WorldWideScience

Sample records for a5 gene expression

  1. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  2. STAT5A and STAT5B have opposite correlations with drug response gene expression

    International Nuclear Information System (INIS)

    Lamba, V.; Jia, B.; Liang, F.

    2016-01-01

    Introduction: STAT5A and STAT5B are important transcription factors that play a key role in regulation of several important physiological processes including proliferation, survival, mediation of responses to cytokines and in regulating gender differences in drug response genes such as the hepatic cytochrome P450s (CYPs) that are responsible for a large majority of drug metabolism reactions in the human body. STAT5A and STAT5b have a high degree of sequence homology and have been reported to have largely similar functions. Recent studies have, however, indicated that they can also often have distinct and unique roles in regulating gene expression. Objective: In this study, we evaluated the association of STAT5A and STAT5B mRNA expression levels with those of several key hepatic cytochrome P450s (CYPs) and hepatic transcription factors (TFs) and evaluated the potential roles of STAT5A and 5b in mediating gender differences in these CYPs and TFs. Methods: Expression profiling for major hepatic CYP isoforms and transcription factors was performed using RNA sequencing (RNA-seq) in 102 human liver samples (57 female, 45 male). Real time PCR gene expression data for selected CYPs and TFs was available on a subset of 50 human liver samples (25 female, 25 male) and was used to validate the RNA-seq findings. Results: While STAT5A demonstrated significant negative correlation with expression levels of multiple hepatic transcription factors (including NR1I2 and HNF4A) and DMEs such as CYP3A4 and CYP2C19, STAT5B expression was observed to demonstrate positive associations with several CYPs and TFs analyzed. As STAT5A and STAT5B have been shown to be important in regulation of gender differences in CYPs, we also analyzed STAT5A and 5b associations with CYPs and TFs separately in males and females and observed gender dependent differential associations of STATs with several CYPs and TFs. Results from the real time PCR validation largely supported our RNA-seq findings

  3. Analysis of gene expression of myo1c and inpp5k genes involved in endometrial adenocarcinoma

    International Nuclear Information System (INIS)

    Koul, A.M.; Nadeem, A.; Baryalai, P.

    2012-01-01

    Abstract: Inpp5k gene encodes a protein which plays a very vital role in a number of metabolic pathways. It is very significant in the glucose metabolism where it regulates the signalling of the insulin pathway. But the full molecular details of the pathways regulated by Inpp5k encoded protein are not known. It is speculated that Inpp5k gene expression is altered in case of endometrial adenocarcinoma. Myolc gene encodes for a protein called Myosin-lc which acts an actin-based molecular motor in the cells. II has been studied that this gene down-regulates during endometrial adenocarcinoma and colorectal cancers. In this study the expression analysis of these two was carried out using multiplex PCR. An endogenous control was used for this PCR. ACTS gene served as the endogenous control because of it being a house keeping gene. It thus shows a universal expression in all cells. Thus in this study the gene expression of Inpp5k and Myulc genes was comparatively analysed with ACTS gene. The results that came out of this study showed an over-expression of Inpp5k gene and down-regulation of myolc gene with respect to ACTS gene in cancer cell lines as was indicated by the previous studies with these genes. Expression of both genes i.e. Inpp5k and Myolc was statistically compared between normal and cancerous cell lines and was found statistically significant at a value of P< O.O I in most of the cases. (author)

  4. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    International Nuclear Information System (INIS)

    Song, Kwang-Hoon

    2010-01-01

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  5. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kwang-Hoon, E-mail: ksong@kiom.re.kr [Korea Institute of Oriental Medicine, Daejeon 305-811 (Korea, Republic of)

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  6. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  7. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice

    International Nuclear Information System (INIS)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A y mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A y mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A y mice, but did not increase plasma adiponectin levels

  8. Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

    Science.gov (United States)

    Monticone, Silvia; Hattangady, Namita G.; Nishimoto, Koshiro; Mantero, Franco; Rubin, Beatrice; Cicala, Maria Verena; Pezzani, Raffaele; Auchus, Richard J.; Ghayee, Hans K.; Shibata, Hirotaka; Kurihara, Isao; Williams, Tracy A.; Giri, Judith G.; Bollag, Roni J.; Edwards, Michael A.; Isales, Carlos M.

    2012-01-01

    Context: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). Objective: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. Methods: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. Results: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production. PMID:22628608

  9. Effects of abhydrolase domain containing 5 gene (ABHD5) expression and variations on chicken fat metabolism.

    Science.gov (United States)

    Ouyang, Hongjia; Liu, Qing; Xu, Jiguo; Zeng, Fang; Pang, Xiaolin; Jebessa, Endashaw; Liang, Shaodong; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    Abhydrolase domain containing 5 gene (ABHD5), also known as comparative gene identification 58 (CGI-58), is a member of the α/β-hydrolase family as a protein cofactor of ATGL stimulating its triacylglycerol hydrolase activity. In this study, we aim to characterize the expression and variations of ABHD5 and to study their functions in chicken fat metabolism. We compared the ABHD5 expression level in various tissues and under different nutrition conditions, identified the variations of ABHD5, and associated them with production traits in an F2 resource population of chickens. Overexpression analysis with two different genotypes and siRNA interfering analysis of ABHD5 were performed in chicken preadipocytes. Chicken ABDH5 was expressed widely and most predominantly in adipose tissue. Five SNPs of the ABHD5 gene were identified and genotyped in the F2 resource population. The c.490C > T SNP was associated with subcutaneous fat thickness (P  C SNP was also associated with chicken body weight (P chicken preadipocytes, overexpression of wild type ABDH5 did not affect the mRNA level of ATGL (adipose triglyceride lipase) but markedly decreased (P chickens with a high fat diet. These results suggest that expression and variations of ABHD5 may affect fat metabolism through regulating the activity of ATGL in chickens. © 2015 Poultry Science Association Inc.

  10. Expression Analysis of Gata4, Tbx5 and Nkx2.5 Genes Involved in Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Mahta Mazaheri-Naeeini

    2016-04-01

    Full Text Available Background Congenital heart disease (CHD is the most widespread congenital disease in newborn babies and is one of the main causes of death worldwide. The causal agent of heart congenital diseases is unknown but genetic factors have an important role in prevalence of disease. Objectives The main objective of this research is comparison of the gene expression level of three Gata4, Tbx5 and Nkx2.5 genes in three groups of children between 6 months and 13 year old with congenital heart disease. Patients and Methods In this case-control study, 30 samples from each cyanotic and acyanotic patients and 30 samples from healthy children as control were used. RNA extraction was done using commercial kit and gene expression analysis was performed by qRT-PCR approach in three replication using Gata4, Tbx5 and Nkx2.5 genes. Data analysis was done by REST software. Results The results of RNA extraction and cDNA synthesis of all sample showed high quantity and quality of genetic materials. Expression level of tested genes was reduced in two patients group. In cyanotic group reduction was more than acyanotic samples. All tested gene were reduced in both group. Tbx5 gene was suppressed more than other genes. Conclusions Based on our results we could conclude that a gene family play an important role in cardiogenesis process and heart formation. These genes are closely related together. So a genetic consultation for such diseases on parents of these patients to determine the probable genetic mutations is recommended.

  11. IER5 gene's mRNA expression after irradiation

    International Nuclear Information System (INIS)

    Ding Kuke; Shen Jingjing; Xu Lili; Li Yanling; Zhou Ping; Ma Binrong; Zhao Zengqiang; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To explore the effect of irradiation on IER5 gene expression. Methods: Two kinds of cells (AHH-1 and HeLa) and the BALB/c-nu mice inoculated with tumor cells were exposed to 60 Co γ- rays and analyzed by real-time PCR. The above-mentioned irradiated objects were firstly divided into groups by different doses and post-radiation time, then mRNA were extracted and reverse-transcripted to DNA before real-time PCR test. Results: Under the same condition, AHH-1 was more sensitive to radiation than HeLa. The dose level corresponding to the expression peak of AHH-1 was less than that of HeLa. For AHH-1 cells, the response to 2 Gy irradiation was earlier than that to 10 Gy. But there was not remarkable difference for HeLa response between 2 and 10 Gy, and the top transcriptional levels for both cells nearly simultaneously appeared at 2 h after irradiation. In addition, the IER5 gene of human liver tumor was more sensitive than that of lung cancer and brain tumor. Conclusions: IER5 might be a candidate biomarker of radiation injury, and had the potential value in radiation-therapy for liver tumor. (authors)

  12. Expression and distribution of PPP2R5C gene in leukemia

    Directory of Open Access Journals (Sweden)

    Li Bo

    2011-05-01

    Full Text Available Abstract Background Recently, we clarified at the molecular level novel chromosomal translocation t(14;14(q11;q32 in a case of Sézary syndrome, which caused a rearrangement from TRAJ7 to the PPP2R5C gene. PPP2R5C is one of the regulatory B subunits of protein phosphatase 2A (PP2A. It plays a crucial role in cell proliferation, differentiation, and transformation. To characterize the expression and distribution of five different transcript variants of the PPP2R5C gene in leukemia, we analyzed the expression level of PPP2R5C in peripheral blood mononuclear cells from 77 patients with de novo leukemia, 26 patients with leukemia in complete remission (CR, and 20 healthy individuals by real-time PCR and identified the different variants of PPP2R5C by RT-PCR. Findings Significantly higher expression of PPP2R5C was found in AML, CML, T-ALL, and B-CLL groups in comparison with healthy controls. High expression of PPP2R5C was detected in the B-ALL group; however, no significant difference was found compared with the healthy group. The expression level of PPP2R5C in the CML-CR group decreased significantly compared with that in the de novo CML group and was not significantly different from the level in the healthy group. By using different primer pairs that covered different exons, five transcript variants of PPP2R5C could be identified. All variants could be detected in healthy samples as well as in all the leukemia samples, and similar frequencies and distributions of PPP2R5C were indicated. Conclusions Overexpression of PPP2R5C in T-cell malignancy as well as in myeloid leukemia cells might relate to its proliferation and differentiation. Investigation of the effect of target inhibition of this gene might be beneficial to further characterization of molecular mechanisms and targeted therapy in leukemia.

  13. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    International Nuclear Information System (INIS)

    Kokusho, Ryuhei; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu

    2016-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  14. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kokusho, Ryuhei, E-mail: kokusho@ss.ab.a.u-tokyo.ac.jp; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu, E-mail: katsuma@ss.ab.a.u-tokyo.ac.jp

    2016-11-15

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  15. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  16. CTCF-KDM4A complex correlates with histone modifications that negatively regulate CHD5 gene expression in cancer cell lines

    Science.gov (United States)

    Guerra-Calderas, Lissania; González-Barrios, Rodrigo; Patiño, Carlos César; Alcaraz, Nicolás; Salgado-Albarrán, Marisol; de León, David Cantú; Hernández, Clementina Castro; Sánchez-Pérez, Yesennia; Maldonado-Martínez, Héctor Aquiles; De la Rosa-Velazquez, Inti A.; Vargas-Romero, Fernanda; Herrera, Luis A.; García-Carrancá, Alejandro; Soto-Reyes, Ernesto

    2018-01-01

    Histone demethylase KDM4A is involved in H3K9me3 and H3K36me3 demethylation, which are epigenetic modifications associated with gene silencing and RNA Polymerase II elongation, respectively. KDM4A is abnormally expressed in cancer, affecting the expression of multiple targets, such as the CHD5 gene. This enzyme localizes at the first intron of CHD5, and the dissociation of KDM4A increases gene expression. In vitro assays showed that KDM4A-mediated demethylation is enhanced in the presence of CTCF, suggesting that CTCF could increase its enzymatic activity in vivo, however the specific mechanism by which CTCF and KDM4A might be involved in the CHD5 gene repression is poorly understood. Here, we show that CTCF and KDM4A form a protein complex, which is recruited into the first intron of CHD5. This is related to a decrease in H3K36me3/2 histone marks and is associated with its transcriptional downregulation. Depletion of CTCF or KDM4A by siRNA, triggered the reactivation of CHD5 expression, suggesting that both proteins are involved in the negative regulation of this gene. Furthermore, the knockout of KDM4A restored the CHD5 expression and H3K36me3 and H3K36me2 histone marks. Such mechanism acts independently of CHD5 promoter DNA methylation. Our findings support a novel mechanism of epigenetic repression at the gene body that does not involve promoter silencing. PMID:29682202

  17. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    Science.gov (United States)

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  18. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury.

    Science.gov (United States)

    Guenther, Catherine A; Wang, Zhen; Li, Emma; Tran, Misha C; Logan, Catriona Y; Nusse, Roel; Pantalena-Filho, Luiz; Yang, George P; Kingsley, David M

    2015-08-01

    Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Cloning and Expression of Three New Azotobacter vinelandii Genes Closely Related to a Previously Described Gene Family Encoding Mannuronan C-5-Epimerases

    OpenAIRE

    Svanem, Britt Iren Glærum; Skjåk-Bræk, Gudmund; Ertesvåg, Helga; Valla, Svein

    1999-01-01

    The cloning and expression of a family of five modular-type mannuronan C-5-epimerase genes from Azotobacter vinelandii (algE1 to -5) has previously been reported. The corresponding proteins catalyze the Ca2+-dependent polymer-level epimerization of β-d-mannuronic acid to α-l-guluronic acid (G) in the commercially important polysaccharide alginate. Here we report the identification of three additional structurally similar genes, designated algE6, algE7, and algY. All three genes were sequenced...

  20. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome.

    Science.gov (United States)

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam

    2014-05-01

    Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.

  1. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy

    Directory of Open Access Journals (Sweden)

    Paul R Albert

    2010-06-01

    Full Text Available Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(-1019G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression.

  2. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  3. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  4. A novel BDNF gene promoter directs expression to skeletal muscle

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2003-06-01

    Full Text Available Abstract Background Cell-specific expression of the gene that encodes brain-derived neurotrophic factor (BDNF is required for the normal development of peripheral sensory neurons and efficient synaptic transmission in the mature central and peripheral nervous system. The control of BDNF gene expression involves multiple tissue and cell-specific promoters that are differentially regulated. The molecular mechanisms that are responsible for tissue and cell-specific expression of these promoters are still incompletely understood. Results The cloning and analysis of three additional zebrafish (Danio rerio BDNF gene exons and two associated promoters, is reported. Among them are two exons that generate a novel tripartite mature transcript. The exons were located on the transcription unit, whose overall organization was determined by cloning, Southern blot hybridization and sequence analysis, and compared with the pufferfish (Fugu rubripes and mammalian BDNF loci, revealing a conserved but more compact organization. Structural and functional analysis of the exons, their adjacent promoters and 5' flanks, showed that they are expressed cell-specifically. The promoter associated with the 5' exon of the tripartite transcript is GC-rich, TATA-less and the 5' flank adjacent to it contains multiple Sp1, Mef2, and AP1 elements. A fusion gene containing the promoter and 1.5 KB of 5' flank is directed exclusively to skeletal muscle of transiently transfected embryos. The second promoter, whose associated 5' exon contains a 25-nucleotide segment of identity with a mammalian BDNF gene exon, was transiently expressed in yolk of the early embryo. RT-PCR analysis of total RNA from whole juvenile fish and adult female skeletal muscle revealed tissue-specific expression of the 5' exons but the novel exon could not be detected even after two rounds of nested PCR. Conclusion The zebrafish BDNF gene is as complex as the mammalian gene yet much more compact. Its exons are

  5. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages.

    Directory of Open Access Journals (Sweden)

    Anupama Reddy

    Full Text Available Death Receptor 5 (DR5 agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq and across model systems (in vitro to in vivo. Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.

  6. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages.

    Science.gov (United States)

    Reddy, Anupama; Growney, Joseph D; Wilson, Nick S; Emery, Caroline M; Johnson, Jennifer A; Ward, Rebecca; Monaco, Kelli A; Korn, Joshua; Monahan, John E; Stump, Mark D; Mapa, Felipa A; Wilson, Christopher J; Steiger, Janine; Ledell, Jebediah; Rickles, Richard J; Myer, Vic E; Ettenberg, Seth A; Schlegel, Robert; Sellers, William R; Huet, Heather A; Lehár, Joseph

    2015-01-01

    Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.

  7. Retrotransposon hypomethylation in melanoma and expression of a placenta-specific gene.

    Directory of Open Access Journals (Sweden)

    Erin C Macaulay

    Full Text Available In the human placenta, DNA hypomethylation permits the expression of retrotransposon-derived genes that are normally silenced by methylation in somatic tissues. We previously identified hypomethylation of a retrotransposon-derived transcript of the voltage-gated potassium channel gene KCNH5 that is expressed only in human placenta. However, an RNA sequence from this placental-specific transcript has been reported in melanoma. This study examined the promoter methylation and expression of the retrotransposon-derived KCNH5 transcript in 25 melanoma cell lines to determine whether the acquisition of 'placental' epigenetic marks is a feature of melanoma. Methylation and gene expression analysis revealed hypomethylation of this retrotransposon in melanoma cell lines, particularly in those samples that express the placental KCNH5 transcript. Therefore we propose that hypomethylation of the placental-specific KCNH5 promoter is frequently associated with KCNH5 expression in melanoma cells. Our findings show that melanoma can develop hypomethylation of a retrotransposon-derived gene; a characteristic notably shared with the normal placenta.

  8. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  9. Expression of SSX-1 and SSX-5 genes in the peripheral blood of ...

    African Journals Online (AJOL)

    Amal Fawzy

    2013-12-07

    Dec 7, 2013 ... Aim: This study aims to evaluate the SSX-1 and SSX-5 mRNA expression in tumor cells circu- lating in the peripheral blood (PB) of a cohort of Egyptian patients with HCC and to find out any possible associations between these genes expression and different clinical/laboratory parameters. Subjects and ...

  10. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Molecular Characterization and Expression Pattern of Gene IGFBP-5 in the Cashmere Goat (

    Directory of Open Access Journals (Sweden)

    X. J. Wang

    2012-05-01

    Full Text Available Insulin-like growth factor-binding protein-5 (IGFBP-5 is one of the six members of IGFBP family, important for cell growth, apoptosis and other IGF-stimulated signaling pathways. In order to explore the significance of IGFBP-5 in cells of the Inner Mongolian Cashmere goat (Capra hircus, IGFBP-5 gene complementary DNA (cDNA was amplified by reverse transcription polymerase chain reaction (RT-PCR from the animal’s fetal fibroblasts and tissue-specific expression analysis was performed by semi-quantitative RT-PCR. The gene is 816 base pairs (bp in length and includes the complete open reading frame, encoding 271 amino acids (GenBank accession number JF720883. The full cDNA nucleotide sequence has a 99% identity with sheep, 98% with cattle and 95% with human. The amino acids sequence shares identity with 99%, 99% and 99%, respectively. The bioinformatics analysis showed that IGFBP-5 has an insulin growth factor-binding protein homologues (IB domain and a thyroglobulin type-1 (TY domain, four protein kinase C phosphorylation sites, five casein kinase II phosphorylation sites, three prenyl group binding sites (CaaX box. The IGFBP-5 gene was expressed in all the tested tissues including testis, brain, liver, lung, mammary gland, spleen, and kidney, suggesting that IGFBP-5 plays an important role in goat cells.

  12. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    International Nuclear Information System (INIS)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng

    2001-01-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  13. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    Energy Technology Data Exchange (ETDEWEB)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng [National Yang Ming Univ., Taipei, Taiwan (China). Inst. of Radiological Sciences] (and others)

    2001-12-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  14. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  15. Heme regulates the expression in Saccharomyces cerevisiae of chimaeric genes containing 5'-flanking soybean leghemoglobin sequences

    DEFF Research Database (Denmark)

    Jensen, E O; Marcker, K A; Villadsen, IS

    1986-01-01

    The TM1 yeast mutant was transformed with a 2 micron-derived plasmid (YEp24) which carries a chimaeric gene containing the Escherichia coli chloramphenicol acetyl transferase (CAT) gene fused to the 5'- and 3'-flanking regions of the soybean leghemoglobin (Lb) c3 gene. Expression of the chimaeric...

  16. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  17. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  18. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  19. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    Science.gov (United States)

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  20. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  1. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific...... of the transgene was observed in cell types other than beta-islet cells....

  2. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Valdiglesias Vanessa

    2012-01-01

    Full Text Available Abstract Background Okadaic acid (OA, a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h. A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure, excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.

  3. Expression changes of serotonin receptor gene subtype 5HT3a in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and Olanzapin.

    Science.gov (United States)

    Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza

    2009-09-01

    Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  4. Reduction of lns-1 gene expression and tissue insulin levels in n5-STZ rats

    Directory of Open Access Journals (Sweden)

    Belinda Vargas Guerrero

    2013-01-01

    Full Text Available Objective: The high global incidence of type 2 diabetes has challenged researchers to establish animal models that resemble the chronic stage observed in type 2 diabetes patients. One such model is induced by neonatal streptozotocin (n-STZ administration to rat pups at 0, 2, or 5 days after birth. In this study, we assessed lns-1 gene expression and tissue insulin levels as well as serum concentration of glucose and insulin, insulin resistance, and histological changes of the islets of Langerhans in n5-STZ rats after 20-weeks post-induction. Methods: Wistar rat pups were randomly distributed into a control group and a streptozotocin-induced group. Experimental induction involved a single intraperitoneal injection of streptozotocin (150 mg/kg into neonates at five days after birth. Results: At 20 weeks post-induction, streptozotocin-induced rats exhibited increased serum glucose levels, reduced serum insulin levels, impaired glucose metabolism and insulin resistance compared to control rats. Histologically, streptozotocin-induced rats exhibited atrophic islets, vacuolization, and significantly fewer insulin-positive cells. lns-1 gene expression was significantly decreased in n5-STZ rats in comparison to the control group. Conclusion: Our findings support that the n5-STZ model 20 weeks post-induction represents an appropriate experimental tool to study T2D and to evaluate novel therapeutic agents and targets that involve insulin gene expression and secretion, as well as complications caused by chronic diabetes.

  5. Gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions.

    Science.gov (United States)

    Sivrikoz, Emre; Timirci-Kahraman, Özlem; Ergen, Arzu; Zeybek, Ümit; Aksoy, Murat; Yanar, Fatih; İsbir, Turgay; Kurtoğlu, Mehmet

    2015-01-01

    The purpose of this study was to investigate the gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions and to correlate it with clinical features of plaque destabilization. The study included 44 endarterectomy specimens available from operated symptomatic carotid artery stenoses. The specimens were separated according to anatomic location: internal carotid artery (ICA), external carotid artery (ECA) and common carotid artery (CCA), and then stored in liquid nitrogen. The amounts of cDNA for elastin and fibulin-5 were determined by Quantitative real-time PCR (Q-RT-PCR). Target gene copy numbers were normalized using hypoxanthine-guanine phosphoribosyltransferase (HPRT1) gene. The delta-delta CT method was applied for relative quantification. Q-RT-PCR data showed that relative fibulin-5 gene expression was increased in ICA plaque regions when compared to CCA regions but not reaching significance (p=0.061). At the same time, no differences were observed in elastin mRNA level between different anatomic plaque regions (p>0.05). Moreover, elastin and fibulin-5 mRNA expression and clinical parameters were compared in ICA plaques versus CCA and ECA regions, respectively. Up-regulation of elastin and fibulin-5 mRNA levels in ICA were strongly correlated with family history of cardiovascular disease when compared to CCA (p<0.05). Up-regulation of fibulin-5 in ICA was significantly associated with diabetes, and elevated triglycerides and very low density lipoprotein (VLDL) when compared to ECA (p<0.05). The clinical significance is the differences between the proximal and distal regions of the lesion, associated with the ICA, CCA and ECA respectively, with increased fibulin-5 in the ICA region. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  7. Molecular Cloning, Bioinformatic Analysis, and Expression of Bombyx mori Lebocin 5 Gene Related to Beauveria bassiana Infection.

    Science.gov (United States)

    Lü, Dingding; Hou, Chengxiang; Qin, Guangxing; Gao, Kun; Chen, Tian; Guo, Xijie

    2017-01-01

    A full-length cDNA of lebocin 5 (BmLeb5) was first cloned from silkworm, Bombyx mori , by rapid amplification of cDNA ends. The BmLeb5 gene is 808 bp in length and the open reading frame encodes a 179-amino acid hydroxyproline-rich peptide. Bioinformatic analysis results showed that BmLeb5 owns an O-glycosylation site and four RXXR motifs as other lebocins. Sequence similarity and phylogenic analysis results indicated that lebocins form a multiple gene family in silkworm as cecropins. Quantitative real-time PCR analysis revealed that BmLeb5 was highest expressed in the fat body. In the silkworm larvae infected by Beauveria bassiana , the expression level of BmLeb5 was upregulated in the fat body and hemolymph which are the most important immune tissues in silkworm. The recombinant protein of BmLeb5 was for the first time successfully expressed with prokaryotic expression system and purified. There are no reports so far that the expression of lebocins could be induced by entomopathogenic fungus. Our study suggested that BmLeb5 might play an important role in the immune response of silkworm to defend B. bassiana infection. The results also provided helpful information for further studying the lebocin family functioned in antifungal immune response in the silkworm.

  8. C1-Pathways in Methyloversatilis universalis FAM5: Genome Wide Gene Expression and Mutagenesis Studies

    Directory of Open Access Journals (Sweden)

    Nathan M. Good

    2015-04-01

    Full Text Available Methyloversatilis universalis FAM5 utilizes single carbon compounds such as methanol or methylamine as a sole source of carbon and energy. Expression profiling reveals distinct sets of genes altered during growth on methylamine vs methanol. As expected, all genes for the N-methylglutamate pathway were induced during growth on methylamine. Among other functions responding to the aminated source of C1-carbon, are a heme-containing amine dehydrogenase (Qhp, a distant homologue of formaldehyde activating enzyme (Fae3, molybdenum-containing formate dehydrogenase, ferredoxin reductase, a set of homologues to urea/ammonium transporters and amino-acid permeases. Mutants lacking one of the functional subunits of the amine dehydrogenase (ΔqhpA or Δfae3 showed no growth defect on C1-compounds. M. universalis FAM5 strains with a lesion in the H4-folate pathway were not able to use any C1-compound, methanol or methylamine. Genes essential for C1-assimilation (the serine cycle and glyoxylate shunt and H4MTP-pathway for formaldehyde oxidation showed similar levels of expression on both C1-carbon sources. M. universalis FAM5 possesses three homologs of the formaldehyde activating enzyme, a key enzyme of the H4MTP-pathway. Strains lacking the canonical Fae (fae1 lost the ability to grow on both C1-compounds. However, upon incubation on methylamine the fae1-mutant produced revertants (Δfae1R, which regained the ability to grow on methylamine. Double and triple mutants (Δfae1RΔfae3, or Δfae1RΔfae2 or Δfae1RΔfae2Δfae3 constructed in the revertant strain background showed growth similar to the Δfae1R phenotype. The metabolic pathways for utilization of methanol and methylamine in Methyloversatilis universalis FAM5 are reconstructed based on these gene expression and phenotypic data.

  9. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  10. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  11. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  12. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  13. GENE EXPRESSION CHANGES IN ARABIDOPSIS THALIANA SEEDLING ROOTS EXPOSED TO THE MUNITION HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

    Science.gov (United States)

    Arabidopsis thaliana root transcriptome responses to the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were assessed using serial analysis of gene expression (SAGE). Comparison of the transcriptional profile for the RDX response to a profile previously described for Ar...

  14. Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation.

    Science.gov (United States)

    Novakovic, Boris; Fournier, Thierry; Harris, Lynda K; James, Joanna; Roberts, Claire T; Yong, Hannah E J; Kalionis, Bill; Evain-Brion, Danièle; Ebeling, Peter R; Wallace, Euan M; Saffery, Richard; Murthi, Padma

    2017-07-03

    Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.

  15. Effects of 5-aza-2′deoxycytidine on RECK gene expression and tumor invasion in salivary adenoid cystic carcinoma

    International Nuclear Information System (INIS)

    Zhou, X.Q.; Huang, S.Y.; Zhang, D.S.; Zhang, S.Z.; Li, W.G.; Chen, Z.W.; Wu, H.W.

    2014-01-01

    Reversion-inducing cysteine-rich protein with kazal motifs (RECK), a novel tumor suppressor gene that negatively regulates matrix metalloproteinases (MMPs), is expressed in various normal human tissues but downregulated in several types of human tumors. The molecular mechanism for this downregulation and its biological significance in salivary adenoid cystic carcinoma (SACC) are unclear. In the present study, we investigated the effects of a DNA methyltransferase (DNMT) inhibitor, 5-aza-2′deoxycytidine (5-aza-dC), on the methylation status of the RECK gene and tumor invasion in SACC cell lines. Methylation-specific PCR (MSP), Western blot analysis, and quantitative real-time PCR were used to investigate the methylation status of the RECK gene and expression of RECK mRNA and protein in SACC cell lines. The invasive ability of SACC cells was examined by the Transwell migration assay. Promoter methylation was only found in the ACC-M cell line. Treatment of ACC-M cells with 5-aza-dC partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression of mRNA and protein, and 5-aza-dC significantly suppressed ACC-M cell invasive ability. Our findings showed that 5-aza-dC inhibited cancer cell invasion through the reversal of RECK gene hypermethylation, which might be a promising chemotherapy approach in SACC treatment

  16. Effects of 5-aza-2′deoxycytidine on RECK gene expression and tumor invasion in salivary adenoid cystic carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.Q. [Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan (China); Department of Oral and Maxillofacial Surgery, The First People' s Hospital of Jining, Shandong (China); Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan (China); Huang, S.Y. [Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan (China); Zhang, D.S. [Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan (China); Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan (China); Zhang, S.Z.; Li, W.G.; Chen, Z.W.; Wu, H.W. [Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan (China)

    2014-12-12

    Reversion-inducing cysteine-rich protein with kazal motifs (RECK), a novel tumor suppressor gene that negatively regulates matrix metalloproteinases (MMPs), is expressed in various normal human tissues but downregulated in several types of human tumors. The molecular mechanism for this downregulation and its biological significance in salivary adenoid cystic carcinoma (SACC) are unclear. In the present study, we investigated the effects of a DNA methyltransferase (DNMT) inhibitor, 5-aza-2′deoxycytidine (5-aza-dC), on the methylation status of the RECK gene and tumor invasion in SACC cell lines. Methylation-specific PCR (MSP), Western blot analysis, and quantitative real-time PCR were used to investigate the methylation status of the RECK gene and expression of RECK mRNA and protein in SACC cell lines. The invasive ability of SACC cells was examined by the Transwell migration assay. Promoter methylation was only found in the ACC-M cell line. Treatment of ACC-M cells with 5-aza-dC partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression of mRNA and protein, and 5-aza-dC significantly suppressed ACC-M cell invasive ability. Our findings showed that 5-aza-dC inhibited cancer cell invasion through the reversal of RECK gene hypermethylation, which might be a promising chemotherapy approach in SACC treatment.

  17. A constructive approach to gene expression dynamics

    International Nuclear Information System (INIS)

    Ochiai, T.; Nacher, J.C.; Akutsu, T.

    2004-01-01

    Recently, experiments on mRNA abundance (gene expression) have revealed that gene expression shows a stationary organization described by a scale-free distribution. Here we propose a constructive approach to gene expression dynamics which restores the scale-free exponent and describes the intermediate state dynamics. This approach requires only one assumption: Markov property

  18. [On the role of selective silencer Freud-1 in the regulation of the brain 5-HT(1A) receptor gene expression].

    Science.gov (United States)

    Naumenko, V S; Osipova, D V; Tsybko, A S

    2010-01-01

    Selective 5-HT(1A) receptor silencer (Freud-1) is known to be one of the main factors for transcriptional regulation of brain serotonin 5-HT(1A) receptor. However, there is a lack of data on implication of Freud-1 in the mechanisms underlying genetically determined and experimentally altered 5-HT(1A) receptor system state in vivo. In the present study we have found a difference in the 5-HT(1A) gene expression in the midbrain of AKR and CBA inbred mouse strains. At the same time no distinction in Freud-1 expression was observed. We have revealed 90.3% of homology between mouse and rat 5-HT(1A) receptor DRE-element, whereas there was no difference in DRE-element sequence between AKR and CBA mice. This indicates the absence of differences in Freud-1 binding site in these mouse strains. In the model of 5-HT(1A) receptor desensitization produced by chronic 5-HT(1A) receptor agonist administration, a significant reduction of 5-HT(1A) receptor gene expression together with considerable increase of Freud-1 expression were found. These data allow us to conclude that the selective silencer of 5-HT(1A) receptor, Freud-1, is involved in the compensatory mechanisms that modulate the functional state of brain serotonin system, although it is not the only factor for 5-HT(1A) receptor transcriptional regulation.

  19. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  20. Effects of swim stress and fluoxetine on 5-HT1A receptor gene expression and monoamine metabolism in the rat brain regions.

    Science.gov (United States)

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2012-07-01

    Changes in gene expression of the brain serotonin (5-HT) 1A receptors may be important for the development and ameliorating depression, however identification of specific stimuli that activate or reduce the receptor transcriptional activity is far from complete. In the present study, the forced swim test (FST) exposure, the first stress session of which is already sufficient to induce behavioral despair in rats, significantly increased 5-HT1A receptor mRNA levels in the brainstem, frontal cortex, and hippocampus at 24 h. In the brainstem and frontal cortex, the elevation in the receptor gene expression after the second forced swim session was not affected following chronic administration of fluoxetine, while in the cortex, both control and FST values were significantly reduced in fluoxetine-treated rats. In contrast to untreated rats, no increase in hippocampal 5-HT1A receptor mRNA was observed in response to FST in rats chronically treated with fluoxetine. Metabolism of 5-HT (5-HIAA/5-HT) in the brainstem was significantly decreased by fluoxetine and further reduced by swim stress, showing a certain degree of independence of these changes on 5-HT1A receptor gene expression that was increased in this brain region only after the FST, but not after fluoxetine. FST exposure also decreased the brainstem dopamine metabolism, which was unexpectedly positively correlated with 5-HT1A receptor mRNA levels in the frontal cortex. Together, these data suggest that the effects of the forced swim stress as well as fluoxetine involve brain region-dependent alterations in 5-HT1A receptor gene transcription, some of which may be interrelated with concomitant changes in catecholamine metabolism.

  1. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  2. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  3. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  4. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-05-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  5. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-01-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  6. A comparative gene expression database for invertebrates

    Directory of Open Access Journals (Sweden)

    Ormestad Mattias

    2011-08-01

    Full Text Available Abstract Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN projects.

  7. A Classification Framework Applied to Cancer Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Hussein Hijazi

    2013-01-01

    Full Text Available Classification of cancer based on gene expression has provided insight into possible treatment strategies. Thus, developing machine learning methods that can successfully distinguish among cancer subtypes or normal versus cancer samples is important. This work discusses supervised learning techniques that have been employed to classify cancers. Furthermore, a two-step feature selection method based on an attribute estimation method (e.g., ReliefF and a genetic algorithm was employed to find a set of genes that can best differentiate between cancer subtypes or normal versus cancer samples. The application of different classification methods (e.g., decision tree, k-nearest neighbor, support vector machine (SVM, bagging, and random forest on 5 cancer datasets shows that no classification method universally outperforms all the others. However, k-nearest neighbor and linear SVM generally improve the classification performance over other classifiers. Finally, incorporating diverse types of genomic data (e.g., protein-protein interaction data and gene expression increase the prediction accuracy as compared to using gene expression alone.

  8. Ultrasound Backscatter Microscopy Image-Guided Intraventricular Gene Delivery at Murine Embryonic Age 9.5 and 10.5 Produces Distinct Transgene Expression Patterns at the Adult Stage

    Directory of Open Access Journals (Sweden)

    Jiwon Jang

    2013-11-01

    Full Text Available In utero injection of a retroviral vector into the embryonic telencephalon aided by ultrasound backscatter microscopy permits introduction of a gene of interest at an early stage of development. In this study, we compared the tissue distribution of gene expression in adult mice injected with retroviral vectors at different embryonic ages in utero. Following ultrasound image-guided gene delivery (UIGD into the embryonic telencephalon, adult mice were subjected to whole-body luciferase imaging and immunohistochemical analysis at 6 weeks and 1 year postinjection. Luciferase activity was observed in a wide range of tissues in animals injected at embryonic age 9.5 (E9.5, whereas animals injected at E10.5 showed brain-localized reporter gene expression. These results suggest that mouse embryonic brain creates a closed and impermeable structure around E10. Therefore, by injecting a transgene before or after E10, transgene expression can be manipulated to be local or systemic. Our results also provide information that widens the applicability of UIGD beyond neuroscience studies.

  9. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    Science.gov (United States)

    Yurong, Chai; Yumin, Lu; Tianyun, Wang; Weihong, Hou; Lexun, Xue

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  10. The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability.

    Directory of Open Access Journals (Sweden)

    Catarina Pimentel

    Full Text Available The budding yeast Saccharomyces cerevisiae has developed several mechanisms to avoid either the drastic consequences of iron deprivation or the toxic effects of iron excess. In this work, we analysed the global gene expression changes occurring in yeast cells undergoing iron overload. Several genes directly or indirectly involved in iron homeostasis showed altered expression and the relevance of these changes are discussed. Microarray analyses were also performed to identify new targets of the iron responsive factor Yap5. Besides the iron vacuolar transporter CCC1, Yap5 also controls the expression of glutaredoxin GRX4, previously known to be involved in the regulation of Aft1 nuclear localization. Consistently, we show that in the absence of Yap5 Aft1 nuclear exclusion is slightly impaired. These studies provide further evidence that cells control iron homeostasis by using multiple pathways.

  11. Assays for noninvasive imaging of reporter gene expression

    International Nuclear Information System (INIS)

    Gambhir, S.S.; Barrio, J.R.; Herschman, H.R.; Phelps, M.E.

    1999-01-01

    Repeated, noninvasive imaging of reporter gene expression is emerging as a valuable tool for monitoring the expression of genes in animals and humans. Monitoring of organ/cell transplantation in living animals and humans, and the assessment of environmental, behavioral, and pharmacologic modulation of gene expression in transgenic animals should soon be possible. The earliest clinical application is likely to be monitoring human gene therapy in tumors transduced with the herpes simplex virus type 1 thymidine kinase (HSV1-tk) suicide gene. Several candidate assays for imaging reporter gene expression have been studied, utilizing cytosine deaminase (CD), HSV1-tk, and dopamine 2 receptor (D2R) as reporter genes. For the HSV1-tk reporter gene, both uracil nucleoside derivatives (e.g., 5-iodo-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil [FIAU] labeled with 124 I, 131 I ) and acycloguanosine derivatives {e.g., 8-[ 18 F]fluoro-9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine (8-[ 18 F]-fluoroganciclovir) ([ 18 F]FGCV), 9-[(3-[ 18 F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([ 18 F]FHPG)} have been investigated as reporter probes. For the D2R reporter gene, a derivative of spiperone {3-(2'-[ 18 F]-Fluoroethyl)spiperone ([ 18 F]FESP)} has been used with positron emission tomography (PET) imaging. In this review, the principles and specific assays for imaging reporter gene expression are presented and discussed. Specific examples utilizing adenoviral-mediated delivery of a reporter gene as well as tumors expressing reporter genes are discussed

  12. The effect of the CCR5-delta32 deletion on global gene expression considering immune response and inflammation

    Directory of Open Access Journals (Sweden)

    Hütter Gero

    2011-10-01

    Full Text Available Abstract Background The natural function of the C-C chemokine receptor type 5 (CCR5 is poorly understood. A 32 base pair deletion in the CCR5 gene (CCR5-delta32 located on chromosome 3 results in a non-functional protein. It is supposed that this deletion causes an alteration in T-cell response to inflammation. For example, the presence of the CCR5-delta32 allele in recipients of allografts constitutes as an independent and protective factor associated with a decreased risk of graft-versus-host disease (GVHD and graft rejection. However, the mechanism of this beneficial effect of the deletion regarding GVHD is unknown. In this survey we searched for a CCR5-delta32 associated regulation of critical genes involved in the immune response and the development of GVHD. Methods We examined CD34+ hematopoietic progenitor cells derived from bone marrow samples from 19 healthy volunteers for the CCR5-delta32 deletion with a genomic PCR using primers flanking the site of the deletion. Results 12 individuals were found to be homozygous for CCR5 WT and 7 carried the CCR5-delta32 deletion heterozygously. Global gene expression analysis led to the identification of 11 differentially regulated genes. Six of them are connected with mechanisms of immune response and control: LRG1, CXCR2, CCRL2, CD6, CD7, WD repeat domain, and CD30L. Conclusions Our data indicate that the CCR5-delta32 mutation may be associated with differential gene expression. Some of these genes are critical for immune response, in the case of CD30L probably protective in terms of GVHD.

  13. The ura5 gene of the ascomycete Sordaria macrospora: molecular cloning, characterization and expression in Escherichia coli.

    Science.gov (United States)

    Le Chevanton, L; Leblon, G

    1989-04-15

    We cloned the ura5 gene coding for the orotate phosphoribosyl transferase from the ascomycete Sordaria macrospora by heterologous probing of a Sordaria genomic DNA library with the corresponding Podospora anserina sequence. The Sordaria gene was expressed in an Escherichia coli pyrE mutant strain defective for the same enzyme, and expression was shown to be promoted by plasmid sequences. The nucleotide sequence of the 1246-bp DNA fragment encompassing the region of homology with the Podospora gene has been determined. This sequence contains an open reading frame of 699 nucleotides. The deduced amino acid sequence shows 72% similarity with the corresponding Podospora protein.

  14. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Sterry Wolfram

    2006-08-01

    Full Text Available Abstract Background Carcinogenesis is a multi-step process indicated by several genes up- or down-regulated during tumor progression. This study examined and identified differentially expressed genes in cutaneous squamous cell carcinoma (SCC. Results Three different biopsies of 5 immunosuppressed organ-transplanted recipients each normal skin (all were pooled, actinic keratosis (AK (two were pooled, and invasive SCC and additionally 5 normal skin tissues from immunocompetent patients were analyzed. Thus, total RNA of 15 specimens were used for hybridization with Affymetrix HG-U133A microarray technology containing 22,283 genes. Data analyses were performed by prediction analysis of microarrays using nearest shrunken centroids with the threshold 3.5 and ANOVA analysis was independently performed in order to identify differentially expressed genes (p vs. AK and SCC were observed for 118 genes. Conclusion The majority of identified differentially expressed genes in cutaneous SCC were previously not described.

  15. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  16. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  17. Gene expression profile data for mouse facial development

    Directory of Open Access Journals (Sweden)

    Sonia M. Leach

    2017-08-01

    Full Text Available This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009 [1] and “Systems Biology of facial development: contributions of ectoderm and mesenchyme” (Hooper et al., 2017 In press [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press [1,2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  18. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  19. Expression and RNA Interference of Ribosomal Protein L5 Gene in Nilaparvata lugens (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhu, Jiajun; Hao, Peiying; Lu, Chaofeng; Ma, Yan; Feng, Yalin; Yu, Xiaoping

    2017-05-01

    The ribosomal proteins play important roles in the growth and development of organisms. This study aimed to explore the function of NlRPL5 (GenBank KX379234), a ribosomal protein L5 gene, in the brown planthopper Nilaparvata lugens. The open reading frame of NlRPL5 was cloned from N. lugens based on a previous transcriptome analysis. The results revealed that the open reading frame of NlRPL5 is of 900 bp, encoding 299 amino acid residues. The reverse transcription quantitative PCR results suggested that the expression of NlRPL5 gene was stronger in gravid females, but was relatively low in nymphs, males, and newly emerged females. The expression level of NlRPL5 in the ovary was about twofolds of that in the head, thorax, or fat body. RNAi of dsNlRPL5 resulted in a significant reduction of mRNA levels, ∼50% decrease in comparison with the dsGFP control at day 6. Treatment of dsNlRPL5 significantly restricted the ovarian development, and decreased the number of eggs laid on the rice (Oryza sativa) plants. This study provided a new clue for further study on the function and regulation mechanism of NlRPL5 in N. lugens. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  20. Development of Gene Expression Signatures for Practical Radiation Biodosimetry

    International Nuclear Information System (INIS)

    Paul, Sunirmal; Amundson, Sally A.

    2008-01-01

    Purpose: In a large-scale radiologic emergency, estimates of exposure doses and radiation injury would be required for individuals without physical dosimeters. Current methods are inadequate for the task, so we are developing gene expression profiles for radiation biodosimetry. This approach could provide both an estimate of physical radiation dose and an indication of the extent of individual injury or future risk. Methods and Materials: We used whole genome microarray expression profiling as a discovery platform to identify genes with the potential to predict radiation dose across an exposure range relevant for medical decision making in a radiologic emergency. Human peripheral blood from 10 healthy donors was irradiated ex vivo, and global gene expression was measured both 6 and 24 h after exposure. Results: A 74-gene signature was identified that distinguishes between four radiation doses (0.5, 2, 5, and 8 Gy) and controls. More than one third of these genes are regulated by TP53. A nearest centroid classifier using these same 74 genes correctly predicted 98% of samples taken either 6 h or 24 h after treatment as unexposed, exposed to 0.5, 2, or ≥5 Gy. Expression patterns of five genes (CDKN1A, FDXR, SESN1, BBC3, and PHPT1) from this signature were also confirmed by real-time polymerase chain reaction. Conclusion: The ability of a single gene set to predict radiation dose throughout a window of time without need for individual pre-exposure controls represents an important advance in the development of gene expression for biodosimetry

  1. Conditional Loss of Hoxa5 Function Early after Birth Impacts on Expression of Genes with Synaptic Function

    Science.gov (United States)

    Lizen, Benoit; Moens, Charlotte; Mouheiche, Jinane; Sacré, Thomas; Ahn, Marie-Thérèse; Jeannotte, Lucie; Salti, Ahmad; Gofflot, Françoise

    2017-01-01

    Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5 transcripts are enriched in many precerebellar neurons and several nuclei involved in autonomic functions, while the HOXA5 protein is detected mainly in glutamatergic and GABAergic neurons. However, whether HOXA5 is functionally required in these neurons after birth remains unknown. As a first approach to tackle this question, we aimed at determining the molecular programs downstream of the HOXA5 transcription factor in the context of the postnatal brainstem. A comparative transcriptomic analysis was performed in combination with gene expression localization, using a conditional postnatal Hoxa5 loss-of-function mouse model. After inactivation of Hoxa5 at postnatal days (P)1–P4, we established the transcriptome of the brainstem from P21 Hoxa5 conditional mutants using RNA-Seq analysis. One major finding was the downregulation of several genes associated with synaptic function in Hoxa5 mutant specimens including different actors involved in glutamatergic synapse, calcium signaling pathway, and GABAergic synapse. Data were confirmed and extended by reverse transcription quantitative polymerase chain reaction analysis, and the expression of several HOXA5 candidate targets was shown to co-localize with Hoxa5 transcripts in precerebellar nuclei. Together, these new results revealed that HOXA5, through the regulation of key actors of the glutamatergic/GABAergic synapses and calcium signaling, might be involved in synaptogenesis, synaptic transmission, and synaptic plasticity of the cortico-ponto-cerebellar circuitry in the postnatal brainstem. PMID:29187810

  2. Conditional Loss of Hoxa5 Function Early after Birth Impacts on Expression of Genes with Synaptic Function

    Directory of Open Access Journals (Sweden)

    Benoit Lizen

    2017-11-01

    Full Text Available Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5 transcripts are enriched in many precerebellar neurons and several nuclei involved in autonomic functions, while the HOXA5 protein is detected mainly in glutamatergic and GABAergic neurons. However, whether HOXA5 is functionally required in these neurons after birth remains unknown. As a first approach to tackle this question, we aimed at determining the molecular programs downstream of the HOXA5 transcription factor in the context of the postnatal brainstem. A comparative transcriptomic analysis was performed in combination with gene expression localization, using a conditional postnatal Hoxa5 loss-of-function mouse model. After inactivation of Hoxa5 at postnatal days (P1–P4, we established the transcriptome of the brainstem from P21 Hoxa5 conditional mutants using RNA-Seq analysis. One major finding was the downregulation of several genes associated with synaptic function in Hoxa5 mutant specimens including different actors involved in glutamatergic synapse, calcium signaling pathway, and GABAergic synapse. Data were confirmed and extended by reverse transcription quantitative polymerase chain reaction analysis, and the expression of several HOXA5 candidate targets was shown to co-localize with Hoxa5 transcripts in precerebellar nuclei. Together, these new results revealed that HOXA5, through the regulation of key actors of the glutamatergic/GABAergic synapses and calcium signaling, might be involved in synaptogenesis, synaptic transmission, and synaptic plasticity of the cortico-ponto-cerebellar circuitry in the postnatal brainstem.

  3. Reference genes for gene expression analysis by real-time reverse transcription polymerase chain reaction of renal cell carcinoma.

    Science.gov (United States)

    Bjerregaard, Henriette; Pedersen, Shona; Kristensen, Søren Risom; Marcussen, Niels

    2011-12-01

    Differentiation between malignant renal cell carcinoma and benign oncocytoma is of great importance to choose the optimal treatment. Accurate preoperative diagnosis of renal tumor is therefore crucial; however, existing imaging techniques and histologic examinations are incapable of providing an optimal differentiation profile. Analysis of gene expression of molecular markers is a new possibility but relies on appropriate standardization to compare different samples. The aim of this study was to identify stably expressed reference genes suitable for the normalization of results extracted from gene expression analysis of renal tumors. Expression levels of 8 potential reference genes (ATP5J, HMBS, HPRT1, PPIA, TBP, 18S, GAPDH, and POLR2A) were examined by real-time reverse transcription polymerase chain reaction in tumor and normal tissue from removed kidneys from 13 patients with renal cell carcinoma and 5 patients with oncocytoma. The expression levels of genes were compared by gene stability value M, average gene stability M, pairwise variation V, and coefficient of variation CV. More candidates were not suitable for the purpose, but a combination of HMBS, PPIA, ATP5J, and TBP was found to be the best combination with an average gene stability value M of 0.9 and a CV of 0.4 in the 18 tumors and normal tissues. A combination of 4 genes, HMBS, PPIA, ATP5J, and TBP, is a possible reference in renal tumor gene expression analysis by reverse transcription polymerase chain reaction. A combination of four genes, HMBS, PPIA, ATP5J and TBP, being stably expressed in tissues from RCC is possible reference genes for gene expression analysis.

  4. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Gene expression analysis in watermelon (Citrullus lanatus fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC, β-actin (ClACT, and alpha tubulin 5 (ClTUA5 as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1, a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  5. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Science.gov (United States)

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  6. CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection

    Science.gov (United States)

    Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967

  7. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence

    Directory of Open Access Journals (Sweden)

    Garcia Sònia

    2012-06-01

    Full Text Available Abstract Background In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement or, less commonly, linked to 35 S rDNA units (L-type. The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. Results We found that homogenization of L-type units went to completion in most (4/6 but not all species. Two species contained major L-type and minor S-type units (termed Ls-type. The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5’-RGSWTGGGTG-3’ is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. Conclusions We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs.

  8. Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration.

    Science.gov (United States)

    Nichols, Charles D; Garcia, Efrain E; Sanders-Bush, Elaine

    2003-03-17

    Lysergic acid diethylamide (LSD) is a psychoactive drug that transiently alters human perception, behavior, and mood at extremely low doses. Certain aspects of the behavior elicited by acute doses of LSD closely resemble symptoms of mental disorders such as schizophrenia. Characterizing gene expression profiles after LSD will be important for understanding how it alters behavior, and will lead to novel insights into disorders, such as schizophrenia, whose behavioral symptoms resemble the temporary effects of hallucinogenic drugs. We previously identified a small collection of genes within the rat prefrontal cortex that respond to LSD. Many of the products of these genes are involved in the process of synaptic plasticity. In the current report, we present a detailed analysis of the expression of these genes within the brain using RNase protection analysis. We find that the gene response to LSD is quite dynamic. The expression of some genes increases rapidly and decreases rapidly, while other genes change more gradually. Dose-response studies show two classes of expression; gene expression maximally stimulated at lower doses, versus gene expression that continues to rise at the higher doses. The role of the 5-HT(1A) and 5-HT(2A) receptor in mediating the increases in gene expression was examined in a series of experiments using receptor specific antagonists. Most expression increases were due to activation of the 5-HT(2A) receptor, however expression of two genes had neither a 5-HT(1A) nor a 5-HT(2A) receptor component.

  9. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.

    Science.gov (United States)

    Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao

    2012-03-01

    High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Selection of reference genes for gene expression studies in heart failure for left and right ventricles.

    Science.gov (United States)

    Li, Mengmeng; Rao, Man; Chen, Kai; Zhou, Jianye; Song, Jiangping

    2017-07-15

    Real-time quantitative reverse transcriptase-PCR (qRT-PCR) is a feasible tool for determining gene expression profiles, but the accuracy and reliability of the results depends on the stable expression of selected housekeeping genes in different samples. By far, researches on stable housekeeping genes in human heart failure samples are rare. Moreover the effect of heart failure on the expression of housekeeping genes in right and left ventricles is yet to be studied. Therefore we aim to provide stable housekeeping genes for both ventricles in heart failure and normal heart samples. In this study, we selected seven commonly used housekeeping genes as candidates. By using the qRT-PCR, the expression levels of ACTB, RAB7A, GAPDH, REEP5, RPL5, PSMB4 and VCP in eight heart failure and four normal heart samples were assessed. The stability of candidate housekeeping genes was evaluated by geNorm and Normfinder softwares. GAPDH showed the least variation in all heart samples. Results also indicated the difference of gene expression existed in heart failure left and right ventricles. GAPDH had the highest expression stability in both heart failure and normal heart samples. We also propose using different sets of housekeeping genes for left and right ventricles respectively. The combination of RPL5, GAPDH and PSMB4 is suitable for the right ventricle and the combination of GAPDH, REEP5 and RAB7A is suitable for the left ventricle. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Data on characterizing the gene expression patterns of neuronal ceroid lipofuscinosis genes: CLN1, CLN2, CLN3, CLN5 and their association to interneuron and neurotransmission markers: Parvalbumin and Somatostatin

    Directory of Open Access Journals (Sweden)

    Helena M. Minye

    2016-09-01

    Full Text Available The article contains raw and analyzed data related to the research article “Neuronal ceroid lipofuscinosis genes, CLN2, CLN3, CLN5 are spatially and temporally co-expressed in a developing mouse brain” (Fabritius et al., 2014 [1]. The processed data gives an understanding of the development of the cell types that are mostly affected by defective function of CLN proteins, timing of expression of CLN1, CLN2, CLN3 and CLN5 genes in a murine model. The data shows relationship between the expression pattern of these genes during neural development. Immunohistochemistry was used to identify known interneuronal markers for neurotransmission and cell proliferation: parvalbumin, somatostatin subpopulations of interneurons. Non-radioactive in-situ hybridization detected CLN5 mRNA in the hippocampus. Throughout the development strong expression of CLN genes were identified in the germinal epithelium and in ventricle regions, cortex, hippocampus, and cerebellum. This provides supportive evidence that CLN1, CLN2, CLN3 and CLN5 genes may be involved in synaptic pruning.

  12. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  13. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans

    Directory of Open Access Journals (Sweden)

    Vandesompele Jo

    2008-01-01

    Full Text Available Abstract Background In the nematode Caenorhabditis elegans the conserved Ins/IGF-1 signaling pathway regulates many biological processes including life span, stress response, dauer diapause and metabolism. Detection of differentially expressed genes may contribute to a better understanding of the mechanism by which the Ins/IGF-1 signaling pathway regulates these processes. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression levels. The aim of this study was to establish a reliable set of reference genes for gene expression analysis in C. elegans. Results Real-time quantitative PCR was used to evaluate the expression stability of 12 candidate reference genes (act-1, ama-1, cdc-42, csq-1, eif-3.C, mdh-1, gpd-2, pmp-3, tba-1, Y45F10D.4, rgs-6 and unc-16 in wild-type, three Ins/IGF-1 pathway mutants, dauers and L3 stage larvae. After geNorm analysis, cdc-42, pmp-3 and Y45F10D.4 showed the most stable expression pattern and were used to normalize 5 sod expression levels. Significant differences in mRNA levels were observed for sod-1 and sod-3 in daf-2 relative to wild-type animals, whereas in dauers sod-1, sod-3, sod-4 and sod-5 are differentially expressed relative to third stage larvae. Conclusion Our findings emphasize the importance of accurate normalization using stably expressed reference genes. The methodology used in this study is generally applicable to reliably quantify gene expression levels in the nematode C. elegans using quantitative PCR.

  14. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  15. Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13.

    Science.gov (United States)

    Makwana, Kuldeep; Patel, Sonal Arvind; Velingkaar, Nikkhil; Ebron, Jey Sabith; Shukla, Girish C; Kondratov, Roman V Kondratov V

    2017-07-31

    Calorie restriction (CR) is a dietary intervention known to delay aging. In order, to understand molecular mechanisms of CR, we analyzed the expression of 983 MicroRNAs (miRNAs) in the liver of female mice after 2 years of 30% CR using micro-array. 16 miRNAs demonstrated significant changes in their expression upon CR in comparison with age-matched control. mmu-miR-125a-5p (miR-125a-5p) was significantly upregulated upon CR, and in agreement with this, the expression of mRNAs for its three predicted target genes: Stat3, Casp2, and Stard13 was significantly downregulated in the liver of CR animals. The expression of precursor miRNA for miR-125a-5p was also upregulated upon CR, which suggests its regulation at the level of transcription. Upon aging miR-125a-5p expression was downregulated while the expression of its target genes was upregulated. Thus, CR prevented age-associated changes in the expression of miR-125a-5p and its targets. We propose that miR-125a-5p dependent downregulation of Stat3, Casp2, and Stard13 contributes to the calorie restriction-mediated delay of aging.

  16. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice*

    Science.gov (United States)

    Takarada, Takeshi; Kodama, Ayumi; Hotta, Shogo; Mieda, Michihiro; Shimba, Shigeki; Hinoi, Eiichi; Yoneda, Yukio

    2012-01-01

    We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression. PMID:22936800

  18. Alteration of runt-related transcription factor 3 gene expression and biologic behavior of esophageal carcinoma TE-1 cells after 5-azacytidine intervention.

    Science.gov (United States)

    Wang, Shuai; Liu, Hong; Akhtar, Javed; Chen, Hua-Xia; Wang, Zhou

    2013-01-01

    5-Azacytidine (5-azaC) was originally identified as an anticancer drug (NSC102876) which can cause hypomethylation of tumor suppressor genes. To assess its effects on runt-related transcription factor 3 (RUNX3), expression levels and the promoter methylation status of the RUNX3 gene were assessed. We also investigated alteration of biologic behavior of esophageal carcinoma TE-1 cells. MTT assays showed 5-azaC inhibited the proliferation of TE-1 cells in a time and dose-dependent way. Although other genes could be demethylated after 5-azaC intervention, we focused on RUNX3 gene in this study. The expression level of RUNX3 mRNA increased significantly in TE-1 cells after treatment with 5-azaC at hypotoxic levels. RT-PCR showed 5-azaC at 50 μM had the highest RUNX3-induction activity. Methylation-specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. Migration and invasion of TE-1 cells were inhibited by 5-azaC, along with growth of Eca109 xenografts in nude mice. In conclusion, we demonstrate that the RUNX3 gene can be reactivated by the demethylation reagent 5-azaC, which inhibits the proliferation, migration and invasion of esophageal carcinoma TE-1 cells.

  19. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae

    Science.gov (United States)

    Han, Yanming; Wilson, David B.; Lei, Xin gen

    1999-01-01

    Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60°C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation. PMID:10223979

  20. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  1. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli.

    Science.gov (United States)

    Bechard, Matthew E.; Chhatwal, Sonya; Garcia, Rosemarie E.; Rasche, Madeline E.

    2003-01-01

    Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H(4)MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H(4)MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  2. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  3. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  4. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    Science.gov (United States)

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These

  5. A stochastic approach to multi-gene expression dynamics

    International Nuclear Information System (INIS)

    Ochiai, T.; Nacher, J.C.; Akutsu, T.

    2005-01-01

    In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption-Markov property-and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model

  6. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2015-12-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL. This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5 on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  7. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    Science.gov (United States)

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  8. Host Gene Expression Analysis in Sri Lankan Melioidosis Patients

    Science.gov (United States)

    2017-06-19

    CCL5 Chemokine (C-C motif) ligand 5 /RANTES. IFNγ Interferon gamma TNFα Tumor necrosis factor alpha HMGB1 High mobility group box 1 protein /high...aim of this study was to analyze gene expression levels of human host factors in melioidosis patients and establish useful correlation with disease...PBMC’s) of study subjects. Gene expression profiles of 25 gene targets including 19 immune response genes and 6 epigenetic factors were analyzed by

  9. GSEH: A Novel Approach to Select Prostate Cancer-Associated Genes Using Gene Expression Heterogeneity.

    Science.gov (United States)

    Kim, Hyunjin; Choi, Sang-Min; Park, Sanghyun

    2018-01-01

    When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find "differentially predicted" genes. Through the proposed method, we discovered more prostate cancer-associated genes than 10 comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease and can provide insight into them.

  10. Genetics of sputum gene expression in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Weiliang Qiu

    Full Text Available Previous expression quantitative trait loci (eQTL studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs. The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5, the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.

  11. Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Qiu, Weiliang; Cho, Michael H.; Riley, John H.; Anderson, Wayne H.; Singh, Dave; Bakke, Per; Gulsvik, Amund; Litonjua, Augusto A.; Lomas, David A.; Crapo, James D.; Beaty, Terri H.; Celli, Bartolome R.; Rennard, Stephen; Tal-Singer, Ruth; Fox, Steven M.; Silverman, Edwin K.; Hersh, Craig P.

    2011-01-01

    Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus. PMID:21949713

  12. Drosophila Myc is required for normal DREF gene expression

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm 4 /Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm 2 /dm 2 homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression

  13. Clinical value of miR-452-5p expression in lung adenocarcinoma: A retrospective quantitative real-time polymerase chain reaction study and verification based on The Cancer Genome Atlas and Gene Expression Omnibus databases.

    Science.gov (United States)

    Gan, Xiao-Ning; Luo, Jie; Tang, Rui-Xue; Wang, Han-Lin; Zhou, Hong; Qin, Hui; Gan, Ting-Qing; Chen, Gang

    2017-05-01

    The role and mechanism of miR-452-5p in lung adenocarcinoma remain unclear. In this study, we performed a systematic study to investigate the clinical value of miR-452-5p expression in lung adenocarcinoma. The expression of miR-452-5p in 101 lung adenocarcinoma patients was detected by quantitative real-time polymerase chain reaction. The Cancer Genome Atlas and Gene Expression Omnibus databases were joined to verify the expression level of miR-452-5p in lung adenocarcinoma. Via several online prediction databases and bioinformatics software, pathway and network analyses of miR-452-5p target genes were performed to explore its prospective molecular mechanism. The expression of miR-452-5p in lung adenocarcinoma in house was significantly lower than that in adjacent tissues (p < 0.001). Additionally, the expression level of miR-452-5p was negatively correlated with several clinicopathological parameters including the tumor size (p = 0.014), lymph node metastasis (p = 0.032), and tumor-node-metastasis stage (p = 0.036). Data from The Cancer Genome Atlas also confirmed the low expression of miR-452 in lung adenocarcinoma (p < 0.001). Furthermore, reduced expression of miR-452-5p in lung adenocarcinoma (standard mean deviations = -0.393, 95% confidence interval: -0.774 to -0.011, p = 0.044) was validated by a meta-analysis. Five hub genes targeted by miR-452-5p, including SMAD family member 4, SMAD family member 2, cyclin-dependent kinase inhibitor 1B, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta, were significantly enriched in the cell-cycle pathway. In conclusion, low expression of miR-452-5p tends to play an essential role in lung adenocarcinoma. Bioinformatics analysis might be beneficial to reveal the potential mechanism of miR-452-5p in lung adenocarcinoma.

  14. Gene-expression profiling after exposure to C-ion beams

    International Nuclear Information System (INIS)

    Saegusa, Kumiko; Furuno, Aki; Ishikawa, Kenichi; Ishikawa, Atsuko; Ohtsuka, Yoshimi; Kawai, Seiko; Imai, Takashi; Nojima, Kumie

    2005-01-01

    It is recognized that carbon-ion beam kills cancer cells more efficiently than X-ray. In this study we have compared cellular gene expression response after carbon-ion beam exposure with that after X-ray exposure. Gene expression profiles of cultured neonatal human dermal fibroblasts (NHDF) at 0, 1, 3, 6, 12, 18, and 24 hr after exposure to 0.1, 2 and 5 Gy of X-ray or carbon-ion beam were obtained using 22K oligonucleotide microarray. N-way ANOVA analysis of whole gene expression data sets selected 960 genes for carbon-ion beam and 977 genes for X-ray, respectively. Interestingly, majority of these genes (91% for carbon-ion beam and 88% for X-ray, respectively) were down regulated. The selected genes were further classified by their dose-dependence or time-dependence of gene expression change (fold change>1.5). It was revealed that genes involved in cell proliferation had tendency to show time-dependent up regulation by carbon-ion beam. Another N-way ANOVA analysis was performed to select 510 genes, and further selection was made to find 70 genes that showed radiation species-dependent gene expression change (fold change>1.25). These genes were then categorized by the K-Mean clustering method into 4 clusters. Each cluster showed tendency to contain genes involved in cell cycle regulation, cell death, responses to stress and metabolisms, respectively. (author)

  15. Investigation of SLC6A4 gene expression in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Elif Funda Şener

    2015-06-01

    Full Text Available Objective: Autism is defined as a complex neurodevelopmental disorder. Genetics plays a major role in the etiology of autism spectrum disorders (ASD. The role of the serotonin in the development of autism has been widely investigated. SLC6A4 gene (SERT or 5-HT has an important role reuptaking of serotonin. Because of this, our study examined the expression level of SLC6A4 gene in autism patients. Methods: Thirty-four patients (26 male, 8 female who diagnosed as autism firstly according to DSM-V criteria in the Department of child psychiatry, Erciyes University Medical Faculty and healthy 23 controls (16 male, 7 female were enrolled in this study. Total RNA was isolated from peripheral blood samples using TRIzol. Quantitative Real-time PCR (qRT-PCR was performed to detect SLC6A4 gene expression. Results: SLC6A4 gene expression was found statistically significant and low in autism group compared with controls (p=0,027. Conclusion: The low gene expression in the patient group implied that there is an abnormality of serotonin reuptake. According to our results, we suggest that much more studies may be planned with the expression and methylation profile of this gene combined with gene polymorphisms especially affecting the expression in larger sample sizes. J Clin Exp Invest 2015; 6 (2: 165-169

  16. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots

    Directory of Open Access Journals (Sweden)

    LUCIA KUSUMAWATI

    2013-09-01

    Full Text Available Subtilisin-like serine protease (MtSBT, serine carboxypeptidase (MtSCP, MtN5, non-specific lipid transfer protein (MtnsLTP, early nodulin2-like protein (MtENOD2-like, FAD-binding domain containing protein (MtFAD-BP1, and rhicadhesin receptor protein (MtRHRE1 were among 34 proteins found in the supernatant of M. truncatula 2HA and sickle cell suspension cultures. This study investigated the expression of genes encoding those proteins in roots and developing nodules. Two methods were used: quantitative real time RT-PCR and gene expression analysis (with promoter:GUS fusion in roots. Those proteins are predicted as secreted proteins which is indirectly supported by the findings that promoter:GUS fusions of six of the seven genes encoding secreted proteins were strongly expressed in the vascular bundle of transgenic hairy roots. All six genes have expressed in 14-day old nodule. The expression levels of the selected seven genes were quantified in Sinorhizobium-inoculated and control plants using quantitative real time RT-PCR. In conclusion, among seven genes encoding secreted proteins analyzed, the expression level of only one gene, MtN5, was up-regulated significantly in inoculated root segments compared to controls. The expression of MtSBT1, MtSCP1, MtnsLTP, MtFAD-BP1, MtRHRE1 and MtN5 were higher in root tip than in other tissues examined.

  17. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster

    International Nuclear Information System (INIS)

    Liebhaber, S.A.; Weiss, I.; Cash, F.E.; Griese, E.U.; Horst, J.; Ayyub, H.; Higgs, D.R.

    1990-01-01

    Synthesis of normal human hemoglobin A, α 2 β 2 , is based upon balanced expression of genes in the α-globin gene cluster on chromosome 15 and the β-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the β-globin cluster depend on sequences located at a considerable distance 5' to the β-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the α-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with α-thalassemia in whom structurally normal α-globin genes have been inactivated in cis by a discrete de novo 35-kilobase deletion located ∼30 kilobases 5' from the α-globin gene cluster. They conclude that this deletion inactivates expression of the α-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the α-globin genes

  18. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  19. Effects of resveratrol, grape juice or red wine consumption Irisin levels and fibronectin type III domain containing protein 5 and uncoupoling protein gene expression modulation in rats

    Directory of Open Access Journals (Sweden)

    Gabrielle de Souza Rocha

    2016-02-01

    Conclusion: Resveratrol and grape juice were able to increase muscle tissue FNDC5 gene expression, and high-fat diet, red wine and resveratrol, increased UCP2 gene expression in this tissue. Grape juice was capable of increasing adipose tissue UCP2 gene expression. High-fat diet, isolated or associated to beverages rich in polyphenols, have decreased FNDC5 gene expression in adipose tissue. Nevertheless, the interventions did not affect irisin levels.

  20. Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Neonatal feeding problems are observed in several genetic diseases including Prader-Willi syndrome (PWS. Later in life, individuals with PWS develop hyperphagia and obesity due to lack of appetite control. We hypothesized that failure to thrive in infancy and later-onset hyperphagia are related and could be due to a defect in the hypothalamus. In this study, we performed gene expression microarray analysis of the hypothalamic response to maternal deprivation in neonatal wild-type and Snord116del mice, a mouse model for PWS in which a cluster of imprinted C/D box snoRNAs is deleted. The neonatal starvation response in both strains was dramatically different from that reported in adult rodents. Genes that are affected by adult starvation showed no expression change in the hypothalamus of 5 day-old pups after 6 hours of maternal deprivation. Unlike in adult rodents, expression levels of Nanos2 and Pdk4 were increased, and those of Pgpep1, Ndp, Brms1l, Mett10d, and Snx1 were decreased after neonatal deprivation. In addition, we compared hypothalamic gene expression profiles at postnatal days 5 and 13 and observed significant developmental changes. Notably, the gene expression profiles of Snord116del deletion mice and wild-type littermates were very similar at all time points and conditions, arguing against a role of Snord116 in feeding regulation in the neonatal period.

  1. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    Science.gov (United States)

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased

  2. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  3. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  4. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  5. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  6. Differential gene expression by RamA in ciprofloxacin-resistant Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    Full Text Available Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM. The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.

  7. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    Directory of Open Access Journals (Sweden)

    Christopher A. Aoki

    2006-01-01

    Full Text Available Primary sclerosing cholangitis (PSC is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA from peripheral blood mononuclear cells (PBMC was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6 and membrane-spanning 4-domains, subfamily A (ms4a were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5 was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.

  8. DNA Methylation and Gene Expression Profiling of Ewing Sarcoma Primary Tumors Reveal Genes That Are Potential Targets of Epigenetic Inactivation

    Directory of Open Access Journals (Sweden)

    Nikul Patel

    2012-01-01

    Full Text Available The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1, and VCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis.

  9. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.

    Science.gov (United States)

    Kennedy, Brian M; Harris, Randall E

    2018-05-07

    We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

  10. Expression and clinical significance of Pax6 gene in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Hai-Dong Huang

    2013-07-01

    Full Text Available AIM: To discuss the expression and clinical significance of Pax6 gene in retinoblastoma(Rb. METHODS: Totally 15 cases of fresh Rb organizations were selected as observation group and 15 normal retinal organizations as control group. Western-Blot and reverse transcriptase polymerase chain reaction(RT-PCRmethods were used to detect Pax6 protein and Pax6 mRNA expressions of the normal retina organizations and Rb organizations. At the same time, Western Blot method was used to detect the Pax6 gene downstream MATH5 and BRN3b differentiation gene protein level expression. After the comparison between two groups, the expression and clinical significance of Pax6 gene in Rb were discussed. RESULTS: In the observation group, average value of mRNA expression of Pax6 gene was 0.99±0.03; average value of Pax6 gene protein expression was 2.07±0.15; average value of BRN3b protein expression was 0.195±0.016; average value of MATH5 protein expression was 0.190±0.031. They were significantly higher than the control group, and the differences were statistically significant(PCONCLUSION: Abnormal expression of Pax6 gene is likely to accelerate the occurrence of Rb.

  11. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Expression of P190 and P210 BCR/ABL1 in normal human CD34(+) cells induces similar gene expression profiles and results in a STAT5-dependent expansion of the erythroid lineage

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Agerstam, Helena

    2009-01-01

    OBJECTIVE: The P190 and P210 BCR/ABL1 fusion genes are mainly associated with different types of hematologic malignancies, but it is presently unclear whether they are functionally different following expression in primitive human hematopoietic cells. MATERIALS AND METHODS: We investigated...... and systematically compared the effects of retroviral P190 BCR/ABL1 and P210 BCR/ABL1 expression on cell proliferation, differentiation, and global gene expression in human CD34(+) cells from cord blood. RESULTS: Expression of either P190 BCR/ABL1 or P210 BCR/ABL1 resulted in expansion of erythroid cells...... and stimulated erythropoietin-independent burst-forming unit-erythroid colony formation. By using a lentiviral anti-signal transducer and activator of transcription 5 (STAT5) short-hairpin RNA, we found that both P190 BCR/ABL1- and P210 BCR/ABL1-induced erythroid cell expansion were STAT5-dependent. Under...

  13. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  14. Heterologous expression of chaetomium thermophilum xylanase 11-a (ctx 11-a) gene

    International Nuclear Information System (INIS)

    Wajid, S.; Shahid, S.; Mukhtar, Z.; Mansoor, S.

    2009-01-01

    Chaetomium has a potential source of xylanase and cellulase enzymes, both of which are required in the treatment of fibre in the poultry feed. The titre of the enzymes needs to be enhanced by using recombinant DNA technology for fulfilling the requirement of the industries. Efforts are made to construct prokaryotic and eukaryotic expression cassettes that can be cloned under specific strong promoters i.e., T7 and AOX1, respectively, and the enhancer elements to get the maximum gene expression. In the present study BL21 E. coli and GS115 Pichia pastoris strains are used as model organisms to express the CtX 11-A gene in the presence of 1 mM IPTG and 100% methanol upto final concentration of 0.5. In case of BL21 expression, the maximum xylanase activity was observed after 1.5 h in the presence of 1% xylose, which was 2.302 U/ml and after 7 h in the presence of 0.5% lactose, was 1.708 U/ml. However, in Pichia pastoris the maximum production of xylanase was 2.904 and 0.006 U/ml as compared to control 0.484 and 0.06 U/ml, respectively. (author)

  15. Genetic manipulation of RPS5 gene expression modulates the initiation of commitment of MEL cells to erythroid maturation: Implications in understanding ribosomopathies.

    Science.gov (United States)

    Vizirianakis, Ioannis S; Papachristou, Eleni T; Andreadis, Panagiotis; Zopounidou, Elena; Matragkou, Christina N; Tsiftsoglou, Asterios S

    2015-07-01

    Impairment of ribosome biogenesis contributes to the molecular pathophysiology of ribosomopathies by deregulating cell-lineage specific proliferation, differentiation and apoptosis decisions of haematopoietic progenitor cells. Here, using pro-erythroblast-like murine erythroleukemia (MEL) cells, a model system of erythroid maturation, we aimed to investigate whether genetic manipulation of RPS5 expression affects the capacity of cells to grow and differentiate in culture. Parental MEL cells stably transfected with full length RPS5 cDNA in sense (MEL-C14 culture) or antisense (MEL-antisenseRPS5 culture) orientation, as well as MEL cells transiently transfected with siRNAs specific for RPS5 gene silencing (MEL-RPS5siRNA culture) were assessed for their ability to fully execute their erythroid maturation program in culture. The data obtained thus far indicate that: a) MEL-antisenseRPS5 exhibit a pronounced delay in the initiation of differentiation, as well as an impairment of commitment, since the continuous presence of the inducer in culture is required for the cells to fully execute their erythroid maturation program. b) RNAi-mediating silencing of RPS5 gene expression resulted in the inability of MEL cells to differentiate; however, when these cells were allowed to recapitulate normal RPS5 gene expression levels they regained their differentiation capacity by accumulating high proportion of erythroid mature cells. c) Interestingly the latter, is accompanied by morphological changes of cells and an impairment of their proliferation and apoptosis potential. Such data for the first time correlate the RPS5 gene expression levels with the differentiation capacity of MEL cells in vitro, a fact that might also have implications in understanding ribosomopathies.

  16. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  17. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  18. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  19. Analysis of gene expression in resynthesized Brassica napus Allopolyploids using arabidopsis 70mer oligo microarrays.

    Directory of Open Access Journals (Sweden)

    Robert T Gaeta

    Full Text Available BACKGROUND: Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S(5ratio6 alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. METHODOLOGY/PRINCIPAL FINDINGS: We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S(0ratio1 and S(5ratio6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent expression in the allopolyploids were tested. The S(5ratio6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6-15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6-32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S(0ratio1 lines and 0.1-0.2% were nonadditive among all S(5ratio6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S(5ratio6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S(0ratio1 lines. CONCLUSIONS/SIGNIFICANCE: Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization

  20. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    Science.gov (United States)

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the

  1. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression

    International Nuclear Information System (INIS)

    Carlin, Sean; Pugachev, Andrei; Sun Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C. Clifton; Humm, John L.

    2009-01-01

    Purpose: To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer 18 F-fluoromisonidazole ( 18 F-FMISO). Methods: Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe 124 I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil ( 124 I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between 124 I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe 18 F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with 124 I-FIAU (3 h before sacrifice) and 18 F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between 18 F-FMISO and 124 I-FIAU on a pixel-by-pixel basis was performed. Results: Correlation coefficients between 124 I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between 18 F-FMISO and 124 I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. Conclusions: We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of

  2. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  3. Expression of human gamma-globin genes in human erythroleukemia (K562) cells.

    Science.gov (United States)

    Donovan-Peluso, M; Acuto, S; Swanson, M; Dobkin, C; Bank, A

    1987-12-15

    K562 cells express embryonic (epsilon) and fetal (gamma) globins and hemoglobins but not adult (beta) globin. To define the cis acting regulatory elements involved in the discrimination between gamma and beta genes, we have constructed chimeric genes composed of portions of gamma and beta and evaluated their expression in stable K562 transfectants. A gamma beta fusion gene containing gamma 5' sequences to the EcoRI site in exon 3 and beta sequences 3' is expressed at 10-40% that of the endogenous gamma level. In 50% of the lines, this fusion gene appropriately increases its expression in response to hemin, an inducer of endogenous globin gene expression in K562 cells. In contrast, a beta gamma fusion gene, containing beta sequences 5' to the EcoRI site in exon 3 and gamma sequences 3', is neither expressed nor correctly initiated. A beta gene containing gamma-intervening sequence (IVS) 2 accumulates an mRNA transcript when analyzed with a 3' beta probe. However, no correctly initiated beta mRNA is observed. A gamma gene with beta-IVS 2 is only inducible in one of six expressing clones. All the results are consistent with the presence of stage-specific trans acting factors in K562 cells that stimulate expression of gamma genes and suggest a significant role for gamma-IVS 2 in gamma gene expression.

  4. A compendium of canine normal tissue gene expression.

    Directory of Open Access Journals (Sweden)

    Joseph Briggs

    Full Text Available BACKGROUND: Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. METHODOLOGY/PRINCIPAL FINDINGS: The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. CONCLUSIONS/SIGNIFICANCE: These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large.

  5. A Gene Expression Classifier of Node-Positive Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Paul F. Meeh

    2009-10-01

    Full Text Available We used digital long serial analysis of gene expression to discover gene expression differences between node-negative and node-positive colorectal tumors and developed a multigene classifier able to discriminate between these two tumor types. We prepared and sequenced long serial analysis of gene expression libraries from one node-negative and one node-positive colorectal tumor, sequenced to a depth of 26,060 unique tags, and identified 262 tags significantly differentially expressed between these two tumors (P < 2 x 10-6. We confirmed the tag-to-gene assignments and differential expression of 31 genes by quantitative real-time polymerase chain reaction, 12 of which were elevated in the node-positive tumor. We analyzed the expression levels of these 12 upregulated genes in a validation panel of 23 additional tumors and developed an optimized seven-gene logistic regression classifier. The classifier discriminated between node-negative and node-positive tumors with 86% sensitivity and 80% specificity. Receiver operating characteristic analysis of the classifier revealed an area under the curve of 0.86. Experimental manipulation of the function of one classification gene, Fibronectin, caused profound effects on invasion and migration of colorectal cancer cells in vitro. These results suggest that the development of node-positive colorectal cancer occurs in part through elevated epithelial FN1 expression and suggest novel strategies for the diagnosis and treatment of advanced disease.

  6. A meta-analysis of gene expression signatures of blood pressure and hypertension.

    Directory of Open Access Journals (Sweden)

    Tianxiao Huan

    2015-03-01

    Full Text Available Genome-wide association studies (GWAS have uncovered numerous genetic variants (SNPs that are associated with blood pressure (BP. Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05. Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2. Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension.

  7. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells.

    Science.gov (United States)

    Jung, Ha-Na; Zerin, Tamanna; Podder, Biswajit; Song, Ho-Yeon; Kim, Yong-Sik

    2014-06-01

    In Korea, lung disease of children and pregnant women associated with humidifier disinfectant use has become a major concern. A common sterilizer is polyhexamethylene guanidine (PHMG), a member of the guanidine family of antiseptics. This study was done to elucidate the putative cytotoxic effect of PHMG and the PHMG-mediated altered gene expression in human alveolar epithelial A549 cells in vitro. Cell viability analyses revealed the potent cytotoxicity of PHMG, with cell death evident at as low as 5 μg/mL. Death was dose- and time-dependent, and was associated with formation of intracellular reactive oxygen species, and apoptosis significantly, at even 2 μg/mL concentration. The gene expression profile in A549 cells following 24 h exposure to 5 μg/mL of PHMG was investigated using DNA microarray analysis. Changes in gene expression relevant to the progression of cell death included induction of genes related to apoptosis, autophagy, fibrosis, and cell cycle. However, the expressions of genes encoding antioxidant and detoxifying enzymes were down-regulated or not affected. The altered expression of selected genes was confirmed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses. The collective data suggest that PHMG confers cellular toxicity through the generation of intracellular reactive oxygen species and alteration of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    Science.gov (United States)

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival

    Directory of Open Access Journals (Sweden)

    Lincoln Douglas

    2006-06-01

    Full Text Available Abstract Background Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. Methods Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by Kaplan-Meier survival curves. Results Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p Conclusion These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis.

  10. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Bouzinova, Elena; Fahrenkrug, Jan

    2016-01-01

    BACKGROUND: Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation...... of clock gene expression in depressive patients many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS: In the present study we investigated whether a depression-like state in rats associates with alternations of the diurnal expression of clock genes....... The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes; Per1, Per2 and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at 4 h sampling interval within 24 h. We...

  11. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Krześlak, Anna; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Morawiec-Sztandera, Alina [Department of Head and Neck Surgery, Medical University of Łódź, Paderewskiego 4, 93-509 Łódź (Poland); Aleksandrowicz, Paweł [Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin (Poland); Lewy-Trenda, Iwona [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  12. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    International Nuclear Information System (INIS)

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona

    2014-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels

  13. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro.

    Science.gov (United States)

    Morsczeck, C

    2006-02-01

    Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.

  14. Glucocorticoid Receptor Related Genes: Genotype And Brain Gene Expression Relationships To Suicide And Major Depressive Disorder

    Science.gov (United States)

    Pantazatos, Spiro P.; Huang, Yung-yu; Rosoklija, Gorazd B.; Dwork, Andrew J.; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A.; Mann, J. John

    2016-01-01

    Introduction We tested the relationship between genotype, gene expression and suicidal behavior and MDD in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior and major depressive disorder (MDD); FK506 binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2) and Glucocorticoid Receptor (NR3C1). Materials and Methods Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N=277) and a postmortem sample (N=209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9) (N=59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). Results We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, that was associated with increased risk of suicide attempt (OR=1.58, t=6.03, p=0.014). Six SNPs on this gene, three SNPs on SKA2 and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex. One NR3C1 transcript had lower expression in suicide relative to non-suicide sudden death cases (b=-0.48, SE=0.12, t=-4.02, adjusted p=0.004). Conclusion We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the prefrontal cortex. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. PMID:27030168

  15. GLUCOCORTICOID RECEPTOR-RELATED GENES: GENOTYPE AND BRAIN GENE EXPRESSION RELATIONSHIPS TO SUICIDE AND MAJOR DEPRESSIVE DISORDER.

    Science.gov (United States)

    Yin, Honglei; Galfalvy, Hanga; Pantazatos, Spiro P; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, J John

    2016-06-01

    We tested the relationship between genotype, gene expression and suicidal behavior and major depressive disorder (MDD) in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior, and MDD; FK506-binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2), and Glucocorticoid Receptor (NR3C1). Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N = 277) and a postmortem sample (N = 209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9; N = 59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, which was associated with increased risk of suicide attempt (OR = 1.58, t = 6.03, P = .014). Six SNPs on this gene, three SNPs on SKA2, and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex (pFCTX). One NR3C1 transcript had lower expression in suicide relative to nonsuicide sudden death cases (b = -0.48, SE = 0.12, t = -4.02, adjusted P = .004). We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the pFCTX. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. © 2016 Wiley Periodicals, Inc.

  16. Selection for the compactness of highly expressed genes in Gallus gallus

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2010-05-01

    (n = 1105, and compared the first intron length and the average intron length between highly expressed genes (top 5% expressed genes and weakly expressed genes (bottom 5% expressed genes. We found that the first intron length and the average intron length in highly expressed genes are not different from that in weakly expressed genes. We also made a comparison between ubiquitously expressed genes and narrowly expressed somatic genes with similar expression levels. Our data demonstrated that ubiquitously expressed genes are less compact than narrowly expressed genes with the similar expression levels. Obviously, these observations can not be explained by mutational bias hypotheses either. We also found that the significant trend between genes' compactness and expression level could not be affected by local mutational biases. We argued that the selection of economy model is most likely one to explain the relationship between gene expression and gene characteristics in chicken genome. Conclusion Natural selection appears to favor the compactness of highly expressed genes in chicken genome. This observation can be explained by the selection of economy model. Reviewers This article was reviewed by Dr. Gavin Huttley, Dr. Liran Carmel (nominated by Dr. Eugene V. Koonin and Dr. Araxi Urrutia (nominated by Dr. Laurence D. Hurst.

  17. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  18. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  19. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  20. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  1. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

    Science.gov (United States)

    Mikkelsen, Michael D; Thomashow, Michael F

    2009-10-01

    The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.

  2. Differential expression gene profiling in human lymphocyte after 6 h irradiated

    International Nuclear Information System (INIS)

    Li Jianguo; Qin Xiujun; Zhang Wei; Xu Chaoqi; Li Weibin; Dang Xuhong; Zuo Yahui

    2011-01-01

    Objective: To provide the evidence of health damage for the staff irradiated from the gene level. Methods: The study analyzed the differential transcriptional profile of normal human lymphocyte and human lymphocyte irradiated with 0.1 Gy, 0.2 Gy, 0.5 Gy, 1.0 Gy by whole genome chip after 6 h irradiated. Results: The results showed that there were 1177 differentially expressed genes with 0.1 Gy after 6 h irradiation, and there were 1922 differentially expressed genes with 0.2 Gy after 6 h irradiation, and there were 492 differentially expressed genes with 0.5 Gy after 6 h irradiation, 2615 differentially expressed genes with 1.0 Gy after 6 h irradiation, 114 differentially expressed genes in 4 dose points after 6 h irradiation. RT-PCR results indicated that the relative quantity's result of EGR1, HLA-DMB and TAIAP1 was consistent with gene chip data. Conclusion: The study found many significant different genes in human lymphocyte with different doses after 6 h irradiation, which will provide a basis for the further radiation-different-genes and the mechanism of radiation damage. (authors)

  3. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Science.gov (United States)

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  4. Gene expression analysis of flax seed development

    Science.gov (United States)

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  5. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  6. A three-gene expression signature model for risk stratification of patients with neuroblastoma.

    Science.gov (United States)

    Garcia, Idoia; Mayol, Gemma; Ríos, José; Domenech, Gema; Cheung, Nai-Kong V; Oberthuer, André; Fischer, Matthias; Maris, John M; Brodeur, Garrett M; Hero, Barbara; Rodríguez, Eva; Suñol, Mariona; Galvan, Patricia; de Torres, Carmen; Mora, Jaume; Lavarino, Cinzia

    2012-04-01

    Neuroblastoma is an embryonal tumor with contrasting clinical courses. Despite elaborate stratification strategies, precise clinical risk assessment still remains a challenge. The purpose of this study was to develop a PCR-based predictor model to improve clinical risk assessment of patients with neuroblastoma. The model was developed using real-time PCR gene expression data from 96 samples and tested on separate expression data sets obtained from real-time PCR and microarray studies comprising 362 patients. On the basis of our prior study of differentially expressed genes in favorable and unfavorable neuroblastoma subgroups, we identified three genes, CHD5, PAFAH1B1, and NME1, strongly associated with patient outcome. The expression pattern of these genes was used to develop a PCR-based single-score predictor model. The model discriminated patients into two groups with significantly different clinical outcome [set 1: 5-year overall survival (OS): 0.93 ± 0.03 vs. 0.53 ± 0.06, 5-year event-free survival (EFS): 0.85 ± 0.04 vs. 0.042 ± 0.06, both P model was an independent marker for survival (P model robustly classified patients in the total cohort and in different clinically relevant risk subgroups. We propose for the first time in neuroblastoma, a technically simple PCR-based predictor model that could help refine current risk stratification systems. ©2012 AACR.

  7. Long-term transfer and expression of the human beta-globin gene in a mouse transplant model.

    Science.gov (United States)

    Raftopoulos, H; Ward, M; Leboulch, P; Bank, A

    1997-11-01

    Somatic gene therapy of hemoglobinopathies depends initially on the demonstration of safe, efficient gene transfer and long-term, high-level expression of the transferred human beta-globin gene in animal models. We have used a beta-globin gene/beta-locus control region retroviral vector containing several modifications to optimize gene transfer and expression in a mouse transplant model. In this report we show that transplantation of beta-globin-transduced hematopoietic cells into lethally irradiated mice leads to the continued presence of the gene up to 8 months posttransplantation. The transferred human beta-globin gene is detected in 3 of 5 mice surviving long term (>4 months) transplanted with bone marrow cells transduced with high-titer virus. Southern blotting confirms the presence of the unrearranged 5.1-kb human beta-globin gene-containing provirus in 2 of these mice. In addition, long-term expression of the transferred gene is seen in 2 mice at levels of 5% and 20% that of endogenous murine beta-globin at 6 and 8 months posttransplantation. We further document stem cell transduction by the successful transfer and high-level expression of the human beta-globin gene from mice transduced 9 months earlier into irradiated secondary recipient mice. These results demonstrate high-level, long-term somatic human beta-globin gene transfer into the hematopoietic stem cells of an animal for the first time, and suggest the potential feasibility of a retroviral gene therapy approach to sickle cell disease and the beta thalassemias.

  8. Gene expression inference with deep learning.

    Science.gov (United States)

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Cloning and expression of pab gene of M. tuberculosis isolated from pulmonary TB patient in E.coli DH5α

    Directory of Open Access Journals (Sweden)

    Tri Y. M. Raras

    2011-11-01

    Full Text Available Background: Mycobacterium tuberculosis antigen38 is a potent serodiagnostic agent containing two M. tuberculosisspecific B-cell epitopes. The high price of imported diagnostic agents hinders realization of fast clinical TB diagnosis in developing countries. Therefore, we produced recombinant antigen38 (recAg38M from M. tuberculosis local strain, which might be used to produce economical tuberculosis serodiagnostic kit.Methods: Pab gene that was isolated from pulmonary TB patient in Malang was cloned into a plasmid vector (pGEMTeasy to construct pMB38. The E.coli DH5α clone carrying pMb38 was selected on X-gal medium. The expression of pab was mediated using pPRoExHTc under the control of Trc promoter and E.coli DH5α as host.Results: Alignment of the pab sequence from the white E.coli DH5α clones with that of M. tuberculosis H37Rv showed 98% homology. The recombinant protein in which the signal peptide has been deleted to prevent the protein being secreted into medium was found in the cytoplasm.Conclusion: pab gene of M. tuberculosis isolated from a TB patient could be expressed in heterologous system in E.coliDH5α. (Med J Indones 2011; 20:247-54Keywords: Mycobacterium tuberculosis, Pab gene expression, recombinant antigen38

  10. Trichostatin A effects on gene expression in the protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Singh Upinder

    2007-07-01

    Full Text Available Abstract Background Histone modification regulates chromatin structure and influences gene expression associated with diverse biological functions including cellular differentiation, cancer, maintenance of genome architecture, and pathogen virulence. In Entamoeba, a deep-branching eukaryote, short chain fatty acids (SCFA affect histone acetylation and parasite development. Additionally, a number of active histone modifying enzymes have been identified in the parasite genome. However, the overall extent of gene regulation tied to histone acetylation is not known. Results In order to identify the genome-wide effects of histone acetylation in regulating E. histolytica gene expression, we used whole-genome expression profiling of parasites treated with SCFA and Trichostatin A (TSA. Despite significant changes in histone acetylation patterns, exposure of parasites to SCFA resulted in minimal transcriptional changes (11 out of 9,435 genes transcriptionally regulated. In contrast, exposure to TSA, a more specific inhibitor of histone deacetylases, significantly affected transcription of 163 genes (122 genes upregulated and 41 genes downregulated. Genes modulated by TSA were not regulated by treatment with 5-Azacytidine, an inhibitor of DNA-methyltransferase, indicating that in E. histolytica the crosstalk between DNA methylation and histone modification is not substantial. However, the set of genes regulated by TSA overlapped substantially with genes regulated during parasite development: 73/122 genes upregulated by TSA exposure were upregulated in E. histolytica cysts (p-value = 6 × 10-53 and 15/41 genes downregulated by TSA exposure were downregulated in E. histolytica cysts (p-value = 3 × 10-7. Conclusion This work represents the first genome-wide analysis of histone acetylation and its effects on gene expression in E. histolytica. The data indicate that SCFAs, despite their ability to influence histone acetylation, have minimal effects on gene

  11. G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Directory of Open Access Journals (Sweden)

    Lemay Danielle G

    2012-09-01

    Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The

  12. Dlx homeobox gene family expression in osteoclasts.

    Science.gov (United States)

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  13. Gene expression profiling in hypertension research: a critical perspective

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Wallace, C.; Aitman, T. J.; Kurtz, T. W.

    2003-01-01

    Roč. 41, č. 1 (2003), s. 3-8 ISSN 0194-911X R&D Projects: GA MŠk LN00A079; GA ČR GA301/01/0278; GA MZd NB6468 Grant - others:NIH(US) RO1 HL56028; NIH(US) RO1 HL56608; NIH(US) RO3 TW01236; NIH(US) RO1 HL63707 Institutional research plan: CEZ:AV0Z5011922 Keywords : gene expression * hypertension * genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.630, year: 2003

  14. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  15. Porcine SOX9 Gene Expression Is Influenced by an 18 bp Indel in the 5'-Untranslated Region.

    Directory of Open Access Journals (Sweden)

    Bertram Brenig

    Full Text Available Sex determining region Y-box 9 (SOX9 is an important regulator of sex and skeletal development and is expressed in a variety of embryonal and adult tissues. Loss or gain of function resulting from mutations within the coding region or chromosomal aberrations of the SOX9 locus lead to a plethora of detrimental phenotypes in humans and animals. One of these phenotypes is the so-called male-to-female or female-to-male sex-reversal which has been observed in several mammals including pig, dog, cat, goat, horse, and deer. In 38,XX sex-reversal French Large White pigs, a genome-wide association study suggested SOX9 as the causal gene, although no functional mutations were identified in affected animals. However, besides others an 18 bp indel had been detected in the 5'-untranslated region of the SOX9 gene by comparing affected animals and controls. We have identified the same indel (Δ18 between position +247 bp and +266 bp downstream the transcription start site of the porcine SOX9 gene in four other pig breeds; i.e., German Large White, Laiwu Black, Bamei, and Erhualian. These animals have been genotyped in an attempt to identify candidate genes for porcine inguinal and/or scrotal hernia. Because the 18 bp segment in the wild type 5'-UTR harbours a highly conserved cAMP-response element (CRE half-site, we analysed its role in SOX9 expression in vitro. Competition and immunodepletion electromobility shift assays demonstrate that the CRE half-site is specifically recognized by CREB. Both binding of CREB to the wild type as well as the absence of the CRE half-site in Δ18 reduced expression efficiency in HEK293T, PK-15, and ATDC5 cells significantly. Transfection experiments of wild type and Δ18 SOX9 promoter luciferase constructs show a significant reduction of RNA and protein levels depending on the presence or absence of the 18 bp segment. Hence, the data presented here demonstrate that the 18 bp indel in the porcine SOX9 5'-UTR is of functional

  16. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    Science.gov (United States)

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  17. Tumor-specific expression of shVEGF and suicide gene as a novel strategy for esophageal cancer therapy.

    Science.gov (United States)

    Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng

    2016-06-21

    To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.

  18. HD CAG-correlated gene expression changes support a simple dominant gain of function

    Science.gov (United States)

    Jacobsen, Jessie C.; Gregory, Gillian C.; Woda, Juliana M.; Thompson, Morgan N.; Coser, Kathryn R.; Murthy, Vidya; Kohane, Isaac S.; Gusella, James F.; Seong, Ihn Sik; MacDonald, Marcy E.; Shioda, Toshi; Lee, Jong-Min

    2011-01-01

    Huntington's disease is initiated by the expression of a CAG repeat-encoded polyglutamine region in full-length huntingtin, with dominant effects that vary continuously with CAG size. The mechanism could involve a simple gain of function or a more complex gain of function coupled to a loss of function (e.g. dominant negative-graded loss of function). To distinguish these alternatives, we compared genome-wide gene expression changes correlated with CAG size across an allelic series of heterozygous CAG knock-in mouse embryonic stem (ES) cell lines (HdhQ20/7, HdhQ50/7, HdhQ91/7, HdhQ111/7), to genes differentially expressed between Hdhex4/5/ex4/5 huntingtin null and wild-type (HdhQ7/7) parental ES cells. The set of 73 genes whose expression varied continuously with CAG length had minimal overlap with the 754-member huntingtin-null gene set but the two were not completely unconnected. Rather, the 172 CAG length-correlated pathways and 238 huntingtin-null significant pathways clustered into 13 shared categories at the network level. A closer examination of the energy metabolism and the lipid/sterol/lipoprotein metabolism categories revealed that CAG length-correlated genes and huntingtin-null-altered genes either were different members of the same pathways or were in unique, but interconnected pathways. Thus, varying the polyglutamine size in full-length huntingtin produced gene expression changes that were distinct from, but related to, the effects of lack of huntingtin. These findings support a simple gain-of-function mechanism acting through a property of the full-length huntingtin protein and point to CAG-correlative approaches to discover its effects. Moreover, for therapeutic strategies based on huntingtin suppression, our data highlight processes that may be more sensitive to the disease trigger than to decreased huntingtin levels. PMID:21536587

  19. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  20. A transgenic approach to study argininosuccinate synthetase gene expression

    Science.gov (United States)

    2014-01-01

    Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage

  1. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  2. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  3. Scaling of gene expression data allowing the comparison of different gene expression platforms

    NARCIS (Netherlands)

    van Ruissen, Fred; Schaaf, Gerben J.; Kool, Marcel; Baas, Frank; Ruijter, Jan M.

    2008-01-01

    Serial analysis of gene expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the amalgamation of the data resulting from these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce

  4. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  5. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance

    International Nuclear Information System (INIS)

    Ding, Kai; Wang, Xiao-ming; Fu, Rong; Ruan, Er-bao; Liu, Hui; Shao, Zong-hong

    2012-01-01

    To investigate the expression of the preferentially expressed antigen of melanoma (PRAME) gene in acute leukemia and its clinical significance. The level of expressed PRAME mRNA in bone marrow mononuclear cells from 34 patients with acute leukemia (AL) and in 12 bone marrow samples from healthy volunteers was measured via RT-PCR. Correlation analyses between PRAME gene expression and the clinical characteristics (gender, age, white blood count, immunophenotype of leukemia, percentage of blast cells, and karyotype) of the patients were performed. The PRAME gene was expressed in 38.2% of all 34 patients, in 40.7% of the patients with acute myelogenous leukemia (AML, n=27), and in 28.6% of the patients with acute lymphoblastic leukemia (ALL, n=7), but was not expressed in the healthy volunteers. The difference in the expression levels between AML and ALL patients was statistically significant. The rate of gene expression was 80% in M 3 , 33.3% in M 2 , and 28.6% in M 5 . Gene expression was also found to be correlated with CD15 and CD33 expression and abnormal karyotype, but not with age, gender, white blood count or percentage of blast cells. The PRAME gene is highly expressed in acute leukemia and could be a useful marker to monitor minimal residual disease. This gene is also a candidate target for the immunotherapy of acute leukemia

  6. Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells

    International Nuclear Information System (INIS)

    Amirak, Emre; Zakkar, Mustafa; Evans, Paul C.; Kemp, Paul R.

    2010-01-01

    Vascular smooth muscle cell (VSMC) proliferation remains a major cause of veno-arterial graft failure. We hypothesised that exposure of venous SMCs to arterial pressure would increase KLF5 expression and that of cell cycle genes. Porcine jugular veins were perfused at arterial or venous pressure in the absence of growth factors. The KLF5, c-myc, cyclin-D and cyclin-E expression were elevated within 24 h of perfusion at arterial pressure but not at venous pressure. Arterial pressure also reduced the decline in SM-myosin heavy chain expression. These data suggest a role for KLF5 in initiating venous SMCs proliferation in response to arterial pressure.

  7. APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocarcinoma identified by gene expression profiling

    International Nuclear Information System (INIS)

    Petty, Russell D; Wang, Weiguang; Gilbert, Fiona; Semple, Scot; Collie-Duguid, Elaina SR; Samuel, Leslie M; Murray, Graeme I; MacDonald, Graham; O'Kelly, Terrence; Loudon, Malcolm; Binnie, Norman; Aly, Emad; McKinlay, Aileen

    2009-01-01

    5-Fluorouracil(5FU) and oral analogues, such as capecitabine, remain one of the most useful agents for the treatment of colorectal adenocarcinoma. Low toxicity and convenience of administration facilitate use, however clinical resistance is a major limitation. Investigation has failed to fully explain the molecular mechanisms of resistance and no clinically useful predictive biomarkers for 5FU resistance have been identified. We investigated the molecular mechanisms of clinical 5FU resistance in colorectal adenocarcinoma patients in a prospective biomarker discovery project utilising gene expression profiling. The aim was to identify novel 5FU resistance mechanisms and qualify these as candidate biomarkers and therapeutic targets. Putative treatment specific gene expression changes were identified in a transcriptomics study of rectal adenocarcinomas, biopsied and profiled before and after pre-operative short-course radiotherapy or 5FU based chemo-radiotherapy, using microarrays. Tumour from untreated controls at diagnosis and resection identified treatment-independent gene expression changes. Candidate 5FU chemo-resistant genes were identified by comparison of gene expression data sets from these clinical specimens with gene expression signatures from our previous studies of colorectal cancer cell lines, where parental and daughter lines resistant to 5FU were compared. A colorectal adenocarcinoma tissue microarray (n = 234, resected tumours) was used as an independent set to qualify candidates thus identified. APRIL/TNFSF13 mRNA was significantly upregulated following 5FU based concurrent chemo-radiotherapy and in 5FU resistant colorectal adenocarcinoma cell lines but not in radiotherapy alone treated colorectal adenocarcinomas. Consistent withAPRIL's known function as an autocrine or paracrine secreted molecule, stromal but not tumour cell protein expression by immunohistochemistry was correlated with poor prognosis (p = 0.019) in the independent set

  8. [Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction: the study on gene construction, identification and function].

    Science.gov (United States)

    Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo

    2008-06-18

    To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (Ppathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.

  9. Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system.

    OpenAIRE

    Williamson, C M; Bramley, A J; Lax, A J

    1994-01-01

    The lysostaphin gene of Staphylococcus simulans was cloned into Escherichia coli. The 5' end of the gene was modified to include a eukaryotic start codon, the Kozak expression start site consensus sequence, and an enzyme site to facilitate manipulation of the gene. Transcription of the modified gene in vitro yielded an RNA transcript which, when added to a rabbit reticulocyte cell-free translation system, directed the synthesis of several products. The largest product, migrating at approximat...

  10. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  11. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  12. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  13. Determinants of orofacial clefting I: Effects of 5-Aza-2'-deoxycytidine on cellular processes and gene expression during development of the first branchial arch.

    Science.gov (United States)

    Mukhopadhyay, Partha; Seelan, Ratnam S; Rezzoug, Francine; Warner, Dennis R; Smolenkova, Irina A; Brock, Guy; Pisano, M Michele; Greene, Robert M

    2017-01-01

    In this study, we identify gene targets and cellular events mediating the teratogenic action(s) of 5-Aza-2'-deoxycytidine (AzaD), an inhibitor of DNA methylation, on secondary palate development. Exposure of pregnant mice (on gestation day (GD) 9.5) to AzaD for 12h resulted in the complete penetrance of cleft palate (CP) in fetuses. Analysis of cells of the embryonic first branchial arch (1-BA), in fetuses exposed to AzaD, revealed: 1) significant alteration in expression of genes encoding several morphogenetic factors, cell cycle inhibitors and regulators of apoptosis; 2) a decrease in cell proliferation; and, 3) an increase in apoptosis. Pyrosequencing of selected genes, displaying pronounced differential expression in AzaD-exposed 1-BAs, failed to reveal significant alterations in CpG methylation levels in their putative promoters or gene bodies. CpG methylation analysis suggested that the effects of AzaD on gene expression were likely indirect. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  15. Alternative Oxidase Transcription Factors AOD2 and AOD5 of Neurospora crassa Control the Expression of Genes Involved in Energy Production and Metabolism.

    Science.gov (United States)

    Qi, Zhigang; Smith, Kristina M; Bredeweg, Erin L; Bosnjak, Natasa; Freitag, Michael; Nargang, Frank E

    2017-02-09

    In Neurospora crassa , blocking the function of the standard mitochondrial electron transport chain results in the induction of an alternative oxidase (AOX). AOX transfers electrons directly from ubiquinol to molecular oxygen. AOX serves as a model of retrograde regulation since it is encoded by a nuclear gene that is regulated in response to signals from mitochondria. The N. crassa transcription factors AOD2 and AOD5 are necessary for the expression of the AOX gene. To gain insight into the mechanism by which these factors function, and to determine if they have roles in the expression of additional genes in N. crassa , we constructed strains expressing only tagged versions of the proteins. Cell fractionation experiments showed that both proteins are localized to the nucleus under both AOX inducing and noninducing conditions. Furthermore, chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) analysis revealed that the proteins are bound to the promoter region of the AOX gene under both conditions. ChIP-seq also showed that the transcription factors bind to the upstream regions of a number of genes that are involved in energy production and metabolism. Dependence on AOD2 and AOD5 for the expression of several of these genes was verified by quantitative PCR. The majority of ChIP-seq peaks observed were enriched for both AOD2 and AOD5. However, we also observed occasional sites where one factor appeared to bind preferentially. The most striking of these was a conserved sequence that bound large amounts of AOD2 but little AOD5. This sequence was found within a 310 bp repeat unit that occurs at several locations in the genome. Copyright © 2017 Qi et al.

  16. Comparative study of MSX-2, DLX-5, and DLX-7 gene expression during early human tooth development.

    Science.gov (United States)

    Davideau, J L; Demri, P; Hotton, D; Gu, T T; MacDougall, M; Sharpe, P; Forest, N; Berdal, A

    1999-12-01

    Msx and Dlx family transcription factors are key elements of craniofacial development and act in specific combinations with growth factors to control the position and shape of various skeletal structures in mice. In humans, the mutations of MSX and DLX genes are associated with specific syndromes, such as tooth agenesis, craniosynostosis, and tricho-dento-osseous syndrome. To establish some relationships between those reported human syndromes, previous experimental data in mice, and the expression patterns of MSX and DLX homeogenes in the human dentition, we investigated MSX-2, DLX-5, and DLX-7 expression patterns and compared them in orofacial tissues of 7.5- to 9-wk-old human embryos by using in situ hybridization. Our data showed that MSX-2 was strongly expressed in the progenitor cells of human orofacial skeletal structures, including mandible and maxilla bones, Meckel's cartilage, and tooth germs, as shown for DLX-5. DLX-7 expression was restricted to the vestibular lamina and, later on, to the vestibular part of dental epithelium. The comparison of MSX-2, DLX-5, and DLX-7 expression patterns during the early stages of development of different human tooth types showed the existence of spatially ordered sequences of homeogene expression along the vestibular/lingual axis of dental epithelium. The expression of MSX-2 in enamel knot, as well as the coincident expression of MSX-2, DLX-5, and DLX-7 in a restricted vestibular area of dental epithelium, suggests the existence of various organizing centers involved in the control of human tooth morphogenesis.

  17. A polymorphism in the 5'-flanking region of the serotonin transporter (5-HTT) gene affects fear-related behaviors of adult domestic chickens.

    Science.gov (United States)

    Krause, E Tobias; Kjaer, Joergen B; Lüders, Carolin; van, Loc Phi

    2017-07-14

    The neural serotonin (5-HT)/serotonin transporter (5-HTT) system is involved in the regulation of physiological processes and emotional states. In humans, the short (S) allele in the 5-HTT gene-linked polymorphic region, which decreases 5-HTT expression, has been shown to be associated with behavioral changes including an increased level of anxiety. Also in birds a polymorphism in the 5-HTT gene is described, a deletion (D) has been found to have functional consequences on growth and locomotion. Furthermore, the D-allele leads to an increased 5-HTT expression compared to the wild type (W), a feature which is linked to lower levels of fear in mammalian species. Thus, we aimed here to test whether the polymorphism in the chicken 5-HTT gene also leads to respective alternations of fear-related behaviors. We tested 268 hens of three genotypes (W/W, W/D, D/D) in two behavioral paradigms (open field, light-dark test) to assess fear-related behavior. Both tests revealed that hens possessing the D-allele showed lower levels of fear than those having the W-allele. These similar outcomes in fear-related behaviors in an avian and a mammalian species are associated with an increased 5-HTT expression. In the human 5-HTT gene, the long (L) allele is linked to such increased expression, whereas in chickens it is the D-allele. Thus, increased 5-HTT expression causing decreased fear may be a general mechanism in vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Using gene expression noise to understand gene regulation

    NARCIS (Netherlands)

    Munsky, B.; Neuert, G.; van Oudenaarden, A.

    2012-01-01

    Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a

  19. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes.

    Directory of Open Access Journals (Sweden)

    Simone de Jong

    Full Text Available Despite large-scale genome-wide association studies (GWAS, the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1, is located in, and regulated by the major histocompatibility (MHC complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.

  20. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    , designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences

  1. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    Science.gov (United States)

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  2. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  3. Two potential hookworm DAF-16 target genes, SNR-3 and LPP-1: gene structure, expression profile, and implications of a cis-regulatory element in the regulation of gene expression.

    Science.gov (United States)

    Gao, Xin; Goggin, Kevin; Dowling, Camille; Qian, Jason; Hawdon, John M

    2015-01-08

    Hookworms infect nearly 700 million people, causing anemia and developmental stunting in heavy infections. Little is known about the genomic structure or gene regulation in hookworms, although recent publication of draft genome assemblies has allowed the first investigations of these topics to be undertaken. The transcription factor DAF-16 mediates multiple developmental pathways in the free living nematode Caenorhabditis elegans, and is involved in the recovery from the developmentally arrested L3 in hookworms. Identification of downstream targets of DAF-16 will provide a better understanding of the molecular mechanism of hookworm infection. Genomic Fragment 2.23 containing a DAF-16 binding element (DBE) was used to identify overlapping complementary expressed sequence tags (ESTs). These sequences were used to search a draft assembly of the Ancylostoma caninum genome, and identified two neighboring genes, snr-3 and lpp-1, in a tail-to-tail orientation. Expression patterns of both genes during parasitic development were determined by qRT-PCR. DAF-16 dependent cis-regulatory activity of fragment 2.23 was investigated using an in vitro reporter system. The snr-3 gene spans approximately 5.6 kb in the genome and contains 3 exons and 2 introns, and contains the DBE in its 3' untranslated region. Downstream from snr-3 in a tail-to-tail arrangement is the gene lpp-1. The lpp-1 gene spans more than 6 kb and contains 10 exons and 9 introns. The A. caninum genome contains 2 apparent splice variants, but there are 7 splice variants in the A. ceylanicum genome. While the gene order is similar, the gene structures of the hookworm genes differ from their C. elegans orthologs. Both genes show peak expression in the late L4 stage. Using a cell culture based expression system, fragment 2.23 was found to have both DAF-16-dependent promoter and enhancer activity that required an intact DBE. Two putative DAF-16 targets were identified by genome wide screening for DAF-16 binding

  4. YB-1 facilitates basal and 5-fluorouracil-inducible expression of the human major vault protein (MVP) gene.

    Science.gov (United States)

    Stein, Ulrike; Bergmann, Stephan; Scheffer, George L; Scheper, Rik J; Royer, Hans-Dieter; Schlag, Peter M; Walther, Wolfgang

    2005-05-19

    Vaults have been suggested to play a direct role in multidrug resistance (MDR) to anticancer drugs. The human major vault protein (MVP) also known as lung resistance-related protein (LRP) represents the predominant component of vaults that may be involved in the defense against xenobiotics. Here, we demonstrate that besides MDR-related cytostatics, also the non-MDR-related drug 5-fluorouracil (5-FU) was able to induce MVP mRNA and protein expression. Treatment with 5-FU amplified the binding activity and interaction of the transcription factor Y-box binding protein-1 (YB-1) with the Y-box of the human MVP gene promoter in a time-dependent manner. 5-FU also induced reporter expressions driven by a panel of newly generated MVP promoter deletion mutants. Interestingly, stably YB-1 overexpressing cell clones showed enhanced binding of YB-1 to the Y-box motif, associated with enhanced basal as well as 5-FU-inducible MVP promoter-driven reporter expressions. Moreover, transduction of YB-1 cDNA led to increased expression of endogenous MVP protein. Under physiological conditions, we observed a strong coexpression of MVP and YB-1 in human colon carcinoma specimen. In summary, our data demonstrate a direct involvement of YB-1 in controlling basal and 5-FU-induced MVP promoter activity. Therefore, YB-1 is directly linked to MVP-mediated drug resistance.

  5. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  6. A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors

    Science.gov (United States)

    2017-02-01

    affecting the function of Fanconi Anemia (FA) genes ( FANCA /B/C/D2/E/F/G/I/J/L/M, PALB2) or DNA damage response genes involved in HR 5 (ATM, ATR...Award Number: W81XWH-10-1-0585 TITLE: A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors...To) 15 July 2010 – 2 Nov.2016 4. TITLE AND SUBTITLE A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP

  7. Expression of the Fanconi anemia group A gene (Fanca) during mouse embryogenesis.

    Science.gov (United States)

    Abu-Issa, R; Eichele, G; Youssoufian, H

    1999-07-15

    About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fanca expression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.

  8. Impact of elevated plasma serotonin on global gene expression of murine megakaryocytes.

    Directory of Open Access Journals (Sweden)

    Charles P Mercado

    Full Text Available Serotonin (5-HT is a biogenic amine that also acts as a mitogen and a developmental signal early in rodent embryogenesis. Genetic and pharmacological disruption of 5-HT signaling causes various diseases and disorders via mediating central nervous system, cardiovascular system, and serious abnormalities on a growing embryo. Today, neither the effective modulators on 5-HT signaling pathways nor the genes affected by 5-HT signal are well known yet.In an attempt to identify the genes altered by 5-HT signaling pathways, we analyzed the global gene expression via the Illumina array platform using the mouse WG-6 v2.0 Expression BeadChip containing 45,281 probe sets representing 30,854 genes in megakaryocytes isolated from mice infused with 5-HT or saline. We identified 723 differentially expressed genes of which 706 were induced and 17 were repressed by elevated plasma 5-HT.Hierarchical gene clustering analysis was utilized to represent relations between groups and clusters. Using gene ontology mining tools and canonical pathway analyses, we identified multiple biological pathways that are regulated by 5-HT: (i cytoskeletal remodeling, (ii G-protein signaling, (iii vesicular transport, and (iv apoptosis and survival. Our data encompass the first extensive genome-wide based profiling in the progenitors of platelets in response to 5-HT elevation in vivo.

  9. The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-2'-deoxycytidine.

    Science.gov (United States)

    Alleman, Wade G; Tabios, Ray L; Chandramouli, Gadisetti V R; Aprelikova, Olga N; Torres-Cabala, Carlos; Mendoza, Arnulfo; Rogers, Craig; Rodgers, Craig; Sopko, Nikolai A; Linehan, W Marston; Vasselli, James R

    2004-10-15

    Clear cell renal carcinoma (ccRCC) is strongly associated with loss of the von Hippel-Lindau (VHL) tumor suppressor gene. The VHL gene is functionally lost through hypermethylation in up to 19% of sporadic ccRCC cases. We theorized that re-expressing VHL silenced by methylation in ccRCC cells, using a hypo-methylating agent, may be an approach to treatment in patients with this type of cancer. We test the ability of two hypo-methylating agents to re-express VHL in cell culture and in mice bearing human ccRCC and evaluate the effects of re-expressed VHL in these models. Real-time reverse transcription-PCR was used to evaluate the ability of zebularine and 5-aza-2'-deoxycytidine (5-aza-dCyd) to re-express VHL in four ccRCC cell lines with documented VHL gene silencing through hypermethylation. We evaluated if the VHL re-expressed after hypo-methylating agent treatment could recreate similar phenotypic changes in ccRCC cells observed when the VHL gene is re-expressed via transfection in cell culture and in a xenograft mouse model. Finally we evaluate global gene expression changes occurring in our cells, using microarray analysis. 5-Aza-dCyd was able to re-express VHL in our cell lines both in culture and in xenografted murine tumors. Well described phenotypic changes of VHL expression including decreased invasiveness into Matrigel, and decreased vascular endothelial growth factor and glucose transporter-1 expression were observed in the treated lines. VHL methylated ccRCC xenografted tumors were significantly reduced in size in mice treated with 5-aza-dCyd. Mice bearing nonmethylated but VHL-mutated tumors showed no tumor shrinkage with 5-aza-dCyd treatment. Hypo-methylating agents may be useful in the treatment of patients having ccRCC tumors consisting of cells with methylated VHL.

  10. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  11. Gene expression in the lignin biosynthesis pathway during soybean seed development.

    Science.gov (United States)

    Baldoni, A; Von Pinho, E V R; Fernandes, J S; Abreu, V M; Carvalho, M L M

    2013-02-28

    The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.

  12. Analysis of meniscal degeneration and meniscal gene expression

    Directory of Open Access Journals (Sweden)

    Norton James H

    2010-01-01

    Full Text Available Abstract Background Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1 to determine the prevalence of meniscal degeneration in OA patients, and 2 to examine gene expression in OA meniscal cells compared to normal meniscal cells. Methods Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens, and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR. Results The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P HLA-DPA1, integrin, beta 2 (ITGB2, ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1, ankylosis, progressive homolog (ANKH and fibroblast growth factor 7 (FGF7, were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5 and prostaglandin E synthase (PTGES, were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific. Conclusion Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel

  13. Cloning and characterization of the 5'-flanking region of the Ehox gene

    International Nuclear Information System (INIS)

    Lee, Woon Kyu; Kim, Yong-Man; Malik, Nasir; Ma Chang; Westphal, Heiner

    2006-01-01

    The paired-like homeobox-containing gene Ehox plays a role in embryonic stem cell differentiation and is highly expressed in the developing placenta and thymus. To understand the mechanisms of regulation of Ehox gene expression, the 5'-flanking region of the Ehox gene was isolated from a mouse BAC library. 5'-RACE analysis revealed a single transcriptional start site 130 nucleotides upstream of the translation initiation codon. Transient transfection with a luciferase reporter gene under the control of serially deleted 5'-flanking sequences revealed that the nt -84 to -68 region contained a positive cis-acting element for efficient expression of the Ehox gene. Mutational analysis of this region and oligonucleotide competition in the electrophoretic mobility shift assay revealed the presence of a CCAAT box, which is a target for transcription nuclear factor Y (NFY). NFY is essential for positive gene regulation. No tissue-specific enhancer was identified in the 1.9-kb 5'-flanking region of the Ehox gene. Ehox is expressed during the early stages of embryo development, specifically in Brain at 9.5 dpc, as well as during the late stages of embryo development. These results suggest that NFY is an essential regulatory factor for Ehox transcriptional activity, which is important for the post-implantation stage of the developing embryo

  14. Gene expression in peripheral immune cells following cardioembolic stroke is sexually dimorphic.

    Directory of Open Access Journals (Sweden)

    Boryana Stamova

    Full Text Available Epidemiological studies suggest that sex has a role in the pathogenesis of cardioembolic stroke. Since stroke is a vascular disease, identifying sexually dimorphic gene expression changes in blood leukocytes can inform on sex-specific risk factors, response and outcome biology. We aimed to examine the sexually dimorphic immune response following cardioembolic stroke by studying the differential gene expression in peripheral white blood cells.Blood samples from patients with cardioembolic stroke were obtained at ≤3 hours (prior to treatment, 5 hours and 24 hours (after treatment after stroke onset (n = 23; 69 samples and compared with vascular risk factor controls without symptomatic vascular diseases (n = 23, 23 samples (ANCOVA, false discovery rate p≤0.05, |fold change| ≥1.2. mRNA levels were measured on whole-genome Affymetrix microarrays. There were more up-regulated than down-regulated genes in both sexes, and females had more differentially expressed genes than males following cardioembolic stroke. Female gene expression was associated with cell death and survival, cell-cell signaling and inflammation. Male gene expression was associated with cellular assembly, organization and compromise. Immune response pathways were over represented at ≤3, 5 and 24 h after stroke in female subjects but only at 24 h in males. Neutrophil-specific genes were differentially expressed at 3, 5 and 24 h in females but only at 5 h and 24 h in males.There are sexually dimorphic immune cell expression profiles following cardioembolic stroke. Future studies are needed to confirm the findings using qRT-PCR in an independent cohort, to determine how they relate to risk and outcome, and to compare to other causes of ischemic stroke.

  15. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    Science.gov (United States)

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  16. Application of four dyes in gene expression analyses by microarrays

    Directory of Open Access Journals (Sweden)

    van Schooten Frederik J

    2005-07-01

    Full Text Available Abstract Background DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. Results Following tests for cross-talk of fluorescence signals, Alexa 488, Alexa 594, Cyanine 3 and Cyanine 5 were selected for hybridizations. For self-hybridizations, a single RNA sample was labelled with all dyes and hybridized on commercial cDNA arrays or on in-house spotted oligonucleotide arrays. Correlation coefficients for all combinations of dyes were above 0.9 on the cDNA array. On the oligonucleotide array they were above 0.8, except combinations with Alexa 488, which were approximately 0.5. Standard deviation of expression differences for replicate spots were similar on the cDNA array for all dye combinations, but on the oligonucleotide array combinations with Alexa 488 showed a higher variation. Conclusion In conclusion, the four dyes can be used simultaneously for gene expression experiments on the tested cDNA array, but only three dyes can be used on the tested oligonucleotide array. This was confirmed by hybridizations of control with test samples, as all combinations returned similar numbers of differentially expressed genes with comparable effects on gene expression.

  17. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes

    DEFF Research Database (Denmark)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood...... of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co......, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes...

  18. Life cycle analysis of kidney gene expression in male F344 rats.

    Directory of Open Access Journals (Sweden)

    Joshua C Kwekel

    Full Text Available Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs. Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

  19. TiGER: a database for tissue-specific gene expression and regulation.

    Science.gov (United States)

    Liu, Xiong; Yu, Xueping; Zack, Donald J; Zhu, Heng; Qian, Jiang

    2008-06-09

    Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation). The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM) detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  20. TiGER: A database for tissue-specific gene expression and regulation

    Directory of Open Access Journals (Sweden)

    Zack Donald J

    2008-06-01

    Full Text Available Abstract Background Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. Results The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation. The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. Conclusion We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  1. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Chambers David

    2011-04-01

    Full Text Available Abstract Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current and less than 0.5% (current + DNA, respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.

  2. Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation.

    Science.gov (United States)

    Xu, Yan; Zou, Peng; Liu, Yao; Deng, Fengjiao

    2010-06-01

    Genes specifically expressed in the notochord may be crucial for proper notochord development. Using the digital differential display program offered by the National Center for Biotechnology Information, we identified a novel EST sequence from a zebrafish ovary library (No. XM_701450). The full-length cDNA of this transcript was cloned by performing 3' and 5'-RACE and was further confirmed by PCR and sequencing. The resulting 614 bp gene was found to encode a novel 94 amino acid protein that did not share significant homology with any other known protein. Characterization of the genomic sequence revealed that the gene spanned 4.9 kb and was composed of four exons and three introns. RT-PCR gene expression analysis revealed that our gene of interest was expressed in ovary, kidney, brain, mature oocytes and during the early stages of embryogenesis. During embryonic development, znfr mRNA was found to be expressed in the embryonic shield, chordamesoderm and the vacuolated notochord cells by in situ hybridization. Based on this information, we hypothesize that this novel gene is an important maternal factor required for zebrafish notochord formation during early embryonic development. We have thus named this gene znfr (zebrafish notochord formation related).

  3. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    Science.gov (United States)

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  4. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  5. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can......The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...

  6. Assessing a new gene expression analysis technique for radiation biodosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Grainne; Kabacik, Sylwia; Finnon, Paul; Paillier, Francois; Bouffler, Simon [Cancer Genetics and Cytogenetics, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom); Badie, Christophe, E-mail: christophe.badie@hpa.org.uk [Cancer Genetics and Cytogenetics, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom)

    2011-09-15

    The response to any radiation accident or incident involving actual or potential ionising radiation exposure requires accurate and rapid assessment of the doses received by individuals. The techniques available today for biodosimetry purposes are not fully adapted to rapid high-throughput measurements of exposures in large numbers of individuals. A recently emerging technique is based on gene expression analysis, as there are a number of genes which are radiation responsive in a dose-dependent manner. The present work aimed to assess a new technique which allows the detection of the level of expression of up to 800 genes without need of enzymatic reactions. In order to do so, human peripheral blood was exposed ex vivo to a range of x-ray doses from 5 mGy to 4 Gy of x-rays and the transcriptional expression of five radiation-responsive genes PHPT1, PUMA, CCNG1, DDB2 and MDM2 was studied by both the nCounter Digital Analyzer and Multiplex Quantitative Real-Time Polymerase Chain Reaction (MQRT-PCR) as the benchmark technology. Results from both techniques showed good correlation for all genes with R{sup 2} values ranging between 0.8160 and 0.9754. The reproducibility of the nCounter Digital Analyzer was also assessed in independent biological replicates and proved to be good. Although the slopes of the correlation of results obtained by the techniques suggest that MQRT-PCR is more sensitive than the nCounter Digital Analyzer, the nCounter Digital Analyzer provides sensitive and reliable data on modifications in gene expression in human blood exposed to radiation without enzymatic amplification of RNA prior to analysis.

  7. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  8. Mucosal CCR1 gene expression as a marker of molecular activity in Crohn's disease: preliminary data.

    Science.gov (United States)

    Dobre, Maria; Mănuc, Teodora Ecaterina; Milanesi, Elena; Pleşea, Iancu Emil; Ţieranu, Eugen Nicolae; Popa, Caterina; Mănuc, Mircea; Preda, Carmen Monica; Ţieranu, Ioana; Diculescu, Mihai Mircea; Ionescu, Elena Mirela; Becheanu, Gabriel

    2017-01-01

    A series of mechanisms of immune response, inflammation and apoptosis have been demonstrated to contribute to the appearance and evolution of Crohn's disease (CD) through the overexpression of several cytokines and chemokines in a susceptible host. The aim of this study was to identify the differences in gene expression profiles analyzing a panel of candidate genes in the mucosa from patients with active CD (CD-A), patients in remission (CD-R), and normal controls. Nine individuals were enrolled in the study: six CD patients (three with active lesions, three with mucosal healing) and three controls without inflammatory bowel disease (IBD) seen on endoscopy. All the individuals underwent mucosal biopsy during colonoscopy. Gene expression levels of 84 genes previously associated with CD were evaluated by polymerase chain reaction (PCR) array. Ten genes out of 84 were found significantly differentially expressed in CD-A (CCL11, CCL25, DEFA5, GCG, IL17A, LCN2, REG1A, STAT3, MUC1, CCR1) and eight genes in CD-R (CASP1, IL23A, STAT1, STAT3, TNF, CCR1, CCL5, and HSP90B1) when compared to controls. A quantitative gene expression analysis revealed that CCR1 gene was more expressed in CD-A than in CD-R. Our data suggest that CCR1 gene may be a putative marker of molecular activity of Crohn's disease. Following these preliminary data, a confirmation in larger cohort studies could represent a useful method in order to identify new therapeutic targets.

  9. Gene expression pattern at different time points following ALA-PDT

    International Nuclear Information System (INIS)

    Verwanger, T.; Sanovic, R.; Ruhdorfer, S.; Aberger, F.; Frischauf, A.; Krammer, B.

    2003-01-01

    Full text: The photo sensitizer protoporphyrin IX, endogenously accumulated from the precursor aminolevulinic acid (ALA), is a successful agent in photodynamic tumor therapy. In spite of encouraging clinical results, the basic mechanisms leading to cell death are not fully understood. We therefore set out to analyze the alteration of the gene expression pattern in the squamous cell carcinoma cell line A-431 at different time points after photodynamic treatment with endogenous protoporphyrin IX by cDNA-array technique. Cells were incubated for 16 hours with 100 μg/ml ALA and irradiated with a fluence of 3.5 J/cm 2 resulting in 50 % survival until 8 hours post treatment. RNA was isolated at 1.5, 3, 5 and 8 hours post treatment as well as of 3 controls (untreated, light only and dark), radioactively labelled by reverse transcription with 33P-dCTP and hybridized onto macroarray PCR filters containing PCR products of 2135 genes, which were selected for relevance in tumors, stress response and signal transduction. Verification of observed expression changes was carried out by real time PCR. We found a strong induction of expression of immediate early genes like c-fos as well as decreased expression of genes involved in proliferation like myc and the proliferating cell nuclear antigen (PCNA). (author)

  10. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  11. Phytochrome control of gene expression in radish seedlings. 111. Evidence for a rapid control of the ribulose 1. 5 biphosphate carboxylase small subunit gene expression by red light

    Energy Technology Data Exchange (ETDEWEB)

    Fourcroy, P

    1986-01-01

    The effect of red and far-red light on the level of the mRNA encoding the small subunit (SSU) of ribulose, 1.5 bisphosphate carboxylase (RuBisCO; EC 4.1.1.39) from radish cotyledons was investigated. Northern blot analysis of RNA with a cDNA probe showed that both long (12-36h) far-red irradiation and short (1-5 min) red irradiation brings about an increase in SSU mRNA concentraton which was prevented by a subsequent far-red light exposure. Far-red light was effective in reversing the red light effect provided that it was given soon after (<10 min) the red light pulse. The red light mediated increase in SSU mRNA level did not occur in presence of ..cap alpha..-amanitin. Our results suggest that phytochrome control of SSU gene expression is exerted at the transcriptional level. 34 refs.

  12. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  13. The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis.

    Science.gov (United States)

    Phillips, J L; Hayward, S W; Wang, Y; Vasselli, J; Pavlovich, C; Padilla-Nash, H; Pezullo, J R; Ghadimi, B M; Grossfeld, G D; Rivera, A; Linehan, W M; Cunha, G R; Ried, T

    2001-11-15

    Here we report the genetic characterization of immortalized prostate epithelial cells before and after conversion to tumorigenicity using molecular cytogenetics and microarray technology. We were particularly interested to analyze the consequences of acquired chromosomal aneuploidies with respect to modifications of gene expression profiles. Compared with nontumorigenic but immortalized prostate epithelium, prostate tumor cell lines showed high levels of chromosomal rearrangements that led to gains of 1p, 5, 11q, 12p, 16q, and 20q and losses of 1pter, 11p, 17, 20p, 21, 22, and Y. Of 5700 unique targets on a 6.5K cDNA microarray, approximately 3% were subject to modification in expression levels; these included GRO-1, -2, IAP-1,- 2, MMP-9, and cyclin D1, which showed increased expression, and TRAIL, BRCA1, and CTNNA, which showed decreased expression. Thirty % of expression changes occurred in regions the genomic copy number of which remained balanced. Of the remainder, 42% of down-regulated and 51% of up-regulated genes mapped to regions present in decreased or increased genomic copy numbers, respectively. A relative gain or loss of a chromosome or chromosomal arm usually resulted in a statistically significant increase or decrease, respectively, in the average expression level of all of the genes on the chromosome. However, of these genes, very few (e.g., 5 of 101 genes on chromosome 11q), and in some instances only two genes (MMP-9 and PROCR on chromosome 20q), were overexpressed by > or =1.7-fold when scored individually. Cluster analysis by gene function suggests that prostate tumorigenesis in these cell line models involves alterations in gene expression that may favor invasion, prevent apoptosis, and promote growth.

  14. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression.

    Science.gov (United States)

    Combes, Didier; Fedon, Yann; Toutant, Jean-Pierre; Arpagaus, Martine

    2003-08-01

    ace-1 and ace-2 genes encoding acetylcholinesterase in the nematode Caenorhabditis elegans present 35% identity in coding sequences but no homology in noncoding regions (introns, 5'- and 3'-untranslated regions). A 5'-region of ace-2 was defined by rescue of ace-1;ace-2 mutants. When green fluorescent protein (GFP) expression was driven by this regulatory region, the resulting pattern was distinct from that of ace-1. This latter gene is expressed in all body-wall and vulval muscle cells (Culetto et al., 1999), whereas ace-2 is expressed almost exclusively in neurons. ace-3 and ace-4 genes are located in close proximity on chromosome II (Combes et al., 2000). These two genes were first transcribed in vivo as a bicistronic messenger and thus constitute an ace-3;ace-4 operon. However, there was a very low level of monocistronic mRNA of ace-4 (the upstream gene) in vivo, and no ACE-4 enzymatic activity was ever detected. GFP expression driven by a 5' upstream region of the ace-3;ace-4 operon was detected in several muscle cells of the pharynx (pm3, pm4, pm5 and pm7) and in the two canal associated neurons (CAN cells). A dorsal row of body-wall muscle cells was intensively labelled in larval stages but no longer detected in adults. The distinct tissue-specific expression of ace-1, ace-2 and ace-3 (coexpressed only in pm5 cells) indicates that ace genes are not redundant.

  15. Expression of minichromosome maintenance genes in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhong HB

    2017-11-01

    Full Text Available Hongbin Zhong,1,* Bin Chen,1,* Henrique Neves,2 Jinchun Xing,1 Youxin Ye,1 Ying Lin,1 Guohong Zhuang,3 Shu-Dong Zhang,4 Jiyi Huang,1,5 Hang Fai Kwok2 1Xiang’an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People’s Republic of China; 2Faculty of Health Sciences, University of Macau, Taipa, Macau SAR; 3Medical College of Xiamen University, Xiamen, Fujian, People’s Republic of China; 4Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK; 5The First Clinical School of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China *These authors contributed equally to this work Abstract: Minichromosome maintenance (MCM proteins play an essential role in DNA replication. They have been shown to be overexpressed in various types of cancer. However, the role of this family in renal cell carcinoma (RCC is widely unknown. In this study, we have identified a number of RCC datasets in the Gene Expression Omnibus database and also investigated the correlation between the expression levels of MCM genes and clinicopathological parameters. We found that the expression levels of MCM genes are positively correlated with one another. Expression levels of MCM2, MCM5, MCM6, and MCM7, but not of MCM3 and MCM4, were higher in RCC compared to paired adjacent normal tissue. Only the expression level of MCM4, but not of other MCMs, was positively correlated with tumor grade. In addition, a high-level expression of MCM2 in either primary tumor or metastases of RCC predicted a shorter disease-free survival time, while a high-level expression of MCM4 or MCM6 in primary tumor was also associated with poorer disease-free survival. Interestingly, we also demonstrated that patients with their primary RCC overexpressing 2 or more MCM genes had a shorter disease-free survival time, while those with RCC metastases overexpressing 3 or more MCM genes had a shorter

  16. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  17. MTA3 regulates CGB5 and Snail genes in trophoblast

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Miyazaki, Jun [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Nishizawa, Haruki [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Kurahashi, Hiroki [Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States); Wang, Kai, E-mail: Kai.Wang@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States)

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  18. MTA3 regulates CGB5 and Snail genes in trophoblast

    International Nuclear Information System (INIS)

    Chen, Ying; Miyazaki, Jun; Nishizawa, Haruki; Kurahashi, Hiroki; Leach, Richard; Wang, Kai

    2013-01-01

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  19. Do GnRH analogues directly affect human endometrial epithelial cell gene expression?

    KAUST Repository

    Zhang, Xiaomei

    2010-03-04

    We examined whether Gonadotrophin-releasing hormone (GnRH) analogues [leuprolide acetate (LA) and ganirelix acetate (GA)] modulate gene expression in Ishikawa cells used as surrogate for human endometrial epithelial cells in vitro. The specific aims were: (i) to study the modulatory effect of GnRH analogues by RT-PCR [in the absence and presence of E2 and P4, and cyclic adenosine monophos-phate (cAMP)] on mRNA expression of genes modulated during the window of implantation in GnRH analogues/rFSH-treated assisted reproductive technology cycles including OPTINEURIN (OPTN), CHROMATIN MODIFYING PROTEIN (CHMP1A), PROSAPOSIN (PSAP), IGFBP-5 and SORTING NEXIN 7 (SNX7), and (ii) to analyze the 5\\'-flanking regions of such genes for the presence of putative steroid-response elements [estrogen-response elements (EREs) and P4-response element (PREs)]. Ishikawa cells were cytokeratin+/vimentin2 and expressed ERa,ERb, PR and GnRH-R proteins. At 6 and 24 h, neither LA nor GA alone had an effect on gene expression. GnRH analogues alone or following E2 and/or P4 co-incubation for 24 h also had no effect on gene expression, but P4 significantly increased expression of CHMP1A.E2 + P4 treatment for 4 days, alone or followed by GA, had no effect, but E2 + P4 treatment followed by LA significantly decreased IGFBP-5 expression. The addition of 8-Br cAMP did not modify gene expression, with the exception of IGFBP-5 that was significantly increased. The GnRH analogues did not modify intracellular cAMP levels. We identified conserved EREs for OPN, CHMP1A, SNX7 and PSAP and PREs for SNX7. We conclude that GnRH analogues appear not to have major direct effects on gene expression of human endo-metrial epithelial cells in vitro. © The Author 2010. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.

  20. Low expression of a few genes indicates good prognosis in estrogen receptor positive breast cancer

    Directory of Open Access Journals (Sweden)

    Buechler Steven

    2009-07-01

    Full Text Available Abstract Background Many breast cancer patients remain free of distant metastasis even without adjuvant chemotherapy. While standard histopathological tests fail to identify these good prognosis patients with adequate precision, analyses of gene expression patterns in primary tumors have resulted in more successful diagnostic tests. These tests use continuous measurements of the mRNA concentrations of numerous genes to determine a risk of metastasis in lymph node negative breast cancer patients with other clinical traits. Methods A survival model is constructed from genes that are both connected with relapse and have expression patterns that define distinct subtypes, suggestive of different cellular states. This in silico study uses publicly available microarray databases generated with Affymetrix GeneChip technology. The genes in our model, as represented by array probes, have distinctive distributions in a patient cohort, consisting of a large normal component of low expression values; and a long right tail of high expression values. The cutoff between low and high expression of a probe is determined from the distribution using the theory of mixture models. The good prognosis group in our model consists of the samples in the low expression component of multiple genes. Results Here, we define a novel test for risk of metastasis in estrogen receptor positive (ER+ breast cancer patients, using four probes that determine distinct subtypes. The good prognosis group in this test, denoted AP4-, consists of the samples with low expression of each of the four probes. Two probes target MKI67, antigen identified by monoclonal antibody Ki-67, one targets CDC6, cell division cycle 6 homolog (S. cerevisiae, and a fourth targets SPAG5, sperm associated antigen 5. The long-term metastasis-free survival probability for samples in AP4- is sufficiently high to render chemotherapy of questionable benefit. Conclusion A breast cancer subtype defined by low

  1. A comparative study of three different gene expression analysis methods.

    Science.gov (United States)

    Choe, Jae Young; Han, Hyung Soo; Lee, Seon Duk; Lee, Hanna; Lee, Dong Eun; Ahn, Jae Yun; Ryoo, Hyun Wook; Seo, Kang Suk; Kim, Jong Kun

    2017-12-04

    TNF-α regulates immune cells and acts as an endogenous pyrogen. Reverse transcription polymerase chain reaction (RT-PCR) is one of the most commonly used methods for gene expression analysis. Among the alternatives to PCR, loop-mediated isothermal amplification (LAMP) shows good potential in terms of specificity and sensitivity. However, few studies have compared RT-PCR and LAMP for human gene expression analysis. Therefore, in the present study, we compared one-step RT-PCR, two-step RT-LAMP and one-step RT-LAMP for human gene expression analysis. We compared three gene expression analysis methods using the human TNF-α gene as a biomarker from peripheral blood cells. Total RNA from the three selected febrile patients were subjected to the three different methods of gene expression analysis. In the comparison of three gene expression analysis methods, the detection limit of both one-step RT-PCR and one-step RT-LAMP were the same, while that of two-step RT-LAMP was inferior. One-step RT-LAMP takes less time, and the experimental result is easy to determine. One-step RT-LAMP is a potentially useful and complementary tool that is fast and reasonably sensitive. In addition, one-step RT-LAMP could be useful in environments lacking specialized equipment or expertise.

  2. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    Science.gov (United States)

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  3. Serial Expression Analysis: a web tool for the analysis of serial gene expression data

    Science.gov (United States)

    Nueda, Maria José; Carbonell, José; Medina, Ignacio; Dopazo, Joaquín; Conesa, Ana

    2010-01-01

    Serial transcriptomics experiments investigate the dynamics of gene expression changes associated with a quantitative variable such as time or dosage. The statistical analysis of these data implies the study of global and gene-specific expression trends, the identification of significant serial changes, the comparison of expression profiles and the assessment of transcriptional changes in terms of cellular processes. We have created the SEA (Serial Expression Analysis) suite to provide a complete web-based resource for the analysis of serial transcriptomics data. SEA offers five different algorithms based on univariate, multivariate and functional profiling strategies framed within a user-friendly interface and a project-oriented architecture to facilitate the analysis of serial gene expression data sets from different perspectives. SEA is available at sea.bioinfo.cipf.es. PMID:20525784

  4. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  6. Inferring gene expression dynamics via functional regression analysis

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2008-01-01

    Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

  7. Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our method is based only on two, simple, biologically motivated assumptions--that a gene is a good disease-gene candidate if it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence and shared pathophysiology between different disorders.

  8. Effect of early addition of bone morphogenetic protein 5 (BMP5) to embryo culture medium on in vitro development and expression of developmentally important genes in bovine preimplantation embryos.

    Science.gov (United States)

    García, Elina V; Miceli, Dora C; Rizo, Gabriela; Valdecantos, Pablo A; Barrera, Antonio D

    2015-09-01

    Previous studies have reported that bone morphogenetic protein 5 (BMP5) is differentially expressed in the isthmus of bovine oviducts and it is present in the oviductal fluid. However, the specific action of this factor is unknown. To evaluate whether BMP5 exerts some effect during early bovine embryo development, gene expression of BMP5, BMP receptors, and the effect of exogenous BMP5 on in vitro development and expression of developmentally important genes were assessed. In experiment 1, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from in vitro fertilization, were collected for analysis of BMP5 and BMP receptors (BMPR1A, BMPR1B, and BMPR2) messenger RNA (mRNA) expression. On the basis of previous results, in experiment 2, presumptive zygotes were cultured for the first 48 hours after insemination in CR1aa medium assaying three different treatments: (1) control (CR1aa); (2) vehicle control (CR1aa + 0.04 mM HCl), and (3) BMP5 treatment (CR1aa + 100 ng/mL of BMP5). The cleavage rate was evaluated 48 hours after insemination (Day 2), and then, embryos were transferred to CR1aa + 10% fetal bovine serum. The blastocyst rate was determined on Day 7. In experiment 3, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from control and BMP5-treated groups, were collected for analysis of ID2 (BMP target gene), OCT4, NANOG, and SOX2 (pluripotency genes) mRNA expression. BMP5 transcripts were not detectable in any of the embryonic stages examined, whereas the relative mRNA abundance of the three BMP receptors analyzed was greater in early embryo development stages before maternal-embryonic transition, raising the possibility of a direct effect of exogenous BMPs on the embryo during the first developmental period. Although early addition of 100 ng/mL of BMP5 to the embryo culture medium had no effect on the cleavage rate, a significantly higher proportion of cleaved embryos developed to the

  9. Time course of gene expression during mouse skeletal muscle hypertrophy.

    Science.gov (United States)

    Chaillou, Thomas; Lee, Jonah D; England, Jonathan H; Esser, Karyn A; McCarthy, John J

    2013-10-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy.

  10. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 GeneExpression through Activation of SREBP-1c

    Energy Technology Data Exchange (ETDEWEB)

    Jakel, Heidelinde; Nowak, Maxime; Moitrot, Emanuelle; Dehondt, Helene; Hum, Dean W.; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart,Jean-Charles

    2004-07-23

    Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X-receptor (LXR) ligand mediated effect on plasma triglyceride levels.Following treatment with the LXR ligand T0901317, we found that APOA5mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease OF APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.

  11. AGEMAP: a gene expression database for aging in mice.

    Directory of Open Access Journals (Sweden)

    Jacob M Zahn

    2007-11-01

    Full Text Available We present the AGEMAP (Atlas of Gene Expression in Mouse Aging Project gene expression database, which is a resource that catalogs changes in gene expression as a function of age in mice. The AGEMAP database includes expression changes for 8,932 genes in 16 tissues as a function of age. We found great heterogeneity in the amount of transcriptional changes with age in different tissues. Some tissues displayed large transcriptional differences in old mice, suggesting that these tissues may contribute strongly to organismal decline. Other tissues showed few or no changes in expression with age, indicating strong levels of homeostasis throughout life. Based on the pattern of age-related transcriptional changes, we found that tissues could be classified into one of three aging processes: (1 a pattern common to neural tissues, (2 a pattern for vascular tissues, and (3 a pattern for steroid-responsive tissues. We observed that different tissues age in a coordinated fashion in individual mice, such that certain mice exhibit rapid aging, whereas others exhibit slow aging for multiple tissues. Finally, we compared the transcriptional profiles for aging in mice to those from humans, flies, and worms. We found that genes involved in the electron transport chain show common age regulation in all four species, indicating that these genes may be exceptionally good markers of aging. However, we saw no overall correlation of age regulation between mice and humans, suggesting that aging processes in mice and humans may be fundamentally different.

  12. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  13. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo

    International Nuclear Information System (INIS)

    Vaiphei, S. Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Sharan, R.N.; Chaubey, R.C.; Kma, L.

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving 60 Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of 60 Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min -1 at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. (author)

  14. Expression analysis of fusarium wilt resistance gene in melon by real-time quantitative pcr

    International Nuclear Information System (INIS)

    Wang, X.; Xu, B.; Zhao, L.; Gao, P.; Luan, F.

    2014-01-01

    Melon Actin gene was used as a reference gene, to explore the gene expression profiles of the Fom-2 gene in roots, stems, and leaves of melon MR-1 under induction by Fusarium oxysporum f. sp. melonis. Monitoring using real-time quantitative PCR showed similar accumulation patterns of Fom-2 in roots, stems, and leaves over the observation period of 1 to 11 days; the expression level in stems was the highest. The expression of the Fom-2 gene was strengthened by the prolongation of induction time. In stems, the expression of Fom-2 was 5.737 times higher than in the control at three days; in roots, expression of Fom-2 was 5.617 times higher than in the control at five days. Similarly, the expression of Fom-2 in leaves obviously increased. It was 4.441 times higher than in the control at 5 days. The expression of Fom-2 was non-tissue specific, up-regulated under induction by Fusarium, and related to early resistance to Fusarium wilt. (author)

  15. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    Science.gov (United States)

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  16. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    Directory of Open Access Journals (Sweden)

    Fei eZhou

    2015-04-01

    Full Text Available The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA, we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD and constant dark (DD conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  17. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Wieloch, Tadeusz; Gidö, Gunilla

    2006-01-01

    middle cerebral artery occlusion in the rat. K-means cluster analysis revealed two distinct biphasic gene expression patterns that contained 44 genes (including 18 immediate early genes), involved in cell signaling and plasticity (i.e. MAP2K7, Sprouty2, Irs-2, Homer1, GPRC5B, Grasp). The first gene...

  18. Bovine mammary gene expression profiling during the onset of lactation.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Gao

    Full Text Available BACKGROUND: Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d, day 7 before parturition (-7 d and day 3 after parturition (+3 d. Approximately 6.2 million (M, 5.8 million (M and 6.1 million (M 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d, respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I. Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II, and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. CONCLUSIONS: The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  19. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Boris P Hejblum

    2015-06-01

    Full Text Available Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial, and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.

  20. Extreme sensitivity of gene expression in human SH-SY5Y neurocytes to ultra-low doses of Gelsemium sempervirens

    Science.gov (United States)

    2014-01-01

    Background Gelsemium sempervirens L. (Gelsemium s.) is a traditional medicinal plant, employed as an anxiolytic at ultra-low doses and animal models recently confirmed this activity. However the mechanisms by which it might operate on the nervous system are largely unknown. This work investigates the gene expression of a human neurocyte cell line treated with increasing dilutions of Gelsemium s. extract. Methods Starting from the crude extract, six 100 × (centesimal, c) dilutions of Gelsemium s. (2c, 3c, 4c, 5c, 9c and 30c) were prepared according to the French homeopathic pharmacopoeia. Human SH-SY5Y neuroblastoma cells were exposed for 24 h to test dilutions, and their transcriptome compared by microarray to that of cells treated with control vehicle solutions. Results Exposure to the Gelsemium s. 2c dilution (the highest dose employed, corresponding to a gelsemine concentration of 6.5 × 10-9 M) significantly changed the expression of 56 genes, of which 49 were down-regulated and 7 were overexpressed. Several of the down-regulated genes belonged to G-protein coupled receptor signaling pathways, calcium homeostasis, inflammatory response and neuropeptide receptors. Fisher exact test, applied to the group of 49 genes down-regulated by Gelsemium s. 2c, showed that the direction of effects was significantly maintained across the treatment with high homeopathic dilutions, even though the size of the differences was distributed in a small range. Conclusions The study shows that Gelsemium s., a medicinal plant used in traditional remedies and homeopathy, modulates a series of genes involved in neuronal function. A small, but statistically significant, response was detected even to very low doses/high dilutions (up to 30c), indicating that the human neurocyte genome is extremely sensitive to this regulation. PMID:24642002

  1. A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae.

    Directory of Open Access Journals (Sweden)

    Takayuki eFujiwara

    2015-08-01

    Full Text Available The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase, NIR (nitrite reductase and NRT (the nitrate/nitrite transporter are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 hour by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.

  2. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study.

    Science.gov (United States)

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini

    2017-05-25

    Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (qexpression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into

  3. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  4. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  5. The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels.

    Science.gov (United States)

    Guo, Rui; Wang, Simei; Xue, Renyu; Cao, Guangli; Hu, Xiaolong; Huang, Moli; Zhang, Yangqi; Lu, Yahong; Zhu, Liyuan; Chen, Fei; Liang, Zi; Kuang, Sulan; Gong, Chengliang

    2015-06-01

    High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

  6. Pyrimidine-5'-nucleotidase Campinas, a new mutation (p.R56G) in the NT5C3 gene associated with pyrimidine-5'-nucleotidase type I deficiency and influence of Gilbert's Syndrome on clinical expression.

    Science.gov (United States)

    Santos, Andrey dos; Dantas, Larissa Elizabeth Cordeiro; Traina, Fabiola; Albuquerque, Dulcineia Martins de; Chaim, Elinton Adami; Saad, Sara T Olalla

    2014-12-01

    Pyrimidine-5'-nucleotidase type I (P5'NI) deficiency is an autosomal recessive condition that causes nonspherocytic hemolytic anemia, characterized by marked basophilic stippling and pyrimidine nucleotide accumulation in erythrocytes. We herein present two African descendant patients, father and daughter, with P5'N deficiency, both born from first cousins. Investigation of the promoter polymorphism of the uridine diphospho glucuronosyl transferase 1A (UGT1A) gene revealed that the father was homozygous for the allele (TA7) and the daughter heterozygous (TA6/TA7). P5'NI gene (NT5C3) gene sequencing revealed a further change in homozygosity at amino acid position 56 (p.R56G), located in a highly conserved region. Both patients developed gallstones; however the father, who had undergone surgery for the removal of stones, had extremely severe intrahepatic cholestasis and, liver biopsy revealed fibrosis and siderosis grade III, leading us to believe that the homozygosity of the UGT1A polymorphism was responsible for the more severe clinical features in the father. Moreover, our results show how the clinical expression of hemolytic anemia is influenced by epistatic factors and we describe a new mutation in the P5'N gene associated with enzyme deficiency, iron overload, and severe gallstone formation. To our knowledge, this is the first description of P5'N deficiency in South Americans. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?

    Science.gov (United States)

    Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W

    2015-02-01

    The temporal and situational stability of personality has led generations of researchers to hypothesize that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by 'behavioural immune response' theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5ml sample of peripheral blood for gene expression analysis. Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Design of chimeric expression elements that confer high-level gene activity in chromoplasts.

    Science.gov (United States)

    Caroca, Rodrigo; Howell, Katharine A; Hasse, Claudia; Ruf, Stephanie; Bock, Ralph

    2013-02-01

    Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  9. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, Michigan (United States); Thomas, Robert A.; Grever, William E.; Bakhmutsky, Marina V. [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Chinkhota, Chantelle N.; Smolinski, Joseph M. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States); Divine, George W. [Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan (United States); Auner, Gregory W. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States)

    2014-03-15

    Purpose: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Methods and Materials: Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Results: Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R{sup 2}). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. Conclusions: The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.

  10. Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil.

    Science.gov (United States)

    Park, Sungkwon; Yan, Zhang; Choi, Changweon; Kim, Kyounghoon; Lee, Hyunjeong; Oh, Youngkyoon; Jeong, Jinyoung; Lee, Jonggil; Smith, Stephen B; Choi, Seongho

    2017-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase ( SCD ) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased ( p Palm oil increased total i.m. polyunsaturated fatty acids ( p palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.

  11. Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons

    Directory of Open Access Journals (Sweden)

    Nicole R. Newell

    2016-08-01

    Full Text Available Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1 underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2–5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.

  12. Genome-Wide Constitutively Expressed Gene Analysis and New Reference Gene Selection Based on Transcriptome Data: A Case Study from Poplar/Canker Disease Interaction

    Directory of Open Access Journals (Sweden)

    Jiaping Zhao

    2017-10-01

    Full Text Available A number of transcriptome datasets for differential expression (DE genes have been widely used for understanding organismal biology, but these datasets also contain untapped information that can be used to develop more precise analytical tools. With the use of transcriptome data generated from poplar/canker disease interaction system, we describe a methodology to identify candidate reference genes from high-throughput sequencing data. This methodology will improve the accuracy of RT-qPCR and will lead to better standards for the normalization of expression data. Expression stability analysis from xylem and phloem of Populus bejingensis inoculated with the fungal canker pathogen Botryosphaeria dothidea revealed that 729 poplar transcripts (1.11% were stably expressed, at a threshold level of coefficient of variance (CV of FPKM < 20% and maximum fold change (MFC of FPKM < 2.0. Expression stability and bioinformatics analysis suggested that commonly used house-keeping (HK genes were not the most appropriate internal controls: 70 of the 72 commonly used HK genes were not stably expressed, 45 of the 72 produced multiple isoform transcripts, and some of their reported primers produced unspecific amplicons in PCR amplification. RT-qPCR analysis to compare and evaluate the expression stability of 10 commonly used poplar HK genes and 20 of the 729 newly-identified stably expressed transcripts showed that some of the newly-identified genes (such as SSU_S8e, LSU_L5e, and 20S_PSU had higher stability ranking than most of commonly used HK genes. Based on these results, we recommend a pipeline for deriving reference genes from transcriptome data. An appropriate candidate gene should have a unique transcript, constitutive expression, CV value of expression < 20% (or possibly 30% and MFC value of expression <2, and an expression level of 50–1,000 units. Lastly, when four of the newly identified HK genes were used in the normalization of expression data for 20

  13. High-level transfer and long-term expression of the human beta-globin gene in a mouse transplant model.

    Science.gov (United States)

    Raftopoulos, H; Ward, M; Bank, A

    1998-06-30

    Insertion of a normally functioning human beta-globin gene into the hematopoietic stem cells (HSC) of patients with beta-thalassemia may be an effective approach to the therapy of this disorder. Safe, efficient gene transfer and long-term, high-level expression of the transferred human beta-globin gene in animal models are prerequisites for HSC somatic gene therapy. We have recently shown for the first time that, using a modified beta-globin retroviral vector in a mouse transplant model, long-term, high-level expression of a transferred human beta-globin gene is possible. The human beta-globin gene continues to be detected up to eight months post-transplantation of beta-globin-transduced hematopoietic cells into lethally irradiated mice. The transferred human beta-globin gene is detected in three of five mice surviving long-term (> 4 months) transplanted with bone marrow cells transduced with high-titer virus. The unrearranged 5.1 kb human beta-globin gene-containing provirus is seen by Southern blotting in two of these mice. More importantly, long-term expression of the transferred gene is seen in two mice at levels of 5% and 20% that of endogenous murine beta-globin. We document stem cell transduction by showing continued high-level expression of the human beta-globin gene in secondarily transplanted recipient mice. These results provide evidence of HSC transduction with a human beta-globin gene in animals and demonstrate that retroviral-mediated unrearranged human beta-globin gene transfer leads to a high level of human beta-globin gene expression in the long term for the first time. A gene therapy strategy may be a feasible therapeutic approach to the beta-thalassemias if consistent human beta-globin gene transfer and expression into HSC can be achieved.

  14. Expression analysis of fiber related genes in cotton (gossypium hirsutum l.) through real time pcr

    International Nuclear Information System (INIS)

    Iqbal, N.; Khatoon, A.; Asif, M.; Bashir, A.

    2016-01-01

    Cotton fibers are unicellular seed trichomes and the largest known plant cells. Fiber morphogenesis in cotton is a complex process involving a large number of genes expressed throughout fiber development process. The expression profiling of five gene families in various cotton tissues was carried out through real time PCR. Expression analysis revealed that transcripts of expansin, tubulin and E6 were elevated from 5 to 20 days post anthesis (DPA) fibers. Three Lipid transfer proteins (LTPs) including LTP1, LTP3, LTP7 exhibited highest expression in 10 - 20 DPA fibers. Transcripts of LTP3 were detected in fibers and non fiber tissues that of LTP7 were almost negligible in non fiber tissues. Sucrose phosphate synthase gene showed highest expression in 10 DPA fibers while sucrose synthse (susy) expressed at higher rate in 5-20 DPA fibers as well as roots. The results reveal that most of fiber related genes showed high expression in 5-20 DPA fibers. Comprehensive expression study may help to determine tissue and stage specificity of genes under study. The study may also help to explore complex process of fiber development and understand the role of these genes in fiber development process. Highly expressed genes in fibers may be transformed in cotton for improvement of fiber quality traits. Genes that were expressed specifically in fibers or other tissues could be used for isolation of upstream regulatory sequences. (author)

  15. Gene expression profiles of immune-regulatory genes in whole blood of cattle with a subclinical infection of Mycobacterium avium subsp. paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Hyun-Eui Park

    Full Text Available Johne's disease is a chronic wasting disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP, resulting in inflammation of intestines and persistent diarrhea. The initial host response against MAP infections is mainly regulated by the Th1 response, which is characterized by the production of IFN-γ. With the progression of disease, MAP can survive in the host through the evasion of the host's immune response by manipulating the host immune response. However, the host response during subclinical phases has not been fully understood. Immune regulatory genes, including Th17-derived cytokines, interferon regulatory factors, and calcium signaling-associated genes, are hypothesized to play an important role during subclinical phases of Johne's disease. Therefore, the present study was conducted to analyze the expression profiles of immune regulatory genes during MAP infection in whole blood. Different expression patterns of genes were identified depending on the infection stages. Downregulation of IL-17A, IL-17F, IL-22, IL-26, HMGB1, and IRF4 and upregulation of PIP5K1C indicate suppression of the Th1 response due to MAP infection and loss of granuloma integrity. In addition, increased expression of IRF5 and IRF7 suggest activation of IFN-α/β signaling during subclinical stages, which induced indoleamine 2,3-dioxygenase mediated depletion of tryptophan metabolism. Increased expression of CORO1A indicate modulation of calcium signaling, which enhanced the survival of MAP. Taken together, distinct host gene expression induced by MAP infection indicates enhanced survival of MAP during subclinical stages.

  16. Allele-specific gene expression in a wild nonhuman primate population

    Science.gov (United States)

    Tung, J.; Akinyi, M. Y.; Mutura, S.; Altmann, J.; Wray, G. A.; Alberts, S. C.

    2015-01-01

    Natural populations hold enormous potential for evolutionary genetic studies, especially when phenotypic, genetic and environmental data are all available on the same individuals. However, untangling the genotype-phenotype relationship in natural populations remains a major challenge. Here, we describe results of an investigation of one class of phenotype, allele-specific gene expression (ASGE), in the well-studied natural population of baboons of the Amboseli basin, Kenya. ASGE measurements identify cases in which one allele of a gene is overexpressed relative to the alternative allele of the same gene, within individuals, thus providing a control for background genetic and environmental effects. Here, we characterize the incidence of ASGE in the Amboseli baboon population, focusing on the genetic and environmental contributions to ASGE in a set of eleven genes involved in immunity and defence. Within this set, we identify evidence for common ASGE in four genes. We also present examples of two relationships between cis-regulatory genetic variants and the ASGE phenotype. Finally, we identify one case in which this relationship is influenced by a novel gene-environment interaction. Specifically, the dominance rank of an individual’s mother during its early life (an aspect of that individual’s social environment) influences the expression of the gene CCL5 via an interaction with cis-regulatory genetic variation. These results illustrate how environmental and ecological data can be integrated into evolutionary genetic studies of functional variation in natural populations. They also highlight the potential importance of early life environmental variation in shaping the genetic architecture of complex traits in wild mammals. PMID:21226779

  17. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  18. Gene expression profiles in primary duodenal chick cells following transfection with avian influenza virus H5 DNA plasmid encapsulated in silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Jazayeri SD

    2013-02-01

    Full Text Available Seyed Davoud Jazayeri,1 Aini Ideris,1,2 Kamyar Shameli,3 Hassan Moeini,1 Abdul Rahman Omar1,21Institute of Bioscience, 2Faculty of Veterinary Medicine, 3Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: In order to develop a systemically administered safe and effective nonviral gene delivery system against avian influenza virus (AIV that induced cytokine expression, the hemagglutinin (H5 gene of AIV, A/Ck/Malaysia/5858/04 (H5N1 and green fluorescent protein were cloned into a coexpression vector pIRES (pIREGFP-H5 and formulated using green synthesis of silver nanoparticles (AgNPs with poly(ethylene glycol and transfected into primary duodenal cells taken from 18-day-old specific-pathogen-free chick embryos. The AgNPs were prepared using moderated temperature and characterized for particle size, surface charge, ultraviolet-visible spectra, DNA loading, and stability. AgNPs and AgNP-pIREGFP-H5 were prepared in the size range of 13.9 nm and 25 nm with a positive charge of +78 ± 0.6 mV and +40 ± 6.2 mV, respectively. AgNPs with a positive surface charge could encapsulate pIREGFP-H5 efficiently. The ultraviolet-visible spectra for AgNP-pIREGFP-H5 treated with DNase I showed that the AgNPs were able to encapsulate pIREGFP-H5 efficiently. Polymerase chain reaction showed that AgNP-pIREGFP-H5 entered into primary duodenal cells rapidly, as early as one hour after transfection. Green fluorescent protein expression was observed after 36 hours, peaked at 48 hours, and remained stable for up to 60 hours. In addition, green fluorescent protein expression generally increased with increasing DNA concentration and time. Cells were transfected using Lipocurax in vitro transfection reagent as a positive control. A multiplex quantitative mRNA gene expression assay in the transfected primary duodenal cells via the transfection reagent and AgNPs with pIREGFP-H5 revealed expression of interleukin (IL-18, IL-15, and IL-12

  19. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  1. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads

    DEFF Research Database (Denmark)

    Mamsen, Linn S; Ernst, Emil H; Borup, Rehannah

    2017-01-01

    The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry...... (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1...... was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human...

  2. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-01-01

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  3. Selection of Reliable Reference Genes for Gene Expression Studies on Rhododendron molle G. Don.

    Science.gov (United States)

    Xiao, Zheng; Sun, Xiaobo; Liu, Xiaoqing; Li, Chang; He, Lisi; Chen, Shangping; Su, Jiale

    2016-01-01

    The quantitative real-time polymerase chain reaction (qRT-PCR) approach has become a widely used method to analyze expression patterns of target genes. The selection of an optimal reference gene is a prerequisite for the accurate normalization of gene expression in qRT-PCR. The present study constitutes the first systematic evaluation of potential reference genes in Rhododendron molle G. Don. Eleven candidate reference genes in different tissues and flowers at different developmental stages of R. molle were assessed using the following three software packages: GeNorm, NormFinder, and BestKeeper. The results showed that EF1- α (elongation factor 1-alpha), 18S (18s ribosomal RNA), and RPL3 (ribosomal protein L3) were the most stable reference genes in developing rhododendron flowers and, thus, in all of the tested samples, while tublin ( TUB ) was the least stable. ACT5 (actin), RPL3 , 18S , and EF1- α were found to be the top four choices for different tissues, whereas TUB was not found to favor qRT-PCR normalization in these tissues. Three stable reference genes are recommended for the normalization of qRT-PCR data in R. molle . Furthermore, the expression profiles of RmPSY (phytoene synthase) and RmPDS (phytoene dehydrogenase) were assessed using EF1- α, 18S , ACT5 , RPL3 , and their combination as internals. Similar trends were found, but these trends varied when the least stable reference gene TUB was used. The results further prove that it is necessary to validate the stability of reference genes prior to their use for normalization under different experimental conditions. This study provides useful information for reliable qRT-PCR data normalization in gene studies of R. molle .

  4. Selection of Reliable Reference Genes for Gene Expression Studies on Rhododendron molle G. Don

    Directory of Open Access Journals (Sweden)

    Zheng Xiao

    2016-10-01

    Full Text Available The quantitative real-time polymerase chain reaction (qRT-PCR approach has become a widely used method to analyze expression patterns of target genes. The selection of an optimal reference gene is a prerequisite for the accurate normalization of gene expression in qRT-PCR. The present study constitutes the first systematic evaluation of potential reference genes in Rhododendron molle G. Don. Eleven candidate reference genes in different tissues and flowers at different developmental stages of R. molle were assessed using the following three software packages: GeNorm, NormFinder and BestKeeper. The results showed that EF1-α (elongation factor 1-alpha, 18S (18s ribosomal RNA and RPL3 (ribosomal protein L3 were the most stable reference genes in developing rhododendron flowers and, thus, in all of the tested samples, while tublin (TUB was the least stable. ACT5 (actin, RPL3, 18S and EF1-α were found to be the top four choices for different tissues, whereas TUB was not found to favor qRT-PCR normalization in these tissues. Three stable reference genes are recommended for the normalization of qRT-PCR data in R. molle. Furthermore, the expression profiles of RmPSY (phytoene synthase and RmPDS (phytoene dehydrogenase were assessed using EF1-α, 18S, ACT5, and RPL3 and their combination as internals. Similar trends were found, but these trends varied when the least stable reference gene TUB was used. The results further prove that it is necessary to validate the stability of reference genes prior to their use for normalization under different experimental conditions. This study provides useful information for reliable qRT-PCR data normalization in gene studies of R. molle.

  5. A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cuperus, Josh T; Lo, Russell S; Shumaker, Lucia; Proctor, Julia; Fields, Stanley

    2015-07-17

    Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We identify variants of the Escherichia coli tet operator (tetO) sequence that bind a TetR-VP16 activator with differential affinity and therefore result in different TetR-VP16 activator-driven expression. By recombining these variants upstream of the genes of a pathway, we generate unique combinations of expression levels. Here, we built a tetO toolkit, which includes the I-OnuI homing endonuclease to create double-strand breaks, which increases homologous recombination by 10(5); a plasmid carrying six variant tetO sequences flanked by I-OnuI sites, uncoupling transformation and recombination steps; an S. cerevisiae-optimized TetR-VP16 activator; and a vector to integrate constructs into the yeast genome. We introduce into the S. cerevisiae genome the three crt genes from Erwinia herbicola required for yeast to synthesize lycopene and carry out the recombination process to produce a population of cells with permutations of tetO variants regulating the three genes. We identify 0.7% of this population as making detectable lycopene, of which the vast majority have undergone recombination at all three crt genes. We estimate a rate of ∼20% recombination per targeted site, much higher than that obtained in other studies. Application of this toolkit to medically or industrially important end products could reduce the time and labor required to optimize the expression of a set of metabolic genes.

  6. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  7. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  8. Comprehensive analysis of gene expression patterns of hedgehog-related genes

    Directory of Open Access Journals (Sweden)

    Baillie David

    2006-10-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the

  9. Gene expression changes as markers of early lapatinib response in a panel of breast cancer cell lines

    LENUS (Irish Health Repository)

    O’Neill, Fiona

    2012-06-18

    AbstractBackgroundLapatinib, a tyrosine kinase inhibitor of HER2 and EGFR and is approved, in combination with capecitabine, for the treatment of trastuzumab-refractory metastatic breast cancer. In order to establish a possible gene expression response to lapatinib, a panel of breast cancer cell lines with varying sensitivity to lapatinib were analysed using a combination of microarray and qPCR profiling.MethodsCo-inertia analysis (CIA), a data integration technique, was used to identify transcription factors associated with the lapatinib response on a previously published dataset of 96 microarrays. RNA was extracted from BT474, SKBR3, EFM192A, HCC1954, MDAMB453 and MDAMB231 breast cancer cell lines displaying a range of lapatinib sensitivities and HER2 expression treated with 1 μM of lapatinib for 12 hours and quantified using Taqman RT-PCR. A fold change ≥ ± 2 was considered significant.ResultsA list of 421 differentially-expressed genes and 8 transcription factors (TFs) whose potential regulatory impact was inferred in silico, were identified as associated with lapatinib response. From this group, a panel of 27 genes (including the 8 TFs) were selected for qPCR validation. 5 genes were determined to be significantly differentially expressed following the 12 hr treatment of 1 μM lapatinib across all six cell lines. Furthermore, the expression of 4 of these genes (RB1CC1, FOXO3A, NR3C1 and ERBB3) was directly correlated with the degree of sensitivity of the cell line to lapatinib and their expression was observed to “switch” from up-regulated to down-regulated when the cell lines were arranged in a lapatinib-sensitive to insensitive order. These included the novel lapatinib response-associated genes RB1CC1 and NR3C1. Additionally, Cyclin D1 (CCND1), a common regulator of the other four proteins, was also demonstrated to observe a proportional response to lapatinib exposure.ConclusionsA panel of 5 genes were determined to be differentially

  10. Digital gene expression profiling by 5'-end sequencing of cDNAs during reprogramming in the moss Physcomitrella patens.

    Directory of Open Access Journals (Sweden)

    Tomoaki Nishiyama

    Full Text Available Stem cells self-renew and repeatedly produce differentiated cells during development and growth. The differentiated cells can be converted into stem cells in some metazoans and land plants with appropriate treatments. After leaves of the moss Physcomitrella patens are excised, leaf cells reenter the cell cycle and commence tip growth, which is characteristic of stem cells called chloronema apical cells. To understand the underlying molecular mechanisms, a digital gene expression profiling method using mRNA 5'-end tags (5'-DGE was established. The 5'-DGE method produced reproducible data with a dynamic range of four orders that correlated well with qRT-PCR measurements. After the excision of leaves, the expression levels of 11% of the transcripts changed significantly within 6 h. Genes involved in stress responses and proteolysis were induced and those involved in metabolism, including photosynthesis, were reduced. The later processes of reprogramming involved photosynthesis recovery and higher macromolecule biosynthesis, including of RNA and proteins. Auxin and cytokinin signaling pathways, which are activated during stem cell formation via callus in flowering plants, are also activated during reprogramming in P. patens, although no exogenous phytohormone is applied in the moss system, suggesting that an intrinsic phytohormone regulatory system may be used in the moss.

  11. Znrg, a novel gene expressed mainly in the developing notochord of zebrafish.

    Science.gov (United States)

    Zhou, Yaping; Xu, Yan; Li, Jianzhen; Liu, Yao; Zhang, Zhe; Deng, Fengjiao

    2010-06-01

    The notochord, a defining characteristic of the chordate embryo is a critical midline structure required for axial skeletal formation in vertebrates, and acts as a signaling center throughout embryonic development. We utilized the digital differential display program of the National Center for Biotechnology Information, and identified a contig of expressed sequence tags (no. Dr. 83747) from the zebrafish ovary library in Genbank. Full-length cDNA of the identified gene was cloned by 5'- and 3'- RACE, and the resulting sequence was confirmed by polymerase chain reaction and sequencing. The cDNA clone contains 2,505 base pairs and encodes a novel protein of 707 amino acids that shares no significant homology with any known proteins. This gene was expressed in mature oocytes and at the one-cell stage, and persisted until the 5th day of development, as determined by RT-PCR. Transcripts were detected by whole-mount RNA in situ hybridization from the two-cell stage to 72 h of embryonic development. This gene was uniformly distributed from the cleavage stage up to the blastula stage. During early gastrulation, it was present in the dorsal region, and became restricted to the notochord and pectoral fin at 48 and 72 h of embryonic development. Based on its abundance in the notochord, we hypothesized that the novel gene may play an important role in notochord development in zebrafish; we named this gene, zebrafish notochord-related gene, or znrg.

  12. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo.

    Science.gov (United States)

    Vaiphei, S Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Chaubey, R C; Kma, L; Sharan, R N

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving (60)Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of (60)Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min(-1) at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  14. Modeling gene expression measurement error: a quasi-likelihood approach

    Directory of Open Access Journals (Sweden)

    Strimmer Korbinian

    2003-03-01

    Full Text Available Abstract Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale. Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood. Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic variance structure of the data. As the quasi-likelihood behaves (almost like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also

  15. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    Science.gov (United States)

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  16. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa

    Directory of Open Access Journals (Sweden)

    Nettleton Dan

    2009-08-01

    Full Text Available Abstract Background Heterosis, the superior performance of hybrids relative to parents, has clear agricultural value, but its genetic control is unknown. Our objective was to test the hypotheses that hybrids expressing heterosis for biomass yield would show more gene expression levels that were different from midparental values and outside the range of parental values than hybrids that do not exhibit heterosis. Results We tested these hypotheses in three Medicago sativa (alfalfa genotypes and their three hybrids, two of which expressed heterosis for biomass yield and a third that did not, using Affymetrix M. truncatula GeneChip arrays. Alfalfa hybridized to approximately 47% of the M. truncatula probe sets. Probe set signal intensities were analyzed using MicroArray Suite v.5.0 (MAS and robust multi-array average (RMA algorithms. Based on MAS analysis, the two heterotic hybrids performed similarly, with about 27% of genes showing differential expression among the parents and their hybrid compared to 12.5% for the non-heterotic hybrid. At a false discovery rate of 0.15, 4.7% of differentially expressed genes in hybrids (~300 genes showed nonadditive expression compared to only 0.5% (16 genes in the non-heterotic hybrid. Of the nonadditively expressed genes, approximately 50% showed expression levels that fell outside the parental range in heterotic hybrids, but only one of 16 showed a similar profile in the non-heterotic hybrid. Genes whose expression differed in the parents were three times more likely to show nonadditive expression than genes whose parental transcript levels were equal. Conclusion The higher proportions of probe sets with expression level that differed from the parental midparent value and that were more extreme than either parental value in the heterotic hybrids compared to a non-heterotic hybrid were also found using RMA. We conclude that nonadditive expression of transcript levels may contribute to heterosis for biomass

  17. Triazophos up-regulated gene expression in the female brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Bao, Yan-Yuan; Li, Bao-Ling; Liu, Zhao-Bu; Xue, Jian; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2010-09-01

    The widespread use of insecticides has caused the resurgence of the brown planthopper, Nilaparvata lugens, in Asia. In this study, we investigated an organo-phosphorous insecticide, triazophos, and its ability to induce gene expression variation in female N. lugens nymphs just before emergence. By using the suppression subtractive hybridization method, a triazophos-induced cDNA library was constructed. In total, 402 differentially expressed cDNA clones were obtained. Real-time qPCR analysis confirmed that triazophos up-regulated the expression of six candidate genes at the transcript level in nymphs on day 3 of the 5th instar. These genes encode N. lugens vitellogenin, bystin, multidrug resistance protein (MRP), purine nucleoside phosphorylase (PNP), pyrroline-5-carboxylate reductase (P5CR) and carboxylesterase. Our results imply that the up-regulation of these genes may be involved in the induction of N. lugens female reproduction or resistance to insecticides.

  18. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Satoshi eSano

    2014-10-01

    Full Text Available Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30% genes strongly induced by flg22 (>4.0 require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid, indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB. Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controling the light-dependent expression of flg22-inducible defense genes.

  19. Regional and temporal differences in gene expression of LH(BETA)T(AG) retinoblastoma tumors.

    Science.gov (United States)

    Houston, Samuel K; Pina, Yolanda; Clarke, Jennifer; Koru-Sengul, Tulay; Scott, William K; Nathanson, Lubov; Schefler, Amy C; Murray, Timothy G

    2011-07-23

    The purpose of this study was to evaluate by microarray the hypothesis that LH(BETA)T(AG) retinoblastoma tumors exhibit regional and temporal variations in gene expression. LH(BETA)T(AG) mice aged 12, 16, and 20 weeks were euthanatized (n = 9). Specimens were taken from five tumor areas (apex, anterior lateral, center, base, and posterior lateral). Samples were hybridized to gene microarrays. The data were preprocessed and analyzed, and genes with a P 2.5 were considered to be differentially expressed. Differentially expressed genes were analyzed for overlap with known networks by using pathway analysis tools. There were significant temporal (P regional differences in gene expression for LH(BETA)T(AG) retinoblastoma tumors. At P 2.5, there were significant changes in gene expression of 190 genes apically, 84 genes anterolaterally, 126 genes posteriorly, 56 genes centrally, and 134 genes at the base. Differentially expressed genes overlapped with known networks, with significant involvement in regulation of cellular proliferation and growth, response to oxygen levels and hypoxia, regulation of cellular processes, cellular signaling cascades, and angiogenesis. There are significant temporal and regional variations in the LH(BETA)T(AG) retinoblastoma model. Differentially expressed genes overlap with key pathways that may play pivotal roles in murine retinoblastoma development. These findings suggest the mechanisms involved in tumor growth and progression in murine retinoblastoma tumors and identify pathways for analysis at a functional level, to determine significance in human retinoblastoma. Microarray analysis of LH(BETA)T(AG) retinal tumors showed significant regional and temporal variations in gene expression, including dysregulation of genes involved in hypoxic responses and angiogenesis.

  20. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  1. The effect of a short-term hypocaloric diet on liver gene expression and metabolic risk factors in obese women.

    Science.gov (United States)

    Hietaniemi, M; Jokela, M; Rantala, M; Ukkola, O; Vuoristo, J T; Ilves, M; Rysä, J; Kesäniemi, Y

    2009-03-01

    Most gene expression studies examining the effect of obesity and weight loss have been performed using adipose tissue. However, the liver also plays a central role in maintaining energy balance. We wanted to study the effects of a hypocaloric diet on overall hepatic gene expression and metabolic risk factors. The study subjects were middle-aged, obese women. The diet intervention subjects (n=12) were on a hypocaloric, low-fat diet for 8 weeks with a daily energy intake of 5.0 MJ (1200 kcal), while the control subjects (n=19) maintained their weight. Liver biopsies were taken at the end of the diet period during a gallbladder operation. Hepatic gene expression was analyzed using microarrays by comparing the gene expression profiles from four subjects per group. A global decrease in gene expression was observed with 142 down-regulated genes and only one up-regulated gene in the diet intervention group. The diet resulted in a mean weight loss of 5% of body weight. Triglyceride and fasting insulin concentrations decreased significantly after the diet. The global decrease in hepatic gene expression was unexpected but the results are interesting, since they included several genes not previously linked to weight reduction. However, since the comparison was made only after the weight reduction, other factors in addition to weight loss may also have been involved in the differences in gene expression between the groups. The decrease in triglyceride and fasting plasma insulin concentrations is in accordance with results from previous weight-loss studies.

  2. Ageing Drosophila selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete

    and longevity selected lines. Among the latter genes we found a clear overrepresentation of genes involved in immune functions supporting the hypothesis of the life shortening effect of an overactive immune system (inflammaging). Eighty-four genes were differentially expressed at the same physiological age...... between control and longevity selected lines, and the overlap between the same chronological and physiological age gene lists counted 40 candidate genes for increased longevity. Among these were genes with functions in starvation resistance, a regulator of immune responses and several genes which have......  We have investigated how the gene-expression profile of longevity selected lines of Drosophila melanogaster differed from control lines in young, middle-aged and old male flies. 530 genes were differentially expressed between selected and control flies at the same chronological age. We used...

  3. In-silico gene co-expression network analysis in Paracoccidioides brasiliensis with reference to haloacid dehalogenase superfamily hydrolase gene

    Directory of Open Access Journals (Sweden)

    Raghunath Satpathy

    2015-01-01

    Full Text Available Context: Paracoccidioides brasiliensis, a dimorphic fungus is the causative agent of paracoccidioidomycosis, a disease globally affecting millions of people. The haloacid dehalogenase (HAD superfamily hydrolases enzyme in the fungi, in particular, is known to be responsible in the pathogenesis by adhering to the tissue. Hence, identification of novel drug targets is essential. Aims: In-silico based identification of co-expressed genes along with HAD superfamily hydrolase in P. brasiliensis during the morphogenesis from mycelium to yeast to identify possible genes as drug targets. Materials and Methods: In total, four datasets were retrieved from the NCBI-gene expression omnibus (GEO database, each containing 4340 genes, followed by gene filtration expression of the data set. Further co-expression (CE study was performed individually and then a combination these genes were visualized in the Cytoscape 2. 8.3. Statistical Analysis Used: Mean and standard deviation value of the HAD superfamily hydrolase gene was obtained from the expression data and this value was subsequently used for the CE calculation purpose by selecting specific correlation power and filtering threshold. Results: The 23 genes that were thus obtained are common with respect to the HAD superfamily hydrolase gene. A significant network was selected from the Cytoscape network visualization that contains total 7 genes out of which 5 genes, which do not have significant protein hits, obtained from gene annotation of the expressed sequence tags by BLAST X. For all the protein PSI-BLAST was performed against human genome to find the homology. Conclusions: The gene co-expression network was obtained with respect to HAD superfamily dehalogenase gene in P. Brasiliensis.

  4. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  5. Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model

    Directory of Open Access Journals (Sweden)

    Llano-Diez Monica

    2011-12-01

    Full Text Available Abstract Background Acute quadriplegic myopathy (AQM or critical illness myopathy (CIM is frequently observed in intensive care unit (ICU patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals. Results During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days, intermediate (5-8 days and long (9-14 days durations. A striking early and maintained up-regulation (6 h-14d of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1 was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d. Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C, regulatory (troponin, tropomyosin, developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days. Conclusions Novel

  6. Gene expression profiles of glucose toxicity-exposed islet microvascular endothelial cells.

    Science.gov (United States)

    Liu, Mingming; Lu, Wenbao; Hou, Qunxing; Wang, Bing; Sheng, Youming; Wu, Qingbin; Li, Bingwei; Liu, Xueting; Zhang, Xiaoyan; Li, Ailing; Zhang, Honggang; Xiu, Ruijuan

    2018-03-25

    Islet microcirculation is mainly composed by IMECs. The aim of the study was to investigate the differences in gene expression profiles of IMECs upon glucose toxicity exposure and insulin treatment. IMECs were treated with 5.6 mmol L -1 glucose, 35 mmol L -1 glucose, and 35 mmol L -1 glucose plus 10 -8  mol L -1 insulin, respectively. Gene expression profiles were determined by microarray and verified by qPCR. GO terms and KEGG analysis were performed to assess the potential roles of differentially expressed genes. The interaction and expression tendency of differentially expressed genes were analyzed by Path-Net algorithm. Compared with glucose toxicity-exposed IMECs, 1574 mRNAs in control group and 2870 mRNAs in insulin-treated IMECs were identified with differential expression, respectively. GO and KEGG pathway analysis revealed that these genes conferred roles in regulation of apoptosis, proliferation, migration, adhesion, and metabolic process etc. Additionally, MAPK signaling pathway and apoptosis were the dominant nodes in Path-Net. IMECs survival and function pathways were significantly changed, and the expression tendency of genes from euglycemia and glucose toxicity exposure to insulin treatment was revealed and enriched in 7 patterns. Our study provides a microcirculatory framework for gene expression profiles of glucose toxicity-exposed IMECs. © 2018 John Wiley & Sons Ltd.

  7. Apolipoprotein A5: A newly identified gene impacting plasmatriglyceride levels in humans and mice

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Rubin, Edward M.

    2002-09-15

    Apolipoprotein A5 (APOA5) is a newly described member of theapolipoprotein gene family whose initial discovery arose from comparativesequence analysis of the mammalian APOA1/C3/A4 gene cluster. Functionalstudies in mice indicated that alteration in the level of APOA5significantly impacted plasma triglyceride concentrations. Miceover-expressing human APOA5 displayed significantly reducedtriglycerides, while mice lacking apoA5 had a large increase in thislipid parameter. Studies in humans have also suggested an important rolefor APOA5 in determining plasma triglyceride concentrations. In theseexperiments, polymorphisms in the human gene were found to define severalcommon haplotypes that were associated with significant changes intriglyceride concentrations in multiple populations. Several separateclinical studies have provided consistent and strong support for theeffect with 24 percent of Caucasians, 35 percent of African-Americans and53 percent of Hispanics carrying APOA5 haplotypes associated withincreased plasma triglyceride levels. In summary, APOA5 represents anewly discovered gene involved in triglyceride metabolism in both humansand mice whose mechanism of action remains to be deciphered.

  8. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    Science.gov (United States)

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  9. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Cem Kuscu

    Full Text Available Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1, Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.

  10. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum using quantitative real-time RT-PCR.

    Directory of Open Access Journals (Sweden)

    Jacinta Gimeno

    Full Text Available Switchgrass (Panicum virgatum has received a lot of attention as a forage and bioenergy crop during the past few years. Gene expression studies are in progress to improve new traits and develop new cultivars. Quantitative real time PCR (qRT-PCR has emerged as an important technique to study gene expression analysis. For accurate and reliable results, normalization of data with reference genes is essential. In this work, we evaluate the stability of expression of genes to use as reference for qRT-PCR in the grass P. virgatum. Eleven candidate reference genes, including eEF-1α, UBQ6, ACT12, TUB6, eIF-4a, GAPDH, SAMDC, TUA6, CYP5, U2AF, and FTSH4, were validated for qRT-PCR normalization in different plant tissues and under different stress conditions. The expression stability of these genes was verified by the use of two distinct algorithms, geNorm and NormFinder. Differences were observed after comparison of the ranking of the candidate reference genes identified by both programs but eEF-1α, eIF-4a, CYP5 and U2AF are ranked as the most stable genes in the samples sets under study. Both programs discard the use of SAMDC and TUA6 for normalization. Validation of the reference genes proposed by geNorm and NormFinder were performed by normalization of transcript abundance of a group of target genes in different samples. Results show similar expression patterns when the best reference genes selected by both programs were used but differences were detected in the transcript abundance of the target genes. Based on the above research, we recommend the use of different statistical algorithms to identify the best reference genes for expression data normalization. The best genes selected in this study will help to improve the quality of gene expression data in a wide variety of samples in switchgrass.

  11. Identification of a Nicotiana plumbaginifolia plasma membrane H(+)-ATPase gene expressed in the pollen tube.

    Science.gov (United States)

    Lefebvre, Benoit; Arango, Miguel; Oufattole, Mohammed; Crouzet, Jérôme; Purnelle, Bénédicte; Boutry, Marc

    2005-08-01

    In Nicotiana plumbaginifolia, plasma membrane H(+)-ATPases (PMAs) are encoded by a gene family of nine members. Here, we report on the characterization of a new isogene, NpPMA5 (belonging to subfamily IV), and the determination of its expression pattern using the beta-glucuronidase (gusA) reporter gene. pNpPMA5-gusA was expressed in cotyledons, in vascular tissues of the stem (mainly in nodal zones), and in the flower and fruit. In the flower, high expression was found in the pollen tube after in vitro or in vivo germination. Northern blotting analysis confirmed that NpPMA5 was expressed in the pollen tube contrary to NpPMA2 (subfamily I) or NpPMA4 (subfamily II), two genes highly expressed in other tissues. The subcellular localization of PM H(+)-ATPase in the pollen tube was analyzed by immunocytodecoration. As expected, this enzyme was localized to the plasma membrane. However, neither the tip nor the base of the pollen tube was labeled, showing an asymmetrical distribution of this enzyme. This observation supports the hypothesis that the PM H(+)-ATPase is involved in creating the pH gradient that is observed along the pollen tube and is implicated in cell elongation. Compared to other plant PM H(+)-ATPases, the C-terminal region of NpPMA5 is shorter by 26 amino acid residues and is modified in the last 6 residues, due to a sequence rearrangement, which was also found in the orthologous gene of Nicotiana glutinosa, a Nicotiana species distant from N. plumbaginifolia and Petunia hybrida and Lycopersicon esculentum, other Solanacae species. This modification alters part of the PM H(+)-ATPase regulatory domain and raises the question whether this isoform is still regulated.

  12. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru; Yamanaka, Kunitoshi

    2007-01-01

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated

  13. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  14. Analysis of gene expression profile microarray data in complex regional pain syndrome.

    Science.gov (United States)

    Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing

    2017-09-01

    The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.

  15. Patterns of gene expression in a scleractinian coral undergoing natural bleaching.

    Science.gov (United States)

    Seneca, Francois O; Forêt, Sylvain; Ball, Eldon E; Smith-Keune, Carolyn; Miller, David J; van Oppen, Madeleine J H

    2010-10-01

    Coral bleaching is a major threat to coral reefs worldwide and is predicted to intensify with increasing global temperature. This study represents the first investigation of gene expression in an Indo-Pacific coral species undergoing natural bleaching which involved the loss of algal symbionts. Quantitative real-time polymerase chain reaction experiments were conducted to select and evaluate coral internal control genes (ICGs), and to investigate selected coral genes of interest (GOIs) for changes in gene expression in nine colonies of the scleractinian coral Acropora millepora undergoing bleaching at Magnetic Island, Great Barrier Reef, Australia. Among the six ICGs tested, glyceraldehyde 3-phosphate dehydrogenase and the ribosomal protein genes S7 and L9 exhibited the most constant expression levels between samples from healthy-looking colonies and samples from the same colonies when severely bleached a year later. These ICGs were therefore utilised for normalisation of expression data for seven selected GOIs. Of the seven GOIs, homologues of catalase, C-type lectin and chromoprotein genes were significantly up-regulated as a result of bleaching by factors of 1.81, 1.46 and 1.61 (linear mixed models analysis of variance, P coral bleaching response genes. In contrast, three genes, including one putative ICG, showed highly variable levels of expression between coral colonies. Potential variation in microhabitat, gene function unrelated to the stress response and individualised stress responses may influence such differences between colonies and need to be better understood when designing and interpreting future studies of gene expression in natural coral populations.

  16. Simple Comparative Analyses of Differentially Expressed Gene Lists May Overestimate Gene Overlap.

    Science.gov (United States)

    Lawhorn, Chelsea M; Schomaker, Rachel; Rowell, Jonathan T; Rueppell, Olav

    2018-04-16

    Comparing the overlap between sets of differentially expressed genes (DEGs) within or between transcriptome studies is regularly used to infer similarities between biological processes. Significant overlap between two sets of DEGs is usually determined by a simple test. The number of potentially overlapping genes is compared to the number of genes that actually occur in both lists, treating every gene as equal. However, gene expression is controlled by transcription factors that bind to a variable number of transcription factor binding sites, leading to variation among genes in general variability of their expression. Neglecting this variability could therefore lead to inflated estimates of significant overlap between DEG lists. With computer simulations, we demonstrate that such biases arise from variation in the control of gene expression. Significant overlap commonly arises between two lists of DEGs that are randomly generated, assuming that the control of gene expression is variable among genes but consistent between corresponding experiments. More overlap is observed when transcription factors are specific to their binding sites and when the number of genes is considerably higher than the number of different transcription factors. In contrast, overlap between two DEG lists is always lower than expected when the genetic architecture of expression is independent between the two experiments. Thus, the current methods for determining significant overlap between DEGs are potentially confounding biologically meaningful overlap with overlap that arises due to variability in control of expression among genes, and more sophisticated approaches are needed.

  17. Age-dependent changes in mean and variance of gene expression across tissues in a twin cohort.

    Science.gov (United States)

    Viñuela, Ana; Brown, Andrew A; Buil, Alfonso; Tsai, Pei-Chien; Davies, Matthew N; Bell, Jordana T; Dermitzakis, Emmanouil T; Spector, Timothy D; Small, Kerrin S

    2018-02-15

    Changes in the mean and variance of gene expression with age have consequences for healthy aging and disease development. Age-dependent changes in phenotypic variance have been associated with a decline in regulatory functions leading to increase in disease risk. Here, we investigate age-related mean and variance changes in gene expression measured by RNA-seq of fat, skin, whole blood and derived lymphoblastoid cell lines (LCLs) expression from 855 adult female twins. We see evidence of up to 60% of age effects on transcription levels shared across tissues, and 47% of those on splicing. Using gene expression variance and discordance between genetically identical MZ twin pairs, we identify 137 genes with age-related changes in variance and 42 genes with age-related discordance between co-twins; implying the latter are driven by environmental effects. We identify four eQTLs whose effect on expression is age-dependent (FDR 5%). Combined, these results show a complicated mix of environmental and genetically driven changes in expression with age. Using the twin structure in our data, we show that additive genetic effects explain considerably more of the variance in gene expression than aging, but less that other environmental factors, potentially explaining why reliable expression-derived biomarkers for healthy-aging have proved elusive compared with those derived from methylation. © The Author(s) 2017. Published by Oxford University Press.

  18. The claudin gene family: expression in normal and neoplastic tissues

    International Nuclear Information System (INIS)

    Hewitt, Kyle J; Agarwal, Rachana; Morin, Patrice J

    2006-01-01

    The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4

  19. Endosomal gene expression: a new indicator for prostate cancer patient prognosis?

    LENUS (Irish Health Repository)

    Johnson, Ian R D

    2015-11-10

    Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients.

  20. Gene Expression Profiling in Fish Toxicology: A Review.

    Science.gov (United States)

    Kumar, Girish; Denslow, Nancy D

    In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.

  1. A comparison of brain gene expression levels in domesticated and wild animals.

    Directory of Open Access Journals (Sweden)

    Frank W Albert

    2012-09-01

    Full Text Available Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits. We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1% of expressed genes were differentially expressed, while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.

  2. Imaging of Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression with Radiolabeled 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in Liver by Hydrodynamic-based Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Ho; Lee, Tae Sup; Kang, Joo Hyun; Lee, Yong Jin; Kim, Kwang Il; An, Gwang Il; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-10-15

    Hydrodynamic-based procedure is a simple and effective gene delivery method to lead a high gene expression in liver tissue. Non-invasive imaging reporter gene system has been used widely with herpes simplex virus type 1 thymidine kinase (HSV1-tk) and its various substrates. In the present study, we investigated to image the expression of HSV1-tk gene with 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in mouse liver by the hydrodynamicbased procedure. HSV1-tk or enhanced green fluorescence protein (EGFP) encoded plasmid DNA was transferred into the mouse liver by hydrodynamic injection. At 24 h post-injection, RT-PCR, biodistribution, fluorescence imaging, nuclear imaging and digital wholebody autoradiography (DWBA) were performed to confirm transferred gene expression. In RT-PCR assay using mRNA from the mouse liver, specific bands of HSV1-tk and EGFP gene were observed in HSV1-tk and EGFP expressing plasmid injected mouse, respectively. Higher uptake of radiolabeled IVDU was exhibited in liver of HSV1-tk gene transferred mouse by biodistribution study. In fluorescence imaging, the liver showed specific fluorescence signal in EGFP gene transferred mouse. Gamma-camera image and DWBA results showed that radiolabeled IVDU was accumulated in the liver of HSV1-tk gene transferred mouse. In this study, hydrodynamic-based procedure was effective in liver-specific gene delivery and it could be quantified with molecular imaging methods. Therefore, co-expression of HSV1-tk reporter gene and target gene by hydrodynamic-based procedure is expected to be a useful method for the evaluation of the target gene expression level with radiolabeled IVDU.

  3. Whole-body gene expression pattern registration in Platynereis larvae.

    Science.gov (United States)

    Asadulina, Albina; Panzera, Aurora; Verasztó, Csaba; Liebig, Christian; Jékely, Gáspár

    2012-12-03

    Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere) of the Platynereis trochophore larva and used for the detailed study of neuronal development. Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2'-thiodiethanol (TDE), which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4'6-diamidino-2-phenylindole (DAPI). Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental stage. We then registered to these templates the

  4. Whole-body gene expression pattern registration in Platynereis larvae

    Directory of Open Access Journals (Sweden)

    Asadulina Albina

    2012-12-01

    Full Text Available Abstract Background Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere of the Platynereis trochophore larva and used for the detailed study of neuronal development. Results Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2’-thiodiethanol (TDE, which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4’6-diamidino-2-phenylindole (DAPI. Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental

  5. Alteration of human umbilical vein endothelial cell gene expression in different biomechanical environments.

    Science.gov (United States)

    Shoajei, Shahrokh; Tafazzoli-Shahdpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin

    2014-05-01

    Biomechanical environments affect the function of cells. In this study we analysed the effects of five mechanical stimuli on the gene expression of human umbilical vein endothelial cells (HUVECs) in mRNA level using real-time PCR. The following loading regimes were applied on HUVECs for 48 h: intermittent (0-5 dyn/cm(2) , 1 Hz) and uniform (5 dyn/cm(2) ) shear stresses concomitant by 10% intermittent equiaxial stretch (1 Hz), uniform shear stress alone (5 dyn/cm(2) ), and intermittent uniaxial and equiaxial stretches (10%, 1 Hz). A new bioreactor was made to apply uniform/cyclic shear and tensile loadings. Three endothelial suggestive specific genes (vascular endothelial growth factor receptor-2 (VEGFR-2, also known as FLK-1), von Willebrand Factor (vWF) and vascular endothelial-cadherin (VE-cadherin)), and two smooth muscle genes (α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC)) were chosen for assessment of alteration in gene expression of endothelial cells and transdifferentiation toward smooth cells following load applications. Shear stress alone enhanced the endothelial gene expression significantly, while stretching alone was identified as a transdifferentiating factor. Cyclic equiaxial stretch contributed less to elevation of smooth muscle genes compared to uniaxial stretch. Cyclic shear stress in comparison to uniform shear stress concurrent with cyclic stretch was more influential on promotion of endothelial genes expression. Influence of different mechanical stimuli on gene expression may open a wider horizon to regulate functions of cell for tissue engineering purposes. © 2013 International Federation for Cell Biology.

  6. Gene expression and localization of two types of AQP5 in Xenopus tropicalis under hydration and dehydration.

    Science.gov (United States)

    Shibata, Yuki; Sano, Takahiro; Tsuchiya, Nobuhito; Okada, Reiko; Mochida, Hiroshi; Tanaka, Shigeyasu; Suzuki, Masakazu

    2014-07-01

    Two types of aquaporin 5 (AQP5) genes (aqp-xt5a and aqp-xt5b) were identified in the genome of Xenopus tropicalis by synteny comparison and molecular phylogenetic analysis. When the frogs were in water, AQP-xt5a mRNA was expressed in the skin and urinary bladder. The expression of AQP-xt5a mRNA was significantly increased in dehydrated frogs. AQP-xt5b mRNA was also detected in the skin and increased in response to dehydration. Additionally, AQP-xt5b mRNA began to be slightly expressed in the lung and stomach after dehydration. For the pelvic skin of hydrated frogs, immunofluorescence staining localized AQP-xt5a and AQP-xt5b to the cytoplasm of secretory cells of the granular glands and the apical plasma membrane of secretory cells of the small granular glands, respectively. After dehydration, the locations of both AQPs in their respective glands did not change, but AQP-xt5a was visualized in the cytoplasm of secretory cells of the small granular glands. For the urinary bladder, AQP-xt5a was observed in the apical plasma membrane and cytoplasm of a number of granular cells under normal hydration. After dehydration, AQP-xt5a was found in the apical membrane and cytoplasm of most granular cells. Injection of vasotocin into hydrated frogs did not induce these changes in the localization of AQP-xt5a in the small granular glands and urinary bladder, however. The results suggest that AQP-xt5a might be involved in water reabsorption from the urinary bladder during dehydration, whereas AQP-xt5b might play a role in water secretion from the small granular gland. Copyright © 2014 the American Physiological Society.

  7. Development of a radiation-responsive gene expression system

    International Nuclear Information System (INIS)

    Ogawa, Ryohei; Morii, Akihiro; Watanabe, Akihiko

    2013-01-01

    We have obtained a promoter enhancing expression of a gene of our interest connected downstream after activation in response to radiation stimulation and it could be used in radiogenetic therapy, a combination between radiotherapy and gene therapy. The promoter has been chosen out of a library of DNA fragments constructed by connecting the TATA box to randomly combined binding sequences of transcription factors that are activated in response to radiation. Although it was shown that the promoter activation was cell type specific, it turned out that radiation responsive promoters could be obtained for a different type of cells by using another set of transcription factor binding sequences, suggesting that the method would be feasible to obtain promoters functioning in any type of cells. Radiation reactivity of obtained promoters could be improved by techniques such as random introduction of point mutations. The improved promoters significantly enhanced expression of the luciferase gene connected downstream in response to radiation even in vivo, in addition, a gene cassette composed of one such promoter and the fcy::fur gene was confirmed useful for suicide gene therapy as shown in vitro simulation experiment, suggesting possible clinical application. (author)

  8. Effects of temperature on gene expression in embryos of the coral Montastraea faveolata

    Directory of Open Access Journals (Sweden)

    Randall Carly J

    2009-12-01

    Full Text Available Abstract Background Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. This study used cDNA microarrays to investigate transcriptional effects of thermal stress in embryos of the coral Montastraea faveolata. Embryos were exposed to 27.5°C, 29.0°C, and 31.5°C directly after fertilization. Differences in gene expression were measured after 12 and 48 hours. Results Analysis of differentially expressed genes indicated that increased temperatures may lead to oxidative stress, apoptosis, and a structural reconfiguration of the cytoskeletal network. Metabolic processes were downregulated, and the action of histones and zinc finger-containing proteins may have played a role in the long-term regulation upon heat stress. Conclusions Embryos responded differently depending on exposure time and temperature level. Embryos showed expression of stress-related genes already at a temperature of 29.0°C, but seemed to be able to counteract the initial response over time. By contrast, embryos at 31.5°C displayed continuous expression of stress genes. The genes that played a role in the response to elevated temperatures consisted of both highly conserved and coral-specific genes. These genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.

  9. Integrated Analyses of Gene Expression Profiles Digs out Common Markers for Rheumatic Diseases

    Science.gov (United States)

    Wang, Lan; Wu, Long-Fei; Lu, Xin; Mo, Xing-Bo; Tang, Zai-Xiang; Lei, Shu-Feng; Deng, Fei-Yan

    2015-01-01

    Objective Rheumatic diseases have some common symptoms. Extensive gene expression studies, accumulated thus far, have successfully identified signature molecules for each rheumatic disease, individually. However, whether there exist shared factors across rheumatic diseases has yet to be tested. Methods We collected and utilized 6 public microarray datasets covering 4 types of representative rheumatic diseases including rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, and osteoarthritis. Then we detected overlaps of differentially expressed genes across datasets and performed a meta-analysis aiming at identifying common differentially expressed genes that discriminate between pathological cases and normal controls. To further gain insights into the functions of the identified common differentially expressed genes, we conducted gene ontology enrichment analysis and protein-protein interaction analysis. Results We identified a total of eight differentially expressed genes (TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, PRF1), each associated with at least 3 of the 4 studied rheumatic diseases. Meta-analysis warranted the significance of the eight genes and highlighted the general significance of four genes (CX3CR1, LY96, TLR5, and PRF1). Protein-protein interaction and gene ontology enrichment analyses indicated that the eight genes interact with each other to exert functions related to immune response and immune regulation. Conclusion The findings support that there exist common factors underlying rheumatic diseases. For rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and osteoarthritis diseases, those common factors include TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, and PRF1. In-depth studies on these common factors may provide keys to understanding the pathogenesis and developing intervention strategies for rheumatic diseases. PMID:26352601

  10. Photobiomodulation changes type 1 collagen gene expression by pulp fibroblasts

    Science.gov (United States)

    Lourenço Ribeiro Vitor, Luciana; Tavares Oliveira Prado, Mariel; Lourenço Neto, Natalino; Cardoso de Oliveira, Rodrigo; Ferreira Santos, Carlos; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2018-06-01

    This study aimed to evaluate type 1 collagen (COL1) gene expression by human pulp fibroblasts from primary teeth (HPF) after the variation of photobiomodulation (PBM) parameters. HPF were obtained from a biorepository, used at 4th passage, and irradiated (InGaAlP—660 nm) varying the power and application time according to the following groups: G1: 1.2 J cm‑2–05 mW–10 s G2: 2.5 J cm‑2–05 mW–20 s G3: 3.7 J cm‑2–05 mW–30 s G4: 5.0 J cm‑2–05 mW–40 s G5: 6.2 J cm‑2–05 mW–50 s G6: 2.5 J cm‑2–10 mW–10 s G7: 3.7 J cm‑2–15 mW–10 s G8: 5.0 J cm‑2–20 mW–10 s G9: 6.2 J cm‑2–25 mW–10 s. The control group (G10) was not irradiated and maintained with DMEM  +  10% SFB. RT-PCR was used to evaluate COL1 gene expression at 6, 12, and 24 h after irradiation. Intra- and intergroup comparisons were performed by two-way ANOVA followed by Tukey test (p  differences among periods (p  differences (p  >  0.05). The energy densities from 2.5 to 5 J cm‑2, regardless of the variation in PBM parameters, biomodulated the COL1 gene expression. At the energy density of 6.2 J cm‑2, longer application time and smaller power changed the pattern of COL1 gene expression by pulp fibroblasts from human primary teeth.

  11. Expression pattern of salt tolerance-related genes in Aegilops cylindrica.

    Science.gov (United States)

    Arabbeigi, Mahbube; Arzani, Ahmad; Majidi, Mohammad Mahdi; Sayed-Tabatabaei, Badraldin Ebrahim; Saha, Prasenjit

    2018-02-01

    Aegilops cylindrica , a salt-tolerant gene pool of wheat, is a useful plant model for understanding mechanism of salt tolerance. A salt-tolerant USL26 and a salt-sensitive K44 genotypes of A. cylindrica , originating from Uremia Salt Lake shores in Northwest Iran and a non-saline Kurdestan province in West Iran, respectively, were identified based on screening evaluation and used for this work. The objective of the current study was to investigate the expression patterns of four genes related to ion homeostasis in this species. Under treatment of 400 mM NaCl, USL26 showed significantly higher root and shoot dry matter levels and K + concentrations, together with lower Na + concentrations than K44 genotype. A. cylindrica HKT1;5 ( AecHKT1;5 ), SOS1 ( AecSOS1 ), NHX1 ( AecNHX1 ) and VP1 ( AecVP1 ) were partially sequenced to design each gene specific primer. Quantitative real-time PCR showed a differential expression pattern of these genes between the two genotypes and between the root and shoot tissues. Expressions of AecHKT1;5 and AecSOS1 was greater in the roots than in the shoots of USL26 while AecNHX1 and AecVP1 were equally expressed in both tissues of USL26 and K44. The higher transcripts of AecHKT1;5 in the roots versus the shoots could explain both the lower Na + in the shoots and the much lower Na + and higher K + concentrations in the roots/shoots of USL26 compared to K44. Therefore, the involvement of AecHKT1;5 in shoot-to-root handover of Na + in possible combination with the exclusion of excessive Na + from the root in the salt-tolerant genotype are suggested.

  12. Urinary exosomes: a novel means to non-invasively assess changes in renal gene and protein expression.

    Directory of Open Access Journals (Sweden)

    Silvia Spanu

    Full Text Available BACKGROUND: In clinical practice, there is a lack of markers for the non-invasive diagnosis and follow-up of kidney disease. Exosomes are membrane vesicles, which are secreted from their cells of origin into surrounding body fluids and contain proteins and mRNA which are protected from digestive enzymes by a cell membrane. METHODS: Toxic podocyte damage was induced by puromycin aminonucleoside in rats (PAN. Urinary exosomes were isolated by ultracentrifugation at different time points during the disease. Exosomal mRNA was isolated, amplified, and the mRNA species were globally assessed by gene array analysis. Tissue-specific gene and protein expression was assessed by RT-qPCR analysis and immunohistochemistry. RESULTS: Gene array analysis of mRNA isolated from urinary exosomes revealed cystatin C mRNA as one of the most highly regulated genes. Its gene expression increased 7.5-fold by day 5 and remained high with a 1.9-fold increase until day 10. This was paralleled by a 2-fold increase in cystatin C mRNA expression in the renal cortex. Protein expression in the kidneys also dramatically increased with de novo expression of cystatin C in glomerular podocytes in parts of the proximal tubule and the renal medulla. Urinary excretion of cystatin C increased approximately 2-fold. CONCLUSION: In this proof-of-concept study, we could demonstrate that changes in urinary exosomal cystatin C mRNA expression are representative of changes in renal mRNA and protein expression. Because cells lining the urinary tract produce urinary exosomal cystatin C mRNA, it might be a more specific marker of renal damage than glomerular-filtered free cystatin C.

  13. Dynamic gene expression response to altered gravity in human T cells.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-07-12

    We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.

  14. Adding a purple corn extract in rats supplemented with chia oil decreases gene expression of SREBP-1c and retains Δ5 and Δ6 hepatic desaturase activity, unmodified the hepatic lipid profile.

    Science.gov (United States)

    Reyna Gallegos, Sixto; Torres Arrunátegui, Génesis; Valenzuela, Rodrigo; Rincón-Cervera, Miguel Ángel; Villanueva Espinoza, María Elena

    2018-05-01

    Flavonoids upregulate gene expression of PPAR-α and underregulate the gene expression of SREBP-1c, and their intake increases the plasmatic concentration of n-3 LC-PUFAs. However, the biological mechanisms underlying these effects have not been elucidated. In this work, the effect of oral supplementation of ALA from chia (Salvia hispanica L.) seed oil and anthocyanins from a purple corn extract (PCE) on gene expression of SREBP-1c, PPAR-α and Δ5 and Δ6 desaturases (Δ5D and Δ6D), the activity of these enzymes in the liver as well as the hepatic lipid profile were evaluated in thirty-six female Sprague Dawley rats whose diet was supplemented with olive oil (OL), chia oil (CH), olive oil and PCE (OL + PCE) or chia oil and PCE (CH + PCE). Gene expression of PPAR-α was significantly higher when supplemented with CH and CH + PCE, SREBP-1c gene expression was higher when supplemented with chia oil. CH supplementation enhanced Δ5D expression whereas no significant differences between treatments were observed concerning Δ6D gene expression. Activities of both desaturases were increased by including olive oil (OL + PCE and OL), and they were found to be higher in CH + PCE respect to CH for both enzymes. The ALA and n-3 LCPUFAs hepatic content was higher with CH, decreasing the levels of AA and n-6 LCPUFAs. It is concluded that the joint action of flavonoids such as anthocyanins and ALA show an anti-adipogenic effect. Desaturase activity was inhibited by ALA and kept by the anthocyanins from PCE, thus anthocyanins would exert a protective effect on the desaturase activity but they would not affect on its gene expression, however, high doses of ALA increased the production of its metabolites, masking the effect of PCE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    International Nuclear Information System (INIS)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-01-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  16. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    Energy Technology Data Exchange (ETDEWEB)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-10-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  17. Using PCR to Target Misconceptions about Gene Expression

    Directory of Open Access Journals (Sweden)

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  18. Effect of Amaranthus on Advanced Glycation End-Products Induced Cytotoxicity and Proinflammatory Cytokine Gene Expression in SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Warisa Amornrit

    2015-09-01

    Full Text Available Amaranthus plants, or spinach, are used extensively as a vegetable and are known to possess medicinal properties. Neuroinflammation and oxidative stress play a major role in the pathogenesis of many neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. Advanced glycation end-products (AGEs cause cell toxicity in the human neuronal cell line, SH-SY5Y, through an increase in oxidative stress, as shown by reducing cell viability and increasing cell toxicity in a dose-dependent manner. We found that preincubation of SH-SY5Y cells with either petroleum ether, dichloromethane or methanol extracts of A. lividus and A. tricolor dose-dependently attenuated the neuron toxicity caused by AGEs treatment. Moreover, the results showed that A. lividus and A. tricolor extracts significantly downregulated the gene expression of the pro-inflammatory cytokines, TNF-α, IL-1 and IL-6 genes in AGEs-induced cells. We concluded that A. lividus and A. tricolor extracts not only have a neuroprotective effect against AGEs toxicity, but also have anti-inflammatory activity by reducing pro-inflammatory cytokine gene expression. This suggests that Amaranthus may be useful for treating chronic inflammation associated with neurodegenerative disorders.

  19. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii).

    Science.gov (United States)

    Cao, Heping; Zhang, Lin; Tan, Xiaofeng; Long, Hongxu; Shockey, Jay M

    2014-01-01

    Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii), whose seeds are rich in novel TAG with a wide range of industrial applications. The objectives of this study were to identify OLE genes, classify OLE proteins and analyze OLE gene expression in tung trees. We identified five tung tree OLE genes coding for small hydrophobic proteins. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that the five tung OLE genes represented the five OLE subfamilies and all contained the "proline knot" motif (PX5SPX3P) shared among 65 OLE from 19 tree species, including the sequenced genomes of Prunus persica (peach), Populus trichocarpa (poplar), Ricinus communis (castor bean), Theobroma cacao (cacao) and Vitis vinifera (grapevine). Tung OLE1, OLE2 and OLE3 belong to the S type and OLE4 and OLE5 belong to the SM type of Arabidopsis OLE. TaqMan and SYBR Green qPCR methods were used to study the differential expression of OLE genes in tung tree tissues. Expression results demonstrated that 1) All five OLE genes were expressed in developing tung seeds, leaves and flowers; 2) OLE mRNA levels were much higher in seeds than leaves or flowers; 3) OLE1, OLE2 and OLE3 genes were expressed in tung seeds at much higher levels than OLE4 and OLE5 genes; 4) OLE mRNA levels rapidly increased during seed development; and 5) OLE gene expression was well-coordinated with tung oil accumulation in the seeds. These results suggest that tung OLE genes 1-3 probably play major roles in tung oil accumulation and/or oil body development. Therefore, they might be preferred targets for tung oil engineering in transgenic plants.

  20. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii.

    Directory of Open Access Journals (Sweden)

    Heping Cao

    Full Text Available Triacylglycerols (TAG are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii, whose seeds are rich in novel TAG with a wide range of industrial applications. The objectives of this study were to identify OLE genes, classify OLE proteins and analyze OLE gene expression in tung trees. We identified five tung tree OLE genes coding for small hydrophobic proteins. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that the five tung OLE genes represented the five OLE subfamilies and all contained the "proline knot" motif (PX5SPX3P shared among 65 OLE from 19 tree species, including the sequenced genomes of Prunus persica (peach, Populus trichocarpa (poplar, Ricinus communis (castor bean, Theobroma cacao (cacao and Vitis vinifera (grapevine. Tung OLE1, OLE2 and OLE3 belong to the S type and OLE4 and OLE5 belong to the SM type of Arabidopsis OLE. TaqMan and SYBR Green qPCR methods were used to study the differential expression of OLE genes in tung tree tissues. Expression results demonstrated that 1 All five OLE genes were expressed in developing tung seeds, leaves and flowers; 2 OLE mRNA levels were much higher in seeds than leaves or flowers; 3 OLE1, OLE2 and OLE3 genes were expressed in tung seeds at much higher levels than OLE4 and OLE5 genes; 4 OLE mRNA levels rapidly increased during seed development; and 5 OLE gene expression was well-coordinated with tung oil accumulation in the seeds. These results suggest that tung OLE genes 1-3 probably play major roles in tung oil accumulation and/or oil body development. Therefore, they might be preferred targets for tung oil engineering in transgenic plants.

  1. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  2. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  3. Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii

    Directory of Open Access Journals (Sweden)

    Plemenitaš Ana

    2007-08-01

    Full Text Available Abstract Background Fluctuations in external salinity force eukaryotic cells to respond by changes in the gene expression of proteins acting in protective biochemical processes, thus counteracting the changing osmotic pressure. The high-osmolarity glycerol (HOG signaling pathway is essential for the efficient up-regulation of the osmoresponsive genes. In this study, the differential gene expression of the extremely halotolerant black yeast Hortaea werneckii was explored. Furthermore, the interaction of mitogen-activated protein kinase HwHog1 and RNA polymerase II with the chromatin in cells adapted to an extremely hypersaline environment was analyzed. Results A cDNA subtraction library was constructed for H. werneckii, adapted to moderate salinity or an extremely hypersaline environment of 4.5 M NaCl. An uncommon osmoresponsive set of 95 differentially expressed genes was identified. The majority of these had not previously been connected with the adaptation of salt-sensitive S. cerevisiae to hypersaline conditions. The transcriptional response in hypersaline-adapted and hypersaline-stressed cells showed that only a subset of the identified genes responded to acute salt-stress, whereas all were differentially expressed in adapted cells. Interaction with HwHog1 was shown for 36 of the 95 differentially expressed genes. The majority of the identified osmoresponsive and HwHog1-dependent genes in H. werneckii have not been previously reported as Hog1-dependent genes in the salt-sensitive S. cerevisiae. The study further demonstrated the co-occupancy of HwHog1 and RNA polymerase II on the chromatin of 17 up-regulated and 2 down-regulated genes in 4.5 M NaCl-adapted H. werneckii cells. Conclusion Extremely halotolerant H. werneckii represents a suitable and highly relevant organism to study cellular responses to environmental salinity. In comparison with the salt-sensitive S. cerevisiae, this yeast shows a different set of genes being expressed at

  4. In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver

    International Nuclear Information System (INIS)

    Donati, Alessio; Ventruti, Annamaria; Cavallini, Gabriella; Masini, Matilde; Vittorini, Simona; Chantret, Isabelle; Codogno, Patrice; Bergamini, Ettore

    2008-01-01

    Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12 mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis

  5. Stochastic gene expression in Arabidopsis thaliana.

    Science.gov (United States)

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  6. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  7. Multiscale Embedded Gene Co-expression Network Analysis.

    Science.gov (United States)

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  8. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  9. Dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppressed the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor.

    Science.gov (United States)

    Lee, Hyun Jae; Park, Jin Sung; Yoon, Yong Pill; Shin, Ye Jin; Lee, Sang Kook; Kim, Yeong Shik; Hong, Jang-Hee; Son, Kun Ho; Lee, Choong Jae

    2015-05-15

    The root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine. We investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. Confluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. (1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10(-5) M (p Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  11. The evolution of gene expression in primates

    OpenAIRE

    Tashakkori Ghanbarian, Avazeh

    2015-01-01

    The evolution of a gene’s expression profile is commonly assumed to be independent of its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between expression of neighboring genes in extant taxa. Indeed, in all eukaryotic genomes, genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their e...

  12. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: A systematic expression analysis

    International Nuclear Information System (INIS)

    Hamm, Alexander; Knuechel, Ruth; Dahl, Edgar; Veeck, Juergen; Bektas, Nuran; Wild, Peter J; Hartmann, Arndt; Heindrichs, Uwe; Kristiansen, Glen; Werbowetski-Ogilvie, Tamra; Del Maestro, Rolando

    2008-01-01

    The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by AMBP – and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis. We systematically investigated differential gene expression of the ITIH gene family, as well as AMBP and the interacting partner TNFAIP6 in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry. We found that ITIH genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, ITIH genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose ITIH2 expression in human breast cancer. Loss of ITIH2 expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule. Altogether, this is the first systematic analysis on the differential expression of ITIH genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies

  13. A robust approach based on Weibull distribution for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Gong Binsheng

    2011-05-01

    Full Text Available Abstract Background Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have been annotated into functional categories. As a result, evaluating the performance of clustering methods in terms of the functional consistency of the resulting clusters is of great interest. Results In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method, a robust approach for clustering gene expression data, in which the gene expressions of individual genes are considered as the random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the performance of WDCM with k-means and Self Organizing Map (SOM using functional annotation information given by the Gene Ontology (GO. The results showed that the functional annotation ratios of WDCM are higher than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness of WDCM is also evaluated on the incomplete data sets. Conclusions The results demonstrate that our WDCM produces clusters

  14. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  15. Biofilm-Associated Gene Expression in Staphylococcus pseudintermedius on a Variety of Implant Materials.

    Science.gov (United States)

    Crawford, Evan C; Singh, Ameet; Gibson, Thomas W G; Scott Weese, J

    2016-05-01

    To evaluate the expression of biofilm-associated genes in Staphylococcus pseudintermedius on multiple clinically relevant surfaces. In vitro experimental study. Two strains of methicillin-resistant S. pseudintermedius isolated from clinical infections representing the most common international isolates. A quantitative polymerase chain reaction (qPCR) assay for expression of genes related to biofilm initial adhesion, formation/maturation, antimicrobial resistance, and intracellular communication was developed and validated. S. pseudintermedius biofilms were grown on 8 clinically relevant surfaces (polymethylmethacrylate, stainless steel, titanium, latex, silicone, polydioxanone, polystyrene, and glass) and samples of logarithmic and stationary growth phases were collected. Gene expression in samples was measured by qPCR. Significant differences in gene expression were identified between surfaces and between bacterial strains for most gene/strain/surface combinations studied. Expression of genes responsible for production of extracellular matrix were increased in biofilms. Expression of genes responsible for initial adhesion and intracellular communication was markedly variable. Antimicrobial resistance gene expression was increased on multiple surfaces, including stainless steel and titanium. A method for evaluation of expression of multiple biofilm-associated genes in S. pseudintermedius was successfully developed and applied to the study of biofilms on multiple surfaces. Variations in expression of these genes have a bearing on understanding the development and treatment of implant-associated biofilm infections and will inform future clinical research. © Copyright 2016 by The American College of Veterinary Surgeons.

  16. Selection of reference genes for expression analysis of Kumamoto and Portuguese oysters and their hybrid

    Science.gov (United States)

    Yan, Lulu; Su, Jiaqi; Wang, Zhaoping; Yan, Xiwu; Yu, Ruihai

    2017-12-01

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a rapid and reliable technique which has been widely used to quantifying gene transcripts (expression analysis). It is also employed for studying heterosis, hybridization breeding and hybrid tolerability of oysters, an ecologically and economically important taxonomic group. For these studies, selection of a suitable set of housekeeping genes as references is crucial for correct interpretation of qRT-PCR data. To identify suitable reference genes for oysters during low temperature and low salinity stresses, we analyzed twelve genes from the gill tissue of Crassostrea sikamea (SS), Crassostrea angulata (AA) and their hybrid (SA), which included three ribosomal genes, 28S ribosomal protein S5 ( RPS5), ribosomal protein L35 ( RPL35), and 60S ribosomal protein L29 ( RPL29); three structural genes, tubulin gamma ( TUBγ), annexin A6 and A7 ( AA6 and AA7); three metabolic pathway genes, ornithine decarboxylase ( OD), glyceraldehyde-3-phosphate dehydrogenase ( GAPDH) and glutathione S-transferase P1 ( GSP); two transcription factors, elongation factor 1 alpha and beta ( EF1α and EF1β); and one protein synthesis gene (ubiquitin ( UBQ). Primers specific for these genes were successfully developed for the three groups of oysters. Three different algorithms, geNorm, NormFinder and BestKeeper, were used to evaluate the expression stability of these candidate genes. BestKeeper program was found to be the most reliable. Based on our analysis, we found that the expression of RPL35 and EF1α was stable under low salinity stress, and the expression of OD, GAPDH and EF1α was stable under low temperature stress in hybrid (SA) oyster; the expression of RPS5 and GAPDH was stable under low salinity stress, and the expression of RPS5, UBQ, GAPDH was stable under low temperature stress in SS oyster; the expression of RPS5, GAPDH, EF1β and AA7 was stable under low salinity stress, and the expression of RPL35, EF1α, GAPDH

  17. Structure and Expression Analyses of SVA Elements in Relation to Functional Genes

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Kwon

    2013-09-01

    Full Text Available SINE-VNTR-Alu (SVA elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5' untranslated region (UTR of HGSNAT (SVA-B, MRGPRX3 (SVA-D, HYAL1 (SVA-F, TCHH (SVA-F, and ATXN2L (SVA-F genes, while some elements are observed in the 3'UTR of SPICE1 (SVA-B, TDRKH (SVA-C, GOSR1 (SVA-D, BBS5 (SVA-D, NEK5 (SVA-D, ABHD2 (SVA-F, C1QTNF7 (SVA-F, ORC6L (SVA-F, TMEM69 (SVA-F, and CCDC137 (SVA-F genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C, ALOX5 (SVA-D, PDS5B (SVA-D, and ABCA10 (SVA-F genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA of the TDRKH gene appeared to be ubiquitous. Taken together, these data suggest that SVA elements cause transcript isoforms that contribute to modulation of gene regulation in various human tissues.

  18. Positive emotion-specific changes in the gene expression profile of tickled rats.

    Science.gov (United States)

    Hori, Miyo; Hayashi, Takashi; Nakagawa, Yoshimi; Sakamoto, Shigeko; Urayama, Osamu; Murakami, Kazuo

    2009-01-01

    The aim of this study was to investigate changes in gene expression after tactile stimulation (tickling) accompanied by positive emotion in the adolescent rat brain. We observed a positive emotional response (50-kHz ultrasonic vocalizations) after tickling using a modified version of the Panksepp method, and then comprehensively compared gene expression levels in the hypothalamus of the tickled rats and control rats using the microarray technique. After 4 weeks of stimulation, the expression levels of 321 of the 41,012 genes (including transcripts) were changed; 136 genes were up-regulated (>1.5-fold) and 185 were down-regulated (>0.67-fold) in the tickled rat group. Upon ontology analysis, the up-regulated genes were assigned to the following Gene Ontology (GO) terms: feeding behavior, neuropeptide signaling pathway, biogenic amine biosynthesis and catecholamine biosynthesis. Down-regulated genes were not assigned to any GO term categorized as a biological process. In conclusion, repeated tickling stimulation with positive emotion affected neuronal circuitry directly and/or indirectly, and altered the expression of genes related to the regulation of feeding in the adolescent rat hypothalamus.

  19. Gene expression of osteogenic factors following gene therapy in mandibular lengthening.

    Science.gov (United States)

    Wu, Guoping; Zhou, Bin; Hu, Chunbing; Li, Shaolan

    2015-03-01

    This study investigated the effect of gene therapy on the expression of osteogenic mediators in mandibular distraction osteogenesis rabbits. Bilateral mandibular osteotomies were performed in 45 New-Zealand rabbits. After a latency of 3 days, the mandibles were elongated using distractors with a rate of 0.8 mm/d for 7 days. After the completion of distraction, the rabbits were randomly divided into 5 groups: 2 μg (0.1 μg/μL) of recombinant plasmid pIRES-hVEGF165-hBMP-2, recombinant plasmid pIRES-hBMP2, recombinant plasmid pIRES-hVEGF165, pIRES, and the same volume of normal saline were injected into the distraction gap of groups A, B, C, D, and E, respectively, followed by electroporation. Three animals were killed at the 7th, 14th, and 28th day after gene transfected in different groups, respectively. The lengthened mandibles were harvested and processed for immunohistochemical examinations; the mean optic densities (MODs) and integral optical density of bone morphogenetic protein (BMP-2) and transforming growth factor β1 (TGF-β1)-positive cells were measured by CMIAS-2001A computerized image analyzer. The data were analyzed with SPSS (SPSS Inc, Chicago, IL). Bone morphogenetic protein 2 and TGF-β1 staining was mainly located in inflammatory cells, monocytes, fibroblasts, osteoblasts, osteocytes, and chondrocytes in the distraction zones. Their strongest expression reached to the peak at the seventh day and decreased at the 14th day of consolidation stage; at the 28th day, they expressed weakly. Image analysis results show that, at the seventh day, the expression of BMP-2 in group B (0.26 ± 0.03, 0.36 ± 0.02) was the strongest; there was significant difference among them (P < 0.01), whereas the expression of TGF-β1 in group C (0.38 ± 0.06, 1.05 ± 0.19) is strongest followed by group A (0.34 ± 0.05, 0.95 ± 0.16) and B (0.33 ± 0.07, 0.90 ± 0.19). At every time point, the level of expression of BMP-2 and TGF-β1 in gene therapy groups (groups A, B, and

  20. A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series

    Directory of Open Access Journals (Sweden)

    Madeira Sara C

    2009-06-01

    Full Text Available Abstract Background The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. Methods In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters. Results We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of

  1. Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields

    International Nuclear Information System (INIS)

    Sakurai, Tomonori; Narita, Eijiro; Miyakoshi, Junji; Kiyokawa, Tomoko; Suzuki, Yukihisa; Taki, Masao

    2011-01-01

    The increasing use of mobile phones has aroused public concern regarding the potential health risks of radiofrequency (RF) fields. We investigated the effects of exposure to RF fields (2.45 GHz, continuous wave) at specific absorption rate (SAR) of 1, 5, and 10 W/kg for 1, 4, and 24 h on gene expression in a normal human glial cell line, SVGp12, using DNA microarray. Microarray analysis revealed 23 assigned gene spots and 5 non-assigned gene spots as prospective altered gene spots. Twenty-two genes out of the 23 assigned gene spots were further analyzed by reverse transcription-polymerase chain reaction to validate the results of microarray, and no significant alterations in gene expression were observed. Under the experimental conditions used in this study, we found no evidence that exposure to RF fields affected gene expression in SVGp12 cells. (author)

  2. Changes in gene expression in chronic allergy mouse model exposed to natural environmental PM2.5-rich ambient air pollution.

    Science.gov (United States)

    Ouyang, Yuhui; Xu, Zhaojun; Fan, Erzhong; Li, Ying; Miyake, Kunio; Xu, Xianyan; Zhang, Luo

    2018-04-20

    Particulate matter (PM) air pollution has been associated with an increase in the incidence of chronic allergic diseases; however, the mechanisms underlying the effect of exposure to natural ambient air pollution in chronic allergic diseases have not been fully elucidated. In the present study, we aimed to investigate the cellular responses induced by exposure to natural ambient air pollution, employing a mouse model of chronic allergy. The results indicated that exposure to ambient air pollution significantly increased the number of eosinophils in the nasal mucosa. The modulation of gene expression profile identified a set of regulated genes, and the Triggering Receptor Expressed on Myeloid cells1(TREM1) signaling canonical pathway was increased after exposure to ambient air pollution. In vitro, PM2.5 increased Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) and nuclear factor (NF)-κB signaling pathway activation in A549 and HEK293 cell cultures. These results suggest a novel mechanism by which, PM2.5 in ambient air pollution may stimulate the innate immune system through the PM2.5-Nod1-NF-κB axis in chronic allergic disease.

  3. The Arabidopsis co-expression tool (act): a WWW-based tool and database for microarray-based gene expression analysis

    DEFF Research Database (Denmark)

    Jen, C. H.; Manfield, I. W.; Michalopoulos, D. W.

    2006-01-01

    be examined using the novel clique finder tool to determine the sets of genes most likely to be regulated in a similar manner. In combination, these tools offer three levels of analysis: creation of correlation lists of co-expressed genes, refinement of these lists using two-dimensional scatter plots......We present a new WWW-based tool for plant gene analysis, the Arabidopsis Co-Expression Tool (act) , based on a large Arabidopsis thaliana microarray data set obtained from the Nottingham Arabidopsis Stock Centre. The co-expression analysis tool allows users to identify genes whose expression...

  4. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  5. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    Full Text Available Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination. We identified these MEGs by developing a bioinformatics tool (GenFrag which can directly determine the identities of transcript-derived fragments from (i their size and (ii which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1

  6. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme.

    Science.gov (United States)

    Tucker, A S; Al Khamis, A; Sharpe, P T

    1998-08-01

    Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. Bmp4 has been identified as a candidate signalling molecule in these interactions, initially as an epithelial signal and then later at the bud stage as a mesenchymal signal (Vainio et al. [1993] Cell 75:45-58). A target gene for Bmp4 signalling is the homeobox gene Msx-1, identified by the ability of recombinant Bmp4 protein to induce expression in mesenchyme. There is, however, no evidence that Bmp4 is the endogenous inducer of Msx-1 expression. Msx-1 and Bmp-4 show dynamic, interactive patterns of expression in oral epithelium and ectomesenchyme during the early stages of tooth development. In this study, we compare the temporal and spatial expression of these two genes to determine whether the changing expression patterns of these genes are consistent with interactions between the two molecules. We show that changes in Bmp-4 expression precede changes in Msx-1 expression. At embryonic day (E)10.5-E11.0, expression patterns are consistent with BMP4 from the epithelium, inducing or maintaining Msx-1 in underlying mesenchyme. At E11.5, Bmp-4 expression shifts from epithelium to mesenchyme and is rapidly followed by localised up-regulation of Msx-1 expression at the sites of Bmp-4 expression. Using cultured explants of developing mandibles, we confirm that exogenous BMP4 is capable of replacing the endogenous source in epithelium and inducing Msx-1 gene expression in mesenchyme. By using noggin, a BMP inhibitor, we show that endogenous Msx-1 expression can be inhibited at E10.5 and E11.5, providing the first evidence that endogenous Bmp-4 from the epithelium is responsible for regulating the early spatial expression of Msx-1. We also show that the mesenchymal shift in Bmp-4 is responsible for up-regulating Msx-1 specifically at the sites of future tooth formation. Thus, we establish that a reciprocal series of interactions act to restrict expression of both genes to future

  7. Selection of Reliable Reference Genes for Gene Expression Studies in the Biofuel Plant Jatropha curcas Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2013-12-01

    Full Text Available Jatropha curcas is a promising renewable feedstock for biodiesel and bio-jet fuel production. To study gene expression in Jatropha in different tissues throughout development and under stress conditions, we examined a total of 11 typical candidate reference genes using real-time quantitative polymerase chain reaction (RT-qPCR analysis, which is widely used for validating transcript levels in gene expression studies. The expression stability of these candidate reference genes was assessed across a total of 20 samples, including various tissues at vegetative and reproductive stages and under desiccation and cold stress treatments. The results obtained using software qBasePLUS showed that the top-ranked reference genes differed across the sample subsets. The combination of actin, GAPDH, and EF1α would be appropriate as a reference panel for normalizing gene expression data across samples at different developmental stages; the combination of actin, GAPDH, and TUB5 should be used as a reference panel for normalizing gene expression data across samples under various abiotic stress treatments. With regard to different developmental stages, we recommend the use of actin and TUB8 for normalization at the vegetative stage and GAPDH and EF1α for normalization at the reproductive stage. For abiotic stress treatments, we recommend the use of TUB5 and TUB8 for normalization under desiccation stress and GAPDH and actin for normalization under cold stress. These results are valuable for future research on gene expression during development or under abiotic stress in Jatropha. To our knowledge, this is the first report on the stability of reference genes in Jatropha.

  8. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    International Nuclear Information System (INIS)

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-01

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  9. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses