delivery of adeno-associated virus (AAV) vector is commonly used for liver-directed gene therapy. In humans, the high prevalence of neutralizing antibodies to AAV-2 capsid and the wide cross-reactivity with other serotypes hamper vector transduction efficacy. Moreover, the safety of gene-based approaches depends on vector biodistribution, vector dose, and route of administration. Here we sought to characterize the safety of AAV-5 and AAV-6 for liver-mediated human factor IX (hFIX) expression in rabbits at doses of 1 × 1012 or 1 × 1013 viral genomes/kg. Circulating therapeutic levels of FIX were observed in both cohorts of AAV-6-hFIX, whereas for AAV-5-hFIX only the high dose was effective. Long-lasting inhibitory antibodies to hFIX were detected in three of the 10 AAV-6-injected animals but were absent in the AAV-5 group. Overall, vector shedding in the semen was transient and vector dose-dependent. However, the kinetics of clearance were remarkably faster for AAV-5 (3–5 weeks) compared with AAV-6 (10–13 weeks). AAV-6 vector sequences outside the liver were minimal at 20–30 weeks post-injection. In contrast, AAV-5 exhibited relatively high amounts of vector DNA in tissues other than the liver. Together these data are useful to further define the safety and potential for clinical translation of these AAV vectors. PMID:21126217

  11. Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain.

    Science.gov (United States)

    Broekman, M L D; Comer, L A; Hyman, B T; Sena-Esteves, M

    2006-01-01

    Adeno-associated virus (AAV) vectors have gained a preeminent position in the field of gene delivery to the normal brain through their ability to achieve extensive transduction of neurons and to mediate long-term gene expression with no apparent toxicity. In adult animals direct infusion of AAV vectors into the brain parenchyma results in highly efficient transduction of target structures. However AAV-mediated global delivery to the adult brain has been an elusive goal. In contrast, widespread global gene delivery has been obtained by i.c.v. injection of AAV1 or AAV2 in neonates. Among the novel AAV serotypes cloned and engineered for production of recombinant vectors, AAV8 has shown a tremendous potential for in vivo gene delivery with nearly complete transduction of many tissues in rodents after intravascular infusion. Here we compare the efficiency of an AAV8 serotyped vector with that of AAV1 and AAV2 serotyped vectors for the extent of gene delivery to the brain after neonatal injection into the lateral ventricles. The vectors all encoded green fluorescent protein (GFP) under control of a hybrid CMV enhancer/chicken beta-actin promoter with AAV2 inverted terminal repeats, but differed from each other with respect to the capsid type. A total of 6.8 x 10(10) genome copies were injected into the lateral ventricles of postnatal day 0 mice. Mice were killed at postnatal day 30 and brains analyzed for distribution of GFP-positive cells. AAV8 proved to be more efficient than AAV1 or AAV2 vectors for gene delivery to all of the structures analyzed, including the cerebral cortex, hippocampus, olfactory bulb, and cerebellum. Moreover the intensity of gene expression, assessed using a microarray reader, was considerably higher for AAV8 in all structures analyzed. In conclusion, the enhanced transduction achieved by AAV8 compared with AAV1 and AAV2 indicates that AAV8 is the superior serotype for gene delivery to the CNS.

  12. Intraventricular Brain Injection of Adeno-Associated Virus Type 1 (AAV1) in Neonatal Mice Results in Complementary Patterns of Neuronal Transduction to AAV2 and Total Long-Term Correction of Storage Lesions in the Brains of β-Glucuronidase-Deficient Mice

    OpenAIRE

    Passini, Marco A; Watson, Deborah J; Vite, Charles H; Landsburg, Daniel J.; Feigenbaum, Alyson L.; Wolfe, John H

    2003-01-01

    Inherited metabolic disorders that affect the central nervous system typically result in pathology throughout the brain; thus, gene therapy strategies need to achieve widespread delivery. We previously found that although intraventricular injection of the neonatal mouse brain with adeno-associated virus serotype 2 (AAV2) results in dispersed gene delivery, many brain structures were poorly transduced. This limitation may be overcome by using different AAV serotypes because the capsid proteins...

  13. Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons

    NARCIS (Netherlands)

    Hellstrom, M.; Muhling, J.; Ehlert, E.M.; Verhaagen, J.; Pollett, M.A.; Hu, Y.; Harvey, A.R.

    2011-01-01

    Intravitreal injections of recombinant ciliary neurotrophic factor (rCNTF) protect adult rat retinal ganglion cells (RGCs) after injury and stimulate regeneration, an effect enhanced by co-injection with a cAMP analogue (CPT-cAMP). This effect is partly mediated by PKA and associated signaling

  14. GFAP-driven GFP expression in activated mouse Muller glial cells aligning retinal blood vessels following intravitreal injection of AAV2/6 vectors.

    NARCIS (Netherlands)

    Aartsen, W.M.; Cleef, K.W.R. van; Pellissier, L.P.; Hoek, R.M.; Vos, R.M.; Blits, B.; Ehlert, E.M.; Balaggan, K.S.; Ali, R.R.; Verhaagen, J.; Wijnholds, J.

    2010-01-01

    BACKGROUND: Muller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Muller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy. METHODOLOGY/PRINCIPAL

  15. Preclinical models to assess the immunogenicity of AAV vectors.

    Science.gov (United States)

    Ertl, Hildegund C J

    2017-11-23

    Although gene transfer using adeno-associated virus (AAV) vectors has made tremendous progress in recent years, challenges remain due to vector-specific adaptive immune responses. Specifically, AAV-neutralizing antibodies reduce AAV-transduction rates, while CD8+ T cells directed to AAV capsid antigens cause rejection of AAV-transduced cells. This has been addressed clinically by excluding humans with pre-existing AAV-neutralizing antibodies from gene transfer trials or by using immunosuppression or reduced doses of vectors expressing improved transgene products to blunt or circumvent destructive T cell responses. Although these approaches have met with success for treatment of some diseases, most notably hemophilia B, they may not be suitable for others. Pre-clinical models are thus needed to test alternative options to sidestep pre-existing AAV-neutralizing antibodies, to prevent their induction following gene transfer and to block the detrimental effects of CD8+ T cells directed to AAV capsid antigens. This chapter describes some of the available, although not yet perfect, models that can assess immune responses to AAV gene transfer. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Assaying the Stability and Inactivation of AAV Serotype 1 Vectors.

    Science.gov (United States)

    Howard, Douglas B; Harvey, Brandon K

    2017-02-01

    Adeno-associated virus (AAV) vectors are a commonplace tool for gene delivery ranging from cell culture to human gene therapy. One feature that makes AAV a desirable vector is its stability, in regard to both the duration of transgene expression and retention of infectivity as a viral particle. This study examined the stability of AAV serotype 1 (AAV1) vectors under different conditions. First, transducibility after storage at 4°C decreased 20% over 7 weeks. Over 10 freeze-thaw cycles, the resulting transduction efficiency became variable at 60-120% of a single thaw. Using small stainless steel slugs to mimic a biosafety cabinet or metal lab bench surface, it was found that an AAV1 vector can be reconstituted after 6 days of storage at room temperature. The stability of AAV is a desired feature, but effective decontamination procedures must be available for safety and experimental integrity. Multiple disinfectants commonly used in the laboratory for ability to inactivate an AAV1 vector were tested, and it was found that autoclaving, 0.25% peracetic acid, iodine, or 10% Clorox bleach completely prevented AAV-mediated transgene expression. These data suggest that peracetic acid should be used for inactivating AAV1 vectors on metal-based surfaces or instruments in order to avoid inadvertent transgene expression in human cells or cross-contamination of instruments.

  17. Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient

    OpenAIRE

    Cereso, Nicolas; Pequignot, Marie O.; Robert, Lorenne; Becker, Fabienne; De Luca, Valerie; Nabholz, Nicolas; Rigau, Valerie; De Vos, John; Christian P Hamel; Kalatzis, Vasiliki

    2014-01-01

    Inherited retinal dystrophies (IRDs) comprise a large group of genetically and clinically heterogeneous diseases that lead to progressive vision loss, for which a paucity of disease-mimicking animal models renders preclinical studies difficult. We sought to develop pertinent human cellular IRD models, beginning with choroideremia, caused by mutations in the CHM gene encoding Rab escort protein 1 (REP1). We reprogrammed REP1-deficient fibroblasts from a CHM -/y patient into induced pluripotent...

  18. Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation

    Science.gov (United States)

    Igarashi, Tsutomu; Kobayashi, Maika; Kameya, Shuhei; Fujimoto, Chiaki; Nakamoto, Kenji; Takahashi, Hisatomo; Igarashi, Toru; Miyake, Noriko; Iijima, Osamu; Hirai, Yukihiko; Shimada, Takashi; Okada, Takashi; Takahashi, Hiroshi

    2016-01-01

    Purpose We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). Methods The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, which were then divided into four groups: control, ischemia/reperfusion (I/R) injury only, I/R injury with tm-scAAV2-GFP, and tm-scAAV2-BDNF. I/R injury was then induced by transiently increasing IOP, after which the rats were euthanized to measure the inner retinal thickness and cell counts in the RGC layer. Results Intravitreous injection of tm-scAAV2-BDNF resulted in high levels of BDNF expression in the neural retina. Histological analysis showed that the inner retinal thickness and cell numbers in the RGC layer were preserved after transient IOP elevation in eyes treated with tm-scAAV2-BDNF but not in the other I/R groups. Significantly reduced glial fibrillary acidic protein (GFAP) immunostaining after I/R injury in the rats that received tm-scAAV2-BDNF indicated reduced retinal stress, and electroretinogram (ERG) analysis confirmed preservation of retinal function in the tm-scAAV2-BDNF group. Conclusions These results demonstrate the feasibility and effectiveness of neuroprotective gene therapy using tm-scAAV2-BDNF to protect the inner retina from transiently high intraocular pressure. An in vivo gene therapeutic approach to the clinical management of retinal diseases in conditions such as glaucoma, retinal artery occlusion, hypertensive retinopathy, and diabetic retinopathy thus appears feasible. PMID:27440998

  19. Efficient and persistent transduction of exocrine and endocrine pancreas by adeno-associated virus type 8.

    Science.gov (United States)

    Cheng, Henrique; Wolfe, Stephanie H; Valencia, Valery; Qian, Keping; Shen, Leping; Phillips, M Ian; Chang, Lung-Ji; Zhang, Y Clare

    2007-09-01

    Efficient delivery of therapeutic proteins into the pancreas represents a major obstacle to gene therapy of pancreatic disorders. The current study compared the efficiency of recombinant lentivirus and adeno-associated virus (AAV) serotypes 1, 2, 5, 8 vectors delivered by intrapancreatic injection for gene transfer in vivo. Our results indicate that lentivirus and AAV 1, 2, 8 are capable of transducing pancreas with the order of efficiency AAV8 >AAV1 > AAV2 >/= lentivirus, whereas AAV5 was ineffective. AAV8 resulted in an efficient, persistent (150 days) and dose-dependent transduction in exocrine acinar cells and endocrine islet cells. Pancreatic ducts and blood vessels were also transduced. Extrapancreatic transduction was restricted to liver. Leukocyte infiltration was not observed in pancreas and blood glucose levels were not altered. Thus, AAV8 represents a safe and effective vehicle for therapeutic gene transfer to pancreas in vivo.

  20. AAV serotype-1 mediates early onset of gene expression in mouse hearts and results in better therapeutic effect.

    Science.gov (United States)

    Su, H; Huang, Y; Takagawa, J; Barcena, A; Arakawa-Hoyt, J; Ye, J; Grossman, W; Kan, Y W

    2006-11-01

    Adeno-associated viral vectors (AAV) are attractive tool for gene therapy for coronary artery disease. However, gene expression in myocardium mediated by AAV serotype 2 (AAV2) does not peak until 4-6 weeks after gene transfer. This delayed gene expression may reduce its therapeutic potential for acute cardiac infarction. To determine whether earlier gene expression and better therapeutic effect could be achieved using a different serotype, CMV promoter driving the EPO gene (AAV-EPO) was packaged into AAV serotypes 1-5 capsids and injected into mouse myocardium. EPO expression was studied by measuring the hematocrits and EPO mRNA. After we found that AAV1 mediates the highest gene expression after 4 days of gene transduction, AAV-LacZ (CMV promoter driving LacZ gene expression) and MLCVEGF (hypoxia-inducible and cardiac-specific VEGF expression) were packaged into AAV1 and 2 capsids. LacZ expression was detected in AAV1-LacZ but not in AAV2-LacZ-injected hearts 1 day after vector injection. Compared to AAV2-MLCVEGF that mediated no significant VEGF expression, AAV1-MLCVEGF mediated 13.7-fold induction of VEGF expression in ischemic hearts 4 days after gene transduction and resulted in more neovasculatures, better cardiac function and less myocardial fibrosis. Thus, AAV1 mediates earlier and higher transgene expression in myocardium and better therapeutic effects.

  1. Rapid, widespread transduction of the murine myocardium using self-complementary Adeno-associated virus.

    Science.gov (United States)

    Andino, Lourdes M; Conlon, Thomas J; Porvasnik, Stacy L; Boye, Sanford L; Hauswirth, William W; Lewin, Alfred S

    2007-12-10

    Adeno-associated virus (AAV) has shown great promise as a gene transfer vector. However, the incubation time needed to attain significant levels of gene expression is often too long for some clinical applications. Self-complementary AAV (scAAV) enters the cell as double stranded DNA, eliminating the step of second-strand synthesis, proven to be the rate-limiting step for gene expression of single-stranded AAV (ssAAV). The aim of this study was to compare the efficiency of these two types of AAV vectors in the murine myocardium. Four day old CD-1 mice were injected with either of the two AAV constructs, both expressing GFP and packaged into the AAV1 capsid. The animals were held for 4, 6, 11 or 21 days, after which they were euthanized and their hearts were excised. Serial sections of the myocardial tissue were used for real-time PCR quantification of AAV genome copies and for confocal microscopy. Although we observed similar numbers of AAV genomes at each of the different time points present in both the scAAV and the ssAAV infected hearts, microscopic analysis showed expression of GFP as early as 4 days in animals injected with the scAAV, while little or no expression was observed with the ssAAV constructs until day 11. AAV transduction of murine myocardium is therefore significantly enhanced using scAAV constructs.

  2. Directed evolution of adeno-associated virus for glioma cell transduction.

    Science.gov (United States)

    Maguire, Casey A; Gianni, Davide; Meijer, Dimphna H; Shaket, Lev A; Wakimoto, Hiroaki; Rabkin, Samuel D; Gao, Guangping; Sena-Esteves, Miguel

    2010-02-01

    Glioblastoma multiforme (GBM) is a serious form of brain cancer for which there is currently no effective treatment. Alternative strategies such as adeno-associated virus (AAV) vector mediated-genetic modification of brain tumor cells with genes encoding anti-tumor proteins have shown promising results in preclinical models of GBM, although the transduction efficiency of these tumors is often low. As higher transduction efficiency of tumor cells should lead to enhanced therapeutic efficacy, a means to rapidly engineer AAV vectors with improved transduction efficiency for individual tumors is an attractive strategy. Here we tested the possibility of identifying high-efficiency AAV vectors for human U87 glioma cells by selection in culture of a newly constructed chimeric AAV capsid library generated by DNA shuffling of six different AAV cap genes (AAV1, AAV2, AAV5, AAVrh.8, AAV9, AAVrh.10). After seven rounds of selection, we obtained a chimeric AAV capsid that transduces U87 cells at high efficiency (97% at a dose of 10(4) genome copies/cell), and at low doses it was 1.45-1.6-fold better than AAV2, which proved to be the most efficient parental capsid. Interestingly, the new AAV capsid displayed robust gene delivery properties to all glioma cells tested (including primary glioma cells) with relative fluorescence indices ranging from 1- to 14-fold higher than AAV2. The selected vector should be useful for in vitro glioma research when efficient transduction of several cell lines is required, and provides proof-of-concept that an AAV library can be used to generate AAV vectors with enhanced transduction efficiency of glioma cells.

  3. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.

    Science.gov (United States)

    Hirsch, Matthew L; Wolf, Sonya J; Samulski, R J

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber's congenital amaurosis. In addition to rAAV's high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package "large" genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6-8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6-8, 2010; Duan et al., J Virol 73(1):161-169, 1999; Duan et al., J Virol 72(11):8568-8577, 1998; Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002). This method involves "splitting" the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002; Ghosh et al., Mol Ther 16(1):124-130, 2008; Ghosh et al., Mol Ther 15(4):750-755, 2007). The other major

  4. Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue

    NARCIS (Netherlands)

    Mingozzi, F.; Chen, Y.; Edmonson, S. C.; Zhou, S.; Thurlings, R. M.; Tak, P. P.; High, K. A.; Vervoordeldonk, M. J.

    2013-01-01

    Antibodies against adeno-associated viral (AAV) vectors are highly prevalent in humans. Both preclinical and clinical studies showed that antibodies against AAV block transduction even at low titers, particularly when the vector is introduced into the bloodstream. Here we measured the neutralizing

  5. Successful Repeated Hepatic Gene Delivery in Mice and Non-human Primates Achieved by Sequential Administration of AAV5ch and AAV1.

    Science.gov (United States)

    Majowicz, Anna; Salas, David; Zabaleta, Nerea; Rodríguez-Garcia, Estefania; González-Aseguinolaza, Gloria; Petry, Harald; Ferreira, Valerie

    2017-08-02

    In the gene therapy field, re-administration of adeno-associated virus (AAV) is an important topic because a decrease in therapeutic protein expression might occur over time. However, an efficient re-administration with the same AAV serotype is impossible due to serotype-specific, anti-AAV neutralizing antibodies (NABs) that are produced after initial AAV treatment. To address this issue, we explored the feasibility of using chimeric AAV serotype 5 (AAV5ch) and AAV1 for repeated liver-targeted gene delivery. To develop a relevant model, we immunized animals with a high dose of AAV5ch-human secreted embryonic alkaline phosphatase (hSEAP) that generates high levels of anti-AAV5ch NAB. Secondary liver transduction with the same dose of AAV1-human factor IX (hFIX) in the presence of high levels of anti-AAV5ch NAB proved to be successful because expression/activity of both reporter transgenes was observed. This is the first time that two different transgenes are shown to be produced by non-human primate (NHP) liver after sequential administration of clinically relevant doses of both AAV5ch and AAV1. The levels of transgene proteins achieved after delivery with AAV5ch and AAV1 illustrate the possibility of both serotypes for liver targeting. Furthermore, transgene DNA and RNA biodistribution patterns provided insight into the potential cause of decrease or loss of transgene protein expression over time in NHPs. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  6. Targeting Photoreceptors via Intravitreal Delivery Using Novel, Capsid-Mutated AAV Vectors: e62097

    National Research Council Canada - National Science Library

    Christine N Kay; Renee C Ryals; George V Aslanidi; Seok Hong Min; Qing Ruan; Jingfen Sun; Frank M Dyka; Daniel Kasuga; Andrea E Ayala; Kim Van Vliet; Mavis Agbandje-McKenna; William W Hauswirth; Sanford L Boye; Shannon E Boye

    2013-01-01

    .... Transduction efficiencies of self-complimentary, capsid-mutant and unmodified AAV vectors containing the smCBA promoter and mCherry cDNA were initially scored in vitro using a cone photoreceptor cell line...

  7. AAV2 X increases AAV6 rep/cap-driven rAAV production

    OpenAIRE

    Cao, M.; Chiriva-Internati, M.; Hermonat, P L

    2015-01-01

    We have recently identified a new gene, involved in DNA replication, at the far 3′ end of the adeno-associated virus type 2 (AAV2) genome. The AAV type 6 (AAV6) genome has a disrupted X open reading frame (ORF) whose two halves, when combined, have full-length homology and comparable size to AAV2 X. Hypothesizing that AAV6 X is inactive, we assessed if AAV2 X augments recombinant (r)AAV2 DNA replication and virion production, but with rep and cap trans-functions of AAV6. Using AAV2 X expressi...

  8. Humoral immunity to AAV-6, 8, and 9 in normal and dystrophic dogs.

    Science.gov (United States)

    Shin, Jin-Hong; Yue, Yongping; Smith, Bruce; Duan, Dongsheng

    2012-03-01

    Adeno-associated virus (AAV)-6, 8, and 9 are promising gene-delivery vectors for testing novel Duchenne muscular dystrophy gene therapy in the canine model. Humoral immunity greatly influences in vivo AAV transduction. However, neutralizing antibodies to AAV-6, 8, and 9 have not been systemically examined in normal and dystrophic dogs. To gain information on the seroprevalence of antibodies to AAV-6, 8, and 9, we measured neutralizing antibody titers using an in vitro transduction inhibition assay. We examined 72 naive serum samples and 26 serum samples obtained from dogs that had received AAV gene transfer. Our data demonstrated that AAV-6 neutralizing antibody was the most prevalent antibody in dogs irrespective of age, gender, disease status (dystrophic or not), and prior parvovirus vaccination history. Surprisingly, high-level anti-AAV-6 antibody was detected at birth in newborn puppies. Further, a robust antibody response was induced in affected, but not normal newborn dogs following systemic AAV gene transfer. Taken together, our data have provided an important baseline on the seroprevalence of AAV-6, 8, and 9 neutralizing antibodies in normal and Duchenne muscular dystrophy dogs. These results will help guide translational AAV gene-therapy studies in dog models of muscular dystrophy.

  9. Muscle-directed gene therapy for hemophilia B with more efficient and less immunogenic AAV vectors.

    Science.gov (United States)

    Wang, L; Louboutin, J-P; Bell, P; Greig, J A; Li, Y; Wu, D; Wilson, J M

    2011-10-01

    Adeno-associated viral vector (AAV)-mediated and muscle-directed gene therapy is a safe and non-invasive approach to treatment of hemophilia B and other genetic diseases. However, low efficiency of transduction, inhibitor formation and high prevalence of pre-existing immunity to the AAV capsid in humans remain as main challenges for AAV2-based vectors using this strategy. Vectors packaged with AAV7, 8 and 9 serotypes have improved gene transfer efficiencies and may provide potential alternatives to overcome these problems. To compare the long-term expression of canine factor IX (cFIX) levels and anti-cFIX antibody responses following intramuscular injection of vectors packaged with AAV1, 2, 5, 7, 8 and 9 capsid in immunocompetent hemophilia B mice. Highest expression was detected in mice injected with AAV2/8 vector (28% of normal), followed by AAV2/9 (15%) and AAV2/7 (10%). cFIX expression by AAV2/1 only ranged from 0 to 5% of normal levels. High incidences of anti-cFIX inhibitor (IgG) were detected in mice injected with AAV2 and 2/5 vectors, followed by AAV2/1. None of the mice treated with AAV2/7, 2/8 and 2/9 developed inhibitors or capsid T cells. AAV7, 8 and 9 are more efficient and safer vectors for muscle-directed gene therapy with high levels of transgene expression and absence of inhibitor formation. The absence of antibody response to transgene by AAV7, 8 and 9 is independent of vector dose but may be due to the fact that these three serotypes are associated with high level distribution to, and transduction of, hepatocytes following i.m. injection. © 2011 International Society on Thrombosis and Haemostasis.

  10. Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons.

    Science.gov (United States)

    Michel, Uwe; Malik, Ibrahim; Ebert, Sandra; Bähr, Mathias; Kügler, Sebastian

    2005-01-14

    Viral vector-based expression of small interfering RNAs is a promising tool for gene regulation, both in cultured cells and in animal models. In this study, we analysed the ability of adeno-associated virus-2 to function as an RNAi vector in cultured primary hippocampal neurons in vitro and in retinal ganglion cells in vivo. We demonstrate a long-lasting, highly efficient, and specific down-regulation of gene expression in vivo and in vitro by the use of bicistronic vectors. This is the first evidence of a cell type-specific long-term (more than three-month-long) RNAi in the eye. Furthermore, our results constitute the prerequisite for the use of this technique in models of neurodegeneration and neuroregeneration in vivo and in vitro.

  11. Intravitreal injection of adeno-associated viral vectors result in the transduction of different types of retinal neurons in neonatal and adult rats: A comparison with lentiviral vectors

    NARCIS (Netherlands)

    Harvey, A.R.; Kamphuis, W.; Eggers, R.; Symons, N.A.; Blits, B.; Niclou, S.; Boer, G. J.; Verhaagen, J.

    2002-01-01

    Replication-deficient viral vectors encoding the marker gene green fluorescent protein (GFP) were injected into the vitreous of newborn, juvenile (P14), and adult rats. We tested two different types of modified virus: adeno-associated viral-2-GFP (AAV-GFP) and lentiviral-GFP vectors (LV-GFP). The

  12. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses.

    Directory of Open Access Journals (Sweden)

    Christina Hölscher

    2015-12-01

    Full Text Available Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.

  13. Intravenous AAV9 Efficiently Transduces Myenteric Neurons in Neonate and Juvenile Mice

    Directory of Open Access Journals (Sweden)

    Sara Elizabeth Gombash

    2014-10-01

    Full Text Available Our recent discovery that adeno-associated virus type 9 (AAV9 can cross the blood brain barrier holds promise for the treatment of global neurological disease. Early studies with AAV9 gene therapy focused on transduction within the brain and spinal cord, but intravenous infusion results in widespread vector dissemination. Therapies for neurological diseases with autonomic or gastrointestinal involvement may require global gene expression. Gastrointestinal complications are often associated with Parkinson’s disease and autism. Lewy bodies, a pathological hallmark of Parkinson’s brains, are routinely identified in the neurons of the enteric nervous system (ENS following colon biopsies from patients. The ENS is the intrinsic nervous system of the gut, and is responsible for coordinating the secretory and motor functions of the gastrointestinal tract. ENS dysfunction can cause severe patient discomfort, malnourishment, or even death as in intestinal pseudo-obstruction (Ogilvie syndrome. Importantly, ENS transduction following systemic vector administration has not been thoroughly evaluated. Here we show that systemic injection of AAV9 into neonate or juvenile mice results in transduction of 25-57% of ENS myenteric neurons. Transgene expression was prominent in choline acetyltransferase positive cells, but not within vasoactive intestinal peptide or neuronal nitric oxide synthase cells, suggesting a bias for cells involved in excitatory signaling. AAV9 transduction in enteric glia is very low compared to CNS astrocytes. Enteric glial transduction was enhanced by using a glial specific promoter. Furthermore, we show that AAV8 results in comparable transduction to AAV9 though AAV1, 5 and 6 are less efficient. These data demonstrate that systemic AAV9 has high affinity for peripheral neural tissue and is useful for future therapeutic development and basic studies of the ENS. Transduction patterns for neurons and glia may differ between ENS and CNS.

  14. Tropisms of AAV for subretinal delivery to the neonatal mouse retina and its application for in vivo rescue of developmental photoreceptor disorders.

    Directory of Open Access Journals (Sweden)

    Satoshi Watanabe

    Full Text Available BACKGROUND: Adeno-associated virus (AAV is well established as a vehicle for in vivo gene transfer into the mammalian retina. This virus is promising not only for gene therapy of retinal diseases, but also for in vivo functional analysis of retinal genes. Previous reports have shown that AAV can infect various cell types in the developing mouse retina. However, AAV tropism in the developing retina has not yet been examined in detail. METHODOLOGY/PRINCIPAL FINDINGS: We subretinally delivered seven AAV serotypes (AAV2/1, 2/2, 2/5, 2/8, 2/9, 2/10, and 2/11 of AAV-CAG-mCherry into P0 mouse retinas, and quantitatively evaluated the tropisms of each serotype by its infecting degree in retinal cells. After subretinal injection of AAV into postnatal day 0 (P0 mouse retinas, various retinal cell types were efficiently transduced with different AAVs. Photoreceptor cells were efficiently transduced with AAV2/5. Retinal cells, except for bipolar and Müller glial cells, were efficiently transduced with AAV2/9. Horizontal and/or ganglion cells were efficiently transduced with AAV2/1, AAV2/2, AAV2/8, AAV2/9 and AAV2/10. To confirm the usefulness of AAV-mediated gene transfer into the P0 mouse retina, we performed AAV-mediated rescue of the Cone-rod homeobox gene knockout (Crx KO mouse, which exhibits an outer segment formation defect, flat electroretinogram (ERG responses, and photoreceptor degeneration. We injected an AAV expressing Crx under the control of the Crx 2kb promoter into the neonatal Crx KO retina. We showed that AAV mediated-Crx expression significantly decreased the abnormalities of the Crx KO retina. CONCLUSION/SIGNIFICANCE: In the current study, we report suitable AAV tropisms for delivery into the developing mouse retina. Using AAV2/5 in photoreceptor cells, we demonstrated the possibility of gene replacement for the developmental disorder and subsequent degeneration of retinal photoreceptors caused by the absence of Crx.

  15. Tropisms of AAV for Subretinal Delivery to the Neonatal Mouse Retina and Its Application for In Vivo Rescue of Developmental Photoreceptor Disorders

    Science.gov (United States)

    Watanabe, Satoshi; Sanuki, Rikako; Ueno, Shinji; Koyasu, Toshiyuki; Hasegawa, Toshiaki; Furukawa, Takahisa

    2013-01-01

    Background Adeno-associated virus (AAV) is well established as a vehicle for in vivo gene transfer into the mammalian retina. This virus is promising not only for gene therapy of retinal diseases, but also for in vivo functional analysis of retinal genes. Previous reports have shown that AAV can infect various cell types in the developing mouse retina. However, AAV tropism in the developing retina has not yet been examined in detail. Methodology/Principal Findings We subretinally delivered seven AAV serotypes (AAV2/1, 2/2, 2/5, 2/8, 2/9, 2/10, and 2/11) of AAV-CAG-mCherry into P0 mouse retinas, and quantitatively evaluated the tropisms of each serotype by its infecting degree in retinal cells. After subretinal injection of AAV into postnatal day 0 (P0) mouse retinas, various retinal cell types were efficiently transduced with different AAVs. Photoreceptor cells were efficiently transduced with AAV2/5. Retinal cells, except for bipolar and Müller glial cells, were efficiently transduced with AAV2/9. Horizontal and/or ganglion cells were efficiently transduced with AAV2/1, AAV2/2, AAV2/8, AAV2/9 and AAV2/10. To confirm the usefulness of AAV-mediated gene transfer into the P0 mouse retina, we performed AAV-mediated rescue of the Cone-rod homeobox gene knockout (Crx KO) mouse, which exhibits an outer segment formation defect, flat electroretinogram (ERG) responses, and photoreceptor degeneration. We injected an AAV expressing Crx under the control of the Crx 2kb promoter into the neonatal Crx KO retina. We showed that AAV mediated-Crx expression significantly decreased the abnormalities of the Crx KO retina. Conclusion/Significance In the current study, we report suitable AAV tropisms for delivery into the developing mouse retina. Using AAV2/5 in photoreceptor cells, we demonstrated the possibility of gene replacement for the developmental disorder and subsequent degeneration of retinal photoreceptors caused by the absence of Crx. PMID:23335994

  16. Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution.

    Science.gov (United States)

    Grimm, Dirk; Büning, Hildegard

    2017-11-01

    Recombinant gene delivery vectors derived from naturally occurring or genetically engineered adeno-associated viruses (AAV) have taken center stage in human gene therapy, fueled by rapidly accumulating and highly encouraging clinical data. Nonetheless, it has also become evident that the current generation of AAV vectors will require improvements in transduction potency, antibody evasion, and cell specificity in order to realize their full potential and to widen applicability in larger patient cohorts. Fortunately, in the recent past, the field has seen a flurry of exciting new developments that enhance our understanding of AAV vector biology, including virus-host interactions, and/or that expand our arsenal of technologies for AAV capsid design and evolution. This review highlights a collection of latest advances in these areas, which, in the authors' opinion, hold particular promise to propel the AAV vector field forward in the near future, especially when applied in combination. These include fundamental novel insights into the AAV life cycle, from an unexpected role of autophagy and interactions with other viruses to the (re-)discovery of a universal AAV receptor and the function of AAV-AAP for capsid assembly. Concurrently, recent successes in the rational design of next-generation synthetic AAV capsids are pointed out, exemplified by the structure-guided derivation of AAV mutants displaying robust in vivo immune evasion. Finally, a variety of new and innovative strategies for high-throughput generation and screening of AAV capsid libraries are briefly reviewed, including Cre recombinase-based selection, ancestral AAV capsid reconstruction, and DNA barcoding of AAV genomes. All of these examples showcase the present momentum in the AAV field and, together with work by many other academic or industrial entities, raise substantial optimism that the remaining hurdles for human gene therapy with AAV vectors will (soon) be overcome.

  17. Exosome-associated AAV vector as a robust and convenient neuroscience tool.

    Science.gov (United States)

    Hudry, E; Martin, C; Gandhi, S; György, B; Scheffer, D I; Mu, D; Merkel, S F; Mingozzi, F; Fitzpatrick, Z; Dimant, H; Masek, M; Ragan, T; Tan, S; Brisson, A R; Ramirez, S H; Hyman, B T; Maguire, C A

    2016-04-01

    Adeno-associated virus (AAV) vectors are showing promise in gene therapy trials and have proven to be extremely efficient biological tools in basic neuroscience research. One major limitation to their widespread use in the neuroscience laboratory is the cost, labor, skill and time-intense purification process of AAV. We have recently shown that AAV can associate with exosomes (exo-AAV) when the vector is isolated from conditioned media of producer cells, and the exo-AAV is more resistant to neutralizing anti-AAV antibodies compared with standard AAV. Here, we demonstrate that simple pelleting of exo-AAV from media via ultracentrifugation results in high-titer vector preparations capable of efficient transduction of central nervous system (CNS) cells after systemic injection in mice. We observed that exo-AAV is more efficient at gene delivery to the brain at low vector doses relative to conventional AAV, even when derived from a serotype that does not normally efficiently cross the blood-brain barrier. Similar cell types were transduced by exo-AAV and conventionally purified vector. Importantly, no cellular toxicity was noted in exo-AAV-transduced cells. We demonstrated the utility and robustness of exo-AAV-mediated gene delivery by detecting direct GFP fluorescence after systemic injection, allowing three-dimensional reconstruction of transduced Purkinje cells in the cerebellum using ex vivo serial two-photon tomography. The ease of isolation combined with the high efficiency of transgene expression in the CNS, may enable the widespread use of exo-AAV as a neuroscience research tool. Furthermore, the ability of exo-AAV to evade neutralizing antibodies while still transducing CNS after peripheral delivery is clinically relevant.

  18. Gene delivery to rat and human Schwann cells and nerve segments: a comparison of AAV 1-9 and lentiviral vectors.

    Science.gov (United States)

    Hoyng, S A; De Winter, F; Gnavi, S; van Egmond, L; Attwell, C L; Tannemaat, M R; Verhaagen, J; Malessy, M J A

    2015-10-01

    Schwann cells (SCs) in an injured peripheral nerve form pathways for regenerating axons. Although these cells initially support regeneration, SCs lose their pro-regenerative properties following a prolonged period of denervation. Gene transfer to SC can enhance their therapeutic potential. In this article, we compared adeno-associated viral (AAV) vectors based on serotypes 1-9 for their capability to transduce cultured primary rat and human SCs and nerve segments. AAV1 is the best serotype to transduce rat SCs, whereas AAV2 and AAV6 performed equally well in human SCs. Transduction of monolayers of cultured rat and human SCs did not accurately predict the transduction efficiency in nerve segments. Rat nerve segments could be genetically modified equally well by a set of four AAV vectors (AAV1, AAV5, AAV7, AAV9), whereas AAV2 was superior in human nerve segments. The current experiments were undertaken as a first step towards future clinical implementation of ex vivo AAV-based gene therapy in surgical nerve repair. The transduction of rat and human SCs and nerve segments by entirely different AAV serotypes, as documented here, highlights one of the challenges of translating gene therapy from experimental animals to human patients.

  19. Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype.

    Science.gov (United States)

    Liu, Xianglan; Magee, Daniel; Wang, Chuansong; McMurphy, Travis; Slater, Andrew; During, Matthew; Cao, Lei

    2014-02-05

    Adipose tissue plays an essential role in metabolic homeostasis, and holds promise as an alternative depot organ in gene therapy. However, efficient methods of gene transfer into adipose tissue in vivo have yet to be established. Here we assessed the transduction efficiency to fat depots by a family of novel engineered hybrid capsid serotypes (Rec1~4) recombinant AAV vectors in comparison with natural serotypes AAV1, AAV8, and AAV9. Rec2 serotype led to widespread transduction in both brown fat and white fat with the highest efficiency among the seven serotypes tested. As a proof-of-efficacy, Rec2 serotype was used to deliver Cre recombinase to adipose tissues of insulin receptor floxed animals. Insulin receptor knockdown led to decreased fat pad mass, morphological and molecular changes in the targeted depot. These novel hybrid AAV vectors can serve as powerful tools to genetically manipulate adipose tissue and provide valuable vehicles to gene therapy targeting adipose tissue.

  20. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors.

    Science.gov (United States)

    Chen, Sifeng; Kapturczak, Matthias; Loiler, Scott A; Zolotukhin, Sergei; Glushakova, Olena Y; Madsen, Kirsten M; Samulski, Richard J; Hauswirth, William W; Campbell-Thompson, Martha; Berns, Kenneth I; Flotte, Terence R; Atkinson, Mark A; Tisher, C Craig; Agarwal, Anupam

    2005-02-01

    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human alpha1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding beta-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies.

  1. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation.

    Science.gov (United States)

    Birch, D G; Hood, D C; Nusinowitz, S; Pepperberg, D R

    1995-07-01

    The leading edge of the rod a-wave in normal human subjects can be fit with a computational model of the activation phase of transduction to provide parameters analogous to those obtained from individual photoreceptors. The authors extend this work to the kinetics of recovery after saturating flashes. Electroretinograms were recorded from three patients with autosomal dominant retinitis pigmentosa and the pro-23-his rhodopsin mutation, two patients with rod monochromatism, and five normal subjects. Rod-only a-waves were obtained for a series of flashes ranging from 4.4 to 10.1 ln (1.9 to 4.4 log) scot td-sec. One set of parameters describing the activation process was derived from fits to the a-wave model. A double-flash paradigm was used to study inactivation mechanisms. The first flash was achromatic and varied in intensity (I(f)) from 6.1 to 13.9 ln (2.6 to 6.0 log) scot td-sec. The second flash was a short-wavelength probe held constant at 9.3 ln (4.0 log) scot td-sec. Cone components were elicited with a photopically matched long-wavelength stimulus and were computer subtracted. Recovery at each I(f) was followed by measuring the amplitude to the probe flash at various interstimulus intervals (ISI). The critical time (Tc) before the initiation of rod recovery was determined from the function relating relative rod amplitude to ISI. Recovery from activation was similar in normal subjects and in patients with rod monochromatism. Over a large range of I(f) above rod saturation, Tc increased in proportion to ln I(f). The mean slope of the function relating Tc to I(f) was 2.3 s/ln I(f) when I(f) varied between 11 and 13.9 ln scot td-sec. Patients with retinitis pigmentosa and the pro-23-his rhodopsin mutation had a decrease in the gain of activation. They also had significantly slower than normal recovery after high test flash intensities, such that the slope of the function relating Tc to ln I(f) was 12.1 seconds. Available data from other species imply that

  2. Efficacy of recombinant adeno-associated viral vectors serotypes 1, 2, and 5 for the transduction of pancreatic and colon carcinoma cells.

    Science.gov (United States)

    Teschendorf, Christian; Emons, Barbara; Muzyczka, Nicholas; Graeven, Ullrich; Schmiegel, Wolff

    2010-06-01

    The development of efficient and specific vector systems remains a central issue in gene therapy. Several different adeno-associated virus (AAV) serotypes have so far been characterized so far which show different tissue tropisms. The vectors used here contained AAV2 transgene cassette containing green fluorescent protein (GFP) in AAV1, AAV2, or AAV5 capsids, producing the recombinant pseudotypes rAAV2/1, rAAV2/2, and rAAV2/5. The transduction efficiency of the different pseudotyped AAV vectors was tested in vitro in pancreatic and colon cancer cells lines (HT-29, BXPC3, and Hs766T). For all three serotypes, the percentage of GFP-positive cells was below 10% at multiplicities of infection (MOI) 100 rAAV vectors when used alone for infection. However, transduction efficiency for rAAV vectors increased dramatically when the cells were co-infected with wild-type adenovirus (wtAd). The percentage of GFP-positive cells ranged from 19.8-65.3% for AAV2/1 and 16.9-70.2% for AAV2/5, respectively. It was highest for rAAV2/2, at 40.9-88.4%. Variation between the cell lines was observed, with BXPC3 scoring the highest transduction rates and HT-29 the lowest. This study indicates that vectors based on distinct AAV serotypes 1, 2, and 5 all transduce pancreatic and colon cell lines poorly when used alone. Co-infection with wtAd increase transduction rates dramatically indicating that slow second-strand synthesis is a reason for the poor transduction efficiency. Due to the poor transduction rates, none of the rAAV serotypes tested here seem to be feasible for the treatment of malignant tumors.

  3. Effective delivery of large genes to the retina by dual AAV vectors

    Science.gov (United States)

    Trapani, Ivana; Colella, Pasqualina; Sommella, Andrea; Iodice, Carolina; Cesi, Giulia; de Simone, Sonia; Marrocco, Elena; Rossi, Settimio; Giunti, Massimo; Palfi, Arpad; Farrar, Gwyneth J; Polishchuk, Roman; Auricchio, Alberto

    2014-01-01

    Retinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, AAV's limited cargo capacity prevents its application to therapies of inherited retinal diseases due to mutations of genes over 5 kb, like Stargardt's disease (STGD) and Usher syndrome type IB (USH1B). Previous methods based on ‘forced’ packaging of large genes into AAV capsids may not be easily translated to the clinic due to the generation of genomes of heterogeneous size which raise safety concerns. Taking advantage of AAV's ability to concatemerize, we generated dual AAV vectors which reconstitute a large gene by either splicing (trans-splicing), homologous recombination (overlapping), or a combination of the two (hybrid). We found that dual trans-splicing and hybrid vectors transduce efficiently mouse and pig photoreceptors to levels that, albeit lower than those achieved with a single AAV, resulted in significant improvement of the retinal phenotype of mouse models of STGD and USH1B. Thus, dual AAV trans-splicing or hybrid vectors are an attractive strategy for gene therapy of retinal diseases that require delivery of large genes. PMID:24150896

  4. Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells.

    Science.gov (United States)

    Sayroo, R; Nolasco, D; Yin, Z; Colon-Cortes, Y; Pandya, M; Ling, C; Aslanidi, G

    2016-01-01

    Viral vectors-based gene therapy is an attractive alternative to common anti-cancer treatments. In the present studies, AAV serotype 6 vectors were identified to be particularly effective in the transduction of human prostate (PC3), breast (T47D) and liver (Huh7) cancer cells. Next, we developed chimeric AAV vectors with Arg-Gly-Asp (RGD) peptide incorporated into the viral capsid to enable specific targeting of integrin-overexpressing malignant cells. These AAV6-RGD vectors improved transduction efficiency approximately 3-fold compared with wild-type AAV6 vectors by enhancing the viral entry into the cells. We also observed that transduction efficiency significantly improved, up to approximately 5-fold, by the mutagenesis of surface-exposed tyrosine and threonine residues involved in the intracellular trafficking of AAV vectors. Therefore, in our study, the AAV6-Y705-731F+T492V vector was identified as the most efficient. The combination of RGD peptide, tyrosine and threonine mutations on the same AAV6 capsid further increased the transduction efficiency, approximately 8-fold in vitro. In addition, we mutated lysine (K531E) to impair the affinity of AAV6 vectors to heparan sulfate proteoglycan. Finally, we showed a significant increase in both specificity and efficiency of AAV6-RGD-Y705-731F+T492V+K531E vectors in a xenograft animal model in vivo. In summary, the approach described here can lead to the development of AAV vectors with selective tropism to human cancer cells.

  5. Intravenous AAV9 efficiently transduces myenteric neurons in neonate and juvenile mice.

    Science.gov (United States)

    Gombash, Sara E; Cowley, Christopher J; Fitzgerald, Julie A; Hall, Jodie C E; Mueller, Christian; Christofi, Fedias L; Foust, Kevin D

    2014-01-01

    Gene therapies for neurological diseases with autonomic or gastrointestinal involvement may require global gene expression. Gastrointestinal complications are often associated with Parkinson's disease and autism. Lewy bodies, a pathological hallmark of Parkinson's brains, are routinely identified in the neurons of the enteric nervous system (ENS) following colon biopsies from patients. The ENS is the intrinsic nervous system of the gut, and is responsible for coordinating the secretory and motor functions of the gastrointestinal tract. ENS dysfunction can cause severe patient discomfort, malnourishment, or even death as in intestinal pseudo-obstruction (Ogilvie syndrome). Importantly, ENS transduction following systemic vector administration has not been thoroughly evaluated. Here we show that systemic injection of AAV9 into neonate or juvenile mice results in transduction of 25-57% of ENS myenteric neurons. Transgene expression was prominent in choline acetyltransferase positive cells, but not within vasoactive intestinal peptide or neuronal nitric oxide synthase cells, suggesting a bias for cells involved in excitatory signaling. AAV9 transduction in enteric glia is very low compared to CNS astrocytes. Enteric glial transduction was enhanced by using a glial specific promoter. Furthermore, we show that AAV8 results in comparable transduction in neonatal mice to AAV9 though AAV1, 5, and 6 are less efficient. These data demonstrate that systemic AAV9 has high affinity for peripheral neural tissue and is useful for future therapeutic development and basic studies of the ENS.

  6. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery.

    Directory of Open Access Journals (Sweden)

    Zongchao Han

    Full Text Available Gene therapy is a critical tool for the treatment of monogenic retinal diseases. However, the limited vector capacity of the current benchmark delivery strategy, adeno-associated virus (AAV, makes development of larger capacity alternatives, such as compacted DNA nanoparticles (NPs, critical. Here we conduct a side-by-side comparison of self-complementary AAV and CK30PEG NPs using matched ITR plasmids. We report that although AAVs are more efficient per vector genome (vg than NPs, NPs can drive gene expression on a comparable scale and longevity to AAV. We show that subretinally injected NPs do not leave the eye while some of the AAV-injected animals exhibited vector DNA and GFP expression in the visual pathways of the brain from PI-60 onward. As a result, these NPs have the potential to become a successful alternative for ocular gene therapy, especially for the multitude of genes too large for AAV vectors.

  7. Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors

    Science.gov (United States)

    CHEN, SIFENG; KAPTURCZAK, MATTHIAS; LOILER, SCOTT A.; ZOLOTUKHIN, SERGEI; GLUSHAKOVA, OLENA Y.; MADSEN, KIRSTEN M.; SAMULSKI, RICHARD J.; HAUSWIRTH, WILLIAM W.; CAMPBELL-THOMPSON, MARTHA; BERNS, KENNETH I.; FLOTTE, TERENCE R.; ATKINSON, MARK A.; TISHER, C. CRAIG

    2006-01-01

    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human α1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding β-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies. OVERVIEW SUMMARY Gene delivery to the vasculature has significant potential as a therapeutic strategy for several cardiovascular disorders including atherosclerosis, hypertension, angiogenesis, and chronic vascular rejection of transplanted organs. However, limited advances have been made in achieving successful vascular endothelial cell gene transfer. The results of the present study demonstrate the superior efficacy of recombinant adeno-associated virus (rAAV) serotype 1 and 5 vectors in comparison to the traditionally used rAAV serotype 2 in transduction of primary vascular endothelial and smooth muscle cells in vitro. Our results have identified sialic acid residues for rAAV1 transduction in endothelial

  8. A NEW RECOMBINANT ADENO-ASSOCIATED VIRUS (AAV)-BASED RANDOM PEPTIDE DISPLAY LIBRARY SYSTEM: INFECTION-DEFECTIVE AAV1.9-3 AS A NOVEL DETARGETED PLATFORM FOR VECTOR EVOLUTION.

    Science.gov (United States)

    Adachi, Kei; Nakai, Hiroyuki

    2010-10-01

    Directed evolution through genetic engineering of viral capsids followed by selection has emerged as a powerful means to create novel recombinant adeno-associated virus (rAAV) vectors with desired tropism and enhanced properties. One of the most effective approaches uses rAAV-based random peptide display libraries. Here we report a novel system based on an infection-defective rAAV1.9-3 as a platform for random peptide display, and show that biopanning of the libraries in vitro effectively identifies the peptides that restore and enhance rAAV transduction. rAAV1.9-3 has a genetically engineered AAV1 capsid with amino acids 445-568 being replaced with those of AAV9, and has been identified as a variant exhibiting significantly impaired infectivity and delayed blood clearance when infused into mice. In this study, we generated rAAV1.9-3 variant libraries in which 7- or 12-mer random peptides were expressed at the capsid amino acid position 590. Three rounds of positive selection for primary human dermal fibroblasts successfully identified new rAAV-peptide variants that transduce them more efficiently than the prototype rAAV2. Thus our study demonstrates that an infection-defective rAAV variant serves as a novel detargeted platform for random peptide display libraries. We also describe a brief review of recent progress in rAAV-based random peptide display library approaches.

  9. A NEW RECOMBINANT ADENO-ASSOCIATED VIRUS (AAV)-BASED RANDOM PEPTIDE DISPLAY LIBRARY SYSTEM: INFECTION-DEFECTIVE AAV1.9-3 AS A NOVEL DETARGETED PLATFORM FOR VECTOR EVOLUTION*

    Science.gov (United States)

    Adachi, Kei; Nakai, Hiroyuki

    2011-01-01

    Directed evolution through genetic engineering of viral capsids followed by selection has emerged as a powerful means to create novel recombinant adeno-associated virus (rAAV) vectors with desired tropism and enhanced properties. One of the most effective approaches uses rAAV-based random peptide display libraries. Here we report a novel system based on an infection-defective rAAV1.9-3 as a platform for random peptide display, and show that biopanning of the libraries in vitro effectively identifies the peptides that restore and enhance rAAV transduction. rAAV1.9-3 has a genetically engineered AAV1 capsid with amino acids 445–568 being replaced with those of AAV9, and has been identified as a variant exhibiting significantly impaired infectivity and delayed blood clearance when infused into mice. In this study, we generated rAAV1.9-3 variant libraries in which 7- or 12-mer random peptides were expressed at the capsid amino acid position 590. Three rounds of positive selection for primary human dermal fibroblasts successfully identified new rAAV-peptide variants that transduce them more efficiently than the prototype rAAV2. Thus our study demonstrates that an infection-defective rAAV variant serves as a novel detargeted platform for random peptide display libraries. We also describe a brief review of recent progress in rAAV-based random peptide display library approaches. PMID:21603583

  10. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector.

    Science.gov (United States)

    Choudhury, Sourav R; Harris, Anne F; Cabral, Damien J; Keeler, Allison M; Sapp, Ellen; Ferreira, Jennifer S; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Su, Qin; Stoica, Lorelei; DiFiglia, Marian; Aronin, Neil; Martin, Douglas R; Gao, Guangping; Sena-Esteves, Miguel

    2016-04-01

    Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.

  11. Sialic acid deposition impairs the utility of AAV9, but not peptide-modified AAVs for brain gene therapy in a mouse model of lysosomal storage disease.

    Science.gov (United States)

    Chen, Yong Hong; Claflin, Kristin; Geoghegan, James C; Davidson, Beverly L

    2012-07-01

    Recombinant vector systems have been recently identified that when delivered systemically can transduce neurons, glia, and endothelia in the central nervous system (CNS), providing an opportunity to develop therapies for diseases affecting the brain without performing direct intracranial injections. Vector systems based on adeno-associated virus (AAV) include AAV serotype 9 (AAV9) and AAVs that have been re-engineered at the capsid level for CNS tropism. Here, we performed a head-to-head comparison of AAV9 and a capsid modified AAV for their abilities to rescue CNS and peripheral disease in an animal model of lysosomal storage disease (LSD), the mucopolysacharidoses (MPS) VII mouse. While the peptide-modified AAV reversed cognitive deficits, improved storage burden in the brain, and substantially prolonged survival, we were surprised to find that AAV9 provided no CNS benefit. Additional experiments demonstrated that sialic acid, a known inhibitor of AAV9, is elevated in the CNS of MPS VII mice. These studies highlight how disease manifestations can dramatically impact the known tropism of recombinant vectors, and raise awareness to assuming similar transduction profiles between normal and disease models.

  12. IL12-mediated liver inflammation reduces the formation of AAV transcriptionally active forms but has no effect over preexisting AAV transgene expression.

    Science.gov (United States)

    Gil-Fariña, Irene; Di Scala, Marianna; Vanrell, Lucia; Olagüe, Cristina; Vales, Africa; High, Katherine A; Prieto, Jesus; Mingozzi, Federico; Gonzalez-Aseguinolaza, Gloria

    2013-01-01

    Recombinant adenoassociated viral vectors (rAAV) have proven to be excellent candidates for gene therapy clinical applications. Recent results showed that cellular immunity to AAV represents a major challenge facing the clinical use of systemic administration of these vectors. Interestingly, no preclinical animal model has previously fully reproduced the clinical findings. The aim of the present work was to enhance the T cell immune response against AAV capsid in mice by the administration of a rAAV expressing the immunostimulatory cytokine IL-12. Our results indicate that although IL-12 expression enhanced the AAV capsid-specific immune response it failed to eliminate transduced hepatocytes and long-term expression was achieved. We found that AAV-mediated transgene expression is altered by IL-12-induced liver inflammation. However, IL-12 expression has no effect over preexisting AAV-mediated transgene expression. IL-12 down-regulates AAV mediated transgene expression via induction of IFN-γ production by NK and T cells, but without altering the transduction efficiency measured by viral genomes. Our results indicate that liver inflammation affects the formation of transcriptionally active AAV vector genomes through an unknown mechanism that can be avoided by the use of DNA-demethylating or anti-inflammatory agents.

  13. Robust Cardiomyocyte-Specific Gene Expression Following Systemic Injection of AAV: In Vivo Gene Delivery Follows a Poisson Distribution

    Science.gov (United States)

    Prasad, Konkal-Matt R.; Xu, Yaqin; Yang, Zequan; Acton, Scott T.; French, Brent A

    2010-01-01

    Newly-isolated serotypes of AAV readily cross the endothelial barrier to provide efficient transgene delivery throughout the body. However, tissue-specific expression is preferred in most experimental studies and gene therapy protocols. Previous efforts to restrict gene expression to the myocardium often relied on direct injection into heart muscle or intracoronary perfusion. Here, we report an AAV vector system employing the cardiac troponin T promoter (cTnT). Using luciferase and eGFP, the efficiency and specificity of cardiac reporter gene expression using AAV serotype capsids: AAV-1, 2, 6, 8 or 9 were tested after systemic administration to 1 week old mice. Luciferase assays showed that the cTnT promoter worked in combination with each of the AAV serotype capsids to provide cardiomyocyte-specific gene expression, but AAV-9 followed closely by AAV-8 was the most efficient. AAV9-mediated gene expression from the cTnT promoter was 640-fold greater in the heart compared to the next highest tissue (liver). eGFP fluorescence indicated a transduction efficiency of 96% using AAV-9 at a dose of only 3.15×1010 viral particles per mouse. Moreover, the intensity of cardiomyocyte eGFP fluorescence measured on a cell-by-cell basis revealed that AAV-mediated gene expression in the heart can be modeled as a Poisson distribution; requiring an average of nearly two vector genomes per cell to attain an 85% transduction efficiency. PMID:20703310

  14. The MRI Contrast Agent Gadoteridol Enhances Distribution of rAAV1 in the Rat Hippocampus

    Science.gov (United States)

    Hullinger, Rikki; Ugalde, Jeanet; Purón-Sierra, Liliana; Osting, Sue; Burger, Corinna

    2013-01-01

    Contrast agents are commonly used in combination with magnetic resonance imaging (MRI) to monitor the distribution of molecules in the brain. Recent experiments conducted in our laboratory have shown that co-infusion of recombinant Adeno-associated virus serotype 5 (rAAV5) and the MRI contrast agent gadoteridol (Gd) enhances vector transduction of in the rat striatum. The goal of this study was to determine whether gadoteridol may also be used as a tool to enhance transduction efficiency of rAAV1 and rAAV5 within the rat hippocampus. We show that Gd/rAAV1-GFP but not Gd/rAAV5-GFP co-infusion results in significantly higher distribution of the transgene both in the injected hemisphere as well as in the contralateral side and adjacent areas of cortex along the injection track. We also show that Gd/rAAV1-GFP co-infusion has no deleterious effect on hippocampal function as assessed by two tests of spatial memory formation. This work indicates that gadoteridol can be exploited as a method to increase transduction efficiency of AAV1 in the hippocampus for animal studies. PMID:24048419

  15. The MRI contrast agent gadoteridol enhances distribution of rAAV1 in the rat hippocampus.

    Science.gov (United States)

    Hullinger, R; Ugalde, J; Purón-Sierra, L; Osting, S; Burger, C

    2013-12-01

    Contrast agents are commonly used in combination with magnetic resonance imaging (MRI) to monitor the distribution of molecules in the brain. Recent experiments conducted in our laboratory have shown that co-infusion of recombinant Adeno-associated virus serotype 5 (rAAV5) and the MRI contrast agent gadoteridol (Gd) enhances vector transduction in the rat striatum. The goal of this study was to determine whether gadoteridol may also be used as a tool to enhance transduction efficiency of rAAV1 and rAAV5 within the rat hippocampus. We show that Gd/rAAV1-GFP but not Gd/rAAV5-GFP co-infusion results in significantly higher distribution of the transgene both in the injected hemisphere as well as in the contralateral side and adjacent areas of cortex along the injection track. We also show that Gd/rAAV1-GFP co-infusion has no deleterious effect on hippocampal function as assessed by two tests of spatial memory formation. This work indicates that Gd can be exploited as a method to increase transduction efficiency of AAV1 in the hippocampus for animal studies.

  16. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model.

    Science.gov (United States)

    Lisowski, Leszek; Dane, Allison P; Chu, Kirk; Zhang, Yue; Cunningham, Sharon C; Wilson, Elizabeth M; Nygaard, Sean; Grompe, Markus; Alexander, Ian E; Kay, Mark A

    2014-02-20

    Recombinant adeno-associated viral (rAAV) vectors have shown early promise in clinical trials. The therapeutic transgene cassette can be packaged in different AAV capsid pseudotypes, each having a unique transduction profile. At present, rAAV capsid serotype selection for a specific clinical trial is based on effectiveness in animal models. However, preclinical animal studies are not always predictive of human outcome. Here, in an attempt to further our understanding of these discrepancies, we used a chimaeric human-murine liver model to compare directly the relative efficiency of rAAV transduction in human versus mouse hepatocytes in vivo. As predicted from preclinical and clinical studies, rAAV2 vectors functionally transduced mouse and human hepatocytes at equivalent but relatively low levels. However, rAAV8 vectors, which are very effective in many animal models, transduced human hepatocytes rather poorly-approximately 20 times less efficiently than mouse hepatocytes. In light of the limitations of the rAAV vectors currently used in clinical studies, we used the same murine chimaeric liver model to perform serial selection using a human-specific replication-competent viral library composed of DNA-shuffled AAV capsids. One chimaeric capsid composed of five different parental AAV capsids was found to transduce human primary hepatocytes at high efficiency in vitro and in vivo, and provided species-selected transduction in primary liver, cultured cells and a hepatocellular carcinoma xenograft model. This vector is an ideal clinical candidate and a reagent for gene modification of human xenotransplants in mouse models of human diseases. More importantly, our results suggest that humanized murine models may represent a more precise approach for both selecting and evaluating clinically relevant rAAV serotypes for gene therapeutic applications.

  17. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery.

    Science.gov (United States)

    Chicoine, L G; Montgomery, C L; Bremer, W G; Shontz, K M; Griffin, D A; Heller, K N; Lewis, S; Malik, V; Grose, W E; Shilling, C J; Campbell, K J; Preston, T J; Coley, B D; Martin, P T; Walker, C M; Clark, K R; Sahenk, Z; Mendell, J R; Rodino-Klapac, L R

    2014-02-01

    Duchenne muscular dystrophy is a monogenic disease potentially treatable by gene replacement. Use of recombinant adeno-associated virus (AAV) will ultimately require a vascular approach to broadly transduce muscle cells. We tested the impact of preexisting AAV antibodies on microdystrophin expression following vascular delivery to nonhuman primates. Rhesus macaques were treated by isolated limb perfusion using a fluoroscopically guided catheter. In addition to serostatus stratification, the animals were placed into one of the three immune suppression groups: no immune suppression, prednisone, and triple immune suppression (prednisone, tacrolimus, and mycophenolate mofetil). The animals were analyzed for transgene expression at 3 or 6 months. Microdystrophin expression was visualized in AAV, rhesus serotype 74 sero-negative animals (mean: 48.0 ± 20.8%) that was attenuated in sero-positive animals (19.6 ± 18.7%). Immunosuppression did not affect transgene expression. Importantly, removal of AAV binding antibodies by plasmapheresis in AAV sero-positive animals resulted in high-level transduction (60.8 ± 18.0%), which is comparable with that of AAV sero-negative animals (53.7 ± 7.6%), whereas non-pheresed sero-positive animals demonstrated significantly lower transduction levels (10.1 ± 6.0%). These data support the hypothesis that removal of AAV binding antibodies by plasmapheresis permits successful and sustained gene transfer in the presence of preexisting immunity (natural infection) to AAV.

  18. Gene transfer properties and structural modeling of human stem cell-derived AAV.

    Science.gov (United States)

    Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K; Van Vliet, Kim; Yang, Ethel; Wong, Kamehameha K; Agbandje-McKenna, Mavis; Chatterjee, Saswati

    2014-09-01

    Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34(+) hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34(+) human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34(+) cells. Every AAV isolated from CD34(+) cells mapped to AAV Clade F. Gene transfer vectors derived from these novel AAVs efficiently underwent entry and postentry processing in human cord blood stem cells and supported stable gene transfer into long-term, in vivo engrafting human HSCs significantly better than other serotypes. AAVHSC-transduced human CD34(+) cells engrafted in vivo and gave rise to differentiated transgene-expressing progeny. Importantly, gene-marked CD34(+) stem cells persisted long term in xenograft recipients, indicating transduction of primitive progenitors. Notably, correlation of structure with function permitted identification of potential capsid components important for HSC transduction. Thus, AAVHSCs represent a new class of genetic vectors for the manipulation of HSC genomes.

  19. Directed evolution of adeno-associated virus (AAV) as vector for muscle gene therapy.

    Science.gov (United States)

    Yang, Lin; Li, Juan; Xiao, Xiao

    2011-01-01

    Adeno-associated virus (AAV) is emerging as a vector of choice for muscle gene therapy because of its effective and stable transduction in striated muscles. AAV naturally evolve into multiple serotypes with diverse capsid gene sequences that are apparently the determinants of their tissue tropism and infectivity. Certain AAV serotypes show robust gene transfer upon direct intramuscular injection, while others are effective in crossing the endothelial barrier to reach muscle when delivered intravenously. Muscular dystrophy gene therapy requires efficient body-wide muscle gene transfer. However, preferential liver transduction by nearly all natural AAV serotypes could be an undesirable feature for muscle-directed applications, especially by means of systemic gene delivery. Here we describe a method of in vitro evolution and in vivo selection of AAV capsids that target striated muscles and detarget the liver. Using DNA shuffling technology, we have generated a capsid gene library by in vitro scrambling and shuffling the capsid genes of natural AAV1 to AAV9. To minimize the bias and limitation of in vitro screening on culture cells, we performed direct in vivo panning in adult mice after intravenous injection of the shuffled capsid library that packaged their own coding sequences. The AAV variants enriched in the heart and muscle are retrieved by capsid gene PCR and subsequently characterized for their tissue tropisms. This directed evolution and in vivo selection method should be useful in generating novel gene therapy vectors for muscle and heart and other tissues.

  20. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  1. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung

    Directory of Open Access Journals (Sweden)

    Sabrina V. Martini

    2016-07-01

    Full Text Available Background/Aims: Adeno-associated virus (AAV vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Methods: Eighteen C57BL/6 mice were randomly assigned into three groups: (1 a control group (CTRL animals underwent intratracheal (i.t. instillation of saline, (2 the wild-type AAV9 group (WT-AAV9, 1010 vg, and (3 the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg, which received (i.t. self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP. Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. Results: No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30% compared with their wild-type counterparts, without eliciting an inflammatory response. Conclusion: Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy.

  2. Postentry processing of recombinant adeno-associated virus type 1 and transduction of the ferret lung are altered by a factor in airway secretions.

    Science.gov (United States)

    Yan, Ziying; Sun, Xingshen; Evans, Idil A; Tyler, Scott R; Song, Yi; Liu, Xiaoming; Sui, Hongshu; Engelhardt, John F

    2013-09-01

    We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems were because of an in vivo secreted factor that alter the transduction biology of rAAV1. Indeed, treatment of rAAV1 with ferret airway secretory fluid (ASF) strongly inhibited rAAV1, but not rAAV2, transduction of primary FAE and HeLa cells. Properties of the ASF inhibitory factor included a strong affinity for the AAV1 capsid, heat-stability, negative charge, and sensitivity to endoproteinase Glu-C. ASF-treated rAAV1 dramatically inhibited apical transduction of FAE ALI cultures (512-fold), while only reducing viral entry by 55-fold, suggesting that postentry processing of virus was influenced by the inhibitor factor. Proteasome inhibitors rescued transduction in the presence of ASF (~1600-fold) without effecting virus internalization, while proteasome inhibitors only enhanced transduction 45-fold in the absence of ASF. These findings demonstrate that a factor in lung secretions can influence intracellular processing of rAAV1 in a proteasome-dependent fashion.

  3. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates.

    Science.gov (United States)

    Gray, Steven J; Matagne, Valerie; Bachaboina, Lavanya; Yadav, Swati; Ojeda, Sergio R; Samulski, R Jude

    2011-06-01

    Other labs have previously reported the ability of adeno-associated virus serotype 9 (AAV9) to cross the blood-brain barrier (BBB). In this report, we carefully characterized variables that might affect AAV9's efficiency for central nervous system (CNS) transduction in adult mice, including dose, vehicle composition, mannitol coadministration, and use of single-stranded versus self-complementary AAV. We report that AAV9 is able to transduce approximately twice as many neurons as astrocytes across the entire extent of the adult rodent CNS at doses of 1.25 × 10¹², 1 × 10¹³, and 8 × 10¹³ vg/kg. Vehicle composition or mannitol coadministration had only modest effects on CNS transduction, suggesting AAV9 crosses the BBB by an active transport mechanism. Self-complementary vectors were greater than tenfold more efficient than single-stranded vectors. When this approach was applied to juvenile nonhuman primates (NHPs) at the middle dose (9-9.5 × 10¹² vg/kg) tested in mice, a reduction in peripheral organ and brain transduction was observed compared to mice, along with a clear shift toward mostly glial transduction. Moreover, the presence of low levels of pre-existing neutralizing antibodies (NAbs) mostly occluded CNS and peripheral transduction using this delivery approach. Our results indicate that high peripheral tropism, limited neuronal transduction in NHPs, and pre-existing NAbs represent significant barriers to human translation of intravascular AAV9 delivery.

  4. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system.

    Science.gov (United States)

    Burger, Corinna; Gorbatyuk, Oleg S; Velardo, Margaret J; Peden, Carmen S; Williams, Philip; Zolotukhin, Sergei; Reier, Paul J; Mandel, Ronald J; Muzyczka, Nicholas

    2004-08-01

    Recombinant adeno-associated virus 2 (rAAV2) has been shown to deliver genes to neurons effectively in the brain, retina, and spinal cord. The characterization of new AAV serotypes has revealed that they have different patterns of transduction in diverse tissues. We have investigated the tropism and transduction frequency in the central nervous system (CNS) of three different rAAV vector serotypes. The vectors contained AAV2 terminal repeats flanking a green fluorescent protein expression cassette under the control of the synthetic CBA promoter, in AAV1, AAV2, or AAV5 capsids, producing the pseudotypes rAAV2/1, rAAV2/2, and rAAV2/5. Rats were injected with rAAV2/1, rAAV2/2, or rAAV2/5 into selected regions of the CNS, including the hippocampus (HPC), substantia nigra (SN), striatum, globus pallidus, and spinal cord. In all regions injected, the three vectors transduced neurons almost exclusively. All three vectors transduced the SN pars compacta with high efficiency, but rAAV2/1 and rAAV2/5 also transduced the pars reticulata. Moreover, rAAV2/1 showed widespread distribution throughout the entire midbrain. In the HPC, rAAV2/1 and rAAV2/5 targeted the pyramidal cell layers in the CA1-CA3 regions, whereas AAV2/2 primarily transduced the hilar region of the dentate gyrus. In general, rAAV2/1 and rAAV2/5 exhibited higher transduction frequencies than rAAV2/2 in all regions injected, although the differences were marginal in some regions. Retrograde transport of rAAV1 and rAAV5 was also observed in particular CNS areas. These results suggest that vectors based on distinct AAV serotypes can be chosen for specific applications in the nervous system. Copyright The American Society of Gene Therapy

  5. Differential myofiber-type transduction preference of adeno-associated virus serotypes 6 and 9

    NARCIS (Netherlands)

    Riaz, Muhammad; Raz, Yotam; Moloney, E.; van Putten, Maaike; Krom, Yvonne D; van der Maarel, Silvere M; Verhaagen, J.; Raz, Vered

    2015-01-01

    BACKGROUND: Gene therapy strategies are promising therapeutic options for monogenic muscular dystrophies, with several currently underways. The adeno-associated viral (AAV) vector is among the most effective gene delivery systems. However, transduction efficiency in skeletal muscles varies between

  6. Differential myofiber-type transduction preference of adeno-associated virus serotypes 6 and 9

    NARCIS (Netherlands)

    Riaz, M.; Raz, Y.; Moloney, E.B.; Putten, M.; Krom, Y.D.; van der Maarel, S.M.; Verhaagen, J.; Raz, V.

    2015-01-01

    Background: Gene therapy strategies are promising therapeutic options for monogenic muscular dystrophies, with several currently underways. The adeno-associated viral (AAV) vector is among the most effective gene delivery systems. However, transduction efficiency in skeletal muscles varies between

  7. Generation of Targeted Adeno-Associated Virus (AAV) Vectors for Human Gene Therapy.

    Science.gov (United States)

    Liu, Yarong; Siriwon, Natnaree; Rohrs, Jennifer A; Wang, Pin

    2015-01-01

    Adeno-associated virus (AAV) vectors are promising human gene delivery vehicles due to their ability to establish long-term gene expression in a wide variety of target tissues; however, the broad native viral tropism raises concerns over the feasibility and safety of their systemic administration. To overcome this issue, much effort has been made to redirect AAVs toward specific tissues. This review presents several design strategies that have been applied to generate AAVs that target specific tissues and cells while inhibiting the transduction of non-target tissues. Multiple methods of vector capsid engineering have shown promise in vitro, including indirect targeting by adaptor systems and direct targeting by the insertion of antibodies or receptor-specific small peptide motifs. Other strategies, including creating mosaic or chimeric capsids and directed evolution, have also been used to successfully retarget AAV vectors. This research will further expand the clinical applications of AAV vectors by enhancing the control over tissue-specific gene delivery.

  8. AAV-mediated delivery of optogenetic constructs to the macaque brain triggers humoral immune responses.

    Science.gov (United States)

    Mendoza, Skyler D; El-Shamayleh, Yasmine; Horwitz, Gregory D

    2017-05-01

    Gene delivery to the primate central nervous system via recombinant adeno-associated viral vectors (AAV) allows neurophysiologists to control and observe neural activity precisely. A current limitation of this approach is variability in vector transduction efficiency. Low levels of transduction can foil experimental manipulations, prompting vector readministration. The ability to make multiple vector injections into the same animal, even in cases where successful vector transduction has already been achieved, is also desirable. However, vector readministration has consequences for humoral immunity and gene delivery that depend on vector dosage and route of administration in complex ways. As part of optogenetic experiments in rhesus monkeys, we analyzed blood sera collected before and after AAV injections into the brain and quantified neutralizing antibodies to AAV using an in vitro assay. We found that injections of AAV1 and AAV9 vectors elevated neutralizing antibody titers consistently. These immune responses were specific to the serotype injected and were long lasting. These results demonstrate that optogenetic manipulations in monkeys trigger immune responses to AAV capsids, suggesting that vector readministration may have a higher likelihood of success by avoiding serotypes injected previously.NEW & NOTEWORTHY Adeno-associated viral vector (AAV)-mediated gene delivery is a valuable tool for neurophysiology, but variability in transduction efficiency remains a bottleneck for experimental success. Repeated vector injections can help overcome this limitation but affect humoral immune state and transgene expression in ways that are poorly understood. We show that AAV vector injections into the primate central nervous system trigger long-lasting and serotype-specific immune responses, raising the possibility that switching serotypes may promote successful vector readministration. Copyright © 2017 the American Physiological Society.

  9. Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products.

    Science.gov (United States)

    Yuasa, K; Yoshimura, M; Urasawa, N; Ohshima, S; Howell, J M; Nakamura, A; Hijikata, T; Miyagoe-Suzuki, Y; Takeda, S

    2007-09-01

    Using murine models, we have previously demonstrated that recombinant adeno-associated virus (rAAV)-mediated microdystrophin gene transfer is a promising approach to treatment of Duchenne muscular dystrophy (DMD). To examine further therapeutic effects and the safety issue of rAAV-mediated microdystrophin gene transfer using larger animal models, such as dystrophic dog models, we first investigated transduction efficiency of rAAV in wild-type canine muscle cells, and found that rAAV2 encoding beta-galactosidase effectively transduces canine primary myotubes in vitro. Subsequent rAAV2 transfer into skeletal muscles of normal dogs, however, resulted in low and transient expression of beta-galactosidase together with intense cellular infiltrations in vivo, where cellular and humoral immune responses were remarkably activated. In contrast, rAAV2 expressing no transgene elicited no cellular infiltrations. Co-administration of immunosuppressants, cyclosporine and mycophenolate mofetil could partially improve rAAV2 transduction. Collectively, these results suggest that immune responses against the transgene product caused cellular infiltration and eliminated transduced myofibers in dogs. Furthermore, in vitro interferon-gamma release assay showed that canine splenocytes respond to immunogens or mitogens more susceptibly than murine ones. Our results emphasize the importance to scrutinize the immune responses to AAV vectors in larger animal models before applying rAAV-mediated gene therapy to DMD patients.

  10. Adeno-associated virus serotype 1 (AAV1)- and AAV5-antibody complex structures reveal evolutionary commonalities in parvovirus antigenic reactivity.

    Science.gov (United States)

    Tseng, Yu-Shan; Gurda, Brittney L; Chipman, Paul; McKenna, Robert; Afione, Sandra; Chiorini, John A; Muzyczka, Nicholas; Olson, Norman H; Baker, Timothy S; Kleinschmidt, Jürgen; Agbandje-McKenna, Mavis

    2015-02-01

    The clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions. The adeno-associated viruses (AAVs) are promising vectors for in vivo therapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that report therapeutic

  11. Celastrol enhances AAV1-mediated gene expression in mice adipose tissues.

    Science.gov (United States)

    Zhang, F-L; Jia, S-Q; Zheng, S-P; Ding, W

    2011-02-01

    The transduction of adeno-associated virus (AAV) in adipose tissues was not well characterized and appeared to be insufficient as compared with other targeted tissues in gene therapy. We have found that celastrol, a chemical from a traditional Chinese herb known to inhibit the proteasome activity, was able to enhance the transgene expression mediated by AAV1 in 3T3-L1 preadipocytes both before and after induced differentiation. A synergism of celastrol and nonionic surfactant pluronic F68 cotreatment on AAV1 transduction was observed in the experiments with rat primary preadipocyte cultures and in adipose tissues in vivo. By fluorescent microscopy using Alexa Fluor 647-labeled AAV and quantitative PCR assays, we found that celastrol treatments increased the nuclear distribution of AAV genomic DNAs, but not the total amount of viral cellular uptake in preadipocytes, which was different from the effect of pluronic F68 treatment to significantly promote the AAV internalization. Our data suggested that bioactive monomeric compounds extracted from herbal medicines might be used to facilitate AAV-mediated gene transfer applications.

  12. AAV-CRISPR/Cas9-Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro.

    Science.gov (United States)

    Wu, Wenyi; Duan, Yajian; Ma, Gaoen; Zhou, Guohong; Park-Windhol, Cindy; D'Amore, Patricia A; Lei, Hetian

    2017-12-01

    Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)-mediated CRISPR (clustered regularly interspaced short palindromic repeats)-associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events. The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined. AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs. AAV-CRISRP/Cas9-mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.

  13. Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation

    OpenAIRE

    Igarashi, Tsutomu; Miyake, Koichi; Kobayashi, Maika; Kameya, Shuhei; Fujimoto, Chiaki; Nakamoto, Kenji; Takahashi, Hisatomo; Igarashi, Toru; Miyake, Noriko; Iijima, Osamu; Hirai, Yukihiko; Shimada, Takashi; Okada, Takashi; Takahashi, Hiroshi

    2016-01-01

    Purpose We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). Methods The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, whic...

  14. Evaluation of primitive murine hematopoietic stem and progenitor cell transduction in vitro and in vivo by recombinant adeno-associated virus vector serotypes 1 through 5.

    Science.gov (United States)

    Zhong, Li; Li, Weiming; Li, Yanjun; Zhao, Weihong; Wu, Jianqing; Li, Baozheng; Maina, Njeri; Bischof, Daniela; Qing, Keyun; Weigel-Kelley, Kirsten A; Zolotukhin, Irene; Warrington, Kenneth H; Li, Xiaomiao; Slayton, William B; Yoder, Mervin C; Srivastava, Arun

    2006-03-01

    Conflicting data exist on hematopoietic cell transduction by AAV serotype 2 (AAV2) vectors, and additional AAV serotype vectors have not been evaluated for their efficacy in hematopoietic stem/progenitor cell transduction. We evaluated the efficacy of conventional, single-stranded AAV serotype vectors 1 through 5 in primitive murine hematopoietic stem/progenitor cells in vitro as well as in vivo. In progenitor cell assays using Sca1+ c-kit+ Lin- hematopoietic cells, 9% of the colonies in cultures infected with AAV1 expressed the transgene. Coinfection of AAV1 with self-complementary AAV vectors carrying the gene for T cell protein tyrosine phosphatase (scAAV-TC-PTP) increased the transduction efficiency to 24%, indicating that viral secondstrand DNA synthesis is a rate-limiting step. This was further corroborated by the use of scAAV vectors, which bypass this requirement. In bone marrow transplantation studies involving lethally irradiated syngeneic mice, Sca1+ c-kit+ Lin- cells coinfected with AAV1 +/- scAAV-TC-PTP vectors led to transgene expression in 2 and 7.5% of peripheral blood (PB) cells, respectively, 6 months posttransplantation. In secondary transplantation experiments, 7% of PB cells and 3% of bone marrow (BM) cells expressed the transgene 6 months posttransplantation. Approximately 21% of BM-derived colonies harbored the proviral DNA sequences in integrated forms. These results document that AAV1 is thus far the most efficient vector in transducing primitive murine hematopoietic stem/progenitor cells. Further studies involving scAAV genomes and hematopoietic cell-specific promoters should further augment the transduction efficiency of AAV1 vectors, which should have implications in the optimal use of these vectors in hematopoietic stem cell gene therapy.

  15. Infectious Clones and Vectors Derived from Adeno-Associated Virus (AAV) Serotypes Other Than AAV Type 2

    OpenAIRE

    Rutledge, Elizabeth A.; Halbert, Christine L.; Russell, David W.

    1998-01-01

    Adeno-associated viruses (AAVs) are single-stranded dependent parvoviruses being developed as transducing vectors. Although at least five serotypes exist (AAV types 1 to 5 [AAV1 to -5]), only AAV2, AAV3, and AAV4 have been sequenced, and the vectors in use were almost all derived from AAV2. Here we report the cloning and sequencing of a second AAV3 genome and a new AAV serotype designated AAV6 that is related to AAV1. AAV2, AAV3, and AAV6 were 82% identical at the nucleotide sequence level, a...

  16. Comparative analysis of the transduction efficiency of five adeno associated virus serotypes and VSV-G pseudotype lentiviral vector in lung cancer cells.

    Science.gov (United States)

    Chen, Chiachen; Akerstrom, Victoria; Baus, James; Lan, Michael S; Breslin, Mary B

    2013-03-14

    Lung cancer is the leading cause of cancer-related deaths in the US. Recombinant vectors based on adeno-associated virus (AAV) and lentivirus are promising delivery tools for gene therapy due to low toxicity and long term expression. The efficiency of the gene delivery system is one of the most important factors directly related to the success of gene therapy. We infected SCLC cell lines, SHP-77, DMS 53, NCI-H82, NCI-H69, NCI-H727, NCI-H1155, and NSCLC cell lines, NCI-H23, NCI-H661, and NCI-H460 with VSV-G pseudo-typed lentivirus or 5 AAV serotypes, AAV2/1, AAV2/2, AAV2/4, AAV2/5, and AAV2/8 expressing the CMV promoter mCherry or green fluorescent protein transgene (EGFP). The transduction efficiency was analyzed by fluorescent microscopy and flow cytometry. Of all the serotypes of AAV examined, AAV2/1 was the optimal serotype in most of the lung cancer cell lines except for NCI-H69 and NCI-H82. The highest transduction rate achieved with AAV2/1 was between 30-50% at MOI 100. Compared to all AAV serotypes, lentivirus had the highest transduction efficiency of over 50% at MOI 1. Even in NCI-H69 cells resistant to all AAV serotypes, lentivirus had a 10-40% transduction rate. To date, AAV2 is the most widely-used serotype to deliver a transgene. Our results showed the transduction efficiency of AAVs tested was AAV2/1 > AA2/5 = AAV2/2> > AAV2/4 and AAV2/8. This study demonstrated that VSV-G pseudotyped lentivirus and AAV2/1 can mediate expression of a transgene for lung cancer gene therapy. Overall, our results showed that lentivirus is the best candidate to deliver a transgene into lung cancer cells for treatment.

  17. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of AAV and lentiviral vectors

    OpenAIRE

    Nathanson, Jason L; Yanagawa, Yuchio; Obata, Kunihiko; Callaway, Edward M.

    2009-01-01

    Despite increasingly widespread use of recombinant adeno-associated virus (AAV) and lentiviral (LV) vectors for transduction of neurons in a wide range of brain structures and species, the diversity of cell types within a given brain structure is rarely considered. For example, the ability of a vector to transduce neurons within a brain structure is often assumed to indicate that all neuron types within the structure are transduced. We have characterized the transduction of mouse somatosensor...

  18. The MRI Contrast Agent Gadoteridol Enhances Distribution of rAAV1 in the Rat Hippocampus

    OpenAIRE

    Hullinger, Rikki; Ugalde, Jeanet; Purón-Sierra, Liliana; Osting, Sue; Burger, Corinna

    2013-01-01

    Contrast agents are commonly used in combination with magnetic resonance imaging (MRI) to monitor the distribution of molecules in the brain. Recent experiments conducted in our laboratory have shown that co-infusion of recombinant Adeno-associated virus serotype 5 (rAAV5) and the MRI contrast agent gadoteridol (Gd) enhances vector transduction of in the rat striatum. The goal of this study was to determine whether gadoteridol may also be used as a tool to enhance transduction efficiency of r...

  19. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    Science.gov (United States)

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial.

    Science.gov (United States)

    Vandamme, Céline; Adjali, Oumeya; Mingozzi, Federico

    2017-11-01

    Over the past decade, vectors derived from adeno-associated virus (AAV) have established themselves as a powerful tool for in vivo gene transfer, allowing long-lasting and safe transgene expression in a variety of human tissues. Nevertheless, clinical trials demonstrated how B and T cell immune responses directed against the AAV capsid, likely arising after natural infection with wild-type AAV, might potentially impact gene transfer safety and efficacy in patients. Seroprevalence studies have evidenced that most individuals carry anti-AAV neutralizing antibodies that can inhibit recombinant AAV transduction of target cells following in vivo administration of vector particles. Likewise, liver- and muscle-directed clinical trials have shown that capsid-reactive memory CD8+ T cells could be reactivated and expanded upon presentation of capsid-derived antigens on transduced cells, potentially leading to loss of transgene expression and immune-mediated toxicities. In celebration of the 25th anniversary of the European Society of Gene and Cell Therapy, this review article summarizes progress made during the past decade in understanding and modulating AAV vector immunogenicity. While the knowledge generated has contributed to yield impressive clinical results, several important questions remain unanswered, making the study of immune responses to AAV a priority for the field of in vivo transfer.

  1. Strategy to detect pre-existing immunity to AAV gene therapy.

    Science.gov (United States)

    Falese, L; Sandza, K; Yates, B; Triffault, S; Gangar, S; Long, B; Tsuruda, L; Carter, B; Vettermann, C; Zoog, S J; Fong, S

    2017-11-06

    Gene therapy may offer a new treatment option, particularly for patients with severe hemophilia, based on recent research. However, individuals with pre-existing immunity to adeno-associated viruses (AAVs) may be less likely to benefit from AAV vector-based therapies. To study pre-existing AAV5 immunity in humans, we validated two complementary, sensitive, and scalable in vitro assays to detect AAV5 total antibodies and transduction inhibition (TI). Using these two assays, we found that 53% of samples from 100 healthy male individuals were negative in both assays, 18% were positive in both assays, 5% were positive for total antibodies but negative for TI and, of interest, 24% were negative for total antibodies but positive for TI activity, suggesting the presence of non-antibody‒based neutralizing factors in human plasma. Similar findings were obtained with 24 samples from individuals with hemophilia A. Based on these results, we describe the development of a dual-assay strategy to identify individuals without total AAV5 antibodies or neutralizing factors who may be more likely to respond to AAV5-directed gene therapy. These assays offer a universal, transferrable platform across laboratories to assess the global prevalence of AAV5 antibodies and neutralizing factors in large patient populations to help inform clinical development strategies.Gene Therapy accepted article preview online, 06 November 2017. doi:10.1038/gt.2017.95.

  2. Dual reporter comparative indexing of rAAV pseudotyped vectors in chimpanzee airway.

    Science.gov (United States)

    Flotte, Terence R; Fischer, Anne C; Goetzmann, Jason; Mueller, Christian; Cebotaru, Liudmila; Yan, Ziying; Wang, Lilli; Wilson, James M; Guggino, William B; Engelhardt, John F

    2010-03-01

    Selecting the most efficient recombinant adeno-associated virus (rAAV) serotype for airway gene therapy has been difficult due to cross-specific differences in tropism and immune response between humans and animal models. Chimpanzees--the closest surviving genetic relative of humans--provide a valuable opportunity to select the most effective serotypes for clinical trials in humans. However, designing informative experiments using this protected species is challenging due to limited availability and experimental regulations. We have developed a method using Renilla luciferase (RL) and firefly luciferase (FL) reporters to directly index the relative transduction and immune response of two promising rAAV serotypes following lung coinfection. Analysis of differential luciferase activity in chimpanzee airway brushings demonstrated a 20-fold higher efficiency for rAAV1 over rAAV5 at 90 days, a finding that was similar in polarized human airway epithelia. T-cell responses to AAV5 capsid were stronger than AAV1 capsid. This dual vector indexing approach may be useful in selecting lead vector serotypes for clinical gene therapy and suggests rAAV1 is preferred for cystic fibrosis.

  3. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  4. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S., E-mail: chapmami@ohsu.edu

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  5. Photoreceptor protection by iris pigment epithelial transplantation transduced with AAV-mediated brain-derived neurotrophic factor gene.

    Science.gov (United States)

    Hojo, Masayoshi; Abe, Toshiaki; Sugano, Eriko; Yoshioka, Yuki; Saigo, Yoko; Tomita, Hiroshi; Wakusawa, Ryosuke; Tamai, Makoto

    2004-10-01

    To determine whether subretinal transplantation of iris pigment epithelial (IPE) cells transduced with the adeno-associated virus (AAV2)-mediated brain-derived neurotrophic factor (BDNF) gene can protect photoreceptors against phototoxicity. The BDNF gene was inserted into AAV2 (AAV2-BDNF), and the recombinant AAV2 was transduced into rat IPE (AAV2-BDNF-IPE) cells at various multiplicities of infection (MOI). The concentrations of AAV capsids and BDNF were determined by enzyme-linked immunosorbent assay (ELISA). The AAV2-BDNF-IPE cells were transplanted into the subretinal space of rats, and the rats were placed under constant light on days 1 and 90 after the transplantation. The thickness of the outer nuclear layer was measured in histologic sections and compared to that of control sections. The expression of beta-galactosidase (LacZ) in the subretinal space was confirmed by LacZ staining after AAV2-LacZ-IPE transplantation. BDNF gene expression after transplantation was confirmed by real-time polymerase chain reaction (PCR). Transduction efficiency increased with successive days in culture and increased with higher MOI in vitro. The expression of the BDNF gene in the subretinal space was higher in AAV-BDNF-IPE than with AAV2-LacZ-IPE or with IPE-only transplantation. LacZ expression was observed in the subretinal space 7 and 90 days after transplantation. A statistically significant photoreceptor protection was observed on days 1 and 90 in eyes receiving the AAV2-BDNF-IPE transplant, in both the superior transplant site and the inferior hemispheres which did not receive the transplant. Transplantation of AAV2-BDNF-IPE cells may be an alternative method of delivering neurotrophic factors to the lesion.

  6. Pseudotyped AAV vector-mediated gene transfer in a human fetal trachea xenograft model: implications for in utero gene therapy for cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Sundeep G Keswani

    Full Text Available Lung disease including airway infection and inflammation currently causes the majority of morbidities and mortalities associated with cystic fibrosis (CF, making the airway epithelium and the submucosal glands (SMG novel target cells for gene therapy in CF. These target cells are relatively inaccessible to postnatal gene transfer limiting the success of gene therapy. Our previous work in a human-fetal trachea xenograft model suggests the potential benefit for treating CF in utero. In this study, we aim to validate adeno-associated virus serotype 2 (AAV2 gene transfer in a human fetal trachea xenograft model and to compare transduction efficiencies of pseudotyping AAV2 vectors in fetal xenografts and postnatal xenograft controls.Human fetal trachea or postnatal bronchus controls were xenografted onto immunocompromised SCID mice for a four-week engraftment period. After injection of AAV2/2, 2/1, 2/5, 2/7 or 2/8 with a LacZ reporter into both types of xenografts, we analyzed for transgene expression in the respiratory epithelium and SMGs. At 1 month, transduction by AAV2/2 and AAV2/8 in respiratory epithelium and SMG cells was significantly greater than that of AAV2/1, 2/5, and 2/7 in xenograft tracheas. Efficiency in SMG transduction was significantly greater in AAV2/8 than AAV2/2. At 3 months, AAV2/2 and AAV2/8 transgene expression was >99% of respiratory epithelium and SMG. At 1 month, transduction efficiency of AAV2/2 and AAV2/8 was significantly less in adult postnatal bronchial xenografts than in fetal tracheal xenografts.Based on the effectiveness of AAV vectors in SMG transduction, our findings suggest the potential utility of pseudotyped AAV vectors for treatment of cystic fibrosis. The human fetal trachea xenograft model may serve as an effective tool for further development of fetal gene therapy strategies for the in utero treatment of cystic fibrosis.

  7. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice

    Directory of Open Access Journals (Sweden)

    Vivian W Choi

    Full Text Available Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein. A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1 had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone and photopic (cone electroretinograms (ERGs. The effect was still present after 1 year.

  8. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    Directory of Open Access Journals (Sweden)

    Astra Dinculescu

    Full Text Available Usher syndrome type III (USH3A is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1 gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  9. Adeno-associated virus (AAV) gene therapy for neurological disease.

    Science.gov (United States)

    Weinberg, Marc S; Samulski, R Jude; McCown, Thomas J

    2013-06-01

    Diseases of the central nervous system (CNS) have provided enormous opportunities for the therapeutic application of viral vector gene transfer. Adeno-associated virus (AAV) has been the vector of choice in recent clinical trials of neurological disease, including Parkinson's and Alzheimer's disease, due to the safety, efficacy, and stability of AAV gene transfer to the CNS. This review highlights the strategies employed for improving direct and peripheral targeting of therapeutic vectors to CNS tissue, and considers the significance of cellular and tissue transduction specificity, transgene regulation, and other variables that influence achievement of successful therapeutic goals. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector.

    Science.gov (United States)

    Hutson, T H; Verhaagen, J; Yáñez-Muñoz, R J; Moon, L D F

    2012-01-01

    The corticospinal tract (CST) is extensively used as a model system for assessing potential therapies to enhance neuronal regeneration and functional recovery following spinal cord injury (SCI). However, efficient transduction of the CST is challenging and remains to be optimised. Recombinant adeno-associated viral (AAV) vectors and integration-deficient lentiviral vectors are promising therapeutic delivery systems for gene therapy to the central nervous system (CNS). In the present study the cellular tropism and transduction efficiency of seven AAV vector serotypes (AAV1, 2, 3, 4, 5, 6, 8) and an integration-deficient lentiviral vector were assessed for their ability to transduce corticospinal neurons (CSNs) following intracortical injection. AAV1 was identified as the optimal serotype for transducing cortical and CSNs with green fluorescent protein (GFP) expression detectable in fibres projecting through the dorsal CST (dCST) of the cervical spinal cord. In contrast, AAV3 and AAV4 demonstrated a low efficacy for transducing CNS cells and AAV8 presented a potential tropism for oligodendrocytes. Furthermore, it was shown that neither AAV nor lentiviral vectors generate a significant microglial response. The identification of AAV1 as the optimal serotype for transducing CSNs should facilitate the design of future gene therapy strategies targeting the CST for the treatment of SCI.

  11. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them.

    Science.gov (United States)

    Hareendran, Sangeetha; Balakrishnan, Balaji; Sen, Dwaipayan; Kumar, Sanjay; Srivastava, Alok; Jayandharan, Giridhara R

    2013-11-01

    AAV-based gene transfer protocols have shown remarkable success when directed to immune-privileged sites such as for retinal disorders like Lebers congenital amaurosis. In contrast, AAV-mediated gene transfer into liver or muscle tissue for diseases such as hemophilia B, α1 anti-trypsin deficiency and muscular dystrophy has demonstrated a decline in gene transfer efficacy over time. It is now known that in humans, AAV triggers specific pathways that recruit immune sensors. These factors initiate an immediate reaction against either the viral capsid or the vector encoded protein as part of innate immune response or to produce a more specific adaptive response that generates immunological memory. The vector-transduced cells are then rapidly destroyed due to this immune activation. However, unlike other viral vectors, AAV is not immunogenic in murine models. Its immunogenicity becomes apparent only in large animal models and human subjects. Moreover, humans are natural hosts to AAV and exhibit a high seroprevalence against AAV vectors. This limits the widespread application of AAV vectors into patients with pre-existing neutralising antibodies or memory T cells. To address these issues, various strategies are being tested. Alternate serotype vectors (AAV1-10), efficient expression cassettes, specific tissue targeting, immune-suppression and engineered capsid variants are some approaches proposed to minimise this immune stimulation. In this review, we have summarised the nature of the immune response documented against AAV in various pre-clinical and clinical settings and have further discussed the strategies to evade them. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Adeno-associated virus serotypes 1 to 5 mediated tumor cell directed gene transfer and improvement of transduction efficiency.

    Science.gov (United States)

    Hacker, Ulrich T; Wingenfeld, Lisa; Kofler, David M; Schuhmann, Natascha K; Lutz, Sandra; Herold, Tobias; King, Susan B S; Gerner, Franz M; Perabo, Luca; Rabinowitz, Joseph; McCarty, Douglas M; Samulski, Richard J; Hallek, Michael; Büning, Hildegard

    2005-11-01

    Gene therapy is an attractive new approach for the treatment of cancer. Therefore, the development of efficient vector systems is of crucial importance in this field. Different adeno-associated virus (AAV) serotypes have been characterized so far, which show considerable differences in tissue tropism. Consequently, we aimed to characterize the most efficient serotype for this application. To exclude all influences other than those provided by the capsid, all serotypes contained the same transgene cassette flanked by the AAV2 inverted terminal repeats. We systematically compared these vectors for efficiency in human cancer cell directed gene transfer. In order to identify limiting steps, the influence of second-strand synthesis and proteasomal degradation of AAV in a poorly transducible cell line were examined. AAV2 was the most efficient serotype in all solid tumor cells and primary melanoma cells with transduction rates up to 98 +/- 0.3%. Transduction above 70% could be reached with serotypes 1 (in cervical and prostate carcinoma) and 3 (in cervical, breast, prostate and colon carcinoma) using 1000 genomic particles per cell. In the colon carcinoma cell line HT-29 proteasomal degradation limited AAV1-AAV4-mediated gene transfer. Moreover, inefficient second-strand synthesis prevents AAV2-mediated transgene expression in this cell line. Recent advances in AAV-vector technology suggest that AAV-based vectors can be used for cancer gene therapy. Our comparative analysis revealed that, although AAV2 is the most promising candidate for such an application, serotypes 1 and 3 are valid alternatives. Furthermore, the use of self-complementary AAV vectors and proteasome inhibitors significantly improves cancer cell transduction. Copyright (c) 2005 John Wiley & Sons, Ltd.

  13. Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6.

    Science.gov (United States)

    Wu, Zhijian; Miller, Edward; Agbandje-McKenna, Mavis; Samulski, Richard Jude

    2006-09-01

    Recombinant adeno-associated viruses (AAVs) are promising vectors in the field of gene therapy. Different AAV serotypes display distinct tissue tropism, believed to be related to the distribution of their receptors on target cells. Of the 11 well-characterized AAV serotypes, heparan sulfate proteoglycan and sialic acid have been suggested to be the attachment receptors for AAV type 2 and types 4 and 5, respectively. In this report, we identify the receptor for the two closely related serotypes, AAV1 and AAV6. First, we demonstrate using coinfection experiments and luciferase reporter analysis that AAV1 and AAV6 compete for similar receptors. Unlike heparin sulfate, enzymatic or genetic removal of sialic acid markedly reduced AAV1 and AAV6 binding and transduction. Further analysis using lectin staining and lectin competition assays identified that AAV1 and AAV6 use either alpha2,3-linked or alpha2,6-linked sialic acid when transducing numerous cell types (HepG2, Pro-5, and Cos-7). Treatment of cells with proteinase K but not glycolipid inhibitor reduced AAV1 and AAV6 infection, supporting the hypothesis that the sialic acid that facilitates infection is associated with glycoproteins rather than glycolipids. In addition, we determined by inhibitor (N-benzyl GalNAc)- and cell line-specific (Lec-1) studies that AAV1 and AAV6 require N-linked and not O-linked sialic acid. Furthermore, a resialylation experiment on a deficient Lec-2 cell line confirmed a 2,3 and 2,6 N-linked sialic acid requirement, while studies of mucin with O-linked sialic acid showed no inhibition effect for AAV1 and AAV6 transduction on Cos-7 cells. Finally, using a glycan array binding assay we determined that AAV1 efficiently binds to NeuAcalpha2-3GalNAcbeta1-4GlcNAc, as well as two glycoproteins with alpha2,3 and alpha2,6 N-linked sialic acids. Taken together, competition, genetic, inhibitor, enzymatic reconstitution, and glycan array experiments support alpha2,3 and alpha2,6 sialic acids that

  14. α2,3 and α2,6 N-Linked Sialic Acids Facilitate Efficient Binding and Transduction by Adeno-Associated Virus Types 1 and 6

    Science.gov (United States)

    Wu, Zhijian; Miller, Edward; Agbandje-McKenna, Mavis; Samulski, Richard Jude

    2006-01-01

    Recombinant adeno-associated viruses (AAVs) are promising vectors in the field of gene therapy. Different AAV serotypes display distinct tissue tropism, believed to be related to the distribution of their receptors on target cells. Of the 11 well-characterized AAV serotypes, heparan sulfate proteoglycan and sialic acid have been suggested to be the attachment receptors for AAV type 2 and types 4 and 5, respectively. In this report, we identify the receptor for the two closely related serotypes, AAV1 and AAV6. First, we demonstrate using coinfection experiments and luciferase reporter analysis that AAV1 and AAV6 compete for similar receptors. Unlike heparin sulfate, enzymatic or genetic removal of sialic acid markedly reduced AAV1 and AAV6 binding and transduction. Further analysis using lectin staining and lectin competition assays identified that AAV1 and AAV6 use either α2,3-linked or α2,6-linked sialic acid when transducing numerous cell types (HepG2, Pro-5, and Cos-7). Treatment of cells with proteinase K but not glycolipid inhibitor reduced AAV1 and AAV6 infection, supporting the hypothesis that the sialic acid that facilitates infection is associated with glycoproteins rather than glycolipids. In addition, we determined by inhibitor (N-benzyl GalNAc)- and cell line-specific (Lec-1) studies that AAV1 and AAV6 require N-linked and not O-linked sialic acid. Furthermore, a resialylation experiment on a deficient Lec-2 cell line confirmed a 2,3 and 2,6 N-linked sialic acid requirement, while studies of mucin with O-linked sialic acid showed no inhibition effect for AAV1 and AAV6 transduction on Cos-7 cells. Finally, using a glycan array binding assay we determined that AAV1 efficiently binds to NeuAcα2-3GalNAcβ1-4GlcNAc, as well as two glycoproteins with α2,3 and α2,6 N-linked sialic acids. Taken together, competition, genetic, inhibitor, enzymatic reconstitution, and glycan array experiments support α2,3 and α2,6 sialic acids that are present on N

  15. Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype

    Directory of Open Access Journals (Sweden)

    Xianglan Liu

    2014-01-01

    Full Text Available Adipose tissue plays an essential role in metabolic homeostasis and holds promise as an alternative depot organ in gene therapy. However, efficient methods of gene transfer into adipose tissue in vivo have yet to be established. Here, we assessed the transduction efficiency to fat depots by a family of novel engineered hybrid capsid serotypes (Rec1∼4 recombinant adeno-associated viral (AAV vectors in comparison with natural serotypes AAV1, AAV8, and AAV9. Rec2 serotype led to widespread transduction in both brown fat and white fat with the highest efficiency among the seven serotypes tested. As a proof-of-efficacy, Rec2 serotype was used to deliver Cre recombinase to adipose tissues of insulin receptor floxed animals. Insulin receptor knockdown led to decreased fat pad mass and morphological and molecular changes in the targeted depot. These novel hybrid AAV vectors can serve as powerful tools to genetically manipulate adipose tissue and provide valuable vehicles to gene therapy targeting adipose tissue.

  16. Pseudotyped Adeno-associated Viral Vector Tropism and Transduction Efficiencies in Murine Wound Healing

    OpenAIRE

    Keswani, Sundeep G.; Balaji, Swathi; Le, Louis; Leung, Alice; Lim, Foong-Yen; Habli, Mounira; Jones, Helen N.; Wilson, James M.; Crombleholme, Timothy M.

    2012-01-01

    Cell specific gene transfer and sustained transgene expression are goals of cutaneous gene therapy for tissue repair and regeneration. Adeno-associated virus serotype 2 (AAV2/2) mediated gene transfer to the skin results in stable transgene expression in the muscle fascicles of the panniculus carnosus in mice, with minimal gene transfer to the dermal or epidermal elements. We hypothesized that pseudotyped AAV vectors may have a unique and characteristic tropism and transduction efficiency pro...

  17. Transduction of PACAP38 protects primary cortical neurons from neurotoxic injury

    OpenAIRE

    Sanchez, Alma; Chiriva-Internati, Maurizo; Grammas, Paula

    2008-01-01

    Neurotrophic factors such as pituitary adenylate cyclase activating polypeptide (PACAP38) are promising therapeutics for neurodegenerative diseases. However, delivery of trophic factors into brain neurons remains a challenge. The objective of this study is to determine whether adeno-associated virus (AAV) can mediate PACAP38 gene delivery into neurons in vitro and if transduction of AAV/PACAP38 into cortical neurons protects cells against neurotoxic insult. Primary cortical neuronal cultures ...

  18. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  19. Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain.

    Science.gov (United States)

    Alves, Sandro; Bode, Julia; Bemelmans, Alexis-Pierre; von Kalle, Christof; Cartier, Nathalie; Tews, Björn

    2016-06-20

    Recombinant adeno-associated viral (AAV) vectors have advanced to the vanguard of gene therapy. Numerous naturally occurring serotypes have been used to target cells in various tissues. There is a strong need for fast and dynamic methods which efficiently unravel viral tropism in whole organs. Ultramicroscopy (UM) is a novel fluorescence microscopy technique that images optically cleared undissected specimens, achieving good resolutions at high penetration depths while being non-destructive. UM was applied to obtain high-resolution 3D analysis of AAV transduction in adult mouse brains, especially in the hippocampus, a region of interest for Alzheimer's disease therapy. We separately or simultaneously compared transduction efficacies for commonly used serotypes (AAV9 and AAVrh10) using fluorescent reporter expression. We provide a detailed comparative and quantitative analysis of the transduction profiles. UM allowed a rapid analysis of marker fluorescence expression in neurons with intact projections deep inside the brain, in defined anatomical structures. Major hippocampal neuronal transduction was observed with both vectors, with slightly better efficacy for AAV9 in UM. Glial response and synaptic marker expression did not change post transduction.We propose UM as a novel valuable complementary tool to efficiently and simultaneously unravel tropism of different viruses in a single non-dissected adult rodent brain.

  20. AAV2 Delivery of Flt23k Intraceptors Inhibits Murine Choroidal Neovascularization

    OpenAIRE

    Zhang, Xiaohui; Das, Subrata K.; Passi, Samuel F.; Uehara, Hironori; Bohner, Austin; Chen, Marcus; Tiem, Michelle; Archer, Bonnie; Ambati, Balamurali K

    2014-01-01

    Long-term inhibition of extracellular vascular endothelial growth factor (VEGF) in the treatment of age-related macular degeneration (AMD) may induce retinal neuronal toxicity and risk other side effects. We developed a novel strategy which inhibits retinal pigment epithelium (RPE)-derived VEGF, sparing other highly sensitive retinal tissues. Flt23k, an intraceptor inhibitor of VEGF, was able to inhibit VEGF in vitro. Adeno-associated virus type 2 (AAV2)–mediated expression of Flt23k was main...

  1. Rational design and engineering of a modified adeno-associated virus (AAV1)-based vector system for enhanced retrograde gene delivery.

    Science.gov (United States)

    Davis, Adam S; Federici, Thais; Ray, William C; Boulis, Nicholas M; OʼConnor, Deirdre; Clark, K Reed; Bartlett, Jeffrey S

    2015-02-01

    After injection into muscle and peripheral nerves, a variety of viral vectors undergo retrograde transport to lower motor neurons. However, because of its attractive safety profile and durable gene expression, adeno-associated virus (AAV) remains the only vector to have been applied to the human nervous system for the treatment of neurodegenerative disease. Nonetheless, only a very small fraction of intramuscularly injected AAV vector arrives at the spinal cord. To engineer a novel AAV vector by inserting a neuronal targeting peptide (Tet1), with binding properties similar to those of tetanus toxin, into the AAV1 capsid. Integral to this approach was the use of structure-based design to increase the effectiveness of functional capsid engineering. This approach allowed the optimization of scaffolding regions for effective display of the foreign epitope while minimizing disruption of the native capsid structure. We also validated an approach by which low-titer tropism-modified AAV vectors can be rescued by particle mosaicism with unmodified capsid proteins. Importantly, our rationally engineered AAV1-based vectors exhibited markedly enhanced transduction of cultured motor neurons, diminished transduction of nontarget cells, and markedly superior retrograde delivery compared with unmodified AAV1 vector. This approach promises a significant advancement in the rational engineering of AAV vectors for diseases of the nervous system and other organs.

  2. Transduction of PACAP38 protects primary cortical neurons from neurotoxic injury.

    Science.gov (United States)

    Sanchez, Alma; Chiriva-Internati, Maurizo; Grammas, Paula

    2008-12-19

    Neurotrophic factors such as pituitary adenylate cyclase activating polypeptide (PACAP38) are promising therapeutics for neurodegenerative diseases. However, delivery of trophic factors into brain neurons remains a challenge. The objective of this study is to determine whether adeno-associated virus (AAV) can mediate PACAP38 gene delivery into neurons in vitro and if transduction of AAV/PACAP38 into cortical neurons protects cells against neurotoxic insult. Primary cortical neuronal cultures are transduced with rAAV/PACAP38/GFP and cell survival against the nitric oxide releasing neurotoxin sodium nitroprusside (SNP) determined. GFP expression, a surrogate marker for successful transduction, is detected using fluorescent microscopy. The results show expression of GFP transgene and AAV capsid proteins in neurons. PACAP38 transduction significantly increases cell survival of neurons exposed to SNP. These results support the feasibility of using AAV-mediated delivery of PACAP38 to enhance neuronal survival and suggest that AAV-delivered PACAP38 maybe a therapeutic strategy for neurodegenerative diseases.

  3. Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice.

    Science.gov (United States)

    Rivière, C; Danos, O; Douar, A M

    2006-09-01

    Adeno-associated viral (AAV) vectors promote long-term gene transfer into muscle in many animal species. Increased expression levels may be obtained by using alternative serotypes in combination with repeated administrations. Here we compared AAV vectors based on serotypes 1, 2 and 5 in immunocompetent mice and assessed the feasibility of multiple administrations of either identical (readministration) or different (cross-administration) serotype-based vectors. A 1-year-long dose-response study confirmed the superiority of recombinant (r)AAV1, achieving transduction levels 5 to 10-fold higher than rAAV2 and rAAV5 in mouse skeletal muscle, respectively. Repeated administration demonstrated that increased gene transfer level was achieved with a second injection of rAAV1 following the first administration of rAAV2 or rAAV5. A readministration study with a vector encoding a different gene allowed the evaluation of gene expression from the second vector only. All three rAAVs were inhibited when the animals were previously exposed to the same serotype. In contrast, no significant change in gene expression from the second vector was observed in cross-administration. A humoral immune response was elicited against the viral capsid for all three serotypes following the initial exposure. Neutralizing antibody (NAB) levels correlated with the vector dose injected. No significant cross-reactivity of NAB from a given serotype toward another was observed in vitro. These data provide the first direct comparative evaluation of re- and cross-administration of rAAV1, rAAV2 and rAAV5 in muscle, and further indicate that rAAV1 is capable of transducing muscle tissue when cross-administered.

  4. Postentry Processing of Recombinant Adeno-Associated Virus Type 1 and Transduction of the Ferret Lung Are Altered by a Factor in Airway Secretions

    OpenAIRE

    Yan, Ziying; Sun, Xingshen; Evans, Idil A.; Tyler, Scott R.; Song, Yi; Liu, Xiaoming; Sui, Hongshu; Engelhardt, John F.

    2013-01-01

    We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems wer...

  5. Synergistic antitumor effect of AAV-mediated TRAIL expression combined with cisplatin on head and neck squamous cell carcinoma.

    Science.gov (United States)

    Jiang, Minghong; Liu, Zheng; Xiang, Yang; Ma, Hong; Liu, Shilian; Liu, Yanxin; Zheng, Dexian

    2011-02-03

    Adeno-associated virus-2 (AAV-2)-mediated gene therapy is quite suitable for local or regional application in head and neck cancer squamous cell carcinoma (HNSCC). However, its low transduction efficiency has limited its further development as a therapeutic agent. DNA damaging agents have been shown to enhance AAV-mediated transgene expression. Cisplatin, one of the most effective chemotherapeutic agents, has been recognized to cause cancer cell death by apoptosis with a severe toxicity. This study aims to evaluate the role of cisplatin in AAV-mediated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and the effect on HNSCC both in vitro and in vivo. Five human HNSCC cell lines were treated with recombinant soluble TRAIL (rsTRAIL) and infected with AAV/TRAIL to estimate the sensitivity of the cancer cells to TRAIL-induced cytotoxicity. KB cells were infected with AAV/EGFP with or without cisplatin pretreatment to evaluate the effect of cisplatin on AAV-mediated gene expression. TRAIL expression was detected by ELISA and Western blot. Cytotoxicity was measured by MTT assay and Western blot analysis for caspase-3 and -8 activations. Following the in vitro experiments, TRAIL expression and its tumoricidal activity were analyzed in nude mice with subcutaneous xenografts of HNSCC. HNSCC cell lines showed different sensitivities to rsTRAIL, and KB cells possessed both highest transduction efficacy of AAV and sensitivity to TRAIL among five cell lines. Preincubation of KB cells with subtherapeutic dosage of cisplatin significantly augmented AAV-mediated transgene expression in a heparin sulfate proteoglycan (HSPG)-dependent manner. Furthermore, cisplatin enhanced the killing efficacy of AAV/TRAIL by 3-fold on KB cell line. The AAV mediated TRAIL expression was observed in the xenografted tumors and significantly enhanced by cisplatin. AAV/TRAIL suppressed the tumors growth and cisplatin augmented the tumoricidal activity by two-fold. Furthermore

  6. Synergistic antitumor effect of AAV-mediated TRAIL expression combined with cisplatin on head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Liu Yanxin

    2011-02-01

    Full Text Available Abstract Background Adeno-associated virus-2 (AAV-2-mediated gene therapy is quite suitable for local or regional application in head and neck cancer squamous cell carcinoma (HNSCC. However, its low transduction efficiency has limited its further development as a therapeutic agent. DNA damaging agents have been shown to enhance AAV-mediated transgene expression. Cisplatin, one of the most effective chemotherapeutic agents, has been recognized to cause cancer cell death by apoptosis with a severe toxicity. This study aims to evaluate the role of cisplatin in AAV-mediated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL expression and the effect on HNSCC both in vitro and in vivo. Methods Five human HNSCC cell lines were treated with recombinant soluble TRAIL (rsTRAIL and infected with AAV/TRAIL to estimate the sensitivity of the cancer cells to TRAIL-induced cytotoxicity. KB cells were infected with AAV/EGFP with or without cisplatin pretreatment to evaluate the effect of cisplatin on AAV-mediated gene expression. TRAIL expression was detected by ELISA and Western blot. Cytotoxicity was measured by MTT assay and Western blot analysis for caspase-3 and -8 activations. Following the in vitro experiments, TRAIL expression and its tumoricidal activity were analyzed in nude mice with subcutaneous xenografts of HNSCC. Results HNSCC cell lines showed different sensitivities to rsTRAIL, and KB cells possessed both highest transduction efficacy of AAV and sensitivity to TRAIL among five cell lines. Preincubation of KB cells with subtherapeutic dosage of cisplatin significantly augmented AAV-mediated transgene expression in a heparin sulfate proteoglycan (HSPG-dependent manner. Furthermore, cisplatin enhanced the killing efficacy of AAV/TRAIL by 3-fold on KB cell line. The AAV mediated TRAIL expression was observed in the xenografted tumors and significantly enhanced by cisplatin. AAV/TRAIL suppressed the tumors growth and cisplatin augmented

  7. Microglia-specific targeting by novel capsid-modified AAV6 vectors

    Directory of Open Access Journals (Sweden)

    Awilda M Rosario

    2016-01-01

    Full Text Available Recombinant adeno-associated viruses (rAAV have been widely used in gene therapy applications for central nervous system diseases. Though rAAV can efficiently target neurons and astrocytes in mouse brains, microglia, the immune cells of the brain, are refractile to rAAV. To identify AAV capsids with microglia-specific transduction properties, we initially screened the most commonly used serotypes, AAV1–9 and rh10, on primary mouse microglia cultures. While these capsids were not permissive, we then tested the microglial targeting properties of a newly characterized set of modified rAAV6 capsid variants with high tropism for monocytes. Indeed, these newly characterized rAAV6 capsid variants, specially a triply mutated Y731F/Y705F/T492V form, carrying a self-complementary genome and microglia-specific promoters (F4/80 or CD68 could efficiently and selectively transduce microglia in vitro. Delivery of these constructs in mice brains resulted in microglia-specific expression of green fluorescent protein, albeit at modest levels. We further show that CD68 promoter–driven expression of the inflammatory cytokine, interleukin-6, using this capsid variant leads to increased astrogliosis in the brains of wild-type mice. Our study describes the first instance of AAV-targeted microglial gene expression leading to functional modulation of the innate immune system in mice brains. This provides the rationale for utilizing these unique capsid/promoter combinations for microglia-specific gene targeting for modeling or functional studies.

  8. Microglia-specific targeting by novel capsid-modified AAV6 vectors.

    Science.gov (United States)

    Rosario, Awilda M; Cruz, Pedro E; Ceballos-Diaz, Carolina; Strickland, Michael R; Siemienski, Zoe; Pardo, Meghan; Schob, Keri-Lyn; Li, Andrew; Aslanidi, George V; Srivastava, Arun; Golde, Todd E; Chakrabarty, Paramita

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) have been widely used in gene therapy applications for central nervous system diseases. Though rAAV can efficiently target neurons and astrocytes in mouse brains, microglia, the immune cells of the brain, are refractile to rAAV. To identify AAV capsids with microglia-specific transduction properties, we initially screened the most commonly used serotypes, AAV1-9 and rh10, on primary mouse microglia cultures. While these capsids were not permissive, we then tested the microglial targeting properties of a newly characterized set of modified rAAV6 capsid variants with high tropism for monocytes. Indeed, these newly characterized rAAV6 capsid variants, specially a triply mutated Y731F/Y705F/T492V form, carrying a self-complementary genome and microglia-specific promoters (F4/80 or CD68) could efficiently and selectively transduce microglia in vitro. Delivery of these constructs in mice brains resulted in microglia-specific expression of green fluorescent protein, albeit at modest levels. We further show that CD68 promoter-driven expression of the inflammatory cytokine, interleukin-6, using this capsid variant leads to increased astrogliosis in the brains of wild-type mice. Our study describes the first instance of AAV-targeted microglial gene expression leading to functional modulation of the innate immune system in mice brains. This provides the rationale for utilizing these unique capsid/promoter combinations for microglia-specific gene targeting for modeling or functional studies.

  9. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain.

    Science.gov (United States)

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A; Song, Juan; Asokan, Aravind

    2016-09-08

    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4-/- mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4-/- mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.

  10. Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    DEFF Research Database (Denmark)

    Gesslein, Bodil; Håkansson, Gisela; Carpio, Ronald

    2010-01-01

    The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion.......The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion....

  11. Impact of capsid modifications by selected peptide ligands on recombinant adeno-associated virus serotype 2-mediated gene transduction.

    Science.gov (United States)

    Naumer, Matthias; Popa-Wagner, Ruth; Kleinschmidt, Jürgen A

    2012-10-01

    Vectors based on adeno-associated virus serotype 2 (AAV2) belong to today's most promising and most frequently used viral vectors in human gene therapy. Like in many other vector systems, the broad but non-specific tropism limits their use for certain cell types or tissues. One approach to screen for transduction-improved vectors is the selection of random peptide libraries displayed directly on the AAV2 capsid. Although the AAV2 library system has been widely applied for the successful selection of improved gene therapy vectors, it remains unknown which steps of the transduction process are most affected and therefore critical for the selection of targeting peptides. Attachment to the cell surface is the first essential step of AAV-mediated gene transduction; however, our experiments challenge the conventional belief that enhanced gene transfer is equivalent to more efficient cell binding of recombinant AAV2 vectors. A comparison of the various steps of gene transfer by vectors carrying a wild-type AAV2 capsid or displaying two exemplary peptide ligands selected from AAV2 random libraries on different human tumour cell lines demonstrated strong alterations in cell binding, cellular uptake, as well as intracellular processing of these vectors. Combined, our results suggest that entry and post-entry events are decisive for the selection of the peptides NDVRSAN and GPQGKNS rather than their cell binding efficiency.

  12. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9

    Directory of Open Access Journals (Sweden)

    Jonathan Dashkoff

    2016-01-01

    Full Text Available The capacity of certain adeno-associated virus (AAV vectors to cross the blood–brain barrier after intravenous delivery offers a unique opportunity for noninvasive brain delivery. However, without a well-tailored system, the use of a peripheral route injection may lead to undesirable transgene expression in nontarget cells or organs. To refine this approach, the present study characterizes the transduction profiles of new self-complementary AAV9 (scAAV9 expressing the green fluorescent protein (GFP either under an astrocyte (glial fibrillary acidic (GFA protein or neuronal (Synapsin (Syn promoter, after intravenous injection of adult mice (2 × 1013 vg/kg. ScAAV9-GFA-GFP and scAAV9-Syn-GFP robustly transduce astrocytes (11% and neurons (17%, respectively, without aberrant expression leakage. Interestingly, while the percentages of GFP-positive astrocytes with scAAV9-GFA-GFP are similar to the performances observed with scAAV9-CBA-GFP (broadly active promoter, significant higher percentages of neurons express GFP with scAAV9-Syn-GFP. GFP-positive excitatory as well as inhibitory neurons are observed, as well as motor neurons in the spinal cord. Additionally, both activated (GFAP-positive and resting astrocytes (GFAP-negative express the reporter gene after scAAV9-GFA-GFP injection. These data thoroughly characterize the gene expression specificity of AAVs fitted with neuronal and astrocyte-selective promoters after intravenous delivery, which will prove useful for central nervous system (CNS gene therapy approaches in which peripheral expression of transgene is a concern.

  13. Generation of recombinant adeno-associated virus (rAAV) from an adenoviral vector and functional reconstitution of the NADPH-oxidase.

    Science.gov (United States)

    Thrasher, A J; de Alwis, M; Casimir, C M; Kinnon, C; Page, K; Lebkowski, J; Segal, A W; Levinsky, R J

    1995-09-01

    The human parvovirus, adeno-associated virus-2 (AAV-2), has many attributes that recommend its use as a gene transfer vehicle, including a broad tissue tropism, the ability to integrate stably into the host genome, and efficient transduction of cells which proliferate slowly. However, application to human gene therapy is currently limited by existing methods for generation of recombinant AAV (rAAV), resulting in relatively low transducing titres. In an attempt to overcome some of these problems, we have developed a defective adenoviral vector which improves the efficiency of rAAV vector delivery to cells in which rAAV is propagated, and from which the rAAV genome can be efficiently rescued. A functional copy of the p47phox gene was successfully transferred to cell lines derived from patients with autosomal recessive chronic granulomatous disease (CGD) by rAAV recovered in this way, and function of the NADPH-oxidase was restored to levels which were stable for at least 8 weeks. This method for generation of rAAV, although still limited by the need for cotransfection of AAV Rep and Cap functions, may permit recovery of higher titre transducing stocks from cell lines in which these genes are stably incorporated, and significantly reduces the risk of contamination with wild-type adenovirus (wtAd).

  14. Immune responses to rAAV6: The influence of canine parvovirus vaccination and neonatal administration of viral vector

    Directory of Open Access Journals (Sweden)

    Andrea L H Arnett

    2011-11-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV. rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, one month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.

  15. HBV genes induce cytotoxic T-lymphocyte response upon adeno-associated virus (AAV) vector delivery into dendritic cells.

    Science.gov (United States)

    You, H; Liu, Y; Cong, M; Ping, W; You, C; Zhang, D; Mehta, J L; Hermonat, P L

    2006-09-01

    Hepatitis B virus (HBV) has been an increasing problem throughout the world and remains difficult to treat. But immunotherapeutic approaches offer new, effective treatments. Three recombinant adeno-associated virus (AAV) type 2 vectors, carrying one of the HBV S, C or X gene, were used to load (transduce) professional antigen-presenting dendritic cells (DC) for the purpose of stimulating cytotoxic T lymphocytes (CTL) in vitro. It was found that all three recombinant AAV/HBV antigen virus loaded DC at approximately 90% transduction efficiency. Most importantly, all three AAV-loaded DC stimulated rapid, antigen-specific and major histocompatibility complex (MHC)-restricted CTL. In vitro, these CTL killed (30-50%) synthetic antigen-positive autologous targets as well as HepG2 liver cell targets. In comparing the three antigens, it was found that AAV/HBV-C-derived CTL consistently had the highest killing efficiency. CTL derived from AAV/HBV-C-loaded DC also showed significantly higher killing of targets than that from bacterially generated C-protein-loaded DC. Further studies showed that AAV/HBV-C-derived CTL had higher interferon (IFN)-gamma. These data suggest that AAV/HBV antigen gene-loading of DC may be useful for immunotherapeutic protocols against HBV infection and that the HBV C antigen may be the most useful for this purpose.

  16. Site-specific modification of AAV vector particles with biophysical probes and targeting ligands using biotin ligase.

    Science.gov (United States)

    Stachler, Matthew D; Chen, Irwin; Ting, Alice Y; Bartlett, Jeffrey S

    2008-08-01

    We have developed a highly specific and robust new method for labeling adeno-associated virus (AAV) vector particles with either biophysical probes or targeting ligands. Our approach uses the Escherichia coli enzyme biotin ligase (BirA), which ligates biotin to a 15-amino-acid biotin acceptor peptide (BAP) in a sequence-specific manner. In this study we demonstrate that by using a ketone isotere of biotin as a cofactor we can ligate this probe to BAP-modified AAV capsids. Because ketones are absent from AAV, BAP-modified AAV particles can be tagged with the ketone probe and then specifically conjugated to hydrazide- or hydroxylamine-functionalized molecules. We demonstrate this two-stage modification methodology in the context of a mammalian cell lysate for the labeling of AAV vector particles with various fluorophores, and for the attachment of a synthetic cyclic arginine-glycine-aspartate (RGD) peptide (c(RGDfC)) to target integrin receptors that are present on neovasculature. Fluorophore labeling allowed the straightforward determination of intracellular particle distribution. Ligand conjugation mediated a significant increase in the transduction of endothelial cells in vitro, and permitted the intravascular targeting of AAV vectors to tumor-associated vasculature in vivo. These results suggest that this approach holds significant promise for future studies aimed at understanding and modifying AAV vector-cellular interactions.

  17. Mosaic vectors comprised of modified AAV1 capsid proteins for efficient vector purification and targeting to vascular endothelial cells.

    Science.gov (United States)

    Stachler, M D; Bartlett, J S

    2006-06-01

    Vascular-targeted gene therapies have the potential to treat many of the leading causes of mortality in the western world. Unfortunately, these therapies have been ineffective due to poor vascular gene transfer. The use of alternative virus serotypes and the incorporation of vascular targeting ligands into vectors has resulted in only modest increases in vascular gene transfer. Adeno-associated virus (AAV) 1 has shown the most promise among the AAV vectors for the transduction of vascular endothelial cells. However, no straightforward small-scale purification strategy exists for AAV1 as it does for AAV2 making it difficult to quickly produce AAV1 vector for analysis. Here we have combined two AAV1 capsid protein modifications to enhance vascular gene transfer and allow easy purification of vector particles. Mosaic vector particles have been produced comprised of capsid proteins containing the well-characterized RGD4C modification to target integrins present on the vasculature, and capsid proteins containing a modification that permits metabolic biotinylation and efficient purification of mosaic particles by avidin affinity chromatography. We show that the RGD modification results in a 50-100-fold enhancement in endothelial cell gene transfer that is maintained in biotinylated mosaic AAV1 particles. These results suggest that mosaic virions hold significant promise for targeted gene delivery to the vasculature.

  18. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat.

    Science.gov (United States)

    Bish, Lawrence T; Morine, Kevin; Sleeper, Meg M; Sanmiguel, Julio; Wu, Di; Gao, Guangping; Wilson, James M; Sweeney, H Lee

    2008-12-01

    Heart disease is the leading cause of morbidity and mortality. Cardiac gene transfer may serve as a novel therapeutic approach. This investigation was undertaken to compare cardiac tropisms of adeno-associated virus (AAV) serotypes 1, 6, 7, 8, and 9. Neonatal mice were injected with 2.5 x 10(11) genome copies (GC) of AAV serotype 1, 6, 7, 8, or 9 expressing LacZ under the control of the constitutive chicken beta-actin promoter with cytomegalovirus enhancer promoter via intrapericardial injection and monitored for up to 1 year. Adult rats were injected with 5 x 10(11) GC of the AAV vectors via direct cardiac injection and monitored for 1 month. Cardiac distribution of LacZ expression was assessed by X-Gal histochemistry, and beta-galactosidase activity was quantified in a chemiluminescence assay. Cardiac functional data and biodistribution data were also collected in the rat. AAV9 provided global cardiac gene transfer stable for up to 1 year that was superior to other serotypes. LacZ expression was relatively cardiac specific, and cardiac function was unaffected by gene transfer. AAV9 provides high-level, stable expression in the mouse and rat heart and may provide a simple alternative to the creation of cardiac-specific transgenic mice. AAV9 should be used in rodent cardiac studies and may be the vector of choice for clinical trials of cardiac gene transfer.

  19. Gene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis.

    Science.gov (United States)

    Ku, Cristy A; Chiodo, Vince A; Boye, Sanford L; Goldberg, Andrew F X; Li, Tiansen; Hauswirth, William W; Ramamurthy, Visvanathan

    2011-12-01

    Defects in the photoreceptor-specific gene aryl hydrocarbon receptor interacting protein-like 1 (Aipl1) are associated with Leber congenital amaurosis (LCA), a childhood blinding disease with early-onset retinal degeneration and vision loss. Furthermore, Aipl1 defects are characterized at the most severe end of the LCA spectrum. The rapid photoreceptor degeneration and vision loss observed in the LCA patient population are mimicked in a mouse model lacking AIPL1. Using this model, we evaluated if gene replacement therapy using recent advancements in adeno-associated viral vectors (AAV) provides advantages in preventing rapid retinal degeneration. Specifically, we demonstrated that the novel self-complementary Y733F capsid mutant AAV2/8 (sc-Y733F-AAV) provided greater preservation of photoreceptors and functional vision in Aipl1 null mice compared with single-stranded AAV2/8. The benefits of sc-Y733F-AAV were evident following viral administration during the active phase of retinal degeneration, where only sc-Y733F-AAV treatment achieved functional vision rescue. This result was likely due to higher and earlier onset of Aipl1 expression. Based on our studies, we conclude that the sc-Y733F-AAV2/8 viral vector, to date, achieves the best rescue for rapid retinal degeneration in Aipl1 null mice. Our results provide important considerations for viral vectors to be used in future gene therapy clinical trials targeting a wider severity spectrum of inherited retinal dystrophies.

  20. AAV-Nrf2 Promotes Protection and Recovery in Animal Models of Oxidative Stress.

    Science.gov (United States)

    Liang, Katharine J; Woodard, Kenton T; Weaver, Mark A; Gaylor, John Paul; Weiss, Ellen R; Samulski, R Jude

    2017-03-01

    NRF2 is a transcription factor that drives antioxidant gene expression in multiple organ systems. We hypothesized that Nrf2 overexpression could be therapeutically applied toward diseases in which redox homeostasis is disrupted. In this study, adeno-associated virus (AAV)-Nrf2 was tested in a mouse model of acute acetaminophen-induced liver toxicity and successfully conferred protection from hepatotoxicity, validating the vector design and early onset of NRF2-mediated protection. Furthermore, therapeutic potential of AAV-Nrf2 in chronic disease also was tested in a light-induced mouse model of age-related macular degeneration. Adult BALB/c mice were intravitreally injected with AAV-Nrf2 and subject to light damage following injection. Retinal thickness and function were monitored following light damage using optical coherence tomography and electroretinography, respectively. By 3 months post-damage, injected eyes had greater retinal thickness compared to uninjected controls. At 1 month post-damage, AAV-Nrf2 injection facilitated full functional recovery from light damage. Our results suggest a therapeutic potential for Nrf2 overexpression in acute and long-term capacities in multiple organ systems, opening up doors for combination gene therapy where replacement gene therapy requires additional therapeutic support to prevent further degeneration. Published by Elsevier Inc.

  1. AAV ancestral reconstruction library enables selection of broadly infectious viral variants.

    Science.gov (United States)

    Santiago-Ortiz, J; Ojala, D S; Westesson, O; Weinstein, J R; Wong, S Y; Steinsapir, A; Kumar, S; Holmes, I; Schaffer, D V

    2015-12-01

    Adeno-associated virus (AAV) vectors have achieved clinical efficacy in treating several diseases. However, enhanced vectors are required to extend these landmark successes to other indications and protein engineering approaches may provide the necessary vector improvements to address such unmet medical needs. To generate new capsid variants with potentially enhanced infectious properties and to gain insights into AAV's evolutionary history, we computationally designed and experimentally constructed a putative ancestral AAV library. Combinatorial variations at 32 amino acid sites were introduced to account for uncertainty in their identities. We then analyzed the evolutionary flexibility of these residues, the majority of which have not been previously studied, by subjecting the library to iterative selection on a representative cell line panel. The resulting variants exhibited transduction efficiencies comparable to the most efficient extant serotypes and, in general, ancestral libraries were broadly infectious across the cell line panel, indicating that they favored promiscuity over specificity. Interestingly, putative ancestral AAVs were more thermostable than modern serotypes and did not use sialic acids, galactose or heparan sulfate proteoglycans for cellular entry. Finally, variants mediated 19- to 31-fold higher gene expression in the muscle compared with AAV1, a clinically used serotype for muscle delivery, highlighting their promise for gene therapy.

  2. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids.

    Science.gov (United States)

    Castle, Michael J; Turunen, Heikki T; Vandenberghe, Luk H; Wolfe, John H

    2016-01-01

    More than one hundred naturally occurring variants of adeno-associated virus (AAV) have been identified, and this library has been further expanded by an array of techniques for modification of the viral capsid. AAV capsid variants possess unique antigenic profiles and demonstrate distinct cellular tropisms driven by differences in receptor binding. AAV capsids can be chemically modified to alter tropism, can be produced as hybrid vectors that combine the properties of multiple serotypes, and can carry peptide insertions that introduce novel receptor-binding activity. Furthermore, directed evolution of shuffled genome libraries can identify engineered variants with unique properties, and rational modification of the viral capsid can alter tropism, reduce blockage by neutralizing antibodies, or enhance transduction efficiency. This large number of AAV variants and engineered capsids provides a varied toolkit for gene delivery to the CNS and retina, with specialized vectors available for many applications, but selecting a capsid variant from the array of available vectors can be difficult. This chapter describes the unique properties of a range of AAV variants and engineered capsids, and provides a guide for selecting the appropriate vector for specific applications in the CNS and retina.

  3. AAV-based dual-reporter circuit for monitoring cell signaling in living human cells.

    Science.gov (United States)

    Zhang, Zhiwen; Stickney, Zachary; Duong, Natalie; Curley, Kevin; Lu, Biao

    2017-01-01

    High-throughput methods based on molecular reporters have greatly advanced our knowledge of cell signaling in mammalian cells. However, their ability to monitor various types of cells is markedly limited by the inefficiency of reporter gene delivery. Recombinant adeno-associated virus (AAV) vectors are efficient tools widely used for delivering and expressing transgenes in diverse animal cells in vitro and in vivo. Here we present the design, construction and validation of a novel AAV-based dual-reporter circuit that can be used to monitor and quantify cell signaling in living human cells. We first design and construct the AAV-based reporter system. We then validate the versatility and specificity of this system in monitoring and quantifying two important cell signaling pathways, inflammation (NFκB) and cell growth and differentiation (AP-1), in cultured HEK293 and MCF-7 cells. Our results demonstrate that the AAV reporter system is both specific and versatile, and it can be used in two common experimental protocols including transfection with plasmid DNA and transduction with packaged viruses. Importantly, this system is efficient, with a high signal-to-background noise ratio, and can be easily adapted to monitor other common signaling pathways. The AAV-based system extends the dual-reporter technology to more cell types, allowing for cost-effective and high throughput applications.

  4. Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors.

    Science.gov (United States)

    Basner-Tschakarjan, Etiena; Bijjiga, Enoch; Martino, Ashley T

    2014-01-01

    Transitioning to human trials from pre-clinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL) responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity and explored methods for bypassing these responses. Many efforts toward measuring innate immunity have utilized Toll-like receptor deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T-cells as well as cytotoxicity toward AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T-cell proliferation, but actual transgene level reduction and parameters of cytotoxicity toward transduced target cells have only been shown in one model. The model utilized adoptive transfer of capsid-specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells as well as modulating the response pharmacologically has also

  5. Preclinical Assessment of Immune Responses to AAV (adeno-associated virus Vectors

    Directory of Open Access Journals (Sweden)

    Etiena eBasner-Tschakarjan

    2014-02-01

    Full Text Available Transitioning to human trials from preclinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity, and explored methods for bypassing these responses. Many efforts towards measuring innate immunity have utilized Toll-Like Receptor (TLR deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody (NAb assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T cells as well as cytotoxicity towards AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T cell proliferation, but actual transgene level reduction and parameters of cytotoxicity towards transduced target cells has only been shown in one model. The model utilized adoptive transfer of capsid specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells has also been explored as well

  6. Cytomegalovirus retinitis

    Science.gov (United States)

    ... sharing features on this page, please enable JavaScript. Cytomegalovirus (CMV) retinitis is a viral infection of the ... need treatment to prevent its return. Alternative Names Cytomegalovirus retinitis Images Eye CMV retinitis CMV (cytomegalovirus) References ...

  7. Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders.

    Science.gov (United States)

    Bey, K; Ciron, C; Dubreil, L; Deniaud, J; Ledevin, M; Cristini, J; Blouin, V; Aubourg, P; Colle, M-A

    2017-05-01

    Adeno-associated virus (AAV) gene therapy constitutes a powerful tool for the treatment of neurodegenerative diseases. While AAVs are generally administered systemically to newborns in preclinical studies of neurological disorders, in adults the maturity of the blood-brain barrier (BBB) must be considered when selecting the route of administration. Delivery of AAVs into the cerebrospinal fluid (CSF) represents an attractive approach to target the central nervous system (CNS) and bypass the BBB. In this study, we investigated the efficacy of intra-CSF delivery of a single-stranded (ss) AAV9-CAG-GFP vector in adult mice via intracisternal (iCist) or intralumbar (it-Lumb) administration. It-Lumb ssAAV9 delivery resulted in greater diffusion throughout the entire spinal cord and green fluorescent protein (GFP) expression mainly in the cerebellum, cortex and olfactory bulb. By contrast, iCist delivery led to strong GFP expression throughout the entire brain. Comparison of the transduction efficiency of ssAAV9-CAG-GFP versus ssAAV9-SYN1-GFP following it-Lumb administration revealed widespread and specific GFP expression in neurons and motoneurons of the spinal cord and brain when the neuron-specific synapsin 1 (SYN1) promoter was used. Our findings demonstrate that it-Lumb ssAAV9 delivery is a safe and highly efficient means of targeting the CNS in adult mice.

  8. Non-clinical Safety and Efficacy of an AAV2/8 Vector Administered Intravenously for Treatment of Mucopolysaccharidosis Type VI

    Directory of Open Access Journals (Sweden)

    Rita Ferla

    2017-09-01

    Full Text Available In vivo gene therapy with adeno-associated viral (AAV vectors is safe and effective in humans. We recently demonstrated that AAV8-mediated liver gene transfer is effective in animal models of mucopolysaccharidosis type VI (MPS VI, a rare lysosomal storage disease that is caused by arylsulfatase B (ARSB deficiency. In preparing for a first-in-human trial, we performed non-clinical studies to assess the safety of intravenous administrations of AAV2/8.TBG.hARSB produced under good manufacturing practice-like conditions. No toxicity was observed in AAV-treated mice, except for a transient increase in alanine aminotransferase in females and thyroid epithelial hypertrophy. AAV2/8.TBG.hARSB biodistribution and expression confirmed the liver as the main site of both infection and transduction. Shedding and breeding studies suggest that the risk of both horizontal and germline transmission is minimal. An AAV dose-response study in MPS VI mice was performed to define the range of doses to be used in the clinical study. Overall, these data support the non-clinical safety and efficacy of AAV2/8.TBG.hARSB and pave the way for a phase I/II clinical trial based on intravascular infusions of AAV8 in patients with MPS VI.

  9. Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application.

    Science.gov (United States)

    Monahan, Paul E; Lothrop, Clinton D; Sun, Junjiang; Hirsch, Matthew L; Kafri, Tal; Kantor, Boris; Sarkar, Rita; Tillson, D Michael; Elia, Joseph R; Samulski, R Jude

    2010-11-01

    Delivery of genes that are larger than the wild-type adeno-associated virus (AAV) 4,681 nucleotide genome is inefficient using AAV vectors. We previously demonstrated in vitro that concurrent proteasome inhibitor (PI) treatment improves transduction by AAV vectors encoding oversized transgenes. In this study, an AAV vector with a 5.6 kilobase (kb) factor VIII expression cassette was used to test the effect of an US Food and Drug Administration-approved PI (bortezomib) treatment concurrent with vector delivery in vivo. Intrahepatic vector delivery resulted in factor VIII expression that persisted for >1 year in hemophilia mice. Single-dose bortezomib given with AAV2 or AAV8 factor VIII vector enhanced expression on average ~600 and ~300%, respectively. Moreover, coadministration of AAV8.canineFVIII (1 × 10(13) vg/kg) and bortezomib in hemophilia A dogs (n = 4) resulted in normalization of the whole blood clotting time (WBCT) and 90% reduction in hemorrhages for >32 months compared to untreated hemophilia A dogs (n = 3) or dogs administered vector alone (n = 3). Demonstration of long-term phenotypic correction of hemophilia A dogs with combination adjuvant bortezomib and AAV vector expressing the oversized transgene establishes preclinical studies that support testing in humans and provides a working paradigm to facilitate a significant expansion of therapeutic targets for human gene therapy.

  10. Proteasome Inhibitors Enhance Gene Delivery by AAV Virus Vectors Expressing Large Genomes in Hemophilia Mouse and Dog Models: A Strategy for Broad Clinical Application

    Science.gov (United States)

    Monahan, Paul E; Lothrop, Clinton D; Sun, Junjiang; Hirsch, Matthew L; Kafri, Tal; Kantor, Boris; Sarkar, Rita; Tillson, D Michael; Elia, Joseph R; Samulski, R Jude

    2010-01-01

    Delivery of genes that are larger than the wild-type adeno-associated virus (AAV) 4,681 nucleotide genome is inefficient using AAV vectors. We previously demonstrated in vitro that concurrent proteasome inhibitor (PI) treatment improves transduction by AAV vectors encoding oversized transgenes. In this study, an AAV vector with a 5.6 kilobase (kb) factor VIII expression cassette was used to test the effect of an US Food and Drug Administration–approved PI (bortezomib) treatment concurrent with vector delivery in vivo. Intrahepatic vector delivery resulted in factor VIII expression that persisted for >1 year in hemophilia mice. Single-dose bortezomib given with AAV2 or AAV8 factor VIII vector enhanced expression on average ~600 and ~300%, respectively. Moreover, coadministration of AAV8.canineFVIII (1 × 1013 vg/kg) and bortezomib in hemophilia A dogs (n = 4) resulted in normalization of the whole blood clotting time (WBCT) and 90% reduction in hemorrhages for >32 months compared to untreated hemophilia A dogs (n = 3) or dogs administered vector alone (n = 3). Demonstration of long-term phenotypic correction of hemophilia A dogs with combination adjuvant bortezomib and AAV vector expressing the oversized transgene establishes preclinical studies that support testing in humans and provides a working paradigm to facilitate a significant expansion of therapeutic targets for human gene therapy. PMID:20700109

  11. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'gamma)2 antibody.

    Science.gov (United States)

    Bartlett, J S; Kleinschmidt, J; Boucher, R C; Samulski, R J

    1999-02-01

    We have developed a system for the targeted delivery of adeno-associated virus (AAV) vectors. Targeting is achieved via a bispecific F(ab')2 antibody that mediates a novel interaction between the AAV vector and a specific cell surface receptor expressed on human megakaryocytes. Targeted AAV vectors were able to transduce megakaryocyte cell lines, DAMI and MO7e, which were nonpermissive for normal AAV infection, 70-fold above background and at levels equivalent to permissive K562 cells. Transduction was shown to occur through the specific interaction of the AAV vector-bispecific F(ab')2 complex and cell-associated targeting receptor. Importantly, targeting appeared both selective and restrictive as the endogenous tropism of the AAV vector was significantly reduced. Binding and internalization through the alternative receptor did not alter subsequent steps (escape from endosomes, migration to nucleus, or uncoating) required to successfully transduce target cells. These results demonstrate that AAV vectors can be targeted to a specific cell population and that transduction can be achieved by circumventing the normal virus receptor.

  12. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  13. The AAV vector toolkit: poised at the clinical crossroads

    National Research Council Canada - National Science Library

    Asokan, Aravind; Schaffer, David V; Samulski, R Jude

    2012-01-01

    The discovery of naturally occurring adeno-associated virus (AAV) isolates in different animal species and the generation of engineered AAV strains using molecular genetics tools have yielded a versatile AAV vector toolkit...

  14. Recombinant adeno-associated virus serotype 6 (rAAV2/6-mediated gene transfer to nociceptive neurons through different routes of delivery

    Directory of Open Access Journals (Sweden)

    Beggah Ahmed T

    2009-09-01

    Full Text Available Abstract Background Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV. Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6 to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. Results Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependant manner. More than 90% of transduced cells were small and medium sized neurons (2, predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (≈ 60% and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non

  15. Scalable purification of adeno-associated virus serotype 1 (AAV1) and AAV8 vectors, using dual ion-exchange adsorptive membranes.

    Science.gov (United States)

    Okada, Takashi; Nonaka-Sarukawa, Mutsuko; Uchibori, Ryosuke; Kinoshita, Kazue; Hayashita-Kinoh, Hiromi; Nitahara-Kasahara, Yuko; Takeda, Shin'ichi; Ozawa, Keiya

    2009-09-01

    In vivo gene transduction with adeno-associated virus (AAV)-based vectors depends on laborious procedures for the production of high-titer vector stocks. Purification steps for efficient clearance of impurities such as host cell proteins and empty vector particles are required to meet end-product specifications. Therefore, the development of alternative, realistic methods to facilitate a scalable virus recovery procedure is critical to promote in vivo investigations. However, the conventional purification procedure with resin-based packed-bed chromatography suffers from a number of limitations, including variations in pressure, slow pore diffusion, and large bed volumes. Here we have employed disposable high-performance anion- and cation-exchange membrane adsorbers to effectively purify recombinant viruses. As a result of isoelectric focusing analysis, the isoelectric point of empty particles was found to be significantly higher than that of packaged virions. Therefore, AAV vector purification with the membrane adsorbers was successful and allowed higher levels of gene transfer in vivo without remarkable signs of toxicity or inflammation. Electron microscopy of the AAV vector stocks obtained revealed highly purified virions with as few as 0.8% empty particles. Furthermore, the membrane adsorbers enabled recovery of AAV vectors in the transduced culture supernatant. Also, the ion-exchange enrichment of retroviral vectors bearing the amphotropic envelope was successful. This rapid and scalable viral purification protocol using disposable membrane adsorbers is particularly promising for in vivo experimentation and clinical investigations.

  16. Protein kinase C in porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    DEFF Research Database (Denmark)

    Gesslein, Bodil; Gustafsson, Lotta; Wackenfors, Angelica

    2009-01-01

    Identification of the intracellular signal-transduction pathways activated in retinal ischemia may be important in revealing novel pharmacological targets. To date, most studies have focused on identifying neuroprotective agents. The retinal blood vessels are key organs in circulatory failure, an...

  17. scAAV-mediated gene transfer of interleukin-1-receptor antagonist to synovium and articular cartilage in large mammalian joints.

    Science.gov (United States)

    Watson, R S; Broome, T A; Levings, P P; Rice, B L; Kay, J D; Smith, A D; Gouze, E; Gouze, J-N; Dacanay, E A; Hauswirth, W W; Nickerson, D M; Dark, M J; Colahan, P T; Ghivizzani, S C

    2013-06-01

    With the long-term goal of developing a gene-based treatment for osteoarthritis (OA), we performed studies to evaluate the equine joint as a model for adeno-associated virus (AAV)-mediated gene transfer to large, weight-bearing human joints. A self-complementary AAV2 vector containing the coding regions for human interleukin-1-receptor antagonist (hIL-1Ra) or green fluorescent protein was packaged in AAV capsid serotypes 1, 2, 5, 8 and 9. Following infection of human and equine synovial fibroblasts in culture, we found that both were only receptive to transduction with AAV1, 2 and 5. For these serotypes, however, transgene expression from the equine cells was consistently at least 10-fold higher. Analyses of AAV surface receptor molecules and intracellular trafficking of vector genomes implicate enhanced viral uptake by the equine cells. Following delivery of 1 × 10(11) vector genomes of serotypes 2, 5 and 8 into the forelimb joints of the horse, all three enabled hIL-1Ra expression at biologically relevant levels and effectively transduced the same cell types, primarily synovial fibroblasts and, to a lesser degree, chondrocytes in articular cartilage. These results provide optimism that AAV vectors can be effectively adapted for gene delivery to large human joints affected by OA.

  18. Recombinant self-complementary adeno-associated virus serotype vector-mediated hematopoietic stem cell transduction and lineage-restricted, long-term transgene expression in a murine serial bone marrow transplantation model.

    Science.gov (United States)

    Maina, Njeri; Han, Zongchao; Li, Xiaomiao; Hu, Zhongbo; Zhong, Li; Bischof, Daniela; Weigel-Van Aken, Kirsten A; Slayton, William B; Yoder, Mervin C; Srivastava, Arun

    2008-04-01

    Although conventional recombinant single-stranded adeno-associated virus serotype 2 (ssAAV2) vectors have been shown to efficiently transduce numerous cells and tissues such as brain and muscle, their ability to transduce primary hematopoietic stem cells (HSCs) has been reported to be controversial. We have previously documented that among the ssAAV serotype 1 through 5 vectors, ssAAV1 vectors are more efficient in transducing primary murine HSCs, but that viral second-strand DNA synthesis continues to be a rate-limiting step. In the present studies, we evaluated the transduction efficiency of several novel serotype vectors (AAV1, AAV7, AAV8, and AAV10) and documented efficient transduction of HSCs in a murine serial bone marrow transplantation model. Self-complementary AAV (scAAV) vectors were found to be more efficient than ssAAV vectors, and the use of hematopoietic cell-specific enhancers/promoters, such as the human beta-globin gene DNase I-hypersensitive site 2 enhancer and promoter (HS2-betap) from the beta-globin locus control region (LCR), and the human parvovirus B19 promoter at map unit 6 (B19p6), allowed sustained transgene expression in an erythroid lineage-restricted manner in both primary and secondary transplant recipient mice. The proviral AAV genomes were stably integrated into progenitor cell chromosomal DNA, and did not lead to any overt hematological abnormalities in mice. These studies demonstrate the feasibility of the use of novel scAAV vectors for achieving high-efficiency transduction of HSCs as well as erythroid lineage-restricted expression of a therapeutic gene for the potential gene therapy of beta-thalassemia and sickle cell disease.

  19. Adeno-Associated Virus (AAV) Type 5 Rep Protein Cleaves a Unique Terminal Resolution Site Compared with Other AAV Serotypes

    OpenAIRE

    Chiorini, John A.; Afione, Sandra; Kotin, Robert M

    1999-01-01

    Adeno-associated virus (AAV) replication depends on two viral components for replication: the AAV nonstructural proteins (Rep) in trans, and inverted terminal repeat (ITR) sequences in cis. AAV type 5 (AAV5) is a distinct virus compared to the other cloned AAV serotypes. Whereas the Rep proteins and ITRs of other serotypes are interchangeable and can be used to produce recombinant viral particles of a different serotype, AAV5 Rep proteins cannot cross-complement in the packaging of a genome w...

  20. Reducing the risk of adeno-associated virus (AAV) vector mobilization with AAV type 5 vectors.

    Science.gov (United States)

    Hewitt, F Curtis; Li, Chengwen; Gray, Steven J; Cockrell, Shelley; Washburn, Michael; Samulski, R Jude

    2009-04-01

    Current adeno-associated virus (AAV) gene therapy vectors package a transgene flanked by the terminal repeats (TRs) of AAV type 2 (AAV2). Although these vectors are replication deficient, wild-type (wt) AAV2 prevalent in the human population could lead to replication and packaging of a type 2 TR (TR2)-flanked transgene in trans during superinfection by a helper virus, leading to "mobilization" of the vector genome from treated cells. More importantly, it appears likely that the majority of currently characterized AAV serotypes as well as the majority of new novel isolates are capable of rescuing and replicating AAV2 vector templates. To investigate this possibility, we flanked a green fluorescent protein transgene with type 2 and, the most divergent AAV serotype, type 5 TRs (TR2 or TR5). Consistent with AAV clades, AAV5 specifically replicated TR5 vectors, while AAV2 and AAV6 replicated TR2-flanked vectors. To exploit this specificity, we created a TR5 vector production system for Cap1 to Cap5. Next, we showed that persisting recombinant AAV genomes flanked by TR2s or TR5s were mobilized in vitro after addition of the cognate AAV Rep (as well as Rep6 for TR2) and adenoviral helper. Finally, we showed that a cell line containing a stably integrated wt AAV2 genome resulted in mobilization of a TR2-flanked vector but not a TR5-flanked vector upon adenoviral superinfection. Based on these data and the relative prevalence of wt AAV serotypes in the population, we propose that TR5 vectors have a significantly lower risk of mobilization and should be considered for clinical use.

  1. Transduction of the central nervous system after intracerebroventricular injection of adeno-associated viral vectors in neonatal and juvenile mice.

    Science.gov (United States)

    Gholizadeh, Shervin; Tharmalingam, Sujeenthar; Macaldaz, Margarita E; Hampson, David R

    2013-08-01

    Several neurodevelopmental and neurodegenerative disorders affecting the central nervous system are potentially treatable via viral vector-mediated gene transfer. Adeno-associated viral (AAV) vectors have been used in clinical trials because of their desirable properties including a high degree of safety, efficacy, and stability. Major factors affecting tropism, expression level, and cell type specificity of AAV-mediated transgenes include encapsidation of different AAV serotypes, promoter selection, and the timing of vector administration. In this study, we evaluated the ability of single-stranded AAV2 vectors pseudotyped with viral capsids from serotype 9 (AAV2/9) to transduce the brain and target gene expression to specific cell types after intracerebroventricular injection into mice. Titer-matched AAV2/9 vectors encoding the enhanced green fluorescent protein (eGFP) reporter, driven by the cytomegalovirus (CMV) promoter, or the neuron-specific synapsin-1 promoter, were injected bilaterally into the lateral ventricles of C57/BL6 mice on postnatal day 5 (neonatal) or 21 (juvenile). Brain sections were analyzed 25 days after injection, using immunocytochemistry and confocal microscopy. eGFP immunohistochemistry after neonatal and juvenile administration of viral vectors revealed transduction throughout the brain including the striatum, hippocampus, cerebral cortex, and cerebellum, but with different patterns of cell-specific gene expression. eGFP expression was seen in astrocytes after treatment on postnatal day 5 with vectors carrying the CMV promoter, expanding the usefulness of AAVs for modeling and treating diseases involving glial cell pathology. In contrast, injection of AAV2/9-CMV-eGFP on postnatal day 21 resulted in preferential transduction of neurons. Administration of AAV2/9-eGFP with the synapsin-1 promoter on either postnatal day 5 or 21 resulted in widespread neuronal transduction. These results outline efficient methods and tools for gene delivery

  2. Novel caprine adeno-associated virus (AAV) capsid (AAV-Go.1) is closely related to the primate AAV-5 and has unique tropism and neutralization properties.

    Science.gov (United States)

    Arbetman, Alejandra E; Lochrie, Michael; Zhou, Shangzhen; Wellman, Jennifer; Scallan, Ciaran; Doroudchi, Mohammad M; Randlev, Britta; Patarroyo-White, Susannah; Liu, Tongyao; Smith, Peter; Lehmkuhl, Howard; Hobbs, Lea Ann; Pierce, Glenn F; Colosi, Peter

    2005-12-01

    Preexisting humoral immunity to adeno-associated virus (AAV) vectors may limit their clinical utility in gene delivery. We describe a novel caprine AAV (AAV-Go.1) capsid with unique biological properties. AAV-Go.1 capsid was cloned from goat-derived adenovirus preparations. Surprisingly, AAV-Go.1 capsid was 94% identical to the human AAV-5, with differences predicted to be largely on the surface and on or under the spike-like protrusions. In an in vitro neutralization assay using human immunoglobulin G (IgG) (intravenous immune globulin [IVIG]), AAV-Go.1 had higher resistance than AAV-5 (100-fold) and resistance similar to that of AAV-4 or AAV-8. In an in vivo model, SCID mice were pretreated with IVIG to generate normal human IgG plasma levels prior to the administration of AAV human factor IX vectors. Protein expression after intramuscular administration of AAV-Go.1 was unaffected in IVIG-pretreated mice, while it was reduced 5- and 10-fold after administration of AAV-1 and AAV-8, respectively. In contrast, protein expression after intravenous administration of AAV-Go.1 was reduced 7.1-fold, similar to the 3.8-fold reduction observed after AAV-8 administration in IVIG-pretreated mice, and protein expression was essentially extinguished after AAV-2 administration in mice pretreated with much less IVIG (15-fold). AAV-Go.1 vectors also demonstrated a marked tropism for lung when administered intravenously in SCID mice. The pulmonary tropism and high neutralization resistance to human preexisting antibodies suggest novel therapeutic uses for AAV-Go.1 vectors, including targeting diseases such as cystic fibrosis. Nonprimate sources of AAVs may be useful to identify additional capsids with distinct tropisms and high resistance to neutralization by human preexisting antibodies.

  3. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  4. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice.

    Science.gov (United States)

    Hordeaux, Juliette; Wang, Qiang; Katz, Nathan; Buza, Elizabeth L; Bell, Peter; Wilson, James M

    2018-02-02

    Improved delivery of adeno-associated virus (AAV) vectors to the CNS will greatly enhance their clinical utility. Selection of AAV9 variants in a mouse model led to the isolation of a capsid called PHP.B, which resulted in remarkable transduction of the CNS following intravenous infusion. However, we now show here that this enhanced CNS tropism is restricted to the model in which it was selected, i.e., a Cre transgenic mouse in a C57BL/6J background, and was not found in nonhuman primates or the other commonly used mouse strain BALB/cJ. We also report the potential for serious acute toxicity in NHP after systemic administration of high dose of AAV. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  5. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo.

    Directory of Open Access Journals (Sweden)

    Marie K Bosch

    Full Text Available Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV, serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES, a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.

  6. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo.

    Science.gov (United States)

    Bosch, Marie K; Nerbonne, Jeanne M; Ornitz, David M

    2014-01-01

    Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.

  7. Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes.

    Science.gov (United States)

    Djurovic, Srdjan; Iversen, Nina; Jeansson, Stig; Hoover, Frank; Christensen, Geir

    2004-09-01

    Cardiomyocytes are terminally differentiated cells that to date have been characterized as poor targets for nonviral gene transfer. This study was therefore designed to determine the optimal nonviral gene transfer parameters in cell cultures of neonatal rat cardiomyocytes and to compare them with the efficiency of gene transfer using adeno-associated viral vectors (AAV). Transfection efficiency was measured by quantitative chloramphenicol acetyltransferase type I (CAT)-enzyme-linked immunosorbent assay and beta-galactosidase staining, based on overexpression of reporter genes (CAT and LacZ). The efficiency of CAT/LacZ overexpression was assessed using the following techniques: (1) liposomal reagents, such as: FuGENE 6, LipofectAMINE 2000, LipofectAMINE PLUS, GenePORTER, Metafectene, and LipoGen; (2) electroporation and nucleofector techniques; and (3) an AAV2 vector harboring a lacZ reporter gene. Toxicity was monitored by total protein measurement and by analyzing cell metabolism. On average, Lipofectamine 2000 was the most effective nonviral method examined yielding consistently high transfection rates (8.1% beta-galactosidase-positive cells) combined with low toxicity. Electroporation also resulted in high transfection values (7.5%); however, cellular toxicity was higher than that of Lipofectamine 2000. Finally, transduction with AAV2 vectors provided the highest levels of transduction (88.1%) with no cellular toxicity. We conclude that although transduction with AAV is more efficient (88.1%), transfections with nonviral techniques, when optimized, may provide a useful alternative for overexpression of therapeutic genes in neonatal cardiomyocytes.

  8. Trafficking of adeno-associated virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells.

    Science.gov (United States)

    Merkel, Steven F; Andrews, Allison M; Lutton, Evan M; Mu, Dakai; Hudry, Eloise; Hyman, Bradley T; Maguire, Casey A; Ramirez, Servio H

    2017-01-01

    Developing therapies for central nervous system (CNS) diseases is exceedingly difficult because of the blood-brain barrier (BBB). Notably, emerging technologies may provide promising new options for the treatment of CNS disorders. Adeno-associated virus serotype 9 (AAV9) has been shown to transduce cells in the CNS following intravascular administration in rodents, cats, pigs, and non-human primates. These results suggest that AAV9 is capable of crossing the BBB. However, mechanisms that govern AAV9 transendothelial trafficking at the BBB remain unknown. Furthermore, possibilities that AAV9 may transduce brain endothelial cells or affect BBB integrity still require investigation. Using primary human brain microvascular endothelial cells as a model of the human BBB, we performed transduction and transendothelial trafficking assays comparing AAV9 to AAV2, a serotype that does not cross the BBB or transduce endothelial cells effectively in vivo. Results of our in vitro studies indicate that AAV9 penetrates brain microvascular endothelial cells barriers more effectively than AAV2, but has reduced transduction efficiency. In addition, our data suggest that (i) AAV9 penetrates endothelial barriers through an active, cell-mediated process, and (ii) AAV9 fails to disrupt indicators of BBB integrity such as transendothelial electrical resistance, tight junction protein expression/localization, and inflammatory activation status. Overall, this report shows how human brain endothelial cells configured in BBB models can be utilized for evaluating transendothelial movement and transduction kinetics of various AAV capsids. Importantly, the use of a human in vitro BBB model can provide import insight into the possible effects that candidate AVV gene therapy vectors may have on the status of BBB integrity. Read the Editorial Highlight for this article on page 192. © 2016 International Society for Neurochemistry.

  9. Three-dimensional multipotent progenitor cell aggregates for expansion, osteogenic differentiation and 'in vivo' tracing with AAV vector serotype 6.

    Science.gov (United States)

    Ferreira, J R; Hirsch, M L; Zhang, L; Park, Y; Samulski, R J; Hu, W-S; Ko, C-C

    2013-02-01

    Multipotent adult progenitor cells (MAPCs) are bone marrow-derived stem cells with a high growth rate suitable for therapeutical applications as three-dimensional (3D) aggregates. Combined applications of osteogenically differentiated MAPC (OD-MAPC) aggregates and adeno-associated viral vectors (AAV) in bone bioengineering are still deferred until information with regard to expansion technologies, osteogenic potential, and AAV cytotoxicity and transduction efficiency is better understood. In this study, we tested whether self-complementary AAV (scAAV) can potentially be used as a gene delivery system in an OD-MAPC-based 'in vivo' bone formation model in the craniofacial region. Both expansion of rat MAPC (rMAPC) and osteogenic differentiation with dexamethasone were also tested in 3D aggregate culture systems 'in vitro' and 'vivo'. rMAPCs grew as undifferentiated aggregates for 4 days, with a population doubling time of 37 h. After expansion, constant levels of Oct4 transcripts, and Oct4 and CD31 surface markers were observed, which constitute a hallmark of undifferentiated stage of rMAPCs. Dexamethasone effectively mediated rMAPC osteogenic differentiation by inducing the formation of a mineralized collagen type I network, and facilitated the activation of the wnt/β-catenin, a crucial pathway in skeletal development. To investigate the genetic modification of rMAPCs grown as 3D aggregates before implantation, scAAV serotypes 2, 3 and 6 were evaluated. scAAV6 packaged with the enhanced green fluorescent protein expression cassette efficiently mediated long-term transduction (10 days) 'in vitro' and 'vivo'. The reporter transduction event allowed the tracing of OD-rMAPC (induced by dexamethasone) aggregates following OD-rMAPC transfer into a macro-porous hydroxyapatite scaffold implanted in a rat calvaria model. Furthermore, the scAAV6-transduced OD-rMAPCs generated a bone-like matrix with a collagenous matrix rich in bone-specific proteins (osteocalcin and

  10. Thermal Stability as a Determinant of AAV Serotype Identity

    Directory of Open Access Journals (Sweden)

    Antonette Bennett

    2017-09-01

    Full Text Available Currently, there are over 150 ongoing clinical trials utilizing adeno-associated viruses (AAVs to target various genetic diseases, including hemophilia (AAV2 and AAV8, congenital heart failure (AAV1 and AAV6, cystic fibrosis (AAV2, rheumatoid arthritis (AAV2, and Batten disease (AAVrh.10. Prior to patient administration, AAV vectors must have their serotype, concentration, purity, and stability confirmed. Here, we report the application of differential scanning fluorimetry (DSF as a good manufacturing practice (GMP capable of determining the melting temperature (Tm for AAV serotype identification. This is a simple, rapid, cost effective, and robust method utilizing small amounts of purified AAV capsids (∼25 μL of ∼1011 particles. AAV1-9 and AAVrh.10 exhibit specific Tms in buffer formulations commonly used in clinical trials. Notably, AAV2 and AAV3, which are the least stable, have varied Tms, whereas AAV5, the most stable, has a narrow Tm range in the different buffers, respectively. Vector stability was dictated by VP3 only, specifically, the ratio of basic/acidic amino acids, and was independent of VP1 and VP2 content or the genome packaged. Furthermore, stability of recombinant AAVs differing by a single basic or acidic amino acid residue are distinguishable. Hence, AAV DSF profiles can serve as a robust method for serotype identification of clinical vectors.

  11. Thermal Stability as a Determinant of AAV Serotype Identity.

    Science.gov (United States)

    Bennett, Antonette; Patel, Saajan; Mietzsch, Mario; Jose, Ariana; Lins-Austin, Bridget; Yu, Jennifer C; Bothner, Brian; McKenna, Robert; Agbandje-McKenna, Mavis

    2017-09-15

    Currently, there are over 150 ongoing clinical trials utilizing adeno-associated viruses (AAVs) to target various genetic diseases, including hemophilia (AAV2 and AAV8), congenital heart failure (AAV1 and AAV6), cystic fibrosis (AAV2), rheumatoid arthritis (AAV2), and Batten disease (AAVrh.10). Prior to patient administration, AAV vectors must have their serotype, concentration, purity, and stability confirmed. Here, we report the application of differential scanning fluorimetry (DSF) as a good manufacturing practice (GMP) capable of determining the melting temperature (Tm) for AAV serotype identification. This is a simple, rapid, cost effective, and robust method utilizing small amounts of purified AAV capsids (∼25 μL of ∼1011 particles). AAV1-9 and AAVrh.10 exhibit specific Tms in buffer formulations commonly used in clinical trials. Notably, AAV2 and AAV3, which are the least stable, have varied Tms, whereas AAV5, the most stable, has a narrow Tm range in the different buffers, respectively. Vector stability was dictated by VP3 only, specifically, the ratio of basic/acidic amino acids, and was independent of VP1 and VP2 content or the genome packaged. Furthermore, stability of recombinant AAVs differing by a single basic or acidic amino acid residue are distinguishable. Hence, AAV DSF profiles can serve as a robust method for serotype identification of clinical vectors.

  12. Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units.

    Science.gov (United States)

    Kügler, S; Lingor, P; Schöll, U; Zolotukhin, S; Bähr, M

    2003-06-20

    Adeno-associated- (AAV) based vectors are promising tools for gene therapy applications in several organs, including the brain, but are limited by their small genome size. Two short promoters, the human synapsin 1 gene promoter (hSYN) and the murine cytomegalovirus immediate early promoter (mCMV), were evaluated in bicistronic AAV-2 vectors for their expression profiles in cultured primary brain cells and in the rat brain. Whereas transgene expression from the hSYN promoter was exclusively neuronal, the murine CMV promoter targeted expression mainly to astrocytes in vitro and showed weak transgene expression in vivo in retinal and cortical neurons, but strong expression in thalamic neurons. We propose that neuron specific transgene expression in combination with enhanced transgene capacity will further substantially improve AAV based vector technology.

  13. Adeno-associated virus (AAV) capsid genes isolated from rat and mouse liver genomic DNA define two new AAV species distantly related to AAV-5.

    Science.gov (United States)

    Lochrie, Michael A; Tatsuno, Gwen P; Arbetman, Alejandra E; Jones, Kris; Pater, Cheryl; Smith, Peter H; McDonnell, Jennifer W; Zhou, Shang-Zhen; Kachi, Shu; Kachi, Michiko; Campochiaro, Peter A; Pierce, Glenn F; Colosi, Peter

    2006-09-15

    Using polymerase chain reactions and genome walking strategies, adeno-associated virus (AAV)-like capsid genes were isolated from rat and mouse liver genomic DNA, where they are present at AAVs since their amino acid sequences are AAV capsid. They are most similar to the AAV-5 and goat AAV capsids. A recombinant vector with the mouse AAV capsid and a lacZ transgene (rAAV-mo.1 lacZ) was able to transduce rodent cell lines in vitro. However, it was not able to transduce eight human cell lines or primary human fibroblasts in vitro. It did not bind heparin and its ability to transduce cells in vitro was not inhibited by heparin, mucin, or sialic acid suggesting it uses a novel entry receptor. rAAV-mo.1 lacZ was 29 times more resistant to in vitro neutralization by pooled, purified human IgG than AAV-2. In vivo, rAAV-mo.1 lacZ efficiently transduced murine ocular cells after a subretinal injection. Intramuscular injection of a rAAV-mo.1 human factor IX (hFIX) vector into mice resulted in no detectable hFIX in plasma, but intravenous injection resulted in high plasma levels of hFIX, equivalent to that obtained from a rAAV-8 hFIX vector. Biodistribution analysis showed that rAAV-mo.1 primarily transduced liver after an intravenous injection. These AAV capsids may be useful for gene transfer in rodents.

  14. Retinitis Pigmentosa.

    Science.gov (United States)

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  15. Retinitis Pigmentosa

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... degenerate. Forms of RP and related diseases include Usher syndrome, Leber congenital amaurosis, and Bardet-Biedl syndrome, among ...

  16. Retinal Diseases

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... central portion of the retina called the macula. Usher Syndrome Usher syndrome is an inherited condition characterized by ...

  17. Basic fibroblast growth factor enhances transduction, distribution, and axonal transport of adeno-associated virus type 2 vector in rat brain.

    Science.gov (United States)

    Hadaczek, Piotr; Mirek, Hanna; Bringas, John; Cunningham, Janet; Bankiewicz, Krys

    2004-05-01

    The ubiquitous expression of cell surface heparan sulfate proteoglycan, a binding receptor for adeno-associated virus type 2 (AAV-2), may account for the broad host range of this vector. Because the fibroblast growth factor receptor type 1 has been postulated to be a coreceptor for successful AAV-2 entry into host cells, we designed a strategy to investigate whether coadministration of this virus with basic fibroblast growth factor (bFGF) can enhance AAV-2-mediated gene delivery. We injected AAV-2-thymidine kinase (AAV-2-TK) vector into rat striata and checked whether coinjection with bFGF enhanced transduction and/or enlarged the area of transgene expression. Immunostaining confirmed the tropism of AAV-2-TK for neurons. The previous injection (7 days before vector delivery) of bFGF had no major impact on vector distribution area. However, when the vector was coinjected with bFGF, the right striatum showed an average viral transduction volume of 5 mm(3), which was more than 4-fold larger when compared with the left side (AAV-2-TK plus phosphate-buffered saline). This result clearly indicates that simultaneous injection of bFGF with AAV-2-TK can greatly enhance the volume of transduced tissue, probably by way of a competitive block of AAV-2-binding sites within the striatum. Robust TK immunoreactivity was also observed in the globus pallidus, which receives anterograde projections from the striatum. We propose that postsynaptic transport of recombinant particles was likely responsible for the distribution of TK in the globus pallidus on both bFGF-treated and untreated sides. In summary, we found that bFGF acts as an adjuvant for distribution of AAV-2 in rat brain.

  18. Recombinant adeno-associated virus type 2, 4, and 5 vectors: Transduction of variant cell types and regions in the mammalian central nervous system

    OpenAIRE

    Davidson, Beverly L.; Stein, Colleen S.; Heth, Jason A.; Martins, Inês; Kotin, Robert M; Derksen, Todd A.; Zabner, Joseph; Ghodsi, Abdi; Chiorini, John A.

    2000-01-01

    Recombinant adeno-associated virus vectors based on serotype 2 (rAAV2) can direct transgene expression in the central nervous system (CNS), but it is not known how other rAAV serotypes perform as CNS gene transfer vectors. Serotypes 4 and 5 are distinct from rAAV2 and from each other in their capsid regions, suggesting that they may direct binding and entry into different cell types. In this study, we examined the tropisms and transduction efficiencies of β-galactosidase-encoding vectors made...

  19. Insulin Therapy Improves Adeno-Associated Virus Transduction of Liver and Skeletal Muscle in Mice and Cultured Cells.

    Science.gov (United States)

    Carrig, Sean; Bijjiga, Enoch; Wopat, Mitchell J; Martino, Ashley T

    2016-11-01

    Adeno-associated virus (AAV) gene transfer is a promising treatment for genetic abnormalities. Optimal AAV vectors are showing success in clinical trials. Gene transfer to skeletal muscle and liver is being explored as a potential therapy for some conditions, that is, α1-antitrypsin (AAT) disorder and hemophilia B. Exploring approaches that enhance transduction of liver and skeletal muscle, using these vectors, is beneficial for gene therapy. Regulating hormones as an approach to improve AAV transduction is largely unexplored. In this study we tested whether insulin therapy improves liver and skeletal muscle gene transfer. In vitro studies demonstrated that the temporary coadministration (2, 8, and 24 hr) of insulin significantly improves AAV2-CMV-LacZ transduction of cultured liver cells and differentiated myofibers, but not of lung cells. In addition, there was a dose response related to this improved transduction. Interestingly, when insulin was not coadministered with the virus but given 24 hr afterward, there was no increase in the transgene product. Insulin receptor gene (INSR) expression levels were increased 5- to 13-fold in cultured liver cells and differentiated myofibers when compared with lung cells. Similar INSR gene expression profiles occurred in mouse tissues. Insulin therapy was performed in mice, using a subcutaneously implanted insulin pellet or a high-carbohydrate diet. Insulin treatment began just before intramuscular delivery of AAV1-CMV-schFIX or liver-directed delivery of AAV8-CMV-schFIX and continued for 28 days. Both insulin augmentation therapies improved skeletal muscle- and liver-directed gene transduction in mice as seen by a 3.0- to 4.5-fold increase in human factor IX (hFIX) levels. The improvement was observed even after the insulin therapy ended. Monitoring insulin showed that insulin levels increased during the brief period of rAAV delivery and during the entire insulin augmentation period (28 days). This study demonstrates

  20. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk.

    Science.gov (United States)

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-10-14

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland.

  1. Concomitant intravenous nitroglycerin with intracoronary delivery of AAV1.SERCA2a enhances gene transfer in porcine hearts.

    Science.gov (United States)

    Karakikes, Ioannis; Hadri, Lahouaria; Rapti, Kleopatra; Ladage, Dennis; Ishikawa, Kiyotake; Tilemann, Lisa; Yi, Geng-Hua; Morel, Charlotte; Gwathmey, Judith K; Zsebo, Krisztina; Weber, Thomas; Kawase, Yoshiaki; Hajjar, Roger J

    2012-03-01

    SERCA2a gene therapy improves contractile and energetic function of failing hearts and has been shown to be associated with benefits in clinical outcomes, symptoms, functional status, biomarkers, and cardiac structure in a phase 2 clinical trial. In an effort to enhance the efficiency and homogeneity of gene uptake in cardiac tissue, we examined the effects of nitroglycerin (NTG) in a porcine model following AAV1.SERCA2a gene delivery. Three groups of Göttingen minipigs were assessed: (i) group A: control intracoronary (IC) AAV1.SERCA2a (n = 6); (ii) group B: a single bolus IC injection of NTG (50 µg) immediately before administration of intravenous (IV) AAV1.SERCA2a (n = 6); and (iii) group C: continuous IV NTG (1 µg/kg/minute) during the 10 minutes of AAV1.SERCA2a infusion (n = 6). We found that simultaneous IV infusion of NTG and AAV1.SERCA2a resulted in increased viral transduction efficiency, both in terms of messenger RNA (mRNA) as well as SERCA2a protein levels in the whole left ventricle (LV) compared to control animals. On the other hand, IC NTG pretreatment did not result in enhanced gene transfer efficiency, mRNA or protein levels when compared to control animals. Importantly, the transgene expression was restricted to the heart tissue. In conclusion, we have demonstrated that IV infusion of NTG significantly improves cardiac gene transfer efficiency in porcine hearts.

  2. Enhanced transduction of colonic cell lines in vitro and the inflamed colon in mice by viral vectors, derived from adeno-associated virus serotype 2, using virus-microbead conjugates bearing lectin

    Directory of Open Access Journals (Sweden)

    Sano Takeshi

    2007-11-01

    Full Text Available Abstract Background Virus-mediated delivery of therapeutic transgenes to the inflamed colon holds a great potential to serve as an effective therapeutic strategy for inflammatory bowel disease, since local, long-term expression of the encoded therapeutic proteins in the colorectal system is potentially achievable. Viral vectors, derived from adeno-associated virus (AAV, should be very useful for such therapeutic strategies, particularly because they can establish long-term expression of transgenes. However, few studies have been carried out to investigate the ability of AAV-based vectors to transduce the inflamed colon. Results AAV, derived from adeno-associated virus serotype 2 (AAV2, showed a limited ability to transduce colonic cell lines in vitro when used in free form. No appreciable enhancement of the transduction efficiency was seen when AAV2 particles were attached stably to the surfaces of microbeads and delivered to target cells in the form of AAV2-microbead conjugates. However, the transduction efficiency of these colonic cell lines was enhanced substantially when a lectin, concanavalin A (Con A, was co-attached to the microbead surfaces, to which AAV2 particles had been conjugated. This considerable infectivity enhancement of AAV2-microbead conjugates by the co-attachment of Con A may be derived from the fact that Con A binds to α-D-mannosyl moieties that are commonly and abundantly present in cell-surface carbohydrate chains, allowing the conjugates to associate stably with target cells. Intracolonical administration of free AAV2 or AAV2-microbead conjugates without Con A into a mouse colitis model by enema showed very poor transduction of the colonic tissue. In contrast, the delivery of AAV2 in the form of AAV2-microbead conjugates bearing Con A resulted in efficient transduction of the inflamed colon. Conclusion AAV2-microbead conjugates bearing Con A can serve as efficient gene transfer agents both for poorly permissive colonic

  3. AAV natural infection induces broad cross-neutralizing antibody responses to multiple AAV serotypes in chimpanzees.

    Science.gov (United States)

    Calcedo, Roberto; Wilson, James M

    2016-06-01

    Cross-sectional studies of primates have revealed that natural neutralizing antibody (NAb) responses to adeno-associated viruses (AAV) span multiple serotypes. This differs from the phenotype of the NAb response to an AAV vector delivered to sero-negative nonhuman primates which is typically restricted to the administered AAV serotype. To better understand the mechanism by which natural AAV infections result in broad NAb responses, we conducted a longitudinal study spanning 10 years in which we evaluated serum-circulating AAV NAb levels in captive-housed chimpanzees. In a cohort of 25 chimpanzees we identified three distinct groups of animals: those which never sero-converted to AAV (naïve); those which were persistently seropositive (chronic); and those that seroconverted during the 10 year period (acute). For the chronic group we found a broad sero-response characterized by NAbs reacting to multiple AAV serotypes. A similar cross-neutralization pattern of NAbs was observed in the acute group. These data support our hypothesis that a single natural infection with AAV induces a broadly cross-reactive NAb response to multiple AAV serotypes.

  4. Efficient AAV1-AAV2 hybrid vector for gene therapy of hemophilia.

    Science.gov (United States)

    Hauck, Bernd; Xu, Ray Ruian; Xie, Jing; Wu, Wenman; Ding, Qiulan; Sipler, Matthew; Wang, Hongli; Chen, Ling; Wright, J Fraser; Xiao, Weidong

    2006-01-01

    Adeno-associated virus (AAV) serotype 1 (AAV1) has been shown to be more effective than the well-studied AAV serotype 2 (AAV2) in muscle gene transfer. Replacement of amino acids 350 to 430 of AAV2 VP1 with the corresponding amino acids from VP1 of AAV1 resulted in a hybrid vector, termed AAV-221-IV, which behaved similarly to AAV1 in vitro and in vivo in muscle. Intramuscular injection of 1x10(11) vector particles per mouse of hybrid vector carrying a human FIX transgene in CD4 knockout mice resulted in an average level of human FIX in the plasma of 450 ng/ml, 4- to 10-fold higher than in mice injected with an AAV2 vector carrying the same transgene, and 80% of the transgene levels in animals treated with the same dose of AAV1. DNA analysis of injected muscle showed a 10-fold higher copy number after gene delivery by the hybrid vector compared with AAV2. A comparison of total DNA versus DNA from intact virus particles suggests a higher stability of hybrid virus particles. These results suggest that changes in the AAV capsid have an effect on virus-cell receptor interaction, and also influence trafficking and processing of the virus particle in the cell. This "hybrid vector" retains the heparin-binding sites of AAV2 and, therefore, can be purified by passage through a heparin-Sepharose column with the same efficiency as AAV2. When tested in vivo, either in CD4 knockout mice or in a hemophilic mouse model, the heparin-purified hybrid vector showed >10-fold higher activity than similarly purified AAV2. This demonstrates the utility of this hybrid vector in the performance of large-scale heparin column purification to generate a vector with a high expression profile for muscle-directed gene delivery. Initiation of clinical studies with this hybrid vector may be facilitated because it differs from AAV2 by only nine amino acids.

  5. Adeno-associated virus liver transduction efficiency measured by in vivo [18F]FHBG positron emission tomography imaging in rodents and nonhuman primates.

    Science.gov (United States)

    Pañeda, Astrid; Collantes, Maria; Beattie, Stuart G; Otano, Itzia; Snapper, Jolanda; Timmermans, Eric; Guembe, Laura; Petry, Harald; Lanciego, Jose Luis; Benito, Alberto; Prieto, Jesus; Rodriguez-Pena, Maria Sol; Peñuelas, Iván; Gonzalez-Aseguinolaza, Gloria

    2011-08-01

    Recombinant adeno-associated virus 5 (rAAV5) represents a candidate vector with unique advantages for the treatment of hepatic disorders because of its narrow hepatic tropism. Noninvasive in vivo imaging of transgene expression provides an important tool with which to quantify the transduction efficiency, and duration and location, of transgene expression. In this study, we used positron emission tomography (PET) and positron emission tomography-computed tomography (PET-CT) imaging to monitor liver transduction efficacy in rodents and nonhuman primates that received rAAV5 vector encoding herpes simplex virus thymidine kinase (HSV-TK). HSV-TK expression in liver was also measured by immunohistochemistry. Notable differences in liver transduction efficiency were found, dependent on the animal species and sex. Male rodents were better transduced than females, as previously described. Moreover, male nonhuman primates also displayed increased hepatic expression of the rAAV5-delivered transgene, indicating that differences in rAAV-mediated liver transduction can be anticipated in humans. Our results demonstrate the high sensitivity and reproducibility of PET, using HSV-TK and [(18)F]FHBG, to detect gene expression after rAAV vector administration into living animals, confirming the utility of this technology in the quantification of transgene expression, even at low expression levels. However, we also describe how an immune response against HSV-TK hampered analysis of long-term expression in nonhuman primates.

  6. The ANCA Vasculitis Questionnaire (AAV-PRO©)

    Science.gov (United States)

    2017-05-01

    Eosinophilic Granulomatosis With Polyangiitis (Churg-Strauss) (EGPA); Churg-Strauss Syndrome (CSS); Granulomatosis With Polyangiitis (Wegener's) (GPA); Wegener Granulomatosis (WG); Microscopic Polyangiitis (MPA); ANCA-Associated Vasculitis (AAV); Vasculitis

  7. Transduction of striatum and cortex tissues by adeno-associated viral vectors produced by herpes simplex virus- and baculovirus-based methods.

    Science.gov (United States)

    Zhang, H Steve; Kim, Eunmi; Lee, Slgirim; Ahn, Ik-Sung; Jang, Jae-Hyung

    2012-01-01

    Recombinant adeno-associated virus (AAV) vectors can be engineered to carry genetic material encoding therapeutic gene products that have demonstrated significant clinical promise. These viral vectors are typically produced in mammalian cells by the transient transfection of two or three plasmids encoding the AAV rep and cap genes, the adenovirus helper gene, and a gene of interest. Although this method can produce high-quality AAV vectors when used with multiple purification protocols, one critical limitation is the difficulty in scaling-up manufacturing, which poses a significant hurdle to the broad clinical utilization of AAV vectors. To address this challenge, recombinant herpes simplex virus type I (rHSV-1)- and recombinant baculovirus (rBac)-based methods have been established recently. These methods are more amenable to large-scale production of AAV vectors than methods using the transient transfection of mammalian cells. To investigate potential applications of AAV vectors produced by rHSV-1- or rBac-based platforms, the in vivo transduction of rHSV-1- or rBac-produced AAV serotype 2 (AAV2) vectors within the rat brain were examined by comparing them with vectors generated by the conventional transfection method. Injection of rHSV-1- or rBac-produced AAV vectors into rat striatum and cortex tissues revealed no differences in cellular tropism (i.e., predominantly neuronal targeting) or anteroposterior spread compared with AAV2 vectors produced by transient transfection. This report represents a step towards validating AAV vectors produced by the rHSV-1- and the rBac-based systems as promising tools, especially for delivering therapeutic molecules to the central nervous system. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Ultrasound-targeted microbubble destruction enhances AAV-mediated gene transfection in human RPE cells in vitro and rat retina in vivo.

    Science.gov (United States)

    Li, H L; Zheng, X Z; Wang, H P; Li, F; Wu, Y; Du, L F

    2009-09-01

    This study was conducted to investigate the efficacy and safety of ultrasound (US)-targeted microbubble (MB) destruction (UTMD)-mediated rAAV2-CMV-EGFP transfection to cultured human retinal pigment epithelium (RPE) cells in vitro and to the rat retina in vivo. In the in vitro study, cultured human RPE cells were exposed to US under different conditions with or without MBs. Furthermore, the effect of UTMD on rAAV2-CMV-EGFP itself and on cells was evaluated. In the in vivo study, gene transfer was examined by injecting rAAV2-CMV-EGFP into the subretinal space of rats with or without MBs and then exposed to US. We investigated enhanced green fluorescent protein (EGFP) expression in vivo by stereomicroscopy and performed quantitative analysis using Axiovision 3.1 software. Hematoxylin and eosin staining and frozen sections were used to observe tissue damage and location of the EGFP gene expression. In the in vitro study, the transfection efficiency of rAAV2-CMV-EGFP under optimal UTMD was significantly higher than that of the control group (P=0.000). Furthermore, there was almost no cytotoxicity to the cells and to rAAV2-CMV-EGFP itself. In the in vivo study, UTMD could be used safely to enhance and accelerate the transgene expression of the retina. Fluorescence expression was mainly located in the retinal layer. UTMD is a promising method for gene delivery to the retina.

  9. Course of Ocular Function in PRPF31 Retinitis Pigmentosa.

    Science.gov (United States)

    Hafler, Brian P; Comander, Jason; Weigel DiFranco, Carol; Place, Emily M; Pierce, Eric A

    2016-01-01

    Mutations in pre-mRNA splicing factors are the second most common cause of autosomal dominant retinitis pigmentosa, and a major cause of vision loss. The development of gene augmentation therapy for disease caused by mutations in PRPF31 necessitates defining pretreatment characteristics and disease progression of patients with PRPF31-related retinitis pigmentosa. We show rates of decline of visual field area -6.9% per year and 30-Hz flicker cone response of -9.2% per year, which are both similar to observed rates for retinitis pigmentosa. We hypothesize that RNA splicing factor retinitis pigmentosa will be amenable to treatment by AAV-mediated gene therapy, and that understanding the clinical progression rates of PRPF31 retinitis pigmentosa will help with the design of gene therapy clinical trials.

  10. Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer.

    Science.gov (United States)

    Selot, Ruchita; Arumugam, Sathyathithan; Mary, Bertin; Cheemadan, Sabna; Jayandharan, Giridhara R

    2017-01-01

    Of the 12 common serotypes used for gene delivery applications, Adeno-associated virus (AAV)rh.10 serotype has shown sustained hepatic transduction and has the lowest seropositivity in humans. We have evaluated if further modifications to AAVrh.10 at its phosphodegron like regions or predicted immunogenic epitopes could improve its hepatic gene transfer and immune evasion potential. Mutant AAVrh.10 vectors were generated by site directed mutagenesis of the predicted targets. These mutant vectors were first tested for their transduction efficiency in HeLa and HEK293T cells. The optimal vector was further evaluated for their cellular uptake, entry, and intracellular trafficking by quantitative PCR and time-lapse confocal microscopy. To evaluate their potential during hepatic gene therapy, C57BL/6 mice were administered with wild-type or optimal mutant AAVrh.10 and the luciferase transgene expression was documented by serial bioluminescence imaging at 14, 30, 45, and 72 days post-gene transfer. Their hepatic transduction was further verified by a quantitative PCR analysis of AAV copy number in the liver tissue. The optimal AAVrh.10 vector was further evaluated for their immune escape potential, in animals pre-immunized with human intravenous immunoglobulin. Our results demonstrate that a modified AAVrh.10 S671A vector had enhanced cellular entry (3.6 fold), migrate rapidly to the perinuclear region (1 vs. >2 h for wild type vectors) in vitro, which further translates to modest increase in hepatic gene transfer efficiency in vivo. More importantly, the mutant AAVrh.10 vector was able to partially evade neutralizing antibodies (~27-64 fold) in pre-immunized animals. The development of an AAV vector system that can escape the circulating neutralizing antibodies in the host will substantially widen the scope of gene therapy applications in humans.

  11. Cell-Based Measurement of Neutralizing Antibodies Against Adeno-Associated Virus (AAV).

    Science.gov (United States)

    Jungmann, Andreas; Müller, Oliver; Rapti, Kleopatra

    2017-01-01

    In recent years gene therapy using adeno-associated viral (AAV) vectors to treat cardiac disease has seen an unprecedented surge, owing to its safety, low immunogenicity relative to other vectors and high and long-term transduction efficiency. This field has also been hampered by the presence of preexisting neutralizing antibodies, not only in patients participating in clinical trials but also in preclinical large animal models. These conflicting circumstances have generated the need for a simple, efficient, and fast assay to screen subjects for the presence of neutralizing antibodies, or lack thereof, in order for them to be included in gene therapy trials.

  12. Foveomacular retinitis.

    OpenAIRE

    Kuming, B S

    1986-01-01

    A group of patients is described who developed the clinical features of foveomacular retinitis. No causative factors were isolated, and all patients strongly denied any type of sun gazing. It is possible that there is a group of patients who have the features of foveomacular retinitis but have not had any direct exposure to the sun. These patients would then constitute a primary type of foveomacular retinitis, as opposed to a secondary type which has a known cause and is synonymous with solar...

  13. OneBac 2.0: Sf9 Cell Lines for Production of AAV1, AAV2, and AAV8 Vectors with Minimal Encapsidation of Foreign DNA.

    Science.gov (United States)

    Mietzsch, Mario; Hering, Henrik; Hammer, Eva-Maria; Agbandje-McKenna, Mavis; Zolotukhin, Sergei; Heilbronn, Regine

    2017-02-01

    Recombinant adeno-associated viral (rAAV) vectors for human gene therapy require efficient and economical production methods to keep pace with the rapidly increasing clinical demand. In addition, the manufacturing process must ensure high vector quality and biological safety. The OneBac system offers easily scalable rAAV vector production in insect Sf9-derived AAV rep/cap-expressing producer cell lines infected with a single baculovirus that carries the rAAV backbone. For most AAV serotypes high burst sizes per cell were achieved, combined with high infectivity rates. OneBac 2.0 represents a 2-fold advancement: First, enhanced VP1 proportions in AAV5 capsids lead to vastly increased per-particle infectivity rates. Second, collateral packaging of foreign DNA is suppressed by removal of the Rep-binding element (RBE). In this study we show that this advancement of AAV5 packaging can be translated to OneBac 2.0-derived packaging systems for alternative AAV serotypes. By removal of the RBE, collateral packaging of nonvector DNA was drastically reduced in all newly tested serotypes (AAV1, AAV2, and AAV8). However, the splicing-based strategy to enhance VP1 expression in order to increase AAV5 infectivity hardly improved infectivity rates of AAV-1, -2, or -8 compared with the original OneBac cell lines. Our results emphasize that OneBac 2.0 represents an advancement for scalable, high-titer production of various AAV serotypes, leading to AAV particles with minimal packaging of foreign DNA.

  14. Gene therapy for the CNS using AAVs: The impact of systemic delivery by AAV9.

    Science.gov (United States)

    Saraiva, Joana; Nobre, Rui Jorge; Pereira de Almeida, Luis

    2016-11-10

    Several attempts have been made to discover the ideal vector for gene therapy in central nervous system (CNS). Adeno-associated viruses (AAVs) are currently the preferred vehicle since they exhibit stable transgene expression in post-mitotic cells, neuronal tropism, low risk of insertional mutagenesis and diminished immune responses. Additionally, the discovery that a particular serotype, AAV9, bypasses the blood-brain barrier has raised the possibility of intravascular administration as a non-invasive delivery route to achieve widespread CNS gene expression. AAV9 intravenous delivery has already shown promising results for several diseases in animal models, including lysosomal storage disorders and motor neuron diseases, opening the way to the first clinical trial in the field. This review presents an overview of clinical trials for CNS disorders using AAVs and will focus on preclinical studies based on the systemic gene delivery using AAV9. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Distinct immune responses to transgene products from rAAV1 and rAAV8 vectors

    OpenAIRE

    Lu, Yuanqing; Song, Sihong

    2009-01-01

    Recently developed serotypes of recombinant adeno-associated virus (rAAV) vectors have significantly enhanced the use of rAAV vectors for gene therapy. However, host immune responses to the transgene products from different serotypes remain uncharacterized. In the present study, we evaluated the differential immune responses to the transgene products from rAAV1 and rAAV8 vectors. In non-obese diabetic (NOD) mice, which have a hypersensitive immunity, rAAV serotype 1 vector (rAAV1-hAAT) induce...

  16. The function of DNA binding protein nucleophosmin in AAV replication.

    Science.gov (United States)

    Satkunanathan, Stifani; Thorpe, Robin; Zhao, Yuan

    2017-10-01

    Adeno-associated viruses (AAV) contain minimal viral proteins necessary for their replication. During virus assembly, AAV acquire, inherently and submissively, various cellular proteins. Our previous studies identified the association of AAV vectors with the DNA binding protein nucleophosmin (NPM1). Nucleophosmin has been reported to enhance AAV infection by mobilizing AAV capsids into and out of the nucleolus, indicating the importance of NPM1 in the AAV life cycle; however the role of NPM1 in AAV production remains unknown. In this study, we systematically investigated NPM1 function on AAV production using NPM1 knockdown cells and revealing for the first time the presence of G-quadruplex DNA sequences (GQRS) in the AAV genome, the synergistic NPM1-GQRS function in AAV production and the significant enhancement of NPM1 gene knockdown on AAV vector production. Understanding the role of cellular proteins in the AAV life cycle will greatly facilitate high titre production of AAV vectors for clinical use. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Viral transduction of renin rapidly establishes persistent hypertension in diverse murine strains.

    Science.gov (United States)

    Harlan, Shannon M; Ostroski, Robert A; Coskun, Tamer; Yantis, Loudon D; Breyer, Matthew D; Heuer, Josef G

    2015-09-01

    Mice provide a unique platform to dissect disease pathogenesis, with the availability of recombinant inbred strains and diverse genetically modified strains. Leveraging these reagents to elucidate the mechanisms of hypertensive tissue injury has been hindered by difficulty establishing persistent hypertension in these inbred lines. ANG II infusion provides relatively short-term activation of the renin-angiotensinogen system (RAS) with concomitant elevated arterial pressure. Longer-duration studies using renin transgenic mice are powerful models of chronic hypertension, yet are limited by the genetic background on which the transgene exists and the exposure throughout development. The present studies characterized hypertension produced by transduction with a renin-coding adeno-associated virus (ReninAAV). ReninAAV mice experienced elevated circulating renin with concurrent elevations in arterial pressure. Following a single injection of ReninAAV, arterial pressure increased on average +56 mmHg, an increase that persisted for at least 12 wk in three distinct and widely used strains of adult mice: 129/S6, C56BL/6, and DBA/2J. This was accomplished without surgical implantation of pumps or complex breeding and backcrossing. In addition, ReninAAV mice developed pathophysiological changes associated with chronic hypertension, including increased heart weight and albuminuria. Thus ReninAAV provides a unique tool to study the onset of and effects of persistent hypertension in diverse murine models. This model should facilitate our understanding of the pathogenesis of hypertensive injury. Copyright © 2015 the American Physiological Society.

  18. Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer.

    Science.gov (United States)

    Abdel-Motal, U M; Harbison, C; Han, T; Pudney, J; Anderson, D J; Zhu, Q; Westmoreland, S; Marasco, W A

    2014-09-01

    Topical microbicides are a leading strategy for prevention of HIV mucosal infection to women; however, numerous pharmacokinetic limitations associated with coitally related dosing strategy have contributed to their limited success. Here we test the hypothesis that adeno-associated virus (AAV) mediated delivery of the b12 human anti-HIV-1 gp120 minibody gene to the lower genital tract of female rhesus macaques (Rh) can provide prolonged expression of b12 minibodies in the cervical-vaginal secretions. Gene transfer studies demonstrated that, of various green fluorescent protein (GFP)-expressing AAV serotypes, AAV-6 most efficiently transduced freshly immortalized and primary genital epithelial cells (PGECs) of female Rh in vitro. In addition, AAV-6-b12 minibody transduction of Rh PGECs led to inhibition of SHIV162p4 transmigration and virus infectivity in vitro. AAV-6-GFP could also successfully transduce vaginal epithelial cells of Rh when applied intravaginally, including p63+ epithelial stem cells. Moreover, intravaginal application of AAV-6-b12 to female Rh resulted in prolonged minibody detection in their vaginal secretions throughout the 79-day study period. These data provide proof of principle that AAV-6-mediated delivery of anti-HIV broadly neutralizing antibody (BnAb) genes to the lower genital tract of female Rh results in persistent minibody detection for several months. This strategy offers promise that an anti-HIV-1 genetic microbicide strategy may be possible in which topical application of AAV vector, with periodic reapplication as needed, may provide sustained local BnAb expression and protection.

  19. Transduction of nonhuman primate brain with adeno-associated virus serotype 1: vector trafficking and immune response.

    Science.gov (United States)

    Hadaczek, Piotr; Forsayeth, John; Mirek, Hanna; Munson, Keith; Bringas, John; Pivirotto, Phil; McBride, Jodi L; Davidson, Beverly L; Bankiewicz, Krystof S

    2009-03-01

    We used convection-enhanced delivery (CED) to characterize gene delivery mediated by adeno-associated virus type 1 (AAV1) by tracking expression of hrGFP (humanized green fluorescent protein from Renilla reniformis) into the striatum, basal forebrain, and corona radiata of monkey brain. Four cynomolgus monkeys received single infusions into corona radiata, putamen, and caudate. The other group (n = 4) received infusions into basal forebrain. Thirty days after infusion animals were killed and their brains were processed for immunohistochemical evaluation. Volumetric analysis of GFP-positive brain areas was performed. AAV1-hrGFP infusions resulted in approximately 550, 700, and 73 mm(3) coverage after infusion into corona radiata, striatum, and basal forebrain, respectively. Aside from targeted regions, other brain structures also showed GFP signal (internal and external globus pallidus, subthalamic nucleus), supporting the idea that AAV1 is actively trafficked to regions distal from the infusion site. In addition to neuronal transduction, a significant nonneuronal cell population was transduced by AAV1 vector; for example, oligodendrocytes in corona radiata and astrocytes in the striatum. We observed a strong humoral and cell-mediated response against AAV1-hrGFP in transduced monkeys irrespective of the anatomic location of the infusion, as evidenced by induction of circulating anti-AAV1 and anti-hrGFP antibodies, as well as infiltration of CD4(+) lymphocytes and upregulation of MHC-II in regions infused with vector. We conclude that transduction of antigen-presenting cells within the CNS is a likely cause of this response and that caution is warranted when foreign transgenes are used as reporters in gene therapy studies with vectors with broader tropism than AAV2.

  20. Preferential expression of an AAV-2 construct in NOS-positive interneurons following intrastriatal injection.

    Science.gov (United States)

    Sin, Mihaela; Walker, Paul D; Bouhamdan, Mohamad; Quinn, John P; Bannon, Michael J

    2005-11-18

    Most CNS studies using recombinant adeno-associated virus type 2 (rAAV-2) vectors have focused on gene delivery for the purpose of gene therapy. In the present study, we examined the feasibility of using rAAV-2 vectors to study the regulation of preprotachykinin-A (PPT-A) promoter activity in striatal medium spiny projection neurons. An rAAV-2 vector incorporating a PPT promoter fragment (shown previously to confer some cell-specificity of expression in vitro) coupled to a green fluorescent protein (GFP) reporter gene was stereotaxically injected into the rat striatum. Since medium spiny projection neurons represent the predominant neuronal type (90-95%) in the striatum, we predicted that the vast majority of GFP-expressing cells would be of this phenotype. Surprisingly, the transgene was actually expressed in a similar number of medium spiny projection neurons and interneurons, while glial expression of GFP was not observed. A preponderance of GFP-expressing interneurons was immunoreactive for the marker neuronal nitric oxide synthase (nNOS). Our results suggest that viral vector-related events that occur during transduction are the determining factor in the pattern of transgene expression observed, while the influence of the transgene promoter appears to be secondary, at least under the conditions employed.

  1. Clinical Improvement of Alpha-mannosidosis Cat Following a Single Cisterna Magna Infusion of AAV1.

    Science.gov (United States)

    Yoon, Sea Young; Bagel, Jessica H; O'Donnell, Patricia A; Vite, Charles H; Wolfe, John H

    2016-02-01

    Lysosomal storage diseases (LSDs) are debilitating neurometabolic disorders for most of which long-term effective therapies have not been developed. Gene therapy is a potential treatment but a critical barrier to treating the brain is the need for global correction. We tested the efficacy of cisterna magna infusion of adeno-associated virus type 1 (AAV1) expressing feline alpha-mannosidase gene in the postsymptomatic alpha-mannosidosis (AMD) cat, a homologue of the human disease. Lysosomal alpha-mannosidase (MANB) activity in the cerebrospinal fluid (CSF) and serum were increased above the control values in untreated AMD cats. Clinical neurological signs were delayed in onset and reduced in severity. The lifespan of the treated cats was significantly extended. Postmortem histopathology showed resolution of lysosomal storage lesions throughout the brain. MANB activity in brain tissue was significantly above the levels of untreated tissues. The results demonstrate that a single cisterna magna injection of AAV1 into the CSF can mediate widespread neuronal transduction of the brain and meaningful clinical improvement. Thus, cisterna magna gene delivery by AAV1 appears to be a viable strategy for treatment of the whole brain in AMD and should be applicable to many of the neurotropic LSDs as well as other neurogenetic disorders.

  2. Clinical Improvement of Alpha-mannosidosis Cat Following a Single Cisterna Magna Infusion of AAV1

    Science.gov (United States)

    Yoon, Sea Young; Bagel, Jessica H; O'Donnell, Patricia A; Vite, Charles H; Wolfe, John H

    2016-01-01

    Lysosomal storage diseases (LSDs) are debilitating neurometabolic disorders for most of which long-term effective therapies have not been developed. Gene therapy is a potential treatment but a critical barrier to treating the brain is the need for global correction. We tested the efficacy of cisterna magna infusion of adeno-associated virus type 1 (AAV1) expressing feline alpha-mannosidase gene in the postsymptomatic alpha-mannosidosis (AMD) cat, a homologue of the human disease. Lysosomal alpha-mannosidase (MANB) activity in the cerebrospinal fluid (CSF) and serum were increased above the control values in untreated AMD cats. Clinical neurological signs were delayed in onset and reduced in severity. The lifespan of the treated cats was significantly extended. Postmortem histopathology showed resolution of lysosomal storage lesions throughout the brain. MANB activity in brain tissue was significantly above the levels of untreated tissues. The results demonstrate that a single cisterna magna injection of AAV1 into the CSF can mediate widespread neuronal transduction of the brain and meaningful clinical improvement. Thus, cisterna magna gene delivery by AAV1 appears to be a viable strategy for treatment of the whole brain in AMD and should be applicable to many of the neurotropic LSDs as well as other neurogenetic disorders. PMID:26354342

  3. Systemic application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI Huntington's disease mice.

    Science.gov (United States)

    Vagner, Tatyana; Dvorzhak, Anton; Wójtowicz, Anna Maria; Harms, Christoph; Grantyn, Rosemarie

    2016-12-01

    Huntington's disease (HD) affects both neurons and astrocytes. To target the latter and to ensure brain-wide transgene expression, adeno-associated viral (AAV) vectors can be administered intravenously, as AAV vectors cross the blood-brain barrier (BBB) and enable preferential transduction of astrocytes due to their close association with blood vessels. However, there is a possibility that the subclass of GFAP-expressing astrocytes performs a distinct role in HD and reacts differently to therapeutic measures than the rest of the astrocytes. The gfaABC1D promoter allows specific targeting of the GFAP-expressing astrocytes (~25% of S100β-expressing astrocytes). We have examined the expression of three different transgenes (GCaMP6f, Kir4.1 and GLT1) and tested the effects of the AAV serotypes 9 and rh8. The AAV vectors were injected into the tail vein of 1-year-old homozygous Z-Q175-KI HD mice and their wild-type (WT) littermates. At this age, HD mice exhibit motor symptoms, including pronounced hypokinesia and circling behaviour. The expression times ranged from 3 to 6weeks. The target cell population was defined as the cells expressing S100β in addition to GFAP. Viewfields in the dorsal striatum and the overlaying cortex were evaluated and the transduction rate was defined as the percentage of target cells that expressed the reporter transgene (enhanced green fluorescent protein, EGFP, or Tomato). In all cases, the transduction rate was higher in the cortex than in the striatum. AAV9 was more efficient than AAVrh8. One of the injected constructs (AAV9-gfaABC1D-GLT1-Tomato) was tested for the first time. GLT1, the principal astrocytic glutamate transporter, is deficient in HD and therefore considered as a potential target for gene therapy. At a dose of 1.86×1011 vector genome (vg) per animal, the fraction of GLT1-Tomato+ cells in the striatum and the cortex amounted to 30% and 49%, respectively. In individual Tomato+ HD astrocytes, treatment with the GLT1 vector

  4. Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons.

    Science.gov (United States)

    Fleming, J; Ginn, S L; Weinberger, R P; Trahair, T N; Smythe, J A; Alexander, I E

    2001-01-01

    Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of numerous inherited and acquired neurological conditions. Therefore, efficient and stable gene delivery to these postmitotic cells has significant therapeutic potential. Among contemporary vector systems capable of neuronal transduction, only those based on herpes simplex virus have been extensively evaluated in PNS neurons. We therefore investigated the transduction performance of recombinant adeno-associated virus type 2 (AAV) and VSV-G-pseudotyped lentivirus vectors derived from human immunodeficiency virus (HIV-1) in newborn mouse and fetal human dorsal root ganglia (DRG) sensory neurons. In dissociated mouse DRG cultures both vectors achieved efficient transduction of sensory neurons at low multiplicities of infection (MOIs) and sustained transgene expression within a 28-day culture period. Interestingly, the lentivirus vector selectively transduced neurons in murine cultures, in contrast to human cultures, in which Schwann and fibroblast-like cells were also transduced. Recombinant AAV transduced all three cell types in both mouse and human cultures. After direct microinjection of murine DRG explants, maximal transduction efficiencies of 20 and 200 transducing units per neuronal transductant were achieved with AAV and lentivirus vectors, respectively. Most importantly, both vectors achieved efficient and sustained transduction of human sensory neurons in dissociated cultures, thereby directly demonstrating the exciting potential of these vectors for gene therapy applications in the PNS.

  5. Foveomacular retinitis.

    Science.gov (United States)

    Kuming, B S

    1986-11-01

    A group of patients is described who developed the clinical features of foveomacular retinitis. No causative factors were isolated, and all patients strongly denied any type of sun gazing. It is possible that there is a group of patients who have the features of foveomacular retinitis but have not had any direct exposure to the sun. These patients would then constitute a primary type of foveomacular retinitis, as opposed to a secondary type which has a known cause and is synonymous with solar retinopathy.

  6. AAV: An Overview of Unanswered Questions.

    Science.gov (United States)

    Berns, Kenneth I; Muzyczka, Nicholas

    2017-04-01

    AAV has been studied for 55 years and has been developed as a vector for about 35 years. By now, there is a fairly good idea of the dimensions of what would be useful to know to employ AAV optimally as a vector, but there are still many unanswered questions within the system. As with all biological systems, each good experiment raises further questions to answer. This article provides an overview of those areas in which unknown information can be identified and of those questions that have not yet been recognized. Some of these are touched on in the six review articles in this issue of Human Gene Therapy.

  7. Improved induction of immune tolerance to factor IX by hepatic AAV-8 gene transfer.

    Science.gov (United States)

    Cooper, Mario; Nayak, Sushrusha; Hoffman, Brad E; Terhorst, Cox; Cao, Ou; Herzog, Roland W

    2009-07-01

    Gene therapy for hemophilia B has been shown to result in long-term expression and immune tolerance to factor IX (F.IX) after in vivo transduction of hepatocytes with adeno-associated viral (AAV-2) vectors in experimental animals. An optimized protocol was effective in several strains of mice with a factor 9 gene deletion (F9(-/-)). However, immune responses against F.IX were repeatedly observed in C3H/HeJ F9(-/-) mice. We sought to establish a gene transfer protocol that results in sustained expression without a requirement for additional manipulation of the immune system. Compared with AAV-2, AAV-8 was more efficient in transgene expression and induction of tolerance to F.IX in three different strains of wild-type mice. At equal vector doses, AAV-8 induced transgene product-specific regulatory CD4(+)CD25(+)FoxP3(+) T cells at significantly higher frequency. Moreover, sustained correction of hemophilia B in C3H/HeJ F9(-/-) mice without antibody formation was documented in all animals treated with > or =4 x 10(11) vector genomes (VG)/kg and in 80% of mice treated with 8 x 10(10) VG/kg. Therefore, it is possible to develop a gene transfer protocol that reliably induces tolerance to F.IX largely independent of genetic factors. A comparison with other studies suggests that additional parameters besides plateau levels of F.IX expression contributed to the improved success rate of tolerance induction.

  8. Applications of CRISPR/Cas9 in retinal degenerative diseases

    Science.gov (United States)

    Peng, Ying-Qian; Tang, Luo-Sheng; Yoshida, Shigeo; Zhou, Ye-Di

    2017-01-01

    Gene therapy is a potentially effective treatment for retinal degenerative diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been developed as a new genome-editing tool in ophthalmic studies. Recent advances in researches showed that CRISPR/Cas9 has been applied in generating animal models as well as gene therapy in vivo of retinitis pigmentosa (RP) and leber congenital amaurosis (LCA). It has also been shown as a potential attempt for clinic by combining with other technologies such as adeno-associated virus (AAV) and induced pluripotent stem cells (iPSCs). In this review, we highlight the main points of further prospect of using CRISPR/Cas9 in targeting retinal degeneration. We also emphasize the potential applications of this technique in treating retinal degenerative diseases. PMID:28503441

  9. Vaccinia virus as a subhelper for AAV replication and packaging

    Directory of Open Access Journals (Sweden)

    Andrea R Moore

    Full Text Available Adeno-associated virus (AAV has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  10. Vaccinia virus as a subhelper for AAV replication and packaging.

    Science.gov (United States)

    Moore, Andrea R; Dong, Biao; Chen, Lingxia; Xiao, Weidong

    2015-01-01

    Adeno-associated virus (AAV) has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV) has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  11. Retinitis pigmentosa

    Science.gov (United States)

    ... treatments for retinitis pigmentosa, including the use of DHA, which is an omega-3 fatty acid. Other ... counseling and testing may help determine whether your children are at risk for this disease.

  12. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy.

    Science.gov (United States)

    Morabito, Giuseppe; Giannelli, Serena G; Ordazzo, Gabriele; Bido, Simone; Castoldi, Valerio; Indrigo, Marzia; Cabassi, Tommaso; Cattaneo, Stefano; Luoni, Mirko; Cancellieri, Cinzia; Sessa, Alessandro; Bacigaluppi, Marco; Taverna, Stefano; Leocani, Letizia; Lanciego, José L; Broccoli, Vania

    2017-12-06

    The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  13. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency.

    Science.gov (United States)

    Rey-Rico, Ana; Venkatesan, Jagadeesh K; Frisch, Janina; Rial-Hermida, Isabel; Schmitt, Gertrud; Concheiro, Angel; Madry, Henning; Alvarez-Lorenzo, Carmen; Cucchiarini, Magali

    2015-11-01

    Recombinant adeno-associated viral (rAAV) vectors are clinically adapted gene transfer vectors for direct human cartilage regenerative medicine. Their appropriate use in patients is still limited by a relatively low efficacy of vector penetration inside the cells, by the pre-existing humoral immune responses against the viral capsid proteins in a large part of the human population, and by possible inhibition of viral uptake by clinical compounds such as heparin. The delivery of rAAV vectors to their targets using optimized vehicles is therefore under active investigation. Here, we evaluated the possibility of providing rAAV to human bone marrow-derived mesenchymal stem cells (hMSCs), a potent source of cartilage regenerative cells, via self-assembled poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as linear poloxamers or X-shaped poloxamines. Encapsulation in poloxamer PF68 and poloxamine T908 polymeric micelles allowed for an effective, durable, and safe modification of hMSCs via rAAV to levels similar to or even higher than those noted upon direct vector application. The copolymers were capable of restoring the transduction of hMSCs with rAAV in conditions of gene transfer inhibition, i.e. in the presence of heparin or of a specific antibody directed against the rAAV capsid, enabling effective therapeutic delivery of a chondrogenic sox9 sequence leading to an enhanced chondrocyte differentiation of the cells. The present findings highlight the value of PEO-PPO copolymers as powerful tools for rAAV-based cartilage regenerative medicine. While recombinant adeno-associated viral (rAAV) vectors are adapted vectors to treat a variety of human disorders, their clinical use is still restricted by pre-existing antiviral immune responses, by a low efficacy of natural vector entry in the target cells, and by inhibition of viral uptake by clinically used compounds like heparin. The search for alternative routes of rAAV delivery is thus

  14. Myosin7a deficiency results in reduced retinal activity which is improved by gene therapy.

    Directory of Open Access Journals (Sweden)

    Pasqualina Colella

    Full Text Available Mutations in MYO7A cause autosomal recessive Usher syndrome type IB (USH1B, one of the most frequent conditions that combine severe congenital hearing impairment and retinitis pigmentosa. A promising therapeutic strategy for retinitis pigmentosa is gene therapy, however its pre-clinical development is limited by the mild retinal phenotype of the shaker1 (sh1(-/- murine model of USH1B which lacks both retinal functional abnormalities and degeneration. Here we report a significant, early-onset delay of sh1(-/- photoreceptor ability to recover from light desensitization as well as a progressive reduction of both b-wave electroretinogram amplitude and light sensitivity, in the absence of significant loss of photoreceptors up to 12 months of age. We additionally show that subretinal delivery to the sh1(-/- retina of AAV vectors encoding the large MYO7A protein results in significant improvement of sh1(-/- photoreceptor and retinal pigment epithelium ultrastructural anomalies which is associated with improvement of recovery from light desensitization. These findings provide new tools to evaluate the efficacy of experimental therapies for USH1B. In addition, although AAV vectors expressing large genes might have limited clinical applications due to their genome heterogeneity, our data show that AAV-mediated MYO7A gene transfer to the sh1(-/- retina is effective.

  15. Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer

    Directory of Open Access Journals (Sweden)

    Ruchita Selot

    2017-07-01

    Full Text Available Of the 12 common serotypes used for gene delivery applications, Adeno-associated virus (AAVrh.10 serotype has shown sustained hepatic transduction and has the lowest seropositivity in humans. We have evaluated if further modifications to AAVrh.10 at its phosphodegron like regions or predicted immunogenic epitopes could improve its hepatic gene transfer and immune evasion potential. Mutant AAVrh.10 vectors were generated by site directed mutagenesis of the predicted targets. These mutant vectors were first tested for their transduction efficiency in HeLa and HEK293T cells. The optimal vector was further evaluated for their cellular uptake, entry, and intracellular trafficking by quantitative PCR and time-lapse confocal microscopy. To evaluate their potential during hepatic gene therapy, C57BL/6 mice were administered with wild-type or optimal mutant AAVrh.10 and the luciferase transgene expression was documented by serial bioluminescence imaging at 14, 30, 45, and 72 days post-gene transfer. Their hepatic transduction was further verified by a quantitative PCR analysis of AAV copy number in the liver tissue. The optimal AAVrh.10 vector was further evaluated for their immune escape potential, in animals pre-immunized with human intravenous immunoglobulin. Our results demonstrate that a modified AAVrh.10 S671A vector had enhanced cellular entry (3.6 fold, migrate rapidly to the perinuclear region (1 vs. >2 h for wild type vectors in vitro, which further translates to modest increase in hepatic gene transfer efficiency in vivo. More importantly, the mutant AAVrh.10 vector was able to partially evade neutralizing antibodies (~27–64 fold in pre-immunized animals. The development of an AAV vector system that can escape the circulating neutralizing antibodies in the host will substantially widen the scope of gene therapy applications in humans.

  16. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  17. Solar retinitis.

    Science.gov (United States)

    SHIRLEY, S Y

    1963-07-20

    Retinal burns can be produced by direct gazing at the sun. This lesion is caused by the thermal effects of the visible and near infrared rays focused on the pigment structure behind the retina. It is rarely seen, as the normal eye will tolerate only fleeting glances at the sun, but is fairly common during a solar eclipse. A case of solar retinitis is presented in which treatment with corticosteroids lessened the retinal edema but the patient suffered a bilateral central scotoma and vision reduced to the 20/40 level. In viewing a solar eclipse a No. 4 density filter is recommended; as a rough test this filter will abolish the readability of print on a 60-watt incandescent frosted electric light bulb.

  18. AAV-ID: A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations.

    Science.gov (United States)

    Pacouret, Simon; Bouzelha, Mohammed; Shelke, Rajani; Andres-Mateos, Eva; Xiao, Ru; Maurer, Anna; Mevel, Mathieu; Turunen, Heikki; Barungi, Trisha; Penaud-Budloo, Magalie; Broucque, Frédéric; Blouin, Véronique; Moullier, Philippe; Ayuso, Eduard; Vandenberghe, Luk H

    2017-06-07

    Adeno-associated virus (AAV) vectors are promising clinical candidates for therapeutic gene transfer, and a number of AAV-based drugs may emerge on the market over the coming years. To insure the consistency in efficacy and safety of any drug vial that reaches the patient, regulatory agencies require extensive characterization of the final product. Identity is a key characteristic of a therapeutic product, as it ensures its proper labeling and batch-to-batch consistency. Currently, there is no facile, fast, and robust characterization assay enabling to probe the identity of AAV products at the protein level. Here, we investigated whether the thermostability of AAV particles could inform us on the composition of vector preparations. AAV-ID, an assay based on differential scanning fluorimetry (DSF), was evaluated in two AAV research laboratories for specificity, sensitivity, and reproducibility, for six different serotypes (AAV1, 2, 5, 6.2, 8, and 9), using 67 randomly selected AAV preparations. In addition to enabling discrimination of AAV serotypes based on their melting temperatures, the obtained fluorescent fingerprints also provided information on sample homogeneity, particle concentration, and buffer composition. Our data support the use of AAV-ID as a reproducible, fast, and low-cost method to ensure batch-to-batch consistency in manufacturing facilities and academic laboratories. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  19. Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors.

    Science.gov (United States)

    Zeltner, N; Kohlbrenner, E; Clément, N; Weber, T; Linden, R M

    2010-07-01

    Viral vectors derived from adeno-associated viruses (AAVs) are widely used for gene transfer both in vitro and in vivo. The increasing use of AAV as a gene transfer vector, as well as recently shown immunological complications in clinical trials, highlight the necessity to define the specific activity of vector preparations beyond current standards. In this report, we determined the infectious, physical and genome-containing particle titers of several wild-type AAV type 2 (wtAAV2) and recombinant AAV type 2 (rAAV2) preparations that were produced and purified by standard methods. We found that the infectivity of wtAAV2 approaches a physical-to-infectious particle ratio of one. This near-perfect physical-to-infectious particle ratio defines a 'ceiling' for the theoretically achievable quality of recombinant AAV vectors. In comparison, for rAAV2, only approximately 50 out of 100 viral particles contained a genome and, more strikingly, only approximately 1 of the 100 viral particles was infectious. Our findings suggest that current strategies for rAAV vector design, production and/or purification should be amenable to improvements. Ultimately, this could result in the generation of near-perfect vector particles, a prospect with significant implications for gene therapy.

  20. Photon Echoes from Retinal Proteins

    Science.gov (United States)

    Johnson, Philip James Maddigan

    This thesis focuses on the ultrafast isomerization reaction of retinal in both rhodopsin and bacteriorhodopsin, examples of sensory and energy transduction proteins that exploit the same photoactive chromophore for two very different functions. In bacteriorhodopsin, retinal isomerizes from an all-trans to 13-cis conformation as the primary event in light- driven proton pumping. In the visual pigment rhodopsin, the retinal chromophore isomerizes from an 11-cis to all-trans geometry as the primary step leading to our sense of vision. This diversity of function for nominally identical systems raises the question as to just how optimized are these proteins to arrive at such drastically different functions? Previous work has employed transient absorption spectroscopy to probe retinal protein photochemistry, but many of the relevant electronic and nuclear dynamics of isomerization are masked by inhomogeneous broadening effects and strong spectral overlap between reactant and photoproduct states. This work exploits the unique properties of two-dimensional photon echo spectroscopy to deconvolve inhomogeneous broadening and spectral overlap effects and fully reveal the dynamics that direct retinal isomerization in proteins. In bacteriorhodopsin, vibrational coupling to the reaction coordinate results in a surface crossing event prior to the conventional conical intersection associated with isomerization to the J intermediate. In rhodopsin, however, a similarly early vibrationally-mediated barrier crossing event is observed, resulting in spectral signals consistent with the known photoproduct state appearing an order of magnitude faster than determined from conventional transient absorption measurements. The competing overlapping spectral signals that obscured the initial dynamics when probed with transient absorption spectroscopy are now clearly resolved with two-dimensional photon echo spectroscopy. These experiments illustrate the critical role of the protein in directing

  1. Adeno-associated viral vector-mediated gene transduction in mesencephalic slice culture.

    Science.gov (United States)

    Nihira, Tomoko; Yasuda, Toru; Hirai, Yukihiko; Shimada, Takashi; Mizuno, Yoshikuni; Mochizuki, Hideki

    2011-09-30

    Adeno-associated viral (AAV) vector is a non-pathogenic vehicle that is suitable for the delivery of foreign genes into non-dividing neuronal cells. This vector has been utilized for in vivo neurological research and in clinical trials of gene therapy for neurodegenerative disorders. Viral vector-mediated gene delivery has the limitation that progressive changes in cellular phenotype cannot be monitored in living animals. To visualize living neurons transduced with foreign genes in vitro, we used cultured mesencephalic tissue harboring living dopaminergic (DA) neurons and examined cellular tropism of serotype-1 and serotype-2 AAV vectors in a culture system. The viability of DA neurons was evaluated using transgenic mice carrying enhanced green fluorescent protein under the control of the rat tyrosine hydroxylase (TH) promoter, which enables the visualization of living DA cells in the substantia nigra. Apoptosis of a subset of neuronal cells was noted within one day of culture. After 7 days, the serotype-1 AAV vector had successfully delivered the foreign gene into neurons and astrocytes, and serotype-2 AAV vector was able to transduce TH-positive DA neurons efficiently. Our method should be useful for in vitro investigations of pathological changes in DA neurons following transduction with foreign genes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia.

    Science.gov (United States)

    Ye, Guo-jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Miller, Paul E; Sharma, Alok K; Ver Hoeve, James N; Smith, Leia M; Arndt, Tara; Calcedo, Roberto; Gaskin, Chantelle; Robinson, Paulette M; Knop, David R; Hauswirth, William W; Chulay, Jeffrey D

    2016-03-01

    Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated viral (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in cynomolgus macaques. Three groups of animals (n = 2 males and 2 females per group) received a subretinal injection in one eye of 300 μl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two concentrations (4 × 10(11) or 4 × 10(12) vector genomes/ml) and were evaluated over a 3-month period before being euthanized. Administration of rAAV2tYF-PR1.7-hCNGB3 was associated with a dose-related anterior and posterior segment inflammatory response that was greater than that observed in eyes injected with the vehicle control. Most manifestations of inflammation improved over time except that vitreous cells persisted in vector-treated eyes until the end of the study. One animal in the lower vector dose group was euthanized on study day 5, based on a clinical diagnosis of endophthalmitis. There were no test article-related effects on intraocular pressure, visual evoked potential responses, hematology or clinical chemistry parameters, or gross necropsy observations. Histopathological examination demonstrated minimal mononuclear infiltrates in all vector-injected eyes. Serum anti-AAV antibodies developed in all vector-injected animals. No animals developed antibodies to CNGB3. Biodistribution studies demonstrated high levels of vector DNA in the injected eye but minimal or no vector DNA in any other tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations.

  3. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  4. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jarrod S Johnson

    2011-05-01

    Full Text Available Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR, we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus

  5. Regulatory and Exhausted T Cell Responses to AAV Capsid.

    Science.gov (United States)

    Gernoux, Gwladys; Wilson, James M; Mueller, Christian

    2017-04-01

    Recombinant adeno-associated viruses (AAVs) are quickly becoming the preferred viral vector for viral gene delivery for the treatment of a wide variety of genetic disorders. However, since their use in a clinical trial targeting hemophilia B patients 10 years ago, immune responses to the AAV capsid appear to have hampered some of the early clinical gene transfer efficacy. Indeed, AAV-based gene transfer has been shown to reactivate capsid-specific memory T cells, which have correlated with a decline in AAV-transduced tissue in some patients. Importantly, clinical trials have also shown that this reactivation can be quelled by administering time-course taper of glucocorticoid steroids before or after dosing. More recently, two clinical studies have shown that AAV gene transfer is not only able to induce a deleterious immune response, but also can result in the initiation of a tolerance to the AAV capsid mediated by regulatory T cells and exhausted T cells. This article reviews clinical trials describing immune responses to AAV, as well as the mechanisms responsible for immune tolerance in chronic infections and how it could apply to AAV-based gene transfer. A better understanding of both cytotoxic and tolerogenic immune responses to recombinant AAV will lead to safer gene transfer protocols in patients.

  6. A high-capacity, capsid-modified hybrid adenovirus/adeno-associated virus vector for stable transduction of human hematopoietic cells.

    Science.gov (United States)

    Shayakhmetov, Dmitry M; Carlson, Cheryl A; Stecher, Hartmut; Li, Qiliang; Stamatoyannopoulos, George; Lieber, André

    2002-02-01

    To achieve stable gene transfer into human hematopoietic cells, we constructed a new vector, DeltaAd5/35.AAV. This vector has a chimeric capsid containing adenovirus type 35 fibers, which conferred efficient infection of human hematopoietic cells. The DeltaAd5/35.AAV vector genome is deleted for all viral genes, allowing for infection without virus-associated toxicity. To generate high-capacity DeltaAd5/35.AAV vectors, we employed a new technique based on recombination between two first-generation adenovirus vectors. The resultant vector genome contained an 11.6-kb expression cassette including the human gamma-globin gene and the HS2 and HS3 elements of the beta-globin locus control region. The expression cassette was flanked by adeno-associated virus (AAV) inverted terminal repeats (ITRs). Infection with DeltaAd5/35.AAV allowed for stable transgene expression in a hematopoietic cell line after integration into the host genome through the AAV ITR(s). This new vector exhibits advantages over existing integrating vectors, including an increased insert capacity and tropism for hematopoietic cells. It has the potential for stable ex vivo transduction of hematopoietic stem cells in order to treat sickle cell disease.

  7. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington?s disease

    OpenAIRE

    Hadaczek, Piotr; Stanek, Lisa; Ciesielska, Agnieszka; Sudhakar, Vivek; Samaranch, Lluis; Pivirotto, Philip; Bringas, John; O?Riordan, Catherine; Mastis, Bryan; San Sebastian, Waldy; Forsayeth, John; Cheng, Seng H; Bankiewicz, Krystof S.; Shihabuddin, Lamya S.

    2016-01-01

    Huntington's disease (HD) is caused by a toxic gain-of-function associated with the expression of the mutant huntingtin (htt) protein. Therefore, the use of RNA interference to inhibit Htt expression could represent a disease-modifying therapy. The potential of two recombinant adeno-associated viral vectors (AAV), AAV1 and AAV2, to transduce the cortico-striatal tissues that are predominantly affected in HD was explored. Green fluorescent protein was used as a reporter in each vector to show ...

  8. AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy.

    Science.gov (United States)

    Le Hir, Maëva; Goyenvalle, Aurélie; Peccate, Cécile; Précigout, Guillaume; Davies, Kay E; Voit, Thomas; Garcia, Luis; Lorain, Stéphanie

    2013-08-01

    In the context of future adeno-associated viral (AAV)-based clinical trials for Duchenne myopathy, AAV genome fate in dystrophic muscles is of importance considering the viral capsid immunogenicity that prohibits recurring treatments. We showed that AAV genomes encoding non-therapeutic U7 were lost from mdx dystrophic muscles within 3 weeks after intramuscular injection. In contrast, AAV genomes encoding U7ex23 restoring expression of a slightly shortened dystrophin were maintained endorsing that the arrest of the dystrophic process is crucial for maintaining viral genomes in transduced fibers. Indeed, muscles treated with low doses of AAV-U7ex23, resulting in sub-optimal exon skipping, displayed much lower titers of viral genomes, showing that sub-optimal dystrophin restoration does not prevent AAV genome loss. We also followed therapeutic viral genomes in severe dystrophic dKO mice over time after systemic treatment with scAAV9-U7ex23. Dystrophin restoration decreased significantly between 3 and 12 months in various skeletal muscles, which was correlated with important viral genome loss, except in the heart. Altogether, these data show that the success of future AAV-U7 therapy for Duchenne patients would require optimal doses of AAV-U7 to induce substantial levels of dystrophin to stabilize the treated fibers and maintain the long lasting effect of the treatment.

  9. Induction of immune tolerance to FIX following muscular AAV gene transfer is AAV-dose/FIX-level dependent.

    Science.gov (United States)

    Kelly, Meagan E; Zhuo, Jiacai; Bharadwaj, Arpita S; Chao, Hengjun

    2009-05-01

    Direct intramuscular injection (IM) of adeno-associated virus (AAV) has been proven a safe and potentially efficient procedure for gene therapy of many genetic diseases including hemophilia B. It is, however, contentious whether high antigen level induces tolerance or immunity to coagulation factor IX (FIX) following IM of AAV. We recently reported induction of FIX-specific immune tolerance by IM of AAV serotype one (AAV1) vector in mice. We hypothesize that the expression of high levels of FIX is critical to induction of FIX tolerance. In this study, we investigated the correlation among AAV dose, FIX expression, and tolerance induction. We observed that induction of immune tolerance or immunity to FIX was dependent on the dose of AAV1-human FIX (hFIX) given and the level of FIX antigen expressed in both normal and hemophilia mice. We then defined the minimum AAV1-hFIX dose and the lowest level of FIX needed for FIX tolerance. Different from hepatic AAV-hFIX gene transfer, we found that FIX tolerance induced by IM of AAV1 was not driven by regulatory T cells. These results provided further insight into the mechanism(s) of FIX tolerance, contributing to development of hemophilia gene therapy, and optimization of FIX tolerance induction protocols.

  10. Differential Effects of AAV.BDNF and AAV.Ntf3 in the Deafened Adult Guinea Pig Ear

    OpenAIRE

    Budenz, Cameron L.; Hiu Tung Wong; Swiderski, Donald L.; Shibata, Seiji B.; Pfingst, Bryan E.; Yehoash Raphael

    2015-01-01

    Cochlear hair cell loss results in secondary regression of peripheral auditory fibers (PAFs) and loss of spiral ganglion neurons (SGNs). The performance of cochlear implants (CI) in rehabilitating hearing depends on survival of SGNs. Here we compare the effects of adeno-associated virus vectors with neurotrophin gene inserts, AAV.BDNF and AAV.Ntf3, on guinea pig ears deafened systemically (kanamycin and furosemide) or locally (neomycin). AAV.BDNF or AAV.Ntf3 was delivered to the guinea pig co...

  11. AAV-mediated gene therapy for choroideremia: preclinical studies in personalized models.

    Directory of Open Access Journals (Sweden)

    Vidyullatha Vasireddy

    Full Text Available Choroideremia (CHM is an X- linked retinal degeneration that is symptomatic in the 1(st or 2(nd decade of life causing nyctalopia and loss of peripheral vision. The disease progresses through mid-life, when most patients become blind. CHM is a favorable target for gene augmentation therapy, as the disease is due to loss of function of a protein necessary for retinal cell health, Rab Escort Protein 1 (REP1.The CHM cDNA can be packaged in recombinant adeno-associated virus (rAAV, which has an established track record in human gene therapy studies, and, in addition, there are sensitive and quantitative assays to document REP1 activity. An animal model that accurately reflects the human condition is not available. In this study, we tested the ability to restore REP1 function in personalized in vitro models of CHM: lymphoblasts and induced pluripotent stems cells (iPSCs from human patients. The initial step of evaluating safety of the treatment was carried out by evaluating for acute retinal histopathologic effects in normal-sighted mice and no obvious toxicity was identified. Delivery of the CHM cDNA to affected cells restores REP1 enzymatic activity and also restores proper protein trafficking. The gene transfer is efficient and the preliminary safety data are encouraging. These studies pave the way for a human clinical trial of gene therapy for CHM.

  12. High Prevalence of Infectious Adeno-associated Virus (AAV) in Human Peripheral Blood Mononuclear Cells Indicative of T Lymphocytes as Sites of AAV Persistence.

    Science.gov (United States)

    Hüser, Daniela; Khalid, Dina; Lutter, Timo; Hammer, Eva-Maria; Weger, Stefan; Heßler, Melanie; Kalus, Ulrich; Tauchmann, Yvonne; Hensel-Wiegel, Karin; Lassner, Dirk; Heilbronn, Regine

    2017-02-15

    Seroepidemiology shows that infections with adeno-associated virus (AAV) are widespread, but diverse AAV serotypes isolated from humans or nonhuman primates have so far not been proven to be causes of human disease. In view of the increasing success of AAV-derived vectors in human gene therapy, definition of the in vivo sites of wild-type AAV persistence and the clinical consequences of its reactivation is becoming increasingly urgent. Here, we identify the presumed cell type for AAV persistence in the human host by highly sensitive AAV PCRs developed for the full spectrum of human AAV serotypes. In genomic-DNA samples from leukocytes of 243 healthy blood donors, 34% were found to be AAV positive, predominantly AAV type 2 (AAV2) (77%), AAV5 (19%), and additional serotypes. Roughly 11% of the blood donors had mixed AAV infections. AAV prevalence was dramatically increased in immunosuppressed patients, 76% of whom were AAV positive. Of these, at least 45% displayed mixed infections. Follow-up of single blood donors over 2 years allowed repeated detection of the initial and/or additional AAV serotypes, suggestive of fluctuating, persistent infection. Leukocyte separation revealed that AAV resided in CD3+ T lymphocytes, perceived as the putative in vivo site of AAV persistence. Moreover, infectious AAVs of various serotypes could be rescued and propagated from numerous samples. The high prevalence and broad spectrum of human AAVs in leukocytes closely follow AAV seroepidemiology. Immunosuppression obviously enhances AAV replication in parallel with activation of human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), reminiscent of herpesvirus-induced AAV activation. Adeno-associated virus is viewed as apathogenic and replication defective, requiring coinfection with adenovirus or herpesvirus for productive infection. In vivo persistence of a defective virus requires latency in specialized cell types to escape the host immune response until viral spread becomes

  13. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Sablitzky Fred

    2004-01-01

    Full Text Available Abstract Background Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV and lentiviral (LV vectors into discrete regions of the forebrain. Results Recombinant AAV-Cre, AAV-GFP (green fluorescent protein and LV-Cre-EGFP (enhanced GFP were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. Conclusion AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  14. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors.

    Science.gov (United States)

    Ahmed, Bushra Y; Chakravarthy, Sridhara; Eggers, Ruben; Hermens, Wim T J M C; Zhang, Jing Ying; Niclou, Simone P; Levelt, Christiaan; Sablitzky, Fred; Anderson, Patrick N; Lieberman, A R; Verhaagen, Joost

    2004-01-30

    Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV) and lentiviral (LV) vectors into discrete regions of the forebrain. Recombinant AAV-Cre, AAV-GFP (green fluorescent protein) and LV-Cre-EGFP (enhanced GFP) were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  15. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna

    Directory of Open Access Journals (Sweden)

    Christian Hinderer

    2014-01-01

    Full Text Available Adeno-associated virus serotype 9 (AAV9 vectors have recently been shown to transduce cells throughout the central nervous system of nonhuman primates when injected into the cerebrospinal fluid (CSF, a finding which could lead to a minimally invasive approach to treat genetic and acquired diseases affecting the entire CNS. We characterized the transduction efficiency of two routes of vector administration into the CSF of cynomolgus macaques—lumbar puncture, which is typically used in clinical practice, and suboccipital puncture, which is more commonly used in veterinary medicine. We found that delivery of vector into the cisterna magna via suboccipital puncture is up to 100-fold more efficient for achieving gene transfer to the brain. In addition, we evaluated the inflammatory response to AAV9-mediated GFP expression in the nonhuman primate CNS. We found that while CSF lymphocyte counts increased following gene transfer, there were no clinical or histological signs of immune toxicity. Together these data indicate that delivery of AAV9 into the cisterna magna is an effective method for achieving gene transfer in the CNS, and suggest that adapting this uncommon injection method for human trials could vastly increase the efficiency of gene delivery.

  16. Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2006-10-01

    Full Text Available Abstract Retinitis pigmentosa (RP is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms. Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema, and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis.

  17. Enriko Aav lubab ameti ukse maksusaladuste taga lukku panna / Enriko Aav ; interv. Hindrek Riikoja

    Index Scriptorium Estoniae

    Aav, Enriko, 1968-

    2006-01-01

    Maksu- ja tolliameti vastne peadirektor vastab küsimustele, mis puudutavad Eesti firmade maksedistsipliini, vajadust parandada maksude laekumist, maksupettusi, maksusaladuste lekkimist ning füüsilisest isikust ettevõtjatega seotud probleeme. Lisad: Enriko Aav; 3 mõtet

  18. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    National Research Council Canada - National Science Library

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe...

  19. Gene Therapy for Retinitis Pigmentosa Caused by MFRP Mutations: Human Phenotype and Preliminary Proof of Concept

    Science.gov (United States)

    Dinculescu, Astra; Estreicher, Jackie; Zenteno, Juan C.; Aleman, Tomas S.; Schwartz, Sharon B.; Huang, Wei Chieh; Roman, Alejandro J.; Sumaroka, Alexander; Li, Qiuhong; Deng, Wen-Tao; Min, Seok-Hong; Chiodo, Vince A.; Neeley, Andy; Liu, Xuan; Shu, Xinhua; Matias-Florentino, Margarita; Buentello-Volante, Beatriz; Boye, Sanford L.; Cideciyan, Artur V.

    2011-01-01

    Abstract Autosomal recessive retinitis pigmentosa (RP), a heterogeneous group of degenerations of the retina, can be due to mutations in the MFRP (membrane-type frizzled-related protein) gene. A patient with RP with MFRP mutations, one of which is novel and the first splice site mutation reported, was characterized by noninvasive retinal and visual studies. The phenotype, albeit complex, suggested that this retinal degeneration may be a candidate for gene-based therapy. Proof-of-concept studies were performed in the rd6 Mfrp mutant mouse model. The fast-acting tyrosine-capsid mutant AAV8 (Y733F) vector containing the small chicken β-actin promoter driving the wild-type mouse Mfrp gene was used. Subretinal vector delivery on postnatal day 14 prevented retinal degeneration. Treatment rescued rod and cone photoreceptors, as assessed by electroretinography and retinal histology at 2 months of age. This AAV-mediated gene delivery also resulted in robust MFRP expression predominantly in its normal location within the retinal pigment epithelium apical membrane and its microvilli. The clinical features of MFRP-RP and our preliminary data indicating a response to gene therapy in the rd6 mouse suggest that this form of RP is a potential target for gene-based therapy. PMID:22142163

  20. [Neuroprotective effect of rAAV-mediated rhBDNF gene transfection on rabbit retina against acute high intraocular pressure].

    Science.gov (United States)

    Wang, Jian-ming; Sun, Nai-xue; Hui, Na; Fan, Ya-zhi; Feng, Hai-xiao; Zhao, Shi-ping

    2009-09-01

    To investigate the neuroprotective effect of human brain-derived neurotrophic factor gene transfection into rabbit retina against acute high intraocular pressure (HIOP). Acute HIPO was induced in one eye of 24 white rabbits via saline perfusion into the anterior chamber (model group), and the contralateral eye without treatment served as the control group. In another 24 rabbits, 10 microl recombinant adeno-associated virus (rAAV) vector containing human BDNF gene (rAAV-BDNF) was injected into the vitreous body of one of the eyes 3 days before the operation for HIPO (BDNF group). At 1, 3, 7, and 14 days after HIOP model establishment, 6 eyes in each group were excised to observe the number of retinal ganglion cells (RGCs) and the thickness of the inner retina layer. For the eyes dissected on day 14, electroretinogram b (ERG-b) wave was detected 30 min before (baseline) and on days 1, 3, 7 and 14 after HIOP. Another 5 rabbits were used for ultrastructural observation of the RGCs using transmission electron microscopy, including 1 without treatment, 2 with unilateral HIOP and 2 with rAAV-BDNF transfection before HIOP. The amplitude of ERG-b wave showed no significant difference between the 3 groups before HIOP (P>0.05). In HIOP model group and BDNF group, the amplitude decreased to the lowest at 1 day after HIOP and failed to recover the baseline level at 14 days (P<0.01); at the end of the observation, the amplitude was significantly higher in BDNF group than in the model group (P<0.01). Decreased number of RGCs and thickness of inner retina layer occurred in the model group, but these changes were milder in BDNF group (P<0.05, P<0.01). Electron microscopy revealed ultrastructural changes in the RGCs following acute HIOP, and transfection with rAAV-BDNF ameliorated these changes. rAAV-BDNF transfection protects the retinal structure and improves the amplitude of ERG-b wave after acute high IOP suggesting its neuroprotective effects.

  1. Safety and Biodistribution Evaluation in CNGB3-Deficient Mice of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia.

    Science.gov (United States)

    Ye, Guo-jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Miller, Paul E; McPherson, Leslie; Ver Hoeve, James N; Smith, Leia M; Arndt, Tara; Mandapati, Savitri; Robinson, Paulette M; Calcedo, Roberto; Knop, David R; Hauswirth, William W; Chulay, Jeffrey D

    2016-03-01

    Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated virus (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in CNGB3-deficient mice. Three groups of animals (n = 35 males and 35 females per group) received a subretinal injection in one eye of 1 μl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two dose concentrations (1 × 10(12) or 4.2 × 10(12) vg/ml) and were euthanized 4 or 13 weeks later. There were no test-article-related changes in clinical observations, body weights, food consumption, ocular examinations, clinical pathology parameters, organ weights, or macroscopic observations at necropsy. Cone-mediated electroretinography (ERG) responses were detected after vector administration in the treated eyes in 90% of animals in the higher dose group and 31% of animals in the lower dose group. Rod-mediated ERG responses were reduced in the treated eye for all groups, with the greatest reduction in males given the higher dose of vector, but returned to normal by the end of the study. Microscopic pathology results demonstrated minimal mononuclear cell infiltrates in the retina and vitreous of some animals at the interim euthanasia and in the vitreous of some animals at the terminal euthanasia. Serum anti-AAV antibodies developed in most vector-injected animals. No animals developed antibodies to hCNGB3. Biodistribution studies demonstrated high levels of vector DNA in vector-injected eyes but little or no vector DNA in nonocular tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations.

  2. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington's disease.

    Science.gov (United States)

    Hadaczek, Piotr; Stanek, Lisa; Ciesielska, Agnieszka; Sudhakar, Vivek; Samaranch, Lluis; Pivirotto, Philip; Bringas, John; O'Riordan, Catherine; Mastis, Bryan; San Sebastian, Waldy; Forsayeth, John; Cheng, Seng H; Bankiewicz, Krystof S; Shihabuddin, Lamya S

    2016-01-01

    Huntington's disease (HD) is caused by a toxic gain-of-function associated with the expression of the mutant huntingtin (htt) protein. Therefore, the use of RNA interference to inhibit Htt expression could represent a disease-modifying therapy. The potential of two recombinant adeno-associated viral vectors (AAV), AAV1 and AAV2, to transduce the cortico-striatal tissues that are predominantly affected in HD was explored. Green fluorescent protein was used as a reporter in each vector to show that both serotypes were broadly distributed in medium spiny neurons in the striatum and cortico-striatal neurons after infusion into the putamen and caudate nucleus of nonhuman primates (NHP), with AAV1-directed expression being slightly more robust than AAV2-driven expression. This study suggests that both serotypes are capable of targeting neurons that degenerate in HD, and it sets the stage for the advanced preclinical evaluation of an RNAi-based therapy for this disease.

  3. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    Science.gov (United States)

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  4. Functional Characterization of AAV-Expressed Recombinant Anti-VEGF Single-Chain Variable Fragments In Vitro.

    Science.gov (United States)

    Wimmer, Tobias; Lorenz, Birgit; Stieger, Knut

    2015-06-01

    Most retinal neovascular disorders are caused by upregulation of vascular endothelial growth factor (VEGF) expression. These disorders are treated with repeated injections of anti-VEGF molecules, which may have severe side effects. The expression of anti-VEGF molecules by the retina itself in a controlled manner following adeno-associated viral (AAV) gene transfer could be a replacement of this therapy. The open reading frames (orf) of the light and the heavy chain of ranibizumab were cloned into an expression plasmid separated by an internal ribosomal entry site (IRES). The construct was mutated to generate ranibizumab single-chain variable fragments (scFv). Expression was verified by western blotting and the concentrations were measured with a custom-made ranibizumab ELISA. Biological activity, VEGF-binding properties, and the doxycycline-dependent induction of anti-VEGF expression were tested. An AAV2/5 vector was generated containing the optimal variant Ra02. Ra01-Ra05 molecules were detected in the cell culture medium. While the VEGF-binding affinity was significantly lower for Ra01 and Ra02 compared to Lucentis(®), the inhibition of cell migration was comparable and the maximum inhibition of Ra01 and Ra02 was reached at lower doses. The expression of Ra01 and Ra02 was shown to be regulable with the TetOn-system(®) as plasmid (Ra01, Ra02) and AAV vector construct (Ra02). Ra01 and Ra02 can be produced in eukaryotic cells after AAV-mediated gene transfer in a regulable manner in vitro and display comparable biological activity as Lucentis. These results are the basis for in vivo studies in human VEGF-overexpressing mice, a model for human neovascular disorders.

  5. Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy

    Science.gov (United States)

    Sen, Dwaipayan; Balakrishnan, Balaji; Gabriel, Nishanth; Agrawal, Prachi; Roshini, Vaani; Samuel, Rekha; Srivastava, Alok; Jayandharan, Giridhara R.

    2013-01-01

    Despite significant advancements with recombinant AAV2 or AAV8 vectors for liver directed gene therapy in humans, it is well-recognized that host and vector-related immune challenges need to be overcome for long-term gene transfer. To overcome these limitations, alternate AAV serotypes (1–10) are being rigorously evaluated. AAV5 is the most divergent (55% similarity vs. other serotypes) and like AAV1 vector is known to transduce liver efficiently. AAV1 and AAV5 vectors are also immunologically distinct by virtue of their low seroprevalence and minimal cross reactivity against pre-existing AAV2 neutralizing antibodies. Here, we demonstrate that targeted bio-engineering of these vectors, augment their gene expression in murine hepatocytes in vivo (up to 16-fold). These studies demonstrate the feasibility of the use of these novel AAV1 and AAV5 vectors for potential gene therapy of diseases like hemophilia. PMID:23665951

  6. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress.

    Science.gov (United States)

    Ghaderi, Shima; Ahmadian, Shahin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Samiei, Shahram; Kheitan, Samira; Pirmardan, Ehsan R

    2017-08-07

    Adeno associated virus (AAV)-mediated gene delivery of GRP78 (78 kDa glucose-regulated protein) attenuates the condition of endoplasmic reticulum (ER) stress and prevents apoptotic loss of photoreceptors in Retinitis pigmentosa (RP) rats. In the current study we overexpressed Grp78 with the help of AAV-2 in primary human retinal pigmented epithelium (hRPE) cell cultures and examined its effect on cell response to ER stress. The purpose of this work was studying potential stimulating effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress, as an in vitro model for RPE degeneration. To investigate the effect of Grp78 overexpression on unfolded protein response (UPR) markers under ER stress, hRPE primary cultures were transduced by recombinant virus rAAV/Grp78, and treated with ER stressor drug, tunicamycin. Expression changes of four UPR markers including GRP78, PERK, ATF6α, and GADD153/CHOP, were assessed by real-time PCR and western blotting. We found that GRP78 has a great contribution in modulation of UPR markers to favor adaptive response in ER-stressed hRPE cells. In fact, GRP78 overexpression affected adaptation and apoptotic phases of early UPR, through enhancement of two master regulators/ER stress sensors (PERK and ATF6α) and down-regulation of a key pro-apoptotic cascade activator (GADD153/CHOP). Together these findings demonstrate the promoting effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress. This protein with anti-apoptotic actions in the early UPR and important role in cell fate regulation, can be recruited as a useful candidate for future investigations of RPE degenerative diseases. © 2017 Wiley Periodicals, Inc.

  7. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain

    OpenAIRE

    Deverman, Benjamin E.; Pravdo, Piers L.; Simpson, Bryan P.; Kumar, Sripriya Ravindra; Chan, Ken Y.; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P.; Gradinaru, Viviana

    2016-01-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer 1-6 . However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics 7-13 . Here we describe a capsid selection method, called Cre-recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREA...

  8. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    Science.gov (United States)

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  9. Simple downstream process based on detergent treatment improves yield and in vivo transduction efficacy of adeno-associated virus vectors

    Directory of Open Access Journals (Sweden)

    Gabriella Dias Florencio

    2015-01-01

    Full Text Available Recombinant adeno-associated viruses (rAAV are promising candidates for gene therapy approaches. The last two decades were particularly fruitful in terms of processes applied in the production and purification of this type of gene transfer vectors. This rapid technological evolution led to better yields and higher levels of vector purity. Recently, some reports showed that rAAV produced by transient tri-transfection method in adherent human embryonic kidney 293 cells can be harvested directly from supernatant, leading to easier and faster purification compared to classical virus extraction from cell pellets. Here, we compare these approaches with new vector recovery method using small quantity of detergent at the initial clarification step to treat the whole transfected cell culture. Coupled with tangential flow filtration and iodixanol-based isopycnic density gradient, this new method significantly increases rAAV yields and conserves high vector purity. Moreover, this approach leads to the reduction of the total process duration. Finally, the vectors maintain their functionality, showing unexpected higher in vitro and in vivo transduction efficacies. This new development in rAAV downstream process once more demonstrates the great capacity of these vectors to easily accommodate to large panel of methods, able to furthermore ameliorate their safety, functionality, and scalability.

  10. Gene Augmentation for X-Linked Retinitis Pigmentosa Caused by Mutations in RPGR

    Science.gov (United States)

    Beltran, William A.; Cideciyan, Artur V.; Lewin, Alfred S.; Hauswirth, William W.; Jacobson, Samuel G.; Aguirre, Gustavo D.

    2015-01-01

    X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is a severe and early onset form of retinal degeneration, and no treatment is currently available. Recent evidence in two clinically relevant canine models shows that adeno-associated viral (AAV)-mediated RPGR gene transfer to rods and cones can prevent disease onset and rescue photoreceptors at early- and mid-stages of degeneration. There is thus a strong incentive for conducting long-term, preclinical efficacy and safety studies, while concomitantly pursuing the detailed phenotypic characterization of XLRP disease in patients that may benefit from such corrective therapy. PMID:25301933

  11. Production of recombinant AAV vectors encoding insulin-like growth factor I is enhanced by interaction among AAV rep regulatory sequences

    Directory of Open Access Journals (Sweden)

    Dilley Robert

    2009-01-01

    Full Text Available Abstract Background Adeno-associated virus (AAV vectors are promising tools for gene therapy. Currently, their potential is limited by difficulties in producing high vector yields with which to generate transgene protein product. AAV vector production depends in part upon the replication (Rep proteins required for viral replication. We tested the hypothesis that mutations in the start codon and upstream regulatory elements of Rep78/68 in AAV helper plasmids can regulate recombinant AAV (rAAV vector production. We further tested whether the resulting rAAV vector preparation augments the production of the potentially therapeutic transgene, insulin-like growth factor I (IGF-I. Results We constructed a series of AAV helper plasmids containing different Rep78/68 start codon in combination with different gene regulatory sequences. rAAV vectors carrying the human IGF-I gene were prepared with these vectors and the vector preparations used to transduce HT1080 target cells. We found that the substitution of ATG by ACG in the Rep78/68 start codon in an AAV helper plasmid (pAAV-RC eliminated Rep78/68 translation, rAAV and IGF-I production. Replacement of the heterologous sequence upstream of Rep78/68 in pAAV-RC with the AAV2 endogenous p5 promoter restored translational activity to the ACG mutant, and restored rAAV and IGF-I production. Insertion of the AAV2 p19 promoter sequence into pAAV-RC in front of the heterologous sequence also enabled ACG to function as a start codon for Rep78/68 translation. The data further indicate that the function of the AAV helper construct (pAAV-RC, that is in current widespread use for rAAV production, may be improved by replacement of its AAV2 unrelated heterologous sequence with the native AAV2 p5 promoter. Conclusion Taken together, the data demonstrate an interplay between the start codon and upstream regulatory sequences in the regulation of Rep78/68 and indicate that selective mutations in Rep78/68 regulatory elements

  12. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    Science.gov (United States)

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings. PMID:26445723

  13. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    Directory of Open Access Journals (Sweden)

    Daniel J Hui

    Full Text Available Adeno-associated virus (AAV has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC class I epitopes for common human leukocyte antigen (HLA types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  14. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes.

    Science.gov (United States)

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  15. Sialic Acid Deposition Impairs the Utility of AAV9, but Not Peptide-modified AAVs for Brain Gene Therapy in a Mouse Model of Lysosomal Storage Disease

    OpenAIRE

    Chen, Yong Hong; Claflin, Kristin; Geoghegan, James C.; Davidson, Beverly L.

    2012-01-01

    Recombinant vector systems have been recently identified that when delivered systemically can transduce neurons, glia, and endothelia in the central nervous system (CNS), providing an opportunity to develop therapies for diseases affecting the brain without performing direct intracranial injections. Vector systems based on adeno-associated virus (AAV) include AAV serotype 9 (AAV9) and AAVs that have been re-engineered at the capsid level for CNS tropism. Here, we performed a head-to-head comp...

  16. Behavioral recovery in a primate model of Parkinson's disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes.

    Science.gov (United States)

    Muramatsu, Shin-Ichi; Fujimoto, Ken-Ichi; Ikeguchi, Kunihiko; Shizuma, Nami; Kawasaki, Katsuyoshi; Ono, Fumiko; Shen, Yang; Wang, Lijun; Mizukami, Hiroaki; Kume, Akihiro; Matsumura, Masaru; Nagatsu, Ikuko; Urano, Fumi; Ichinose, Hiroshi; Nagatsu, Toshiharu; Terao, Keiji; Nakano, Imaharu; Ozawa, Keiya

    2002-02-10

    One potential strategy for gene therapy of Parkinson's disease (PD) is the local production of dopamine (DA) in the striatum induced by restoring DA-synthesizing enzymes. In addition to tyrosine hydroxylase (TH) and aromatic-L-amino-acid decarboxylase (AADC), GTP cyclohydrolase I (GCH) is necessary for efficient DA production. Using adeno-associated virus (AAV) vectors, we previously demonstrated that expression of these three enzymes in the striatum resulted in long-term behavioral recovery in rat models of PD. We here extend the preclinical exploration to primate models of PD. Mixtures of three separate AAV vectors expressing TH, AADC, and GCH, respectively, were stereotaxically injected into the unilateral putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. Coexpression of the enzymes in the unilateral putamen resulted in remarkable improvement in manual dexterity on the contralateral to the AAV-TH/-AADC/-GCH-injected side. Behavioral recovery persisted during the observation period (four monkeys: 48 days, 65 days, 50 days, and >10 months, each). TH-immunoreactive (TH-IR), AADC-IR, and GCH-IR cells were present in a large region of the putamen. Microdialysis demonstrated that concentrations of DA in the AAV-TH/-AADC/-GCH-injected putamen were increased compared with the control side. Our results show that AAV vectors efficiently introduce DA-synthesizing enzyme genes into the striatum of primates with restoration of motor functions. This triple transduction method may offer a potential therapeutic strategy for PD.

  17. Cover Image, Volume 113, Number 12, December 2016.

    Science.gov (United States)

    Khabou, Hanen; Desrosiers, Mélissa; Winckler, Céline; Fouquet, Stéphane; Auregan, Gwenaëlle; Bemelmans, Alexis-Pierre; Sahel, José-Alain; Dalkara, Deniz

    2016-12-01

    Cover Legend A schematic representation of cell transduction with AAV particles. The cover image, by Deniz Dalkara et al., is based on the Article Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant -7m8, DOI: 10.1002/bit.26031. © 2016 Wiley Periodicals, Inc.

  18. Widespread neuron-specific transgene expression in brain and spinal cord following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection.

    Science.gov (United States)

    McLean, Jesse R; Smith, Gaynor A; Rocha, Emily M; Hayes, Melissa A; Beagan, Jonathan A; Hallett, Penelope J; Isacson, Ole

    2014-07-25

    Adeno-associated viral (AAV) gene transfer holds great promise for treating a wide-range of neurodegenerative disorders. The AAV9 serotype crosses the blood-brain barrier and shows enhanced transduction efficiency compared to other serotypes, thus offering advantageous targeting when global transgene expression is required. Neonatal intravenous or intracerebroventricular (i.c.v.) delivery of recombinant AAV9 (rAAV9) have recently proven effective for modeling and treating several rodent models of neurodegenerative disease, however, the technique is associated with variable cellular tropism, making tailored gene transfer a challenge. In the current study, we employ the human synapsin 1 (hSYN1) gene promoter to drive neuron-specific expression of green fluorescent protein (GFP) after neonatal i.c.v. injection of rAAV9 in mice. We observed widespread GFP expression in neurons throughout the brain, spinal cord, and peripheral nerves and ganglia at 6 weeks-of-age. Region-specific quantification of GFP expression showed high neuronal transduction rates in substantia nigra pars reticulata (43.9±5.4%), motor cortex (43.5±3.3%), hippocampus (43.1±2.7%), cerebellum (29.6±2.3%), cervical spinal cord (24.9±3.9%), and ventromedial striatum (16.9±4.3%), among others. We found that 14.6±2.2% of neuromuscular junctions innervating the gastrocnemius muscle displayed GFP immunoreactivity. GFP expression was identified in several neuronal sub-types, including nigral tyrosine hydroxylase (TH)-positive dopaminergic cells, striatal dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32)-positive neurons, and choline acetyltransferase (ChAT)-positive motor neurons. These results build on contemporary gene transfer techniques, demonstrating that the hSYN1 promoter can be used with rAAV9 to drive robust neuron-specific transgene expression throughout the nervous system. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Missed retinal breaks in rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Brijesh Takkar

    2016-12-01

    Full Text Available AIM: To evaluate the causes and associations of missed retinal breaks (MRBs and posterior vitreous detachment (PVD in patients with rhegmatogenous retinal detachment (RRD. METHODS: Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. RESULTS: Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033 with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. CONCLUSION: Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD.

  20. Engineered AAV vectors for improved central nervous system gene delivery

    Science.gov (United States)

    A Kotterman, Melissa; Schaffer, David V

    2015-01-01

    Adeno-associated viruses (AAV) are non-pathogenic members of the Parvoviridae family that are being harnessed as delivery vehicles for both basic research and increasingly successful clinical gene therapy. To address a number of delivery shortcomings with natural AAV variants, we have developed and implemented directed evolution—a high-throughput molecular engineering approach to generate novel biomolecules with enhanced function—to create novel AAV vectors that are designed to preferentially transduce specific cell types in the central nervous system (CNS), including astrocytes, neural stem cells, and cells within the retina. These novel AAV vectors—which have enhanced infectivity in vitro and enhanced infectivity and selectivity in vivo—can enable more efficient studies to further our understanding of neurogenesis, development, aging, and disease. Furthermore, such engineered vectors may aid gene or cell replacement therapies to treat neurodegenerative disease or injury. PMID:27606332

  1. Engineered AAV vectors for improved central nervous system gene delivery.

    Science.gov (United States)

    A Kotterman, Melissa; Schaffer, David V

    2015-01-01

    Adeno-associated viruses (AAV) are non-pathogenic members of the Parvoviridae family that are being harnessed as delivery vehicles for both basic research and increasingly successful clinical gene therapy. To address a number of delivery shortcomings with natural AAV variants, we have developed and implemented directed evolution-a high-throughput molecular engineering approach to generate novel biomolecules with enhanced function-to create novel AAV vectors that are designed to preferentially transduce specific cell types in the central nervous system (CNS), including astrocytes, neural stem cells, and cells within the retina. These novel AAV vectors-which have enhanced infectivity in vitro and enhanced infectivity and selectivity in vivo-can enable more efficient studies to further our understanding of neurogenesis, development, aging, and disease. Furthermore, such engineered vectors may aid gene or cell replacement therapies to treat neurodegenerative disease or injury.

  2. Glycated AAV vectors: chemical redirection of viral tissue tropism.

    Science.gov (United States)

    Horowitz, Eric D; Weinberg, Marc S; Asokan, Aravind

    2011-04-20

    A chemical approach for selective masking of arginine residues on viral capsids featuring an exogenous glycation reaction has been developed. Reaction of adeno-associated viral (AAV) capsids with the α-dicarbonyl compound, methylglyoxal, resulted in formation of arginine adducts. Specifically, surface-exposed guanidinium side chains were modified into charge neutral hydroimidazolones, thereby disrupting a continuous cluster of basic amino acid residues implicated in heparan sulfate binding. Consequent loss in heparin binding ability and decrease in infectivity were observed. Strikingly, glycated AAV retained the ability to infect neurons in the mouse brain and were redirected from liver to skeletal and cardiac muscle following systemic administration in mice. Further, glycated AAV displayed altered antigenicity demonstrating the potential for evading antibody neutralization. Generation of unnatural amino acid side chains through capsid glycation might serve as an orthogonal strategy to engineer AAV vectors displaying novel tissue tropisms for gene therapy applications.

  3. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang

    2014-04-01

    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  4. Selektion und Charakterisierung zielgerichteter Vektorkapside aus randomisierten AAV-2 Peptidbanken

    OpenAIRE

    Michelfelder, Stefan

    2008-01-01

    Selection of viral vectors by screening viral display peptide libraries is an auspicious approach to improve safety and efficiency of gene vectors. The screening of random AAV peptide libraries occurs via the amplification of viruses from a multitude of potential targeting peptides each presented within an AAV capsid that are internalized into target cells, mediated by the peptide displayed on their surface.The aim of this thesis was the selection of cell type- or tissue-directed gene vectors...

  5. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10.

    Science.gov (United States)

    Yang, Bin; Li, Shaoyong; Wang, Hongyan; Guo, Yansu; Gessler, Dominic J; Cao, Chunyan; Su, Qin; Kramer, Joshua; Zhong, Li; Ahmed, Seemin Seher; Zhang, Hongwei; He, Ran; Desrosiers, Ronald C; Brown, Robert; Xu, Zuoshang; Gao, Guangping

    2014-07-01

    Some recombinant adeno-associated viruses (rAAVs) can cross the neonatal blood-brain barrier (BBB) and efficiently transduce cells of the central nervous system (CNS). However, in the adult CNS, transduction levels by systemically delivered rAAVs are significantly reduced, limiting their potential for CNS gene therapy. Here, we characterized 12 different rAAVEGFPs in the adult mouse CNS following intravenous delivery. We show that the capability of crossing the adult BBB and achieving widespread CNS transduction is a common character of AAV serotypes tested. Of note, rAAVrh.8 is the leading vector for robust global transduction of glial and neuronal cell types in regions of clinical importance such as cortex, caudate-putamen, hippocampus, corpus callosum, and substantia nigra. It also displays reduced peripheral tissue tropism compared to other leading vectors. Additionally, we evaluated rAAVrh.10 with and without microRNA (miRNA)-regulated expressional detargeting from peripheral tissues for systemic gene delivery to the CNS in marmosets. Our results indicate that rAAVrh.8, along with rh.10 and 9, hold the best promise for developing novel therapeutic strategies to treat neurological diseases in the adult patient population. Additionally, systemically delivered rAAVrh.10 can transduce the CNS efficiently, and its transgene expression can be limited in the periphery by endogenous miRNAs in adult marmosets.

  6. GCaMP expression in retinal ganglion cells characterized using a low-cost fundus imaging system

    Science.gov (United States)

    Chang, Yao-Chuan; Walston, Steven T.; Chow, Robert H.; Weiland, James D.

    2017-10-01

    Objective. Virus-transduced, intracellular-calcium indicators are effective reporters of neural activity, offering the advantage of cell-specific labeling. Due to the existence of an optimal time window for the expression of calcium indicators, a suitable tool for tracking GECI expression in vivo following transduction is highly desirable. Approach. We developed a noninvasive imaging approach based on a custom-modified, low-cost fundus viewing system that allowed us to monitor and characterize in vivo bright-field and fluorescence images of the mouse retina. AAV2-CAG-GCaMP6f was injected into a mouse eye. The fundus imaging system was used to measure fluorescence at several time points post injection. At defined time points, we prepared wholemount retina mounted on a transparent multielectrode array and used calcium imaging to evaluate the responsiveness of retinal ganglion cells (RGCs) to external electrical stimulation. Main results. The noninvasive fundus imaging system clearly resolves individual (RGCs and axons. RGC fluorescence intensity and the number of observable fluorescent cells show a similar rising trend from week 1 to week 3 after viral injection, indicating a consistent increase of GCaMP6f expression. Analysis of the in vivo fluorescence intensity trend and in vitro neurophysiological responsiveness shows that the slope of intensity versus days post injection can be used to estimate the optimal time for calcium imaging of RGCs in response to external electrical stimulation. Significance. The proposed fundus imaging system enables high-resolution digital fundus imaging in the mouse eye, based on off-the-shelf components. The long-term tracking experiment with in vitro calcium imaging validation demonstrates the system can serve as a powerful tool monitoring the level of genetically-encoded calcium indicator expression, further determining the optimal time window for following experiment.

  7. Umami taste transduction mechanisms.

    Science.gov (United States)

    Kinnamon, Sue C

    2009-09-01

    l-Glutamate elicits the umami taste sensation, now recognized as a fifth distinct taste quality. A characteristic feature of umami taste is its potentiation by 5'-ribonucleotides such as guanosine-5'-monophosphate and inosine 5'-monophosphate, which also elicit the umami taste on their own. Recent data suggest that multiple G protein-coupled receptors contribute to umami taste. This review will focus on events downstream of the umami taste receptors. Ligand binding leads to Gbetagamma activation of phospholipase C beta2, which produces the second messengers inositol trisphosphate and diacylglycerol. Inositol trisphosphate binds to the type III inositol trisphosphate receptor, which causes the release of Ca(2+) from intracellular stores and Ca(2+)-dependent activation of a monovalent-selective cation channel, TRPM5. TRPM5 is believed to depolarize taste cells, which leads to the release of ATP, which activates ionotropic purinergic receptors on gustatory afferent nerve fibers. This model is supported by knockout of the relevant signaling effectors as well as physiologic studies of isolated taste cells. Concomitant with the molecular studies, physiologic studies show that l-glutamate elicits increases in intracellular Ca(2+) in isolated taste cells and that the source of the Ca(2+) is release from intracellular stores. Both Galpha gustducin and Galpha transducin are involved in umami signaling, because the knockout of either subunit compromises responses to umami stimuli. Both alpha-gustducin and alpha-transducin activate phosphodiesterases to decrease intracellular cAMP. The target of cAMP in umami transduction is not known, but membrane-permeant analogs of cAMP antagonize electrophysiologic responses to umami stimuli in isolated taste cells, which suggests that cAMP may have a modulatory role in umami signaling.

  8. Pheromone transduction in moths

    Directory of Open Access Journals (Sweden)

    Monika Stengl

    2010-12-01

    Full Text Available Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth´s physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors.

  9. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial.

    Science.gov (United States)

    Bennett, Jean; Wellman, Jennifer; Marshall, Kathleen A; McCague, Sarah; Ashtari, Manzar; DiStefano-Pappas, Julie; Elci, Okan U; Chung, Daniel C; Sun, Junwei; Wright, J Fraser; Cross, Dominique R; Aravand, Puya; Cyckowski, Laura L; Bennicelli, Jeannette L; Mingozzi, Federico; Auricchio, Alberto; Pierce, Eric A; Ruggiero, Jason; Leroy, Bart P; Simonelli, Francesca; High, Katherine A; Maguire, Albert M

    2016-08-13

    Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study. In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1.5 × 10(11) vector genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11-46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1.71-4.58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with ClinicalTrials.gov, number NCT01208389. No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0.0003, white light full-field sensitivity p0.49 for all time-points compared with baseline). To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy administered to the contralateral eye. The results highlight the use of several outcome measures and help to delineate the variables that

  10. Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs.

    Science.gov (United States)

    Pleticha, Josef; Heilmann, Lukas F; Evans, Christopher H; Asokan, Aravind; Samulski, Richard Jude; Beutler, Andreas S

    2014-09-02

    Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting.

  11. Improvement of Adeno-Associated Virus-Mediated Liver Transduction Efficacy by Regional Administration in Macaca fascicularis.

    Science.gov (United States)

    Zabaleta, Nerea; Salas, David; Paramo, Maria; Hommel, Mirja; Sier-Ferreira, Valerie; Hernandez-Alcoceba, Ruben; Prieto, Jesus; Bilbao, Jose I; Gonzalez-Aseguinolaza, Gloria

    2017-06-01

    The liver is a central organ in metabolism and can be affected by numerous inherited metabolic disorders. Recombinant adeno-associated virus (AAV)-based gene therapy represents a promising therapeutic approach for such diseases. AAVs have been demonstrated to be safe, and resulted in high and long-term expression in preclinical and clinical studies. However, there are still some concerns regarding the expression levels that can be achieved and the percentage of hepatocytes that can be transduced. Because of the cell-autonomous nature of most metabolic liver disorders, a high percentage of hepatocytes needs to be corrected in order to achieve a therapeutic effect. The goal of our work was to improve transduction efficacy of the liver by conveying the vector directly to hepatic tissue. Interventional radiology procedures were used to administer an AAV5 vector expressing a secreted form of human embryonic alkaline phosphatase (hSEAP) under the control of a liver-specific promoter to a clinically relevant animal model, Macaca fascicularis. Balloon occlusion of the regional hepatic venous flow was performed while injecting the vector either into the hepatic artery (HA) or, against flow, via the suprahepatic vein (SHV). In both cases the vector was injected into the right hepatic lobules, and the two routes were compared with conventional intravenous administration. Higher hSEAP levels were obtained when the vector was administered via SHV or HA than after intravenous injection. Furthermore, higher expression levels correlated with a higher number of vector genomes in the injected lobules. In conclusion, direct administration of AAV vectors via the hepatic blood flow with simultaneous balloon occlusion of the hepatic outflow increases liver transduction efficacy in comparison with systemic delivery and can be further improved in bigger animals or humans, where it would be technically feasible to inject the vector into the hepatic vasculature in the generality of lobules.

  12. The prevalence of neutralizing antibodies against AAV serotype 1 in healthy subjects in China: implications for gene therapy and vaccines using AAV1 vector.

    Science.gov (United States)

    Liu, Qiang; Huang, Weijin; Zhao, Chenyan; Zhang, Li; Meng, Shufang; Gao, Dongying; Wang, Youchun

    2013-09-01

    Recombinant adeno-associated virus serotype 1 (AAV1) has attracted tremendous interest as a promising vector for gene therapy and vaccine applications. However, the presence of AAV1 neutralizing antibodies as a consequence of exposure to wild type AAV1 can limit significantly effective gene transfer for biologics based AAV1 vector. Prior studies have reported that a prevalence of AAV1 neutralizing antibodies ranged from 10% to 50% in different countries around the world, and up to 79% in Dutch subjects. However, few studies have reported on the AAV1 neutralizing antibody prevalence in Chinese subjects. In this study, a high-throughput luciferase-based virus neutralization assay was established and standardized for critical parameters, including the appropriate cell line, and the optimal viral infection dose, and the infection time with homologous AAV1 vaccinated mice and guinea pig sera. Then, a total of 500 healthy individual serum samples from two separate regions of China were screened for the AAV1 neutralizing antibodies by conducting a non-randomized, cross-sectional analysis. Interestingly, a high prevalence of AAV1 neutralizing antibody (69.8%) was found in all individuals. There was significant difference observed for prevalence by gender (P = 0.042), age range (P = 0.011) and geographic origin (P AAV1 neutralizing antibodies (NT50  > 10) in teenagers (year AAV1-based vaccination and gene therapy strategies in Beijing and Anhui provinces of China. Copyright © 2013 Wiley Periodicals, Inc.

  13. Adeno-associated virus (AAV) as a vehicle for therapeutic gene delivery: improvements in vector design and viral production enhance potential to prolong graft survival in pancreatic islet cell transplantation for the reversal of type 1 diabetes.

    Science.gov (United States)

    Kapturczak, M H; Flotte, T; Atkinson, M A

    2001-05-01

    Most viral gene delivery syslems utilized to date have demonstrated significant limitations in practicality and safety due to the level and duration of recombinant transgene expression as well as their induction of host immunogenicity to vector proteins. Recombinant adeno-associated virus (rAAV) vectors appear to offer a vehicle for safe, long-term therapeutic gene transfer; factors afforded through the propensity of rAAV to establish long-term latency without deleterious effects on the host cell and the relative non-immunogenicity of the virus or viral expressed transgenes. The principal historical limitation of this vector system, efficiency of rAAV-mediated transduction, has recently observed a dramatic increase as the titer, purity, and production capacity of rAAV preparations have improved. In terms of systems that could benefit from such improvements, rAAV gene therapy to enhance solid organ transplantation would appear an obvious choice with islet transplantation forming a promising candidate due to the ability to perform viral transductions ex vivo. Currently, islet transplantation can be used to treat type 1 diabetes yet persisting alloimmune and autoimmune responses represent major obstacles to the clinical success for this procedure. The delivery of transgenes capable of interfering with antigenic recognition and/or cell death [e.g., Fas ligand (FasL), Bcl-2, Bcl-XL] as well as imparting tolerance/immunoregulation [e.g., interleukin(IL)-4, IL-10, transforming growth factor (TGF)-beta], or cytoprotection [e.g., heme oxygenase-1 (HO-1), catalase, manganese superoxide dismutase (MnSOD)] may prevent recurrent type 1 diabetes in islet transplantation and offer a promising form of immunotherapy. Research investigations utilizing such systems may also provide information vital to understanding the immunoregulatory mechanisms critical to the development of both alloimmune and autoimmune islet cell rejection mechanisms and recurrent type 1 diabetes.

  14. [Gene expression of AAV-ITR ssDNA mini vector in skeletal muscle of mice].

    Science.gov (United States)

    Zhu, Dongqin; Zhang, Yun; Liu, Xiaomei; Zhang, Chun

    2014-11-01

    AAV-ITR single strand DNA mini vector (AAV-ITR ssDNA mini vector) is a novel gene expression vector based on AAV-ITR. We have shown efficient gene expression of AAV-ITR ssDNA mini vector in HEK 293T. Here, we studied the efficacy of gene expression of AAV-ITR ssDNA mini vector in vivo. We injected the skeletal muscle of ICR mice separately with equal molars of AAV-ITR ssDNA mini vector, ITR mutated AAV-ITR single strand DNA mini vector (AAV-ITRmm ssDNA mutant vector), AAV-ITR dsDNA and pUC57-minivector-GFP, combined with TurboFect. Florescence microscope analysis of skeletal muscle section shows that AAV-ITR ssDNA mini vector had higher expression efficiency and longer expression period. We extracted DNA from the muscle three months after injection and quantified three vectors by Real-time PCR. RT-PCR analysis shows that there were highest copy numbers of AAV-ITR ssDNA mini vector existing in muscle. Stable existing of AAV- TR ssDNA mini vector in muscle could be the molecular basis of long term gene expression of the vector. The results suggest that AAV-ITR ssDNA mini vector might be a promising vector for gene therapy.

  15. Proinsulin slows retinal degeneration and vision loss in the P23H rat model of retinitis pigmentosa.

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Isiegas, Carolina; Ayuso, Eduard; Ruiz, José M; de la Villa, Pedro; Bosch, Fatima; de la Rosa, Enrique J; Cuenca, Nicolás

    2012-12-01

    Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi-) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.

  16. Retinal Structure and Gene Therapy Outcome in Retinoschisin-Deficient Mice Assessed by Spectral-Domain Optical Coherence Tomography

    Science.gov (United States)

    Zeng, Yong; Petralia, Ronald S.; Vijayasarathy, Camasamudram; Wu, Zhijian; Hiriyanna, Suja; Song, Hongman; Wang, Ya-Xian; Sieving, Paul A.; Bush, Ronald A.

    2016-01-01

    Purpose Spectral-domain optical coherence tomography (SD-OCT) was used to characterize the retinal phenotype, natural history, and treatment responses in a mouse model of X-linked retinoschisis (Rs1-KO) and to identify new structural markers of AAV8-mediated gene therapy outcome. Methods Optical coherence tomography scans were performed on wild-type and Rs1-KO mouse retinas between 1 and 12 months of age and on Rs1-KO mice after intravitreal injection of AAV8-scRS/IRBPhRS (AAV8-RS1). Cavities and photoreceptor outer nuclear layer (ONL) thickness were measured, and outer retina reflective band (ORRB) morphology was examined with age and after AAV8-RS1 treatment. Outer retina reflective band morphology was compared to immunohistochemical staining of the outer limiting membrane (OLM) and photoreceptor inner segment (IS) mitochondria and to electron microscopy (EM) images of IS. Results Retinal cavity size in Rs1-KO mice increased between 1 and 4 months and decreased thereafter, while ONL thickness declined steadily, comparable to previous histologic studies. Wild-type retina had four ORRBs. In Rs1-KO, ORRB1was fragmented from 1 month, but was normal after 8 months; ORRB2 and ORRB3 were merged at all ages. Outer retina reflective band morphology returned to normal after AAV-RS1 therapy, paralleling the recovery of the OLM and IS mitochondria as indicated by anti–β-catenin and anti-COX4 labeling, respectively, and EM. Conclusions Spectral-domain OCT is a sensitive, noninvasive tool to monitor subtle changes in retinal morphology, disease progression, and effects of therapies in mouse models. The ORRBs may be useful to assess the outcome of gene therapy in the treatment of X-linked retinoschisis patients. PMID:27409484

  17. Differential effects of two MRI contrast agents on the integrity and distribution of rAAV2 and rAAV5 in the rat striatum

    Directory of Open Access Journals (Sweden)

    Sue Osting

    2014-01-01

    Full Text Available Intraoperative magnetic resonance imaging (MRI has been proposed as a method to optimize intracerebral targeting and for tracking infusate distribution in gene therapy trials for nervous system disorders. We thus investigated possible effects of two MRI contrast agents, gadoteridol (Gd and galbumin (Gab, on the distribution and levels of transgene expression in the rat striatum and their effect on integrity and stability of recombinant adeno-associated virus (rAAV particles. MRI studies showed that contrast agent distribution did not predict rAAV distribution. However, green fluorescent protein (GFP immunoreactivity revealed an increase in distribution of rAAV5-GFP, but not rAAV2-GFP, in the presence of Gd when compared with viral vector injected alone. In contrast, Gab increased the distribution of rAAV2-GFP not rAAV5-GFP. These observations pointed to a direct effect of infused contrast agent on the rAAV particles. Negative-stain electron microscopy (EM, DNAase treatment, and differential scanning calorimetry (DSC were used to monitor rAAV2 and rAAV5 particle integrity and stability following contrast agent incubation. EMs of rAAV2-GFP and rAAV5-GFP particles pretreated with Gd appear morphologically similar to the untreated sample; however, Gab treatment resulted in surface morphology changes and aggregation. A compromise of particle integrity was suggested by sensitivity of the packaged genome to DNAase treatment following Gab incubation but not Gd for both vectors. However, neither agent significantly affected particle stability when analyzed by DSC. An increase in Tm was observed for AAV2 in lactated Ringer's buffer. These results thus highlight potential interactions between MRI contrast agents and AAV that might affect vector distribution and stability, as well as the stabilizing effect of lactated Ringer's solution on AAV2.

  18. Retinal Imaging with Smartphone

    African Journals Online (AJOL)

    2017-03-06

    Mar 6, 2017 ... lens in patients with dilated pupils by activating the video mode of the camera. Results: Clear retinal images were obtained ... The aim of this study is to explore the use of smartphone. (Blackberry Z-10) for retinal ... Figure 2 a shows fibrous proliferation in a case of branch retinal vein occlusion, and Figure 2 ...

  19. Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat CLN3-Associated Retinal Degeneration.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; Drack, Arlene V; Banach, Bailey B; Ochoa, Dalyz; Cranston, Cathryn M; Madumba, Robert A; East, Jade S; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-10-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is a childhood neurodegenerative disease with early-onset, severe central vision loss. Affected children develop seizures and CNS degeneration accompanied by severe motor and cognitive deficits. There is no cure for JNCL, and patients usually die during the second or third decade of life. In this study, independent lines of induced pluripotent stem cells (iPSCs) were generated from two patients with molecularly confirmed mutations in CLN3, the gene mutated in JNCL. Clinical-grade adeno-associated adenovirus serotype 2 (AAV2) carrying the full-length coding sequence of human CLN3 was generated in a U.S. Food and Drug Administration-registered cGMP facility. AAV2-CLN3 was efficacious in restoring full-length CLN3 transcript and protein in patient-specific fibroblasts and iPSC-derived retinal neurons. When injected into the subretinal space of wild-type mice, purified AAV2-CLN3 did not show any evidence of retinal toxicity. This study provides proof-of-principle for initiation of a clinical trial using AAV-mediated gene augmentation for the treatment of children with CLN3-associated retinal degeneration.

  20. Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy.

    Directory of Open Access Journals (Sweden)

    Virginia Haurigot

    Full Text Available Neovascularization associated with diabetic retinopathy (DR and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF. Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP 2 and 9 and the content of Connective Tissue Growth Factor (CTGF. These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders.

  1. Effect of genome size on AAV vector packaging.

    Science.gov (United States)

    Wu, Zhijian; Yang, Hongyan; Colosi, Peter

    2010-01-01

    Adeno-associated virus (AAV) vector genomes have been limited to 5 kilobases (kb) in length because their packaging limit was thought to be similar to the size of the parent AAV genome. Recent reports claim that significantly larger vector genomes can be packaged intact. We examined the packaged vector genomes from plasmid-encoded AAV vectors that ranged from 4.7 to 8.7 kb in length, using AAV types 2, 5, and 8 capsids. Southern blot analysis indicated that packaged AAV vector genomes never exceeded 5.2 kb in length irrespective of the size of the plasmid-encoded vector or the capsid type. This result was confirmed by vector genome probing with strand-specific oligonucleotides. The packaged vector genomes derived from plasmid-encoded vectors exceeding 5 kb were heterogeneous in length and truncated on the 5' end. Despite their truncated genomes, vector preparations produced from plasmid-encoded vectors exceeding 5.2 kb mediated reporter gene expression in vitro at high multiplicity of infection (MOI). The efficiency of expression was substantially lower than that of reporter vectors with genomes <5 kb in length. We propose that transcriptionally functional, intact vector genomes are generated in cells transduced at high MOI from the fragmentary genomes of these larger vectors, probably by recombination.

  2. A Comprehensive RNA Sequencing Analysis of the Adeno-Associated Virus (AAV) Type 2 Transcriptome Reveals Novel AAV Transcripts, Splice Variants, and Derived Proteins.

    Science.gov (United States)

    Stutika, Catrin; Gogol-Döring, Andreas; Botschen, Laura; Mietzsch, Mario; Weger, Stefan; Feldkamp, Mirjam; Chen, Wei; Heilbronn, Regine

    2015-11-11

    Adeno-associated virus (AAV) is recognized for its bipartite life cycle with productive replication dependent on coinfection with adenovirus (Ad) and AAV latency being established in the absence of a helper virus. The shift from latent to Ad-dependent AAV replication is mostly regulated at the transcriptional level. The current AAV transcription map displays highly expressed transcripts as found upon coinfection with Ad. So far, AAV transcripts have only been characterized on the plus strand of the AAV single-stranded DNA genome. The AAV minus strand is assumed not to be transcribed. Here, we apply Illumina-based RNA sequencing (RNA-Seq) to characterize the entire AAV2 transcriptome in the absence or presence of Ad. We find known and identify novel AAV transcripts, including additional splice variants, the most abundant of which leads to expression of a novel 18-kDa Rep/VP fusion protein. Furthermore, we identify for the first time transcription on the AAV minus strand with clustered reads upstream of the p5 promoter, confirmed by 5' rapid amplification of cDNA ends and RNase protection assays. The p5 promoter displays considerable activity in both directions, a finding indicative of divergent transcription. Upon infection with AAV alone, low-level transcription of both AAV strands is detectable and is strongly stimulated upon coinfection with Ad. Next-generation sequencing (NGS) allows unbiased genome-wide analyses of transcription profiles, used here for an in depth analysis of the AAV2 transcriptome during latency and productive infection. RNA-Seq analysis led to the discovery of novel AAV transcripts and splice variants, including a derived, novel 18-kDa Rep/VP fusion protein. Unexpectedly, transcription from the AAV minus strand was discovered, indicative of divergent transcription from the p5 promoter. This finding opens the door for novel concepts of the switch between AAV latency and productive replication. In the absence of a suitable animal model to study

  3. Inhibition of HBV replication and gene expression in vitro and in vivo with a single AAV vector delivering two shRNA molecules.

    Science.gov (United States)

    Li, Zhi; He, Ming-Liang; Yao, Hong; Dong, Qing-Ming; Chen, Yang-Chao; Chan, Chu-Yan; Zheng, Bo-Jian; Yuen, Kwok-Yung; Peng, Ying; Sun, Qiang; Yang, Xiao; Lin, Marie C; Sung, Joseph J Y; Kung, Hsiang-Fu

    2009-01-31

    Hepatitis B virus (HBV) infection is highly prevalent worldwide. The major challenge for current antiviral treatment is the elevated drug resistance that occurs via rapid viral mutagenesis. In this study, we developed AAV vectors to simultaneously deliver two or three shRNAs targeting different HBV-related genes. These vectors showed markedly better antiviral effects than ones that delivered a single shRNA in vitro. A dual shRNA expression vector (AAV-157i/1694i), which simultaneously expressed two shRNAs targeted the S and X genes of HBV, reduced HBsAg, HBeAg and HBV DNA levels by 87+/-4, 80.3+/-2.6 and 86.2+/- 7% respectively, eight days post-transduction. In a mouse model of prophylactic treatment, HBsAg and HBeAg were reduced to undetectable levels and the serum HBV DNA level was reduced by at least 100 fold. These results indicate that AAV-157i/1694i generates potent anti-HBV effects and that the strategy of constructing multi-shRNA expression vectors may lead to enhanced anti-HBV efficacy and overcome the evading mechanism of the virus and thus the development of drug resistance. [BMB reports 2009; 42(1): 59-64].

  4. Targeted gene transfer into ependymal cells through intraventricular injection of AAV1 vector and long-term enzyme replacement via the CSF.

    Science.gov (United States)

    Yamazaki, Yoshiyuki; Hirai, Yukihiko; Miyake, Koichi; Shimada, Takashi

    2014-07-01

    Enzyme replacement via the cerebrospinal fluid (CSF) has been shown to ameliorate neurological symptoms in model animals with neuropathic metabolic disorders. Gene therapy via the CSF offers a means to achieve a long-term sustainable supply of therapeutic proteins within the central nervous system (CNS) by setting up a continuous source of transgenic products. In the present study, a serotype 1 adeno-associated virus (AAV1) vector was injected into a lateral cerebral ventricle in adult mice to transduce the gene encoding human lysosomal enzyme arylsulfatase A (hASA) into the cells of the CNS. Widespread transduction and stable expression of hASA in the choroid plexus and ependymal cells was observed throughout the ventricles for more than 1 year after vector injection. Although humoral immunity to hASA developed after 6 weeks, which diminished the hASA levels detected in CSF from AAV1-injected mice, hASA levels in CSF were maintained for at least 12 weeks when the mice were tolerized to hASA prior of vector injection. Our results suggest that the cells lining the ventricles could potentially serve as a biological reservoir for long-term continuous secretion of lysosomal enzymes into the CSF following intracerebroventricular injection of an AAV1 vector.

  5. Gene Therapy in a Large Animal Model of PDE6A-Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Freya M. Mowat

    2017-06-01

    Full Text Available Despite mutations in the rod phosphodiesterase 6-alpha (PDE6A gene being well-recognized as a cause of human retinitis pigmentosa, no definitive treatments have been developed to treat this blinding disease. We performed a trial of retinal gene augmentation in the Pde6a mutant dog using Pde6a delivery by capsid-mutant adeno-associated virus serotype 8, previously shown to have a rapid onset of transgene expression in the canine retina. Subretinal injections were performed in 10 dogs at 29–44 days of age, and electroretinography and vision testing were performed to assess functional outcome. Retinal structure was assessed using color fundus photography, spectral domain optical coherence tomography, and histology. Immunohistochemistry was performed to examine transgene expression and expression of other retinal genes. Treatment resulted in improvement in dim light vision and evidence of rod function on electroretinographic examination. Photoreceptor layer thickness in the treated area was preserved compared with the contralateral control vector treated or uninjected eye. Improved rod and cone photoreceptor survival, rhodopsin localization, cyclic GMP levels and bipolar cell dendrite distribution was observed in treated areas. Some adverse effects including foci of retinal separation, foci of retinal degeneration and rosette formation were identified in both AAV-Pde6a and control vector injected regions. This is the first description of successful gene augmentation for Pde6a retinitis pigmentosa in a large animal model. Further studies will be necessary to optimize visual outcomes and minimize complications before translation to human studies.

  6. Mapping the AAV capsid host antibody response towards the development of second generation gene delivery vectors

    Directory of Open Access Journals (Sweden)

    Yu-Shan eTseng

    2014-01-01

    Full Text Available The recombinant Adeno-associated virus (rAAV gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2. Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from monoclonal antibodies, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.

  7. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors.

    Science.gov (United States)

    Tseng, Yu-Shan; Agbandje-McKenna, Mavis

    2014-01-01

    The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.

  8. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington's diseas