WorldWideScience

Sample records for a4 hydrolase inhibitors

  1. Discovery of Leukotriene A4 Hydrolase Inhibitors Using Metabolomics Biased Fragment Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.; Mamat, B; Magnusson, O; Christensen, J; Haraldsson, M; Mishra, R; Pease, B; Hansen, E; Singh, J; et. al.

    2009-01-01

    We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein-protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4H representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors.

  2. The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors.

    Science.gov (United States)

    Menard, A; Papini, E; Mock, M; Montecucco, C

    1996-01-01

    The lethal factor of Bacillus anthracis is central to the pathogenesis of anthrax. Its mechanism of action is still unknown. Recently, on the basis of sequence similarities, we suggested that lethal factor might act similarly to leukotriene A4 hydrolase (LTA4), a bifunctional enzyme also endowed with a metallopeptidase activity. Here we show that some inhibitors of the LTA4 hydrolase and metallopeptidase activities of LTA4 hydrolase also affect the cytotoxicity of the anthrax lethal factor on macrophage cell lines, without interfering with the ability of the lethal factor to enter cells. These results support the proposal that anthrax lethal factor might display in the cytosol of intoxicated cells a peptidase activity similar to that of LTA4 hydrolase. PMID:8973585

  3. Potent Urea and Carbamate Inhibitors of Soluble Epoxide Hydrolases

    Science.gov (United States)

    Morisseau, Christophe; Goodrow, Marvin H.; Dowdy, Deanna; Zheng, Jiang; Greene, Jessica F.; Sanborn, James R.; Hammock, Bruce D.

    1999-08-01

    The soluble epoxide hydrolase (sEH) plays a significant role in the biosynthesis of inflammation mediators as well as xenobiotic transformations. Herein, we report the discovery of substituted ureas and carbamates as potent inhibitors of sEH. Some of these selective, competitive tightbinding inhibitors with nanomolar Ki values interacted stoichiometrically with the homogenous recombinant murine and human sEHs. These inhibitors enhance cytotoxicity of trans-stilbene oxide, which is active as the epoxide, but reduce cytotoxicity of leukotoxin, which is activated by epoxide hydrolase to its toxic diol. They also reduce toxicity of leukotoxin in vivo in mice and prevent symptoms suggestive of acute respiratory distress syndrome. These potent inhibitors may be valuable tools for testing hypotheses of involvement of diol and epoxide lipids in chemical mediation in vitro or in vivo systems.

  4. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2014-12-01

    Full Text Available Bile salt hydrolase (BSH, a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals.

  5. A remarkable activity of human leukotriene A4 hydrolase (LTA4H) toward unnatural amino acids.

    Science.gov (United States)

    Byzia, Anna; Haeggström, Jesper Z; Salvesen, Guy S; Drag, Marcin

    2014-05-01

    Leukotriene A4 hydrolase (LTA4H--EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 10(5) M(-1) s(-1)) as compared to L-Arg (1.5 × 10(3) M(-1) s(-1)). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H.

  6. Crystallization and preliminary X-ray crystallographic studies of recombinant human leukotriene A4 hydrolase complexed with bestatin.

    Science.gov (United States)

    Tsuge, H; Ago, H; Aoki, M; Furuno, M; Noma, M; Miyano, M; Minami, M; Izumi, T; Shimizu, T

    1994-05-20

    Recombinant human leukotriene A4 hydrolase complexed with bestatin, an inhibitor of metalloprotease, has been crystallized by the hanging drop vapor diffusion method using 0.1 M phosphate buffer (pH 6.5) and 50 to 54% saturated ammonium sulfate. The orthorhombic crystals belong to the space group I222 or I2(1)2(1)2(1) with unit cell dimensions of a = 273.6 A, b = 261.3 A and c = 52.9 A. They diffract beyond 2.5 A resolution and a native data set up to 3 A resolution has been collected on an imaging plate Weissenberg camera using synchrotron radiation.

  7. Discovery of triterpenoids as reversible inhibitors of α/β-hydrolase domain containing 12 (ABHD12.

    Directory of Open Access Journals (Sweden)

    Teija Parkkari

    Full Text Available BACKGROUND: α/β-Hydrolase domain containing (ABHD12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract. In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG. Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. CONCLUSIONS/SIGNIFICANCE: We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first

  8. Discovery of Triterpenoids as Reversible Inhibitors of α/β-hydrolase Domain Containing 12 (ABHD12)

    Science.gov (United States)

    Parkkari, Teija; Haavikko, Raisa; Laitinen, Tuomo; Navia-Paldanius, Dina; Rytilahti, Roosa; Vaara, Miia; Lehtonen, Marko; Alakurtti, Sami; Yli-Kauhaluoma, Jari; Nevalainen, Tapio; Savinainen, Juha R.; Laitinen, Jarmo T.

    2014-01-01

    Background α/β-hydrolase domain containing (ABHD)12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract). In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG). Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. Methodology/Principal Findings Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR) data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. Conclusions/Significance We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first pharmacophore

  9. In silico modeling of the molecular structure and binding of leukotriene A4 into leukotriene A4 hydrolase

    CERN Document Server

    Paz, Paula B; Estrada, Mario R; Martinez, Juan C Garro

    2012-01-01

    A combined molecular docking and molecular structure in silico analysis on the substrate and product of leukotriene A4 hydrolase (LTA4H) was performed. The molecular structures of the substrate leukotriene A4 (LTA4) and product leukotirene B4 (LTB4) were studied through Density Functional Theory (DFT) calculations at the B3LYP/6-31+G(d) level of theory in both, gas and condensed phases. The whole LTB4 molecule was divided into three fragments (hydrophobic tail, triene motif, and a polar acidic group) which were subjected to a full conformational study employing the most stable conformations of them to build conformers of the complete molecule and geometry optimize further. LTA4 conformers structures were modeled from the LTB4 minimum energy conformers. Both, protonated and deprotonated species of LTA4 and LTB4, were analyzed according to pKa values founded in the literature. Finally, a binding model of LTA4 with LTA4 hydrolase is proposed according to docking results which show intermolecular interactions tha...

  10. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants.

    Science.gov (United States)

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ9-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted. PMID:26630956

  11. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.; Morisseau, Christophe; Hammock, Bruce D.; Zhu, Zhengxiang; Rinderspacher, Alison; Deng, Shi-Xian [UCD; (LSU); (Columbia)

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  12. Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation

    Science.gov (United States)

    Davis, Benjamin B.; Thompson, David A.; Howard, Laura L.; Morisseau, Christophe; Hammock, Bruce D.; Weiss, Robert H.

    2002-02-01

    Atherosclerosis, in its myriad incarnations the foremost killer disease in the industrialized world, is characterized by aberrant proliferation of vascular smooth muscle (VSM) cells in part as a result of the recruitment of inflammatory cells to the blood vessel wall. The epoxyeicosatrienoic acids are synthesized from arachidonic acid in a reaction catalyzed by the cytochrome P450 system and are vasoactive substances. Metabolism of these compounds by epoxide hydrolases results in the formation of compounds that affect the vasculature in a pleiotropic manner. As an outgrowth of our observations that urea inhibitors of the soluble epoxide hydrolase (sEH) reduce blood pressure in spontaneously hypertensive rats as well as the findings of other investigators that these compounds possess antiinflammatory actions, we have examined the effect of sEH inhibitors on VSM cell proliferation. We now show that the sEH inhibitor 1-cyclohexyl-3-dodecyl urea (CDU) inhibits human VSM cell proliferation in a dose-dependent manner and is associated with a decrease in the level of cyclin D1. In addition, cis-epoxyeicosatrienoic acid mimics the growth-suppressive activity of CDU; there is no evidence of cellular toxicity or apoptosis in CDU-treated cells when incubated with 20 μM CDU for up to 48 h. These results, in light of the antiinflammatory and antihypertensive properties of these compounds that have been demonstrated already, suggest that the urea class of sEH inhibitors may be useful for therapy for diseases such as hypertension and atherosclerosis characterized by exuberant VSM cell proliferation and vascular inflammation.

  13. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa.

    Science.gov (United States)

    Kitamura, Seiya; Hvorecny, Kelli L; Niu, Jun; Hammock, Bruce D; Madden, Dean R; Morisseau, Christophe

    2016-05-26

    The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application. PMID:27120257

  14. Urea and amide-based inhibitors of the juvenile hormone epoxide hydrolase of the tobacco hornworm (Manduca sexta: Sphingidae).

    Science.gov (United States)

    Severson, Tonya F; Goodrow, Marvin H; Morisseau, Christophe; Dowdy, Deanna L; Hammock, Bruce D

    2002-12-01

    A new class of inhibitors of juvenile hormone epoxide hydrolase (JHEH) of Manduca sexta and further in vitro characterization of the enzyme are reported. The compounds are based on urea and amide pharmacophores that were previously demonstrated as effective inhibitors of mammalian soluble and microsomal epoxide hydrolases. The best inhibitors against JHEH activity so far within this class are N-[(Z)-9-octadecenyl]-N'-propylurea and N-hexadecyl-N'-propylurea, which inhibited hydrolysis of a surrogate substrate (t-DPPO) with an IC(50) around 90 nM. The importance of substitution number and type was investigated and results indicated that N, N'-disubstitution with asymmetric alkyl groups was favored. Potencies of pharmacophores decreased as follows: amide>urea>carbamate>carbodiimide>thiourea and thiocarbamate for N, N'-disubstituted compounds with symmetric substituents, and urea>amide>carbamate for compounds with asymmetric N, N'-substituents. JHEH hydrolyzes t-DPPO with a K(m) of 65.6 microM and a V(max) of 59 nmol min(-1) mg(-1) and has a substantially lower K(m) of 3.6 microM and higher V(max) of 322 nmol min(-1) mg(-1) for JH III. Although none of these compounds were potent inhibitors of hydrolysis of JH III by JHEH, they are the first leads toward inhibitors of JHEH that are not potentially subject to metabolism through epoxide degradation. PMID:12429126

  15. Discovery of 1-(1,3,5-triazin-2-yl)piperidine-4-carboxamides as inhibitors of soluble epoxide hydrolase.

    Science.gov (United States)

    Thalji, Reema K; McAtee, Jeff J; Belyanskaya, Svetlana; Brandt, Martin; Brown, Gregory D; Costell, Melissa H; Ding, Yun; Dodson, Jason W; Eisennagel, Steve H; Fries, Rusty E; Gross, Jeffrey W; Harpel, Mark R; Holt, Dennis A; Israel, David I; Jolivette, Larry J; Krosky, Daniel; Li, Hu; Lu, Quinn; Mandichak, Tracy; Roethke, Theresa; Schnackenberg, Christine G; Schwartz, Benjamin; Shewchuk, Lisa M; Xie, Wensheng; Behm, David J; Douglas, Stephen A; Shaw, Ami L; Marino, Joseph P

    2013-06-15

    1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure. Based on this lead optimization work, 1-[4-methyl-6-(methylamino)-1,3,5-triazin-2-yl]-N-{[[4-bromo-2-(trifluoromethoxy)]-phenyl]methyl}-4-piperidinecarboxamide (27) was identified as a useful tool compound for in vivo investigation. Robust effects on a serum biomarker, 9, 10-epoxyoctadec-12(Z)-enoic acid (the epoxide derived from linoleic acid) were observed, which provided evidence of robust in vivo target engagement and the suitability of 27 as a tool compound for study in various disease models.

  16. Discovery of a Potent, Selective, and Efficacious Class of Reversible α-Ketoheterocycle Inhibitors of Fatty Acid Amide Hydrolase Effective as Analgesicsa

    OpenAIRE

    Boger, Dale L.; Miyauchi, Hiroshi; Du, Wu; Hardouin, Christophe; Fecik, Robert A.; Cheng, Heng; Hwang, Inkyu; Hedrick, Michael P.; Leung, Donmienne; Acevedo, Orlando; Guimarães, Cristiano R. W.; Jorgensen, William L.; Cravatt, Benjamin F.

    2005-01-01

    Fatty acid amide hydrolase (FAAH) degrades neuromodulating fatty acid amides including anandamide (endogenous cannabinoid agonist) and oleamide (sleep-inducing lipid) at their sites of action and is intimately involved in their regulation. Herein we report the discovery of a potent, selective, and efficacious class of reversible FAAH inhibitors that produce analgesia in animal models validating a new therapeutic target for pain intervention. Key to the useful inhibitor discovery was the routi...

  17. The Soluble Epoxide Hydrolase Inhibitor AR9281 Decreases Blood Pressure, Ameliorates Renal Injury and Improves Vascular Function in Hypertension

    Directory of Open Access Journals (Sweden)

    Sean Shaw

    2009-12-01

    Full Text Available Soluble epoxide hydrolase inhibitors (sEHIs are demonstrating promise as potential pharmaceutical agents for the treatment of cardiovascular disease, diabetes, inflammation, and kidney disease. The present study determined the ability of a first-inclass sEHI, AR9281, to decrease blood pressure, improve vascular function, and decrease renal inflammation and injury in angiotensin hypertension. Rats were infused with angiotensin and AR9281 was given orally during the 14-day infusion period. Systolic blood pressure averaged 180 ± 5 mmHg in vehicle treated and AR9281 treatment significantly lowered blood pressure to 142 ± 7 mmHg in angiotensin hypertension. Histological analysis demonstrated decreased injury to the juxtamedullary glomeruli. Renal expression of inflammatory genes was increased in angiotensin hypertension and two weeks of AR9281 treatment decreased this index of renal inflammation. Vascular function in angiotensin hypertension was also improved by AR9281 treatment. Decreased afferent arteriolar and mesenteric resistance endothelial dependent dilator responses were ameliorated by AR9281 treatment of angiotensin hypertensive rats. These data demonstrate that the first-in-class sEHI, AR9281, lowers blood pressure, improves vascular function and reduces renal damage in angiotensin hypertension.

  18. Probing ligand-binding modes and binding mechanisms of benzoxazole-based amide inhibitors with soluble epoxide hydrolase by molecular docking and molecular dynamics simulation.

    Science.gov (United States)

    Chen, Hang; Zhang, Ying; Li, Liang; Han, Ju-Guang

    2012-08-30

    Soluble epoxide hydrolase (sEH) has become a new therapeutic target for treating a variety of human diseases. The inhibition of human sEH hydrolase activity was studied by molecular docking and molecular dynamics (MD) simulation techniques. A set of six benzoxazole-based amide inhibitors binding to sEH has been studied through molecular docking, MD simulation, free energy calculations, and energy decomposition analysis. On the basis of molecular mechanics-generalized Born/surface area (MM-GB/SA) computation and normal-mode analysis (NMA), the obtained results indicate that the rank of calculated binding free energies (ΔΔGTOT) of these inhibitors is in excellent agreement with that of experimental bioactivity data (IC50). The correlation coefficient (r(2)) between the predicted ΔΔGTOT and IC50 is 0.88. van der Waals energies are the largest component of the total energies, and the entropy changes play an indispensable role in determining the ΔΔGTOT. Rational binding modes were discussed and determined by the docking results and binding free energies. The free energy decomposition of each residue reveals that the residue Trp334 dominates the most binding free energies among all residues and that the activities for these molecules to the sEH are not decided by hydrogen bonds or a certain residue but by the common effect of multiple side chains in the active site.

  19. Discovery of a Selective Covalent Inhibitor of Lysophospholipase-like 1 (LYPLAL1) as a Tool to Evaluate the Role of this Serine Hydrolase in Metabolism.

    Science.gov (United States)

    Ahn, Kay; Boehm, Markus; Brown, Matthew F; Calloway, Jessica; Che, Ye; Chen, Jinshan; Fennell, Kimberly F; Geoghegan, Kieran F; Gilbert, Adam M; Gutierrez, Jemy A; Kalgutkar, Amit S; Lanba, Adhiraj; Limberakis, Chris; Magee, Thomas V; O'Doherty, Inish; Oliver, Robert; Pabst, Brandon; Pandit, Jayvardhan; Parris, Kevin; Pfefferkorn, Jeffrey A; Rolph, Timothy P; Patel, Rushi; Schuff, Brandon; Shanmugasundaram, Veerabahu; Starr, Jeremy T; Varghese, Alison H; Vera, Nicholas B; Vernochet, Cecile; Yan, Jiangli

    2016-09-16

    Lysophospholipase-like 1 (LYPLAL1) is an uncharacterized metabolic serine hydrolase. Human genome-wide association studies link variants of the gene encoding this enzyme to fat distribution, waist-to-hip ratio, and nonalcoholic fatty liver disease. We describe the discovery of potent and selective covalent small-molecule inhibitors of LYPLAL1 and their use to investigate its role in hepatic metabolism. In hepatocytes, selective inhibition of LYPLAL1 increased glucose production supporting the inference that LYPLAL1 is a significant actor in hepatic metabolism. The results provide an example of how a selective chemical tool can contribute to evaluating a hypothetical target for therapeutic intervention, even in the absence of complete biochemical characterization.

  20. Potent natural soluble epoxide hydrolase inhibitors from Pentadiplandra brazzeana baillon: synthesis, quantification, and measurement of biological activities in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Seiya Kitamura

    Full Text Available We describe here three urea-based soluble epoxide hydrolase (sEH inhibitors from the root of the plant Pentadiplandra brazzeana. The concentration of these ureas in the root was quantified by LC-MS/MS, showing that 1, 3-bis (4-methoxybenzyl urea (MMU is the most abundant (42.3 μg/g dry root weight. All of the ureas were chemically synthesized, and their inhibitory activity toward recombinant human and recombinant rat sEH was measured. The most potent compound, MMU, showed an IC50 of 92 nM via fluorescent assay and a Ki of 54 nM via radioactivity-based assay on human sEH. MMU effectively reduced inflammatory pain in a rat nociceptive pain assay. These compounds are among the most potent sEH inhibitors derived from natural sources. Moreover, inhibition of sEH by these compounds may mechanistically explain some of the therapeutic effects of P. brazzeana.

  1. Cardioprotective effects of fatty acid amide hydrolase inhibitor URB694, in a rodent model of trait anxiety.

    Science.gov (United States)

    Carnevali, Luca; Vacondio, Federica; Rossi, Stefano; Macchi, Emilio; Spadoni, Gilberto; Bedini, Annalida; Neumann, Inga D; Rivara, Silvia; Mor, Marco; Sgoifo, Andrea

    2015-12-14

    In humans, chronic anxiety represents an independent risk factor for cardiac arrhythmias and sudden death. Here we evaluate in male Wistar rats bred for high (HAB) and low (LAB) anxiety-related behavior, as well as non-selected (NAB) animals, the relationship between trait anxiety and cardiac electrical instability and investigate whether pharmacological augmentation of endocannabinoid anandamide-mediated signaling exerts anxiolytic-like and cardioprotective effects. HAB rats displayed (i) a higher incidence of ventricular tachyarrhythmias induced by isoproterenol, and (ii) a larger spatial dispersion of ventricular refractoriness assessed by means of an epicardial mapping protocol. In HAB rats, acute pharmacological inhibition of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), with URB694 (0.3 mg/kg), (i) decreased anxiety-like behavior in the elevated plus maze, (ii) increased anandamide levels in the heart, (iii) reduced isoproterenol-induced occurrence of ventricular tachyarrhythmias, and (iv) corrected alterations of ventricular refractoriness. The anti-arrhythmic effect of URB694 was prevented by pharmacological blockade of the cannabinoid type 1 (CB1), but not of the CB2, receptor. These findings suggest that URB694 exerts anxiolytic-like and cardioprotective effects in HAB rats, the latter via anandamide-mediated activation of CB1 receptors. Thus, pharmacological inhibition of FAAH might be a viable pharmacological strategy for the treatment of anxiety-related cardiac dysfunction.

  2. Characterisation of (R-2-(2-Fluorobiphenyl-4-yl-N-(3-Methylpyridin-2-ylPropanamide as a Dual Fatty Acid Amide Hydrolase: Cyclooxygenase Inhibitor.

    Directory of Open Access Journals (Sweden)

    Sandra Gouveia-Figueira

    Full Text Available Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH and substrate selective cyclooxygenase (COX-2 inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl-N-(3-methylpyridin-2-ylpropanamide (Flu-AM1. These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known.COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R-Flu-AM1, COX-1 (arachidonic acid 6 μM; COX-2 (arachidonic acid 20 μM; COX-2 (2-AG 1 μM; (S-Flu-AM1, COX-1 (arachidonic acid 3 μM; COX-2 (arachidonic acid 10 μM; COX-2 (2-AG 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R-Flu-AM1 (10 μM greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM.Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.

  3. Comparative studies to determine the selective inhibitors for P-glycoprotein and cytochrome P 4503A4

    OpenAIRE

    Achira, Meguru; Ito, Kiyomi; Suzuki, Hiroshi(Department of Physics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan); Sugiyama, Yuichi

    1999-01-01

    It has been suggested that cytochrome P450 3A4 (CYP3A4) and MDR1 P-glycoprotein (P-gp) act synergistically to limit the bioavailability of orally administered agents. In order to determine the relative role of these proteins, it is essential to identify a selective inhibitor for either P-gp or CYP3A4. In the present investigation, comparative studies were performed to examine the effect of inhibitors on the function of these proteins. The IC50 of P-gp function, determined by examining the inh...

  4. Advances in the Research of Human Soluble Epoxide Hydrolase Inhibitors%人类可溶性环氧化物水解酶抑制剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    黄少胥; 王勇; 龙亚秋

    2012-01-01

    高血压是现代人的常见疾病.虽然有很多不同机理的降压药在临床使用,但是由于个体的差异性,高血压的治疗越来越倾向于个体化治疗,因此降压药的使用也不仅仅局限于血压的降低.人类可溶性环氧化物水解酶抑制剂最大的优势在于其在降压的同时还具有显著的抗炎作用.详细地阐述了人类可溶性环氧化物水解酶抑制剂从早期的环氧结构类型到第三代脲类结构的发展过程和近期研究进展.%Hypertension is a common illness nowadays. Although a wide variety of antihypertensive agents are available in the market for the treatment of hypertension, the antihypertensive treatment tends to be individualized, and the treatment should exceed the limitation of lowering blood pressure only. Compared to other antihypertensive agents, the advantage of human soluble epoxide hydrolase inhibitors (HsEHIs) is that they can not only reduce the blood pressure, but also have remarkable anti-inflammatory effects. Herein, the development of human soluble epoxide hydrolase inhibitors is reviewed from early epoxide HsEHIs to the third generation of urea HsEHIs.

  5. Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold.

    Science.gov (United States)

    Jansen, Koen; Heirbaut, Leen; Cheng, Jonathan D; Joossens, Jurgen; Ryabtsova, Oxana; Cos, Paul; Maes, Louis; Lambeir, Anne-Marie; De Meester, Ingrid; Augustyns, Koen; Van der Veken, Pieter

    2013-05-01

    Fibroblast activation protein (FAP) is a serine protease that is generally accepted to play an important role in tumor growth and other diseases involving tissue remodeling. Currently there are no FAP inhibitors with reported selectivity toward both the closely related dipeptidyl peptidases (DPPs) and prolyl oligopeptidase (PREP). We present the discovery of a new class of FAP inhibitors with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold. We have explored the effects of substituting the quinoline ring and varying the position of its sp(2) hybridized nitrogen atom. The most promising inhibitors combined low nanomolar FAP inhibition and high selectivity indices (>10(3)) with respect to both the DPPs and PREP. Preliminary experiments on a representative inhibitor demonstrate that plasma stability, kinetic solubility, and log D of this class of compounds can be expected to be satisfactory. PMID:24900696

  6. Comparative studies to determine the selective inhibitors for P-glycoprotein and cytochrome P4503A4.

    Science.gov (United States)

    Achira, M; Suzuki, H; Ito, K; Sugiyama, Y

    1999-01-01

    It has been suggested that cytochrome P450 3A4 (CYP3A4) and MDR1 P-glycoprotein (P-gp) act synergistically to limit the bioavailability of orally administered agents. In order to determine the relative role of these proteins, it is essential to identify a selective inhibitor for either P-gp or CYP3A4. In the present investigation, comparative studies were performed to examine the effect of inhibitors on the function of these proteins. The IC50of P-gp function, determined by examining the inhibition of the transcellular transport of vinblastine across Caco-2 monolayers, was in the order PSC833 < ketoconazole, verapamil < N-(2(R)-hydroxy-1(S)-indanyl)-5-(2(S)-(1,1-dimethylethylaminocarbonyl)-4-(furo(2,3-b)pyridin-5-yl)methyl)piperazin-1-yl)-4(S)-hydroxy-2(R)-phenylmethylpentanamide (L-754,394). In contrast, the IC50of CYP3A4 function, determined by examining the inhibition of the metabolism of midazolam by intestinal and liver microsomes, was in the order L-754,384 < ketoconazole < PSC 833 and verapamil. The ratio of IC50for P-gp to that for CYP3A4 was more than 200 for L-754,394, 60 ~ 150 for ketoconazole, 1.5 for verapamil, and 0.05 for PSC 833. Collectively, it was demonstrated that PSC 833 and L-754,394 can be used as selective inhibitors of P-gp and CYP3A4, respectively. PMID:11741214

  7. The CYP3A4 inhibitor intraconazole does not affect the pharmacokinetics of a new calcium-sensitizing drug levosimendan.

    Science.gov (United States)

    Antila, S; Honkanen, T; Lehtonen, L; Neuvonen, P J

    1998-08-01

    Itraconazole is a potent inhibitor of CYP3A4 isoenzyme and it can cause clinically significant interactions with some other drugs. Levosimendan is a new calcium-sensitizing drug intended for congestive heart failure. We aimed to study possible interactions of itraconazole with levosimendan in healthy volunteers. Twelve healthy male volunteers were included into a randomized, double-blind, two-phase crossover study. A wash-out period of 4 weeks was held between the phases. The subjects were given orally itraconazole 200 mg or placebo daily for 5 days. On the fifth day, they received a single oral dose of 2 mg of levosimendan. Levosimendan plasma concentrations were determined up to 12 hours and ECG, heart rate, and blood pressure followed-up to 8 hours after intake of levosimendan. Itraconazole had no significant effects on the pharmacokinetic parameters of levosimendan. Neither were there any differences in heart rate, PQ-, QTc- or QRS intervals between the placebo and itraconazole phases. The systolic blood pressure was decreased slightly more (p < 0.05) during the itraconazole phase than during the placebo phase. In conclusion, because the potent CYP3A4 inhibitor itraconazole had no significant pharmacokinetic interaction with levosimendan, interactions with CYP3A4 inhibitor, and oral levosimendan are unlikely.

  8. DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells.

    Science.gov (United States)

    Lee, Ju-Kyung; Kim, Keun-Cheol

    2013-09-01

    3-Deazaneplanocin A (DZNep), an epigenetic anticancer drug, leads to the indirect suppression of S-adenosyl methionine-dependent cellular methylations by inhibiting S-adenosyl homocystein (AdoHcy) hydrolase. Although it is well known that DZNep targets the degradation of EZH2 protein, H3K27me3 HMTase, there are still uncertainties about the regulation of other types of HMTases during cell death. In this study, we describe that SETDB1 gene expression was regulated by DZNep treatment in human lung cancer cells. We confirm that DZNep induced growth inhibition and increased the dead cell population of lung cancer cells. DZNep treatment affected histone methylations, including H3K27me3 and H3K9me3, but not H3K4me3. Reduced levels of H3K27me3 and H3K9me3 were related with the decreased EZH2 and SETDB1 proteins. Real time PCR analysis showed that SETDB1 gene expression was decreased by DZNep treatment, but no effect was observed for EZH2 gene expression. We cloned the promoter region of SETDB1 and SUV39H1 genes, and performed luciferase assays. The promoter activity of SETDB1 gene was down regulated by DZNep treatment, whereas no effect on SUV39H1 promoter activity was observed. In conclusion, we suggest that DZNep regulates not only on H3K27me3 HMTase EZH2, but also H3K9 HMTase SETDB1 gene expression at the transcription level, implicating that the mechanism of action of DZNep targets multiple HMTases during the death of lung cancer cells. PMID:23933322

  9. Inhibition of Chronic Pancreatitis and Murine Pancreatic Intraepithelial Neoplasia by a Dual Inhibitor of c-RAF and Soluble Epoxide Hydrolase in LSL-KrasG¹²D/Pdx-1-Cre Mice.

    Science.gov (United States)

    Liao, Jie; Hwang, Sung Hee; Li, Haonan; Liu, Jun-Yan; Hammock, Bruce D; Yang, Guang-Yu

    2016-01-01

    Mutation of Kirsten rat sarcoma viral oncogene homolog (KRAS) and chronic pancreatitis are the most common pathogenic events involved in human pancreatic carcinogenesis. In the process of long-standing chronic inflammation, aberrant metabolites of arachidonic acid play a crucial role in promoting carcinogenesis, in which the soluble epoxide hydrolase (sEH), as a pro-inflammatory enzyme, generally inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs). Herein, we determined the effect of our newly-synthesized novel compound trans-4-{4-[3-(4-chloro-3-trifluoromethyl-phenyl)-ureido]-cyclohexyloxy}-pyridine-2-carboxylic acid methylamide (t-CUPM), a dual inhibitor of sEH and RAF1 proto-oncogene serine/threonine kinase (c-RAF), on inhibiting the development of pancreatitis and pancreatic intraepithelial neoplasia (mPanIN) in LSL-Kras(G12D)/Pdx1-Cre mice. The results showed that t-CUPM significantly reduced the severity of chronic pancreatitis, as measured by the extent of acini loss, inflammatory cell infiltration and stromal fibrosis. The progression of low-grade mPanIN I to high-grade mPanIN II/III was significantly suppressed. Inhibition of mutant Kras-transmitted phosphorylation of mitogen-activated protein kinase's kinase/extracellular signal-regulated kinases was demonstrated in pancreatic tissues by western blots. Quantitative real-time polymerase chain reaction analysis revealed that t-CUPM treatment significantly reduced the levels of inflammatory cytokines including tumor necrosis facor-α, monocyte chemoattractant protein-1, as well as vascular adhesion molecule-1, and the levels of Sonic hedgehog and Gli transcription factor (Hedgehog pathway). Analysis of the eicosanoid profile revealed a significant increase of the EETs/dihydroxyeicosatrienoic acids ratio, which further confirmed sEH inhibition by t-CUPM. These results indicate that simultaneous inhibition of sEH and c-RAF by t-CUPM is important in preventing chronic pancreatitis and carcinogenesis

  10. Early postnatal treatment with soluble epoxide hydrolase inhibitor or 15-deoxy-Δ(12,14)-prostagandin J2 prevents prenatal dexamethasone and postnatal high saturated fat diet induced programmed hypertension in adult rat offspring.

    Science.gov (United States)

    Lu, Pei-Chen; Sheen, Jiunn-Ming; Yu, Hong-Ren; Lin, Yu-Ju; Chen, Chih-Cheng; Tiao, Mao-Meng; Tsai, Ching-Chou; Huang, Li-Tung; Tain, You-Lin

    2016-07-01

    Prenatal dexamethasone (DEX) exposure, postnatal high-fat (HF) intake, and arachidonic acid pathway are closely related to hypertension. We tested whether a soluble epoxide hydrolase (SEH) inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) or 15-deoxy-Δ(12,14)-prostagandin J2 (15dPGJ2) therapy can rescue programmed hypertension in the DEX+HF two-hit model. Four groups of Sprague Dawley rats were studied: control, DEX+HF, AUDA, and 15dPGJ2. Dexamethasone (0.1mg/kg body weight) was intraperitoneally administered to pregnant rats from gestational day 16-22. Male offspring received high-fat diet (D12331, Research Diets) from weaning to 4 months of age. In AUDA group, mother rats received 25mg/L in drinking water during lactation. In the 15dPGJ2 group, male offspring received 15dPGJ2 1.5mg/kg BW by subcutaneous injection once daily for 1 week after birth. We found postnatal HF diet aggravated prenatal DEX-induced programmed hypertension, which was similarly prevented by early treatment with AUDA or 15dPGJ2. The beneficial effects of AUDA and 15d-PGJ2 therapy include inhibition of SEH, increases of renal angiotensin converting enzyme-2 (ACE2) and angiotensin II type 2 receptor (AT2R) protein levels, and restoration of nitric oxide bioavailability. Better understanding of the impact of arachidonic acid pathway in the two-hit model will help prevent programmed hypertension in children exposed to corticosteroids and postnatal HF intake. PMID:27210044

  11. Inhibition of Chronic Pancreatitis and Murine Pancreatic Intraepithelial Neoplasia by a Dual Inhibitor of c-RAF and Soluble Epoxide Hydrolase in LSL-KrasG¹²D/Pdx-1-Cre Mice.

    Science.gov (United States)

    Liao, Jie; Hwang, Sung Hee; Li, Haonan; Liu, Jun-Yan; Hammock, Bruce D; Yang, Guang-Yu

    2016-01-01

    Mutation of Kirsten rat sarcoma viral oncogene homolog (KRAS) and chronic pancreatitis are the most common pathogenic events involved in human pancreatic carcinogenesis. In the process of long-standing chronic inflammation, aberrant metabolites of arachidonic acid play a crucial role in promoting carcinogenesis, in which the soluble epoxide hydrolase (sEH), as a pro-inflammatory enzyme, generally inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs). Herein, we determined the effect of our newly-synthesized novel compound trans-4-{4-[3-(4-chloro-3-trifluoromethyl-phenyl)-ureido]-cyclohexyloxy}-pyridine-2-carboxylic acid methylamide (t-CUPM), a dual inhibitor of sEH and RAF1 proto-oncogene serine/threonine kinase (c-RAF), on inhibiting the development of pancreatitis and pancreatic intraepithelial neoplasia (mPanIN) in LSL-Kras(G12D)/Pdx1-Cre mice. The results showed that t-CUPM significantly reduced the severity of chronic pancreatitis, as measured by the extent of acini loss, inflammatory cell infiltration and stromal fibrosis. The progression of low-grade mPanIN I to high-grade mPanIN II/III was significantly suppressed. Inhibition of mutant Kras-transmitted phosphorylation of mitogen-activated protein kinase's kinase/extracellular signal-regulated kinases was demonstrated in pancreatic tissues by western blots. Quantitative real-time polymerase chain reaction analysis revealed that t-CUPM treatment significantly reduced the levels of inflammatory cytokines including tumor necrosis facor-α, monocyte chemoattractant protein-1, as well as vascular adhesion molecule-1, and the levels of Sonic hedgehog and Gli transcription factor (Hedgehog pathway). Analysis of the eicosanoid profile revealed a significant increase of the EETs/dihydroxyeicosatrienoic acids ratio, which further confirmed sEH inhibition by t-CUPM. These results indicate that simultaneous inhibition of sEH and c-RAF by t-CUPM is important in preventing chronic pancreatitis and carcinogenesis.

  12. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation

    Directory of Open Access Journals (Sweden)

    Murphy Niamh

    2012-04-01

    Full Text Available Abstract Background Several factors contribute to the deterioration in synaptic plasticity which accompanies age and one of these is neuroinflammation. This is characterized by increased microglial activation associated with increased production of proinflammatory cytokines like interleukin-1β (IL-1β. In aged rats these neuroinflammatory changes are associated with a decreased ability of animals to sustain long-term potentiation (LTP in the dentate gyrus. Importantly, treatment of aged rats with agents which possess anti-inflammatory properties to decrease microglial activation, improves LTP. It is known that endocannabinoids, such as anandamide (AEA, have anti-inflammatory properties and therefore have the potential to decrease the age-related microglial activation. However, endocannabinoids are extremely labile and are hydrolyzed quickly after production. Here we investigated the possibility that inhibiting the degradation of endocannabinoids with the fatty acid amide hydrolase (FAAH inhibitor, URB597, could ameliorate age-related increases in microglial activation and the associated decrease in LTP. Methods Young and aged rats received subcutaneous injections of the FAAH inhibitor URB597 every second day and controls which received subcutaneous injections of 30% DMSO-saline every second day for 28 days. Long-term potentiation was recorded on day 28 and the animals were sacrificed. Brain tissue was analyzed for markers of microglial activation by PCR and for levels of endocannabinoids by liquid chromatography coupled to tandem mass spectrometry. Results The data indicate that expression of markers of microglial activation, MHCII, and CD68 mRNA, were increased in the hippocampus of aged, compared with young, rats and that these changes were associated with increased expression of the proinflammatory cytokines interleukin (IL-1β and tumor necrosis factor-α (TNFα which were attenuated by treatment with URB597. Coupled with these changes, we

  13. Evaluation of Ketoconazole and Its Alternative Clinical CYP3A4/5 Inhibitors as Inhibitors of Drug Transporters: The In Vitro Effects of Ketoconazole, Ritonavir, Clarithromycin, and Itraconazole on 13 Clinically-Relevant Drug Transporters.

    Science.gov (United States)

    Vermeer, Lydia M M; Isringhausen, Caleb D; Ogilvie, Brian W; Buckley, David B

    2016-03-01

    Ketoconazole is a potent CYP3A4/5 inhibitor and, until recently, recommended by the Food and Drug Administration (FDA) and the European Medicines Agency as a strong CYP3A4/5 inhibitor in clinical drug-drug interaction (DDI) studies. Ketoconazole sporadically causes liver injury or adrenal insufficiency. Because of this, the FDA and European Medicines Agency recommended suspension of ketoconazole use in DDI studies in 2013. The FDA specifically recommended use of clarithromycin or itraconazole as alternative strong CYP3A4/5 inhibitors in clinical DDI studies, but many investigators have also used ritonavir as an alternative. Although the effects of these clinical CYP3A4/5 inhibitors on other CYPs are largely established, reports on the effects on the broad range of drug transporter activities are sparse. In this study, the inhibitory effects of ketoconazole, clarithromycin, ritonavir, and itraconazole (and its CYP3A4-inhibitory metabolites, hydroxy-, keto-, and N-desalkyl itraconazole) toward 13 drug transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, MATE2-K, P-gp, BCRP, MRP2, MRP3, and BSEP) were systematically assessed in transporter-expressing HEK-293 cell lines or membrane vesicles. In vitro findings were translated into clinical context with the basic static model approaches outlined by the FDA in its 2012 draft guidance on DDIs. The results indicate that, like ketoconazole, the alternative clinical CYP3A4/5 inhibitors ritonavir, clarithromycin, and itraconazole each have unique transporter inhibition profiles. None of the alternatives to ketoconazole provided a clean inhibition profile toward the 13 drug transporters evaluated. The results provide guidance for the selection of clinical CYP3A4/5 inhibitors when transporters are potentially involved in a victim drug's pharmacokinetics. PMID:26668209

  14. Inhibitors

    Science.gov (United States)

    ... wrong place in the body. Immune Tolerance Induction (ITI) Therapy: The goal of ITI therapy is to stop the inhibitor reaction from ... body to accept clotting factor concentrate treatments. With ITI therapy, people receive large amounts of clotting factor ...

  15. Inhibition of Chronic Pancreatitis and Murine Pancreatic Intraepithelial Neoplasia by a Dual Inhibitor of c-RAF and Soluble Epoxide Hydrolase in LSL-KrasG12D/Pdx-1-Cre Mice

    OpenAIRE

    Liao, Jie; Hwang, Sung Hee; Li, Haonan; Liu, Jun-Yan; Hammock, Bruce D.; Yang, Guang-Yu

    2016-01-01

    Mutation of Kirsten rat sarcoma viral oncogene homolog (KRAS) and chronic pancreatitis are the most common pathogenic events involved in human pancreatic carcinogenesis. In the process of long-standing chronic inflammation, aberrant metabolites of arachidonic acid play a crucial role in promoting carcinogenesis, in which the soluble epoxide hydrolase (sEH), as a pro-inflammatory enzyme, generally inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs). Herein, we determined the effect ...

  16. Inhibitors from Carob (Ceratonia siliqua L.): II. Effect on Growth Induced by Indoleacetic Acid or Gibberellins A(1), A(4), A(5), and A(7).

    Science.gov (United States)

    Corcoran, M R

    1970-10-01

    Two inhibitory fractions (B(1) and C) from extracts of immature fruit of carob were tested for their ability to inhibit the action of indoleacetic acid (IAA) in three bioassays. There was no reduction of IAA-induced reactions in the Avena curvature test, abscission of debladed coleus petioles, or growth of cucumber hypocotyls. The highest ratio of inhibitor to IAA was 10,000 times greater than the ratio necessary to inhibit by 50% the growth caused by an equivalent amount of gibberellin A(3) in pea seedlings. At the highest concentration used, fraction C alone caused curvature of Avena coleoptiles. The inhibitory fractions appeared to enhance the effect of IAA in the cucumber test.Concentrated whole extract and fractions B(1) and C were tested for reduction of growth caused by gibberellins A(1), A(4), A(5), A(7), and a neutral gibberellin-like substance from beans in the dwarf-5 maize bioassay. Each gibberellin was inhibited and required the same amount of inhibitor for a 50% reduction of the induced growth. The inhibiting effect could be completely overcome by increasing the amount of gibberellin while maintaining the same concentration of inhibitor. Fractions B(1) and C were also tested with gibberellins A(2) and A(4) in the cucumber hypocotyl test. Both inhibitory fractions reduced growth but were more effective against gibberellin A(3) than gibberellin A(4) in the assay. The ability to reduce gibberellin-induced growth and not reduce IAA-induced growth indicates that the inhibitors from carob have a greater specificity of action than that previously reported for any inhibitor.

  17. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor

    OpenAIRE

    Hamberg, Paul; Woo, Margaret M.; Chen, Lin-Chi; Verweij, Jaap; Porro, M.G.; Zhao, Ling; Li, Weili; van der Biessen, Diane; Sharma, Hari; Hengelage, Thomas; Jonge, Maja

    2011-01-01

    Abstract Purpose Panobinostat is partly metabolized by CYP3A4 in vitro. This study evaluated the effect of a potent CYP3A inhibitor, ketoconazole, on the pharmacokinetics and safety of panobinostat. Methods Patients received a single panobinostat oral dose on day 1, followed by 4 days wash-out period. On days 5?9, ketoconazole was administered. On day 8, a single panobinostat dose was co-administered with ...

  18. Prenatal serotonin reuptake inhibitor (SRI) antidepressant exposure and serotonin transporter promoter genotype (SLC6A4) influence executive functions at 6 years of age

    OpenAIRE

    Whitney eWeikum; Ursula eBrain; Cecil MY Chau; Ruth Eckstein Grunau; W Thomas Boyce; Adele eDiamond; Oberlander, Tim F.

    2013-01-01

    Prenatal exposure to serotonin reuptake inhibitor (SRI) antidepressants and maternal depression may affect prefrontal cognitive skills (executive functions; EFs) including self-control, working memory and cognitive flexibility. We examined long-term effects of prenatal SRI exposure on EFs to determine whether effects are moderated by maternal mood and/or genetic variations in SLC6A4 (a gene that codes for the serotonin transporter [5-HTT] central to the regulation of synaptic serotonin levels...

  19. Hydrolase activity in Jerusalem artichoke and chicory

    Energy Technology Data Exchange (ETDEWEB)

    Klaushofer, H.; Abraham, B.; Leichtfried, G.

    1988-03-01

    Post-harvest storage of chicory and Jerusalem artichoke and overwintering of Jerusalem artichoke in the soil cause a more or less pronounced shortening of the fructan chain, depending on the variety. The proportion of fructose in the total fructan thus shifts towards glucose. This reduction on the fructose/glucose ratio is undesirable if the intention is to obtain a sweetener of high fructose content. In this work an attempt was made, via the quantity of fructose formed after a 4(3)-hour reaction of a tuber (root) extract with inulin, to assign a characteristic value to the depolymerization tendency of the material in question. However, since the plant extract not only contains enzymes (hydrolase A and B) that shorten the fructan chains but the activity of fructosyltransferase (SST, FFT) and enzymes of microbial origin (inulinase II, invertase) must also be considered, the concept of 'hydrolase activity' used by the authors is essentially an expression of 'total activity'. The activity unit (EU) is defined as the ability to split of 1 ..mu..mol of fructose from (chicory) inulin per minute under experimental conditions. Values of 0.25 to 0.77 EU/g dry solids were found in Jerusalem artichoke. Considerable differences may occur between varieties from the same cultivated area and the same harvest period. With one and the same variety, the activity appears to be subject to marked yearly fluctuations, so that at present, because of hydrolase activity, nothing certain can be said about the depolymerization tendency of a variety.

  20. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products.

    Science.gov (United States)

    Ho, P C; Saville, D J; Coville, P F; Wanwimolruk, S

    2000-04-01

    The flavonoids, naringin and naringenin and the furanocoumarin, bergapten (5-methoxypsoralen), were detected in some fresh grapefruit and commercial grapefruit juices but were not detected in other fruit juices tested (orange; orange with apple base; dark grape; orange and mango with apple base; orange, peach, passion fruit juice). The contents of these three grapefruit constituents in commercial juice and fresh grapefruit varied from brand to brand and also from lot to lot. Juice was prepared from the fresh fruit via different methods (by hand, squeezer or blender). The naringin content, after hand-squeeze, ranged from 115 to 384 mg/l. With hand-squeeze juice production, bergapten was not detected (less than 0.5 mg/l) in two varieties of grapefruit, and naringenin was usually not in detectable levels (less than 2 mg/l) in three varieties. All three constituents were present in New Zealand grapefruit preparations (including juice by hand-squeeze) and different lots showed variation in content (1.5-, 2.3- and 4.7-fold for naringin, naringenin and bergapten, respectively). Differences in the concentrations of these three constituents, which have potential for drug interaction, may contribute to the variability in pharmacokinetics of CYP3A4 drugs and some contradictory results of drug interaction studies with grapefruit juice. PMID:10812937

  1. Modeling Chemical Interaction Profiles: I. Spectral Data-Activity Relationship and Structure-Activity Relationship Models for Inhibitors and Non-inhibitors of Cytochrome P450 CYP3A4 and CYP2D6 Isozymes

    Directory of Open Access Journals (Sweden)

    Richard D. Beger

    2012-03-01

    Full Text Available An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals—drugs, pesticides, and environmental pollutants—interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP enzymes. In the present work, spectral data-activity relationship (SDAR and structure-activity relationship (SAR approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR spectral descriptors. In the present work, both 1D 13C and 1D 15N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D 13C-NMR and 15N-NMR spectra caused an increase in the tenfold cross-validation (CV performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  2. Modeling chemical interaction profiles: I. Spectral data-activity relationship and structure-activity relationship models for inhibitors and non-inhibitors of cytochrome P450 CYP3A4 and CYP2D6 isozymes.

    Science.gov (United States)

    McPhail, Brooks; Tie, Yunfeng; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Valerio, Luis G; Fuscoe, James C; Tong, Weida; Buzatu, Dan A; Wilkes, Jon G; Fowler, Bruce A; Demchuk, Eugene; Beger, Richard D

    2012-03-15

    An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals--drugs, pesticides, and environmental pollutants--interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP) enzymes. In the present work, spectral data-activity relationship (SDAR) and structure-activity relationship (SAR) approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV) test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR) spectral descriptors. In the present work, both 1D ¹³C and 1D ¹⁵N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D ¹³C-NMR and ¹⁵N-NMR spectra caused an increase in the tenfold cross-validation (CV) performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  3. Detoxification Strategy of Epoxide Hydrolase

    OpenAIRE

    Arand, Michael; Cronin, Annette; Hengstler, Jan G.; Herrero Plana, Maria Elena; Lohmann, Matthias; Oesch, Franz

    2003-01-01

    The human microsomal epoxide hydrolase, a single enzyme, has to detoxify a broad range of structurally diverse, potentially genotoxic epoxides that are formed in the course of xenobiotic metabolism. The enzyme has developed a unique strategy to combine a broad substrate specificity with a high detoxification efficacy, by immediately trapping the reactive compounds as covalent intermediates and by being expressed at high levels for high trapping capacity. Computer simulation and experimental d...

  4. Prenatal serotonin reuptake inhibitor (SRI antidepressant exposure and serotonin transporter promoter genotype (SLC6A4 influence executive functions at 6 years of age

    Directory of Open Access Journals (Sweden)

    Whitney eWeikum

    2013-10-01

    Full Text Available Prenatal exposure to serotonin reuptake inhibitor (SRI antidepressants and maternal depression may affect prefrontal cognitive skills (executive functions; EFs including self-control, working memory and cognitive flexibility. We examined long-term effects of prenatal SRI exposure on EFs to determine whether effects are moderated by maternal mood and/or genetic variations in SLC6A4 (a gene that codes for the serotonin transporter [5-HTT] central to the regulation of synaptic serotonin levels and behavior. Children who were exposed to SRIs prenatally (SRI-exposed N=26 and non-exposed (N=38 were studied at age 6 years (M=6.3 SD=0.5 using the Hearts & Flowers task (H&F to assess EFs. Maternal mood was measured during pregnancy (3rd trimester and when the child was age 6 years (Hamilton Depression Scale. Parent reports of child behavior were also obtained (MacArthur Health & Behavior Questionnaire. Parents of prenatally SRI-exposed children reported fewer child externalizing and inattentive (ADHD behaviors. Generalized estimate equation modeling showed a significant 3-way interaction between prenatal SRI exposure, SLC6A4 variant, and maternal mood at the 6-year time-point on H&F accuracy. For prenatally SRI-exposed children, regardless of maternal mood, the H&F accuracy of children with reduced 5HTT expression (a short [S] allele remained stable. Even with increasing maternal depressive symptoms (though all below clinical threshold, EFs of children with at least one short allele were comparable to children with the same genotype whose mothers reported few if any depressive symptoms – in this sense they showed resilience. Children with two long (L alleles were more sensitive to context. When their mothers had few depressive symptoms, LL children showed extremely good EF performance – better than any other group. When their mothers reported more depressive symptoms, LL children’s EF performance was worse than that of any other group.

  5. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease.

    Science.gov (United States)

    Celorrio, Marta; Fernández-Suárez, Diana; Rojo-Bustamante, Estefanía; Echeverry-Alzate, Víctor; Ramírez, María J; Hillard, Cecilia J; López-Moreno, José A; Maldonado, Rafael; Oyarzábal, Julen; Franco, Rafael; Aymerich, María S

    2016-10-01

    Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion. Modulation of the levels of the endocannabinoid 2-arachidonoyl-glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinson's disease. In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease. The fatty acid amide hydrolase inhibitor, URB597, was administered chronically to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) over 5weeks. URB597 (1mg/kg) prevented MPTPp induced motor impairment but it did not preserve the dopamine levels in the nigrostriatal pathway or regulate glial cell activation. The symptomatic relief of URB597 was confirmed in haloperidol-induced catalepsy assays, where its anti-cataleptic effects were both blocked by antagonists of the two cannabinoid receptors (CB1 and CB2), and abolished in animals deficient in these receptors. Other fatty acid amide hydrolase inhibitors, JNJ1661010 and TCF2, also had anti-cataleptic properties. Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinson's disease in two distinct experimental models that is mediated by cannabinoid receptors. PMID:27318096

  6. Modeling chemical interaction profiles: II. Molecular docking, spectral data-activity relationship, and structure-activity relationship models for potent and weak inhibitors of cytochrome P450 CYP3A4 isozyme.

    Science.gov (United States)

    Tie, Yunfeng; McPhail, Brooks; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Buzatu, Dan A; Wilkes, Jon G; Fuscoe, James C; Tong, Weida; Fowler, Bruce A; Beger, Richard D; Demchuk, Eugene

    2012-03-15

    Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP) enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR), and structure-activity relationship (SAR) models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2-3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D ¹³C-NMR and 1D ¹⁵N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors and 88 weak

  7. Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme

    Directory of Open Access Journals (Sweden)

    Eugene Demchuk

    2012-03-01

    Full Text Available Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR, and structure-activity relationship (SAR models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2–3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D 13C-NMR and 1D 15N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors

  8. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane.

    Science.gov (United States)

    Li, Xue-Qing; Hayes, Martin A; Grönberg, Gunnar; Berggren, Kristina; Castagnoli, Neal; Weidolf, Lars

    2016-08-01

    Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979. PMID:27256986

  9. Neurotoxicity of ubiquitin C-terminal hydrolase L1 inhibitor in dopaminergic neurons%泛素羧基末端水解酶-1抑制剂对多巴胺能神经元的神经毒性作用

    Institute of Scientific and Technical Information of China (English)

    谭玉燕; 王志全; 周海燕; 陈生弟

    2009-01-01

    目的 利用人神经母细胞瘤SK-N-SH细胞观察泛素羧基末端水解酶-1(OCH-L1)抑制剂对多巴胺能神经元的毒性作用并探讨其可能的毒性机制. 方法 用不同浓度(5、10、25、50、75、100 μmol/L)的UCH-L1抑制剂作用SK-N-SH细胞24h,MTT法检测细胞活力、Hoechst染色检测凋亡的细胞核及Western blot检测UCH-L1蛋白、单个泛素分子及多聚化泛素蛋白的表达、荧光检测泛素蛋白酶体系统(UPS)的功能. 结果经UCH-L1抑制剂处理24 h后SK-N-SH细胞突起样结构消失,细胞体积变小、形态变圆;随着UCH-L1抑制剂浓度的增加,细胞活性进一步下降;与对照组比较,细胞活力在抑制剂浓度为50μmol/L时.作用24h后即出现明显下降,差异有统计学意义(P<0.05);Hoechst染色可见凋亡细胞碎裂的细胞核;Western blot检测到细胞内UCH-L1蛋白表达没有变化、单个泛素分子水平下降、多聚泛素化蛋白增加;荧光检测显示UPS功能下降.结论 UCH-L1抑制剂在体外对多巴胺能神经元有毒性作用,可诱导细胞凋亡.在凋亡过程中,UPS功能下降、细胞内多聚泛素化蛋白堆积可能发挥了作用.%Objective To investigate the neurotoxic effects ofLDN-57444, a specific ubiquitin C-termiual hydrolase L1 (UCH-L1) inhibitor, on dopaminergic neurons and the possible mechanism. Methods The viability of SK-N-SH cells exposed to 5, 10, 25, 50, 75 or 100 μmol/L LDN-57444 for 24 h was assessed using MTT assay, and the cell apoptosis was detected with Hoechst staining. Western blot was performed to identify the expressions of UCH-L1 protein, ubiquitin monomer and polyubiquitinated proteins, and the activity of the ubiquitin-proteasome system (UPS) was evaluated with fluorometry. Results After exposure to UCH-LI inhibitor for 24 h, the cell process-like structures of SK-N-SH cells diminished, and the cell body shrank and became spherical. Exposure to LDN-57444 resulted in concentration-dependent reduction of the

  10. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    Science.gov (United States)

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  11. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  12. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    Science.gov (United States)

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  13. Aspergillus niger DLFCC-90 Rhamnoside Hydrolase, a New Type of Flavonoid Glycoside Hydrolase

    OpenAIRE

    Liu, Tingqiang; Yu, Hongshan; Zhang, Chunzhi; Lu, Mingchun; Piao, Yongzhe; Ohba, Masashi; Tang, Minqian; Yuan, Xiaodong; Wei, Shenghua; Wang, Kan; Ma, Anzhou; Feng, Xue; Qin, Siqing; Mukai, Chisato; Tsuji, Akira

    2012-01-01

    A novel rutin-α-l-rhamnosidase hydrolyzing α-l-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13.

  14. Fungal epoxide hydrolases: new landmarks in sequence-activity space.

    Science.gov (United States)

    Smit, Martha S

    2004-03-01

    Epoxide hydrolases are useful catalysts for the hydrolytic kinetic resolution of epoxides, which are sought after intermediates for the synthesis of enantiopure fine chemicals. The epoxide hydrolases from Aspergillus niger and from the basidiomycetous yeasts Rhodotorula glutinis and Rhodosporidium toruloides have demonstrated potential as versatile, user friendly biocatalysts for organic synthesis. A recombinant A. niger epoxide hydrolase, produced by an overproducing A. niger strain, is already commercially available and recombinant yeast epoxide hydrolases expressed in Escherichia coli have shown excellent results. Within the vast body of activity information on the one hand and gene sequence information on the other hand, the epoxide hydrolases from the Rhodotorula spp. and A. niger stand out because we have sequence information as well as activity information for both the wild-type and recombinant forms of these enzymes.

  15. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    OpenAIRE

    Liu, Jun-Yan; Qiu, Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D.

    2011-01-01

    The increasing use of the anti-microbial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine mode...

  16. Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase.

    Science.gov (United States)

    Smeulders, Marjan J; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R M; Hermans, John; Jetten, Mike S M; Op den Camp, Huub J M

    2013-09-01

    Carbon disulfide (CS(2)) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS(2) is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO(2)) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS(2)-polluted airstreams. We report on the mechanism of bacterial CS(2) conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS(2) hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS(2) hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS(2) hydrolases within the β-CA family. Unlike CAs, the CS(2) hydrolases did not hydrate CO(2) but converted CS(2) and COS with H(2)O to H(2)S and CO(2). The CS(2) hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS(2) hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS(2) hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS(2) hydrolases based on the structure of Acidianus strain A1-3 CS(2) hydrolase suggest that the A. thiooxidans strain G8 CS(2) hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation.

  17. Subcellullar localization, developmental expression and characterization of a liver triacylglycerol hydrolase.

    Science.gov (United States)

    Lehner, R; Cui, Z; Vance, D E

    1999-03-15

    The mechanism and enzymic activities responsible for the lipolysis of stored cytosolic triacylglycerol in liver and its re-esterification remain obscure. A candidate enzyme for lipolysis, a microsomal triacylglycerol hydrolase (TGH), was recently purified to homogeneity from pig liver and its kinetic properties were determined [Lehner and Verger (1997) Biochemistry 36, 1861-1868]. We have characterized the enzyme with regard to its species distribution, subcellular localization, developmental expression and reaction with lipase inhibitors. The hydrolase co-sediments with endoplasmic reticulum elements and is associated with isolated liver fat droplets. Immunocytochemical studies localize TGH exclusively to liver cells surrounding capillaries. Both TGH mRNA and protein are expressed in rats during weaning. The enzyme covalently binds tetrahydrolipstatin, an inhibitor of lipases and of triacylglycerol hydrolysis. The enzyme is absent from liver-derived cell lines (HepG2 and McArdle RH7777) known to be impaired in very-low-density lipoprotein (VLDL) assembly and secretion. The localization and developmental expression of TGH are consistent with a proposed role in triacylglycerol hydrolysis and with the proposal that some of the resynthesized triacylglycerol is utilized for VLDL secretion.

  18. Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family.

    Science.gov (United States)

    Iwata, Makoto; Imaoka, Takuya; Nishiyama, Takashi; Fujii, Takao

    2016-08-01

    A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes. PMID:26868518

  19. Peptidoglycan hydrolase fusions maintain their parental specificities.

    Science.gov (United States)

    Donovan, David M; Dong, Shengli; Garrett, Wes; Rousseau, Geneviève M; Moineau, Sylvain; Pritchard, David G

    2006-04-01

    The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63 degrees C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.

  20. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian;

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...... of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora....

  1. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants.

    Science.gov (United States)

    Quistad, Gary B; Klintenberg, Rebecka; Casida, John E

    2005-08-01

    Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents. PMID:15888665

  2. The Serine Hydrolase ABHD6 Is a Critical Regulator of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gwynneth Thomas

    2013-10-01

    Full Text Available The serine hydrolase α/β hydrolase domain 6 (ABHD6 has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6’s role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.

  3. Molecular Cloning of a Novel cDNA From Mus Muscular BALB/c Mice Encoding Glycosyl Hydrolase Family 1: A Homolog of HumanLactase-Phlorizin Hydrolase

    Institute of Scientific and Technical Information of China (English)

    WEI HE; ZHEN-YU JI; CHENG-YU HUANG

    2006-01-01

    Objective To study the mechanism of lactose intolerance (LI) by cloning the mouse lactase cDNA and recombining a vector. Methods Total murine RNA was isolated from the small intestine of a 4-week-old BALB/c mouse (♂).Gene-specific primers were designed and synthesized according to the cDNA sequences of lactase-phlorizin hydrolase (LPH) in human, rat, and rabbit. A coding sequence (CDS) fragment was obtained using RT-PCR, and inserted into a clone vector pNEB-193, then the cDNA was sequenced and analyzed using bioinformatics. Results The cDNA from the BALB/c mouse with 912 bp encoding 303 amino acid residues. Analysis of the deduced amino acid sequence using bioinformatics revealed that this cDNA shared extensive sequence homology with human LPH containing a conserved glycosy1 hydrolase family 1 motif important for regulating lactase intolerance. Conclusion BALB/c mouse LPH cDNA (GenBank accession No: AY751548) provides a necessary foundation for study of the biological function and regulatory mechanism of the lactose intolerance in mice.

  4. Sex-Specific Association of Depression and a Haplotype in Leukotriene A4 Hydrolase Gene

    Science.gov (United States)

    Depression is genetically determined and inflammation has been implicated. Women are twice as likely to develop depression as men. Whether genetic variants involved in inflammation play a role in the sex difference in depression is unclear. We examined the association, separately in men and women, ...

  5. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers

    Directory of Open Access Journals (Sweden)

    Jun eLin

    2014-02-01

    Full Text Available The growth-promoting effect of antibiotic growth promoters (AGPs was correlated with the decreased activity of bile salt hydrolase (BSH, an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals.

  6. Development and properties of a wax ester hydrolase in the cotyledons of jojoba seedlings.

    Science.gov (United States)

    Huang, A H; Moreau, R A; Liu, K D

    1978-03-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent K(m) value for N-methylindoxylmyristate was 93 muM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax).

  7. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Schmidt, Juliane; Meier, René; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-08-01

    Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with high sequence and structural similarity. Both enzymes exhibit an exposed active site in a substrate binding groove located at the protein surface. By exchanging selected amino acid residues of TfCut2 involved in substrate binding with those present in LCC, enzyme variants with increased PET hydrolytic activity at 65°C were obtained. The highest activity in hydrolyzing PET films and fibers were detected with the single variant G62A and the double variant G62A/I213S. Both variants caused a weight loss of PET films of more than 42% after 50 h of hydrolysis, corresponding to a 2.7-fold increase compared to the wild type enzyme. Kinetic analysis based on the released PET hydrolysis products confirmed the superior hydrolytic activity of G62A with a fourfold higher hydrolysis rate constant and a 1.5-fold lower substrate binding constant than those of the wild type enzyme. Mono-(2-hydroxyethyl) terephthalate is a strong inhibitor of TfCut2. A determination of the Rosetta binding energy suggested a reduced interaction of G62A with 2PET, a dimer of the PET monomer ethylene terephthalate. Indeed, G62A revealed a 5.5-fold lower binding constant to the inhibitor than the wild type enzyme indicating that its increased PET hydrolysis activity is the result of a relieved product inhibition by mono-(2-hydroxyethyl) terephthalate. Biotechnol. Bioeng. 2016;113: 1658-1665. © 2016 Wiley Periodicals, Inc. PMID:26804057

  8. Copper ions inactivate S-ade-nosylhomocysteine hydrolase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    S-adenosylhomocysteine (AdoHcy) hydrolase isan enzyme that regulates biomethylation and some otherphysiological processes. Recombinant AdoHcy hydrolase wasoverexpressed in E. coli JM109 and purified with ion ex-change and gel filtration chromatographies. The effects ofcopper ions (Cu2+) on the activity of AdoHcy hydrolase wereinvestigated and the results showed that Cu2+ inhibited theenzyme's activity by a concentration and time-dependentprocess. The inhibition constant (Ki) and the apparent rateconstant (kapp) were calculated to be (14 + 4) nmol @ L-1 and(1.08 + 0.15) min-1, respectively. The existence of the naturalsubstrate Ado could to some extent prevent Cu2+ from inac-tivating the enzyme, suggesting that copper ions possiblycould compete with the natural substrate on enzyme's sub-strate binding site. Further studies on the mechanism of in-hibition are being carried out.

  9. Further characterization of intestinal lactase/phlorizin hydrolase

    DEFF Research Database (Denmark)

    Skovbjerg, H; Norén, O; Sjöström, H;

    1982-01-01

    enzyme were shown to have a considerable activity against cellotriose and cellotetraose, and a low but significant activity against cellulose. The lactase/phlorizin hydrolase isolated from pigs in which the pancreatic ducts had been disconnected 3 days before death and from Ca2+-precipitated enterocyte......Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis...... in the presence of SDS. Pig lactase/phlorizin hydrolase was shown to have the same quaternary structure as the human enzyme, i.e., built up of two polypeptides of the same molecular weight (160000). In addition to hydrolyzing lactose, phlorizin and a number of synthetic substrates, both the human and the pig...

  10. Human Lung Hydrolases Delineate Mycobacterium tuberculosis–Macrophage Interactions and the Capacity To Control Infection

    OpenAIRE

    Arcos, Jesus; Sasindran, Smitha J.; Fujiwara, Nagatoshi; Turner, Joanne; Schlesinger, Larry S; Torrelles, Jordi B.

    2011-01-01

    Pulmonary surfactant contains homeostatic and antimicrobial hydrolases. When Mycobacterium tuberculosis is initially deposited in the terminal bronchioles and alveoli, as well as following release from lysed macrophages, bacilli are in intimate contact with these lung surfactant hydrolases. We identified and measured several hydrolases in human alveolar lining fluid and lung tissue that, at their physiological concentrations, dramatically modified the M. tuberculosis cell envelope. Independen...

  11. NMS-P937, a 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor.

    Science.gov (United States)

    Beria, Italo; Bossi, Roberto T; Brasca, Maria Gabriella; Caruso, Michele; Ceccarelli, Walter; Fachin, Gabriele; Fasolini, Marina; Forte, Barbara; Fiorentini, Francesco; Pesenti, Enrico; Pezzetta, Daniele; Posteri, Helena; Scolaro, Alessandra; Re Depaolini, Stefania; Valsasina, Barbara

    2011-05-15

    As part of our drug discovery effort, we identified and developed 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as PLK1 inhibitors. We now report the optimization of this class that led to the identification of NMS-P937, a potent, selective and orally available PLK1 inhibitor. Also, in order to understand the source of PLK1 selectivity, we determined the crystal structure of PLK1 with NMS-P937. The compound was active in vivo in HCT116 xenograft model after oral administration and is presently in Phase I clinical trials evaluation.

  12. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  13. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni

    OpenAIRE

    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph

    2002-01-01

    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  14. Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization

    NARCIS (Netherlands)

    Tanaka, H; Hashiba, Honoo; Kok, Jan; Mierau, Igor

    2000-01-01

    A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized, Furthermore, we describe for the first time cloning and analysis of the gene encoding BSII (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to

  15. Properties of epoxide hydrolase from the yeast Rhodotorula glutinis

    NARCIS (Netherlands)

    Ariës-Kronenburg, N.A.E.

    2002-01-01

     Epoxide hydrolases are ubiquitous enzymes that can be found in nearly all living organisms. Some of the enzymes play an important role in detoxifying xenobiotic and metabolic compounds. Others are important in the growth of organisms like the juvenile hormone in some insec

  16. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph...

  17. alpha/beta hydrolase fold enzymes : the family keeps growing

    NARCIS (Netherlands)

    Nardini, M; Dijkstra, BW

    1999-01-01

    The alpha/beta hydrolase fold is a typical example of a tertiary fold adopted by proteins that have no obvious sequence similarity, but nevertheless, in the course of evolution, diverged from a common ancestor. Recently solved structures demonstrate a considerably increased variability in fold archi

  18. Rationale, design and baseline characteristics of a 4-year (208-week) phase III trial of empagliflozin, an SGLT2 inhibitor, versus glimepiride as add-on to metformin in patients with type 2 diabetes mellitus with insufficient glycemic control

    OpenAIRE

    Ridderstråle, Martin; Svaerd, Robbyna; Zeller, Cordula; Kim, Gabriel; Woerle, Hans J.; Broedl, Uli C.

    2013-01-01

    Background Sulfonylureas (SUs) are commonly used in the treatment of type 2 diabetes (T2DM), usually as second-line treatment after the failure of metformin. However, SUs are associated with poor durability, hypoglycemia and weight gain. Empagliflozin is a sodium glucose cotransporter 2 (SGLT2) inhibitor in development for the treatment of T2DM. In Phase II/III trials, empagliflozin reduced hyperglycemia, body weight and blood pressure, with a low incidence of hypoglycemia. The aim of this Ph...

  19. Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease.

    Directory of Open Access Journals (Sweden)

    Oliver Jung

    Full Text Available Epoxyeicotrienoic acids (EETs are cytochrome P450-dependent anti-hypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered reno-protective. EETs are degraded by the enzyme soluble epoxide hydrolase (sEH and sEH inhibitors are considered treatment for chronic renal failure (CRF. We determined whether sEH inhibition attenuates the progression of CRF in the 5/6-nephrectomy model (5/6-Nx in mice. 5/6-Nx mice were treated with a placebo, an ACE-inhibitor (Ramipril, 40 mg/kg, the sEH-inhibitor cAUCB or the CYP-inhibitor fenbendazole for 8 weeks. 5/6-Nx induced hypertension, albuminuria, glomerulosclerosis and tubulo-interstitial damage and these effects were attenuated by Ramipril. In contrast, cAUCB failed to lower the blood pressure and albuminuria was more severe as compared to placebo. Plasma EET-levels were doubled in 5/6 Nx-mice as compared to sham mice receiving placebo. Renal sEH expression was attenuated in 5/6-Nx mice but cAUCB in these animals still further increased the EET-level. cAUCB also increased 5-HETE and 15-HETE, which derive from peroxidation or lipoxygenases. Similar to cAUCB, CYP450 inhibition increased HETEs and promoted albuminuria. Thus, sEH-inhibition failed to elicit protective effects in the 5/6-Nx model and showed a tendency to aggravate the disease. These effects might be consequence of a shift of arachidonic acid metabolism into the lipoxygenase pathway.

  20. Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes.

    Science.gov (United States)

    Susor, Andrej; Liskova, Lucie; Toralova, Tereza; Pavlok, Antonin; Pivonkova, Katerina; Karabinova, Pavla; Lopatarova, Miloslava; Sutovsky, Peter; Kubelka, Michal

    2010-06-01

    The ubiquitin-proteasome system regulates many cellular processes through rapid proteasomal degradation of ubiquitin-tagged proteins. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is one of the most abundant proteins in mammalian oocytes. It has weak hydrolytic activity as a monomer and acts as a ubiquitin ligase in its dimeric or oligomeric form. Recently published data show that insufficiency in UCHL1 activity coincides with polyspermic fertilization; however, the mechanism by which UCHL1 contributes to this process remains unclear. Using UCHL1-specific inhibitors, we induced a high rate of polyspermy in bovine zygotes after in vitro fertilization. We also detected decreased levels in the monomeric ubiquitin and polyubiquitin pool. The presence of UCHL1 inhibitors in maturation medium enhanced formation of presumptive UCHL1 oligomers and subsequently increased abundance of K63-linked polyubiquitin chains in oocytes. We analyzed the dynamics of cortical granules (CGs) in UCHL1-inhibited oocytes; both migration of CGs toward the cortex during oocyte maturation and fertilization-induced extrusion of CGs were impaired. These alterations in CG dynamics coincided with high polyspermy incidence in in vitro-produced UCHL1-inhibited zygotes. These data indicate that antipolyspermy defense in bovine oocytes may rely on UCHL1-controlled functioning of CGs.

  1. Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay

    2012-01-01

    The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  2. Optimization of 1,2,5-Thiadiazole Carbamates as Potent and Selective ABHD6 Inhibitors #

    Science.gov (United States)

    Patel, Jayendra Z.; Nevalainen, Tapio J.; Savinainen, Juha R.; Adams, Yahaya; Laitinen, Tuomo; Runyon, Robert S.; Vaara, Miia; Ahenkorah, Stephen; Kaczor, Agnieszka A.; Navia-Paldanius, Dina; Gynther, Mikko; Aaltonen, Niina; Joharapurkar, Amit A.; Jain, Mukul R.; Haka, Abigail S.; Maxfield, Frederick R.; Laitinen, Jarmo T.; Parkkari, Teija

    2015-01-01

    At present, inhibitors of α/β-hydrolase domain 6 (ABHD6) are viewed as a promising approach to treat inflammation and metabolic disorders. This article describes the optimization of 1,2,5-thiadiazole carbamates as ABHD6 inhibitors. Altogether, 34 compounds were synthesized and their inhibitory activity was tested using lysates of HEK293 cells transiently expressing human ABHD6 (hABHD6). Among the compound series, 4-morpholino-1,2,5-thiadiazol-3-yl cyclooctyl(methyl)carbamate (JZP-430, 55) potently and irreversibly inhibited hABHD6 (IC50 44 nM) and showed good selectivity (∼230 fold) over fatty acid amide hydrolase (FAAH) and lysosomal acid lipase (LAL), the main off-targets of related compounds. Additionally, activity-based protein profiling (ABPP) indicated that compound 55 (JZP-430) displayed good selectivity among the serine hydrolases of mouse brain membrane proteome. PMID:25504894

  3. Conformational Variability of Organophosphorous Hydrolase upon Soman and Paraoxon Binding

    OpenAIRE

    Gomes, Diego E.B.; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-01-01

    The bacterial enzyme organophosphorous hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pKa calculations and multiple ...

  4. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca.

    Science.gov (United States)

    Gouda, Mona K; Kleeberg, Ilona; van den Heuvel, Joop; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter

    2002-01-01

    The production of a polyester-degrading hydrolase from the thermophilic actinomycete Thermomonospora fusca was investigated with regard to its potential technical application. Only in the presence of a polyester (random aliphatic-aromatic copolyester from 1,4-butanediol, terephthalic acid, and adipic acid with around 40-50 mol % terephthalic acid in the acid component), the excretion of the extracellular enzyme could be achieved with an optimized synthetic medium using pectin and NH(4)Cl as nitrogen source. Compared to complex media, a significantly higher specific activity at comparable volumetric yields could be obtained, thus reducing the expenditure for purification. The activity profile in the medium is controlled by a complex process involving (1) induction of enzyme excretion, (2) enzyme adsorption on the hydrophobic polyester surface, (3) inhibition of enzyme generation by monomers produced by polyester cleavage, and (4) enzyme denaturation. Diafiltration with cellulose acetate membranes as the sole downstream processing step led to a product of high purity and with sufficient yield (60% of total activity). Scaling-up from shaking flasks to a fermentor scale of 100 L revealed no specific problems. However, the excretion of the hydrolase by the actinomycete turned out to be inhibited by the degradation products (monomers) of the aliphatic-aromatic copolyester used as inductor for the enzyme production. The crude enzyme exhibited generally similar properties (temperature and pH optimum) as the highly purified hydrolase described previously; however, the storage capability and thermal stability is improved when the crude enzyme solution is diafiltrated.

  5. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Ludmila [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Bragg, Jennifer [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Wu, Jiajie [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Yang, Xiaohan [ORNL; Tuskan, Gerald A [ORNL; Vogel, John [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights

  6. Oxime carbamate--discovery of a series of novel FAAH inhibitors.

    Science.gov (United States)

    Sit, S Y; Conway, Charles M; Xie, Kai; Bertekap, Robert; Bourin, Clotilde; Burris, Kevin D

    2010-02-01

    A series of novel oxime carbamates have been identified as potent inhibitors of the key regulatory enzyme of the endocannabinoid signaling system, fatty acid amide hydrolase (FAAH). In this Letter, the rationale behind the discovery and the biological evaluations of this novel class of FAAH inhibitors are presented. Both in vitro and in vivo results of selected targets are discussed, along with inhibition kinetics and molecular modeling studies.(1).

  7. Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4

    OpenAIRE

    Kim, Hyun Jung; Magesh, Venkataraman; Lee, Jae-Jin; Kim, Sun; Knaus, Ulla G.; Lee, Kong-Joo

    2015-01-01

    This study explored the role of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in the production of ROS and tumor invasion. UCH-L1 was found to increase cellular ROS levels and promote cell invasion. Silencing UCH-L1, as well as inhibition of H2O2 generation by catalase or by DPI, a NOX inhibitor, suppressed the migration potential of B16F10 cells, indicating that UCH-L1 promotes cell migration by up-regulating H2O2 generation. Silencing NOX4, which generates H2O2, with siRNA eliminated the effec...

  8. ROLE OF SOLUBLE EPOXIDE HYDROLASE IN AGE-RELATED VASCULAR COGNITIVE DECLINE

    Science.gov (United States)

    Nelson, Jonathan W.; Young, Jennifer M.; Borkar, Rohan; Woltjer, Randy L.; Quinn, Joseph F.; Silbert, Lisa C.; Grafe, Marjorie R.; Alkayed, Nabil J.

    2014-01-01

    P450 eicosanoids are important regulators of the cerebral microcirculation, but their role in cerebral small vessel disease is unclear. We tested the hypothesis that vascular cognitive impairment (VCI) is linked to reduced cerebral microvascular eicosanoid signaling. We analyzed human brain tissue from individuals formerly enrolled in the Oregon Brain Aging Study, who had a history of cognitive impairment histopathological evidence of microvascular disease. VCI subjects had significantly higher lesion burden both on premortem MRI and postmortem histopathology compared to age- and sex-matched controls. Mass spectrometry-based eicosanoid analysis revealed that 14,15-dihydroxyeicosatrienoic acid (DHET) was elevated in cortical brain tissue from VCI subjects. Immunoreactivity of soluble epoxide hydrolase (sEH), the enzyme responsible for 14,15-DHET formation, was localized to cerebral microvascular endothelium, and was enhanced in microvessels of affected tissue. Finally, we evaluated the genotype frequency of two functional single nucleotide polymorphisms of sEH gene EPHX2 in VCI and control groups. Our findings support a role for sEH and a potential benefit from sEH inhibitors in age-related VCI. PMID:25277097

  9. X-ray analysis of two antibiotic-synthesizing bacterial ester hydrolases : Preliminary results

    NARCIS (Netherlands)

    Barends, Thomas; Hensgens, Charles M.H.; Polderman-Tijmes, Jolanda J.; Jekel, P; de Vries, Erik; Janssen, Dick B.; Dijkstra, Bauke W.

    2003-01-01

    alpha-Amino-acid ester hydrolases are multimeric enzymes of potential use in antibiotic production. Knowledge of their structure could help to engineer these enzymes into economically viable biocatalysts. The alpha-amino-acid ester hydrolases from Xanthomonas citri and Acetobacter turbidans have bee

  10. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain.

    Science.gov (United States)

    Jhaveri, Maulik D; Richardson, Denise; Kendall, David A; Barrett, David A; Chapman, Victoria

    2006-12-20

    Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 d after spinal nerve ligation or sham surgery, and the effects of the FAAH inhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 microg in 50 microl) significantly (p < 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30 microg in 50 microl) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of sham-operated rats. Intraplantar URB597 (25 microg in 50 microl) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 microg in 50 microl) significantly (p < 0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in sham-operated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.

  11. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    Science.gov (United States)

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease.

  12. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders

    Science.gov (United States)

    Ahn, Kay; Johnson, Douglas S.; Cravatt, Benjamin F.

    2009-01-01

    Background Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that hydrolyzes the endocannabinoid anandamide and related amidated signaling lipids. Genetic or pharmacological inactivation of FAAH produces analgesic, anti-inflammatory, anxiolytic, and antidepressant phenotypes without showing the undesirable side effects of direct cannabinoid receptor agonists, indicating that FAAH may be a promising therapeutic target. Objectives This review highlights advances in the development of FAAH inhibitors of different mechanistic classes and their in vivo efficacy. Also highlighted are advances in technology for the in vitro and in vivo selectivity assessment of FAAH inhibitors employing activity-based protein profiling (ABPP) and click chemistry-ABPP, respectively. Recent reports on structure-based drug design for human FAAH generated by protein engineering using interspecies active site conversion are also discussed. Methods: The literature searches of Medline and SciFinder databases were used. Conclusions There has been tremendous progress in our understanding in FAAH and development of FAAH inhibitors with in vivo efficacy, selectivity, and drug like pharmacokinetic properties. PMID:20544003

  13. Development of surface plasmon resonance imaging biosensors for detection of ubiquitin carboxyl-terminal hydrolase L1.

    Science.gov (United States)

    Sankiewicz, Anna; Laudanski, Piotr; Romanowicz, Lech; Hermanowicz, Adam; Roszkowska-Jakimiec, Wiesława; Debek, Wojciech; Gorodkiewicz, Ewa

    2015-01-15

    We have developed a new method for highly selective determination of the ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) concentration using a surface plasmon resonance imaging (SPRI) technique and two different biosensors. UCH-L1 was captured from a solution by immobilized specific rabbit monoclonal antibody or specific LDN-57444 inhibitor due to formation of receptor-UCH-L1 complex on the biosensor surface. The analytically useful dynamic response range of both biosensors is between 0.1 and 2.5ng/ml. The detection limit is 0.06ng/ml for the biosensor with antibody and 0.08ng/ml for the biosensor with inhibitor. Biosensors based on both antibody and inhibitor were found to be suitable for quantitative determination of the UCH-L1 and exhibit good tolerance to the potential interferents. Both biosensors gave comparable results in the range of 0 to 0.20ng/ml for plasma samples and 0.30 to 0.49ng/ml for cerebrospinal fluid samples. To validate the new methods, comparative determination of UCH-L1 by the commercial enzyme-linked immunosorbent assay (ELISA) kit was performed. In general, in terms of UCH-L1 concentration, a good correlation between SPRI and ELISA was found. The developed biosensors can be used successfully for the determination of UCH-L1 in body fluids. PMID:25312468

  14. Mechanistic investigations of unsaturated glucuronyl hydrolase from Clostridium perfringens.

    Science.gov (United States)

    Jongkees, Seino A K; Yoo, Hayoung; Withers, Stephen G

    2014-04-18

    Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct (1)H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2. PMID:24573682

  15. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Gabriel Zamith Leal Dalmaso

    2015-04-01

    Full Text Available The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.

  16. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase.

    Science.gov (United States)

    Zimny, Jaroslaw; Sikora, Marta; Guranowski, Andrzej; Jakubowski, Hieronim

    2006-08-11

    Homocysteine (Hcy) editing by methionyl-tRNA synthetase results in the formation of Hcy-thiolactone and initiates a pathway that has been implicated in human disease. In addition to being cleared from the circulation by urinary excretion, Hcy-thiolactone is detoxified by the serum Hcy-thiolactonase/paraoxonase carried on high density lipoprotein. Whether Hcy-thiolactone is detoxified inside cells was unknown. Here we show that Hcy-thiolactone is hydrolyzed by an intracellular enzyme, which we have purified to homogeneity from human placenta and identified by proteomic analyses as human bleomycin hydrolase (hBLH). We have also purified an Hcy-thiolactonase from the yeast Saccharomyces cerevisiae and identified it as yeast bleomycin hydrolase (yBLH). BLH belongs to a family of evolutionarily conserved cysteine aminopeptidases, and its only known biologically relevant function was deamidation of the anticancer drug bleomycin. Recombinant hBLH or yBLH, expressed in Escherichia coli, exhibits Hcy-thiolactonase activity similar to that of the native enzymes. Active site mutations, C73A for hBLH and H369A for yBLH, inactivate Hcy-thiolactonase activities. Yeast blh1 mutants are deficient in Hcy-thiolactonase activity in vitro and in vivo, produce more Hcy-thiolactone, and exhibit greater sensitivity to Hcy toxicity than wild type yeast cells. Our data suggest that BLH protects cells against Hcy toxicity by hydrolyzing intracellular Hcy-thiolactone. PMID:16769724

  17. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    Science.gov (United States)

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  18. Epoxides and soluble epoxide hydrolase in cardiovascular physiology.

    Science.gov (United States)

    Imig, John D

    2012-01-01

    Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.

  19. Role of soluble epoxide hydrolase in the sex-specific vascular response to cerebral ischemia

    OpenAIRE

    Zhang, Wenri; Iliff, Jeffrey J.; Campbell, Caitlyn J; Wang, Ruikang K.; Hurn, Patricia D.; Alkayed, Nabil J.

    2009-01-01

    Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilator eicosanoids called epoxyeicosatrienoic acids (EETs), is sexually dimorphic and suppressed by estrogen. We determined if the sex difference in blood flow during focal cerebral ischemia is linked to sEH. Soluble epoxide hydrolase expression in brain, hydrolase activity in cerebral vessels, and plasma 14,15-dihydroxyeicosatrienoic acid (14,15-DHET) were determined in male and female wild-type (WT) and sEH knockout (sE...

  20. Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice

    Directory of Open Access Journals (Sweden)

    Kristen L Zuloaga

    2015-01-01

    Full Text Available Soluble epoxide hydrolase (sEH, a key enzyme in the metabolism of vasodilatory epoxyeicosatrienoic acids (EETs, is sexually dimorphic, suppressed by estrogen, and contributes to underlying sex differences in cerebral blood flow and injury after cerebral ischemia. We tested the hypothesis that sEH inhibition or gene deletion in reproductively senescent (RS female mice would increase cerebral perfusion and decrease infarct size following stroke. RS (15-18 month old and young (3-4 month old female sEH knockout (sEHKO mice and wild type (WT mice were subjected to 45 min middle cerebral artery occlusion (MCAO with laser Doppler perfusion monitoring. WT mice were treated with vehicle or a sEH inhibitor t-AUCB at the time of reperfusion and every 24hrs thereafter for 3 days. Differences in regional cerebral blood flow were measured in vivo using optical microangiography. Infarct size was measured 3 days after reperfusion. Infarct size and cerebral perfusion 24h after MCAO were not altered by age. Both sEH gene deletion and sEH inhibition increased cortical perfusion 24h after MCAO. Neither sEH gene deletion nor sEH inhibition reduced infarct size in young mice. However, sEH gene deletion, but not sEH inhibition of the hydrolase domain of the enzyme, decreased infarct size in RS mice. Results of these studies show that sEH gene deletion and sEH inhibition enhance cortical perfusion following MCAO and sEH gene deletion reduces damage after ischemia in RS female mice; however this neuroprotection in absent is young mice.

  1. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.

    Science.gov (United States)

    Gregg, Katie J; Suits, Michael D L; Deng, Lehua; Vocadlo, David J; Boraston, Alisdair B

    2015-10-16

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue.

  2. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Directory of Open Access Journals (Sweden)

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  3. Processivity, Substrate Positioning, and Binding: The Role of Polar Residues in a Family 18 Glycoside Hydrolase.

    Science.gov (United States)

    Hamre, Anne Grethe; Jana, Suvamay; Reppert, Nicole K; Payne, Christina M; Sørlie, Morten

    2015-12-15

    The enzymatic degradation of recalcitrant polysaccharides such as cellulose (β-1,4-linked glucose) and chitin (β-1,4-linked N-acetylglucosamine) by glycoside hydrolases (GHs) is of significant biological and economical importance. In nature, depolymerization is primarily accomplished by processive GHs, which remain attached to the substrate between subsequent hydrolytic reactions. Recent computational efforts have suggested that the processive ability of a GH is directly linked to the ligand binding free energy. The contribution of individual aromatic residues in the active site of these enzymes has been extensively studied. In this study, we offer the first experimental evidence confirming correlation of binding free energy and degree of processivity and evidence that polar residues are essential for maintaining processive ability. Exchanging Thr(276) with Ala in substrate binding subsite -2 in the processive ChiA of Serratia marcescens results in a decrease in both the enthalpy (2.6 and 3.8 kcal/mol) and free energy (0.5 and 2.2 kcal/mol) for the binding to the substrate (GlcNAc)6 and the inhibitor allosamidin, respectively, compared to that of the wild type. Moreover, the initial apparent processivity as measured by [(GlcNAc)2]/[GlcNAc] ratios (17.1 ± 0.4) and chitin degradation efficiency (20%) are greatly reduced for ChiA-T276A versus those of the wild type (30.1 ± 1.5 and 75%, respectively). Mutation of Arg(172) to Ala reduces the level of recognition and positioning of the substrate into the active site. Molecular dynamics simulations indicate ChiA-R172A behaves like the wild type, but the dynamics of ChiA-T276A are greatly influenced by mutation, which is reflective of their influence on processivity.

  4. Erectogenic and Aphrodisiac Property of Moringa oleifera: Involvement of Soluble Epoxide Hydrolase Enzyme.

    Science.gov (United States)

    Goswami, Sumanta Kumar; Inamdar, Mohammed Naseeruddin; Dethe, Shekhar M; Gururaj, Giligar M; Jamwal, Rohitash; Bhaskar, Anirban; Mundkinajeddu, Deepak; Agarwal, Amit

    2016-07-01

    Soluble epoxide hydrolase (sEH) inhibitors have been reported to improve penile erection; therefore, sEH could be useful for management of erectile dysfunction. Methanolic and aqueous extracts of 30 Indian medicinal plants were screened for their sEH inhibition potential. Fifteen extracts showed >50% inhibition when screened at 50 µg/mL in sEH inhibition assay. Methanolic extract of Moringa oleifera Lam. (Moringaceae) seeds (MEMO) was most potent with IC50 1.7 ± 0.1 µg/mL and was selected for in vitro studies on isolated rat corpus cavernosum smooth muscle and in vivo sexual behaviour studies on healthy and diabetic rats. Rats were divided into five groups, each containing six animals and treated orally with either water, vehicle (1% Tween-20), MEMO (45 and 90 mg/kg/day for 21 days), and standard drug, sildenafil (5 mg/kg/day for 7 days). An equal number of female rats were used, and the effect of MEMO and sildenafil was compared with that of vehicle. MEMO significantly relaxed isolated rat corpus cavernosum smooth muscle at 0.1-100 µg/mL in vitro and significantly increased (p < 0.05) sexual activity, intracavernous pressure/mean arterial pressure in normal and diabetic rats. The increase in erectile function of rats by MEMO could be because of its sEH inhibitory activity. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27020843

  5. Inhibition of Soluble Epoxide Hydrolase Limits Mitochondrial Damage and Preserves Function Following Ischemic Injury

    Science.gov (United States)

    Akhnokh, Maria K.; Yang, Feng Hua; Samokhvalov, Victor; Jamieson, Kristi L.; Cho, Woo Jung; Wagg, Cory; Takawale, Abhijit; Wang, Xiuhua; Lopaschuk, Gary D.; Hammock, Bruce D.; Kassiri, Zamaneh; Seubert, John M.

    2016-01-01

    Aims: Myocardial ischemia can result in marked mitochondrial damage leading to cardiac dysfunction, as such identifying novel mechanisms to limit mitochondrial injury is important. This study investigated the hypothesis that inhibiting soluble epoxide hydrolase (sEH), responsible for converting epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids protects mitochondrial from injury caused by myocardial infarction. Methods: sEH null and WT littermate mice were subjected to surgical occlusion of the left anterior descending (LAD) artery or sham operation. A parallel group of WT mice received an sEH inhibitor, trans-4-[4-(3-adamantan-1-y1-ureido)-cyclohexyloxy]-benzoic acid (tAUCB; 10 mg/L) or vehicle in the drinking water 4 days prior and 7 days post-MI. Cardiac function was assessed by echocardiography prior- and 7-days post-surgery. Heart tissues were dissected into infarct, peri-, and non-infarct regions to assess ultrastructure by electron microscopy. Complexes I, II, IV, citrate synthase, PI3K activities, and mitochondrial respiration were assessed in non-infarct regions. Isolated working hearts were used to measure the rates of glucose and palmitate oxidation. Results: Echocardiography revealed that tAUCB treatment or sEH deficiency significantly improved systolic and diastolic function post-MI compared to controls. Reduced infarct expansion and less adverse cardiac remodeling were observed in tAUCB-treated and sEH null groups. EM data demonstrated mitochondrial ultrastructure damage occurred in infarct and peri-infarct regions but not in non-infarct regions. Inhibition of sEH resulted in significant improvements in mitochondrial respiration, ATP content, mitochondrial enzymatic activities and restored insulin sensitivity and PI3K activity. Conclusion: Inhibition or genetic deletion of sEH protects against long-term ischemia by preserving cardiac function and maintaining mitochondrial efficiency. PMID:27375480

  6. Erectogenic and Aphrodisiac Property of Moringa oleifera: Involvement of Soluble Epoxide Hydrolase Enzyme.

    Science.gov (United States)

    Goswami, Sumanta Kumar; Inamdar, Mohammed Naseeruddin; Dethe, Shekhar M; Gururaj, Giligar M; Jamwal, Rohitash; Bhaskar, Anirban; Mundkinajeddu, Deepak; Agarwal, Amit

    2016-07-01

    Soluble epoxide hydrolase (sEH) inhibitors have been reported to improve penile erection; therefore, sEH could be useful for management of erectile dysfunction. Methanolic and aqueous extracts of 30 Indian medicinal plants were screened for their sEH inhibition potential. Fifteen extracts showed >50% inhibition when screened at 50 µg/mL in sEH inhibition assay. Methanolic extract of Moringa oleifera Lam. (Moringaceae) seeds (MEMO) was most potent with IC50 1.7 ± 0.1 µg/mL and was selected for in vitro studies on isolated rat corpus cavernosum smooth muscle and in vivo sexual behaviour studies on healthy and diabetic rats. Rats were divided into five groups, each containing six animals and treated orally with either water, vehicle (1% Tween-20), MEMO (45 and 90 mg/kg/day for 21 days), and standard drug, sildenafil (5 mg/kg/day for 7 days). An equal number of female rats were used, and the effect of MEMO and sildenafil was compared with that of vehicle. MEMO significantly relaxed isolated rat corpus cavernosum smooth muscle at 0.1-100 µg/mL in vitro and significantly increased (p < 0.05) sexual activity, intracavernous pressure/mean arterial pressure in normal and diabetic rats. The increase in erectile function of rats by MEMO could be because of its sEH inhibitory activity. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Structure-Guided Engineering of Molinate Hydrolase for the Degradation of Thiocarbamate Pesticides

    OpenAIRE

    Leite, José P.; Duarte, Márcia; Paiva, Ana M.; Ferreira-da-Silva, Frederico; Matias, Pedro M.; Nunes, Olga C.; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture show...

  8. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K AREA

    International Nuclear Information System (INIS)

    This paper discusses selecting and implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water. sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal

  9. IN VITRO SOLUBLE EPOXIDE HYDROLASE ENZYME INHIBITORY ACTIVITY OF SOME NOVEL CHALCONE DERIVATIVES

    OpenAIRE

    Kuppusamy Asokkumar; Lokeswari Prathyusha Tangella; Muthusamy Umamaheshwari; Thirumalaisamy Shivashanmugam; Varadharajan Subhadradevi; Puliyath Jagannath; Arumugam Madeswaran

    2012-01-01

    Objective Soluble epoxide hydrolase (sEH) belongs to the α/β -hydrolase superfamily, a subclass of α/β proteins. Chalcones are chemical compounds that show hopeful obliging efficacy in controlling numerous diseases. The main objective of the study is to evaluate the sEH inhibitory activity of some synthesized chalcone derivatives and identification of its mode of inhibition. Methods Four different chalcone derivatives (PC-1 to PC-4) were selected for synthesis by Claisen-Schmidt method. The i...

  10. Characterization and functional analysis of Trichinella spiralis Nudix hydrolase.

    Science.gov (United States)

    Long, Shao Rong; Wang, Zhong Quan; Jiang, Peng; Liu, Ruo Dan; Qi, Xin; Liu, Pei; Ren, Hui Jun; Shi, Hai Ning; Cui, Jing

    2015-12-01

    Trichinella spiralis Nudix hydrolase (TsNd) was identified by screening a T7 phage display cDNA library from T. spiralis intestinal infective larvae (IIL), and vaccination of mice with recombinant TsNd protein (rTsNd) or TsNd DNA vaccine produced a partial protective immunity. The aim of this study was to identify the characteristics and biological functions of TsNd in the process of invasion and development of T. spiralis larvae. Transcription and expression of TsNd gene at all developmental stages of T. spiralis were observed by qPCR and immunofluorescent test (IFT). The rTsNd had the Nd enzymatic activity to dGTP, NAD, NADP and CoA. Its kinetic properties on the preferred substrate dGTP were calculated, and the Vmax, Km, and kcat/Km values at pH 8.0 were 3.19 μM min(-1) μg(-1), 370 μM, and 144 s(-1) M(-1), respectively, in reaction matrix containing 5 mM Zn(2+) and 2 mM DTT. The rTsNd was active from 25 °C to 50 °C, with optimal activity at 37 °C. rTsNd was able to bind specifically to mouse intestinal epithelial cells (IECs) and promoted the larval invasion of IECs, whereas anti-rTsNd antibodies inhibited the larval invasion of IECs in a dose-dependent manner. Anti-rTsNd antibodies could kill T. spiralis infective larvae by an ADCC-mediated mechanism. Our results showed that the rTsNd protein was able to interact with host IECs, had the Nudix hydrolasing activity and the enzymatic activity appeared to be essential indispensable for the T. spiralis larval invasion, development and survival in host. PMID:26545353

  11. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  12. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  13. Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization.

    Science.gov (United States)

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-08-01

    Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have biotechnological potential in chiral chemistry. We report the cloning, purification, enzymatic activity, and conformational analysis of the TrEH gene from Trichoderma reesei strain QM9414 using circular dichroism spectroscopy. The EH gene has an open reading frame encoding a protein of 343 amino acid residues, resulting in a molecular mass of 38.2kDa. The enzyme presents an optimum pH of 7.2, and it is highly active at temperatures ranging from 23 to 50°C and thermally inactivated at 70°C (t1/2=7.4min). The Michaelis constants (Km) were 4.6mM for racemic substrate, 21.7mM for (R)-(+)-styrene oxide and 3.0mM for (S)-(-)-styrene oxide. The kcat/Km analysis indicated that TrEH is enantioselective and preferentially hydrolyzes (S)-(-)-styrene oxide. The conformational stability studies suggested that, despite the extreme conditions (high temperatures and extremely acid and basic pHs), TrEH is able to maintain a considerable part of its regular structures, including the preservation of the native cores in some cases. The recombinant protein showed enantioselectivity that was distinct from other fungus EHs, making this protein a potential biotechnological tool. PMID:27177457

  14. Soluble epoxide hydrolase deficiency ameliorates acute pancreatitis in mice.

    Science.gov (United States)

    Bettaieb, Ahmed; Morisseau, Christophe; Hammock, Bruce; Haj, Fawaz

    2014-10-01

    Acute pancreatitis (AP) is a frequent gastrointestinal disorder that causes significant morbidity and its incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic inflammatory response and complications. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition in murine models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored. To investigate whether sEH may have a causal role in AP we utilized sEH knockout (KO) mice to determine the effects of sEH deficiency on ceruelin- and arginine-induced AP. sEH expression increased at the protein and messenger RNA levels, as well as sEH activity in the early phase of cerulein- and arginine-induced AP in mice. In addition, amylase and lipase levels were lower in cerulein-treated sEH KO mice compared with non-treated controls. Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1ß and IL-6 were lower in sEH KO mice compared with controls. Further, sEH KO mice exhibited decreased cerulein- and arginine-induced NF-?B inflammatory response, MAPKs activation and decreased cell death. These findings demonstrate a novel role for sEH in the progression of cerulein- and arginine-induced AP. PMID:26461340

  15. Recombinant expression of human microsomal epoxide hydrolase protects V79 Chinese hamster cells from styrene oxide- but not from ethylene oxide-induced DNA strand breaks.

    Science.gov (United States)

    Herrero, M E; Arand, M; Hengstler, J G; Oesch, F

    1997-01-01

    Styrene 7,8-oxide and ethylene oxide are widely used genotoxic bulk chemicals, which have been associated with potential carcinogenic hazard for occupationally exposed workers. Both epoxides alkylate DNA preferentially at the N-7 position of guanine and consequently produce single-strand breaks and alkali labile sites in the DNA of exposed cells. In order to study the role of human microsomal epoxide hydrolase (hmEH) in protecting cells against genotoxicity of styrene 7,8-oxide and ethylene oxide, we expressed the cDNA of hmEH in V79 Chinese hamster cells. We obtained a number of cell clones that expressed functionally active epoxide hydrolase. Among these, the clone 92hmEH-V79 revealed an especially high enzymatic mEH activity toward styrene 7,8-oxide (10 nmol converted per mg of protein per min, measured in the 9,000 x g supernatant of the cell homogenate), that was 100 times higher than that determined in mock-transfected cells and within the range of mEH activity in human liver. Styrene 7,8-oxide-induced DNA single-strand breaks/alkali labile sites (dose range 10 microM to 1 mM styrene 7,8-oxide) measured by the alkaline elution technique were significantly lower in the 92hmEH-V79 cells as compared to the mock-transfected cells. The protection against styrene 7,8-oxide genotoxicity in 92hmEH-V79 cells could be abolished by addition of valpromide, a selective inhibitor of microsomal epoxide hydrolase. These results clearly show that the metabolism of styrene 7,8-oxide by hmEH in 92hmEH-V79 cells was responsible for the protection against styrene 7,8-oxide genotoxicity. On the other hand, no protective effect of epoxide hydrolase expression could be observed on ethylene oxide-induced DNA damage with the recombinant cell line over a dose range of 0.5-2.5 mM ethylene oxide. This selectivity of the protective effect on epoxide genotoxicity thus appears to be an important factor that must be taken into account for the prediction of the genotoxic risk of epoxides

  16. Recombinant production and characterisation of two related GH5 endo-β-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Nakai, Hiroyuki; Gotfredsen, Charlotte Held;

    2011-01-01

    The glycoside hydrolase family 5 (GH5) endo-β-1,4-mannanases ManA and ManC from Aspergillus nidulans FGSC A4 were produced in Pichia pastoris X33 and purified in high yields of 120 and 145mg/L, respectively, from the culture supernatants. Both enzymes showed increasing catalytic efficiency (kcat...

  17. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Todd R. [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Bettaieb, Ahmed [Department of Nutrition, University of California, Davis, CA 95616 (United States); Kodani, Sean; Dong, Hua [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Myers, Richard; Chiamvimonvat, Nipavan [Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616 (United States); Haj, Fawaz G. [Department of Nutrition, University of California, Davis, CA 95616 (United States); Department of Internal Medicine: Endocrinology, Diabetes and Metabolism, University of California, Davis, CA 95616 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States)

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  18. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase

    Science.gov (United States)

    Barta, Michael L.; Lovell, Scott; Sinclair, Amy N.; Battaile, Kevin P.; Hefty, P. Scott

    2014-01-01

    Asymmetric diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologs to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH). PMID:24354275

  19. Conformational diversity and enantioconvergence in potato epoxide hydrolase 1.

    Science.gov (United States)

    Bauer, P; Carlsson, Å Janfalk; Amrein, B A; Dobritzsch, D; Widersten, M; Kamerlin, S C L

    2016-06-28

    Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis. PMID:27049844

  20. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton; McFeeters, Robert L.

    2014-10-15

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c = 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.

  1. Intracellular Self-Assembly of Cyclic d-Luciferin Nanoparticles for Persistent Bioluminescence Imaging of Fatty Acid Amide Hydrolase.

    Science.gov (United States)

    Yuan, Yue; Wang, Fuqiang; Tang, Wei; Ding, Zhanling; Wang, Lin; Liang, Lili; Zheng, Zhen; Zhang, Huafeng; Liang, Gaolin

    2016-07-26

    Fatty acid amide hydrolase (FAAH) overexpression induces several disorder symptoms in nerve systems, and therefore long-term tracing of FAAH activity in vivo is of high importance but remains challenging. Current bioluminescence (BL) methods are limited in detecting FAAH activity within 5 h. Herein, by rational design of a latent BL probe (d-Cys-Lys-CBT)2 (1), we developed a "smart" method of intracellular reduction-controlled self-assembly and FAAH-directed disassembly of its cyclic d-luciferin-based nanoparticles (i.e., 1-NPs) for persistent BL imaging of FAAH activity in vitro, in cells, and in vivo. Using aminoluciferin methyl amide (AMA), Lys-amino-d-luciferin (Lys-Luc), and amino-d-luciferin (NH2-Luc) as control BL probes, we validated that the persistent BL of 1 from luciferase-expressing cells or tumors was controlled by the activity of intracellular FAAH. With the property of long-term tracing of FAAH activity in vivo of 1, we envision that our BL precursor 1 could probably be applied for in vivo screening of FAAH inhibitors and the diagnosis of their related diseases (or disorders) in the future. PMID:27348334

  2. Intracellular Self-Assembly of Cyclic d-Luciferin Nanoparticles for Persistent Bioluminescence Imaging of Fatty Acid Amide Hydrolase.

    Science.gov (United States)

    Yuan, Yue; Wang, Fuqiang; Tang, Wei; Ding, Zhanling; Wang, Lin; Liang, Lili; Zheng, Zhen; Zhang, Huafeng; Liang, Gaolin

    2016-07-26

    Fatty acid amide hydrolase (FAAH) overexpression induces several disorder symptoms in nerve systems, and therefore long-term tracing of FAAH activity in vivo is of high importance but remains challenging. Current bioluminescence (BL) methods are limited in detecting FAAH activity within 5 h. Herein, by rational design of a latent BL probe (d-Cys-Lys-CBT)2 (1), we developed a "smart" method of intracellular reduction-controlled self-assembly and FAAH-directed disassembly of its cyclic d-luciferin-based nanoparticles (i.e., 1-NPs) for persistent BL imaging of FAAH activity in vitro, in cells, and in vivo. Using aminoluciferin methyl amide (AMA), Lys-amino-d-luciferin (Lys-Luc), and amino-d-luciferin (NH2-Luc) as control BL probes, we validated that the persistent BL of 1 from luciferase-expressing cells or tumors was controlled by the activity of intracellular FAAH. With the property of long-term tracing of FAAH activity in vivo of 1, we envision that our BL precursor 1 could probably be applied for in vivo screening of FAAH inhibitors and the diagnosis of their related diseases (or disorders) in the future.

  3. Purification and properties of two protease inhibitors from rat skin inhibiting papain and other SH-proteases.

    Science.gov (United States)

    Järvinen, M

    1976-01-01

    Two papain inhibitors, I1 and I2, from rat skin extract were purified by affinity chromatography on KSCN-modified papain-agarose gel and by gel filtration on Sephadex G-100. I1 had a molecular weight of 74 000, a pI of 4.6, and it contained 4% of carbohydrates. I1 inhibited papain, ficin, bromelain, rat skin benzoylarginine-2-naphthylamide hydrolase, and to a minor extent, rat skin cathepsin C and bovine trypsin. Bovine chymotrypsin or rat skin cathepsin D were not inhibited and benzoylarginine-2-naphthylamide hydrolase was inhibited only at alkaline pH. An inhibitor corresponding to I1 was present in various rat tissues and also in serum. A similar inhibitor was present in the skin of cat, rabbit, guinea pig, and man. I2 had a molecular weight of 13 400, a pI of 4.9 and it contained no carbohydrates. I2 inhibited all thiol proteases tested, but not trypsin, chymotrypsin, or rat skin cathepsin D. I2 formed an equimolar complex with papain and benzoylarginine-2-naphthylamide hydrolase. I2 was present in rat skin, muscle, lung, and small intestine, but not in kidney, liver, or serum. A similar inhibitor was found in skin extracts of cat, rabbit, guinea pig, and man.

  4. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    Directory of Open Access Journals (Sweden)

    José P Leite

    Full Text Available Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system.

  5. Sequential changes of lamellar body hydrolases during ozone-induced alveolar injury and repair

    Energy Technology Data Exchange (ETDEWEB)

    Glew, R.H.; Basu, A.; Shelley, S.A.; Paterson, J.F.; Diven, W.F.; Montgomery, M.R.; Balis, J.U.

    1989-05-01

    Lamellar body hydrolases in acutely damaged and regenerating type II cells were determined using an established rat model with well-defined stages of bronchiolo-alveolar injury and repair. Lamellar bodies were isolated from control and ozone-exposed (3.0 ppm for 8 hours) adult male rats by sucrose density gradient centrifugation and analyzed for their content of six different lysosomal hydrolases. Immediately after 3 ppm ozone exposure (zero-time) there was a significant decrease in specific enzyme activity (units/mg protein) of five lamellar body hydrolases and these activities remained depressed for at least 24 hours after exposure. In addition, total enzyme activity (units/lung) was reduced at zero-time for beta-hexosaminidase and at 24 hours postexposure for alpha-mannosidase and alpha-L-fucosidase. During the reparative and recovery stages (48 to 96 hours) the hydrolases demonstrated variable elevations in both specific activity and total activity (units/lung). Characteristically, beta-hexosaminidase and beta-galactosidase reached supranormal values at 96 hours, whereas alpha-mannosidase remained below normal levels through the recovery stage. Moreover, at 24 to 48 hours the lamellar body fraction demonstrated prominent enzyme depletion relative to the expanding pool of stored surfactant. It is concluded that acute ozone stress initiates the development of hydrolase deficiency within the lamellar bodies of injured and regenerating type II cells. This deficiency state is followed by asynchronous lamellar body hydrolase elevations that reflect distinct patterns of response rather than uniform return to normal condition. The lysosomal enzyme changes of lamellar bodies may be pathogenetically linked to the development of associated alterations in the storage and secretion of surfactant.

  6. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  7. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    International Nuclear Information System (INIS)

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: → Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. → TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. → TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. → TCC significantly repressed LPS-induced increased release of inflammatory cytokines.

  8. Docking and in silico ADMET studies of noraristeromycin, curcumin and its derivatives with Plasmodium falciparum SAH hydrolase: a molecular drug target against malaria.

    Science.gov (United States)

    Singh, Dev Bukhsh; Gupta, Manish Kumar; Singh, Durg Vijay; Singh, Sushil Kumar; Misra, Krishna

    2013-03-01

    The Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (pfSAHH) enzyme has been considered as a potential chemotherapeutic target against malaria due to the amino acid differences found on binding sites of pfSAHH related to human SAHH. It has been reported that noraristeromycin and some curcumin derivatives have potential binding with the largest cavity of pfSAHH, which is also related to the binding with Nicotinamide-Adenine-Dinucleotide (NAD) and Adenosine (ADN). Our present work focuses on docking and ADMET studies to select potential inhibitors of pfSAHH. The binding of the selected inhibitor of the PfSAHH active site was analyzed using Molegro Virtual Docker. In this study, curcumin and its derivatives have been found to have higher binding affinity with pfSAHH than noraristeromycin. Seven amino acid residues Leu53, His54, Thr56, Lys230, Gly397, His398 and Phe407 of pfSAHH involved in binding with curcumin, are the same as those for noraristeromycin, which reveals that curcumin and noraristeromycin bind in the same region of pfSAHH. Curcumin has shown a strong interaction with hydrophobic amino acid residues of pfSAHH. Molecular Docking and ADMET predictions suggest that curcumin can be a potent inhibitor of pfSAHH with ability to modulate the target in comparatively smaller dose. Therefore, curcumin is likely to become a good lead molecule for the development of effective drug against malaria. PMID:23605635

  9. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    Science.gov (United States)

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed. PMID:25311940

  10. Isolation, purification and characterization of a new organphosphorus hydrolase OPHC2

    Institute of Scientific and Technical Information of China (English)

    WU Ningfeng; DENG Minjie; SHI Xiuyun; LIANG Guoyi; YAO Bin; FAN Yunliu

    2004-01-01

    A bacterium with the capability of degrading organphosphorus, identified as Pseudomonas pseudoalcaligenes, is isolated from OP-treated soil. The organphosphorus hydrolase OPHC2 from this bacterium has been purified and characterized. OPHC2 has optimum activity for the reaction at 65℃ and pH 9.0 with methyl parathion as a substrate, it also shows good thermal and pH stability. Most metal ions and chemicals have no effect on the activity of OPHC2. The analyses of nucleotide sequence encoding OPHC2 and amino acid sequence of OPHC2 show that there are lower homologies with those of organphosphorus hydrolase reported in GenBank.

  11. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    Science.gov (United States)

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  12. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    Science.gov (United States)

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed.

  13. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei

    Directory of Open Access Journals (Sweden)

    Afef Najjari

    2016-01-01

    Full Text Available Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH patterns for all strains was characterized by two lytic bands of ∼80 (B1 and ∼70 kDa (B2, except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species.

  14. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei.

    Science.gov (United States)

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2016-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  15. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the

  16. The apo structure of sucrose hydrolase from Xanthomonas campestris pv. campestris shows an open active-site groove

    DEFF Research Database (Denmark)

    Champion, Elise; Remaud-Simeon, Magali; Skov, Lars Kobberøe;

    2009-01-01

    Glycoside hydrolase family 13 (GH-13) mainly contains starch-degrading or starch-modifying enzymes. Sucrose hydrolases utilize sucrose instead of amylose as the primary glucosyl donor. Here, the catalytic properties and X-ray structure of sucrose hydrolase from Xanthomonas campestris pv. campestr...

  17. Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen.

    Science.gov (United States)

    Kuntz, Douglas A; Tarling, Chris A; Withers, Stephen G; Rose, David R

    2008-09-23

    The N-glycosylation pathway is a target for pharmaceutical intervention in a number of pathological conditions including cancer. Golgi alpha-mannosidase II (GMII) is the final glycoside hydrolase in the pathway and has been the target for a number of synthetic efforts aimed at providing more selective and effective inhibitors. Drosophila GMII (dGMII) has been extensively studied due to the ease of obtaining high resolution structural data, allowing the observation of substrate distortion upon binding and after formation of a trapped covalent reaction intermediate. However, attempts to find new inhibitor leads by high-throughput screening of large commercial libraries or through in silico docking were unsuccessful. In this paper we provide a kinetic and structural analysis of five inhibitors derived from a small glycosidase-focused library. Surprisingly, four of these were known inhibitors of beta-glucosidases. X-ray crystallographic analysis of the dGMII:inhibitor complexes highlights the ability of the zinc-containing GMII active site to deform compounds, even ones designed as conformationally restricted transition-state mimics of beta-glucosidases, into binding entities that have inhibitory activity. Although these deformed conformations do not appear to be on the expected conformational itinerary of the enzyme, and are thus not transition-state mimics of GMII, they allow positioning of the three vicinal hydroxyls of the bound gluco-inhibitors into similar locations to those found with mannose-containing substrates, underlining the importance of these hydrogen bonds for binding. Further, these studies show the utility of targeting the acid-base catalyst using appropriately positioned positively charged nitrogen atoms, as well as the challenges associated with aglycon substitutions.

  18. Combretastatin A4 phosphate.

    Science.gov (United States)

    West, Catharine M L; Price, Pat

    2004-03-01

    Combretastatin A4 phosphate (CA4P) is a water-soluble prodrug of combretastatin A4 (CA4). The vascular targeting agent CA4 is a microtubule depolymerizing agent. The mechanism of action of the drug is thought to involve the binding of CA4 to tubulin leading to cytoskeletal and then morphological changes in endothelial cells. These changes increase vascular permeability and disrupt tumor blood flow. In experimental tumors, anti-vascular effects are seen within minutes of drug administration and rapidly lead to extensive ischemic necrosis in areas that are often resistant to conventional anti-cancer treatments. Following single-dose administration a viable tumor rim typically remains from which tumor regrowth occurs. When given in combination with therapies targeted at the proliferating viable rim, enhanced tumor responses are seen and in some cases cures. Results from the first clinical trials have shown that CA4P monotherapy is safe and reduces tumor blood flow. There has been some promising demonstration of efficacy. CA4P in combination with cisplatin is also safe. Functional imaging studies have been used to aid the selection of doses for phase II trials. Both dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and positron emission tomography can measure the anti-vascular effects of CA4P in humans. This review describes the background to the development of CA4P, its proposed mechanism of action, the results from the first clinical trials with CA4P and the role of imaging techniques in its clinical development.

  19. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  20. Structure of the minimized α/β-hydrolase fold protein from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    The crystal structure of the minimized α/β-hydrolase fold protein encoded by the gene TTHA1544 from T. thermophilus HB8 has been determined at 2.0 Å resolution. The gene encoding TTHA1544 is a singleton found in the Thermus thermophilus HB8 genome and encodes a 131-amino-acid protein. The crystal structure of TTHA1544 has been determined at 2.0 Å resolution by the single-wavelength anomalous dispersion method in order to elucidate its function. There are two molecules in the asymmetric unit. Each molecule consists of four α-helices and six β-strands, with the β-strands composing a central β-sheet. A structural homology search revealed that the overall structure of TTHA1544 resembles the α/β-hydrolase fold, although TTHA1544 lacks the catalytic residues of a hydrolase. These results suggest that TTHA1544 represents the minimized α/β-hydrolase fold and that an additional component would be required for its activity

  1. Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria

    NARCIS (Netherlands)

    Lambert, J.M.; Siezen, R.J.; Vos, de W.M.; Kleerebezem, M.

    2008-01-01

    Most Gram-positive bacteria inhabiting the gastrointestinal tract are capable of hydrolysing bile salts. Bile salt hydrolysis is thought to play an important role in various biological processes in the host. Therefore, correct annotation of bacterial bile salt hydrolases (Bsh) in public databases (E

  2. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    Science.gov (United States)

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  3. The role of epoxide hydrolase Y113H gene variant in pancreatic diseases.

    NARCIS (Netherlands)

    Ockenga, J.; Strunck, S.; Post, C.; Schulz, H.U.; Halangk, J.; Pfutzer, R.H.; Lohr, M.; Oettle, H.; Kage, A.; Rosendahl, J.; Keim, V.; Drenth, J.P.H.; Jansen, J.B.M.J.; Lochs, H.; Witt, H.

    2009-01-01

    OBJECTIVES: Chronic pancreatitis (CP) and pancreatic adenocarcinoma (pCA) are associated with risk factors such as alcohol intake and tobacco smoking. Microsomal epoxide hydrolase (EPHX1) is a phase II detoxifying enzyme capable of tobacco-borne toxicant inactivation. We studied the role of the EPHX

  4. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were co-polym

  5. Biosynthesis of intestinal microvillar proteins. Intracellular processing of lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M; Skovbjerg, H; Norén, Ove;

    1984-01-01

    The biosynthesis of pig small intestinal lactase-phlorizin hydrolase (EC 3.2.1.23-62) was studied by labelling of organ cultured mucosal explants with [35S]methionine. The earliest detactable form of the enzyme was an intracellular, membrane-bound polypeptide of Mr 225 000, sensitive to endo H as...

  6. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536

    OpenAIRE

    Grill, J; Schneider, F.; Crociani, J.; Ballongue, J.

    1995-01-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis...

  7. Genetically lowered microsomal epoxide hydrolase activity and tobacco-related cancer in 47,000 individuals

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Nordestgaard, Børge G

    2011-01-01

    Two functional polymorphisms of the microsomal epoxide hydrolase (mEH) gene (EPHX1), Tyr113His (rs1051740) and His139Arg (rs2234922), have variably been found to influence susceptibility to various cancer forms. We tested whether genetically lowered mEH activity affects risk of developing cancer...

  8. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries

    DEFF Research Database (Denmark)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N.;

    2015-01-01

    The epoxide hydrolases (EHs) represent an attractive option for the synthesis of chiral epoxides and 1,2-diols which are valuable building blocks for the synthesis of several pharmaceutical compounds. A metagenomic approach has been used to identify two new members of the atypical EH limonene-1...

  9. Genetically reduced soluble epoxide hydrolase activity and risk of stroke and other cardiovascular disease

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Grande, Peer;

    2010-01-01

    BACKGROUND AND PURPOSE: The development of stroke has been linked to lowered levels of epoxyeicosatrienoic acids in the cerebral microvasculature. These substances are metabolized by the enzyme-soluble epoxide hydrolase encoded by the EPHX2 gene. We tested whether genetically reduced soluble...

  10. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    Science.gov (United States)

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface ofEscherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membranefractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus...

  11. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats

    NARCIS (Netherlands)

    Koeners, Maarten P.; Wesseling, Sebastiaan; Ulu, Arzu; Lopez Sepulveda, Rocio; Morisseau, Christophe; Braam, Branko; Hammock, Bruce D.; Joles, Jaap A.

    2011-01-01

    Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B, Hammock BD, Joles JA. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300: E691-E698, 2011. First published January 25, 2011; doi:

  12. Prunasin hydrolases localization during fruit development in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Belmonte, Fara Sáez; Borch-Jensen, Jonas;

    2012-01-01

    , and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal...

  13. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    International Nuclear Information System (INIS)

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving [14C]taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in medium free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined

  14. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2016-07-01

    Pullulan hydrolyzing enzymes are endoacting, classified based on the substrate specificity and hydrolysis products as pullulanases (type I and II) and pullulan hydrolases (type I, II and III). Pullulanases and pullulan hydrolase type I are produced by bacteria and archaea. Among bacteria, many mesophilic, thermophilic and hyperthermophilic bacteria produce pullulanases and neopullulanases. While pullulan hydrolase type II and type III are produced by fungi and archaea, respectively. These are multi-domain proteins with three conserved catalytic acidic residues of the glycosyl hydrolases. The recent advances in molecular biology and protein engineering via mutagenesis and truncation led to improvement in thermostability, catalytic activity and substrate specificity. Pullulanases are debranching enzymes, which are widely employed in starch saccharification that minimizes the use of glucoamylase (approx. 50 %) and reduces the total reaction time of the industrial starch conversion process. The thermostable amylopullulanases are useful in one-step starch liquefaction and saccharification, which replaces amylolytic enzymes like α-amylase and glucoamylase, thus resulting in the reduction in the cost of sugar production. The enzymes also find application in making resistant starches and as an antistale in bread making. Panose and isopanose containing syrups are useful as prebiotics, while panose has also been reported to display anticarcinogenic activity. This review focuses on the distinguishing features of these enzymes based on the analysis of amino acid sequences and domain structure, besides highlighting recent advances in the molecular biology and protein engineering for enhancing their thermostability, catalytic activity and substrate specificity. This review also briefly summarizes the potential applications of pullulanases and pullulan hydrolases. PMID:27142298

  15. Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design.

    Directory of Open Access Journals (Sweden)

    Mahreen Arooj

    Full Text Available Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymase complexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41 upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most active compound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitory mechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes.

  16. Synthesis and preclinical evaluation of [11C-carbonyl]PF-04457845 for neuroimaging of fatty acid amide hydrolase

    International Nuclear Information System (INIS)

    Introduction: Fatty acid amide hydrolase (FAAH) has a significant role in regulating endocannabinoid signaling in the central nervous system. As such, FAAH inhibitors are being actively sought for pain, addiction, and other indications. This has led to the recent pursuit of positron emission tomography (PET) radiotracers targeting FAAH. We report herein the preparation and preclinical evaluation of [11C-carbonyl]PF-04457845, an isotopologue of the potent irreversible FAAH inhibitor. Methods: PF-04457845 was radiolabeled at the carbonyl position via automated [11C]CO2-fixation. Ex vivo brain biodistribution of [11C-carbonyl]PF-04457845 was carried out in conscious rats. Specificity was determined by pre-administration of PF-04457845 or URB597 prior to [11C-carbonyl]PF-04457845. In a separate experiment, rats injected with the title radiotracer had whole brains excised, homogenized and extracted to examine irreversible binding to brain parenchyma. Results: The title compound was prepared in 5 ± 1% (n = 4) isolated radiochemical yield based on starting [11C]CO2 (decay uncorrected) within 25 min from end-of-bombardment in > 98% radiochemical purity and a specific activity of 73.5 ± 8.2 GBq/μmol at end-of-synthesis. Uptake of [11C-carbonyl]PF-04457845 into the rat brain was high (range of 1.2–4.4 SUV), heterogeneous, and in accordance with reported FAAH distribution. Saturable binding was demonstrated by a dose-dependent reduction in brain radioactivity uptake following pre-treatment with PF-04457845. Pre-treatment with the prototypical FAAH inhibitor, URB597, reduced the brain radiotracer uptake in all regions by 71–81%, demonstrating specificity for FAAH. The binding of [11C-carbonyl]PF-04457845 to FAAH at 40 min post injection was irreversible as 98% of the radioactivity in the brain could not be extracted. Conclusions: [11C-carbonyl]PF-04457845 was rapidly synthesized via an automated radiosynthesis. Ex vivo biodistribution studies in conscious rodents

  17. [{sup 11}C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Alan A., E-mail: alan.wilson@camhpet.c [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Garcia, Armando; Parkes, Jun [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Tong, Junchao [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada); Vasdev, Neil [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2011-02-15

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([{sup 11}C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [{sup 11}C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [{sup 11}C]CURB was irreversibly bound to FAAH

  18. [11C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    International Nuclear Information System (INIS)

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([11C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [11C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [11C]CURB was irreversibly bound to FAAH. Conclusions: The

  19. Cathepsin D-mediated yolk protein degradation is blocked by acid phosphatase inhibitors.

    Science.gov (United States)

    Fialho, Eliane; Nakamura, Angelica; Juliano, Luiz; Masuda, Hatisaburo; Silva-Neto, Mário A C

    2005-04-15

    Vitellin (VT) is a lipoglycophosphoprotein stored inside the eggs of every oviparous organism during oogenesis. In the blood-sucking bug Rhodnius prolixus, VT is deposited inside growing oocytes together with two acid hydrolases: acid phosphatase (AP) and cathepsin D (CD). Egg fertilization triggers AP activity and VT proteolysis in vivo [Insect Biochem. Mol. Biol. 2002 (32) 847]. Here, we show that CD is the main protease targeting VT proteolysis during egg development. CD activity in total egg homogenates is blocked by the classical aspartyl protease inhibitor, pepstatin A. Surprisingly, AP inhibitors such as NaF, Na+/K+ tartrate, and inorganic phosphate also block VT proteolysis, whereas this effect is not observed when tyrosine phosphatase inhibitors such as vanadate and phenylarsine oxide or an inhibitor of alkaline phosphatases such as levamisole are used in a VT proteolysis assay. NaF concentrations that block isolated AP activity do not affect the activity of partially purified CD. Therefore, a specific repressor of VT proteolysis must be dephosphorylated by AP in vivo. In conclusion, these results demonstrate for the first time that acid hydrolases act cooperatively to promote yolk degradation during egg development in arthropods. PMID:15797237

  20. HDAC Inhibitors.

    Science.gov (United States)

    Olzscha, Heidi; Bekheet, Mina E; Sheikh, Semira; La Thangue, Nicholas B

    2016-01-01

    Lysine acetylation in proteins is one of the most abundant posttranslational modifications in eukaryotic cells. The dynamic homeostasis of lysine acetylation and deacetylation is dictated by the action of histone acetyltransferases (HAT) and histone deacetylases (HDAC). Important substrates for HATs and HDACs are histones, where lysine acetylation generally leads to an open and transcriptionally active chromatin conformation. Histone deacetylation forces the compaction of the chromatin with subsequent inhibition of transcription and reduced gene expression. Unbalanced HAT and HDAC activity, and therefore aberrant histone acetylation, has been shown to be involved in tumorigenesis and progression of malignancy in different types of cancer. Therefore, the development of HDAC inhibitors (HDIs) as therapeutic agents against cancer is of great interest. However, treatment with HDIs can also affect the acetylation status of many other non-histone proteins which play a role in different pathways including angiogenesis, cell cycle progression, autophagy and apoptosis. These effects have led HDIs to become anticancer agents, which can initiate apoptosis in tumor cells. Hematological malignancies in particular are responsive to HDIs, and four HDIs have already been approved as anticancer agents. There is a strong interest in finding adequate biomarkers to predict the response to HDI treatment. This chapter provides information on how to assess HDAC activity in vitro and determine the potency of HDIs on different HDACs. It also gives information on how to analyze cellular markers following HDI treatment and to analyze tissue biopsies from HDI-treated patients. Finally, a protocol is provided on how to detect HDI sensitivity determinants in human cells, based on a pRetroSuper shRNA screen upon HDI treatment. PMID:27246222

  1. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil [Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States); Servinsky, Matthew D. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Gerlach, Elliot S. [Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401 (United States); Sund, Christian J. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Hurley, Margaret M., E-mail: katherine.germane.civ@mail.mil [US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 (United States); Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States)

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  2. Structure Determination and Characterization of the Vitamin B[superscript 6] Degradative Enzyme (E)-2-(Acetamidomethylene)succinate Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E. (Cornell); (TAM)

    2010-06-22

    The gene identification and kinetic characterization of (E)-2-(acetamidomethylene)succinate (E-2AMS) hydrolase has recently been described. This enzyme catalyzes the final reaction in the degradation of vitamin B{sub 6} and produces succinic semialdehyde, acetate, ammonia, and carbon dioxide from E-2AMS. The structure of E-2AMS hydrolase was determined to 2.3 {angstrom} using SAD phasing. E-2AMS hydrolase is a member of the {alpha}/{beta} hydrolase superfamily and utilizes a serine/histidine/aspartic acid catalytic triad. Mutation of either the nucleophilic serine or the aspartate resulted in inactive enzyme. Mutation of an additional serine residue in the active site causes the enzyme to be unstable and is likely structurally important. The structure also provides insight into the mechanism of hydrolysis of E-2AMS and identifies several potential catalytically important residues.

  3. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo.

    Science.gov (United States)

    Motoki, Atsuko; Merkel, Matthias J; Packwood, William H; Cao, Zhiping; Liu, Lijuan; Iliff, Jeffrey; Alkayed, Nabil J; Van Winkle, Donna M

    2008-11-01

    Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury. PMID:18835921

  4. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Directory of Open Access Journals (Sweden)

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  5. Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases.

    Science.gov (United States)

    Schmidt, Juliane; Wei, Ren; Oeser, Thorsten; Belisário-Ferrari, Matheus Regis; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-09-01

    The enzymatic degradation of polyethylene terephthalate (PET) occurs at mild reaction conditions and may find applications in environmentally friendly plastic waste recycling processes. The hydrolytic activity of the homologous polyester hydrolases LC cutinase (LCC) from a compost metagenome and TfCut2 from Thermobifida fusca KW3 against PET films was strongly influenced by the reaction medium buffers tris(hydroxymethyl)aminomethane (Tris), 3-(N-morpholino)propanesulfonic acid (MOPS), and sodium phosphate. LCC showed the highest initial hydrolysis rate of PET films in 0.2 m Tris, while the rate of TfCut2 was 2.1-fold lower at this buffer concentration. At a Tris concentration of 1 m, the hydrolysis rate of LCC decreased by more than 90% and of TfCut2 by about 80%. In 0.2 m MOPS or sodium phosphate buffer, no significant differences in the maximum initial hydrolysis rates of PET films by both enzymes were detected. When the concentration of MOPS was increased to 1 m, the hydrolysis rate of LCC decreased by about 90%. The activity of TfCut2 remained low compared to the increasing hydrolysis rates observed at higher concentrations of sodium phosphate buffer. In contrast, the activity of LCC did not change at different concentrations of this buffer. An inhibition study suggested a competitive inhibition of TfCut2 and LCC by Tris and MOPS. Molecular docking showed that Tris and MOPS interfered with the binding of the polymeric substrate in a groove located at the protein surface. A comparison of the K i values and the average binding energies indicated MOPS as the stronger inhibitor of the both enzymes. PMID:27642555

  6. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    Directory of Open Access Journals (Sweden)

    Piotr Jarocki

    Full Text Available This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  7. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

    Science.gov (United States)

    Mahajan, Chhavi; Basotra, Neha; Singh, Surender; Di Falco, Marcos; Tsang, Adrian; Chadha, B S

    2016-01-01

    This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient. PMID:26476165

  8. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.

    Science.gov (United States)

    Grosse-Holz, Friederike M; van der Hoorn, Renier A L

    2016-05-01

    Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. PMID:26800491

  9. Simplified assays of lipolysis enzymes for drug discovery and specificity assessment of known inhibitors.

    Science.gov (United States)

    Iglesias, Jose; Lamontagne, Julien; Erb, Heidi; Gezzar, Sari; Zhao, Shangang; Joly, Erik; Truong, Vouy Linh; Skorey, Kathryn; Crane, Sheldon; Madiraju, S R Murthy; Prentki, Marc

    2016-01-01

    Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, α/β-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors.

  10. Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides

    OpenAIRE

    Ani Mulyasuryani; Sasangka Prasetyawan

    2015-01-01

    The research has developed an enzyme biosensor for the detection organophosphate pesticide residues. The biosensor consists of a pair of screen-printed carbon electrode (SPCEs). One of electrodes contains immobilized organophosphate hydrolase (OPH) on a chitosan membrane by cross-linking it with glutaraldehyde. The area of the electrodes was optimized to 3, 5, and 7 mm2. The OPH was isolated from Pseudomonas putida, and was purified by the ammonium sulfate precipitation method, with 6444 ppm ...

  11. Soluble Epoxide Hydrolase Inhibition: Targeting Multiple Mechanisms of Ischemic Brain Injury with a Single Agent

    OpenAIRE

    Iliff, Jeffrey J.; Alkayed, Nabil J.

    2009-01-01

    Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolic conversion and degradation of P450 eicosanoids called epoxyeicosatrienoic acids (EETs). Genetic variations in the sEH gene, designated EPHX2, are associated with ischemic stroke risk. In experimental studies, sEH inhibition and gene deletion reduce infarct size after focal cerebral ischemia in mice. Although the precise mechanism of protection afforded by sEH inhibition remains under investigation, EETs exhibit a wide array of p...

  12. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice

    OpenAIRE

    Walentiny, D. Matthew; Vann, Robert E.; Wiley, Jenny L.

    2015-01-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ9 -tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with sim...

  13. The Crystal Structure of Bacillus subtilis Lipase : A Minimal α/β Hydrolase Fold Enzyme

    NARCIS (Netherlands)

    Pouderoyen, Gertie van; Eggert, Thorsten; Jaeger, Karl-Erich; Dijkstra, Bauke W.

    2001-01-01

    The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 Å resolution. It is the first structure of a member of homology family I.4 of bacterial lipases. The lipase shows a compact minimal α/β hydrolase fold with a six-stranded parallel β-sheet flanked by five α-helic

  14. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    Science.gov (United States)

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  15. Characterization of a Nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxyribonucleoside 5'-diphosphates

    Directory of Open Access Journals (Sweden)

    Kamiya Hiroyuki

    2004-05-01

    Full Text Available Abstract Background Nudix hydrolases form a protein family whose function is to hydrolyse intracellular nucleotides and so regulate their levels and eliminate potentially toxic derivatives. The genome of the radioresistant bacterium Deinococcus radiodurans encodes 25 nudix hydrolases, an unexpectedly large number. These may contribute to radioresistance by removing mutagenic oxidised and otherwise damaged nucleotides. Characterisation of these hydrolases is necessary to understand the reason for their presence. Here, we report the cloning and characterisation of the DR0975 gene product, a nudix hydrolase that appears to be unique to this organism. Results The DR0975 gene was cloned and expressed as a 20 kDa histidine-tagged recombinant product in Escherichia coli. Substrate analysis of the purified enzyme showed it to act primarily as a phosphatase with a marked preference for (deoxynucleoside 5'-diphosphates (dGDP > ADP > dADP > GDP > dTDP > UDP > dCDP > CDP. Km for dGDP was 110 μM and kcat was 0.18 s-1 under optimal assay conditions (pH 9.4, 7.5 mM Mg2+. 8-Hydroxy-2'-deoxyguanosine 5'-diphosphate (8-OH-dGDP was also a substrate with a Km of 170 μM and kcat of 0.13 s-1. Thus, DR0975 showed no preference for 8-OH-dGDP over dGDP. Limited pyrophosphatase activity was also observed with NADH and some (diadenosine polyphosphates but no other substrates. Expression of the DR0975 gene was undetectable in logarithmic phase cells but was induced at least 30-fold in stationary phase. Superoxide, but not peroxide, stress and slow, but not rapid, dehydration both caused a slight induction of the DR0975 gene. Conclusion Nucleotide substrates for nudix hydrolases conform to the structure NDP-X, where X can be one of several moieties. Thus, a preference for (dNDPs themselves is most unusual. The lack of preference for 8-OH-dGDP over dGDP as a substrate combined with the induction in stationary phase, but not by peroxide or superoxide, suggests that the

  16. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Vito, Stephen T., E-mail: stvito@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Austin, Adam T., E-mail: aaustin@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Banks, Christopher N., E-mail: Christopher.Banks@oehha.ca.gov [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Inceoglu, Bora, E-mail: abinceoglu@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Bruun, Donald A., E-mail: dabruun@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Zolkowska, Dorota, E-mail: dzolkowska@gmail.com [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Tancredi, Daniel J., E-mail: djtancredi@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Rogawski, Michael A., E-mail: rogawski@ucdavis.edu [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Lein, Pamela J., E-mail: pjlein@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States)

    2014-12-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase

  17. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  18. Inhibitor and substrate binding by angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Wang, Xuemei; Wu, Shanshan; Xu, Dingguo;

    2011-01-01

    . In this work, we propose a model for an ACE Michaelis complex based on two known X-ray structures of inhibitor-enzyme complexes. Specifically, the human testis angiotensin-converting enzyme (tACE) complexed with two clinic drugs were first investigated using a combined quantum mechanical and molecular......Angiotensin-converting enzyme (ACE) is an important zinc-dependent hydrolase responsible for converting the inactive angiotensin I to the vasoconstrictor angiotensin II and for inactivating the vasodilator bradykinin. However, the substrate binding mode of ACE has not been completely understood...... mechanical (QM/MM) approach. The structural parameters obtained from the 550 ps molecular dynamics simulations are in excellent agreement with the X-ray structures, validating the QM/MM approach. Based on these structures, a model for the Michaelis complex was proposed and simulated using the same...

  19. Comparative gene expression profiling of P. falciparum malaria parasites exposed to three different histone deacetylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Katherine T Andrews

    Full Text Available Histone deacetylase (HDAC inhibitors are being intensively pursued as potential new drugs for a range of diseases, including malaria. HDAC inhibitors are also important tools for the study of epigenetic mechanisms, transcriptional control, and other important cellular processes. In this study the effects of three structurally related antimalarial HDAC inhibitors on P. falciparum malaria parasite gene expression were compared. The three hydroxamate-based compounds, trichostatin A (TSA, suberoylanilide hydroxamic acid (SAHA; Vorinostat® and a 2-aminosuberic acid derivative (2-ASA-9, all caused profound transcriptional effects, with ~2-21% of genes having >2-fold altered expression following 2 h exposure to the compounds. Only two genes, alpha tubulin II and a hydrolase, were up-regulated by all three compounds after 2 h exposure in all biological replicates examined. The transcriptional changes observed after 2 h exposure to HDAC inhibitors were found to be largely transitory, with only 1-5% of genes being regulated after removing the compounds and culturing for a further 2 h. Despite some structural similarity, the three inhibitors caused quite diverse transcriptional effects, possibly reflecting subtle differences in mode of action or cellular distribution. This dataset represents an important contribution to our understanding of how HDAC inhibitors act on malaria parasites and identifies alpha tubulin II as a potential transcriptional marker of HDAC inhibition in malaria parasites that may be able to be exploited for future development of HDAC inhibitors as new antimalarial agents.

  20. Combretastatin A-4 and Derivatives: Potential Fungicides Targeting Fungal Tubulin.

    Science.gov (United States)

    Ma, Zhong-lin; Yan, Xiao-jing; Zhao, Lei; Zhou, Jiu-jiu; Pang, Wan; Kai, Zhen-peng; Wu, Fan-hong

    2016-02-01

    Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management. PMID:26711170

  1. Combretastatin A-4 and Derivatives: Potential Fungicides Targeting Fungal Tubulin.

    Science.gov (United States)

    Ma, Zhong-lin; Yan, Xiao-jing; Zhao, Lei; Zhou, Jiu-jiu; Pang, Wan; Kai, Zhen-peng; Wu, Fan-hong

    2016-02-01

    Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management.

  2. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    Science.gov (United States)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  3. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    Directory of Open Access Journals (Sweden)

    Patricia Marie Legler

    2014-07-01

    Full Text Available We applied a combination of rational design and directed evolution (DE to Bacillus subtilis p-nitrobenzyl esterase (pNBE with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400 within a 6.7 Å radius of the nucleophilic serine O. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  4. Some hydrolase activities from the tick Hyalomma lusitanicum Koch, 1844 (Ixodoidea: Ixodida

    Directory of Open Access Journals (Sweden)

    Giménez-Pardo C.

    2008-12-01

    Full Text Available In this work has been made a detection and preliminary characterization of some hydrolases in whole extracts from unfed adult males and females of Hyalomma lusitanicum, one of the vectors for Theileria annulata that causes Mediterranean theileriosis in cattle. We have elected as targets, proteases as enzymes implicated in the nutritional processes of ticks, esterases that are usually implicated in resistance to organophosphates and phosphatises often implicated in protein phosphorilation and control of ticks salivary gland. The biological role and physiological significance are discussed in terms of the possibility of use these enzymes as possible in future anti-tick vaccination or acaricide resistance.

  5. Characterization of Two New Glycosyl Hydrolases from the Lactic Acid Bacterium Carnobacterium piscicola Strain BA

    OpenAIRE

    Coombs, Jonna; Brenchley, Jean E.

    2001-01-01

    Three genes with homology to glycosyl hydrolases were detected on a DNA fragment cloned from a psychrophilic lactic acid bacterium isolate, Carnobacterium piscicola strain BA. A 2.2-kb region corresponding to an α-galactosidase gene, agaA, was followed by two genes in the same orientation, bgaB, encoding a 2-kb β-galactosidase, and bgaC, encoding a structurally distinct 1.76-kb β-galactosidase. This gene arrangement had not been observed in other lactic acid bacteria, including Lactococcus la...

  6. Radiation-induced alterations in the distribution of lysosomal hydrolases in rat spleen homogenates. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.L.; Eklund, S.K.

    1978-07-01

    Whole-body exposure of rats to /sup 60/Co-..gamma.. radiation results in increases in the activities of two lysosomal hydrolases, ..beta..-glucuronidase and ..cap alpha..-fucosidase, found in the supernatant fraction of spleen homogenates. The redistribution of these enzymes from the ''particulate-bound'' to the ''free-supernatant'' fraction of spleen homogenates has been studied as a function of radiation dose. The response curves for the ratio of free/bound enzyme versus dose sigmoidal with maximum occurring at 300 to 400 rad.

  7. Discovery of MK-3168: A PET Tracer for Imaging Brain Fatty Acid Amide Hydrolase.

    Science.gov (United States)

    Liu, Ping; Hamill, Terence G; Chioda, Marc; Chobanian, Harry; Fung, Selena; Guo, Yan; Chang, Linda; Bakshi, Raman; Hong, Qingmei; Dellureficio, James; Lin, Linus S; Abbadie, Catherine; Alexander, Jessica; Jin, Hong; Mandala, Suzanne; Shiao, Lin-Lin; Li, Wenping; Sanabria, Sandra; Williams, David; Zeng, Zhizhen; Hajdu, Richard; Jochnowitz, Nina; Rosenbach, Mark; Karanam, Bindhu; Madeira, Maria; Salituro, Gino; Powell, Joyce; Xu, Ling; Terebetski, Jenna L; Leone, Joseph F; Miller, Patricia; Cook, Jacquelynn; Holahan, Marie; Joshi, Aniket; O'Malley, Stacey; Purcell, Mona; Posavec, Diane; Chen, Tsing-Bau; Riffel, Kerry; Williams, Mangay; Hargreaves, Richard; Sullivan, Kathleen A; Nargund, Ravi P; DeVita, Robert J

    2013-06-13

    We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain. PMID:24900701

  8. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    OpenAIRE

    Patricia Marie Legler; Susanne eBoisvert; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucl...

  9. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    OpenAIRE

    Legler, Patricia M.; Boisvert, Susanne M.; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleo...

  10. Fear-induced suppression of nociceptive behaviour and activation of Akt signalling in the rat periaqueductal grey: role of fatty acid amide hydrolase.

    Science.gov (United States)

    Butler, Ryan K; Ford, Gemma K; Hogan, Michelle; Roche, Michelle; Doyle, Karen M; Kelly, John P; Kendall, David A; Chapman, Victoria; Finn, David P

    2012-01-01

    The endocannabinoid system regulates nociception and aversion and mediates fear-conditioned analgesia (FCA). We investigated the effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which inhibits the catabolism of the endocannabinoid anandamide and related N-acylethanolamines, on expression of FCA and fear and pain related behaviour per se in rats. We also examined associated alterations in the expression of the signal transduction molecule phospho-Akt in the periaqueductal grey (PAG) by immunoblotting. FCA was modelled by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. URB597 (0.3 mg/kg, i.p.) enhanced FCA and increased fear-related behaviour in formalin-treated rats. Conditioned fear per se in non-formalin-treated rats was associated with increased expression of phospho-Akt in the PAG. URB597 reduced the expression of fear-related behaviour in the early part of the trial, an effect that was accompanied by attenuation of the fear-induced increase in phospho-Akt expression in the PAG. Intra-plantar injection of formalin also reduced the fear-induced increase in phospho-Akt expression. These data provide evidence for a role of FAAH in FCA, fear responding in the presence or absence of nociceptive tone, and fear-evoked increases in PAG phospho-Akt expression. In addition, the results suggest that fear-evoked activation of Akt signalling in the PAG is abolished in the presence of nociceptive tone.

  11. Cloning, Sequence Analysis, and Expression in Escherichia coli of the Gene Encoding an α-Amino Acid Ester Hydrolase from Acetobacter turbidans

    NARCIS (Netherlands)

    Polderman-Tijmes, Jolanda J.; Jekel, P; de Vries, Erik; van Merode, Annet; Floris, René; Laan, Jan-Metske van der; Sonke, Theo; Janssen, Dick B.

    2002-01-01

    The α-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing β-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified α-amino acid ester hydrolase allowed cloning and genetic characterization of the

  12. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding an alpha-amino acid ester hydrolase from Acetobacter turbidans

    NARCIS (Netherlands)

    Polderman-Tijmes, JJ; Jekel, PA; de Vries, EJ; van Merode, Annet; Floris, R; van der Laan, JM; Sonke, T; Janssen, DB

    2002-01-01

    The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing beta-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified alpha-amino acid ester hydrolase allowed cloning and genetic characterizat

  13. Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Dandanell, Gert

    2005-01-01

    as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 k...

  14. Pharmacological blockade of the fatty acid amide hydrolase (FAAH alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2015-03-01

    Full Text Available Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+, astroglia (GFAP+, and microglia (Iba1+ cells were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day at one dose/4-days resting or 5 doses (1 dose/day. Repeated URB597 treatment increased the plasma levels of the endocannabinoids oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3+ and BrdU+ subgranular cells as well as GFAP+, Iba1+ and cleaved caspase-3+ cells, which was accompanied with decreased hippocampal expressions of cannabinoid CB1 receptor and FAAH. In the hypothalami of these rats, the number of phospho-H3+, GFAP+ and 3-weeks-old BrdU+ cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in FAAH and/or CB1 receptor expressions and a negative energy context.

  15. X-Ray Diffraction Structure of a plant Glycosyl Hydrolase family 32 protein: Fructan 1-Exohydrolase IIa of Cichorium intybus

    OpenAIRE

    Verhaest, Maureen; Van den Ende, Wim; Le Roy, Katrien; De Ranter, Camiel; Van Laere, André; Rabijns, Anja

    2005-01-01

    Fructan 1-exohydrolase, an enzyme involved in fructan degradation, belongs to the glycosyl hydrolase family 32. The structure of isoenzyme 1-FEH IIa from Cichorium intybus is described at a resolution of 2.35 Å. The structure consists of an N-terminal fivefold β-propeller domain connected to two C-terminal β-sheets. The putative active site is located entirely in the β-propeller domain and is formed by amino acids which are highly conserved within glycosyl hydrolase family 32. The fructan-bin...

  16. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    International Nuclear Information System (INIS)

    The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P21, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°

  17. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    Science.gov (United States)

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. PMID:27190294

  18. Direct detection, cloning and characterization of a glucoside hydrolase from forest soil.

    Science.gov (United States)

    Hua, Mei; Zhao, Shubo; Zhang, Lili; Liu, Dongbo; Xia, Hongmei; Li, Fan; Chen, Shan

    2015-06-01

    A glucoside hydrolase gene, egl01, was cloned from the soil DNA of Changbai Mountain forest by homologous PCR amplification. The deduced sequence of 517 amino acids included a catalytic domain of glycoside hydrolase family 5 and was homologous to a putative cellulase from Bacillus licheniformis. The recombinant enzyme, Egl01, was maximally active at pH 5 and 50 °C and it was stable at pH 3-9, 4-50 °C, and also stable in the presence of metal ions, organic solvents, surfactants and salt. Its activity was above 120 % in 2-3 M NaCl/KCl and over 70 % was retained in 1-4 M NaCl/KCl for 6d. Egl01 hydrolyzed carboxymethyl cellulose, beechwood xylan, crop stalk, laminarin, filter paper, and avicel but not pNPG, indicating its broad substrate specificity. These properties make this recombinant enzyme a promising candidate for industrial applications. PMID:25700816

  19. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    Science.gov (United States)

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects. PMID:26778207

  20. Screening Brazilian Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases.

    Science.gov (United States)

    Schinke, Claudia; Germani, José C

    2012-03-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipases. Hydrolase detection and growth rate determination were done on citric pectin, gelatin, casein, soluble starch, and olive oil as substrates. Ten isolates were found to be active on all substrates tested. The most commonly detected enzymes were pectinases, amylases, and lipases. The growth rate on pectin was significantly higher (P olive oil was followed for 4 days by measuring the activity in the cultivation broth. The specific lipolytic activity of isolate PEL was significantly higher at 96 h (130 mU mg protein(-1)). The broth was active at 37 °C, pH 8, indicating the potential utility of the lipases of this isolate in mild alkaline detergents. There was a strong and positive correlation (0.86) between radial growth rate and specific lipolytic activity.

  1. Signature motifs identify an Acinetobacter Cif virulence factor with epoxide hydrolase activity.

    Science.gov (United States)

    Bahl, Christopher D; Hvorecny, Kelli L; Bridges, Andrew A; Ballok, Alicia E; Bomberger, Jennifer M; Cady, Kyle C; O'Toole, George A; Madden, Dean R

    2014-03-14

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii ("aCif"). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog ("aCifR") and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections. PMID:24474692

  2. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  3. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae.

    Science.gov (United States)

    Matsuzawa, Tomohiko; Mitsuishi, Yasushi; Kameyama, Akihiko; Yaoi, Katsuro

    2016-03-01

    Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-D-xylopyranose-(1 → 6)-D-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes. PMID:26755723

  4. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2011-08-01

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  5. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity

    Science.gov (United States)

    Khalifeh-Soltani, Amin; Gupta, Deepti; Ha, Arnold; Iqbal, Jahangir; Hussain, Mahmood; Podolsky, Michael J.

    2016-01-01

    The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2–dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing.

  6. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    Energy Technology Data Exchange (ETDEWEB)

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D' haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  7. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  8. Interactions of barley alpha-amylase isozymes with Ca2+, substrates and proteinaceous inhibitors

    DEFF Research Database (Denmark)

    Abou Hachem, Maher; Bozonnet, Sophie; Willemoes, Martin;

    2006-01-01

    alpha-Amylases are endo-acting retaining enzymes of glycoside hydrolase family 13 with a catalytic (beta/alpha)(8)-domain containing an inserted loop referred to as domain B and a C-terminal anti-parallel beta-sheet termed domain C. New insights integrate the roles of Ca2+, different substrates......, and proteinaceous inhibitors for alpha-amylases. Isozyme specific effects of Ca2+ on the 80% sequence identical barley alpha-amylases AMY1 and AMY2 are not obvious from the two crystal structures, containing three superimposable Ca2+ with identical ligands. A fully hydrated fourth Ca2+ at the interface of the AMY2....../barley a-amylase/subtilisin inhibitor (BASI) complex interacts with catalytic groups in AMY2, and Ca2+ occupies an identical position in AMY1 with thiomaltotetraose bound at two surface sites. EDTA-treatment, DSC, and activity assays indicate that AMY1 has the highest affinity for Ca2+. Subsite mapping...

  9. Enzymatic synthesis of β-xylosyl-oligosaccharides by transxylosylation using two beta-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Nakai, Hiroyuki; Gotfredsen, Charlotte Held;

    2011-01-01

    alcohols as acceptors 18 different p-xylosyl-oligosaccharides were synthesised in 2-36% (BxlA) and 6-66% (BxlB) yields by transxylosylation. BxlA utilised the monosaccharides D-mannose, D-lyxose, D-talose, D-xylose, D-arabinose, L-fucose, D-glucose, D-galactose and D-fructose as acceptors, whereas Bxl......B used the same except for D-lyxose, D-arabinose and L-fucose. BxlB transxylosylated the disaccharides xylobiose, lactulose, sucrose, lactose and turanose in upto 35% yield, while BxlA gave inferior yields on these acceptors. The regioselectivity was acceptor dependent and primarily involved beta-1...

  10. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.

    Science.gov (United States)

    Asther, Michèle; Estrada Alvarado, Maria Isabel; Haon, Mireille; Navarro, David; Asther, Marcel; Lesage-Meessen, Laurence; Record, Eric

    2005-01-12

    Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.

  11. Purification and characterization of a glycoside hydrolase family 43 Beta-xylosidase from Geobacillus thermoleovorans IT-08

    Science.gov (United States)

    The gene encoding a glycoside hydrolase family 43 enzyme termed deAX was isolated and subcloned from a culture seeded with a compost starter mixed bacterium population, expressed with a C-terminal His6-tag, and purified to apparent homogeneity. deAX was monomeric in solution, and had a broad pH maxi...

  12. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  13. Bile salt hydrolase in Lactobacillus plantarum: functional analysis and delivery to the intestinal tract of the host

    NARCIS (Netherlands)

    Lambert, J.M.

    2008-01-01

    In the liver of mammals, bile salts are synthesised from cholesterol and conjugated to either taurine or glycine. Following release into the intestine, conjugated bile salts can be deconjugated by members of the endogenous microbiota that produce an enzyme called bile salt hydrolase (Bsh). Bsh appea

  14. Improved enantioselective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutated nucleophile-flanking residue

    NARCIS (Netherlands)

    van Loo, Bert; Kingma, Jaap; Heyman, Gertjan; Wittenaar, Alex; Lutje Spelberg, Jeffrey H.; Sonke, Theo; Janssen, Dick B.

    2009-01-01

    In epoxide hydrolase from Agrobacterium radiobacter (EchA), phenylalanine 108 flanks the nucleophilic aspartate and forms part of the substrate-binding pocket. The influence of mutations at this position on the activity and enantioselectivity of the enzyme was investigated. Screening for improved en

  15. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris

    International Nuclear Information System (INIS)

    A CN-hydrolase superfamily protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. CN-hydrolase superfamily proteins are involved in a wide variety of non-peptide carbon–nitrogen hydrolysis reactions, producing some important natural products such as auxin, biotin, precursors of antibiotics etc. These reactions all involve attack on a cyano or carbonyl carbon by a conserved novel catalytic triad Glu-Lys-Cys through a thiol acylenzyme intermediate. However, classification into the CN-hydrolase superfamily based on sequence similarity alone is not straightforward and further structural data are necessary to improve this categorization. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC1258, a CN-hydrolase superfamily protein from the plant pathogen Xanthomonas campestris (Xcc), are reported. The SeMet-substituted XC1258 crystals diffracted to a resolution of 1.73 Å. They are orthorhombic and belong to space group P21212, with unit-cell parameters a = 143.8, b = 154.63, c = 51.3 Å, respectively

  16. Variation in bleomycin hydrolase gene is associated with reduced survival after chemotherapy for testicular germ cell cancer

    NARCIS (Netherlands)

    de Haas, Esther C; Zwart, Nynke; Meijer, Coby; Nuver, Janine; Suurmeijer, Albert J H; Hoekstra, Harald J; van der Steege, Gerrit; Sleijfer, Dirk Th; Gietema, Jourik A; Boezen, Hendrika

    2008-01-01

    PURPOSE: Response to chemotherapy may be determined by gene polymorphisms involved in metabolism of cytotoxic drugs. A plausible candidate is the gene for bleomycin hydrolase (BLMH), an enzyme that inactivates bleomycin, an essential component of chemotherapy regimens for disseminated testicular ger

  17. Evidence for biosynthesis of lactase-phlorizin hydrolase as a single-chain high-molecular weight precursor

    DEFF Research Database (Denmark)

    Skovbjerg, H; Danielsen, E M; Noren, Ove;

    1984-01-01

    Precursor forms of lactase-phlorizin hydrolase, sucrase-isomaltase and aminopeptidase N were studied by pulse-labelling of organ-cultured human intestinal biopsies. After labelling the biopsies were fractionated by the Ca2+-precipitation method and the enzymes isolated by immunoprecipitation. The...

  18. Construction and characterisation of a genetically engineered Escherichia coli strain for the epoxide hydrolase-catalysed kinetic resolution of epoxides

    NARCIS (Netherlands)

    Visser, H.; Oliveira Vil Filho, de M.; Liese, A.; Weijers, C.A.G.M.; Verdoes, J.C.

    2003-01-01

    The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extrac

  19. Biochemical characterization of Aspergillus niger Cfcl, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis

    NARCIS (Netherlands)

    van Munster, Jolanda M.; van der Kaaij, Rachel M.; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.

    2012-01-01

    The genome of the industrially important fungus Aspergillus niger encodes a large number of glycoside hydrolase family 18 members annotated as chitinases. We identified one of these putative chitinases, Cfcl, as a representative of a distinct phylogenetic clade of homologous enzymes conserved in all

  20. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.

    Science.gov (United States)

    Barth, Markus; Honak, Annett; Oeser, Thorsten; Wei, Ren; Belisário-Ferrari, Matheus R; Then, Johannes; Schmidt, Juliane; Zimmermann, Wolfgang

    2016-08-01

    TfCut2 from Thermobifida fusca KW3 and the metagenome-derived LC-cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono-(2-hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyester hydrolase and the immobilized carboxylesterase TfCa from Thermobifida fusca KW3 was employed for the hydrolysis of PET films at 60°C. HPLC analysis of the reaction products obtained after 24 h of hydrolysis showed an increased amount of soluble products with a lower proportion of MHET in the presence of the immobilized TfCa. The results indicated a continuous hydrolysis of the inhibitory MHET by the immobilized TfCa and demonstrated its advantage as a second biocatalyst in combination with a polyester hydrolase for an efficient degradation oft PET films. The dual enzyme system with LC-cutinase produced a 2.4-fold higher amount of degradation products compared to TfCut2 after a reaction time of 24 h confirming the superior activity of his polyester hydrolase against PET films. PMID:27214855

  1. Comparative expression of the mRNA for three intestinal hydrolases during postnatal development in the rat

    DEFF Research Database (Denmark)

    Freund, J N; Torp, N; Duluc, I;

    1990-01-01

    The distribution of the mRNA for intestinal aminopeptidase-N, lactase-phlorizin hydrolase and sucrase-isomaltase was compared during rat postnatal development as well as along the longitudinal axis of the intestinal tract including small-intestine and colon. We found out that each mRNA exhibited ...

  2. Crystal structure analysis of a glycosides hydrolase family 42 cold-adapted ß-galactosidase from Rahnella sp. R3

    Science.gov (United States)

    The ß-galactosidase isolated from a psychrotrophic bacterium, Rahnella sp. R3 (R-ß-Gal), exhibits high activity at low temperature. R-ß-Gal is a member of the glycoside hydrolases family 42 (GH42), and forms a 225 kDa trimeric structure in solution. The X-ray crystal structure of R-ß-Gal was determi...

  3. Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli.

    Science.gov (United States)

    Wang, Ziqiang; Wang, Yunshan; Su, Zhiguo

    2013-03-01

    A highly enantioselective cis-epoxysuccinic acid hydrolase from Nocardia tartaricans was purified to electrophoretic homogeneity. The enzyme was purified 184-fold with a yield of 18.8 %. The purified cis-epoxysuccinic acid hydrolase had a monomeric molecular weight of 28 kDa, and its optimum conditions were 37 °C and pH 7-9. With sodium cis-epoxysuccinate as the substrate, Michaelis-Menten enzyme kinetics analysis gave a Km value of 35.71 mM and a Vmax of 2.65 mM min(-1). The enzyme was activated by Ni(2+) and Al(3+), while strongly inhibited by Fe(3+), Fe(2+), Cu(2+), and Ag(+). The cis-epoxysuccinic acid hydrolase gene was cloned, and its open reading frame sequence predicted a protein composed of 253 amino acids. A pET11a expression plasmid carrying the gene under the control of the T7 promoter was introduced into Escherichia coli, and the cis-epoxysuccinic acid hydrolase gene was successfully expressed in the recombinant strains. PMID:22552902

  4. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01.

    Science.gov (United States)

    Gao, Yan; Chen, Shaohua; Hu, Meiying; Hu, Qiongbo; Luo, Jianjun; Li, Yanan

    2012-01-01

    Chlorpyrifos is of great environmental concern due to its widespread use in the past several decades and its potential toxic effects on human health. Thus, the degradation study of chlorpyrifos has become increasing important in recent years. A fungus capable of using chlorpyrifos as the sole carbon source was isolated from organophosphate-contaminated soil and characterized as Cladosporium cladosporioides Hu-01 (collection number: CCTCC M 20711). A novel chlorpyrifos hydrolase from cell extract was purified 35.6-fold to apparent homogeneity with 38.5% overall recovery by ammoniumsulfate precipitation, gel filtration chromatography and anion-exchange chromatography. It is a monomeric structure with a molecular mass of 38.3 kDa. The pI value was estimated to be 5.2. The optimal pH and temperature of the purified enzyme were 6.5 and 40°C, respectively. No cofactors were required for the chlorpyrifos-hydrolysis activity. The enzyme was strongly inhibited by Hg²⁺, Fe³⁺, DTT, β-mercaptoethanol and SDS, whereas slight inhibitory effects (5-10% inhibition) were observed in the presence of Mn²⁺, Zn²⁺, Cu²⁺, Mg²⁺, and EDTA. The purified enzyme hydrolyzed various organophosphorus insecticides with P-O and P-S bond. Chlorpyrifos was the preferred substrate. The Km and Vmax values of the enzyme for chlorpyrifos were 6.7974 μM and 2.6473 μmol·min⁻¹, respectively. Both NH2-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer (MALDI-TOF-MS) identified an amino acid sequence MEPDGELSALTQGANS, which shared no similarity with any reported organophosphate-hydrolyzing enzymes. These results suggested that the purified enzyme was a novel hydrolase and might conceivably be developed to fulfill the practical requirements to enable its use in situ for detoxification of chlorpyrifos. Finally, this is the first described chlorpyrifos hydrolase from fungus.

  5. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    Full Text Available Desulfuromonas acetoxidans obtains energy for growth by the anaerobic oxidation of organic compounds with the carbon dioxide formation. It was found that ferrum and manganese are used as terminal electron acceptors in the processes of anaerobic respiration, such as dissimilative Fe3+- and Mn4+-reduction, carried out by these bacteria (Lovely, 1991. D. acetoxidans ІМV B-7384 can be used as anode biocatalyst in microbial fuel cell with high electron recovery through acetate oxidation to the electric current as a result of electron transfer to the anode or 3d-type transition metals, such as ferrum and manganese, in the process of their reduction. Investigation of biochemical changes of D. acetoxidans ІМV B-7384 under the influence of Fe (III compounds is important for optimization of the process of bacterial electricity generation. ATP-hydrolase is located in cytoplasmic membrane, and its subunits are exposed to both the cytoplasm and the external environment. Therefore, the changes of that enzyme activity can be used as an indicator of various stress exposure. Presence of ferric iron ions in the bacterial growth medium could catalyze generation of organic reactive oxygen species, such as peroxyl (ROO- and alkoxyl (RO- radicals. Lipid peroxidation is one of the main reasons of cell damage and it’s following death under the influence of reactive oxygen metabolites. It is known that lipid peroxidation and membrane transport processes are somehow interrelated, but mechanisms of such interaction are still unidentified. In our previous researche we have shown the influence of ferric (III citrate on the intensity of lipid peroxidation of D. аcetoxidans ІМV В-7384. Significant increase of the content of lipid peroxidation products (lipid hydroperoxides, conjugated dienes and malondialdehyde in bacterial cells has been observed under the addition of ferric (III citrate into the cultural medium. The increase of the concentration of lipid

  6. Efficient Calculation of Enzyme Reaction Free Energy Profiles Using a Hybrid Differential Relaxation Algorithm: Application to Mycobacterial Zinc Hydrolases.

    Science.gov (United States)

    Romero, Juan Manuel; Martin, Mariano; Ramirez, Claudia Lilián; Dumas, Victoria Gisel; Marti, Marcelo Adrián

    2015-01-01

    Determination of the free energy profile for an enzyme reaction mechanism is of primordial relevance, paving the way for our understanding of the enzyme's catalytic power at the molecular level. Although hybrid, mostly DFT-based, QM/MM methods have been extensively applied to this type of studies, achieving accurate and statistically converged results at a moderate computational cost is still an open challenge. Recently, we have shown that accurate results can be achieved in less computational time, combining Jarzynski's relationship with a hybrid differential relaxation algorithm (HyDRA), which allows partial relaxation of the solvent during the nonequilibrium steering of the reaction. In this work, we have applied this strategy to study two mycobacterial zinc hydrolases. Mycobacterium tuberculosis infections are still a worldwide problem and thus characterization and validation of new drug targets is an intense field of research. Among possible drug targets, recently two essential zinc hydrolases, MshB (Rv1170) and MA-amidase (Rv3717), have been proposed and structurally characterized. Although possible mechanisms have been proposed by analogy to the widely studied human Zn hydrolases, several key issues, particularly those related to Zn coordination sphere and its role in catalysis, remained unanswered. Our results show that mycobacterial Zn hydrolases share a basic two-step mechanism. First, the attacking water becomes deprotonated by the conserved base and establishes the new C-O bond leading to a tetrahedral intermediate. The intermediate requires moderate reorganization to allow for proton transfer to the amide N and C-N bond breaking to occur in the second step. Zn ion plays a key role in stabilizing the tetrahedral intermediate and balancing the negative charge of the substrate during hydroxide ion attack. Finally, comparative analysis of other Zn hydrolases points to a convergent mechanistic evolution. PMID:26415840

  7. Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen.

    Science.gov (United States)

    Cipriano, Mariateresa; Björklund, Emmelie; Wilson, Alan A; Congiu, Cenzo; Onnis, Valentina; Fowler, Christopher J

    2013-11-15

    Inhibitors of the metabolism of the endogenous cannabinoid ligand anandamide by fatty acid amide hydrolase (FAAH) reduce the gastric damage produced by non-steroidal anti-inflammatory agents and synergise with them in experimental pain models. This motivates the design of compounds with joint FAAH/cyclooxygenase (COX) inhibitory activity. Here we present data on the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen (Flu-AM1 and Nap-AM1, respectively) with respect to their properties towards these two enzymes. Flu-AM1 and Nap-AM1 inhibited FAAH-catalysed hydrolysis of [(3)H]anandamide by rat brain homogenates with IC50 values of 0.44 and 0.74 µM. The corresponding values for flurbiprofen and naproxen were 29 and >100 µM, respectively. The inhibition by Flu-AM1 was reversible, mixed-type, with K(i)slope and K(i)intercept values of 0.21 and 1.4 µM, respectively. Flurbiprofen and Flu-AM1 both inhibited COX in the same manner with the order of potencies COX-2 vs. 2-arachidonoylglycerol>COX-1 vs. arachidonic acid>COX-2 vs. arachidonic acid with flurbiprofen being approximately 2-3 fold more potent than Flu-AM1 in the assays. Nap-AM1 was a less potent inhibitor of COX. Flu-AM1 at low micromolar concentrations inhibited the FAAH-driven uptake of [(3)H]anandamide into RBL2H3 basophilic leukaemia cells in vitro, but did not penetrate the brain in vivo sufficiently to block the binding of [(18)F]DOPP to brain FAAH. It is concluded that Flu-AM1 is a dual-action inhibitor of FAAH and COX that may be useful in exploring the optimal balance of effects on these two enzyme systems in producing peripheral alleviation of pain and inflammation in experimental models.

  8. Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos

    Institute of Scientific and Technical Information of China (English)

    Jie-hong ZHAO; De-gang ZHAO

    2009-01-01

    We constructed an expression cassette of the organophosphorus pesticide degrading (opd)gene under the control of the E8 promoter.Then opd was transformed into tomato fruit using an agroinfiltration transient expression system.β-Glueuronidase (GUS) staining,reverse transcription-polymerase chain reaction (RT-PCR),wavelength scanning,and fluorescent reaction were performed to examine the expression of the opd gene and the hydrolysis activity on eoumaphos of organophosphorus hydrolase (OPH) in tomato fruit.The results show that the agroinfiltrated tomato fruit-expressed OPH had the maximum hydrolysis activity of about 11.59 U/mg total soluble protein.These results will allow us to focus on breeding transgenie plants that could not only enhance the degrading capability of fruit and but also hold no negative effects on pest control when spraying organophosphorus pesticides onto the seedlings in fields.

  9. Studies on culture condition and extracellular hydrolase of psychrophilic bacteria from Arctic sea ice

    Institute of Scientific and Technical Information of China (English)

    Li Xiaohui; Yu Yong; Li Huirong; Zhang Lin; Jiang Xinyin; Ren Daming

    2008-01-01

    Arctic sea ice in the polar region provides a cold habitat for microbial community.Arctic sea ice microorganisms are revealed to be of considerable importance in basic research and potential in biotechnological application.This paper investigated the culture condition and extracellular hydrolase of 14 strains of different Arctic sea ice bacteria.The results showed that optimal growth temperature of strains is 15 ℃ or 20 ℃.The optimal pH is about 8.0.They hardly grow at acid condition.3% NaCl is necessary for better growth.These strains have different abilities in producing amylase,protease,cellulase and lipase.Pseudoalteronomas sp.Bsi429 and Pseudoalteronomas sp.Bsi539 produced both cellulose,protease and lipase.These results provide a basis for further developing and exploiting the cold adapted marine enzyme resources.

  10. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M

    1990-01-01

    explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation...... of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a...... proteolytic cleavage of its high molecular weight precursor. Since only the mature form and not the precursor of this enzyme could be cross-linked, formation of tightly associated dimers only takes place after transport out of the endoplasmic reticulum. Dimerization of the two brush border enzymes therefore...

  11. ETHANOL PRECIPITATION OF GLYCOSYL HYDROLASES PRODUCED BY Trichoderma harzianum P49P11

    Directory of Open Access Journals (Sweden)

    M. A. Mariño

    2015-06-01

    Full Text Available AbstractThis study aimed to concentrate glycosyl hydrolases produced by Trichoderma harzianum P49P11 by ethanol precipitation. The variables tested besides ethanol concentration were temperature and pH. The precipitation with 90% (v/v ethanol at pH 5.0 recovered more than 98% of the xylanase activity, regard less of the temperature (5.0, 15.0, or 25.0 °C. The maximum recovery of cellulase activity as FPase was 77% by precipitation carried out at this same pH and ethanol concentration but at 5.0 °C. Therefore, ethanol precipitation can be considered to be an efficient technique for xylanase concentration and, to a certain extent, also for the cellulase complex.

  12. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav;

    2016-01-01

    Starch-binding modules of family 20 (CBM20) are present in 60% of lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative breakdown of starch, which highlights functional importance in LPMO activity. The substrate-binding properties of starch-active LMPOs, however, are currently...... unexplored. Affinities and binding-thermodynamics of two recombinant fungal LPMOs toward starch and β-cyclodextrin were shown to be similar to fungal CBM20s. Amplex Red assays showed ascorbate and Cu-dependent activity, which was inhibited in the presence of β-cylodextrin and amylose. Phylogenetically......, the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  13. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E. (Cornell)

    2011-07-19

    The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  14. Use of nanostructure initiator mass spectrometry (NIMS to deduce selectivity of reaction in glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Kai eDeng

    2015-10-01

    Full Text Available Chemically synthesized nanostructure-initiator mass spectrometry (NIMS probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

  15. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  16. Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from Aspergillus niger.

    Science.gov (United States)

    Benoit, Isabelle; Asther, Michèle; Bourne, Yves; Navarro, David; Canaan, Stéphane; Lesage-Meessen, Laurence; Herweijer, Marga; Coutinho, Pedro M; Asther, Marcel; Record, Eric

    2007-09-01

    The full-length gene that encodes the chlorogenic acid hydrolase from Aspergillus niger CIRM BRFM 131 was cloned by PCR based on the genome of the strain A. niger CBS 513.88. The complete gene consists of 1,715 bp and codes for a deduced protein of 512 amino acids with a molecular mass of 55,264 Da and an acidic pI of 4.6. The gene was successfully cloned and overexpressed in A. niger to yield 1.25 g liter(-1), i.e., 330-fold higher than the production of wild-type strain A. niger CIRM BRFM131. The histidine-tagged recombinant ChlE protein was purified to homogeneity via a single chromatography step, and its main biochemical properties were characterized. The molecular size of the protein checked by mass spectroscopy was 74,553 Da, suggesting the presence of glycosylation. ChlE is assembled in a tetrameric form with several acidic isoforms with pIs of around 4.55 and 5.2. Other characteristics, such as optimal pH and temperature, were found to be similar to those determined for the previously characterized chlorogenic acid hydrolase of A. niger CIRM BRFM 131. However, there was a significant temperature stability difference in favor of the recombinant protein. ChlE exhibits a catalytic efficiency of 12.5 x 10(6) M(-1) s(-1) toward chlorogenic acid (CGA), and its ability to release caffeic acid from CGA present in agricultural by-products such as apple marc and coffee pulp was clearly demonstrated, confirming the high potential of this enzyme.

  17. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn2+ coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn2+ coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed

  18. IN VITRO SOLUBLE EPOXIDE HYDROLASE ENZYME INHIBITORY ACTIVITY OF SOME NOVEL CHALCONE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Kuppusamy Asokkumar

    2012-09-01

    Full Text Available Objective Soluble epoxide hydrolase (sEH belongs to the α/β -hydrolase superfamily, a subclass of α/β proteins. Chalcones are chemical compounds that show hopeful obliging efficacy in controlling numerous diseases. The main objective of the study is to evaluate the sEH inhibitory activity of some synthesized chalcone derivatives and identification of its mode of inhibition. Methods Four different chalcone derivatives (PC-1 to PC-4 were selected for synthesis by Claisen-Schmidt method. The in vitro sEH inhibitory activity was performed for the synthesized compounds by fluorimetric assay. The percentage of sEH activity and IC50 values were calculated for the synthesized compounds. Dissociation constant were determined by following the method described by Lineweaver-Burks plot.Results and Conclusions The IC50 value obtained for PC-1, PC-2, PC-3, and PC-4 were found to be 0.8213 µg/mL, 2.64 µg/mL, 0.2490 µg/mL and 0.5238 µg/mL respectively. The order of potency (IC50 of the chalcone and chalcone oxide in sEH inhibition assay was PC-3 > PC-4 > PC-1 >PC-2. All the compounds (PC-1, PC-2, PC-3 showed mixed type of inhibition except PC-4 which showed non-competitive type of inhibition. Further in vivo studies are to be carried out for these compounds to confirm their activity and explore the mechanism by which these compounds act and rationalize their use.

  19. Limited enzymic degradation of proteins: a new approach in the industrial application of hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Adler-Nissen, J.

    1982-01-01

    The industrial importance of hydrolases exceeds that of other classes of enzymes. A major application area for hydrolases is for the dissolution of biopolymers such as starch, pectin, cellulose and protein; in many cases it has been the desire to achieve as complete a solubilization as possible. However, with food proteins, it has been demonstrated that a limited controlled hydrolysis may give rise to particularly interesting functional and organoleptic properties. The degree of hydrolysis (DH) is defined as the percentage of peptide bonds cleaved and is used as the controlling indice for the hydrolysis of food proteins. For a given enzyme-substrate system, at least five independent indices can be defined: S(substrate concentration), E/S (enzyme/substrate ratio), pH, T (temperature) and t (time). The advantage of the DH-concept is that of these five variables, four (S,E/S, T, t) can be replaced by DH, i.e. within certain limits of S, E/S, T and t, the properties of a particular protein-enzyme system are solely dependent on DH and pH of the hydrolysis. Empirically, this is demonstrated for soya-protein isolate hydrolyzed with Alcalase and theoretically the same result can be derived from the fact that there is substrate saturation throughout the reaction. These theoretical calculations are the basis for the so-called theta (h)-method, by which the significance of a particular hydrolysis indice can be studied. For each empirically derived hydrolysis curve, the hydrolysis time corresponding to any DH is found. Over a complete DH interval the proportion between the hydrolysis time for each DH is then calculated. If this term, denoted theta (h), is the same for all DH, the properties of the hydrolysates are independent of variations in the hydrolysis indice under study. A statistical procedure must be used to determine if theta (h) is constant or not. (Refs. 20).

  20. Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs.

    Directory of Open Access Journals (Sweden)

    Alexandre Wohlkönig

    Full Text Available BACKGROUND: Chitin is a polysaccharide that forms the hard, outer shell of arthropods and the cell walls of fungi and some algae. Peptidoglycan is a polymer of sugars and amino acids constituting the cell walls of most bacteria. Enzymes that are able to hydrolyze these cell membrane polymers generally play important roles for protecting plants and animals against infection with insects and pathogens. A particular group of such glycoside hydrolase enzymes share some common features in their three-dimensional structure and in their molecular mechanism, forming the lysozyme superfamily. RESULTS: Besides having a similar fold, all known catalytic domains of glycoside hydrolase proteins of lysozyme superfamily (families and subfamilies GH19, GH22, GH23, GH24 and GH46 share in common two structural elements: the central helix of the all-α domain, which invariably contains the catalytic glutamate residue acting as general-acid catalyst, and a β-hairpin pointed towards the substrate binding cleft. The invariant β-hairpin structure is interestingly found to display the highest amino acid conservation in aligned sequences of a given family, thereby allowing to define signature motifs for each GH family. Most of such signature motifs are found to have promising performances for searching sequence databases. Our structural analysis further indicates that the GH motifs participate in enzymatic catalysis essentially by containing the catalytic water positioning residue of inverting mechanism. CONCLUSIONS: The seven families and subfamilies of the lysozyme superfamily all have in common a β-hairpin structure which displays a family-specific sequence motif. These GH β-hairpin motifs contain potentially important residues for the catalytic activity, thereby suggesting the participation of the GH motif to catalysis and also revealing a common catalytic scheme utilized by enzymes of the lysozyme superfamily.

  1. Molecular Dynamics of Organophosphorous Hydrolases Bound to the Nerve Agent Soman

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Thereza A.; Osman, Mohamed A.; Straatsma, TP

    2007-07-01

    The organophosphorous hydrolase (OPH) from Pseudomonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. The potential use of this enzyme for the detection and detoxification of warfare nerve agents has spurred efforts to engineer mutants of enhanced catalytic activity and modified stereospecificity towards the most toxic forms of organophosphate nerve agents. Molecular dynamics simulations of the wild-type OPH and the complexes between the wild-type and the triple-mutant H254G/H257W/L303R forms and the substrate SpSc-soman have been carried out to enhance our molecular level understanding of its reaction mechanism. Comparison of the three simulations indicate that substrate binding induces conformational changes of the loops near the active site, suggesting an induced-fit mechanism. Likewise, the coordination of the zinc cations in the active site of the enzyme differs between the free enzyme and the complexes. In the absence of the substrate, the more exposed b-zinc is hexa-coordinated and the less exposed a-zinc is penta-coordinated. In the presence of the substrate, the b- zinc atom can be both penta- or hexa-coordinated while the a-zinc atom is tetra-coordinated. In addition, binding energies were calculated from electrostatic properties obtained by solution of the Poisson-Boltzmann equation combined with a surface area-dependent apolar contribution. The calculations indicate that the binding of SpSc-soman to OPH is driven by nonpolar interactions while electrostatic interactions determine binding specificity. These results provide a qualitative, molecular-level explanation for 2 the three-fold increase in catalytic efficiency of the triple-mutant towards SpSc-soman. Keywords: organophosphorous hydrolase, phosphotriesterase, nerve agents, soman, molecular dynamics, Poisson-Boltzmann equation, continuum electrostatics, metalloprotein.

  2. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa.

    Science.gov (United States)

    Shih, P B; Yang, J; Morisseau, C; German, J B; Zeeland, A A Scott-Van; Armando, A M; Quehenberger, O; Bergen, A W; Magistretti, P; Berrettini, W; Halmi, K A; Schork, N; Hammock, B D; Kaye, W

    2016-04-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment. PMID:25824304

  3. Interaction of hepatic microsomal epoxide hydrolase derived from a recombinant baculovirus expression system with an azarene oxide and an aziridine substrate analogue.

    Science.gov (United States)

    Lacourciere, G M; Vakharia, V N; Tan, C P; Morris, D I; Edwards, G H; Moos, M; Armstrong, R N

    1993-03-16

    A recombinant baculovirus (vEHX) encoding rat hepatic microsomal epoxide hydrolase has been constructed. Infection of Spodoptera frugiperda (Sf9) cells with the recombinant virus results in the expression of the enzyme at a level estimated to be between 5% and 10% of the cellular protein. The enzyme, which can be purified in 15% yield by a simple three-step procedure involving detergent extraction, DEAE-cellulose chromatography, and removal of the detergent on hydroxylapatite, has physical and kinetic properties very close to those of the enzyme obtained from rat liver microsomes. The interaction of the enzyme with two nitrogen-containing analogues of the substrate phenanthrene 9,10-oxide (1) was investigated in order to delineate the contributions of the oxirane group and the hydrophobic surface of the substrate to substrate recognition. The enzyme exhibits altered kinetic properties toward 1,10-phenanthroline 5,6-oxide (2) in which the biphenyl group of 1 is replaced with a bipyridyl group, suggesting that hydrophobic interaction between the complementary surfaces of the substrate and active site has an influence on catalysis. The conjugate acid of the aziridine analogue of 1, phenanthrene 9,10-imine (3), in which the oxirane oxygen is replaced with NH, has a pKa of 6.1, which allows the characterization of both the neutral and protonated aziridine (3H+) as substrate analogues for the enzyme. The pH dependence of the solvolysis reveals that 3H+ rearranges to a 65/35 mixture of 9-aminophenanthrene and 9-amino-10-hydroxy-9,10-dihydrophenanthrene 10(3)-fold faster than does 3. The neutral aziridine is a competitive inhibitor (Ki = 26 microM) of the enzyme at pH 8.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8383521

  4. Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1.

    Science.gov (United States)

    Susor, Andrej; Ellederova, Zdenka; Jelinkova, Lucie; Halada, Petr; Kavan, Daniel; Kubelka, Michal; Kovarova, Hana

    2007-10-01

    In this study, we performed proteomic analysis of porcine oocytes during in vitro maturation. Comparison of oocytes at the initial and final stages of meiotic division characterized candidate proteins that were differentially synthesized during in vitro maturation. While the biosynthesis of many of these proteins was significantly decreased, we found four proteins with increased biosynthetic rate, which are supposed to play an essential role in meiosis. Among them, the ubiquitin C-terminal hydrolase-L1 (UCH-L1) was identified by mass spectrometry. To study the regulatory role of UCH-L1 in the process of meiosis in pig model, we used a specific inhibitor of this enzyme, marked C30, belonging to the class of isatin O-acyl oximes. When germinal vesicle (GV) stage cumulus-enclosed oocytes were treated with C30, GV breakdown was inhibited after 28 h of culture, and most of the oocytes were arrested at the first meiosis after 44 h. The block of metaphase I-anaphase transition was not completely reversible. In addition, the inhibition of UCH-L1 resulted in elevated histone H1 kinase activity, corresponding to cyclin-dependent kinase(CDK1)-cyclin B1 complex, and a low level of monoubiquitin. These results supported the hypothesis that UCH-L1 might play a role in metaphase I-anaphase transition by regulating ubiquitin-dependent proteasome mechanisms. In summary, a proteomic approach coupled with protein verification study revealed an essential role of UCH-L1 in the completion of the first meiosis and its transition to anaphase.

  5. Cyanuric acid hydrolase from Azorhizobium caulinodans ORS 571: crystal structure and insights into a new class of Ser-Lys dyad proteins.

    Directory of Open Access Journals (Sweden)

    Seunghee Cho

    Full Text Available Cyanuric acid hydrolase (CAH catalyzes the hydrolytic ring-opening of cyanuric acid (2,4,6-trihydroxy-1,3,5-triazine, an intermediate in s-triazine bacterial degradation and a by-product from disinfection with trichloroisocyanuric acid. In the present study, an X-ray crystal structure of the CAH-barbituric acid inhibitor complex from Azorhizobium caulinodans ORS 571 has been determined at 2.7 Å resolution. The CAH protein fold consists of three structurally homologous domains forming a β-barrel-like structure with external α-helices that result in a three-fold symmetry, a dominant feature of the structure and active site that mirrors the three-fold symmetrical shape of the substrate cyanuric acid. The active site structure of CAH is similar to that of the recently determined AtzD with three pairs of active site Ser-Lys dyads. In order to determine the role of each Ser-Lys dyad in catalysis, a mutational study using a highly sensitive, enzyme-coupled assay was conducted. The 10⁹-fold loss of activity by the S226A mutant was at least ten times lower than that of the S79A and S333A mutants. In addition, bioinformatics analysis revealed the Ser226/Lys156 dyad as the only absolutely conserved dyad in the CAH/barbiturase family. These data suggest that Lys156 activates the Ser226 nucleophile which can then attack the substrate carbonyl. Our combination of structural, mutational, and bioinformatics analyses differentiates this study and provides experimental data for mechanistic insights into this unique protein family.

  6. Expression, purification, and buffer solubility optimization of the putative human peptidyl-tRNA hydrolase PTRHD1.

    Science.gov (United States)

    Burks, Geordan L; McFeeters, Hana; McFeeters, Robert L

    2016-10-01

    Performing the essential function of recycling peptidyl-tRNAs, peptidyl-tRNA hydrolases are ubiquitous in all domains of life. The multicomponent eukaryotic Pth system differs greatly from the bacterial system composed predominantly of a single Pth1 enzyme. While bacterial Pth1s are structurally well characterized and promising new targets for antibiotic development, eukaryotic Pths are largely understudied. From amino acid sequence alignment and secondary structure predictions, the human gene product PTRHD1 was classified as a eukaryotic Pth. Herein, we report cloning, recombinant bacterial expression, and weak binding to peptidyl-tRNA for PTRHD1. Additionally, we report binding to tRNA but absence of peptidyl-tRNA hydrolase activity. Thus, PTRHD1 is not a Pth and the functional consequence of nucleotide binding remains undefined. PMID:27235175

  7. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  8. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo

    OpenAIRE

    Motoki, Atsuko; Merkel, Matthias J.; Packwood, William H.; Cao, Zhiping; Liu, Lijuan; Iliff, Jeffrey; Alkayed, Nabil J.; Van Winkle, Donna M.

    2008-01-01

    Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ...

  9. A predictive model for epoxide hydrolase-generated stereochemistry in the biosynthesis of 9-membered enediyne antitumor antibiotics

    OpenAIRE

    Horsman, Geoffrey P.; Lechner, Anna; Ohnishi, Yasuo; Moore, Bradley S.; Shen, Ben

    2013-01-01

    Nine-membered enediyne antitumor antibiotics C-1027, neocarzinostatin (NCS), and kedarcidin (KED) possess enediyne cores to which activity-modulating peripheral moieties are attached via (R)- or (S)-vicinal diols. We have previously shown that this stereochemical difference arises from hydrolysis of epoxide precursors by epoxide hydrolases (EHs) with different regioselectivities – the “inverting” EH, such as SgcF, hydrolyzes an (S)-epoxide substrate to yield an (R)-diol in C-1027 biosynthesis...

  10. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1

    OpenAIRE

    Lambert, J. M.; Bongers, R.S.; Vos; Kleerebezem, M.

    2008-01-01

    Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile salts, using an enzyme called bile salt hydrolase (Bsh). Intestinal lactobacilli are regarded as major contributors to bile salt hydrolysis in vivo. Since the bile salt-hydrolyzing strain Lactobaci...

  11. A Cocaine Hydrolase Engineered from Human Butyrylcholinesterase Selectively Blocks Cocaine Toxicity and Reinstatement of Drug Seeking in Rats

    OpenAIRE

    Brimijoin, Stephen; Gao, Yang; Anker, Justin J.; Gliddon, Luke A.; LaFleur, David; Shah, R.; Zhao, Qinghai; Singh, M; Carroll, Marilyn E.

    2008-01-01

    Successive rational mutations of human butyrylcholinesterase (BChE) followed by fusion to human serum albumin have yielded an efficient hydrolase that offers realistic options for therapy of cocaine overdose and abuse. This albumin-BChE prevented seizures in rats given a normally lethal cocaine injection (100 mg/kg, i.p.), lowered brain cocaine levels even when administered after the drug, and provided rescue after convulsions commenced. Moreover, it selectively blocked cocaine-induced reinst...

  12. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    OpenAIRE

    Wang, Meng; Lai, Guo-Li; Nie, Yong; Geng, Shuang; Liu, Liming; Zhu, Baoli; Shi, Zhongping; Wu, Xiao-Lei

    2015-01-01

    In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme “cocktail”, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cl...

  13. Structural Insights into an Oxalate-producing Serine Hydrolase with an Unusual Oxyanion Hole and Additional Lyase Activity.

    Science.gov (United States)

    Oh, Juntaek; Hwang, Ingyu; Rhee, Sangkee

    2016-07-15

    In Burkholderia species, the production of oxalate, an acidic molecule, is a key event for bacterial growth in the stationary phase. Oxalate plays a central role in maintaining environmental pH, which counteracts inevitable population-collapsing alkaline toxicity in amino acid-based culture medium. In the phytopathogen Burkholderia glumae, two enzymes are responsible for oxalate production. First, the enzyme oxalate biosynthetic component A (ObcA) catalyzes the formation of a tetrahedral C6-CoA adduct from the substrates acetyl-CoA and oxaloacetate. Then the ObcB enzyme liberates three products from the C6-CoA adduct: oxalate, acetoacetate, and CoA. Interestingly, these two stepwise reactions are catalyzed by a single bifunctional enzyme, Obc1, from Burkholderia thailandensis and Burkholderia pseudomallei Obc1 has an ObcA-like N-terminal domain and shows ObcB activity in its C-terminal domain despite no sequence homology with ObcB. We report the crystal structure of Obc1 in its apo and glycerol-bound form at 2.5 Å and 2.8 Å resolution, respectively. The Obc1 N-terminal domain is essentially identical both in structure and function to that of ObcA. Its C-terminal domain has an α/β hydrolase fold that has a catalytic triad for oxalate production and a novel oxyanion hole distinct from the canonical HGGG motif in other α/β hydrolases. Functional analyses through mutagenesis studies suggested that His-934 is an additional catalytic acid/base for its lyase activity and liberates two additional products, acetoacetate and CoA. These results provide structural and functional insights into bacterial oxalogenesis and an example of divergent evolution of the α/β hydrolase fold, which has both hydrolase and lyase activity. PMID:27226606

  14. Functional Analysis of Four Bile Salt Hydrolase and Penicillin Acylase Family Members in Lactobacillus plantarum WCFS1▿ †

    OpenAIRE

    Lambert, J M; Bongers, R.S.; Vos, de, R.; Kleerebezem, M.

    2008-01-01

    Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile salts, using an enzyme called bile salt hydrolase (Bsh). Intestinal lactobacilli are regarded as major contributors to bile salt hydrolysis in vivo. Since the bile salt-hydrolyzing strain Lactobaci...

  15. Purification and Characterization of an Inducible s-Triazine Hydrolase from Rhodococcus corallinus NRRL B-15444R

    OpenAIRE

    Mulbry, Walter W.

    1994-01-01

    The widespread use and relative persistence of s-triazine compounds such as atrazine and simazine have led to increasing concern about environmental contamination by these compounds. Few microbial isolates capable of transforming substituted s-triazines have been identified. Rhodococcus corallinus NRRL B-15444 has previously been shown to possess a hydrolase activity that is responsible for the dechlorination of the triazine compounds deethylsimazine (6-chloro-N-ethyl-1,3,5-triazine-2,4-diami...

  16. Beneficial Effect of Sugar Osmolytes on the Refolding of Guanidine Hydrochloride-Denatured Trehalose-6-phosphate Hydrolase from Bacillus licheniformis

    OpenAIRE

    Jiau-Hua Chen; Meng-Chun Chi; Min-Guan Lin; Long-Liu Lin; Tzu-Fan Wang

    2015-01-01

    The influence of three sugar osmolytes on the refolding of guanidine hydrochloride- (GdnHCl-) denatured trehalose-6-phosphate hydrolase of Bacillus licheniformis (BlTreA) was studied by circular dichroism (CD) spectra, fluorescence emission spectra, and the recovery of enzymatic activity. These experimental results clearly indicated that sorbitol, sucrose, and trehalose at a concentration of 0.75 M improved the refolding yields of GdnHCl-denatured  BlTreA, probably due to the fact that these ...

  17. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D. [Purdue; (UBC)

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  18. Recruitment of Glycosyl Hydrolase Proteins in a Cone Snail Venomous Arsenal: Further Insights into Biomolecular Features of Conus Venoms

    OpenAIRE

    Philippe Favreau; Igor Križaj; Frédéric Ducancel; Reto Stöcklin; Florian Noguier; Sébastien Dutertre; Daniel Biass; David Piquemal; Yves Terrat; Adrijana Leonardi; Aude Violette

    2012-01-01

    Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable ven...

  19. Profile of Secreted Hydrolases, Associated Proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the Degradation of Hemicellulose

    OpenAIRE

    Currie, D. H.; Guss, A. M.; Herring, C. D.; Giannone, R. J.; Johnson, C. M.; Lankford, P. K.; Brown, S. D.; Hettich, R.L.; Lynd, L. R.

    2014-01-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases an...

  20. Modular system for assessment of glycosyl hydrolase secretion in Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Bartosiak-Jentys, Jeremy; Hussein, Ali H; Lewis, Claire J; Leak, David J

    2013-07-01

    The facultatively anaerobic, thermophilic bacterium Geobacillus thermoglucosidasius is being developed as an industrial micro-organism for cellulosic bioethanol production. Process improvement would be gained by enhanced secretion of glycosyl hydrolases. Here we report the construction of a modular system for combining promoters, signal peptide encoding regions and glycosyl hydrolase genes to facilitate selection of the optimal combination in G. thermoglucosidasius. Initially, a minimal three-part E. coli-Geobacillus sp. shuttle vector pUCG3.8 was constructed using Gibson isothermal DNA assembly. The three PCR amplicons contained the pMB1 E. coli origin of replication and multiple cloning site (MCS) of pUC18, the Geobacillus sp. origin of replication pBST1 and the thermostable kanamycin nucleotidyltransferase gene (knt), respectively. G. thermoglucosidasius could be transformed with pUCG3.8 at an increased efficiency [2.8×10(5) c.f.u. (µg DNA)(-1)] compared to a previously reported shuttle vector, pUCG18. A modular cassette for the inducible expression and secretion of proteins in G. thermoglucosidasius, designed to allow the simple interchange of parts, was demonstrated using the endoglucanase Cel5A from Thermotoga maritima as a secretion target. Expression of cel5A was placed under the control of a cellobiose-inducible promoter (Pβglu) together with a signal peptide encoding sequence from a G. thermoglucosidasius C56-YS93 endo-β-1,4-xylanase. The interchange of parts was demonstrated by exchanging the cel5A gene with the 3' region of a gene with homology to celA from Caldicellulosiruptor saccharolyticus and substituting Pβglu for the synthetic, constitutive promoter PUp2n38, which increased Cel5A activity five-fold. Cel5A and CelA activities were detected in culture supernatants indicating successful expression and secretion. N-terminal protein sequencing of Cel5A carrying a C-terminal FLAG epitope confirmed processing of the signal peptide sequence.

  1. Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7

    Directory of Open Access Journals (Sweden)

    Jambunathan Niranjani

    2010-08-01

    Full Text Available Abstract Background Nudix hydrolases play a key role in maintaining cellular homeostasis by hydrolyzing various nuceloside diphosphate derivatives and capped mRNAs. Several independent studies have demonstrated that Arabidopsis nudix hydrolase 7 (AtNUDT7 hydrolyzes NADH and ADP-ribose. Loss of function Atnudt7-1 mutant plants (SALK_046441 exhibit stunted growth, higher levels of reactive oxygen species, enhanced resistance to pathogens. However, using the same T-DNA line, two other groups reported that mutant plants do not exhibit any visible phenotypes. In this study we analyze plausible factors that account for differences in the observed phenotypes in Atnudt7. Secondly, we evaluate the biochemical and molecular consequences of increased NADH levels due to loss of function of AtNUDT7 in Arabidopsis. Results We identified a novel conditional phenotype of Atnudt7-1 knockout plants that was contingent upon nutrient composition of potting mix. In nutrient-rich Metro-Mix, there were no phenotypic differences between mutant and wild-type (WT plants. In the nutrient-poor mix (12 parts vermiculite: 3 parts Redi-earth and 1 part sand, mutant plants showed the characteristic stunted phenotype. Compared with WT plants, levels of glutathione, NAD+, NADH, and in turn NADH:NAD+ ratio were higher in Atnudt7-1 plants growing in 12:3:1 potting mix. Infiltrating NADH and ADP-ribose into WT leaves was sufficient to induce AtNUDT7 protein. Constitutive over-expression of AtNudt7 did not alter NADH levels or resistance to pathogens. Transcriptome analysis identified nearly 700 genes differentially expressed in the Atnudt7-1 mutant compared to WT plants grown in 12:3:1 potting mix. In the Atnudt7-1 mutant, genes associated with defense response, proteolytic activities, and systemic acquired resistance were upregulated, while gene ontologies for transcription and phytohormone signaling were downregulated. Conclusions Based on these observations, we conclude that the

  2. Leishmania donovani Nucleoside Hydrolase terminal domains in cross-protective immunotherapy against Leishmania amazonensis murine infection

    Directory of Open Access Journals (Sweden)

    Dirlei eNico

    2014-06-01

    Full Text Available Nucleoside hydrolases of the Leishmania genus are vital enzymes for the replication of the DNA and conserved phylogenetic markers of the parasites. Leishmania donovani Nucleoside hydrolase (NH36 induced a main CD4+ T cell driven protective response against Leishmania chagasi infection in mice which is directed against its C-terminal domain. In this study, we used the three recombinant domains of NH36: N-terminal domain (F1, amino acids 1-103, central domain (F2 aminoacids 104-198 and C-terminal domain (F3 amino acids 199-314 in combination with saponin and assayed their immunotherapeutic effect on Balb/c mice previously infected with L. amazonensis. We identified that the F1 and F3 peptides determined strong cross-immunotherapeutic effects, reducing the size of footpad lesions to 48% and 64%, and the parasite load in footpads to 82.6% and 81%, respectively. The F3 peptide induced the strongest anti-NH36 antibody response and intradermal response (IDR against L. amazonenis and a high secretion of IFN-γ and TNF-α with reduced levels of IL-10. The F1 vaccine, induced similar increases of IgG2b antibodies and IFN-γ and TNF-α levels, but no IDR and no reduction of IL-10. The multiparameter flow cytometry analysis was used to assess the immune response after immunotherapy and disclosed that the degree of the immunotherapeutic effect is predicted by the frequencies of the CD4+ and CD8+ T cells producing IL-2 or TNF-α or both. Total frequencies and frequencies of double-cytokine CD4 T cell producers were enhanced by F1 and F3 vaccines. Collectively, our multifunctional analysis disclosed that immunotherapeutic protection improved as the CD4 responses progressed from 1+ to 2+, in the case of the F1 and F3 vaccines, and as the CD8 responses changed qualitatively from 1+ to 3+, mainly in the case of the F1 vaccine, providing new correlates of immunotherapeutic protection against cutaneous leishmaniasis in mice based on T-helper TH1 and CD8+ mediated

  3. Effect of N-acetylcysteine in COPD patients with different microsomal epoxide hydrolase genotypes

    Directory of Open Access Journals (Sweden)

    Zhang JQ

    2015-05-01

    Full Text Available Jian-Qing Zhang,1 Jia-Qiang Zhang,1 Hua Liu,2 Zhi-Huan Zhao,1 Li-Zhou Fang,1 Ling Liu,1 Wei-Ping Fu,1 Jing-Kui Shu,1 Jia-Gang Feng,1 Lu-Ming Dai1 1Department of Respiratory Critical Care Medicine, 2Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China Background: The role of the antioxidant N-acetylcysteine (NAC in the treatment of chronic obstructive pulmonary disease (COPD has not been clarified as yet. In early studies, we found that the proportion of smokers with COPD having extremely slow/slow microsomal epoxide hydrolase (EPHX1 enzyme activity is significantly higher than that in healthy smokers. The purpose of this study was to evaluate whether different EPHX1 enzyme activity is related to differential therapeutic effects of treatment with NAC in COPD.Methods: A total of 219 patients with COPD were randomly allocated to an extremely slow/slow EPHX1 enzyme activity group (n=157 or a fast/normal EPHX1 enzyme activity group (n=62 according to their EPHX1 enzyme activity. Both groups were treated with NAC 600 mg twice daily for one year. The main study parameters, including forced expiratory volume in one second (FEV1, St George’s Respiratory Questionnaire (SGRQ, and yearly exacerbation rate, were measured at baseline and at 6-month intervals for one year.Results: Both FEV1 and SGRQ symptom scores were improved after treatment with NAC in the slow activity group when compared with the fast activity group. Further, changes in FEV1 and SGRQ symptom score in patients with mild-to-moderate COPD were more significant than those in patients with severe-to-very severe COPD. The yearly exacerbation rates were reduced in both groups, but the reduction in the slow activity group was significantly lower than in the fast activity group.Conclusion: NAC treatment in COPD patients with extremely slow/slow EPHX1 enzyme activity improves FEV1 and the SGRQ symptom score, especially

  4. Lactase-phlorizin hydrolase and aminopeptidase N are differentially regulated in the small intestine of the pig

    DEFF Research Database (Denmark)

    Torp, Niels; Rossi, M; Troelsen, J T;

    1993-01-01

    of lactase-phlorizin hydrolase in the pig during development: (1) a primary regulation at the level of mRNA (predominantly in the ileum); (2) an increased rate of turnover of the enzyme, mainly in the duodenum and proximal jejunum, and most likely due to an increased secretion into the gut lumen......The longitudinal expression of two brush-border enzymes, lactase-phlorizin hydrolase (EC 3.2.1.23/62) and aminopeptidase N (EC 3.4.11.2), was studied in the small intestine of the post-weaned pig. Whereas the level of mRNA, encoding aminopeptidase N (relative to that of beta-actin), only varied...... moderately from the duodenum to the terminal ileum, the amount of lactase-phlorizin hydrolase mRNA exhibited a sharp maximum in the proximal jejunum. For both enzymes, the level of protein synthesis, studied in cultured mucosal explants, correlated well with the level of mRNA, and no major variation in post...

  5. Isolation and immunological characterization of a novel Cladosporium herbarum allergen structurally homologous to the alpha/beta hydrolase fold superfamily.

    Science.gov (United States)

    Rid, Raphaela; Onder, Kamil; Hawranek, Thomas; Laimer, Martin; Bauer, Johann W; Holler, Claudia; Simon-Nobbe, Birgit; Breitenbach, Michael

    2010-03-01

    Because the ascomycete Cladosporium herbarum embodies one of the most important, world-wide occurring fungal species responsible for eliciting typical IgE-mediated hypersensitivity reactions ranging from rhinitis and ocular symptoms to severe involvement of the lower respiratory tract, a more comprehensive definition of its detailed allergen repertoire is unquestionably of critical medical as well as therapeutic significance. By screening a C. herbarum cDNA library with IgE antibodies pooled from 3 mold-reactive sera, we were able to identify, clone and affinity-purify a novel allergen candidate (29.9 kDa) exhibiting considerable (three-dimensional) homology to the alpha/beta hydrolase fold superfamily. The latter covers a collection of hydrolytic enzymes of widely differing phylogenetic origin as well as catalytic activity (operating in countless biological contexts) that in general exhibit only little sequence similarity yet show a remarkable conservation of structural topology. Our present study (i) characterizes recombinant non-fusion C. herbarum hydrolase as a natively folded, minor mold allergen that displays a prevalence of IgE reactivity of approximately 17% in our in vitro immunoblot experiments, (ii) proposes the existence of several putative (speculatively cross-reactive) ascomycete orthologues as determined via genome-wide in silico predictions, and (iii) finally implies that C. herbarum hydrolase could be included in forthcoming minimal testing sets when fungal allergy is suspected.

  6. Cocoa pod husk, a new source of hydrolase enzymes for preparation of cross-linked enzyme aggregate.

    Science.gov (United States)

    Yusof, Faridah; Khanahmadi, Soofia; Amid, Azura; Mahmod, Safa Senan

    2016-01-01

    Cocoa pod husk (CPH) is a by-product of cocoa production obtained after removing the beans from the fruit. The analysis of CPH has shown that it contains high amounts of protein. This study is aimed to utilize this protein source in hydrolase enzyme production. In this study, seven hydrolase enzymes (amylase, fructosyltransferase, mannanase, glucosidase, glucanase, lipase and protease) were screened from CPH for the first time for feasible industrial production. Among these hydrolases, lipase was chosen for the next steps of experiments as it has a lot of applications in different industries. The extraction of high active lipase from CPH has been done under optimum conditions. The condition that was optimum for the three major factors was achieved using Face centered central composite design (FCCCD) with response surface methodology (RSM) to obtain the highest enzyme activity of crude lipase from CPH. The optimum condition of extraction is used for preparation of cross-linked enzyme aggregate (CLEA). For the production of immobilized biocatalyst, the technique of CLEA is considered as an effective technique for its industrially attractive advantages. Referring to the results of OFAT, CLEA-lipase was prepared in the best condition at the presence of 30 mM ammonium sulphate, 70 mM glutaraldehyde with 0.23 mM Bovine serum albumin as an additive. Immobilization effectively improved the stability of lipase against various organic solvents.

  7. Cholinesterase inhibitors from botanicals

    Directory of Open Access Journals (Sweden)

    Faiyaz Ahmed

    2013-01-01

    Full Text Available Alzheimer′s disease (AD is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh, appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com are also presented and the scope for future research is discussed.

  8. Characterization of 2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl Ureido Based Inhibitors of Trypanosoma brucei FolD and Testing for Antiparasitic Activity.

    Science.gov (United States)

    Eadsforth, Thomas C; Pinto, Andrea; Luciani, Rosaria; Tamborini, Lucia; Cullia, Gregorio; De Micheli, Carlo; Marinelli, Luciana; Cosconati, Sandro; Novellino, Ettore; Lo Presti, Leonardo; Cordeiro da Silva, Anabela; Conti, Paola; Hunter, William N; Costi, Maria P

    2015-10-22

    The bifunctional enzyme N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought to develop inhibitors of Trypanosoma brucei FolD (TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally assigned through X-ray crystallography of the intermediate compound 3. Compound 2 showed an IC50 of 2.2 μM, against TbFolD and displayed antiparasitic activity against T. brucei (IC50 49 μM). Using compound 2, we were able to obtain the first X-ray structure of TbFolD in the presence of NADP(+) and the inhibitor, which then guided the rational design of a new series of potent TbFolD inhibitors. PMID:26322631

  9. A high-throughput assay for quantification of starch hydrolase inhibition based on turbidity measurement.

    Science.gov (United States)

    Liu, Tingting; Song, Lixia; Wang, Hongyu; Huang, Dejian

    2011-09-28

    A high-throughput method for rapid determination of starch hydrolase inhibition was developed using a 96-well microplate UV-vis reader to monitor the turbidity decrease over time. The area under the curve of turbidity measured over time was used to quantify the inhibitory effect of polyphenolic compounds on porcine pancreatic amylase, rat intestine α-glucosidase, and fungal amyloglucosidase. Acarbose equivalence (AE) was introduced for the first time and defined as IC50 of acarbose divided by the IC50 of the sample measured under the same 96-well plate. This way, the run-to-run variations are canceled out. Among the plant extracts tested, grape seed extracts (1,440 μmolAE/g) and cinnamon bark extracts (1600 μmolAE/g) are the most active in inhibiting rat intestine α-glucosidase. For porcine α-amylase inhibition, grape seed extracts (5710 μmol AE/g) are close to four times more active (equal weight basis) than acarbose (1550 μmolAE/g).

  10. Carboxylic ester hydrolase and amylase in ischemic pancreatitis in the guinea pig.

    Science.gov (United States)

    Blind, P J; Bläckberg, L; Lundström, E B; Emdin, S O; Hernell, O

    1996-05-01

    The observation that an elevated level of pancreatic carboxylic ester hydrolase (CEH) in serum is a more sensitive and specific marker of acute pancreatitis than is elevated serum amylase activity prompted us to explore whether these findings could be confirmed in an experimental model and, if so, to find the explanation behind this difference. We therefore developed a model for ischemic pancreatitis in the guinea pig and a sandwich enzyme-linked immunosorbent assay for determination of CEH in this species. There was a strong correlation between duration of ischemia and severity of pancreatic inflammation and between severity of inflammation and serum CEH level. In contrast, serum amylase was elevated only in animals with the most severe grade of inflammation. Amylase was, however, increased in urine in animals with mild inflammation, but the level did not increase with severity of inflammation. Only one of 31 animals had detectable CEH in urine. In animals with intermediate serum CEH levels the serum and biliary concentrations correlated, indicating that CEH may be cleared by the liver. Amylase was detectable in bile only in animals with high serum levels. The results confirm our observations made in previous clinical studies. A likely explanation for differences in serum levels of CEH and amylase is clearance from the circulation at different rates and, at least partly, via different routes, e.g., the liver and kidney, respectively.

  11. Coffee pulp koji of Aspergillus sojae as stable immobilized catalyst of chlorogenate hydrolase.

    Science.gov (United States)

    Adachi, Osao; Ano, Yoshitaka; Akakabe, Yoshihiko; Shinagawa, Emiko; Matsushita, Kazunobu

    2008-11-01

    Chlorogenate hydrolase (EC 3.1.1.42, CHase) was highly induced in mycelia of Aspergillus sojae AKU 3312 grown in Czapek medium containing either instant coffee powder or coffee pulp as inducer. No CHase formation was observed in the mycelia when cultivated without the inducer. CHase was purified readily from CHase-induced mycelia to high homogeneity, and the purified CHase revealed the molecular weight of 180,000 consisting of two identical subunits of 88 kDa. Equimolar quinate (QA) and caffeate (CA) were confirmed on hydrolysis of chlorogenate (CGA). The purified CHase was only useful for a laboratory scale hydrolysis of CGA. For practical QA and CA production using scaled up hydrolysis of vegetable extracts of natural CGA resources, the enzyme activity of purified CHase decreased and denatured irreversibly. Preparation of coffee pulp koji and its application to QA and CA production were proposed instead of purified CHase. When coffee pulp koji was heated at 60 degrees C for 30 min, CHase survived without any appreciable loss of enzyme activity while vegetative mycelial growth and spore germination were terminated. The heated coffee pulp koji thus prepared was effective itself as stable immobilized catalyst of CHase for QA and CA production from vegetable CGA resources such as coffee powders, coffee pulp, and others.

  12. Biochemical characterization and transcriptional analysis of the epoxide hydrolase from white-rot fungus Phanerochaete chrysosporium

    Institute of Scientific and Technical Information of China (English)

    Nian Li; Yizheng Zhang; Hong Feng

    2009-01-01

    The white-rot basidiomycetes Phanerochaete chrysosporium is a model fungus used to investigate the sec-ondary metabolism and lignin degradation. Genomic sequencing reveals the presence of at least 18 genes encoding putative epoxide hydrolases (EHs). One cDNA encoding EH (designated as PchEHA) was cloned and expressed in Escherichia coli. Transcriptional analysis demonstrated that the transcripts of PchEHA could be detected under the ligninolytic and nonligninolytic con-ditions as well as amended with anthracene. The recom-binant enzyme exhibits broad hydrolytic activity toward several racemic epoxides including styrene oxide, epichlorohydrin, and 1,2-epoxybutane, but with different specificity. Using racemic styrene oxide as the substrate, the optimal pH and temperature are pH 9.0 and 40℃, respectively. The enzyme is not sensitive to EDTA, and is inhibited by H2O2, and several metal ions including Zn2+, Cd2+, and Hg2+ at various extents. Several organic cosoivents including acetone, dimethylsulfoxide, formamide, glycerol and ethanol at 10% (v/v) cause slight or no inhibition of the hydrolytic reaction. More importantly, the recombinant enzyme displays distinct enantioselective preference to several chiral epoxides. The enzyme showed good enantioselec-tivity toward chiral styrene oxide with preferential hydrolysis of (R)-enantiomer. PchEHA is likely a novel soluble EH based on the sequence analysis and catalytic properties, and is a great potential biocatalyst for the preparation of enantiopure styrene oxide in racemic kinetic resolution.

  13. Coacervate Core Micelles for the Dispersion and Stabilization of Organophosphate Hydrolase in Organic Solvents

    Science.gov (United States)

    Mills, Carolyn; Obermeyer, Allie; Dong, Xuehui; Olsen, Bradley D.

    Bulk organophosphate (OP) nerve agents are difficult to decontaminate on site and dangerous to transport. The organophosphate hydrolase (OPH) enzyme is an efficient catalyst for hydrolyzing, and thus decontaminating, these compounds, but suffers from poor stability in the hydrophobic bulk OP environment. Here, we exploit the complex coacervation phase separation phenomenon to form complex coacervate core micelles (C3Ms) that can protect this OPH enzyme under these conditions. Stable C3Ms form when mixing a charged-neutral block copolymer methyl-quaternized poly(4-vinylpyridine)-block-poly(oligo(ethylene glycol) methacrylate) (Qp4vp- b-POEGMA), a homopolymer poly(acrylic acid) (PAA), and OPH under a certain conditions. The C3Ms are then transferred into two organic solvents, ethanol and dimethyl methylphosphonate (DMMP), which is a good simulant for the physical properties of the OP compounds. The C3Ms retain their nanostructures in the organic solvents. The activity test of OPH indicates that the C3Ms successfully protect OPH activity in organic solvents.

  14. The ubiquitin hydrolase USP22 contributes to 3'-end processing of JAK-STAT-inducible genes.

    Science.gov (United States)

    Chipumuro, Edmond; Henriksen, Melissa A

    2012-02-01

    The JAK-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway drives cellular growth, differentiation, and the immune response. STAT-activated gene expression is both rapid and transient and requires dynamic post-translational modification of the chromatin template. We previously showed that monoubiquitination of histone H2B (ubH2B) is highly dynamic at the STAT1 target gene, interferon regulatory factor 1 (IRF1), suggesting that a deubiquitinase is recruited during gene activation. Here, we report that RNAi-mediated knockdown of the ubiquitin hydrolase, USP22, results in 2-fold higher ubH2B, and 2-fold lower transcriptional elongation at IRF1. We also demonstrate that USP22 depletion diminishes 3'-end cleavage/polyadenylation by 2- to 3-fold. Furthermore, the polyadenylation factor CPSF73 is not effectively recruited, and serine 2 phosphorylation (Ser2P) of the C-terminal domain of RNA polymerase II is also disrupted. The transcriptional and processing defects observed in the USP22-knockdown cells are reversed by transient USP22 overexpression. Together, these results suggest that ubH2B helps recruit polyadenylation factors to STAT1-activated genes. We propose a working model, wherein a cycle of H2B ubiquitination/deubiquitination specifies Ser2P to regulate elongation and 3'-end processing of JAK-STAT-inducible mRNAs. These results further elaborate USP22 function and its role as a putative cancer stem cell marker.

  15. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts.

    Science.gov (United States)

    Oliveira, Lilian C G; Ramos, Patricia Locosque; Marem, Alyne; Kondo, Marcia Y; Rocha, Rafael C S; Bertolini, Thiago; Silveira, Marghuel A V; da Cruz, João Batista; de Vasconcellos, Suzan Pantaroto; Juliano, Luiz; Okamoto, Debora N

    2015-06-01

    Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications. PMID:26273248

  16. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    Directory of Open Access Journals (Sweden)

    Lilian C.G. Oliveira

    2015-06-01

    Full Text Available Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs and polyhydroxyalkanoates (PHAs. Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications.

  17. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species

    Science.gov (United States)

    Allen, Brett L.; Johnson, Jermaine D.; Walker, Jeremy P.

    2012-07-01

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase’s stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme’s exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a ‘sacrificial barrier’ by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO2 (100 ppm).

  18. Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome.

    Science.gov (United States)

    Patel, Avani B; Patel, Amrutlal K; Shah, Mihir P; Parikh, Ishan K; Joshi, Chaitanya G

    2016-03-01

    Rumen microbiota harbor a diverse set of carbohydrate-active enzymes (CAZymes), which play a crucial role in the degradation of a complex plant polysaccharide thereby providing metabolic energy to the host animals. Earlier, we reported CAZYme analysis from the buffalo rumen metagenome by high throughput shotgun sequencing. Among the various CAZymes, glycoside hydrolase family 26 (GH26) enzymes have a number of industrial applications including in paper, oil, biofuel, food, feed, pharmaceutical, coffee, and detergent industries. Here, we report isolation and characterization of GH26 enzyme from the buffalo rumen metagenome. A novel GH26 gene composed of 1,119 base pairs was successfully amplified using the gene-specific primers inferred based on the contig generated from metagenome sequence assembly and cloned in a pET32a (+) expression vector as an N-terminal histidine tag fusion protein. A novel GH26 protein from an unknown rumen microorganism shared a maximum of 68% identity with the Prevotella ruminicola 23 encoded carbohydrate esterase family 7 and 46% with Bacteroides sp. 2_1_33B encoded mannan endo-1, 4-β-mannosidase. The recombinant GH26-histidine tag fusion protein was expressed in Escherichia coli and purified using Ni-NTA affinity chromatography. The purified enzyme displayed multifunctional activities against various carbohydrate substrates including locust bean gum, beechwood xylan, pectin, and carboxymethyl cellulose suggesting mannanase, xylanase, pectin esterase, and endoglucanase activities, respectively. PMID:25644118

  19. Bioprospecting metagenomics of a microbial community on cotton degradation: Mining for new glycoside hydrolases.

    Science.gov (United States)

    Zhang, Guoxiu; Liu, Pei; Zhang, Lei; Wei, Wei; Wang, Xuedong; Wei, Dongzhi; Wang, Wei

    2016-09-20

    Glycoside hydrolases (GHases) of higher performance are immediately needed for efficient degradation of plant biomass into fermentable sugars in industrial processes. The current study represents functional characterization of the enzymatic repertoire involved in crude cotton biomass degradation. Physical contact between cells and substrate is necessary for efficient hydrolysis of cellulose. Cytophagales, which plays a major role in cotton biomass decomposition, was identified as a prevalent community member by 16S rRNA analysis. From the metagenome data, 2058 GHase homologs were identified, of which sixteen were successfully expressed in E. coli. Four enzymes showed activities on p-nitrophenyl-β-d-xylopyranoside, four showed activities on p-nitrophenyl-β-d-glucopyranoside, two had activities against p-nitrophenyl-β-d-glucuronide, one showed activity on laminarin, three had activities against p-nitrophenyl-N-acetyl-β-d-glucosaminide, one had activity towards carboxymethyl cellulose, and one towards p-nitrophenyl-β-d-mannopyranoside. Metagenomics provides a good resource for mining novel biomass degrading enzymes. The sixteen GHases that were cloned may have potential application for biomass conversion and bioproduct production. Functional characterization of the enzymatic repertoire in cotton biomass degradation and analysis of the GHases provide insight into the composition and interaction of enzymes and pathways of plant biomass degradation. PMID:27460447

  20. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling.

    Science.gov (United States)

    Obrowsky, Sascha; Chandak, Prakash G; Patankar, Jay V; Povoden, Silvia; Schlager, Stefanie; Kershaw, Erin E; Bogner-Strauss, Juliane G; Hoefler, Gerald; Levak-Frank, Sanja; Kratky, Dagmar

    2013-02-01

    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triglyceride (TG) hydrolysis. The lack of ATGL results in TG accumulation in multiple tissues, underscoring the critical role of ATGL in maintaining lipid homeostasis. Recent evidence suggests that ATGL affects TG metabolism via activation of peroxisome proliferator-activated receptor α (PPARα). To investigate specific effects of intestinal ATGL on lipid metabolism we generated mice lacking ATGL exclusively in the intestine (ATGLiKO). We found decreased TG hydrolase activity and increased intracellular TG content in ATGLiKO small intestines. Intragastric administration of [(3)H]trioleate resulted in the accumulation of radioactive TG in the intestine, whereas absorption into the systemic circulation was unchanged. Intraperitoneally injected [(3)H]oleate also accumulated within TG in ATGLiKO intestines, indicating that ATGL mobilizes fatty acids from the systemic circulation absorbed by the basolateral side from the blood. Down-regulation of PPARα target genes suggested modulation of cholesterol absorption by intestinal ATGL. Accordingly, ATGL deficiency in the intestine resulted in delayed cholesterol absorption. Importantly, this study provides evidence that ATGL has no impact on intestinal TG absorption but hydrolyzes TGs taken up from the intestinal lumen and systemic circulation. Our data support the role of ATGL in modulating PPARα-dependent processes also in the small intestine.

  1. A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    p28, a 28kD protein from toad (Bufo bufo gargarizans) oocytes, was identified by using p13suc1-agaroseaffinity chromatography. Sequence homology analysis of the full-length cDNA of p28 (Gene Bank accessionnumber: AF 314091) indicated that it encodes a protein containing 224 amino-acids with about 55% iden-tities and more than 70% positives to human, rat or mouse UCH-L1, and contains homological functionaldomains of UCH family. Anti-p28 monoclonal antibody, on injecting into the oocytes, could inhibit theprogesterone-induced resumption of meiotic division in a dose-dependent manner. The recombinant proteinp28 showed similar SDS/PAGE behaviors to the native one, and promoted ubiquitin ethyl ester hydrolysis,a classical catalytic reaction for ubiquitin carboxyl terminai hydrolases (UCHs). The results in this paperreveal that a novel protein, p28, exists in the toad oocytes, is a UCH L1 homolog, was engaged in theprocess of progesterone-induced oocyte maturation possibly through an involvement in protein turnover anddegradation.

  2. Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization

    Directory of Open Access Journals (Sweden)

    Dougherty Michael J

    2012-07-01

    Full Text Available Abstract Background Metagenomics approaches provide access to environmental genetic diversity for biotechnology applications, enabling the discovery of new enzymes and pathways for numerous catalytic processes. Discovery of new glycoside hydrolases with improved biocatalytic properties for the efficient conversion of lignocellulosic material to biofuels is a critical challenge in the development of economically viable routes from biomass to fuels and chemicals. Results Twenty-two putative ORFs (open reading frames were identified from a switchgrass-adapted compost community based on sequence homology to related gene families. These ORFs were expressed in E. coli and assayed for predicted activities. Seven of the ORFs were demonstrated to encode active enzymes, encompassing five classes of hemicellulases. Four enzymes were over expressed in vivo, purified to homogeneity and subjected to detailed biochemical characterization. Their pH optima ranged between 5.5 - 7.5 and they exhibit moderate thermostability up to ~60-70°C. Conclusions Seven active enzymes were identified from this set of ORFs comprising five different hemicellulose activities. These enzymes have been shown to have useful properties, such as moderate thermal stability and broad pH optima, and may serve as the starting points for future protein engineering towards the goal of developing efficient enzyme cocktails for biomass degradation under diverse process conditions.

  3. Expression, Purification and Crystal Structure of a Truncated Acylpeptide Hydrolase from Aeropyrum pernix K1

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng ZHANG; Bai-Song ZHENG; Ying PENG; Zhi-Yong LOU; Yan FENG; Zi-He RAO

    2005-01-01

    Acylpeptide hydrolase (APH) catalyzes the N-terminal hydrolysis of Nα-acylpeptides to release Nα-acylated amino acids. The crystal structure of recombinant APH from the thermophilic archaeon Aeropyrum pernix K1 (apAPH) was reported recently to be at a resolution of 2.1 A using X-ray diffraction. A truncated mutant of apAPH that lacks the first short α-helix at the N-terminal, apAPH-△(1-21), was cloned, expressed,characterized and crystallized. Data from biochemical experiments indicate that the optimum temperature of apAPH is decreased by 15 ℃ with the deletion of the N-terminal α-helix. However, the enzyme activity at the optimal temperature does not change. It suggests that this N-terminal α-helix is essential for thermostability. Here, the crystal structure of apAPH-△(1-21) has been determined by molecular replacement to 2.5A. A comparison between the two structures suggests a difference in thermostability, and it can be concluded that by adding or deleting a linking structure (located over different domains), the stability or even the activity of an enzyme can be modified.

  4. Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL.

    Science.gov (United States)

    Ström, Kristoffer; Gundersen, Thomas E; Hansson, Ola; Lucas, Stéphanie; Fernandez, Céline; Blomhoff, Rune; Holm, Cecilia

    2009-07-01

    Here, we investigated the importance of hormone-sensitive lipase (HSL) as a retinyl ester hydrolase (REH). REH activity was measured in vitro using recombinant HSL and retinyl palmitate. The expression of retinoic acid (RA)-regulated genes and retinoid metabolites were measured in high-fat diet fed HSL-null mice using real-time quantitative PCR and triple-stage liquid chromatography/tandem mass spectrometry, respectively. Age- and gender-matched wild-type littermates were used as controls. The REH activity of rat HSL was found to be higher than that against the hitherto best known HSL substrate, i.e., diacylglycerols. REH activity in white adipose tissue (WAT) of HSL-null mice was completely blunted and accompanied by increased levels of retinyl esters and decreased levels of retinol, retinaldehyde and all-trans RA. Accordingly, genes known to be positively regulated by RA were down-regulated in HSL-null mice, including pRb and RIP140, key factors promoting differentiation into the white over the brown adipocyte lineage. Dietary RA supplementation partly restored WAT mass and the expression of RA-regulated genes in WAT of HSL-null mice. These findings demonstrate the importance of HSL as an REH of adipose tissue and suggest that HSL via this action provides RA and other retinoids for signaling events that are crucial for adipocyte differentiation and lineage commitment.

  5. Cloning and Expression of Bile Salt Hydrolase Gene from Lactobacillus plantarum M1-UVS29

    Institute of Scientific and Technical Information of China (English)

    Yu Chang-qing; Li Rong

    2015-01-01

    We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 inLactococcus lactis NZ9000 successfully. Gene-specific primers for amplification ofL. plantarum bsh were designed by using sequence which availabled from GenBank. The production of PCR amplicon was confirmed by sequencing and cloned into pMD18-T vector, and then recombined into expression vector pNZ8148 and yielding vector pNZ8148-BSH. pNZ8148-BSH was transferred intoLactococcus lactis NZ9000. Sequencing indicated that the clonedbsh fragment contained 995 nucleotides, and shared 99.3% sequence homology withbsh gene fromL. plantarum MBUL10. Clonedbsh fragment was successfully transduced into NICE expression system and confirmed by PCR and restriction digest. Recombinant BSH protein was analyzed by SDS-PAGE. The molecular weight of BSH protein was approximately 37 ku. Activity of the expressed protein was 0.77 µmol• min-1. The successfully expressed proteins by genetic engineering technology made the function of lactic acid bacteria be abundant and laid the foundation for further researches into cholesterol-lowering lactic acid bacterium food and probiotics.

  6. Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases

    Science.gov (United States)

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2016-01-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocalli-mastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. PMID:25804821

  7. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536.

    Science.gov (United States)

    Grill, J; Schneider, F; Crociani, J; Ballongue, J

    1995-07-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis was ca. 40,000 Da. The intact enzyme had a relative molecular weight of ca. 250,000 as determined by gel filtration chromatography, suggesting that the native BSH of B. longum is probably a hexamer. The purified enzyme is active towards both glycine and taurine conjugates of cholate, deoxycholate, and chenodeoxycholate. The pH optimum is in the range of 5.5 to 6.5. A loss of BSH activity is observed after incubation at temperatures higher than 42(deg)C; at 60(deg)C, 50% of the BSH activity is lost. The importance of free sulfhydryl groups at the enzyme active center is suggested. For B. longum BB536, no significant difference in the initial rate of deconjugation and enzymatic efficiency appears between bile salts. The enzymatic efficiency is higher for B. longum BB536 than for other genera. In this paper, a new method which permits a display of BSH activity directly on polyacrylamide gels is described; this method confirms the molecular weight obtained for B. longum BB536 BSH.

  8. Soluble Epoxide Hydrolase as a Potential Key Factor for Human Prenatal Development.

    Science.gov (United States)

    Cizkova, Katerina; Rajdova, Aneta; Ehrmann, Jiri

    2016-01-01

    Soluble epoxide hydrolase (sEH) converts highly active epoxyeicosatrienoic acids (EETs) generated by cytochrome P450 (CYP) epoxygenases from arachidonic acid to less active dihydroxyeicosatrienoic acids. Because of the role of EETs in processes potentially relevant to the development of organisms, EETs could be suggested as potential morphogens. Unfortunately, only little is known about sEH expression during human intrauterine development (IUD). We investigated the spatio-temporal expression pattern of sEH in human embryonic/foetal intestines, liver and kidney from the 6th to the 20th week of IUD by two-step immunohistochemistry. sEH was expressed during the whole tested period of prenatal development and its level of expression remained more or less the same during the estimated period of IUD. Distribution of CYP epoxygenases and sEH in the intestinal epithelium and the nephrogenic zone of the kidney suggests an influence of EETs on cell proliferation and differentiation and, consequently, on the development of intestines and kidney. Thus, alterations in the strict spatio-temporal pattern of expression of CYP epoxygenases and/or sEH during human prenatal development by xenobiotics could have a harmful impact for developing organisms. PMID:27144772

  9. Bacillus thuringiensis peptidoglycan hydrolase SleB171 involved in daughter cell separation during cell division.

    Science.gov (United States)

    Li, Hua; Hu, Penggao; Zhao, Xiuyun; Yu, Ziniu; Li, Lin

    2016-04-01

    Whole-genome analyses have revealed a putative cell wall hydrolase gene (sleB171) that constitutes an operon with two other genes (ypeBandyhcN) of unknown function inBacillus thuringiensisBMB171. The putative SleB171 protein consists of 259 amino acids and has a molecular weight of 28.3 kDa. Gene disruption ofsleB171in the BMB171 genome causes the formation of long cell chains during the vegetative growth phase and delays spore formation and spore release, although it has no significant effect on cell growth and the ultimate release of the spores. The inseparable vegetative cells were nearly restored through the complementation ofsleB171expression. Real-time quantitative polymerase chain reaction analysis revealed thatsleB171is mainly active in the vegetative growth phase, with a maximum activity at the early stationary growth phase. Western blot analysis also confirmed thatsleB171is preferentially expressed during the vegetative growth phase. These results demonstrated that SleB171 plays an essential role in the daughter cell separation during cell division.

  10. The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent.

    Science.gov (United States)

    Lin, Yi; Boese, Cody J; St Maurice, Martin

    2016-10-01

    Urea amidolyase (UAL) is a multifunctional biotin-dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP-dependent cleavage of urea into ammonia and CO2 . UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.

  11. Crystal Structure of Homo Sapiens PTD012 Reveals a Zinc-Containing Hydrolase Fold

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Bussow, K.; Fieber-ErdMan, M.; Roske, Y.; Gobam, J.; Scheich, C.; Gotz, F.; Niesen, F.; Heinemann, U.

    2006-01-01

    The human protein PTD012 is the longer product of an alternatively spliced gene and was described to be localized in the nucleus. The X-ray structure analysis at 1.7 Angstroms resolution of PTD012 through SAD phasing reveals a monomeric protein and a novel fold. The shorter splice form was also studied and appears to be unfolded and non-functional. The structure of PTD012 displays an {alpha}{beta}{beta}{alpha} four-layer topology. A metal ion residing between the central {beta}-sheets is partially coordinated by three histidine residues. X-ray absorption near-edge structure (XANES) analysis identifies the PTD012-bound ion as Zn{sup 2+}. Tetrahedral coordination of the ion is completed by the carboxylate oxygen atom of an acetate molecule taken up from the crystallization buffer. The binding of Zn{sup 2+} to PTD012 is reminiscent of zinc-containing enzymes such as carboxypeptidase, carbonic anhydrase, and {beta}-lactamase. Biochemical assays failed to demonstrate any of these enzyme activities in PTD012. However, PTD012 exhibits ester hydrolase activity on the substrate p-nitrophenyl acetate.

  12. Metabolism and toxicity of styrene in microsomal epoxide hydrolase-deficient mice.

    Science.gov (United States)

    Carlson, Gary P

    2010-01-01

    Styrene, which is widely used in manufacturing, is both acutely and chronically toxic to mice. Styrene is metabolized by cytochromes P-450 to the toxic metabolite styrene oxide, which is detoxified via hydrolysis with microsomal epoxide hydrolase (mEH) playing a major role. The purpose of these studies was to characterize the importance of this pathway by determining the hepatotoxicity and pneumotoxicity of styrene in wild-type and mEH-deficient (mEH(-/-)) mice. While the mEH(-/-) mice metabolized styrene to styrene oxide at the same rate as the wild-type mice, as expected there was minimal metabolism of styrene oxide to glycol. mEH(-/-) mice were more susceptible to the lethal effects of styrene. Twenty-four hours following the administration of 200 mg/kg ip styrene, mice demonstrated a greater hepatotoxic response due to styrene, as measured by increased serum sorbitol dehydrogenase activity and greater pneumotoxicity as shown by increased protein levels, cell numbers, and lactate dehydrogenase activity in bronchioalveolar lavage fluid. mEH(-/-) mice were also more susceptible to styrene-induced oxidative stress, as indicated by greater decreases in hepatic glutathione levels 3 h after styrene. Styrene oxide at a dose of 150 mg/kg did not produce hepatotoxicity in either wild-type or mEH(-/-) mice. However, styrene oxide produced pneumotoxicity that was similar in the two strains. Thus, mEH plays an important role in the detoxification of styrene but not for exogenously administered styrene oxide.

  13. New insights into plant glycoside hydrolase family 32 in Agave species.

    Science.gov (United States)

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D; Damián Santos, Maura L; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana. PMID:26300895

  14. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Directory of Open Access Journals (Sweden)

    Caroline da Silva Moraes

    2014-08-01

    Full Text Available The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females or blood feeders (females only, and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18 and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes.

  15. Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium.

    Science.gov (United States)

    Ishida, Takuya; Yaoi, Katsuro; Hiyoshi, Ayako; Igarashi, Kiyohiko; Samejima, Masahiro

    2007-11-01

    The basidiomycete Phanerochaete chrysosporium produces xyloglucanase Xgh74B, which has the glycoside hydrolase (GH) family 74 catalytic domain and family 1 carbohydrate-binding module, in cellulose-grown culture. The recombinant enzyme, which was heterologously expressed in the yeast Pichia pastoris, had high hydrolytic activity toward xyloglucan from tamarind seed (TXG), whereas other beta-1,4-glucans examined were poor substrates for the enzyme. The existence of the carbohydrate-binding module significantly affects adsorption of the enzyme on crystalline cellulose, but has no effect on the hydrolysis of xyloglucan, indicating that the domain may contribute to the localization of the enzyme. HPLC and MALDI-TOF MS analyses of the hydrolytic products of TXG clearly indicated that Xgh74B hydrolyzes the glycosidic bonds of unbranched glucose residues, like other GH family 74 xyloglucanases. However, viscometric analysis suggested that Xgh74B hydrolyzes TXG in a different manner from other known GH family 74 xyloglucanases. Gel permeation chromatography showed that Xgh74B initially produced oligosaccharides of degree of polymerization (DP) 16-18, and these oligosaccharides were then slowly hydrolyzed to final products of DP 7-9. In addition, the ratio of oligosaccharides of DP 7-9 versus those of DP 16-18 was dependent upon the pH of the reaction mixture, indicating that the affinity of Xgh74B for the oligosaccharides of DP 16-18 is affected by the ionic environment at the active site. PMID:17922847

  16. Induction of Epoxide Hydrolase, Glucuronosyl Transferase, and Sulfotransferase by Phenethyl Isothiocyanate in Male Wistar Albino Rats

    Directory of Open Access Journals (Sweden)

    Ahmad Faizal Abdull Razis

    2014-01-01

    Full Text Available Phenethyl isothiocyanate (PEITC is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin. The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT, N-acetyltransferase (NAT, glucuronosyl transferase (UDP, and epoxide hydrolase (EH following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06 µmol/g (low dose, i.e., dietary intake, 0.6 µmol/g (medium dose, and 6.0 µmol/g (high dose, and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention.

  17. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang

    2009-09-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  18. Expression, purification, crystallization and preliminary X-ray diffraction analysis of acylpeptide hydrolase from Deinococcus radiodurans.

    Science.gov (United States)

    Are, Venkata Narayana; Ghosh, Biplab; Kumar, Ashwani; Yadav, Pooja; Bhatnagar, Deepak; Jamdar, Sahayog N; Makde, Ravindra D

    2014-09-01

    Acylpeptide hydrolase (APH; EC 3.4.19.1), which belongs to the S9 family of serine peptidases (MEROPS), catalyzes the removal of an N-acylated amino acid from a blocked peptide. The role of this enzyme in mammalian cells has been suggested to be in the clearance of oxidatively damaged proteins as well as in the degradation of the β-amyloid peptides implicated in Alzheimer's disease. Detailed structural information for the enzyme has been reported from two thermophilic archaea; both of the archaeal APHs share a similar monomeric structure. However, the mechanisms of substrate selectivity and active-site accessibility are totally different and are determined by inter-domain flexibility or the oligomeric structure. An APH homologue from a bacterium, Deinococcus radiodurans (APHdr), has been crystallized using microbatch-under-oil employing the random microseed matrix screening method. The protein crystallized in space group P21, with unit-cell parameters a = 77.6, b = 189.6, c = 120.4 Å, β = 108.4°. A Matthews coefficient of 2.89 Å(3) Da(-1) corresponds to four monomers, each with a molecular mass of ∼73 kDa, in the asymmetric unit. The APHdr structure will reveal the mechanisms of substrate selectivity and active-site accessibility in the bacterial enzyme. It will also be helpful in elucidating the functional role of this enzyme in D. radiodurans.

  19. EHPred: an SVM-based method for epoxide hydrolases recognition and classification

    Institute of Scientific and Technical Information of China (English)

    JIA Jia; YANG Liang; ZHANG Zi-zhang

    2006-01-01

    A two-layer method based on support vector machines (SVMs) has been developed to distinguish epoxide hydrolases (EHs) from other enzymes and to classify its subfamilies using its primary protein sequences. SVM classifiers were built using three different feature vectors extracted from the primary sequence of EHs: the amino acid composition (AAC), the dipeptide composition (DPC), and the pseudo-amino acid composition (PAAC). Validated by 5-fold cross tests, the first layer SVM classifier can differentiate EHs and non-EHs with an accuracy of 94.2% and has a Matthew,s correlation coefficient (MCC) of 0.84.Using 2-fold cross validation, PAAC-based second layer SVM can further classify EH subfamilies with an overall accuracy of 90.7% and MCC of 0.87 as compared to AAC (80.0%) and DPC (84.9%). A program called EHPred has also been developed to assist readers to recognize EHs and to classify their subfamilies using primary protein sequences with greater accuracy.

  20. Catalytic performance and molecular dynamic simulation of immobilized CC bond hydrolase based on carbon nanotube matrix.

    Science.gov (United States)

    Zhou, Hao; Qu, Yuanyuan; Kong, Chunlei; Li, Duanxing; Shen, E; Ma, Qiao; Zhang, Xuwang; Wang, Jingwei; Zhou, Jiti

    2014-04-01

    Carbon nanotube (CNT) has been proved to be a kind of novel support for enzyme immobilization. In this study, we tried to find the relationship between conformation and catalytic performance of immobilized enzyme. Two CC bond hydrolases BphD and MfphA were immobilized on CNTs (SWCNT and MWCNT) via physical adsorption and covalent attachment. Among the conjugates, the immobilized BphD on chemically functionalized SWCNT (BphD-CSWCNT) retained the highest catalytic efficiency (kcat/Km value) compared to free BphD (92.9%). On the other hand, when MfphA bound to pristine SWCNT (MfphA-SWCNT), it was completely inactive. Time-resolved fluorescence spectrum indicated the formation of static ground complexes during the immobilization processes. Circular dichroism (CD) showed that the secondary structures of immobilized enzymes changed in varying degrees. In order to investigate the inhibition mechanism of MfphA by SWCNT, molecular dynamics simulation was employed to analyze the adsorption process, binding sites and time evolution of substrate tunnels. The results showed that the preferred binding sites (Trp201 and Met81) of MfphA for SWCNT blocked the main substrate access tunnel, thus making the enzyme inactive. The "tunnel-block" should be a novel possible inhibition mechanism for enzyme-nanotube conjugate.

  1. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases

    DEFF Research Database (Denmark)

    Janeček, Štefan; Svensson, Birte; MacGregor, E. Ann

    2014-01-01

    α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system...... of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase...... family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases...

  2. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans.

    Science.gov (United States)

    He, Ping; Deng, Cong; Liu, Boyu; Zeng, LingBing; Zhao, Wei; Zhang, Yan; Jiang, XuCheng; Guo, XiaoKui; Qin, JinHong

    2013-11-01

    Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.

  3. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  4. Sunflower trypsin inhibitor-1.

    Science.gov (United States)

    Korsinczky, Michael L J; Schirra, Horst Joachim; Craik, David J

    2004-10-01

    SFTI-1 is a bicyclic 14 amino acid peptide that was originally isolated from the seeds of the sunflower Helianthus annuus. It is a potent inhibitor of trypsin, with a sub-nanomolar K(i) value and is homologous to the active site region of the well-known family of serine protease inhibitors known as the Bowman-Birk trypsin inhibitors. It has a cyclic backbone that is cross-braced by a single disulfide bridge and a network of hydrogen bonds that result in a well-defined structure. SFTI-1 is amenable to chemical synthesis, allowing for the creation of synthetic variants. Alterations to the structure such as linearising the backbone or removing the disulfide bridge do not reduce the potency of SFTI-1 significantly, and minimising the peptide to as few as nine residues results in only a small decrease in reactivity. The creation of linear variants of SFTI-1 also provides a tool for investigating putative linear precursor peptides. The mechanism of biosynthesis of SFTI-1 is not yet known but it seems likely that it is a gene-coded product that has arisen from a precursor protein that may be evolutionarily related to classic Bowman-Birk inhibitors. PMID:15544530

  5. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H;

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  6. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to compounds of formula (I) or a pharmaceutically acceptable salt, hydrate, solvate, or prodrug thereof, wherein X1, X2, X3, X4, X5, W1, W2, W3, and W4 are as described. The present invention relates generally to inhibitors of histone deacetylase and to methods...

  7. Solution Structure of IseA, an Inhibitor Protein of DL-Endopeptidases from Bacillus subtilis, Reveals a Novel Fold with a Characteristic Inhibitory Loop

    OpenAIRE

    Arai, Ryoichi; Fukui, Sadaharu; Kobayashi, Naoya; Sekiguchi, Junichi

    2012-01-01

    In Bacillus subtilis, LytE, LytF, CwlS, and CwlO are vegetative autolysins, DL-endopeptidases in the NlpC/P60 family, and play essential roles in cell growth and separation. IseA (YoeB) is a proteinaceous inhibitor against the DL-endopeptidases, peptidoglycan hydrolases. Overexpression of IseA caused significantly long chained cell morphology, because IseA inhibits the cell separation DL-endopeptidases post-translationally. Here, we report the first three-dimensional structure of IseA, determ...

  8. The SAR of brain penetration for a series of heteroaryl urea FAAH inhibitors.

    Science.gov (United States)

    Keith, John M; Tichenor, Mark S; Apodaca, Richard L; Xiao, Wei; Jones, William M; Seierstad, Mark; Pierce, Joan M; Palmer, James A; Webb, Michael; Karbarz, Mark J; Scott, Brian P; Wilson, Sandy J; Wennerholm, Michelle L; Rizzolio, Michele; Rynberg, Raymond; Chaplan, Sandra R; Breitenbucher, J Guy

    2016-07-01

    The SAR of brain penetration for a series of heteroaryl piperazinyl- and piperadinyl-urea fatty acid amide hydrolase (FAAH) inhibitors is described. Brain/plasma (B/P) ratios ranging from >4:1 to as low as 0.02:1 were obtained through relatively simple structural changes to various regions of the heteroaryl urea scaffold. It was not possible to predict the degree of central nervous system (CNS) penetration from the volumes of distribution (Vd) obtained from pharmacokinetic (PK) experiments as very high Vds did not correlate with high B/P ratios. Similarly, calculated topological polar surface areas (TPSAs) did not consistently correlate with the degree of brain penetration. The lowest B/P ratios were observed for those compounds that were significantly ionized at physiological pH. However, as this class of compounds inhibits the FAAH enzyme through covalent modification, low B/P ratios did not preclude effective central target engagement.

  9. Two arginine residues in the substrate pocket predominantly control the substrate selectivity of thiocyanate hydrolase.

    Science.gov (United States)

    Yamanaka, Yasuaki; Arakawa, Takatoshi; Watanabe, Toshinori; Namima, Satoshi; Sato, Masa; Hori, Shota; Ohtaki, Akashi; Noguchi, Keiichi; Katayama, Yoko; Yohda, Masafumi; Odaka, Masafumi

    2013-07-01

    Thiocyanate hydrolase (SCNase) of Thiobacillus thioparus THI115 is a cobalt (Co)-containing enzyme that catalyzes the hydrolysis of thiocyanate (SCN⁻), a major component of wastewater from coke oven factories, to carbonyl sulfide and ammonia. Although SCNase exhibits high structural similarities to Co-type nitrile hydratase (NHase), including a unique Co³⁺ catalytic center with two oxidized Cys ligands, both SCNase and NHase exclusively catalyze only their own substrates. Based on the differences in the substrate-binding pockets of these enzymes, βArg90 and γArg136 of SCNase, with side chains extending toward the pocket, were separately substituted with Phe and Trp, the corresponding residues, respectively, in Co-type NHase. Both SCNase βArg90 and SCNase γArg136 mutants showed no SCN⁻ hydrolysis activity but did catalyze the hydration of nitriles. The estimated kcat values (∼2 s⁻¹) corresponded to approximately 0.2% of that of Co-type NHase for nitrile hydration and approximately 3% of that of wild-type SCNase for SCN⁻ hydrolysis. The crystal structure of SCNase γR136W is essentially identical to that of the wild-type, including the Co³⁺ center having Cys oxidations; the size of the substrate pocket was enlarged because of conformational changes on the side chains of the mutated residue. Discussion of the difference in the environments around the substrate-binding pockets among the wild-type and mutant SCNases and Co-type NHase strongly suggests that βArg90 and γArg136, positioned at the top of the Co³⁺ center, predominantly control the substrate selectivity of SCNase. PMID:23453853

  10. Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity.

    Science.gov (United States)

    Bauer, Alison K; Faiola, Brenda; Abernethy, Diane J; Marchan, Rosemarie; Pluta, Linda J; Wong, Victoria A; Gonzalez, Frank J; Butterworth, Byron E; Borghoff, Susan J; Everitt, Jeffrey I; Recio, Leslie

    2003-04-01

    Enzymes involved in benzene metabolism are likely genetic determinants of benzene-induced toxicity. Polymorphisms in human microsomal epoxide hydrolase (mEH) are associated with an increased risk of developing leukemia, specifically those associated with benzene. This study was designed to investigate the importance of mEH in benzene-induced toxicity. Male and female mEH-deficient (mEH-/-) mice and background mice (129/Sv) were exposed to inhaled benzene (0, 10, 50, or 100 ppm) 5 days/week, 6 h/day, for a two-week duration. Total white blood cell counts and bone marrow cell counts were used to assess hematotoxicity and myelotoxicity. Micronucleated peripheral blood cells were counted to assess genotoxicity, and the p21 mRNA level in bone marrow cells was used as a determinant of the p53-regulated DNA damage response. Male mEH-/- mice did not have any significant hematotoxicity or myelotoxicity at the highest benzene exposure compared to the male 129/Sv mice. Significant hematotoxicity or myelotoxicity did not occur in the female mEH-/- or 129/Sv mice. Male mEH-/- mice were also unresponsive to benzene-induced genotoxicity compared to a significant induction in the male 129/Sv mice. The female mEH-/- and 129/Sv mice were virtually unresponsive to benzene-induced genotoxicity. While p21 mRNA expression was highly induced in male 129/Sv mice after exposure to 100-ppm benzene, no significant alteration was observed in male mEH-/- mice. Likewise, p21 mRNA expression in female mEH-/- mice was not significantly induced upon benzene exposure whereas a significant induction was observed in female 129/Sv mice. Thus mEH appears to be critical in benzene-induced toxicity in male, but not female, mice.

  11. The structure of a glycoside hydrolase family 81 endo-β-1,3-glucanase.

    Science.gov (United States)

    Zhou, Peng; Chen, Zhongzhou; Yan, Qiaojuan; Yang, Shaoqing; Hilgenfeld, Rolf; Jiang, Zhengqiang

    2013-10-01

    Endo-β-1,3-glucanases catalyze the hydrolysis of β-1,3-glycosidic linkages in glucans. They are also responsible for rather diverse physiological functions such as carbon utilization, cell-wall organization and pathogen defence. Glycoside hydrolase (GH) family 81 mainly consists of β-1,3-glucanases from fungi, higher plants and bacteria. A novel GH family 81 β-1,3-glucanase gene (RmLam81A) from Rhizomucor miehei was expressed in Escherichia coli. Purified RmLam81A was crystallized and the structure was determined in two crystal forms (form I-free and form II-Se) at 2.3 and 2.0 Å resolution, respectively. Here, the crystal structure of a member of GH family 81 is reported for the first time. The structure of RmLam81A is greatly different from all endo-β-1,3-glucanase structures available in the Protein Data Bank. The overall structure of the RmLam81A monomer consists of an N-terminal β-sandwich domain, a C-terminal (α/α)6 domain and an additional domain between them. Glu553 and Glu557 are proposed to serve as the proton donor and basic catalyst, respectively, in a single-displacement mechanism. In addition, Tyr386, Tyr482 and Ser554 possibly contribute to both the position or the ionization state of the basic catalyst Glu557. The first crystal structure of a GH family 81 member will be helpful in the study of the GH family 81 proteins and endo-β-1,3-glucanases.

  12. High level expression of organophosphorus hydrolase in Pichia pastoris by multicopy ophcM assembly.

    Science.gov (United States)

    Shen, Wei; Shu, Min; Ma, Lixin; Ni, Hong; Yan, Hong

    2016-03-01

    The residues of organophosphorus pesticides bring serious impact on the environmental safety and people's health. Biodegradation of organophosphorus pesticides is recognized as an ideal method. An organophosphorus hydrolase (OPHCM) from Pseudomonas pseudoalcaligenes was synthesized and expressed in Pichia pastoris. The yield reached approximately 470 mg/l after a 6-d induction in shake flasks. To improve the enzyme production, we describe a novel approach to express OPHCM efficiently with a biobrick assembly method in vitro. Four recombinant plasmids containing 1-4 copies of ophcM-expressing cassettes were constructed and transformed into P. pastoris. Increasing the copy number of ophcM gene enhanced the expression level of OPHCM. The maximum yield and specific activity in P. pastoris harboring two-copy tandem ophcM-expressing cassettes reached 610 mg/l after a 6-d induction in shake flasks and 7.8 g/l in high-density fermentation with specific activity of 13.7 U/mg. The optimum pH and temperature of the recombinant OPHCM activity were 11.0 and 50 °C, respectively. In addition, the enzyme activity of recombinant OPHCM enhanced 57.6% and 30.1% in the presence of 1 mM Cd(2+) and 5% glycerol, respectively. The high expression and good properties of recombinant OPHCM provide an effective solution to solve the pollution of organophosphorus pesticides in the environment. Moreover, the approach for generating multicopy gene expressing vectors here will benefit the study for enhancing the expression level of genes of interest. PMID:26611611

  13. Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production.

    Science.gov (United States)

    López-Contreras, A M; Smidt, H; van der Oost, J; Claassen, P A; Mooibroek, H; de Vos, W M

    2001-11-01

    Growth and the production of acetone, butanol, and ethanol by Clostridium beijerinckii NCIMB 8052 on several polysaccharides and sugars were analyzed. On crystalline cellulose, growth and solvent production were observed only when a mixture of fungal cellulases was added to the medium. On lichenan growth and solvent production occurred, but this polymer was only partially utilized. To increase utilization of these polymers and subsequent solvent production, the genes for two new glycoside hydrolases, celA and celD from the fungus Neocallimastix patriciarum, were cloned separately into C. beijerinckii. To do this, a secretion vector based on the pMTL500E shuttle vector and containing the promoter and signal sequence coding region of the Clostridium saccharobutylicum NCP262 eglA gene was constructed and fused either to the celA gene or the celD gene. Stable C. beijerinckii transformants were obtained with the resulting plasmids, pWUR3 (celA) and pWUR4 (celD). The recombinant strains showed clear halos on agar plates containing carboxymethyl cellulose upon staining with Congo red. In addition, their culture supernatants had significant endoglucanase activities (123 U/mg of protein for transformants harboring celA and 78 U/mg of protein for transformants harboring celD). Although C. beijerinckii harboring either celA or celD was not able to grow, separately or in mixed culture, on carboxymethyl cellulose or microcrystalline cellulose, both transformants showed a significant increase in solvent production during growth on lichenan and more extensive degradation of this polymer than that exhibited by the wild-type strain. PMID:11679336

  14. Comparison of Substrate Specificity of Escherichia Coli p-Aminobenzoyl-Glutamate Hydrolase with Pseudomonas Carboxypeptidase G

    Science.gov (United States)

    Larimer, Cassandra M.; Slavnic, Dejan; Pitstick, Lenore D.; Green, Jacalyn M.

    2016-01-01

    Reduced folic acid derivatives support biosynthesis of DNA, RNA and amino acids in bacteria as well as in eukaryotes, including humans. While the genes and steps for bacterial folic acid synthesis are known, those associated with folic acid catabolism are not well understood. A folate catabolite found in both humans and bacteria is p-aminobenzoyl-glutamate (PABA-GLU). The enzyme p-aminobenzoyl-glutamate hydrolase (PGH) breaks down PABA-GLU and is part of an apparent operon, the abg region, in E. coli. The subunits of PGH possess sequence and catalytic similarities to carboxypeptidase enzymes from Pseudomonas species. A comparison of the subunit sequences and activity of PGH, relative to carboxypeptidase enzymes, may lead to a better understanding of bacterial physiology and pathway evolution. We first compared the amino acid sequences of AbgA, AbgB and carboxypeptidase G2 from Pseudomonas sp. RS-16, which has been crystallized. Then we compared the enzyme activities of E. coli PGH and commercially available Pseudomonas carboxypeptidase G using spectrophotometric assays measuring cleavage of PABA-GLU, folate, aminopterin, methotrexate, 5-formyltetrahydrofolate, and 5-methyltetrahydrofolate. The Km and Vmax values for the folate and anti-folate substrates of PGH could not be determined, because the instrument reached its limit before the enzyme was saturated. Therefore, activity of PGH was compared to the activity of CPG, or normalized to PABA-GLU (nmole/min/µg). Relative to its activity with 10 µM PABA-GLU (100%), PGH cleaved glutamate from methotrexate (48%), aminopterin (45%) and folate (9%). Reduced folates leucovorin (5-formyltetrahydrofolate) and 5-methyltetrahydrofolate were not cleaved by PGH. Our data suggest that E. coli PGH is specific for PABA-GLU as its activity with natural folates (folate, 5-methyltetrahydrofolate, and leucovorin) was very poor. It does, however, have some ability to cleave anti-folates which may have clinical applications in

  15. Molecular basis of the general base catalysis of an α/β-hydrolase catalytic triad.

    Science.gov (United States)

    Sun, Yueru; Yin, Shuhui; Feng, Yitao; Li, Jie; Zhou, Jiahai; Liu, Changdong; Zhu, Guang; Guo, Zhihong

    2014-05-30

    The serine-histidine-aspartate triad is well known for its covalent, nucleophilic catalysis in a diverse array of enzymatic transformations. Here we show that its nucleophilicity is shielded and its catalytic role is limited to being a specific general base by an open-closed conformational change in the catalysis of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (or MenH), a typical α/β-hydrolase fold enzyme in the vitamin K biosynthetic pathway. This enzyme is found to adopt an open conformation without a functional triad in its ligand-free form and a closed conformation with a fully functional catalytic triad in the presence of its reaction product. The open-to-closed conformational transition involves movement of half of the α-helical cap domain, which causes extensive structural changes in the α/β-domain and forces the side chain of the triad histidine to adopt an energetically disfavored gauche conformation to form the functional triad. NMR analysis shows that the inactive open conformation without a triad prevails in ligand-free solution and is converted to the closed conformation with a properly formed triad by the reaction product. Mutation of the residues crucial to this open-closed transition either greatly decreases or completely eliminates the enzyme activity, supporting an important catalytic role for the structural change. These findings suggest that the open-closed conformational change tightly couples formation of the catalytic triad to substrate binding to enhance the substrate specificities and simultaneously shield the nucleophilicity of the triad, thus allowing it to expand its catalytic power beyond the nucleophilic catalysis.

  16. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes.

    Directory of Open Access Journals (Sweden)

    Yongjun Wei

    Full Text Available Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg. Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.

  17. Cloning, expression, and characterization of a peptidoglycan hydrolase from the Burkholderia pseudomallei phage ST79.

    Science.gov (United States)

    Khakhum, Nittaya; Yordpratum, Umaporn; Boonmee, Atcha; Tattawasart, Unchalee; Rodrigues, Jorge L M; Sermswan, Rasana W

    2016-12-01

    The lytic phage ST79 of Burkholderia pseudomallei can lyse a broad range of its host including antibiotic resistant isolates from within using a set of proteins, holin, lysB, lysC and endolysin, a peptidoglycan (PG) hydrolase enzyme. The phage ST79 endolysin gene identified as peptidase M15A was cloned, expressed and purified to evaluate its potential to lyse pathogenic bacteria. The molecular size of the purified enzyme is approximately 18 kDa and the in silico study cited here indicated the presence of a zinc-binding domain predicted to be a member of the subfamily A of a metallopeptidase. Its activity, however, was reduced by the presence of Zn(2+). When Escherichia coli PG was used as a substrate and subjected to digestion for 5 min with 3 μg/ml of enzyme, the peptidase M15A showed 2 times higher in lysis efficiency when compared to the commercial lysozyme. The enzyme works in a broad alkaligenic pH range of 7.5-9.0 and temperatures from 25 to 42 °C. The enzyme was able to lyse 18 Gram-negative bacteria in which the outer membrane was permeabilized by chloroform treatment. Interestingly, it also lysed Enterococcus sp., but not other Gram-positive bacteria. In general, endolysin cannot lyse Gram-negative bacteria from outside, however, the cationic amphipathic C-terminal in some endolysins showed permeability to Gram-negative outer membranes. Genetically engineered ST79 peptidase M15A that showed a broad spectrum against Gram-negative bacterial PG or, in combination with an antibiotic the same way as combined drug methodology, could facilitate an effective treatment of severe or antibiotic resistant cases. PMID:27637947

  18. α/β-hydrolase domain containing protein 15 (ABHD15--an adipogenic protein protecting from apoptosis.

    Directory of Open Access Journals (Sweden)

    Evelyn Walenta

    Full Text Available Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/β-hydrolase domain containing protein 15 (Abhd15 is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ, the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines. Stable knockdown of Abhd15 in 3T3-L1 cells evokes a striking differentiation defect, as evidenced by low lipid accumulation and decreased expression of adipocyte marker genes. In preconfluent cells, knockdown of Abhd15 leads to impaired proliferation, which is caused by apoptosis, as we see an increased SubG1 peak, caspase 3/7 activity, and BAX protein expression as well as a reduction in anti-apoptotic BCL-2 protein. Furthermore, apoptosis-inducing amounts of palmitic acid evoke a massive increase of Abhd15 expression, proposing an apoptosis-protecting role for ABHD15. On the other hand, in mature adipocytes physiological (i.e. non-apoptotic concentrations of palmitic acid down-regulate Abhd15 expression. Accordingly, we found that the expression of Abhd15 in adipose tissue is reduced in physiological situations with high free fatty acid levels, like high-fat diet, fasting, and aging as well as in genetically obese mice. Collectively, our results position ABHD15 as an essential component in the development of adipocytes as well as in apoptosis, thereby connecting two substantial factors in the regulation of adipocyte number and size. Together with its intricate regulation by free fatty acids, ABHD15 might be an intriguing new target in obesity and diabetes research.

  19. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes.

    Science.gov (United States)

    Wei, Yongjun; Zhou, Haokui; Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.

  20. Identification of oxidized protein hydrolase as a potential prodrug target in prostate cancer

    International Nuclear Information System (INIS)

    Esterases are often overexpressed in cancer cells and can have chiral specificities different from that of the corresponding normal tissues. For this reason, ester prodrugs could be a promising approach in chemotherapy. In this study, we focused on the identification and characterization of differentially expressed esterases between non-tumorigenic and tumorigenic prostate epithelial cells. Cellular lysates from LNCaP, DU 145, and PC3 prostate cancer cell lines, tumorigenic RWPE-2 prostate epithelial cells, and non-tumorigenic RWPE-1 prostate epithelial cells were separated by native polyacrylamide gel electrophoresis (n-PAGE) and the esterase activity bands visualized using α-naphthyl acetate or α-naphthyl-N-acetylalaninate (ANAA) chiral esters and Fast Blue RR salt. The esterases were identified using nanospray LC/MS-MS tandem mass spectrometry and confirmed by Western blotting, native electroblotting, inhibition assays, and activity towards a known specific substrate. The serine protease/esterase oxidized protein hydrolase (OPH) was overexpressed in COS-7 cells to verify our results. The major esterase observed with the ANAA substrates within the n-PAGE activity bands was identified as OPH. OPH (EC 3.4.19.1) is a serine protease/esterase and a member of the prolyl oligopeptidase family. We found that LNCaP lysates contained approximately 40% more OPH compared to RWPE-1 lysates. RWPE-2, DU145 and PC3 cell lysates had similar levels of OPH activity. OPH within all of the cell lysates tested had a chiral preference for the S-isomer of ANAA. LNCaP cells were stained more intensely with ANAA substrates than RWPE-1 cells and COS-7 cells overexpressing OPH were found to have a higher activity towards the ANAA and AcApNA than parent COS-7 cells. These data suggest that prodrug derivatives of ANAA and AcApNA could have potential as chemotherapeutic agents for the treatment of prostate cancer tumors that overexpress OPH

  1. [JAK2 inhibitors].

    Science.gov (United States)

    Hernández Boluda, Juan Carlos; Gómez, Montse; Pérez, Ariadna

    2016-07-15

    Pharmacological inhibition of the kinase activity of JAK proteins can interfere with the signaling of immunomodulatory cytokines and block the constitutive activation of the JAK-STAT pathway that characterizes certain malignancies, including chronic myeloproliferative neoplasms. JAK inhibitors may, therefore, be useful to treat malignancies as well as inflammatory or immune disorders. Currently, the most significant advances have been made in the treatment of myelofibrosis, where these drugs may lead to a remarkable improvement in the control of hyperproliferative manifestations. However, available data suggest that this treatment is not curative of myelofibrosis. In general, JAK2 inhibition induces cytopaenias, with this being considered a class side-effect. By contrast, the extrahaematologic toxicity profile varies significantly among the different JAK inhibitors. At present, there are several clinical trials evaluating the combination of ruxolitinib with other drugs, in order to improve its therapeutic activity as well as reducing haematologic toxicity. PMID:27033437

  2. Alpha glucosidase inhibitors.

    Science.gov (United States)

    Kalra, Sanjay

    2014-04-01

    Alpha glucosidase inhibitors (AGIs) are a unique class of anti-diabetic drugs. Derived from bacteria, these oral drugs are enzyme inhibitors which do not have a pancreato -centred mechanism of action. Working to delay carbohydrate absorption in the gastrointestinal tract, they control postprandial hyperglycaemia and provide unquestioned cardiovascular benefit. Specially suited for a traditional Pakistani carbohydrate-rich diet, AGIs have been termed the 'untapped diamonds' of diabetology. The use of these oral antidiabetic drugs (OADs) that target pathophysiology in the early stages of type 2 diabetes, notably to reduce postprandial hyperglycaemia and hyperinsulinaemia will inevitably increase with time. This review describes the history of their development, mechanism of action, basic and clinical pharmacology, and suggests practical, evidence-based guidance for their optimal use. PMID:24864650

  3. Coagulation inhibitors in inflammation.

    Science.gov (United States)

    Esmon, C T

    2005-04-01

    Coagulation is triggered by inflammatory mediators in a number of ways. However, to prevent unwanted clot formation, several natural anticoagulant mechanisms exist, such as the antithrombin-heparin mechanism, the tissue factor pathway inhibitor mechanism and the protein C anticoagulant pathway. This review examines the ways in which these pathways are down-regulated by inflammation, thus limiting clot formation and decreasing the natural anti-inflammatory mechanisms that these pathways possess. PMID:15787615

  4. Osteocompatibility of Biofilm Inhibitors

    OpenAIRE

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A.

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), f...

  5. Update on Aromatase Inhibitors

    Directory of Open Access Journals (Sweden)

    Seifert-Klauss V

    2015-01-01

    Full Text Available Aromatase inhibitors (AI block the last phase of estrogen production in many types of tissues which express the enzym aromatase, among them muscle, liver, adrenal, brain and fat. The enzyme catalyzes the last step of the biosynthesis of the estrogens, i. e. the aromatisation of testosterone to estradiol and of androstendion to estrone. Aromatase is localized in the membrane of the endoplasmatic reticulum and is also produced in the placenta and the gonads. Mutations in the gene CYP19A1, which codes for aromatase, can lead either to lack or excess of aromatase. Gene polymorphisms also influence the amount of bioavailable estrogen and bone density.br Indications: AI are approved for the treatment of postmenopausal women with hormone receptor positive breast cancer, both in the adjuvant setting as well as after recurrence and in progressive disease. In premenopausal and in perimenopausal women AI cause an increased sensitivity of the ovaries to follicle stimulating hormone (FSH and can thereby lead to a boosted estrogen answer – this effect is particularly pronounced in early perimenopausal women – so that these situations demand a combination with GnRH-analogue if AI treatment is to be initiated. Alternatively, tamoxifene may be used in premenopausal patients, with or without GnRH analogues. Treatment of premenopausal patients with hormone receptor positive breast cancer with aromatase inhibiting therapy alone constitutes an absolute contraindication. Aromatase inhibitors do not lead to estrogen receptor downregulation or block the receptor such as tamoxifene. An exceptional application is the application in reproductive medicine in women who do not have hormone receptor positive breast cancer: because of the higher sensitivity induced by AI-co-therapy, FSH-doses and -costs for assisted reproduction are reduced, and ovarian hyperstimulation syndrome (OHSS may be avoided. For premenopausal diseases which are said to be positively affected by

  6. Alteration of substrate specificities of thermophilic α/β hydrolases through domain swapping and domain interface optimization

    Institute of Scientific and Technical Information of China (English)

    Xiaoli Zhou; Honglei Wang; Yuhang Zhang; Le Gao; Yan Feng

    2012-01-01

    Protein domain swapping is an efficient way in protein functional evolution in vivo and also has been proved to be an effective strategy to modify the function of the multidomain proteins in vitro.To explore the potentials of domain swapping for alteration of the enzyme substrate specificities and the structure-function relationship of the homologous proteins,here we constructed two chimeras from a pair of thermophilic members of the α/β hydrolase superfamily by grafting their functional domains to the conserved α/β hydrolase fold domain:a carboxylesterase from Archaeoglobus fulgidus (AFEST) and an acylpeptide hydrolase from Aeropyrum pernix K1 (apAPH) and explored their activities on hydrolyze p-nitrophenyl esters (pNP) with different acyl chain lengths.We took two approaches to reduce the crossover disruptions when creating the chimeras:chose the residue which involved in the least contacts as the splicing site and optimized the newly formed domain interfaces of the chimeras by sitedirected mutations.Characterizations of AAM7 and PAR showed that these chimeras inherited the thermophilic property of both parents.In the aspect of substrate specificity,AAM7 and PAR showed highest activity towards short chain length substrate pNPC4 and middle chain length substrate pNPC8,similar to parent AFEST and apAPH,respectively.These results suggested that the substrate-binding domain is the dominant factor on enzyme substrate specificity,and the optimization of the newly formed domain interface is an important guarantee for successful domain swapping of proteins with low-sequence homology.

  7. 15 CFR 4a.4 - Classification authority.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Classification authority. 4a.4 Section 4a.4 Commerce and Foreign Trade Office of the Secretary of Commerce CLASSIFICATION, DECLASSIFICATION, AND PUBLIC AVAILABILITY OF NATIONAL SECURITY INFORMATION § 4a.4 Classification authority. Authority...

  8. 22 CFR 9a.4 - Classification.

    Science.gov (United States)

    2010-04-01

    ... State shall follow the standards in E.O. 11652 and the provisions of 22 CFR 9.5 through 9.8. ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Classification. 9a.4 Section 9a.4 Foreign... ENERGY PROGRAMS; RELATED MATERIAL § 9a.4 Classification. (a) Section 1 of E.O. 11932, August 4,...

  9. 12 CFR 261a.4 - Fees.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Fees. 261a.4 Section 261a.4 Banks and Banking... TO PERSONAL INFORMATION UNDER THE PRIVACY ACT OF 1974 General Provisions § 261a.4 Fees. (a) Copies of... Availability of Information, § 261.10 of this part. (b) No fee. Documents may be furnished without charge...

  10. 12 CFR 269a.4 - Investigator.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Investigator. 269a.4 Section 269a.4 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM DEFINITIONS § 269a.4 Investigator. The term investigator means the officer designated by the panel to investigate...

  11. 32 CFR 383a.4 - Organization.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Organization. 383a.4 Section 383a.4 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE COMMISSARY AGENCY (DeCA) § 383a.4 Organization. (a) The DeCA is established as an...

  12. Uncoupling Intramolecular Processing and Substrate Hydrolysis in the N-terminal Nucleophile Hydrolase hASRGL1 by Circular Permutation

    OpenAIRE

    Li, Wenzong; Cantor, Jason R.; Yogesha, S.D.; Yang, Shirley; Chantranupong, Lynne; Liu, June Qingxia; Agnello, Giulia; Georgiou, George; Stone, Everett M.; Yan ZHANG

    2012-01-01

    The human asparaginase-like protein 1 (hASRGL1) catalyzes the hydrolysis of l-asparagine and isoaspartyl-dipeptides. As an N-terminal nucleophile (Ntn) hydrolase superfamily member, the active form of hASRGL1 is generated by an intramolecular cleavage step with Thr168 as the catalytic residue. However, in vitro, autoprocessing is incomplete (~50 %), fettering the biophysical characterization of hASRGL1. We circumvented this obstacle by constructing a circularly permuted hASRGL1 that uncoupled...

  13. [Thrombocyte lysosomal hydrolase activity in patients with ischemic heart disease, hyperlipidemia and obesity against a background of different diets].

    Science.gov (United States)

    Vasil'ev, A V; Shimanovskaia, N P; Pogozheva, A V; Samsonov, M A; Tutel'ian, V A

    1987-01-01

    Investigation of lysosomal hydrolase activity in platelets of patients has revealed drastic activation of cathepsins B, C and phospholipase A1, the degree of which rose in the following range: coronary heart disease; coronary heart disease aggravated by obesity: obesity and hyperlipidemia (type II). Administration of the adequate dietotherapy resulted in normalization of enzymologic parameters, whereas the results of the clinico-biochemical analysis of the blood were less informative in all cases. The data obtained could be used in the evaluation of the dietotherapy effectiveness, as well as for the early diagnosis of the corresponding diseases. PMID:3439081

  14. Molecular identification of Trichinella spiralis nudix hydrolase and its induced protective immunity against trichinellosis in BALB/c mice

    OpenAIRE

    Long, Shao Rong; Wang, Zhong Quan; Liu, Ruo Dan; Liu, Li Na; Li, Ling Ge; Jiang, Peng; Zhang, Xi; Zhang, Zi Fang; Shi, Hai Ning; Cui, Jing

    2014-01-01

    Background: Nudix hydrolases (Nd) is a widespread superfamily, which is found in all classes of organism, hydrolyse a wide range of organic pyrophosphates and has a ‘housecleaning’ function. The previous study showed that Trichinella spiralis Nd (TsNd) bound to intestinal epithelial cells (IECs), and the vaccination of mice with T7 phage-displayed TsNd polypeptides produced protective immunity. The aim of this study was to clone, express and identify the full-length TsNd and to investigate it...

  15. Identification, Characterization, and Immobilization of an Organic Solvent-Stable Alkaline Hydrolase (PA27) from Pseudomonas aeruginosa MH38

    OpenAIRE

    Eunjin Jang; Bum Han Ryu; Thomas Doohun Kim

    2014-01-01

    An organic solvent-stable alkaline hydrolase (PA27) from Pseudomonas aeruginosa MH38 was expressed, characterized, and immobilized for biotechnological applications. Recombinant PA27 was expressed in Escherichia coli as a 27 kDa soluble protein and was purified by standard procedures. PA27 was found to be stable at pH 8–11 and below 50 °C. It maintained more than 80% of its activity under alkaline conditions (pH 8.0–11.0). Furthermore, PA27 exhibited remarkable stability in benzene and n-hex...

  16. Crystallization and preliminary X-ray analysis of l-azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C

    International Nuclear Information System (INIS)

    l-Azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C was crystallized and diffraction data were collected to a resolution of 1.38 Å. l-Azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C catalyzes a ring-opening reaction that detoxifies l-azetidine-2-carboxylate, an analogue of l-proline. Recombinant l-azetidine-2-carboxylate hydrolase was overexpressed, purified and crystallized using polyethylene glycol and magnesium acetate as precipitants. The needle-shaped crystal belonged to space group P21, with unit-cell parameters a = 35.6, b = 63.6, c = 54.7 Å, β = 105.5°. The crystal diffracted to a resolution of 1.38 Å. The calculated VM value was 2.2 Å3 Da−1, suggesting that the crystal contains one enzyme subunit in the asymmetric unit

  17. A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds.

    Science.gov (United States)

    Espina, Giannina; Eley, Kirstin; Pompidor, Guillaume; Schneider, Thomas R; Crennell, Susan J; Danson, Michael J

    2014-05-01

    Geobacillus thermoglucosidasius is a thermophilic bacterium that is able to ferment both C6 and C5 sugars to produce ethanol. During growth on hemicellulose biomass, an intracellular β-xylosidase catalyses the hydrolysis of xylo-oligosaccharides to the monosaccharide xylose, which can then enter the pathways of central metabolism. The gene encoding a G. thermoglucosidasius β-xylosidase belonging to CAZy glycoside hydrolase family GH52 has been cloned and expressed in Escherichia coli. The recombinant enzyme has been characterized and a high-resolution (1.7 Å) crystal structure has been determined, resulting in the first reported structure of a GH52 family member. A lower resolution (2.6 Å) structure of the enzyme-substrate complex shows the positioning of the xylobiose substrate to be consistent with the proposed retaining mechanism of the family; additionally, the deep cleft of the active-site pocket, plus the proximity of the neighbouring subunit, afford an explanation for the lack of catalytic activity towards the polymer xylan. Whilst the fold of the G. thermoglucosidasius β-xylosidase is completely different from xylosidases in other CAZy families, the enzyme surprisingly shares structural similarities with other glycoside hydrolases, despite having no more than 13% sequence identity.

  18. Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1

    Directory of Open Access Journals (Sweden)

    Rolain Thomas

    2012-10-01

    Full Text Available Abstract Background Lactobacillus plantarum is commonly used in industrial fermentation processes. Selected strains are also marketed as probiotics for their health beneficial effects. Although the functional role of peptidoglycan-degrading enzymes is increasingly documented to be important for a range of bacterial processes and host-microbe interactions, little is known about their functional roles in lactobacilli. This knowledge holds important potential for developing more robust strains resistant to autolysis under stress conditions as well as peptidoglycan engineering for a better understanding of the contribution of released muramyl-peptides as probiotic immunomodulators. Results Here, we explored the functional role of the predicted peptidoglycan hydrolase (PGH complement encoded in the genome of L. plantarum by systematic gene deletion. From twelve predicted PGH-encoding genes, nine could be individually inactivated and their corresponding mutant strains were characterized regarding their cell morphology, growth, and autolysis under various conditions. From this analysis, we identified two PGHs, the predicted N-acetylglucosaminidase Acm2 and NplC/P60 D,L-endopeptidase LytA, as key determinants in the morphology of L. plantarum. Acm2 was demonstrated to be required for the ultimate step of cell separation of daughter cells, whereas LytA appeared to be required for cell shape maintenance and cell-wall integrity. We also showed by autolysis experiments that both PGHs are involved in the global autolytic process with a dominant role for Acm2 in all tested conditions, identifying Acm2 as the major autolysin of L. plantarum WCFS1. In addition, Acm2 and the putative N-acetylmuramidase Lys2 were shown to play redundant roles in both cell separation and autolysis under stress conditions. Finally, the analysis of the peptidoglycan composition of Acm2- and LytA-deficient derivatives revealed their potential hydrolytic activities by the

  19. Functional significance of metastasis-inducing S100A4(Mts1) in tumor-stroma interplay

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Klingelhöfer, Jörg; Grum-Schwensen, Birgitte;

    2004-01-01

    , extracellular S100A4 down-regulates the pro-apoptotic bax and the angiogenesis inhibitor thrombospondin-1 genes. For the first time, we demonstrate here that the S100A4 protein added to the extracellular space strongly stimulates proteolytic activity of VMR cells. This activity most probably is associated with...... in the tumor-stroma environment. S100A4 released either by tumor or stroma cells triggers pro-metastatic cascades in tumor cells....

  20. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans.

    Science.gov (United States)

    Bezsudnova, Ekaterina Yu; Sorokin, Dimitry Yu; Tikhonova, Tamara V; Popov, Vladimir O

    2007-12-01

    Thiohalophilus thiocyanoxidans is a first halophilic sulfur-oxidizing chemolithoautotrophic bacterium capable of growth with thiocyanate as an electron donor at salinity up to 4 M NaCl. The cells, grown with thiocyanate, but not with thiosulfate, contained an enzyme complex hydrolyzing thiocyanate to sulfide and ammonia under anaerobic conditions with carbonyl sulfide as an intermediate. Despite the fact of utilization of the , high cyanase activity was also detected in thiocyanate-induced cells. Three-stage column chromotography resulted in a highly purified thiocyanate-hydrolyzing protein with an apparent molecular mass of 140 kDa that consists of three subunits with masses 17, 19 and 29 kDa. The enzyme is a Co,Fe-containing protein resembling on its function and subunit composition the enzyme thiocyanate hydrolase from the Betaproteobacterium Thiobacillus thioparus. Cyanase, copurified with thiocyanate hydrolase, is a bisubstrate multisubunit enzyme with an apparent subunit molecular mass of 14 kDa. A possible role of cyanase in thiocyanate degradation by T. thiocyanoxidans is discussed.

  1. Divalent metal ion-based catalytic mechanism of the Nudix hydrolase Orf153 (YmfB) from Escherichia coli.

    Science.gov (United States)

    Hong, Myoung-Ki; Ribeiro, António J M; Kim, Jin-Kwang; Ngo, Ho-Phuong-Thuy; Kim, Jiyoung; Lee, Choong Hwan; Ahn, Yeh-Jin; Fernandes, Pedro Alexandrino; Li, Qing; Ramos, Maria Joao; Kang, Lin-Woo

    2014-05-01

    YmfB from Escherichia coli is the Nudix hydrolase involved in the metabolism of thiamine pyrophosphate, an important compound in primary metabolism and a cofactor of many enzymes. In addition, it hydrolyzes (d)NTPs to (d)NMPs and inorganic orthophosphates in a stepwise manner. The structures of YmfB alone and in complex with three sulfates and two manganese ions determined by X-ray crystallography, when compared with the structures of other Nudix hydrolases such as MutT, Ap4Aase and DR1025, provide insight into the unique hydrolysis mechanism of YmfB. Mass-spectrometric analysis confirmed that water attacks the terminal phosphates of GTP and GDP sequentially. Kinetic analysis of binding-site mutants showed that no individual residue is absolutely required for catalytic activity, suggesting that protein residues do not participate in the deprotonation of the attacking water. Thermodynamic integration calculations show that a hydroxyl ion bound to two divalent metal ions attacks the phosphate directly without the help of a nearby catalytic base. PMID:24816099

  2. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine.

    Science.gov (United States)

    Gaywee, Jariyanart; Xu, WenLian; Radulovic, Suzana; Bessman, Maurice J; Azad, Abdu F

    2002-03-01

    The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.

  3. Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.

    Science.gov (United States)

    Currie, D H; Guss, A M; Herring, C D; Giannone, R J; Johnson, C M; Lankford, P K; Brown, S D; Hettich, R L; Lynd, L R

    2014-08-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars. PMID:24907337

  4. Crystallization and preliminary X-ray structural analysis of nucleoside triphosphate hydrolases from Neospora caninum and Toxoplasma gondii

    International Nuclear Information System (INIS)

    Recombinant nucleoside triphosphate hydrolases from N. caninum and T. gondii have been purified and crystallized for X-ray structure analysis. The nucleoside triphosphate hydrolases that are produced by Neospora caninum (NcNTPase) and Toxoplasma gondii (TgNTPase-I) have a different physiological function from the ubiquitous ecto-ATPases. The recombinant enzymes were crystallized at 293 K using polyethylene glycol 3350 as a precipitant and X-ray diffraction data sets were collected for NcNTPase (to 2.8 Å resolution) and TgNTPase-I (to 3.1 Å resolution) at 100 K using synchrotron radiation. The crystals of NcNTPase and TgNTPase-I belonged to the orthorhombic space group I222 (unit-cell parameters a = 93.6, b = 140.8, c = 301.1 Å) and the monoclinic space group P21 (unit-cell parameters a = 87.1, b = 123.5, c = 120.2 Å, β = 96.6°), respectively, with two NcNTPase (VM = 3.7 Å3 Da−1) and four TgNTPase-I (VM = 2.7 Å3 Da−1) molecules per asymmetric unit. SAD phasing trials using a data set (λ = 0.97904 Å) collected from a crystal of selenomethionylated NcNTPase gave an initial electron-density map of sufficient quality to build a molecular model of NcNTPase

  5. Purification and characterization of an arginine ester hydrolase from the venom of Trimeresurus mucrosqumatus in Hunan province of China

    Institute of Scientific and Technical Information of China (English)

    YU Xiao-dong; LI Bo; YU Zheng-ping

    2005-01-01

    Objective: To study the physical and chemical properties of an arginine ester hydrolase from the venom of Trimeresurus mucrosqumatus in Hunan province of China. Methods :The arginine ester hydrolase (AEH) was isolated from the venom of Chinese Trimeresurus mucrosqumatus by a combination of ionexchange chromatography on DEAE-Sephadex A-50, CM-Sepharose Cl-6B and gel filtration on Sephadex G-100. Results: The purified protein named TM-AEH,a glycoprotein with carbohydrate content of 0.5 % neutral hexose and 0. 75 % sialic acid,a relative molecular mass of 29.0 kDa,and an isoelectric point (pI) of 5. 2. It shares with an extinction coefficient (E0.1%/cm) of 1.332 at 280 nm,consisted of 225 amino acid residues ,and migrated as a band under reduced or non-reduced condition in basic PAGE. TM-AEH was a highly thermostable protein and was stable to pH changes between 5 and 9. The optimum temperature and optimum pH were 55℃ and 8. 4 for its catalytic activity respectively,which was inhibited by Fe3+ and Cu2+. Conclusion:This protein can exhibit higher BAEE-hydrolysing activity and fibrinogenolytic activity as compared to that of whole venom.

  6. Profile of Secreted Hydrolases, Associated Proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the Degradation of Hemicellulose

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Devin [Dartmouth College; Guss, Adam M [ORNL; Herring, Christopher [Mascoma Corporation; Giannone, Richard J [ORNL; Johnson, Courtney M [ORNL; Lankford, Patricia K [ORNL; Brown, Steven D [ORNL; Hettich, Robert {Bob} L [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

    2014-01-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars

  7. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  8. Molecular similarity of MDR inhibitors

    OpenAIRE

    Simon Gibbons; Mire Zloh

    2004-01-01

    Abstract: The molecular similarity of multidrug resistance (MDR) inhibitors was evaluated using the point centred atom charge approach in an attempt to find some common features of structurally unrelated inhibitors. A series of inhibitors of bacterial MDR were studied and there is a high similarity between these in terms of their shape, presence and orientation of aromatic ring moieties. A comparison of the lipophilic properties of these molecules has also been conducted suggesting that this ...

  9. ACE INHIBITORS: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Arora* and Ashish Chauhan

    2013-02-01

    Full Text Available Hypertension is a chronic increase in blood pressure, characterized as primary and secondary hypertension. The disorder is associated with various risk factors like obesity, diabetes, age, lack of exercise etc. Hypertension is being treated since ancient times by Ayurvedic, Chinese and Unani medicine. Now various allopathic drugs are available which include diuretics, calcium channel blockers, α-blockers, β-blockers, vasodilators, central sympatholytics and ACE-inhibitors. Non-pharmacological treatments include weight reduction, dietary sodium reduction, increased potassium intake and reduction in alcohol consumption. ACE-inhibitors are widely used in the treatment of hypertension by inhibiting the angiotensin converting enzyme responsible for the conversion of angiotensin I to angiotensin II (responsible for vasoconstriction. Various structure activity relationship studies led to the synthesis of ACE-inhibitors, some are under clinical development. This comprehensive review gives various guidelines on classification of hypertension, hypertension therapy including ancient, pharmacological, non-pharmacological therapies, pharmacoeconomics, historical perspectives of ACE, renin, renin angiotensin system (circulating vs local RAS, mechanism of ACE inhibitors, and development of ACE inhibitors. Review also emphasizes on the recent advancements on ACE inhibitors including drugs in clinical trials, computational studies on ACE-inhibitors, peptidomimetics, dual, natural, multi-functional ACE inhibitors, and conformational requirements for ACE-inhibitors.

  10. Characterization of arachidonate 5-lipoxygenase and leukotriene A4 synthetase from RBL-1 cells

    International Nuclear Information System (INIS)

    5-lipoxygenase (LO) and leukotriene (LT) A4 synthetase from RBL-1 high speed (105,000 x g for 60 min) supernatants were partially purified by protein-high performance liquid chromatography (HPLC) and characterized in detail. The partially purified preparation contained only 5-LO and LTA4 synthetase and was isolated from 12-LO, peroxidase and LTA4 hydrolase activities. Reaction products were separated by reversed phase HPLC and quantitated by absorption spectrophotometry and radiochemical detection. The enzyme preparation rapidly converted [14C]arachidonate to [14C]5-hydroperoxyeicosatetraenoic acid (HPETE) and [14C]5,12-dihydroperoxyeicosatetraenoic acids (diHETEs). The 5,12-diHETEs were primarily non-enzymatic breakdown products of LTA4 (e.g., 6-trans-LTB4 and 6-trans-12-epi-LTB4). Both the 5-LO and LTA4 synthetase activities were Ca2+- and ATP-dependent. For both enzyme activities, the CA2+ stimulation required the presence of ATP. The fatty acid hydroperoxides, 5-,12-, and 15-HPETE, both stimulated ([ 3 μM]) 5-LO and LTA4 synthetase activities. The rapid isolation and subsequent characterization of 5-LO and LTA4 synthetase provide the bases for the further understanding of the role of the LO pathway in biological processes

  11. Two intestinal specific nuclear factors binding to the lactase-phlorizin hydrolase and sucrase-isomaltase promoters are functionally related oligomeric molecules

    DEFF Research Database (Denmark)

    Troelsen, J T; Mitchelmore, C; Sjöström, H;

    1994-01-01

    Lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) are enterocyte-specific gene products. The identification of regulatory cis-elements in the promoter of these two genes has enabled us to carry out comparative studies of the corresponding intestinal-specific nuclear factors (NF-LPH1...

  12. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol : conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Stelt, M. van der; Kuik, J.A. van; Zadelhoff, G. van; Leeflang, B.R.; Veldink, G.A.; Finazzi Agrò, A.; Maccarrone, M.

    2002-01-01

    This study was aimed at finding structural requirements for the interaction of the acyl chain of endocannabinoids with cannabinoid receptors, membrane transporter protein, and fatty acid amide hydrolase (FAAH). To this end, the flexibility of the acyl chain was restricted by introduction of an 1-hyd

  13. Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidase contribute to recognition of long-chain substrates

    DEFF Research Database (Denmark)

    Tagami, Takayoshi; Okuyama, Masayuki; Nakai, Hiroyuki;

    2013-01-01

    Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers ...

  14. Molecular Cloning and Nucleotide Sequence of the Gene Encoding the Major Peptidoglycan Hydrolase of Lactococcus lactis, a Muramidase Needed for Cell Separation

    NARCIS (Netherlands)

    Buist, Girbe; Kok, Jan; Leenhouts, Kees J.; Dabrowska, Magdalena; Venema, Gerhardus; Haandrikman, Alfred J.

    1995-01-01

    A gene of Lactococcus lactis subsp, cremoris MG1363 encoding a peptidoglycan hydrolase was identified in a genomic library of the strain in pUC19 by screening Escherichia coli transformants for cell wall lysis activity on a medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells, I

  15. Aspergillus niger protein estA defines a new class of fungal esterases within the alfa/beta hydrolase fold superfamily of proteins

    NARCIS (Netherlands)

    Bourne, Y.; Hasper, A.A.; Chahinian, H.; Juin, M.; Graaff, de L.H.

    2004-01-01

    From the fungus Aspergillus niger, we identified a new gene encoding protein EstA, a member of the alpha/beta-hydrolase fold superfamily but of unknown substrate specificity. EstA was overexpressed and its crystal structure was solved by molecular replacement using a lipaseacetylcholinesterase chime

  16. Acetobacter turbidans alpha-amino acid ester hydrolase : merohedral twinning in P2(1) obscured by pseudo-translational NCS

    NARCIS (Netherlands)

    Barends, TRM; Dijkstra, BW; Barends, Thomas R.M.; Dijkstra, Bauke W.

    2003-01-01

    The structure elucidation of the alpha-amino acid ester hydrolase from Acetobacter turbidans by molecular replacement is described. In the monoclinic crystal, the molecules are related by both rotational and pseudo-crystallographic translational NCS (non-crystallographic symmetry). Refinement of the

  17. Effect of short-term exposure to dichlorvos on synaptic plasticity of rat hippocampal slices: Involvement of acylpeptide hydrolase and α7 nicotinic receptors

    International Nuclear Information System (INIS)

    Dichlorvos is the active molecule of the pro-drug metrifonate used to revert the cognitive deficits associated with Alzheimer's disease. A few years ago it was reported that dichlorvos inhibits the enzyme acylpeptide hydrolase at lower doses than those necessary to inhibit acetylcholinesterase to the same extent. Therefore, the aim of our investigation was to test the hypothesis that dichlorvos can enhance synaptic efficacy through a mechanism that involves acylpeptide hydrolase instead of acetylcholinesterase inhibition. We used long-term potentiation induced in rat hippocampal slices as a model of synaptic plasticity. Our results indicate that short-term exposures (20 min) to 50 μM dichlorvos enhance long-term potentiation in about 200% compared to the control condition. This effect is correlated with approximately 60% inhibition of acylpeptide hydrolase activity, whereas acetylcholinesterase activity remains unaffected. Paired-pulse facilitation and inhibition experiments indicate that dichlorvos does not have any presynaptic effect in the CA3 → CA1 pathway nor affect gabaergic interneurons. Interestingly, the application of 100 nM methyllicaconitine, an α7 nicotinic receptor antagonist, blocked the enhancing effect of dichlorvos on long-term potentiation. These results indicate that under the exposure conditions described above, dichlorvos enhances long-term potentiation through a postsynaptic mechanism that involves (a) the inhibition of the enzyme acylpeptide hydrolase and (b) the modulation of α7 nicotinic receptors.

  18. The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Basseres, Eugene; Coppotelli, Giuseppe; Pfirrmann, Thorsten;

    2010-01-01

    Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria monocyto...

  19. Steady state kinetic analysis of substrate specificity of glycoside hydrolases from families 13 and 38

    DEFF Research Database (Denmark)

    Nielsen, Jonas Willum

    mechanism, in which the metal ion must bind prior to the substrate. Ni2+ and Cu2+ were inhibitors of ManA, which probably bind to the active site, but result in an enzyme unable to facilitate substrate binding. Numerous glycosidases have a carbohydrate binding domain (CBM) appended to the catalytic domain...... been identified in various enzymes, often based on crystal structures, and only few have been characterized in terms of structure-function relationship. Together SBS1 and SBS2 of barley α-amylase isozyme 1 probably represent the two most extensively studied SBSs. SBS2, largely governed by Tyr380, has...

  20. Hydrogen bonding in the mechanism of GDP-mannose mannosyl hydrolase

    Science.gov (United States)

    Mildvan, A. S.; Xia, Z.; Azurmendi, H. F.; Legler, P. M.; Balfour, M. R.; Lairson, L. L.; Withers, S. G.; Gabelli, S. B.; Bianchet, M. A.; Amzel, L. M.

    2006-06-01

    GDP-mannose mannosyl hydrolase (GDPMH) from E. coli catalyzes the hydrolysis of GDP-α- D-sugars to GDP and β- D-sugars by nucleophilic substitution with inversion at the anomeric C1 of the sugar, with general base catalysis by His-124. The 1.3 Å X-ray structure of the GDPMH-Mg 2+-GDP complex was used to model the complete substrate, GDP-mannose into the active site. The substrate is linked to the enzyme by 12 hydrogen bonds, as well as by the essential Mg 2+. In addition, His-124 was found to participate in a hydrogen bonded triad: His-124-NδH⋯Tyr-127-OH⋯Pro-120(C dbnd6 O). The contributions of these hydrogen bonds to substrate binding and to catalysis were investigated by site-directed mutagenesis. The hydrogen bonded triad detected in the X-ray structure was found to contribute little to catalysis since the Y127F mutation of the central residue shows only 2-fold decreases in both kcat and Km. The GDP leaving group is activated by the essential Mg 2+ which contributes at least 10 5-fold to kcat, and by nine hydrogen bonds, including those from Tyr-103, Arg-37, Arg-52, and Arg-65 (via an intervening water), each of which contribute factors to kcat ranging from 24- to 309-fold. Both Arg-37 and Tyr-103 bind the β-phosphate of the leaving GDP and are only 5.0 Å apart. Accordingly, the R37Q/Y103F double mutant shows partially additive effects of the two single mutants on kcat, indicating cooperativity of Arg-37 and Tyr-103 in promoting catalysis. The extensive activation of the GDP leaving group suggests a mechanism with dissociative character with a cationic oxocarbenium-like transition state and a half-chair conformation of the sugar ring, as found with glycosidase enzymes. Accordingly, Asp-22 which contributes 10 2.1- to 10 2.6-fold to kcat, is positioned to both stabilize a developing cationic center at C1 and to accept a hydrogen bond from the C2-OH of the mannosyl group, and His-88, which contributes 10 2.3-fold to kcat, is positioned to accept

  1. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Tisch Doris

    2011-12-01

    Full Text Available Abstract Background In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. Results As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency. Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. Conclusions The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light

  2. Selection criteria for corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Webb, L.; Boivin, J. [Cormetrics, Calgary, AB (Canada)

    2008-07-01

    The use of a corrosion inhibitor is the primary method to control internal corrosion of pipelines and to reduce costly failures. This presentation discussed the selection criteria for corrosion inhibitors. The selection process requires a detailed analysis of system chemistry; modeling flow regime; and laboratory testing protocols that challenge the inhibitor under conditions analogous to the field. The nature of corrosion inhibitors and inhibitor requirements were described. Physical factors were also presented. These included viscosity and pour point; stability; density; effect on elastomers and other materials; emulsion tendency; foaming tendency; gunking; polymerization/sludging; and reaction with gases and liquids. Other topics that were discussed included compatibility; solubility; partitioning; environmental effects; and selection requirements. Film tenacity was described in terms of corrosivity; water chemistry; and flow. The presentation concluded with a discussion of performance testing and wheel testing. figs.

  3. Δ9-tetrahydrocannabinol and endocannabinoid degradative enzyme inhibitors attenuate intracranial self-stimulation in mice.

    Science.gov (United States)

    Wiebelhaus, Jason M; Grim, Travis W; Owens, Robert A; Lazenka, Matthew F; Sim-Selley, Laura J; Abdullah, Rehab A; Niphakis, Micah J; Vann, Robert E; Cravatt, Benjamin F; Wiley, Jenny L; Negus, S Stevens; Lichtman, Aron H

    2015-02-01

    A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on

  4. VistA 4 Product Roadmap

    Data.gov (United States)

    Department of Veterans Affairs — The VistA 4 Product Roadmap outlines how the Department of Veterans Affairs (VA), under the direction of the VistA Evolution Program, will build upon the previous...

  5. Virtual Screening of Natural Products, Molecular Docking and Dynamics Simulations on M.tuberculosis S-adenosyl-L-homocysteine Hydrolase

    Directory of Open Access Journals (Sweden)

    Abdul-Rashid B. Sampaco Iii

    2015-12-01

    Full Text Available The activated methyl cycle of Mycobacterium tuberculosis(Mtbis responsible for the regeneration of S-adenosyl methionine (SAM from S-adenosyl-L-homocysteine (SAH. Inhibition of the key enzymes in this transformation may lead to accumulation of SAH and depletion of SAM in the Mtb cell. This has detrimental effects onthe bacterium’s cellular processes. Virtual screening of natural products from the Philippines and those in Ambinter database against S-adenosyl-L-homocysteine hydrolase (SAHH yielded the tautomer of the molecule, methyl 4-({2-[(4-hydroxy-2-oxo-1,2-dihydro-3-quinolinylcarbonyl]hydrazino}sulfonylphenylcarbamate, which displays better binding energy (-307.64 kcal/mol than the substrate, SAH (-270.601 kcal/mol. Molecular dynamics simulations at body temperature indicated that the hit-SAHH complex is more stable than the enzyme-substrate complex.

  6. Two sides of the same coin: Xyloglucan endotransglucosylases/hydrolases in host infection by the parasitic plant Cuscuta

    Science.gov (United States)

    Olsen, Stian; Popper, Zoë A.; Krause, Kirsten

    2016-01-01

    ABSTRACT The holoparasitic angiosperm Cuscuta develops haustoria that enable it to feed on other plants. Recent findings corroborate the long-standing theory that cell wall modifications are required in order for the parasite to successfully infect a host, and further suggest that changes to xyloglucan through the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) are essential. On the other hand, XTH expression was also detected in resistant tomato upon an attack by Cuscuta, which suggests that both host and parasite use these enzymes in their “arms race.” Here, we summarize existing data on the cell wall-modifying activities of XTHs during parasitization and present a model suggesting how XTHs might function to make the host's resources accessible to Cuscuta. PMID:26852915

  7. Involvement of a Natural Fusion of a Cytochrome P450 and a Hydrolase in Mycophenolic Acid Biosynthesis

    DEFF Research Database (Denmark)

    Hansen, Bjarne Gram; Mnich, Ewelina; Nielsen, Kristian Fog;

    2012-01-01

    is carried out by a natural fusion enzyme MpaDE, consisting of a cytochrome P450 (MpaD) in the N-terminal region and a hydrolase (MpaE) in the C-terminal region. We verified that the fusion gene is indeed expressed in P. brevicompactum by obtaining full-length sequence of the mpaDE cDNA prepared from...... the extracted RNA. Heterologous coexpression of mpaC and the fusion gene mpaDE in the MPA-nonproducer Aspergillus nidulans resulted in the production of 5,7-dihydroxy-4-methylphthalide (DHMP), the second intermediate in MPA biosynthesis. Analysis of the strain coexpressing mpaC and the mpaD part of mpaDE shows...

  8. Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent.

    Science.gov (United States)

    Jeong, Young-Su; Choi, Jung Min; Kyeong, Hyun-Ho; Choi, Jae-Youl; Kim, Eui-Joong; Kim, Hak-Sung

    2014-07-01

    V-type nerve agents, known as VX, are organophosphate (OP) compounds, and show extremely toxic effects on human and animals by causing cholinergic overstimulation of synapses. The bacterial organophosphorus hydrolase (OPH) has attracted much attention for detoxifying V-type agents through hydrolysis of the P-S bond. However, low catalytic efficiency of OPH has limited the practical use of the enzyme. Here we present rational design of OPH with high catalytic efficiency for a V-type nerve agent. Based on the model structure of the enzyme and substrate docking simulation, we predicted the key residues that appear to enhance the access of the substrate to the active site of the enzyme, and constructed numerous OPH mutants. Of them, double mutant, L271/Y309A, was shown to exhibit a 150-fold higher catalytic efficiency for VX than the wild-type.

  9. [Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls].

    Science.gov (United States)

    Aktuganov, G E; Galimzianova, N F; Melent'ev, A I; Kuz'mina, L Iu

    2007-01-01

    The mycolytic bacterial strain Bacillus sp. 739 produces extracellular enzymes which degrade in vitro the cell walls of a number of phytopathogenic and saprophytic fungi. When Bacillus sp. 739 was cultivated with Bipolaris sorokiniana, a cereal root-rot pathogen, the fungus degradation process correlated with the levels of the beta-1,3-glucanase and protease activity. The comparative characteristic of Bacillus sp. 739 enzymatic preparations showed that efficient hydrolysis of the fungus cell walls was the result of the action of the complex of enzymes produced by the strain when grown on chitin-containing media. Among the enzymes of this complex, chitinases and beta-1,3-glucanases hydrolyzed most actively the disintegrated cell walls of B. sorokiniana. However, only beta-1,3-glucanases were able to degrade the cell walls of native fungal mycelium in the absence of other hydrolases, which is indicative of their key role in the mycolytic activity of Bacillus sp. 739.

  10. Crystal Structure of Homoserine Transacetylase from Haemophilus Influenzae Reveals a New Family of alpha/beta-Hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Mirza,I.; Nazi, I.; Korczynska, M.; Wright, G.; Berghuis, A.

    2005-01-01

    Homoserine transacetylase catalyzes one of the required steps in the biosynthesis of methionine in fungi and several bacteria. We have determined the crystal structure of homoserine transacetylase from Haemophilus influenzae to a resolution of 1.65 A. The structure identifies this enzyme to be a member of the alpha/beta-hydrolase structural superfamily. The active site of the enzyme is located near the end of a deep tunnel formed by the juxtaposition of two domains and incorporates a catalytic triad involving Ser143, His337, and Asp304. A structural basis is given for the observed double displacement kinetic mechanism of homoserine transacetylase. Furthermore, the properties of the tunnel provide a rationale for how homoserine transacetylase catalyzes a transferase reaction vs. hydrolysis, despite extensive similarity in active site architecture to hydrolytic enzymes.

  11. Genetic variants in microsomal epoxide hydrolase and N-acetyltransferase 2 in susceptibility of IBD in the Danish population

    DEFF Research Database (Denmark)

    Ernst, Anja; Andersen, Vibeke; Østergaard, Mette;

    Introduction. Inflammatory bowel disease (IBD) is characterised by recurrent inflammation of the intestinal mucosa, however the exact mechanism is unknown. Reactive molecules play a central role in the disruption of the mucosa increasing the permeability across the intestinal barrier, which may...... induce or sustain an immune response. Changes in detoxification of substances that causes epithelial damage may confer susceptibility to IBD. Hence, polymorphic enzymes involved in the detoxification processes may be risk factors of IBD. Methods. The two biotransformation enzymes microsomal epoxide......-acetyltransferase 2 acetylator status and IBD. An association between high activity of microsomal epoxide hydrolase and disease diagnosis before age 40 in CD with an OR of 2.2(1.1- 4.2) P=0.02) was found. No other phenotypic associations were found for the two enzymes and IBD, regarding age at onset, disease location...

  12. Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Silva, Carlos P; Alexandre, Daniel;

    2012-01-01

    proteomic changes induced in the intestinal tract of larval C. maculatus challenged by the ingestion of cystatin, a cysteine peptidase inhibitor, was investigated by a nanoLC-MS/MS approach. The ingestion of cystatin caused a delay in the development of the larvae, but the mortality was not high, indicating....... Ingestion of cystatin led to significant changes in the proteome of both the midgut epithelia and midgut contents. We have observed that proteins related to plant cell wall degradation, particularly the key glycoside hydrolases of the families GH5 (endo-β-1,4-mannanase) and GH 28 (polygalacturonase) were...... overexpressed. Conversely, α-amylases were downexpressed, indicating that an increase in hemicelluloses digestion helps the larvae to cope with the challenge of cystatin ingestion. Furthermore, a number of proteins associated with transcription/translation and antistress reactions were among the cystatin...

  13. Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes.

    Science.gov (United States)

    Ogawa, Takahiro; Noguchi, Keiichi; Saito, Masahiko; Nagahata, Yoshiko; Kato, Hiromi; Ohtaki, Akashi; Nakayama, Hiroshi; Dohmae, Naoshi; Matsushita, Yasuhiko; Odaka, Masafumi; Yohda, Masafumi; Nyunoya, Hiroshi; Katayama, Yoko

    2013-03-13

    Carbonyl sulfide (COS) is an atmospheric trace gas leading to sulfate aerosol formation, thereby participating in the global radiation balance and ozone chemistry, but its biological sinks are not well understood. Thiobacillus thioparus strain THI115 can grow on thiocyanate (SCN(-)) as its sole energy source. Previously, we showed that SCN(-) is first converted to COS by thiocyanate hydrolase in T. thioparus strain THI115. In the present work, we purified, characterized, and determined the crystal structure of carbonyl sulfide hydrolase (COSase), which is responsible for the degradation of COS to H2S and CO2, the second step of SCN(-) assimilation. COSase is a homotetramer composed of a 23.4 kDa subunit containing a zinc ion in its catalytic site. The amino acid sequence of COSase is homologous to the β-class carbonic anhydrases (β-CAs). Although the crystal structure including the catalytic site resembles those of the β-CAs, CO2 hydration activity of COSase is negligible compared to those of the β-CAs. The α5 helix and the extra loop (Gly150-Pro158) near the N-terminus of the α6 helix narrow the substrate pathway, which could be responsible for the substrate specificity. The k(cat)/K(m) value, 9.6 × 10(5) s(-1) M(-1), is comparable to those of the β-CAs. COSase hydrolyzes COS over a wide concentration range, including the ambient level, in vitro and in vivo. COSase and its structurally related enzymes are distributed in the clade D in the phylogenetic tree of β-CAs, suggesting that COSase and its related enzymes are one of the catalysts responsible for the global sink of COS. PMID:23406161

  14. Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available BACKGROUND: Ascaris lumbricoides and Ascaris suum are socioeconomically important and widespread parasites of humans and pigs, respectively. The excretory-secretory (ES molecules produced and presented at the parasite-host interface during the different phases of tissue invasion and migration are likely to play critical roles in the induction and development of protective immune and other host responses. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to identify the ES proteins of the different larval stages (L3-egg, L3-lung and L4 by LC-MS/MS. In total, 106 different proteins were identified, 20 in L3-egg, 45 in L3-lung stage and 58 in L4. Although most of the proteins identified were stage-specific, 15 were identified in the ES products of at least two stages. Two proteins, i.e. a 14-3-3-like protein and a serpin-like protein, were present in the ES products from the three different larval stages investigated. Interestingly, a comparison of ES products from L4 with those of L3-egg and L3-lung showed an abundance of metabolic enzymes, particularly glycosyl hydrolases. Further study indicated that most of these glycolytic enzymes were transcriptionally upregulated from L4 onwards, with a peak in the adult stage, particularly in intestinal tissue. This was also confirmed by enzymatic assays, showing the highest glycosidase activity in protein extracts from adult worms gut. CONCLUSIONS/SIGNIFICANCE: The present proteomic analysis provides important information on the host-parasite interaction and the biology of the migratory stages of A. suum. In particular, the high transcriptional upregulation of glycosyl hydrolases from the L4 stage onwards reveals that the degradation of complex carbohydrates forms an essential part of the energy metabolism of this parasite once it establishes in the small intestine.

  15. Immunoprotective responses of T helper type 1 stimulatory protein-S-adenosyl-L-homocysteine hydrolase against experimental visceral leishmaniasis.

    Science.gov (United States)

    Khare, P; Jaiswal, A K; Tripathi, C D P; Sundar, S; Dube, A

    2016-08-01

    It is well known that a patient in clinical remission of visceral leishmaniasis (VL) remains immune to reinfection, which provides a rationale for the feasibility of a vaccine against this deadly disease. In earlier studies, observation of significant cellular responses in treated Leishmania patients as well as in hamsters against leishmanial antigens from different fractions led to its further proteomic characterization, wherein S-adenosyl-L-homocysteine hydrolase (AdoHcy) was identified as a helper type 1 (Th1) stimulatory protein. The present study includes immunological characterization of this protein, its cellular responses [lymphoproliferation, nitric oxide (NO) production and cytokine responses] in treated Leishmania-infected hamsters and patients as well as prophylactic efficacy against Leishmania challenge in hamsters and the immune responses generated thereof. Significantly higher cellular responses were noticed against recombinant L. donovani S-adenosyl-L-homocysteine hydrolase (rLdAdoHcy) compared to soluble L. donovani antigen in treated samples. Moreover, stimulation of peripheral blood mononuclear cells with rLdAdoHcy up-regulated the levels of interferon (IFN)-γ, interleukin (IL)-12 and down-regulated IL-10. Furthermore, vaccination with rLdAdoHcy generated perceptible delayed-type hypersensitivity response and exerted considerably good prophylactic efficacy (∼70% inhibition) against L. donovani challenge. The efficacy was confirmed by the increased expression levels of inducible NO synthase and Th1-type cytokines, IFN-γ and IL-12 and down-regulation of IL-4, IL-10 and transforming growth factor (TGF)-β. The results indicate the potentiality of rLdAdoHcy protein as a suitable vaccine candidate against VL. PMID:26898994

  16. Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus Metarhizium anisopliae.

    Directory of Open Access Journals (Sweden)

    Ângela Junges

    Full Text Available Fungal chitin metabolism involves diverse processes such as metabolically active cell wall maintenance, basic nutrition, and different aspects of virulence. Chitinases are enzymes belonging to the glycoside hydrolase family 18 (GH18 and 19 (GH19 and are responsible for the hydrolysis of β-1,4-linkages in chitin. This linear homopolymer of N-acetyl-β-D-glucosamine is an essential constituent of fungal cell walls and arthropod exoskeletons. Several chitinases have been directly implicated in structural, morphogenetic, autolytic and nutritional activities of fungal cells. In the entomopathogen Metarhizium anisopliae, chitinases are also involved in virulence. Filamentous fungi genomes exhibit a higher number of chitinase-coding genes than bacteria or yeasts. The survey performed in the M. anisopliae genome has successfully identified 24 genes belonging to glycoside hydrolase family 18, including three previously experimentally determined chitinase-coding genes named chit1, chi2 and chi3. These putative chitinases were classified based on domain organization and phylogenetic analysis into the previously described A, B and C chitinase subgroups, and into a new subgroup D. Moreover, three GH18 proteins could be classified as putative endo-N-acetyl-β-D-glucosaminidases, enzymes that are associated with deglycosylation and were therefore assigned to a new subgroup E. The transcriptional profile of the GH18 genes was evaluated by qPCR with RNA extracted from eight culture conditions, representing different stages of development or different nutritional states. The transcripts from the GH18 genes were detected in at least one of the different M. anisopliae developmental stages, thus validating the proposed genes. Moreover, not all members from the same chitinase subgroup presented equal patterns of transcript expression under the eight distinct conditions studied. The determination of M. anisopliae chitinases and ENGases and a more detailed study

  17. Recruitment of Glycosyl Hydrolase Proteins in a Cone Snail Venomous Arsenal: Further Insights into Biomolecular Features of Conus Venoms

    Directory of Open Access Journals (Sweden)

    Philippe Favreau

    2012-01-01

    Full Text Available Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal, from the dissected and injectable venoms (“injectable venom” stands for the venom variety obtained by milking of the snails. This is in contrast to the “dissected venom”, which was obtained from dissected snails by extraction of the venom glands of a fish-hunting cone snail, Conus consors (Pionoconus clade. The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex and N-acetylhexosamine (HexNAc moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade, implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms.

  18. 嗜酸糖苷水解酶研究进展%Research Progress on Acidophilic Glycoside Hydrolase

    Institute of Scientific and Technical Information of China (English)

    罗会颖; 姚斌; 范云六

    2013-01-01

    随着极端微生物及极端酶的广泛研究,嗜酸酶因其在极端酸性环境中具有高的酶活性和稳定性而倍受关注,并取得了较大的研究进展。嗜酸糖苷水解酶是嗜酸酶中最重要的一类,在生物能源、饲料、食品等工业中具有重要的应用前景。综述了重要嗜酸糖苷水解酶,包括嗜酸淀粉酶、嗜酸纤维素酶、嗜酸木聚糖酶和甘露聚糖酶在基因的挖掘、表达、分子改良嗜酸机制研究以及应用等方面国内外的研究进展,展望了嗜酸糖苷水解酶未来可能的研究方向和发展前景。%Extremophiles and enzymes from extremophiles are widely studied. Of them, acidophilic enzyme attracts much attention, due to its high activity and stability under extreme acidic conditions, and this research has made rapid progress. Acidophilic glycosyl hydrolase is one of the most important acidophilic enzymes, and has significant application prospect in bio-energy, animal feed, food and other industries. This paper reviewed the gene cloning, heterologous expression, molecular modification and acidophilic mechanisms of important acidophilic glycosyl hydrolases, including amylase, cellulase, xylanase, and mannanase. The research orientation and development prospects were also elucidated in this paper.

  19. The role of TG2 in regulating S100A4-mediated mammary tumour cell migration.

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    Full Text Available The importance of S100A4, a Ca(2+-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2 a Ca(2+-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector and highly metastatic KP1 cells (R37 cells transfected with S100A4, we demonstrate that inhibition of TG2 either by TG2 inhibitors or transfection of cells with TG2 shRNA block S100A4-accelerated cell migration in the KP1cells and in R37 cells treated with exogenous S100A4. Cell migration was also blocked by the treatment with the non-cell permeabilizing TG2 inhibitor R294, in the human breast cancer cell line MDA-MB-231 (Clone 16, which has a high level of TG2 expression. Inhibition was paralleled by a decrease in S100A4 polymer formation. In vitro co-immunoprecipitation and Far Western blotting assays and cross-linking assays showed not only the direct interaction between TG2 and S100A4, but also confirmed S100A4 as a substrate for TG2. Using specific functional blocking antibodies, a targeting peptide and a recombinant protein as a competitive treatment, we revealed the involvement of syndecan-4 and α5β1 integrin co-signalling pathways linked by activation of PKCα in this TG2 and S100A4-mediated cell migration. We propose a mechanism for TG2-regulated S100A4-related mediated cell migration, which is dependent on TG2 crosslinking.

  20. Synthesis of Lysine Methyltransferase Inhibitors

    Directory of Open Access Journals (Sweden)

    Tao eYe

    2015-07-01

    Full Text Available Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  1. [Pharmacology of bone resorption inhibitor].

    Science.gov (United States)

    Menuki, Kunitaka; Sakai, Akinori

    2015-10-01

    Currently, bone resorption inhibitor is mainly used for osteoporosis. A number of these agents have been developed. These pharmacological action are various. Bisphosphonate inhibit functions of the osteoclasts by inducing apoptosis. On the one hand, RANK-ligand inhibitor and selective estrogen receptor modulator inhibit formation of osteoclasts. It is important to understand these pharmacological action for the selection of the appropriate medicine. PMID:26529923

  2. Converting potent indeno[1,2-b]indole inhibitors of protein kinase CK2 into selective inhibitors of the breast cancer resistance protein ABCG2.

    Science.gov (United States)

    Jabor Gozzi, Gustavo; Bouaziz, Zouhair; Winter, Evelyn; Daflon-Yunes, Nathalia; Aichele, Dagmar; Nacereddine, Abdelhamid; Marminon, Christelle; Valdameri, Glaucio; Zeinyeh, Waël; Bollacke, Andre; Guillon, Jean; Lacoudre, Aline; Pinaud, Noël; Cadena, Silvia M; Jose, Joachim; Le Borgne, Marc; Di Pietro, Attilio

    2015-01-01

    A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations.

  3. Ximelagatran: direct thrombin inhibitor

    Directory of Open Access Journals (Sweden)

    Shir-Jing Ho

    2006-03-01

    -major orthopedic surgery. It has also been shown to be more effective than aspirin alone for prevention of recurrent major cardiovascular events in patients with recent myocardial infarction.Keywords: Ximelagatran, direct thrombin inhibitor, oral anticoagulants, thromboprophylaxis

  4. The HopQ1 effector's nucleoside hydrolase-like domain is required for bacterial virulence in arabidopsis and tomato, but not host recognition in tobacco.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Bacterial pathogens deliver multiple effector proteins into host cells to facilitate bacterial growth. HopQ1 is an effector from Pseudomonas syringae pv. tomato DC3000 that is conserved across multiple bacterial pathogens which infect plants. HopQ1's central region possesses some homology to nucleoside hydrolases, but possesses an alternative aspartate motif not found in characterized enzymes. A structural model was generated for HopQ1 based on the E. coli RihB nucleoside hydrolase and the role of HopQ1's potential catalytic residues for promoting bacterial virulence and recognition in Nicotiana tabacum was investigated. Transgenic Arabidopsis plants expressing HopQ1 exhibit enhanced disease susceptibility to DC3000. HopQ1 can also promote bacterial virulence on tomato when naturally delivered from DC3000. HopQ1's nucleoside hydrolase-like domain alone is sufficient to promote bacterial virulence, and putative catalytic residues are required for virulence promotion during bacterial infection of tomato and in transgenic Arabidopsis lines. HopQ1 is recognized and elicits cell death when transiently expressed in N. tabacum. Residues required to promote bacterial virulence were dispensable for HopQ1's cell death promoting activities in N. tabacum. Although HopQ1 has some homology to nucleoside hydrolases, we were unable to detect HopQ1 enzymatic activity or nucleoside binding capability using standard substrates. Thus, it is likely that HopQ1 promotes pathogen virulence by hydrolyzing alternative ribose-containing substrates in planta.

  5. Long-Term Reduction of Cocaine Self-Administration in Rats Treated with Adenoviral Vector-Delivered Cocaine Hydrolase: Evidence for Enzymatic Activity

    OpenAIRE

    Zlebnik, Natalie E.; Brimijoin, Stephen; Gao, Yang; Saykao, Amy T.; Parks, Robin J.; Carroll, Marilyn E.

    2014-01-01

    A new pharmacokinetic approach treating cocaine addiction involves rapidly metabolizing cocaine before it reaches brain reward centers using mutated human butyrylcholinesterase (BChE) or cocaine hydrolase (CocH). Recent work has shown that helper-dependent adenoviral (hdAD) vector-mediated plasma CocH reduced the locomotor-activating effects of cocaine and prevented reinstatement of cocaine-seeking behavior up to 6 months in rats. The present study investigated whether hdAD-CocH could decreas...

  6. Anti-cocaine antibody and butyrylcholinesterase-derived cocaine hydrolase exert cooperative effects on cocaine pharmacokinetics and cocaine-induced locomotor activity in mice

    OpenAIRE

    Brimijoin, Stephen; Orson, Frank; Kosten, Tom; Kinsey, Berma; Shen, Xiao Yun; White, Sarah J.; Gao, Yang

    2012-01-01

    We are investigating treatments for cocaine abuse based on viral gene transfer of a cocaine hydrolase (CocH) derived from human butyrylcholinesterase, which can reduce cocaine-stimulated locomotion and cocaine-primed reinstatement of drug-seeking behavior in rats for many months. Here, in mice, we explored the possibility that anti-cocaine antibodies can complement the actions of CocH to reduce cocaine uptake in brain and block centrally-evoked locomotor stimulation. Direct injections of test...

  7. Hydroxynitrile Lyases with α/β-Hydrolase Fold: Two Enzymes with Almost Identical 3D Structures but Opposite Enantioselectivities and Different Reaction Mechanisms

    OpenAIRE

    Andexer, Jennifer N; Staunig, Nicole; Eggert, Thorsten; Kratky, Christoph; Pohl, Martina; Gruber, Karl

    2012-01-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins to yield hydrocyanic acid (HCN) and the respective carbonyl compound and are key enzymes in the process of cyanogenesis in plants. In organic syntheses, HNLs are used as biocatalysts for the formation of enantiopure cyanohydrins. We determined the structure of the recently identified, R-selective HNL from Arabidopsis thaliana (AtHNL) at a crystallographic resolution of 2.5 Å. The structure exhibits an α/β-hydrolase fold, very ...

  8. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile

    Directory of Open Access Journals (Sweden)

    Yu Fangyou

    2010-11-01

    Full Text Available Abstract Background Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown. Results In the present study, we demonstrated that lytSR knock-out in S. epidermidis did not alter susceptibility to Triton X-100 induced autolysis. Quantitative murein hydrolase assay indicated that disruption of lytSR in S. epidermidis resulted in decreased activities of extracellular murein hydrolases, although zymogram showed no apparent differences in murein hydrolase patterns between S. epidermidis strain 1457 and its lytSR mutant. Compared to the wild-type counterpart, 1457ΔlytSR produced slightly more biofilm, with significantly decreased dead cells inside. Microarray analysis showed that lytSR mutation affected the transcription of 164 genes (123 genes were upregulated and 41 genes were downregulated. Specifically, genes encoding proteins responsible for protein synthesis, energy metabolism were downregulated, while genes involved in amino acid and nucleotide biosynthesis, amino acid transporters were upregulated. Impaired ability to utilize pyruvate and reduced activity of arginine deiminase was observed in 1457ΔlytSR, which is consistent with the microarray data. Conclusions The preliminary results suggest that in S. epidermidis LytSR two-component system regulates extracellular murein hydrolase activity, bacterial cell death and pyruvate utilization. Based on the microarray data, it appears that lytSR inactivation induces a stringent response. In addition, LytSR may indirectly enhance biofilm formation by altering the metabolic status of the bacteria.

  9. Development of a potent inhibitor of 2-arachidonoylglycerol hydrolysis with antinociceptive activity in vivo.

    Science.gov (United States)

    Bisogno, Tiziana; Ortar, Giorgio; Petrosino, Stefania; Morera, Enrico; Palazzo, Enza; Nalli, Marianna; Maione, Sabatino; Di Marzo, Vincenzo

    2009-01-01

    Although inhibitors of the enzymatic hydrolysis of the endocannabinoid 2-arachidonoylglycerol are available, they are either rather weak in vitro (IC(50)>30 microM) or their selectivity towards other proteins of the endocannabinoid system has not been tested. Here we describe the synthesis and activity in vitro and in vivo of a tetrahydrolipstatin analogue, OMDM169, as a potent inhibitor of 2-AG hydrolysis, capable of enhancing 2-AG levels and of exerting analgesic activity via indirect activation of cannabinoid receptors. OMDM169 exhibited 0.13 microM10 microM) at human CB(1) and CB(2) receptors. However, OMDM169 shared with tetrahydrolipstatin the capability of inhibiting the human pancreatic lipase (IC(50)=0.6 microM). OMDM169 inhibited fatty acid amide hydrolase and diacylglycerol lipase only at higher concentrations (IC(50)=3.0 and 2.8 microM, respectively), and, accordingly, it increased by approximately 1.6-fold the levels of 2-AG, but not anandamide, in intact ionomycin-stimulated N18TG2 neuroblastoma cells. Acute intraperitoneal (i.p.) administration of OMDM169 to mice inhibited the second phase of the formalin-induced nocifensive response with an IC(50) of approximately 2.5 mg/kg, and concomitantly elevated 2-AG, but not anandamide, levels in the ipsilateral paw of formalin-treated mice. The antinociceptive effect of OMDM169 was antagonized by antagonists of CB(1) and CB(2) receptors, AM251 and AM630, respectively (1 mg/kg, i.p.). OMDM69 might represent a template for the development of selective and even more potent inhibitors of 2-AG hydrolysis. PMID:19027877

  10. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation.

    Directory of Open Access Journals (Sweden)

    Lorena Rodríguez-Rubio

    Full Text Available Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [a virion-associated peptidoglycan hydrolase (VAPGH encoded by the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88], and three different fusion proteins created between HydH5 and lysostaphin has been assessed. The lytic activity of the five proteins (HydH5, HydH5Lyso, HydH5SH3b, CHAPSH3b and lysostaphin was confirmed using commercial whole extended shelf-life milk (ESL in challenge assays with 10(4 CFU/mL of the strain S. aureus Sa9. HydH5, HydH5Lyso and HydH5SH3b (3.5 µM kept the staphylococcal viable counts below the control cultures for 6 h at 37°C. The effect is apparent just 15 minutes after the addition of the lytic enzyme. Of note, lysostaphin and CHAPSH3b showed the highest staphylolytic protection as they were able to eradicate the initial staphylococcal challenge immediately or 15 min after addition, respectively, at lower concentration (1 µM at 37°C. CHAPSH3b showed the same antistaphyloccal effect at room temperature (1.65 µM. No re-growth was observed for the remainder of the experiment (up to 6 h. CHAPSH3b activity (1.65 µM was also assayed in raw (whole and skim and pasteurized (whole and skim milk. Pasteurization of milk clearly enhanced CHAPSH3b staphylolytic activity in both whole and skim milk at both temperatures. This effect was most dramatic at room temperature as this protein was able to reduce S. aureus viable counts to undetectable levels immediately after addition with no re-growth detected for the duration of the experiment (360 min. Furthermore, CHAPSH3b protein is known to be heat tolerant and retained some lytic activity after pasteurization treatment and after storage at 4°C for 3 days. These results might facilitate the use of the peptidoglycan hydrolase HydH5 and its derivative fusions, particularly CHAPSH3b, as

  11. A novel α-L-arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf from Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    Full Text Available The study describes a comparative analysis of biochemical, structural and functional properties of two recombinant derivatives from Clostridium thermocellum ATCC 27405 belonging to family 43 glycoside hydrolase. The family 43 glycoside hydrolase encoding α-L-arabinofuranosidase (Ct43Araf displayed an N-terminal catalytic module CtGH43 (903 bp followed by two carbohydrate binding modules CtCBM6A (405 bp and CtCBM6B (402 bp towards the C-terminal. Ct43Araf and its truncated derivative CtGH43 were cloned in pET-vectors, expressed in Escherichia coli and functionally characterized. The recombinant proteins displayed molecular sizes of 63 kDa (Ct43Araf and 34 kDa (CtGH43 on SDS-PAGE analysis. Ct43Araf and CtGH43 showed optimal enzyme activities at pH 5.7 and 5.4 and the optimal temperature for both was 50°C. Ct43Araf and CtGH43 showed maximum activity with rye arabinoxylan 4.7 Umg(-1 and 5.0 Umg(-1, respectively, which increased by more than 2-fold in presence of Ca(2+ and Mg(2+ salts. This indicated that the presence of CBMs (CtCBM6A and CtCBM6B did not have any effect on the enzyme activity. The thin layer chromatography and high pressure anion exchange chromatography analysis of Ct43Araf hydrolysed arabinoxylans (rye and wheat and oat spelt xylan confirmed the release of L-arabinose. This is the first report of α-L-arabinofuranosidase from C. thermocellum having the capacity to degrade both p-nitrophenol-α-L-arabinofuranoside and p-nitrophenol-α-L-arabinopyranoside. The protein melting curves of Ct43Araf and CtGH43 demonstrated that CtGH43 and CBMs melt independently. The presence of Ca(2+ ions imparted thermal stability to both the enzymes. The circular dichroism analysis of CtGH43 showed 48% β-sheets, 49% random coils but only 3% α-helices.

  12. Microbial inhibitors of cysteine proteases.

    Science.gov (United States)

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  13. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O& apos; Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  14. A novel sucrose hydrolase from the bombycoid silkworms Bombyx mori, Trilocha varians, and Samia cynthia ricini with a substrate specificity for sucrose.

    Science.gov (United States)

    Wang, Huabing; Kiuchi, Takashi; Katsuma, Susumu; Shimada, Toru

    2015-06-01

    Although membrane-associated sucrase activity has been detected in the midgut of various lepidopteran species, it has not yet been identified and characterized at the molecular level. In the present study, we identified a novel sucrose hydrolase (SUH) gene from the following three bombycoid silkworms: Bombyx mori, Trilocha varians, and Samia cynthia ricini and named them BmSuh, TvSuh, and ScSuh, respectively. The EST dataset showed that BmSuh is one of the major glycoside hydrolase genes in the larval midgut of B. mori. These genes were almost exclusively expressed in the larval midgut in all three species, mainly at the feeding stage. SUHs are classified into the glycoside hydrolase family 13 and show significant homology to insect maltases. Enzymatic assays revealed that recombinant SUHs were distinct from conventional maltases and exhibited substrate specificity for sucrose. The recombinant BmSUH was less sensitive to sugar-mimic alkaloids than TvSUH and ScSUH, which may explain the reason why the sucrase activity in the B. mori midgut was less affected by the sugar-mimic alkaloids derived from mulberry.

  15. The Antioxidant and Starch Hydrolase Inhibitory Activity of Ten Spices in an In Vitro Model of Digestion: Bioaccessibility of Anthocyanins and Carotenoids

    Directory of Open Access Journals (Sweden)

    Nilakshi Jayawardena

    2015-01-01

    Full Text Available The antioxidant and starch hydrolase inhibitory activities of cardamom, cloves, coriander, cumin seeds, curry leaves, fenugreek, mustard seeds, nutmeg, sweet cumin, and star anise extracts were investigated in an in vitro model of digestion mimicking the gastric and duodenal conditions. The total phenolic contents in all spice extracts had statistically significantly (P<0.05 increased following both gastric and duodenal digestion. This was also in correlation with the antioxidant assays quantifying the water-soluble antioxidant capacity of the extracts. The lipophilic Oxygen Radical Absorbance Capacity assay did not indicate a statistically significant change in the values during any of the digestion phases. Statistically significant (P<0.05 reductions in the anthocyanin contents were observed during the digestion phases in contrast to the carotenoid contents. With the exception of the cumin seed extract, none of the spice extracts showed statistically significant changes in the initial starch hydrolase enzyme inhibitory values prior to gastric and duodenal digestion. In conclusion, this study was able to prove that the 10 spices were a significant source of total phenolics, antioxidant, and starch hydrolase inhibitory activities.

  16. The Antioxidant and Starch Hydrolase Inhibitory Activity of Ten Spices in an In Vitro Model of Digestion: Bioaccessibility of Anthocyanins and Carotenoids.

    Science.gov (United States)

    Jayawardena, Nilakshi; Watawana, Mindani I; Jayathilaka, Ruchini T; Waisundara, Viduranga Y

    2015-01-01

    The antioxidant and starch hydrolase inhibitory activities of cardamom, cloves, coriander, cumin seeds, curry leaves, fenugreek, mustard seeds, nutmeg, sweet cumin, and star anise extracts were investigated in an in vitro model of digestion mimicking the gastric and duodenal conditions. The total phenolic contents in all spice extracts had statistically significantly (P < 0.05) increased following both gastric and duodenal digestion. This was also in correlation with the antioxidant assays quantifying the water-soluble antioxidant capacity of the extracts. The lipophilic Oxygen Radical Absorbance Capacity assay did not indicate a statistically significant change in the values during any of the digestion phases. Statistically significant (P < 0.05) reductions in the anthocyanin contents were observed during the digestion phases in contrast to the carotenoid contents. With the exception of the cumin seed extract, none of the spice extracts showed statistically significant changes in the initial starch hydrolase enzyme inhibitory values prior to gastric and duodenal digestion. In conclusion, this study was able to prove that the 10 spices were a significant source of total phenolics, antioxidant, and starch hydrolase inhibitory activities. PMID:26693245

  17. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-02-04

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.

  18. Evaluation of the Stability of the Total Antioxidant Capacity, Polyphenol Contents, and Starch Hydrolase Inhibitory Activities of Kombucha Teas Using an In Vitro Model of Digestion

    Directory of Open Access Journals (Sweden)

    Mindani I. Watawana

    2015-01-01

    Full Text Available The objective of this study was to evaluate and compare antioxidant and starch hydrolase inhibitory activity of three different types of Kombucha beverages prepared by three pellicles with different microbial compositions. The fermentation process was carried out for 7 days and the assessments of antioxidant and starch hydrolase inhibitory activities as well as tea phenolic compounds were carried out. These parameters were also evaluated after subjecting the final fermented samples to gastric and duodenal digestion in an in vitro digestion model. The pH had a statistically significant decrease during the period of fermentation. The total phenolics content and antioxidant activities had increased during the fermentation process as well as when subjected to digestion. The starch hydrolase inhibitory activities also increased in a similar manner during the different phases. The α-amylase and α-glucosidase inhibitory activities showed statistically significant increases (P<0.05 as the fermentation progressed, while an increase was observed after being subjected to pancreatic and duodenal digestion as well. All three types of tea showed a higher α-amylase inhibitory activity than α-glucosidase inhibitory activity.

  19. Heteromeric assembled polypeptidic artificial hydrolases with a six-helical bundle scaffold.

    Science.gov (United States)

    Bai, Yu; Ling, Yanbo; Shi, Weiguo; Cai, Lifeng; Jia, Qiyan; Jiang, Shibo; Liu, Keliang

    2011-11-25

    Enzyme efficiency results from the cooperation of functional groups in the catalytic site. In order to mimic a natural enzyme, a definite 3D scaffold must be carefully designed so that the functional groups can work cooperatively. During the HIV-1 fusion process, the gp41 N- and C-terminal heptad repeat regions form a coiled-coil six-helical bundle (6HB) that brings the viral and target cell membranes into close proximity for fusion. We used 6HB as the molecular model for a novel scaffold for the design of an artificial enzyme, in which the modified C34 and N36 peptides formed a unique 6HB structure through specific molecular recognition, and the position and orientation of the side-chain groups on this scaffold were predictable. The histidine modified 6HB C34(H13/20)/N36(H15/22) showed enzyme-like hydrolytic activity towards p-nitrophenyl acetate (PNPA; k(cat)/K(M) =3.66 M(-1) s(-1)) through the cooperation of several inter- or intrahelical imidazole groups. Since the catalytic activity of 6HB depends on the C- and N-peptide assembly, either HIV fusion inhibitors that can compete with the formation of catalytic 6HB or denaturants that can destroy the ordered structure were able to modulate its activity. Further engineering of the solvent-exposing face with Glu(-)-Lys(+) salt bridges enhanced the helicity and the stability of 6HB. As a result, the population and stability of cooperative catalytic units increased. In addition, the Glu(-)-Lys(+) -stabilized 6HB SC35(H13/20)/N36(H15/22) had increased catalytic efficiency (k(cat)/K(M) =6.30 M(-1) s(-1)). A unique 6HB system was specifically assembled and provided a scaffold sufficiently stable to mimic the function of enzymes or other biomolecules. PMID:21957084

  20. A new chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica affects Soybean Asian rust (Phakopsora pachyrhizi spore germination

    Directory of Open Access Journals (Sweden)

    Mehta Angela

    2011-02-01

    Full Text Available Abstract Background Asian rust (Phakopsora pachyrhizi is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica (CaclXIP leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. Results A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica (CaclXIP, was isolated from leaves. The amino acid sequence predicts a (β/α8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18, and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 μg/μL inhibited the germination of spores of Phakopsora pachyrhizi by 45%. Conclusions Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust.

  1. Dipeptidylpeptidase-4 inhibitors (gliptins): focus on drug-drug interactions.

    Science.gov (United States)

    Scheen, André J

    2010-09-01

    speaking, almost no drug-drug interactions or only minor drug-drug interactions have been reported between DPP-4 inhibitors and any of these drugs. The gliptins do not significantly modify the pharmacokinetic profile and exposure of the other tested drugs, and the other drugs do not significantly alter the pharmacokinetic profile of the gliptins or exposure to these. The only exception concerns saxagliptin, which is metabolized to an active metabolite by CYP3A4/5. Therefore, exposure to saxagliptin and its primary metabolite may be significantly modified when saxagliptin is coadministered with specific strong inhibitors (ketoconazole, diltiazem) or inducers (rifampicin) of CYP3A4/5 isoforms. The absence of significant drug-drug interactions could be explained by the favourable pharmacokinetic characteristics of DPP-4 inhibitors, which are not inducers or inhibitors of CYP isoforms and are not bound to plasma proteins to a great extent. Therefore, according to these pharmacokinetic findings, which were generally obtained in healthy young male subjects, no dosage adjustment is recommended when gliptins are combined with other pharmacological agents in patients with T2DM, with the exception of a reduction in the daily dosage of saxagliptin when this drug is used in association with a strong inhibitor of CYP3A4/A5. It is worth noting, however, that a reduction in the dose of sulfonylureas is usually recommended when a DPP-4 inhibitor is added, because of a pharmacodynamic interaction (rather than a pharmacokinetic interaction) between the sulfonylurea and the DPP-4 inhibitor, which may result in a higher risk of hypoglycaemia. Otherwise, any gliptin may be combined with metformin or a thiazolidinedione (pioglitazone, rosiglitazone), leading to a significant improvement in glycaemic control without an increased risk of hypoglycaemia or any other adverse event in patients with T2DM. Finally, the absence of drug-drug interactions in clinical trials in healthy subjects requires

  2. Diverse inhibitors of aflatoxin biosynthesis.

    Science.gov (United States)

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  3. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  4. The CYP2C8 inhibitor gemfibrozil does not affect the pharmacokinetics of zafirlukast

    OpenAIRE

    Karonen, Tiina; Neuvonen, Pertti J; Backman, Janne T.

    2010-01-01

    Abstract Purpose Gemfibrozil, a strong inhibitor of cytochrome P450 (CYP) 2C8 in vivo, was recently found to markedly increase the plasma concentrations of montelukast in humans. Like montelukast, zafirlukast is a substrate of CYP2C9 and CYP3A4 and a potent inhibitor of CYP2C8 in vitro. To investigate the contribution of CYP2C8 to the metabolism of zafirlukast in vivo, we studied the effect of gemfibrozil on the pharmacokinetics of zafirlukast. ...

  5. Di-, tri- and tetra-5'-O-phosphorothioadenosyl substituted polyols as inhibitors of Fhit: Importance of the α-β bridging oxygen and β phosphorus replacement

    Directory of Open Access Journals (Sweden)

    Stec Wojciech J

    2001-10-01

    Full Text Available Abstract Background The human FHIT gene is inactivated early in the development of many human cancers and loss of Fhit in mouse predisposes to cancer while reintroduction of FHIT suppresses tumor formation via induction of apoptosis. Fhit protein, a diadenosine polyphosphate hydrolase, does not require hydrolase activity to function in tumor suppression and may signal for apoptosis as an enzyme-substrate complex. Thus, high affinity nonhydrolyzable substrate analogs may either promote or antagonize Fhit function, depending on their features, in Fhit + cells. Previously synthesized analogs with phosphorothioadenosyl substitutions and "supercharged" branches do not bind better than natural substrates and thus have limited potential as cellular probes. Results Here we link adenosine 5'-O-phosphates and phosphorothioates to short-chain polyols to generate a series of substrate analogs. We obtain structure-activity data in the form of in vitro Fhit inhibition for four types of analog substitutions and describe two compounds, inhibitory constants for which are 65 and 75-fold lower than natural substrates. Conclusions The best Fhit inhibitors obtained to date separate two or more 5'-O-phosphoromonothioadenosyl moieties with as many bond lengths as in AppppA, maintain oxygen at the location of the α-β bridging oxygen, and replace carbon for the β phosphorus.

  6. Molecular Detection and Environment-Specific Diversity of Glycosyl Hydrolase Family 1 β-Glucosidase in Different Habitats

    Science.gov (United States)

    Tiwari, Rameshwar; Kumar, Kanika; Singh, Surender; Nain, Lata; Shukla, Pratyoosh

    2016-01-01

    β-glucosidase is a crucial element of the microbial cellulose multienzyme complex since it is responsible for the regulation of the entire cellulose hydrolysis process. Therefore, the aim of the present work was to explore the diversity and distribution of glycosyl hydrolase family 1 β-glucosidase genes in three different environmental niches including, Himalayan soil, cow dung and compost by metagenomic approach. Preliminary evaluation through metabolic profiling using BIOLOG based utilization patterns of carbon, nitrogen, phosphorus and sulfur revealed the environment and substrate specific nature of the indigenous microbial population. Furthermore, clonal library selection, screening and sequence analysis revealed that most of the GH1 β-glucosidase proteins had low identities with the available database. Analysis of the distribution of GH1 β-glucosidase gene fragments and β-glucosidase producing microbial community revealed the environment specific nature. The OTUs obtained from Himalayan soil and compost metagenomic libraries were grouped into 19 different genera comprising 6 groups. The cow dung sample displayed the least diversity of GH1 β-glucosidase sequences, with only 14 genera, distributed among three groups- Bacteroidetes, Firmicutes, and Actinobacteria. The metagenomic study coupled with metabolic profiling of GH1 β-glucosidase illustrated the existence of intricate relationship between the geochemical environmental factors and inherent microbial community.

  7. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  8. Characterization of multimetric variants of ubiquitin carboxyl-terminal hydrolase L1 in water by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Here, we illustrated that the morphological structures of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) variants and Parkinson's disease (PD) exhibit good pathological correlation by a small-angle neutron scattering (SANS). UCH-L1 is a neuro-specific multiple functional enzyme, deubiquitinating, ubiquityl ligase, and also involved in stabilization of mono-ubiquitin. To examine the relationship between multiple functions of UCH-L1 and the configuration of its variants [wild-type, I93M (linked to familial Parkinson's disease), and S18Y (linked to reduced risk of Parkinson's disease)], in this report, we proposed that these were all self-assembled dimers by an application of a rotating ellipsoidal model; the configurations of these dimers were quite different. The wild-type was a rotating ellipsoidal. The globular form of the monomeric component deformed by the I93M mutation. Conversely, the S18Y polymorphism promoted the globularity. Thus, the multiple functional balance is closely linked to the intermolecular interactions between the UCH-L1 monomer and the final dimeric configuration

  9. Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens

    Energy Technology Data Exchange (ETDEWEB)

    Ficko-Blean, Elizabeth; Boraston, Alisdair B., E-mail: boraston@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, British Columbia V8W 3P6 (Canada)

    2005-09-01

    Crystallization of a family 84 glycoside hydrolase, a putative virulence factor, secreted by C. perfringens is reported. Clostridium perfringens is a ubiquitous environmental organism that is capable of causing a variety of diseases in mammals, including gas gangrene and necrotic enteritis in humans. The activity of a secreted hyaluronidase, attributed to the NagH protein, contributes to the pathogenicity of this organism. The family 84 catalytic module of one of the three homologues of NagH found in C. perfringens (ATCC 13124) has been cloned. The 69 kDa catalytic module of NagJ, here called GH84C, was overproduced in Escherichia coli and purified by immobilized metal-affinity chromatography (IMAC). Crystals belonging to space group I222 or I2{sub 1}2{sub 1}2{sub 1} with unit-cell parameters a = 130.39, b = 150.05, c = 155.43 Å were obtained that diffracted to 2.1 Å. Selenomethionyl crystals have also been produced, leading to the possibility of solving the phase problem by MAD using synchrotron radiation.

  10. Point mutations in the murine fumarylacetoacetate hydrolase gene: Animalmodels for the human genetic disorder hereditary tyrosinemia type 1

    Energy Technology Data Exchange (ETDEWEB)

    Aponte, Jennifer [University of Tennessee, Knoxville (UTK); Sega, Gary A [ORNL; Hauser, Loren John [ORNL; Dhar, Madhu [University of Tennessee, Knoxville (UTK); Withrow, Catherine [ORNL; Carpenter, D A [ORNL; Rinchik, Eugene M. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Culiat, Cymbeline T [ORNL; Johnson, Dabney K [ORNL

    2001-01-01

    Hereditary tyrosinemia type 1 (HT1) is a severe autosomal recessive metabolic disease associated with point mutations in the human fumarylacetoacetate hydrolase (FAH) gene that disrupt tyrosine catabolism. An acute form of HT1 results in death during the first months of life because of hepatic failure, whereas a chronic form leads to gradual development of liver disease often accompanied by renal dysfunction, childhood rickets, neurological crisis, and hepatocellular carcinoma. Mice homozygous for certain chromosome 7 deletions of the albino Tyr; c locus that also include Fah die perinatally as a result of liver dysfunction and exhibit a complex syndrome characterized by structural abnormalities and alterations in gene expression in the liver and kidney. Here we report that two independent, postnatally lethal mutations induced by N-ethyl-N-nitrosourea and mapped near Tyr are alleles of Fah. The Fah6287SB allele is a missense mutation in exon 6, and Fah5961SB is a splice mutation causing loss of exon 7, a subsequent frameshift in the resulting mRNA, and a severe reduction of Fah mRNA levels. Increased levels of the diagnostic metabolite succinylacetone in the urine of the Fah6287SB and Fah5961SB mutants indicate that these mutations cause a decrease in Fah enzymatic activity. Thus, the neonatal phenotype present in both mutants is due to a deficiency in Fah caused by a point mutation, and we propose Fah5961SB and Fah6287SB as mouse models for acute and chronic forms of human HT1, respectively.

  11. Isolation and Characterization of a Glycosyl Hydrolase Family 16 β-Agarase from a Mangrove Soil Metagenomic Library.

    Science.gov (United States)

    Mai, Zhimao; Su, Hongfei; Zhang, Si

    2016-01-01

    A mangrove soil metagenomic library was constructed and a β-agarase gene designated as AgaML was isolated by functional screening. The gene encoded for a 659-amino-acids polypeptide with an estimated molecular mass of 71.6 kDa. The deduced polypeptide sequences of AgaML showed the highest identity of 73% with the glycoside hydrolase family 16 β-agarase from Microbulbifer agarilyticus in the GenBank database. AgaML was cloned and highly expressed in Escherichia coli BL21(DE3). The purified recombinant protein, AgaML, showed optimal activity at 50 °C and pH 7.0. The kinetic parameters of Km and Vmax values toward agarose were 4.6 mg·mL(-1) and 967.5 μM·min(-1)·mg(-1), respectively. AgaML hydrolyzed the β-1,4-glycosidic linkages of agar to generate neoagarotetraose (NA4) and neoagarohexaose (NA6) as the main products. These characteristics suggest that AgaML has potential application in cosmetic, pharmaceuticals and food industries. PMID:27548158

  12. Optical Detection of Paraoxon Using Single-Walled Carbon Nanotube Films with Attached Organophosphorus Hydrolase-Expressed Escherichia coli

    Directory of Open Access Journals (Sweden)

    Intae Kim

    2015-05-01

    Full Text Available In whole-cell based biosensors, spectrophotometry is one of the most commonly used methods for detecting organophosphates due to its simplicity and reliability. The sensor performance is directly affected by the cell immobilization method because it determines the amount of cells, the mass transfer rate, and the stability. In this study, we demonstrated that our previously-reported microbe immobilization method, a microbe-attached single-walled carbon nanotube film, can be applied to whole-cell-based organophosphate sensors. This method has many advantages over other whole-cell organophosphate sensors, including high specific activity, quick cell immobilization, and excellent stability. A device with circular electrodes was fabricated for an enlarged cell-immobilization area. Escherichia coli expressing organophosphorus hydrolase in the periplasmic space and single-walled carbon nanotubes were attached to the device by our method. Paraoxon was hydrolyzed using this device, and detected by measuring the concentration of the enzymatic reaction product, p-nitrophenol. The specific activity of our device was calculated, and was shown to be over 2.5 times that reported previously for other whole-cell organophosphate sensors. Thus, this method for generation of whole-cell-based OP biosensors might be optimal, as it overcomes many of the caveats that prevent the widespread use of other such devices.

  13. Kinetic Characterization of 100 Glycoside Hydrolase Mutants Enables the Discovery of Structural Features Correlated with Kinetic Constants.

    Directory of Open Access Journals (Sweden)

    Dylan Alexander Carlin

    Full Text Available The use of computational modeling algorithms to guide the design of novel enzyme catalysts is a rapidly growing field. Force-field based methods have now been used to engineer both enzyme specificity and activity. However, the proportion of designed mutants with the intended function is often less than ten percent. One potential reason for this is that current force-field based approaches are trained on indirect measures of function rather than direct correlation to experimentally-determined functional effects of mutations. We hypothesize that this is partially due to the lack of data sets for which a large panel of enzyme variants has been produced, purified, and kinetically characterized. Here we report the kcat and KM values of 100 purified mutants of a glycoside hydrolase enzyme. We demonstrate the utility of this data set by using machine learning to train a new algorithm that enables prediction of each kinetic parameter based on readily-modeled structural features. The generated dataset and analyses carried out in this study not only provide insight into how this enzyme functions, they also provide a clear path forward for the improvement of computational enzyme redesign algorithms.

  14. Isolation of Oxamyl-degrading Bacteria and Identification of cehA as a Novel Oxamyl Hydrolase Gene

    Science.gov (United States)

    Rousidou, Konstantina; Chanika, Eleni; Georgiadou, Dafne; Soueref, Eftychia; Katsarou, Demetra; Kolovos, Panagiotis; Ntougias, Spyridon; Tourna, Maria; Tzortzakakis, Emmanuel A.; Karpouzas, Dimitrios G.

    2016-01-01

    Microbial degradation is the main process controlling the environmental dissipation of the nematicide oxamyl. Despite that, little is known regarding the microorganisms involved in its biotransformation. We report the isolation of four oxamyl-degrading bacterial strains from an agricultural soil exhibiting enhanced biodegradation of oxamyl. Multilocus sequence analysis (MLSA) assigned the isolated bacteria to different subgroups of the genus Pseudomonas. The isolated bacteria hydrolyzed oxamyl to oxamyl oxime, which was not further transformed, and utilized methylamine as a C and N source. This was further supported by the detection of methylamine dehydrogenase in three of the four isolates. All oxamyl-degrading strains carried a gene highly homologous to a carbamate-hydrolase gene cehA previously identified in carbaryl- and carbofuran-degrading strains. Transcription analysis verified its direct involvement in the hydrolysis of oxamyl. Selected isolates exhibited relaxed degrading specificity and transformed all carbamates tested including the oximino carbamates aldicarb and methomyl (structurally related to oxamyl) and the aryl-methyl carbamates carbofuran and carbaryl which share with oxamyl only the carbamate moiety. PMID:27199945

  15. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting.

    Science.gov (United States)

    Wang, Mengfan; Lv, Yuqi; Liu, Xiaojing; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-06-01

    In this study, an artificial hydrolase was developed by combining the catalytic Ser/His/Asp triad with N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF), followed by coassembly of the peptides into nanofibers (CoA-HSD). The peptide-based nanofibers provide an ideal supramolecular framework to support the functional groups. Compared with the self-assembled catalytic nanofibers (SA-H), which contain only the catalytic histidine residue, the highest activity of CoA-HSD occurs when histidine, serine, and aspartate residues are at a ratio of 40:1:1. This indicates that the well-ordered nanofiber structure and the synergistic effects of serine and aspartate residues contribute to the enhancement in activity. Additionally, for the first time, molecular imprinting was applied to further enhance the activity of the peptide-based artificial enzyme (CoA-HSD). p-NPA was used as the molecular template to arrange the catalytic Ser/His/Asp triad residues in the proper orientation. As a result, the activity of imprinted coassembled CoA-HSD nanofibers is 7.86 times greater than that of nonimprinted CoA-HSD and 13.48 times that of SA-H. PMID:27191381

  16. Engineering of family-5 glycoside hydrolase (Cel5A from an uncultured bacterium for efficient hydrolysis of cellulosic substrates.

    Directory of Open Access Journals (Sweden)

    Amar A Telke

    Full Text Available Cel5A, an endoglucanase, was derived from the metagenomic library of vermicompost. The deduced amino acid sequence of Cel5A shows high sequence homology with family-5 glycoside hydrolases, which contain a single catalytic domain but no distinct cellulose-binding domain. Random mutagenesis and cellulose-binding module (CBM fusion approaches were successfully applied to obtain properties required for cellulose hydrolysis. After two rounds of error-prone PCR and screening of 3,000 mutants, amino acid substitutions were identified at various positions in thermotolerant mutants. The most heat-tolerant mutant, Cel5A_2R2, showed a 7-fold increase in thermostability. To enhance the affinity and hydrolytic activity of Cel5A on cellulose substrates, the family-6 CBM from Saccharophagus degradans was fused to the C-terminus of the Cel5A_2R2 mutant using overlap PCR. The Cel5A_2R2-CBM6 fusion protein showed 7-fold higher activity than the native Cel5A on Avicel and filter paper. Cellobiose was a major product obtained from the hydrolysis of cellulosic substrates by the fusion enzyme, which was identified by using thin layer chromatography analysis.

  17. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird’s-Nest Fern

    Science.gov (United States)

    Tsay, Tung-Tsuan; Tsai, Isheng J.; Chen, Peichen J.

    2016-01-01

    Five Aphelenchoides besseyi isolates collected from bird’s-nest ferns or rice possess different parasitic capacities in bird’s-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nematode monophyletic group that can be clearly distinguished from those of other eukaryotic and bacterial GH5 sequences with high bootstrap support values. The fern A. besseyi isolates were the first parasitic plant nematode found to possess both GH5 and GH45 genes. Surveying the genome of the five A. besseyi isolates by Southern blotting using an 834 bp probe targeting the GH5 domain suggests the presence of at least two copies in the fern-origin isolates but none in the rice-origin isolates. The in situ hybridization shows that the Abe GH5-1 gene is expressed in the nematode ovary and testis. Our study provides insights into the diversity of GH in isolates of plant parasitic nematodes of different host origins. PMID:27391812

  18. Engineering of Family-5 Glycoside Hydrolase (Cel5A) from an Uncultured Bacterium for Efficient Hydrolysis of Cellulosic Substrates

    Science.gov (United States)

    Telke, Amar A.; Zhuang, Ningning; Ghatge, Sunil S.; Lee, Sook-Hee; Ali Shah, Asad; Khan, Haji; Um, Youngsoon; Shin, Hyun-Dong; Chung, Young Ryun; Lee, Kon Ho; Kim, Seon-Won

    2013-01-01

    Cel5A, an endoglucanase, was derived from the metagenomic library of vermicompost. The deduced amino acid sequence of Cel5A shows high sequence homology with family-5 glycoside hydrolases, which contain a single catalytic domain but no distinct cellulose-binding domain. Random mutagenesis and cellulose-binding module (CBM) fusion approaches were successfully applied to obtain properties required for cellulose hydrolysis. After two rounds of error-prone PCR and screening of 3,000 mutants, amino acid substitutions were identified at various positions in thermotolerant mutants. The most heat-tolerant mutant, Cel5A_2R2, showed a 7-fold increase in thermostability. To enhance the affinity and hydrolytic activity of Cel5A on cellulose substrates, the family-6 CBM from Saccharophagus degradans was fused to the C-terminus of the Cel5A_2R2 mutant using overlap PCR. The Cel5A_2R2-CBM6 fusion protein showed 7-fold higher activity than the native Cel5A on Avicel and filter paper. Cellobiose was a major product obtained from the hydrolysis of cellulosic substrates by the fusion enzyme, which was identified by using thin layer chromatography analysis. PMID:23785445

  19. Structural and Functional Analyses of a Glycoside Hydrolase Family 5 Enzyme with an Unexpected [beta]-Fucosidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shosuke; Park, David S.; Bae, Brian; Mackie, Roderick; Cann, Isaac K.O.; Nair, Satish K. (UIUC)

    2012-02-15

    We present characterization of PbFucA, a family 5 glycoside hydrolase (GH5) from Prevotella bryantii B{sub 1}4. While GH5 members typically are xylanases, PbFucA shows no activity toward xylan polysaccharides. A screen against a panel of p-nitrophenol coupled sugars identifies PbFucA as a {beta}-D-fucosidase. We also present the 2.2 {angstrom} resolution structure of PbFucA and use structure-based mutational analysis to confirm the role of catalytically essential residues. A comparison of the active sites of PbFucA with those of family 5 and 51 glycosidases reveals that while the essential catalytic framework is identical between these enzymes, the steric contours of the respective active site clefts are distinct and likely account for substrate discrimination. Our results show that members of this cluster of orthologous group (COG) 5520 have {beta}-D-fucosidase activities, despite showing an overall sequence and structural similarity to GH-5 xylanases.

  20. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    Science.gov (United States)

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications.

  1. Isolation and Characterization of a Glycosyl Hydrolase Family 16 β-Agarase from a Mangrove Soil Metagenomic Library

    Science.gov (United States)

    Mai, Zhimao; Su, Hongfei; Zhang, Si

    2016-01-01

    A mangrove soil metagenomic library was constructed and a β-agarase gene designated as AgaML was isolated by functional screening. The gene encoded for a 659-amino-acids polypeptide with an estimated molecular mass of 71.6 kDa. The deduced polypeptide sequences of AgaML showed the highest identity of 73% with the glycoside hydrolase family 16 β-agarase from Microbulbifer agarilyticus in the GenBank database. AgaML was cloned and highly expressed in Escherichia coli BL21(DE3). The purified recombinant protein, AgaML, showed optimal activity at 50 °C and pH 7.0. The kinetic parameters of Km and Vmax values toward agarose were 4.6 mg·mL−1 and 967.5 μM·min−1·mg−1, respectively. AgaML hydrolyzed the β-1,4-glycosidic linkages of agar to generate neoagarotetraose (NA4) and neoagarohexaose (NA6) as the main products. These characteristics suggest that AgaML has potential application in cosmetic, pharmaceuticals and food industries. PMID:27548158

  2. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    Directory of Open Access Journals (Sweden)

    K Yaragudri Vinod

    Full Text Available BACKGROUND: While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. METHODOLOGY/PRINCIPAL FINDINGS: The role of the endocannabinoid (eCB system in depressive behavior was examined in Wistar Kyoto (WKY rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD. Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. CONCLUSIONS/SIGNIFICANCE: These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  3. Oral vaccination of mice with Trichinella spiralis nudix hydrolase DNA vaccine delivered by attenuated Salmonella elicited protective immunity.

    Science.gov (United States)

    Liu, Pei; Wang, Zhong Quan; Liu, Ruo Dan; Jiang, Peng; Long, Shao Rong; Liu, Li Na; Zhang, Xin Zhuo; Cheng, Xiang Chao; Yu, Chuan; Ren, Hui Jun; Cui, Jing

    2015-06-01

    We have previously reported that Trichinella spiralis Nudix hydrolase (TsNd) bound to intestinal epithelial cells (IECs), and the vaccination of mice with recombinant TsNd protein (rTsNd) produced a partial protective immunity against challenge infection in mice. In this study, the full-length cDNA sequence of TsNd gene was cloned into the eukaryotic expression plasmid pcDNA3.1, and the recombinant TsNd DNA was transformed into attenuated Salmonella typhimurium strain ⊿cyaSL1344. Oral immunization of mice with TsNd/S. typhimurium elicited a significant local mucosal IgA response and a systemic Th1/Th2 immune response. Cytokine profiling also showed a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, 10) responses in splenocytes of immunized mice upon stimulation with the rTsNd. The oral immunization of mice with TsNd/S. typhimurium displayed a statistically significant 73.32% reduction in adult worm burden and a 49.5% reduction in muscle larvae after challenge with T. spiralis muscle larvae, compared with PBS control group. Our results demonstrated that TsNd DNA delivered by attenuated live S. typhimurium elicited a local IgA response and a mixed Th1/Th2 immune response, and produced a partial protection against T. spiralis infection in mice. PMID:25733024

  4. Application of the Kombucha 'tea fungus' for the enhancement of antioxidant and starch hydrolase inhibitory properties of ten herbal teas.

    Science.gov (United States)

    Watawana, Mindani I; Jayawardena, Nilakshi; Choo, Candy; Waisundara, Viduranga Y

    2016-03-01

    Ten herbal teas (Acacia arabica, Aegle marmelos flower, A. marmelos root bark, Aerva lanata, Asteracantha longifolia, Cassia auriculata, Hemidesmus indicus, Hordeum vulgare, Phyllanthus emblica, Tinospora cordifolia) were fermented with the Kombucha 'tea fungus'. The pH values of the fermented beverages ranged from 4.0 to 6.0 by day 7, while the titratable acidity ranged from 2.5 to 5.0g/mL (P<0.05). Gallic acid had statistically significantly increased (P<0.05) in almost all the samples by day 7. The Oxygen radical absorbance capacity assay indicated 5 of the Kombucha beverages to have statistically significant increases (P<0.05) by day 7. The α-amylase inhibitory activities ranged from 52.5 to 67.2μg/mL in terms of IC50 values following fermentation, while the α-glucosidase inhibitory activities ranged from 95.2 to 196.1μg/mL. In conclusion, an enhancement of the antioxidant and starch hydrolase inhibitory potential of the herbal teas was observed by adding the tea fungus. PMID:26471559

  5. Crystallization and preliminary X-ray analysis of a family 19 glycosyl hydrolase from Carica papaya latex

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Joëlle, E-mail: jhuet@ulb.ac.be [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Azarkan, Mohamed [Laboratoire de Chimie Générale (CP 609), Faculté de Médecine, Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, B-1070 Bruxelles (Belgium); Looze, Yvan [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Villeret, Vincent [CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille 1-Université de Lille 2-Institut Pasteur de Lille, IFR142, 1 Rue du Professeur Calmette, F-59021 Lille (France); Wintjens, René, E-mail: jhuet@ulb.ac.be [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium)

    2008-05-01

    A chitinase isolated from the latex of the tropical species Carica papaya has been crystallized. The addition of N-acetyl-d-glucosamine to the crystallization solution has improved the diffraction quality resolution of the crystal to 1.8 Å resolution. A chitinase isolated from the latex of the tropical species Carica papaya has been purified to homogeneity and crystallized. This enzyme belongs to glycosyl hydrolase family 19 and exhibits exceptional resistance to proteolysis. The initially observed crystals, which diffracted to a resolution of 2.0 Å, were improved through modification of the crystallization protocol. Well ordered crystals were subsequently obtained using N-acetyl-d-glucosamine, the monomer resulting from the hydrolysis of chitin, as an additive to the crystallization solution. Here, the characterization of a chitinase crystal that belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 69.08, b = 44.79, c = 76.73 Å, β = 95.33° and two molecules per asymmetric unit, is reported. Diffraction data were collected to a resolution of 1.8 Å. Structure refinement is currently in progress.

  6. Isolation of oxamyl-degrading bacteria and identification of cehA as a novel oxamyl hydrolase gene

    Directory of Open Access Journals (Sweden)

    Konstantina eRousidou

    2016-04-01

    Full Text Available Microbial degradation is the main process controlling the environmental dissipation of the nematicide oxamyl. Despite that, little is known regarding the microorganisms involved in its biotransformation. We report the isolation of four oxamyl-degrading bacterial strains from an agricultural soil exhibiting enhanced biodegradation of oxamyl. Multilocus sequence analysis (MLSA assigned the isolated bacteria to different subgroups of the genus Pseudomonas. The isolated bacteria hydrolyzed oxamyl to oxamyl oxime, which was not further transformed, and utilized methylamine as a C and N source. This was further supported by the detection of methylamine dehydrogenase in three of the four isolates. All oxamyl-degrading strains carried a gene highly homologous to a carbamate-hydrolase gene cehA previously identified in carbaryl- and carbofuran-degrading strains. Transcription analysis verified its direct involvement in the hydrolysis of oxamyl. Selected isolates exhibited relaxed degrading specificity and transformed all carbamates tested including the oximino carbamates aldicarb and methomyl (structurally related to oxamyl and the aryl-methyl carbamates carbofuran and carbaryl which share with oxamyl only the carbamate moiety

  7. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird's-Nest Fern.

    Science.gov (United States)

    Wu, Guan-Long; Kuo, Tzu-Hao; Tsay, Tung-Tsuan; Tsai, Isheng J; Chen, Peichen J

    2016-01-01

    Five Aphelenchoides besseyi isolates collected from bird's-nest ferns or rice possess different parasitic capacities in bird's-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nematode monophyletic group that can be clearly distinguished from those of other eukaryotic and bacterial GH5 sequences with high bootstrap support values. The fern A. besseyi isolates were the first parasitic plant nematode found to possess both GH5 and GH45 genes. Surveying the genome of the five A. besseyi isolates by Southern blotting using an 834 bp probe targeting the GH5 domain suggests the presence of at least two copies in the fern-origin isolates but none in the rice-origin isolates. The in situ hybridization shows that the Abe GH5-1 gene is expressed in the nematode ovary and testis. Our study provides insights into the diversity of GH in isolates of plant parasitic nematodes of different host origins. PMID:27391812

  8. Identification, Characterization, and Immobilization of an Organic Solvent-Stable Alkaline Hydrolase (PA27 from Pseudomonas aeruginosa MH38

    Directory of Open Access Journals (Sweden)

    Eunjin Jang

    2014-09-01

    Full Text Available An organic solvent-stable alkaline hydrolase (PA27 from Pseudomonas aeruginosa MH38 was expressed, characterized, and immobilized for biotechnological applications. Recombinant PA27 was expressed in Escherichia coli as a 27 kDa soluble protein and was purified by standard procedures. PA27 was found to be stable at pH 8–11 and below 50 °C. It maintained more than 80% of its activity under alkaline conditions (pH 8.0–11.0. Furthermore, PA27 exhibited remarkable stability in benzene and n-hexane at concentrations of 30% and 50%. Based on these properties, immobilization of PA27 for biotechnological applications was explored. Scanning electron microscopy revealed a very smooth spherical structure with numerous large pores. Interestingly, immobilized PA27 displayed improved thermal/chemical stabilities and high reusability. Specifically, immobilized PA27 has improved thermal stability, maintaining over 90% of initial activity after 1 h of incubation at 80 °C, whereas free PA27 had only 35% residual activity. Furthermore, immobilized PA27 showed higher residual activity than the free enzyme biocatalysts against detergents, urea, and phenol. Immobilized PA27 could be recycled 20 times with retention of ~60% of its initial activity. Furthermore, macroscopic hydrogel formation of PA27 was also investigated. These characteristics make PA27 a great candidate for an industrial biocatalyst with potential applications.

  9. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    Science.gov (United States)

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst. PMID:27402448

  10. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol-An endocrine disruptor compound

    International Nuclear Information System (INIS)

    Cytochrome P450-3A4 (CYP3A4) is a monooxygenase enzyme that plays a major role in the detoxification of bioactive compounds and hydrophobic xenobiotics (e.g. medicines, drugs, environmental pollutants, food supplements and steroids). Physiologically the monooxygenation reactions of this class II, microsomal, b-type heme enzyme, usually requires cytochrome P450 reductase, NADPH. A novel CYP3A4 biosensor system that essentially simplified the enzymatic redox processes by allowing electron transfer between the electrode and the enzyme redox centre to occur, without any need for the physiological redox partners, was developed for the detection of 2,4-dichlorophenol (2,4-DCP), a priority environmental pollutant and an endocrine disruptor. The biosensor, GC/Naf-Co(Sep)3+/CYP3A4/Naf, was constructed by encapsulating CYP3A4 in a Nafion-cobalt (III) sepulchrate (Naf-Co(Sep)3+) composite film on a glassy carbon (GC) electrode. The responses of the biosensor to 2,4-dichlorophenol, erythromycin (CYP3A4 native substrate) and ketoconazole (CYP 3A4 natural inhibitor) were studied by cyclic and square wave voltammetric techniques. The detection limit (DL) of the biosensor for 2,4-dichlorophenol was 0.043 μg L-1, which is by an order of magnitude lower than the EU limit (0.3 μg L-1) for any pesticide compound in ground water. The biosensor's DL is lower than the U.S. Environmental Protection Agency's drinking water equivalent level (DWEL) value for 2,4-DCP, which is 2 μg L-1

  11. Cadmium absorption inhibitors for soil

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, S.

    1974-05-25

    Cadmium absorption by soil is one cause of soil pollution. Cadmium adsorption inhibitors were prepared by mixing alginic acid which contained brown algae (Ascophyllum nodosum) and an inorganic material, shell fossils. This mixture was highly effective in preventing cadmium absorption by the soil.

  12. Renal targeting of kinase inhibitors

    NARCIS (Netherlands)

    Dolman, M. E. M.; Fretz, M. M.; Segers, Gj. W.; Lacombe, M.; Prakash, J.; Storm, G.; Hennink, W. E.; Kok, R. J.

    2008-01-01

    Activation of proximal tubular cells by fibrotic and inflammatory mediators is an important hallmark of chronic kidney disease. We have developed a novel strategy to intervene in renal fibrosis, by means of locally delivered kinase inhibitors. Such compounds will display enhanced activity within tub

  13. Proton pump inhibitors and gastroenteritis

    NARCIS (Netherlands)

    R.J. Hassing (Robert); A. Verbon (Annelies); H. de Visser (Herman); A. Hofman (Albert); B.H.Ch. Stricker (Bruno)

    2016-01-01

    textabstractAn association between proton pump inhibitor (PPI) therapy and bacterial gastroenteritis has been suggested as well as contradicted. The aim of this study was to examine the association between the use of PPIs and occurrence of bacterial gastroenteritis in the prospective Rotterdam Study

  14. Biocatalysts with enhanced inhibitor tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  15. Radiosynthesis and ex vivo evaluation of [11C-carbonyl]carbamate- and urea-based monoacylglycerol lipase inhibitors

    International Nuclear Information System (INIS)

    Introduction: Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are the two primary enzymes that regulate the tone of endocannabinoid signaling. Although new PET radiotracers have been discovered for imaging FAAH in vivo, no such radiotracer exists for imaging MAGL. Here we report the radiosynthesis of five candidate MAGL radiotracers and their ex vivo evaluations in mice and rats. Methods: Candidate carbamate and urea MAGL inhibitors were radiolabeled at the carbonyl position by [11C]CO2 fixation. Radiotracers were administered (tail-vein injection) to rodents and brain uptake of radioactivity measured at early and late time points ex vivo. Specificity of uptake was explored by pretreatment with unlabeled inhibitors (2 mg/kg, ip) 30 min prior to radiotracer administration. Results: All five candidate MAGL radiotracers were prepared in high specific activity (> 65 GBq/μmol) and radiochemical purity (> 98%). Moderate brain uptake (0.2–0.8 SUV) was observed for each candidate while pretreatment did not reduce uptake for four of the five tested. For two candidates ([11C]12 and [11C]14), high retention of radioactivity was observed in the blood (ca. 10 and 4 SUV at 40 min) which was blocked by pretreatment with unlabeled inhibitors. The most promising candidate, [11C]18, demonstrated moderate brain uptake (ca. 0.8 SUV) which showed circa 50% blockade by pretreatment with unlabeled 18. Conclusion: One putative and four reported potent and selective MAGL inhibitors have been radiolabeled via [11C]CO2 fixation as radiotracers for this enzyme. Despite the promising in vitro pharmacological profile, none of the five candidate radiotracers exhibited in vivo behavior suitable for PET neuroimaging

  16. Lipoxygenase inhibitor peptides and their use

    OpenAIRE

    Schurink, M.; Boeriu, C.G.; Berkel, van, A.M.; Wichers, H J

    2006-01-01

    The present invention is in the field of enzyme inhibition. In particular it relates to peptide inhibitors for lipoxygenases. The lipoxygenase peptide inhibitors of have the potential to be used as therapeutic drugs as well as food preservatives.

  17. Elevation of S100A4 expression in buccal mucosal fibroblasts by arecoline: involvement in the pathogenesis of oral submucous fibrosis.

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Yu

    Full Text Available BACKGROUND: S100A4, a member of the calcium-binding proteins, is dramatically elevated in a variety of fibrotic diseases. Areca quid chewing is the most important etiological factor in the pathogenesis of oral submucous fibrosis (OSF. OSF has been considered as a pre-cancerous condition of oral mucosa. The aim of this study was to determine the critical role of S100A4 expression in the pathogenesis of OSF both in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDING: Thirty OSF tissues from areca quid chewers and ten normal buccal mucosa samples without areca quid chewing were analyzed by using immunohistochemistry for S100A4 expression in vivo. Collagen gel contraction capability and expression of tissue inhibitor of metalloproteinases 1 (TIMP1/MMP9 in arecoline-stimulated BMFs with S100A4 knockdown was presented in vitro. Initially, S100A4 expression was higher in areca quid chewing-associated OSF specimens than normal buccal mucosa specimens (p = 0.001. Arecoline, a major areca nut alkaloid, led to dose- and time-dependent elevation of S100A4 expression in normal buccal mucosa fibroblasts BMFs (p<0.05. The additions of pharmacological agents rapamycin (mTOR inhibitor, PD98059 (ERK inhibitor, and Bay117082 (NF-κB inhibitor were found to inhibit arecoline-induced S100A4 expression (p<0.05 in BMFs. Down-regulation of S100A4 by lentiviral infection significantly reversed arecoline-induced collagen gel contraction and TIMP1/MMP9 expression. CONCLUSION/SIGNIFICANCE: These results suggest that S100A4 expression is significantly up-regulated in OSF specimens. Arecoline-induced S100A4 expression was down-regulated by rapamycin, PD98059, and Bay117082. Targeting S100A4 might be a potential therapeutic target for OSF through TIMP1/MMP9 down-regulation.

  18. FAAH inhibitor OL-135 disrupts contextual, but not auditory, fear conditioning in rats.

    Science.gov (United States)

    Burman, Michael A; Szolusha, Kerribeth; Bind, Rebecca; Kerney, Kristen; Boger, Dale L; Bilsky, Edward J

    2016-07-15

    Anxiety disorders are among the most prevalent psychological disorders, have significant negative impacts on quality of life and the healthcare system, and yet effective treatments remain elusive. Manipulating the endocannabinoid system has demonstrated potential for treating anxiety, although the side effects of direct manipulations of cannabinoid receptors keeps them from widespread clinical use. Disrupting the degradation enzyme fatty acid amide hydrolase (FAAH) enhances endogenous signaling and may produce similar efficacy without the side effects. The current experiments examine the effects of low (5.6mg/kg) or moderate (10.0mg/kg) doses of OL-135, a FAAH inhibitor, on the acquisition and consolidation of classical fear conditioning, a common model of trauma-induced anxiety. The acquisition of contextual, but not auditory, fear conditioning was disrupted by both doses of OL-135. Shock reactivity was not affected. Due to the additional neural circuitry required for contextual, but not auditory, fear conditioning, these data suggest that endocannabinoid signaling outside the amygdala may be critical for a subset of fearful memories.

  19. FAAH inhibitor OL-135 disrupts contextual, but not auditory, fear conditioning in rats.

    Science.gov (United States)

    Burman, Michael A; Szolusha, Kerribeth; Bind, Rebecca; Kerney, Kristen; Boger, Dale L; Bilsky, Edward J

    2016-07-15

    Anxiety disorders are among the most prevalent psychological disorders, have significant negative impacts on quality of life and the healthcare system, and yet effective treatments remain elusive. Manipulating the endocannabinoid system has demonstrated potential for treating anxiety, although the side effects of direct manipulations of cannabinoid receptors keeps them from widespread clinical use. Disrupting the degradation enzyme fatty acid amide hydrolase (FAAH) enhances endogenous signaling and may produce similar efficacy without the side effects. The current experiments examine the effects of low (5.6mg/kg) or moderate (10.0mg/kg) doses of OL-135, a FAAH inhibitor, on the acquisition and consolidation of classical fear conditioning, a common model of trauma-induced anxiety. The acquisition of contextual, but not auditory, fear conditioning was disrupted by both doses of OL-135. Shock reactivity was not affected. Due to the additional neural circuitry required for contextual, but not auditory, fear conditioning, these data suggest that endocannabinoid signaling outside the amygdala may be critical for a subset of fearful memories. PMID:27083303

  20. Predictive model for epoxide hydrolase-generated stereochemistry in the biosynthesis of nine-membered enediyne antitumor antibiotics.

    Science.gov (United States)

    Horsman, Geoffrey P; Lechner, Anna; Ohnishi, Yasuo; Moore, Bradley S; Shen, Ben

    2013-08-01

    Nine-membered enediyne antitumor antibiotics C-1027, neocarzinostatin (NCS), and kedarcidin (KED) possess enediyne cores to which activity-modulating peripheral moieties are attached via (R)- or (S)-vicinal diols. We have previously shown that this stereochemical difference arises from hydrolysis of epoxide precursors by epoxide hydrolases (EHs) with different regioselectivities. The inverting EHs, such as SgcF, hydrolyze an (S)-epoxide substrate to yield an (R)-diol in C-1027 biosynthesis, whereas the retaining EHs, such as NcsF2 and KedF, hydrolyze an (S)-epoxide substrate to yield an (S)-diol in NCS and KED biosynthesis. We now report the characterization of a series of EH mutants and provide a predictive model for EH regioselectivity in the biosynthesis of the nine-membered enediyne antitumor antibiotics. A W236Y mutation in SgcF increased the retaining activity toward (S)-styrene oxide by 3-fold, and a W236Y/Q237M double mutation in SgcF, mimicking NcsF2 and KedF, resulted in a 20-fold increase in the retaining activity. To test the predictive utility of these mutations, two putative enediyne biosynthesis-associated EHs were identified by genome mining and confirmed as inverting enzymes, SpoF from Salinospora tropica CNB-440 and SgrF (SGR_625) from Streptomyces griseus IFO 13350. Finally, phylogenetic analysis of EHs revealed a familial classification according to inverting versus retaining activity. Taken together, these results provide a predictive model for vicinal diol stereochemistry in enediyne biosynthesis and set the stage for further elucidating the origins of EH regioselectivity. PMID:23844627

  1. A predictive model for epoxide hydrolase-generated stereochemistry in the biosynthesis of 9-membered enediyne antitumor antibiotics

    Science.gov (United States)

    Horsman, Geoffrey P.; Lechner, Anna; Ohnishi, Yasuo; Moore, Bradley S.; Shen, Ben

    2013-01-01

    Nine-membered enediyne antitumor antibiotics C-1027, neocarzinostatin (NCS), and kedarcidin (KED) possess enediyne cores to which activity-modulating peripheral moieties are attached via (R)- or (S)-vicinal diols. We have previously shown that this stereochemical difference arises from hydrolysis of epoxide precursors by epoxide hydrolases (EHs) with different regioselectivities – the “inverting” EH, such as SgcF, hydrolyzes an (S)-epoxide substrate to yield an (R)-diol in C-1027 biosynthesis, while the “retaining” EHs, such as NcsF2 and KedF, hydrolyze an (S)-epoxide substrate to yield an (S)-diol in NCS and KED biosynthesis. We now report the characterization of a series of EH mutants and provide a predictive model for EH regioselectivity in the biosynthesis of the 9-membered enediyne antitumor antibiotics. A W236Y mutation in SgcF increased the retaining activity towards (S)-styrene oxide 3-fold, and a W236Y/Q237M double mutation in SgcF, mimicking NcsF2 and KedF, resulted in a 20-fold increase in the retaining activity. To test the predictive utility of these mutations, two putative enediyne biosynthesis-associated EHs were identified by genome mining and confirmed as inverting enzymes – SpoF from Salinospora tropica CNB-440 and SgrF (SGR_625) from Streptomyces griseus IFO 13350. Finally, phylogenetic analysis of EHs revealed a familial classification according to inverting versus retaining activity. Taken together, these results provide a predictive model for the vicinal diol stereochemistry in enediyne biosynthesis and set the stage for further elucidating the origins of EH regioselectivity. PMID:23844627

  2. Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases.

    Science.gov (United States)

    Bu, Lintao; Crowley, Michael F; Himmel, Michael E; Beckham, Gregg T

    2013-04-26

    Cellulase enzymes cleave glycosidic bonds in cellulose to produce cellobiose via either retaining or inverting hydrolysis mechanisms, which are significantly pH-dependent. Many fungal cellulases function optimally at pH ~5, and their activities decrease dramatically at higher or lower pH. To understand the molecular-level implications of pH in cellulase structure, we use a hybrid, solvent-based, constant pH molecular dynamics method combined with pH-based replica exchange to determine the pK(a) values of titratable residues of a glycoside hydrolase (GH) family 6 cellobiohydrolase (Cel6A) and a GH family 7 cellobiohydrolase (Cel7A) from the fungus Hypocrea jecorina. For both enzymes, we demonstrate that a bound substrate significantly affects the pKa values of the acid residues at the catalytic center. The calculated pK(a) values of catalytic residues confirm their proposed roles from structural studies and are consistent with the experimentally measured apparent pKa values. Additionally, GHs are known to impart a strained pucker conformation in carbohydrate substrates in active sites for catalysis, and results from free energy calculations combined with constant pH molecular dynamics suggest that the correct ring pucker is stable near the optimal pH for both Cel6A and Cel7A. Much longer molecular dynamics simulations of Cel6A and Cel7A with fixed protonation states based on the calculated pK(a) values suggest that pH affects the flexibility of tunnel loops, which likely affects processivity and substrate complexation. Taken together, this work demonstrates several molecular-level effects of pH on GH enzymes important for cellulose turnover in the biosphere and relevant to biomass conversion processes. PMID:23504310

  3. InvA protein is a Nudix hydrolase required for infection by pathogenic Leptospira in cell lines and animals.

    Science.gov (United States)

    Luo, Yihui; Liu, Yan; Sun, Dexter; Ojcius, David M; Zhao, Jinfang; Lin, Xuai; Wu, Dong; Zhang, Rongguang; Chen, Ming; Li, Lanjuan; Yan, Jie

    2011-10-21

    Leptospirosis caused by pathogenic species of the genus Leptospira is a re-emerging zoonotic disease, which affects a wide variety of host species and is transmitted by contaminated water. The genomes of several pathogenic Leptospira species contain a gene named invA, which contains a Nudix domain. However, the function of this gene has never been characterized. Here, we demonstrated that the invA gene was highly conserved in protein sequence and present in all tested pathogenic Leptospira species. The recombinant InvA protein of pathogenic L. interrogans strain Lai hydrolyzed several specific dinucleoside oligophosphate substrates, reflecting the enzymatic activity of Nudix in Leptospira species. Pathogenic leptospires did not express this protein in media but temporarily expressed it at early stages (within 60 min) of infection of macrophages and nephric epithelial cells. Comparing with the wild type, the invA-deficient mutant displayed much lower infectivity and a significantly reduced survival rate in macrophages and nephric epithelial cells. Moreover, the invA-deficient leptospires presented an attenuated virulence in hamsters, caused mild histopathological damage, and were transmitted in lower numbers in the urine, compared with the wild-type strain. The invA revertant, made by complementing the invA-deficient mutant with the invA gene, reacquired virulence similar to the wild type in vitro and in vivo. The LD(50) in hamsters was 1000-fold higher for the invA-deficient mutant than for the invA revertant and wild type. These results demonstrate that the InvA protein is a Nudix hydrolase, and the invA gene is essential for virulence in pathogenic Leptospira species.

  4. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene

    Directory of Open Access Journals (Sweden)

    Gong Xia

    2012-10-01

    Full Text Available Abstract Background Interest in cellulose degrading enzymes has increased in recent years due to the expansion of the cellulosic biofuel industry. The rumen is a highly adapted environment for the degradation of cellulose and a promising source of enzymes for industrial use. To identify cellulase enzymes that may be of such use we have undertaken a functional metagenomic screen to identify cellulase enzymes from the bacterial community in the rumen of a grass-hay fed dairy cow. Results Twenty five clones specifying cellulose activity were identified. Subcloning and sequence analysis of a subset of these hydrolase-positive clones identified 10 endoglucanase genes. Preliminary characterization of the encoded cellulases was carried out using crude extracts of each of the subclones. Zymogram analysis using carboxymethylcellulose as a substrate showed a single positive band for each subclone, confirming that only one functional cellulase gene was present in each. One cellulase gene, designated Cel14b22, was expressed at a high level in Escherichia coli and purified for further characterization. The purified recombinant enzyme showed optimal activity at pH 6.0 and 50°C. It was stable over a broad pH range, from pH 4.0 to 10.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by Fe3+ or Cu2+. The enzyme hydrolyzed a wide range of beta-1,3-, and beta-1,4-linked polysaccharides, with varying activities. Activities toward microcrystalline cellulose and filter paper were relatively high, while the highest activity was toward Oat Gum. Conclusion The present study shows that a functional metagenomic approach can be used to isolate previously uncharacterized cellulases from the rumen environment.

  5. The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi [Marquette Univ., Milwaukee, WI (United States); Maurice, Martin [Marquette Univ., Milwaukee, WI (United States)

    2013-01-02

    Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH3 and CO2. AH belongs to the amidase signature family, which is characterized by a conserved block of 130 amino acids rich in Gly and Ser and a Ser-cis-Ser-Lys catalytic triad. In this study, the first structures of AH fromGranulibacter bethesdensis were determined, with and without the substrate analogue malonate, to 2.2 and 2.8 Å, respectively. The structures confirm the identity of the catalytic triad residues and reveal an altered dimerization interface that is not conserved in the amidase signature family. The structures also provide insights into previously unrecognized substrate specificity determinants in AH. Two residues, Tyr299 and Arg307, are within hydrogen bonding distance of a carboxylate moiety of malonate. Both Tyr299 and Arg307 were mutated, and the resulting modified enzymes revealed >3 order of magnitude reductions in both catalytic efficiency and substrate stringency. It is proposed that Tyr299 and Arg307 serve to anchor and orient the substrate for attack by the catalytic nucleophile, Ser172. The structure further suggests the presence of a unique C-terminal domain in AH. While this domain is conserved, it does not contribute to catalysis or to the structural integrity of the core domain, suggesting that it may play a role in mediating transient and specific interactions with the urea carboxylase component of urea amidolyase. Analysis of the AH active site architecture offers new insights into common determinants of catalysis and specificity among divergent members of the amidase signature family.

  6. IS30-related transposon mediated insertional inactivation of bile salt hydrolase (bsh1) gene of Lactobacillus plantarum strain Lp20.

    Science.gov (United States)

    Kumar, Rajesh; Grover, Sunita; Kaushik, Jai K; Batish, Virender Kumar

    2014-01-01

    Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system.

  7. Structural and dynamic evolution of the amphipathic N-terminus diversifies enzyme thermostability in the glycoside hydrolase family 12.

    Science.gov (United States)

    Jiang, Xukai; Chen, Guanjun; Wang, Lushan

    2016-08-21

    Understanding the molecular mechanism underlying protein thermostability is central to the process of efficiently engineering thermostable cellulases, which can provide potential advantages in accelerating the conversion of biomass into clean biofuels. Here, we explored the general factors that diversify enzyme thermostability in the glycoside hydrolase family 12 (GH12) using comparative molecular dynamics (MD) simulations coupled to a bioinformatics approach. The results indicated that protein stability is not equally distributed over the whole structure: the N-terminus is the most thermal-sensitive region of the enzymes with a β-sandwich architecture and it tends to lose its secondary structure during the course of protein unfolding. Furthermore, we found that the total interaction energy within the N-terminus is appreciably correlated with enzyme thermostability. Interestingly, the internal interactions within the N-terminus are organized in a special amphipathic pattern in which a hydrophobic packing cluster and a hydrogen bonding cluster lie at the two ends of the N-terminus. Finally, bioinformatics analysis demonstrated that the amphipathic pattern is highly conserved in GH12 and besides that, the evolution of the amino acids in the N-terminal region is an inherent mechanism underlying the diversity of enzyme thermostability. Taken together, our results demonstrate that the N-terminus is generally the structure that determines enzyme thermostability in GH12, and thereby it is also an ideal engineering target. The dynameomics study of a protein family can give a general view of protein functions, which will offer a wide range of applications in future protein engineering. PMID:27425569

  8. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan (Purdue)

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  9. The siRNA-mediated silencing of Trichinella spiralis nudix hydrolase results in reduction of larval infectivity.

    Science.gov (United States)

    Wang, Zhong Quan; Zhang, Shuai Bing; Jiang, Peng; Liu, Ruo Dan; Long, Shao Rong; Zhang, Xi; Ren, Hui Jun; Cui, Jing

    2015-09-01

    Previous studies showed that Trichinella spiralis Nudix hydrolase (TsNd) bound to intestinal epithelial cells (IECs), and vaccination of mice with rTsNd or TsNd DNA produced a partial protective immunity against T. spiralis infection. In this study, three TsNd specific small interfering RNA (siRNA) were designed to silence the expression of TsNd in T. spiralis larvae. SiRNAs were delivered to the larvae by electroporation. Silencing effect of TsNd transcription and expression was determined by real-time PCR and Western blotting, respectively. The infectivity of the larvae treated with siRNA was investigated by the in vitro larval invasion of IECs and experimental infection in mice. The results showed that siRNAs were efficiently delivered into T. spiralis larvae through electroporation. Real-time PCR and Western blotting showed that transcription and expression level of TsNd gene was inhibited 73.3 and 76.7 %, respectively, after being electroporated with 2 μM of siRNA-275 for 1 day. Silencing TsNd expression inhibited significantly the larval invasion of IECs (P < 0.01) and was in a dose-dependent manner (r = -0.97941). The mice with infected larvae treated with TsNd siRNA displayed a 63.6 % reduction in intestinal adult worms and 68.8 % reduction in muscle larval burden compared with mice infected with control siRNA-treated larvae. Our results showed that silencing TsNd expression in T. spiralis significantly reduced the larval infectivity and survival in host. PMID:26231837

  10. DsRNA-mediated silencing of Nudix hydrolase in Trichinella spiralis inhibits the larval invasion and survival in mice.

    Science.gov (United States)

    Zhang, Shuai Bing; Jiang, Peng; Wang, Zhong Quan; Long, Shao Rong; Liu, Ruo Dan; Zhang, Xi; Yang, Wei; Ren, Hui Jun; Cui, Jing

    2016-03-01

    The aim of this study was to investigate the functions of Trichinella spiralis Nudix hydrolase (TsNd) during the larval invasion of intestinal epithelial cells (IECs), development and survival in host by RNAi. The TsNd-specific double-stranded RNA (dsRNA) was designed to silence the expression of TsNd in T. spiralis larvae. DsRNA were delivered to the larvae by soaking incubation or electroporation. Silencing effect of TsNd transcription and expression was determined by real-time PCR and Western blotting, respectively. The infectivity of larvae treated with dsRNA was investigated by the in vitro larval invasion of IECs and experimental infection in mice. After being soaked with 40 ng/μl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 65.8% and 56.4%, respectively. After being electroporated with 40 ng/μl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 74.2% and 58.2%, respectively. Silencing TsNd expression by both soaking and electroporation inhibited significantly the larval invasion of IECs in a dose-dependent manner (r1 = -0.96798, r2 = -0.98707). Compared with the mice inoculated with untreated larvae, mice inoculated with larvae soaked with TsNd dsRNA displayed a 49.9% reduction in adult worms and 39.9% reduction in muscle larvae, while mice inoculated with larvae electroporated with TsNd dsRNA displayed a 83.4% reduction in adult worms and 69.5% reduction in muscle larvae, indicating that electroporation has a higher efficiency than soaking in inhibiting the larval development and survival in mice. Our results showed that silencing TsNd expression in T. spiralis inhibited significantly the larval invasion and survival in host. PMID:26778819

  11. Effect of cannabidiol on sepsis-induced motility disturbances in mice: involvement of CB receptors and fatty acid amide hydrolase.

    Science.gov (United States)

    de Filippis, D; Iuvone, T; d'amico, A; Esposito, G; Steardo, L; Herman, A G; Pelckmans, P A; de Winter, B Y; de Man, J G

    2008-08-01

    Sepsis is an inflammatory condition that is associated with reduced propulsive gastrointestinal motility (ileus). A therapeutic option to treat sepsis is to promote intestinal propulsion preventing bacterial stasis, overgrowth and translocation. Recent evidence suggests that anti-oxidants improve sepsis-induced ileus. Cannabidiol, a non-psychotropic component of Cannabis sativa, exerts strong anti-oxidant and anti-inflammatory effects without binding to cannabinoid CB(1) or CB(2) receptors. Cannabidiol also regulates the activity of fatty acid amide hydrolase (FAAH) which is the main enzyme involved in endocannabinoid breakdown and which modulates gastrointestinal motility. Because of the therapeutic potential of cannabidiol in several pathologies, we investigated its effect on sepsis-induced ileus and on cannabinoid receptor and FAAH expression in the mouse intestine. Sepsis was induced by treating mice with lipopolysaccharides for 18 h. Sepsis led to a decrease in gastric emptying and intestinal transit. Cannabidiol further reduced gastrointestinal motility in septic mice but did not affect gastrointestinal motility in control mice. A low concentration of the CB(1) antagonist AM251 did not affect gastrointestinal motility in control mice but reversed the effect of cannabidiol in septic mice. Sepsis was associated with a selective upregulation of intestinal CB(1) receptors without affecting CB(2) receptor expression and with increased FAAH expression. The increase in FAAH expression was completely reversed by cannabidiol but not affected by AM251. Our results show that sepsis leads to an imbalance of the endocannabinoid system in the mouse intestine. Despite its proven anti-oxidant and anti-inflammatory properties, cannabidiol may be of limited use for the treatment of sepsis-induced ileus. PMID:18373655

  12. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  13. A missense mutation (Q279R in the Fumarylacetoacetate Hydrolase gene, responsible for hereditary tyrosinemia, acts as a splicing mutation

    Directory of Open Access Journals (Sweden)

    Baklouti Faouzi

    2001-06-01

    Full Text Available Abstract Background Tyrosinemia type I, the most severe disease of the tyrosine catabolic pathway is caused by a deficiency in fumarylacetoacetate hydrolase (FAH. A patient showing few of the symptoms associated with the disease, was found to be a compound heterozygote for a splice mutation, IVS6-1g->t, and a putative missense mutation, Q279R. Analysis of FAH expression in liver sections obtained after resection for hepatocellular carcinoma revealed a mosaic pattern of expression. No FAH was found in tumor regions while a healthy region contained enzyme-expressing nodules. Results Analysis of DNA from a FAH expressing region showed that the expression of the protein was due to correction of the Q279R mutation. RT-PCR was used to assess if Q279R RNA was produced in the liver cells and in fibroblasts from the patient. Normal mRNA was found in the liver region where the mutation had reverted while splicing intermediates were found in non-expressing regions suggesting that the Q279R mutation acted as a splicing mutation in vivo. Sequence of transcripts showed skipping of exon 8 alone or together with exon 9. Using minigenes in transfection assays, the Q279R mutation was shown to induce skipping of exon 9 when placed in a constitutive splicing environment. Conclusion These data suggest that the putative missense mutation Q279R in the FAH gene acts as a splicing mutation in vivo. Moreover FAH expression can be partially restored in certain liver cells as a result of a reversion of the Q279R mutation and expansion of the corrected cells.

  14. High genetic diversity and different distributions of glycosyl hydrolase family 10 and 11 xylanases in the goat rumen.

    Directory of Open Access Journals (Sweden)

    Guozeng Wang

    Full Text Available BACKGROUND: The rumen harbors a complex microbial ecosystem for efficient hydrolysis of plant polysaccharides which are the main constituent of the diet. Xylanase is crucial for hemicellulose hydrolysis and plays an important role in the plant cell wall degradation. Xylanases of ruminal strains were widely studied, but few studies have focused on their diversity in rumen microenvironment. METHODOLOGY/PRINCIPAL FINDINGS: We explored the genetic diversity of xylanases belonging to two major glycosyl hydrolase families (GH 10 and 11 in goat rumen contents by analyzing the amplicons generated with two degenerate primer sets. Fifty-two distinct GH 10 and 35 GH 11 xylanase gene fragments (similarity <95% were retrieved, and most had low identities with known sequences. Based on phylogenetic analysis, all GH 10 xylanase sequences fell into seven clusters, and 88.5% of them were related to xylanases from Bacteroidetes. Five clusters of GH 11 xylanase sequences were identified. Of these, 85.7% were related to xylanases from Firmicutes, and 14.3% were related to those of rumen fungi. Two full-length xylanase genes (one for each family were directly cloned and expressed in Escherichia coli. Both the recombinant enzymes showed substantial xylanase activity, and were purified and characterized. Combined with the results of sheep rumen, Bacteroidetes and Firmicutes are the two major phyla of xylan-degrading microorganisms in rumen, which is distinct from the representatives of other environments such as soil and termite hindgut, suggesting that xylan-degrading microorganisms are environment specific. CONCLUSION/SIGNIFICANCE: The numerous new xylanase genes suggested the functional diversity of xylanase in the rumen microenvironment which may have great potential applications in industry and agriculture. The phylogenetic diversity and different distributions of xylanase genes will help us understand their roles in plant cell wall degradation in the rumen

  15. Epidermal growth factor receptor ligands as new extracellular targets for the metastasis-promoting S100A4 protein

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Møller, Henrik D.; Sumer, Eren U;

    2009-01-01

    that the most abundant peptide mimicked the F/YCC motif present in the epidermal growth factor domain of ErbB receptor ligands. S100A4 selectively interacted with a number of epidermal growth factor receptor (EGFR) ligands, demonstrating highest affinity for amphiregulin. Importantly, we found that S100A4...... stimulated EGFR/ErbB2 receptor signaling and enhanced the amphiregulin-mediated proliferation of mouse embryonic fibroblasts. S100A4-neutralizing antibodies, as well as EGFR- and ErbB2 receptor-specific tyrosine kinase inhibitors, blocked these effects. The present results suggest that extracellular S100A4...... regulates tumor progression by interacting with EGFR ligands, thereby enhancing EGFR/ErbB2 receptor signaling and cell proliferation. Structured digital abstract: * MINT-7256556: EGF (uniprotkb:P01133) binds (MI:0407) to S100A4 (uniprotkb:P26447) by far western blotting (MI:0047) * MINT-7256512: BC...

  16. Discovery of Potent, Orally Bioavailable Inhibitors of Human Cytomegalovirus.

    Science.gov (United States)

    Fader, Lee; Brault, Martine; Desjardins, Jessica; Dansereau, Nathalie; Lamorte, Louie; Tremblay, Sonia; Bilodeau, François; Bordeleau, Josée; Duplessis, Martin; Gorys, Vida; Gillard, James; Gleason, James L; James, Clint; Joly, Marc-André; Kuhn, Cyrille; Llinas-Brunet, Montse; Luo, Laibin; Morency, Louis; Morin, Sébastien; Parisien, Mathieu; Poirier, Maude; Thibeault, Carl; Trinh, Thao; Sturino, Claudio; Srivastava, Sanjay; Yoakim, Christiane; Franti, Michael

    2016-05-12

    A high-throughput screen based on a viral replication assay was used to identify inhibitors of the human cytomegalovirus. Using this approach, hit compound 1 was identified as a 4 μM inhibitor of HCMV that was specific and selective over other herpes viruses. Time of addition studies indicated compound 1 exerted its antiviral effect early in the viral life cycle. Mechanism of action studies also revealed that this series inhibited infection of MRC-5 and ARPE19 cells by free virus and via direct cell-to-cell spread from infected to uninfected cells. Preliminary structure-activity relationships demonstrated that the potency of compound 1 could be improved to a low nanomolar level, but metabolic stability was a key optimization parameter for this series. A strategy focused on minimizing metabolic hydrolysis of the N1-amide led to an alternative scaffold in this series with improved metabolic stability and good pharmacokinetic parameters in rat. PMID:27190604

  17. [Monitoring of Oral Thrombin Inhibitor].

    Science.gov (United States)

    Matsuno, Kazuhiko; Usami, Takayuki; Hatuse, Masanao; Shimizu, Chikara

    2014-10-01

    Dabigatran etexilate is a prodrug that is converted into its active metabolite, dabigatran, by hydrolysis. Dabigatran is a selective thrombin inhibitor that has been approved for the prevention of stroke in patients with non-valvular atrial fibrillation in Japan. Laboratory monitoring is not needed, but an assessment of its anticoagulant effect in certain clinical settings, such as emergency surgery, suspected overdose, or the occurrence of bleeding, is desirable. We overview the special coagulation assays, such as Hemoclot Thrombin Inhibitor (HTI), the thrombin generation assay (TGA), ecarin clotting time (ECT), ecarin chromogenic assay (ECA), prothrombinase-induced clotting time (PiCT), and activated clotting time (ACT). We also examined the relationship between dabigatran levels as determined by HTI, and the activated partial thromboplastin time (APTT) and prothrombin time (PT). APTT and PT demonstrated a positive correlation with the dabigatran levels. APTT, PT, and the combination of APTT and PT may estimate the dabigatran levels in plasma. PMID:27526541

  18. [Direct oral thrombin inhibitor, "dabigatran"].

    Science.gov (United States)

    Yasaka, Masahiro

    2013-01-01

    Dabigatran is an oral, direct, and competitive inhibitor of thrombin, which is administered to patients with non-valvular atrial fibrillation for prevention of stroke at a dose of 110 mg twice daily or 150 mg twice daily. Anticoagulation by dabigatran is "hybrid anticoagulation", consisting of action of both dabigatran and physiological coagulation inhibitors because warfarin inhibits production of protein C and protein S but dabigatran does not. Management of dabigatran is easier than that of warfarin because food restriction is unnecessary, drug interaction is small, and absorption time is short and serum concentration corresponds to the anticoagulatory effect in dabigatran treatment. The RE-LY trial confirmed effectiveness and safety of both doses of dabigatran for prevention of stroke and both doses of dabigatran had much lower risks of intracranial bleeding compared with warfarin. Compliance to guidance of dabigatran treatment is essential for avoidance of severe hemorrhagic complications. PMID:23631181

  19. Kinase Inhibitors from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Ana Zivanovic

    2011-10-01

    Full Text Available Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included.

  20. ACE INHIBITORS: A COMPREHENSIVE REVIEW

    OpenAIRE

    Pradeep Kumar Arora* and Ashish Chauhan

    2013-01-01

    Hypertension is a chronic increase in blood pressure, characterized as primary and secondary hypertension. The disorder is associated with various risk factors like obesity, diabetes, age, lack of exercise etc. Hypertension is being treated since ancient times by Ayurvedic, Chinese and Unani medicine. Now various allopathic drugs are available which include diuretics, calcium channel blockers, α-blockers, β-blockers, vasodilators, central sympatholytics and ACE-inhibitors. Non-pharmacological...

  1. Natural Products as Aromatase Inhibitors

    OpenAIRE

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2008-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purpos...

  2. Thrombin Inhibitors from Different Animals

    OpenAIRE

    Tanaka-Azevedo, A. M.; Morais-Zani, K.; Torquato, R. J. S.; A. S. Tanaka

    2010-01-01

    Venous and arterial thromboembolic diseases are still the most frequent causes of death and disability in high-income countries. Clinical anticoagulants are inhibitors of enzymes involved in the coagulation pathway, such as thrombin and factor Xa. Thrombin is a key enzyme of blood coagulation system, activating the platelets, converting the fibrinogen to the fibrin net, and amplifying its self-generation by the activation of factors V, VIII, and XI. Thrombin has long been a target for the dev...

  3. Conformation-specific inhibitors of Raf kinases.

    Science.gov (United States)

    Wang, Xiaolun; Schleicher, Kristin

    2013-01-01

    Since the discovery linking B-Raf mutations to human tumors in 2002, significant advances in the development of Raf inhibitors have been made, leading to the recent approval of two Raf inhibitor drugs. This chapter includes a brief introduction to B-Raf as a validated target and focuses on the three different binding modes observed with Raf small-molecule inhibitors. These various binding modes lock the Raf kinase in different conformations that impact the toxicity profiles of the inhibitors. Possible solutions to mitigate the side effects caused by inhibitor-induced dimerization are also discussed.

  4. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending...... of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden....

  5. Carbonic anhydrase inhibitors drug design.

    Science.gov (United States)

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported. PMID:24146385

  6. Inhibitors of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    LIU Shiying; JIANG Yuyang; CAO Jian; LIU Feng; MA Li; ZHAO Yufen

    2005-01-01

    Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups of protein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family. They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer, inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.

  7. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene.

    Science.gov (United States)

    Corpas, Francisco J; Aguayo-Trinidad, Simeón; Ogawa, Takahisa; Yoshimura, Kazuya; Shigeoka, Shigeru

    2016-03-15

    NADPH is an important cofactor in cell growth, proliferation and detoxification. Arabidopsis thaliana Nudix hydrolase 19 (AtNUDX19) belongs to a family of proteins defined by the conserved amino-acid sequence GX5-EX7REUXEEXGU which has the capacity to hydrolyze NADPH as a physiological substrate in vivo. Given the importance of NADPH in the cellular redox homeostasis of plants, the present study compares the responses of the main NADPH-recycling systems including NADP-isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and NADP-malic enzyme (ME) in the leaves and roots of Arabidopsis wild-type (Wt) and knock-out (KO) AtNUDX19 mutant (Atnudx19) plants under physiological and arsenic-induced stress conditions. Two major features were observed in the behavior of the main NADPH-recycling systems: (i) under optimal conditions in both organs, the levels of these activities were higher in nudx19 mutants than in Wt plants; and, (ii) under 500μM AsV conditions, these activities increase, especially in nudx19 mutant plants. Moreover, G6PDH activity in roots was the most affected enzyme in both Wt and nudx19 mutant plants, with a 4.6-fold and 5.0-fold increase, respectively. In summary, the data reveals a connection between the absence of chloroplastic AtNUDX19 and the rise in all NADP-dehydrogenase activities under physiological and arsenic-induced stress conditions, particularly in roots. This suggests that AtNUDX19 could be a key factor in modulating the NADPH pool in plants and consequently in redox homeostasis. PMID:26878367

  8. Mutually exclusive distribution of the sap and eag S-layer genes and the lytB/lytA cell wall hydrolase genes in Bacillus thuringiensis.

    Science.gov (United States)

    Soufiane, Brahim; Sirois, Marc; Côté, Jean-Charles

    2011-10-01

    Recently, two Bacillus thuringiensis strains were reported to synthesize parasporal inclusion bodies made not of the expected crystal (Cry) proteins but rather of the surface layer proteins (SLP) Sap (encoded by sap) and EA1 (encoded by eag), respectively. Whether the presence of the sap and eag genes is restricted to these two B. thuringiensis strains or ubiquitous in B. thuringiensis is unknown. We report here the distribution of the sap and eag genes in B. thuringiensis. Strains in the Bacillus cereus group were added for comparison purposes. We show that sap and eag are either present in tandem in 35% of the B. thuringiensis strains analysed and absent in 65% of the strains. When absent, a different tandem, the lytB/lytA cell wall hydrolase genes, is present. The distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes is not species-specific in B. thuringiensis, B. cereus and Bacillus weihenstephanensis. Bacillus anthracis and Bacillus mycoides harbor sap and eag but not lytB/lytA. The sap, eag and lytB/lytA genes were absent in Bacillus pseudomycoides. Clearly, the distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes in B. thuringiensis and in the Bacillus cereus group is mutually exclusive. We also showed that two genes involved in cell wall metabolism, csaA and csaB, are present not only upstream of the sap and eag S-layer genes, but also upstream of the lytB/lytA tandem in strains where sap and eag are absent. Bootstrapped neighbor-joining trees were inferred from the translated amino acid sequences of sap, eag and the tandem lytB/lytA, respectively.

  9. The Structure and Function of an Arabinan-specific [alpha]-1,2-Arabinofuranosidase Identified from Screening the Activities of Bacterial GH43 Glycoside Hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Cartmell, Alan; McKee, Lauren S.; Pena, Maria J.; Larsbrink, Johan; Brumer, Harry; Kaneko, Satoshi; Ichinose, Hitomi; Lewis, Richard J.; Vikso-Nielsen, Anders; Gilbert, Harry; Marles-Wright, Jon (Newcastle); (National Food Research Institute); (Novozymes A/S); (RITS); (Georgia)

    2012-03-26

    Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo- and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific {alpha}-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave {alpha}-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific {alpha}-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed {beta}-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for {alpha}-1,2-L-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.

  10. Biochemical properties of Glu-SH3 as a family 13 glycoside hydrolase with remarkable substrate specificity for trehalose: Implications to sequence-based classification of CAZymes.

    Science.gov (United States)

    Ghadikolaei, Kamran Khalili; Shojaei, Maral; Ghaderi, Armin; Hojjati, Farzaneh; Noghabi, Kambiz Akbari; Zahiri, Hossein Shahbani

    2016-08-01

    A novel glycoside hydrolase from Exiguobacterium sp. SH3 was characterized. The enzyme, designated as Glu-SH3, was predicted by in silico analysis to have structural similarity with members of oligo-1,6-glucosidase and trehalose-6-phosphate hydrolase subfamilies in the GH-13 family of glycoside hydrolases. The gene was expressed in Escherichia coli and the recombinant enzyme was purified as a His-tagged protein of about 60 kDa. The enzyme was shown to have remarkable substrate specificity for trehalose. The characteristic ability of Glu-SH3 to hydrolyze trehalose was ascertained by zymography, thin layer chromatography, and NMR spectroscopy. The maximum activity of Glu-SH3 was obtained at 35 °C and pH 7, but it was able to exhibit more than 90% of the activity within the pH range of 5-8. The Vmax and Km values were estimated to be 170 U and 4.5 mg ml(-1), respectively. By comparison with trehalases, Glu-SH3 with Kcat and Kcat/Km values of 1552 s(-1) and 119.4 mM(-1) s(-1) can be recognized as a very efficient trehalose-hydrolyzing glycosidase. Given the phylogeny and the substrate specificity of Glu-SH3, it may be assumed that the enzyme shares a common ancestor with oligo-1,6-glucosidases but have evolved distinctly to serve a physiological function in trehalose metabolism. PMID:27177969

  11. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases.

    Science.gov (United States)

    Zhen, R. G.; Baykov, A. A.; Bakuleva, N. P.; Rea, P. A.

    1994-01-01

    The suitability of different pyrophosphate (PPi) analogs as inhibitors of the vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) of tonoplast vesicles isolated from etiolated hypocotyls of Vigna radiata was investigated. Five 1,1-diphosphonates and imidodiphosphate were tested for their effects on substrate hydrolysis by the V-PPase at a substrate concentration corresponding to the Km of the enzyme. The order of inhibitory potency (apparent inhibition constants, Kiapp values, [mu]M, in parentheses) of the compounds examined was aminomethylenediphosphonate (1.8) > hydroxymethylenediphosphonate (5.7) [almost equal to] ethane-1-hydroxy-1,1-diphosphonate (6.5) > imidodiphosphate (12) > methylenediphosphonate (68) > dichloromethylenediphosphonate (>500). The specificity of three of these compounds, aminomethylenediphosphonate, imidodiphosphate, and methylenediphosphonate, was determined by comparing their effects on the V-PPase and vacuolar H+-ATPase from Vigna, plasma membrane H+-ATPase from Beta vulgaris, H+-PPi synthase of chromatophores prepared from Rhodospirillum rubrum, soluble PPase from Saccharomyces cerevisiae, alkaline phosphatase from bovine intestinal mucosa, and nonspecific monophosphoesterase from Vigna at a PPi concentration equivalent to 10 times the Km of the V-PPase. Although all three PPi analogs inhibited the plant V-PPase and bacterial H+-PPi synthase with qualitatively similar kinetics, whether substrate hydrolysis or PPi-dependent H+-translocation was measured, neither the vacuolar H+-ATPase nor plasma membrane H+-ATPase nor any of the non-V-PPase-related PPi hydrolases were markedly inhibited under these conditions. It is concluded that 1, 1-diphosphonates, in general, and aminomethylenediphosphonate, in particular, are potent type-specific inhibitors of the V-PPase and its putative bacterial homolog, the H+-PPi synthase of Rhodospirillum. PMID:12232069

  12. Chiral 1,3,4-oxadiazol-2-ones as highly selective FAAH inhibitors.

    Science.gov (United States)

    Patel, Jayendra Z; Parkkari, Teija; Laitinen, Tuomo; Kaczor, Agnieszka A; Saario, Susanna M; Savinainen, Juha R; Navia-Paldanius, Dina; Cipriano, Mariateresa; Leppänen, Jukka; Koshevoy, Igor O; Poso, Antti; Fowler, Christopher J; Laitinen, Jarmo T; Nevalainen, Tapio

    2013-11-14

    In the present study, identification of chiral 1,3,4-oxadiazol-2-ones as potent and selective FAAH inhibitors has been described. The separated enantiomers showed clear differences in the potency and selectivity toward both FAAH and MAGL. Additionally, the importance of the chirality on the inhibitory activity and selectivity was proven by the simplification approach by removing a methyl group at the 3-position of the 1,3,4-oxadiazol-2-one ring. The most potent compound of the series, the S-enantiomer of 3-(1-(4-isobutylphenyl)ethyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (JZP-327A, 51), inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM), whereas its corresponding R-enantiomer 52 showed only moderate inhibition toward hrFAAH (IC50 = 0.24 μM). In contrast to hrFAAH, R-enantiomer 52 was more potent in inhibiting the activity of hrMAGL compared to S-enantiomer 51 (IC50 = 4.0 μM and 16% inhibition at 10 μM, respectively). The FAAH selectivity of the compound 51 over the supposed main off-targets, MAGL and COX, was found to be >900-fold. In addition, activity-based protein profiling (ABPP) indicated high selectivity over other serine hydrolases. Finally, the selected S-enantiomers 51, 53, and 55 were shown to be tight binding, slowly reversible inhibitors of the hrFAAH.

  13. 44 CFR Appendix A(4) to Part 61 - Appendix A(4) to Part 61

    Science.gov (United States)

    2010-10-01

    ... notice sent to you in conjunction with the community inspection procedure established under 44 CFR 59.30... procedure set forth in National Flood Insurance Program Regulations (44 CFR 59.30). During the several years... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Appendix A(4) to Part 61...

  14. The burden of inhibitors in haemophilia patients.

    Science.gov (United States)

    Walsh, Christopher E; Jiménez-Yuste, Víctor; Auerswald, Guenter; Grancha, Salvador

    2016-08-31

    The burden of disease in haemophilia patients has wide ranging implications for the family and to society. There is evidence that having a current inhibitor increases the risk of morbidity and mortality. Morbidity is increased by the inability to treat adequately and its consequent disabilities, which then equates to a poor quality of life compared with non-inhibitor patients. The societal cost of care, or `burden of inhibitors', increases with the ongoing presence of an inhibitor. Therefore, it is clear that successful eradication of inhibitors by immune tolerance induction (ITI) is the single most important milestone one can achieve in an inhibitor patient. The type of factor VIII (FVIII) product used in ITI regimens varies worldwide. Despite ongoing debate, there is in vitro and retrospective clinical evidence to support the use of plasma-derived VWF-containing FVIII concentrates in ITI regimens in order to achieve early and high inhibitor eradication success rates. PMID:27528280

  15. Neurobehavioural changes and persistence of complaints in workers exposed to styrene in a polyester boat building plant: influence of exposure characteristics and microsomal epoxide hydrolase phenotype

    OpenAIRE

    Viaene, M; Pauwels, W.; Veulemans, H.; Roels, H.; Masschelein, R

    2001-01-01

    OBJECTIVES—To investigate neurobehavioural effects and the persistence of complaints in workers exposed to styrene relative to exposure characteristics and the enzyme microsomal epoxide hydrolase (mEH) activity.
METHODS—A cross sectional study was performed in a retrospective cohort of workers of a polyester boat building plant 3 years after the main activity shut down in 1989. Workers still currently exposed to a much lower concentration of styrene in air than before (n=27) and formerly expo...

  16. The Human Asparaginase-Like Protein 1 hASRGL1is an Ntn Hydrolase with β-aspartyl Peptidase Activity

    OpenAIRE

    Cantor, Jason R.; Stone, Everett M.; Chantranupong, Lynne; Georgiou, George

    2009-01-01

    Herein we report the bacterial expression, purification, and enzymatic characterization of the human asparaginase-like protein 1 (hASRGL1). We present evidence that hASRGL1 exhibits β-aspartyl peptidase activity consistent with enzymes designated as plant-type asparaginases, which had thus far only been found in plants and bacteria. Similar to non-mammalian plant-type asparaginases, hASRGL1 is shown to be an Ntn hydrolase for which Thr168 serves as the essential N-terminal nucleophile for int...

  17. Detection of organophosphorus compound based on a sol-gel silica planar waveguide doped with a green fluorescent protein and an organophosphorus hydrolase

    Science.gov (United States)

    Enami, Y.; Tsuchiya, K.; Suye, S.

    2011-06-01

    In this letter, the authors report the real-time detection of an organophosphorus compound using a sol-gel silica planar waveguide doped with a green fluorescent protein and an organophosphorus hydrolase on a yeast-cell surface display. The waveguide was pumped at 488 nm, and it emitted green fluorescence at the far field. The green fluorescent light at 550 nm changed by 50% from the original power 1 min after application of the organophosphorus compound. The results enable the real-time detection of sarin and other biochemicals by using an in-line fiber sensor network.

  18. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers

    OpenAIRE

    Bai, Yuxiang; Kaaij, Rachel Maria van der; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-01-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have ...

  19. Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation.

    Science.gov (United States)

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; Lima, Deise Juliana da Silva; Pradella, José Geraldo da Cruz

    2013-03-01

    This work investigates the glycosyl hydrolase (GH) profile of a new Trichoderma harzianum strain cultivated under controlled bioreactor submerged fermentation. The influence of different medium components (delignified steam-exploded sugarcane bagasse, sucrose, and soybean flour) on GH biosynthesis was assessed using experimental mixture design (EMD). Additionally, the effect of increased component concentrations in culture media selected from the EMD was studied. It was found that that a mixed culture medium could significantly maximize GH biosynthesis rate, especially for xylanase enzymes which achieved a 2-fold increment. Overall, it was demonstrated that T. harzianumP49P11 enzymes have a great potential to be used in the deconstruction of biomass.

  20. Discriminative Stimulus Properties of the Endocannabinoid Catabolic Enzyme Inhibitor SA-57 in Mice.

    Science.gov (United States)

    Owens, Robert A; Ignatowska-Jankowska, Bogna; Mustafa, Mohammed; Beardsley, Patrick M; Wiley, Jenny L; Jali, Abdulmajeed; Selley, Dana E; Niphakis, Micah J; Cravatt, Benjamin F; Lichtman, Aron H

    2016-08-01

    Whereas the inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the respective major hydrolytic enzymes of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), elicits no or partial substitution for Δ(9)-tetrahydrocannabinol (THC) in drug-discrimination procedures, combined inhibition of both enzymes fully substitutes for THC, as well as produces a constellation of cannabimimetic effects. The present study tested whether C57BL/6J mice would learn to discriminate the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) from vehicle in the drug-discrimination paradigm. In initial experiments, 10 mg/kg SA-57 fully substituted for CP55,940 ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), a high-efficacy CB1 receptor agonist in C57BL/6J mice and for AEA in FAAH (-/-) mice. Most (i.e., 23 of 24) subjects achieved criteria for discriminating SA-57 (10 mg/kg) from vehicle within 40 sessions, with full generalization occurring 1 to 2 hours postinjection. CP55,940, the dual FAAH-MAGL inhibitor JZL195 (4-​nitrophenyl 4-​(3-​phenoxybenzyl)piperazine-​1-​carboxylate), and the MAGL inhibitors MJN110 (2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate) and JZL184 (4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) fully substituted for SA-57. Although the FAAH inhibitors PF-3845 ((N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) and URB597 (cyclohexylcarbamic acid 3'-(aminocarbonyl)-[1,1'-biphenyl]-3-yl ester) did not substitute for SA-57, PF-3845 produced a 2-fold leftward shift in the MJN110 substitution dose-response curve. In addition, the CB1 receptor antagonist rimonabant blocked the generalization of SA-57, as well as substitution of CP55,940, JZL195, MJN110, and JZL184. These findings

  1. The bumper module of the Audi A4; Das Stossfaengersystem des Audi A4

    Energy Technology Data Exchange (ETDEWEB)

    Haberer, K. [Audi AG, Ingolstadt (Germany)

    2000-11-01

    Special attention was given to the bumper module of the new A4 during the development process. It is notable for its flush integration into the body, with 'zero' clearances and short overhangs. The module includes the bumper supports, the outer covering, the air inlet grille, the fog lights and the horns. Optional extras are an integrated ultrasonic 'Acoustic Parking System' (either front and rear or at the rear only) and a headlamp washer system. Both the bumper support and the deformation elements are made of weight-saving aluminium. The holder for the towing lug has been integrated into the right-hand deformation element and the towing forces are borne centrally by the side member. (orig.) [German] Dem Stossfaengermodul des neuen A4 wurde bei der Entwicklung besondere Aufmerksamkeit gewidmet. Es zeichnet sich durch eine buendige Formintegration in die Karosserie mit sogenannten Nullfugen und durch kurze Karosserieueberstaende aus. (orig.)

  2. Control of Enzyme IIscr and Sucrose-6-Phosphate Hydrolase Activities in Streptococcus mutans by Transcriptional Repressor ScrR Binding to the cis-Active Determinants of the scr Regulon

    OpenAIRE

    Wang, Bing; Kuramitsu, Howard K.

    2003-01-01

    In Streptococcus mutans, enzyme IIscr and sucrose-6-phosphate hydrolase are two important enzymes in the transport and metabolism of dietary sucrose. The scr regulon of S. mutans is composed of three genes, scrA and scrB, which code for enzyme IIscr and sucrose-6-phosphate hydrolase, respectively, and scrR, which codes for a GalR-LacI-type transcription regulator. It was previously shown that expression of both scrA and scrB is similarly induced by sucrose. Mutation in the scrR gene resulted ...

  3. The effect of interferon-α on the expression of cytochrome P450 3A4 in human hepatoma cells

    International Nuclear Information System (INIS)

    Interferon α (IFNα) is used to treat malignancies and chronic viral infections. It has been found to decrease the rate of drug metabolism by acting on cytochrome P450 enzymes, but no studies have investigated the consequences of IFNα treatment on the CYP3A4 isoform, responsible for the metabolism of a majority of drugs. In this study, we have examined the effect of IFNα on CYP3A4 catalytic activity and expression in human hepatoma cells. We found that IFNα inhibits CYP3A4 activity and rapidly down-regulates the expression of CYP3A4, independent of de novo protein synthesis. Pharmacologic inhibitors and a dominant-negative mutant expression plasmid were used to dissect the molecular pathway required for CYP3A4 suppression, revealing roles for Jak1 and Stat1 and eliminating the involvement of the p38 mitogen-activated and extracellular regulated kinases. Treatment of hepatoma cells with IFNα did not affect the nuclear localization or relative abundance of Sp1 and Sp3 transcription factors, suggesting that the suppression of CYP3A4 by IFNα does not result from inhibitory Sp3 out-competing Sp1. To our knowledge, this is the first report that IFNα down-regulates CYP3A4 expression largely through the JAK-STAT pathway. Since IFNα suppresses CYP3A4 expression, caution is warranted when IFNα is administered in combination with CYP3A4 substrates to avoid the occurrence of adverse drug interactions.

  4. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase

    Directory of Open Access Journals (Sweden)

    Esen Asim

    2006-12-01

    Full Text Available Abstract Background Glycosyl hydrolase family 1 (GH1 β-glucosidases have been implicated in physiologically important processes in plants, such as response to biotic and abiotic stresses, defense against herbivores, activation of phytohormones, lignification, and cell wall remodeling. Plant GH1 β-glucosidases are encoded by a multigene family, so we predicted the structures of the genes and the properties of their protein products, and characterized their phylogenetic relationship to other plant GH1 members, their expression and the activity of one of them, to begin to decipher their roles in rice. Results Forty GH1 genes could be identified in rice databases, including 2 possible endophyte genes, 2 likely pseudogenes, 2 gene fragments, and 34 apparently competent rice glycosidase genes. Phylogenetic analysis revealed that GH1 members with closely related sequences have similar gene structures and are often clustered together on the same chromosome. Most of the genes appear to have been derived from duplications that occurred after the divergence of rice and Arabidopsis thaliana lineages from their common ancestor, and the two plants share only 8 common gene lineages. At least 31 GH1 genes are expressed in a range of organs and stages of rice, based on the cDNA and EST sequences in public databases. The cDNA of the Os4bglu12 gene, which encodes a protein identical at 40 of 44 amino acid residues with the N-terminal sequence of a cell wall-bound enzyme previously purified from germinating rice, was isolated by RT-PCR from rice seedlings. A thioredoxin-Os4bglu12 fusion protein expressed in Escherichia coli efficiently hydrolyzed β-(1,4-linked oligosaccharides of 3–6 glucose residues and laminaribiose. Conclusion Careful analysis of the database sequences produced more reliable rice GH1 gene structure and protein product predictions. Since most of these genes diverged after the divergence of the ancestors of rice and Arabidopsis thaliana, only

  5. Mutation screen and association studies for the fatty acid amide hydrolase (FAAH gene and early onset and adult obesity

    Directory of Open Access Journals (Sweden)

    Rief Winfried

    2010-01-01

    Full Text Available Abstract Background The orexigenic effects of cannabinoids are limited by activation of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH. The aim of this study was to analyse whether FAAH alleles are associated with early and late onset obesity. Methods We initially assessed association of five single nucleotide polymorphisms (SNPs in FAAH with early onset extreme obesity in up to 521 German obese children and both parents. SNPs with nominal p-values ≤ 0.1 were subsequently analysed in 235 independent German obesity families. SNPs associated with childhood obesity (p-values ≤ 0.05 were further analysed in 8,491 adult individuals of a population-based cohort (KORA for association with adult obesity. One SNP was further analysed in 985 German obese adults and 588 normal and underweight controls. In parallel, we screened the FAAH coding region for novel sequence variants in 92 extremely obese children using single-stranded-conformation-polymorphism-analysis and denaturing HPLC and assessed the implication of the identified new variants for childhood obesity. Results The trio analysis revealed some evidence for an association of three SNPs in FAAH (rs324420 rs324419 and rs873978 with childhood obesity (two-sided p-values between 0.06 and 0.10. Although analyses of these variants in 235 independent obesity families did not result in statistically significant effects (two-sided p-values between 0.14 and 0.75, the combined analysis of all 603 obesity families supported the idea of an association of two SNPs in FAAH (rs324420 and rs2295632 with early onset extreme obesity (p-values between 0.02 and 0.03. No association was, however, found between these variants and adult obesity. The mutation screen revealed four novel variants, which were not associated with early onset obesity (p > 0.05. Conclusions As we observed some evidence for an association of the FAAH variants rs2295632 rs324420 with early onset but not adult obesity

  6. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongying [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Yoshimura, Kazunori [Department of Physiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Kobayashi, Nobuharu; Sugiyama, Kazuo [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Sawada, Jun-ichi; Saito, Yoshiro [Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Morisseau, Christophe; Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584 (United States); Akatsuka, Toshitaka, E-mail: akatsuka@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  7. Intrinsically disordered regions may lower the hydration free energy in proteins: a case study of nudix hydrolase in the bacterium Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Omar Awile

    Full Text Available The proteome of the radiation- and desiccation-resistant bacterium D. radiodurans features a group of proteins that contain significant intrinsically disordered regions that are not present in non-extremophile homologues. Interestingly, this group includes a number of housekeeping and repair proteins such as DNA polymerase III, nudix hydrolase and rotamase. Here, we focus on a member of the nudix hydrolase family from D. radiodurans possessing low-complexity N- and C-terminal tails, which exhibit sequence signatures of intrinsic disorder and have unknown function. The enzyme catalyzes the hydrolysis of oxidatively damaged and mutagenic nucleotides, and it is thought to play an important role in D. radiodurans during the recovery phase after exposure to ionizing radiation or desiccation. We use molecular dynamics simulations to study the dynamics of the protein, and study its hydration free energy using the GB/SA formalism. We show that the presence of disordered tails significantly decreases the hydration free energy of the whole protein. We hypothesize that the tails increase the chances of the protein to be located in the remaining water patches in the desiccated cell, where it is protected from the desiccation effects and can function normally. We extrapolate this to other intrinsically disordered regions in proteins, and propose a novel function for them: intrinsically disordered regions increase the "surface-properties" of the folded domains they are attached to, making them on the whole more hydrophilic and potentially influencing, in this way, their localization and cellular activity.

  8. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum.

    Science.gov (United States)

    Sanchez Carranza, Ana Paula; Singh, Aparajita; Steinberger, Karoline; Panigrahi, Kishore; Palme, Klaus; Dovzhenko, Alexander; Dal Bosco, Cristina

    2016-01-01

    Amide-linked conjugates of indole-3-acetic acid (IAA) have been identified in most plant species. They function in storage, inactivation or inhibition of the growth regulator auxin. We investigated how the major known endogenous amide-linked IAA conjugates with auxin-like activity act in auxin signaling and what role ILR1-like proteins play in this process in Arabidopsis. We used a genetically encoded auxin sensor to show that IAA-Leu, IAA-Ala and IAA-Phe act through the TIR1-dependent signaling pathway. Furthermore, by using the sensor as a free IAA reporter, we followed conjugate hydrolysis mediated by ILR1, ILL2 and IAR3 in plant cells and correlated the activity of the hydrolases with a modulation of auxin response. The conjugate preferences that we observed are in agreement with available in vitro data for ILR1. Moreover, we identified IAA-Leu as an additional substrate for IAR3 and showed that ILL2 has a more moderate kinetic performance than observed in vitro. Finally, we proved that IAR3, ILL2 and ILR1 reside in the endoplasmic reticulum, indicating that in this compartment the hydrolases regulate the rates of amido-IAA hydrolysis which results in activation of auxin signaling. PMID:27063913

  9. Study Liver Cytochrome P450 3A4 Inhibition and Hepatotoxicity Using DMSO-Differentiated HuH-7 Cells.

    Science.gov (United States)

    Liu, Yitong

    2016-01-01

    Metabolically competent, inexpensive, and robust in vitro cell models are needed for studying liver drug-metabolizing enzymes and hepatotoxicity. Human hepatoma HuH-7 cells develop into a differentiated in vitro model resembling primary human hepatocytes after a 2-week dimethyl sulfoxide (DMSO) treatment. DMSO-treated HuH-7 cells express elevated cytochrome P450 3A4 (CYP3A4) enzyme gene expression and activity compared to untreated HuH-7 cells. This cell model could be used to study CYP3A4 inhibition by reversible and time-dependent inhibitors, including drugs, food-related substances, and environmental chemicals. The DMSO-treated HuH-7 model is also a suitable tool for investigating hepatotoxicity. This chapter describes a detailed methodology for developing DMSO-treated HuH-7 cells, which are subsequently used for CYP3A4 inhibition and hepatotoxicity studies. PMID:27518624

  10. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  11. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    OpenAIRE

    Miroslav Pohanka

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. Thi...

  12. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  13. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Diana Machado

    Full Text Available Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction

  14. Endo-xylogalacturonan hydrolase

    NARCIS (Netherlands)

    Herweijer, M.A.; Vincken, J.P.; Meeuwsen, P.J.A.; Vlugt-Bergmans, van der C.J.B.; Beldman, G.; Ooyen, van A.J.J.; Voragen, A.G.J.

    2003-01-01

    A cDNA library of Aspergillus tubingensis was constructed in the yeast Kluyveromyces lactis, using a carbon source rich in xylogalacturonan. The library was screened using a hairy regions preparation from apple, and xylogalacturonan prepared from gum tragacanth as substrates. A novel endo-xylogalact

  15. Microbiological transformations. Part 48 : Enantioselective biohydrolysis of 2-, 3- and 4-pyridyloxirane at high substrate concentration using the Agrobacterium radiobacter AD1 epoxide hydrolase and its Tyr215Phe mutant

    NARCIS (Netherlands)

    Genzel, Y; Archelas, A; Lutje Spelberg, Jeffrey H.; Janssen, DB; Furstoss, R

    2001-01-01

    The epoxide hydrolase (EH) from Agrobacterium radiobacter AD1 wild type (ArWT) and its Tyr215Phe mutant were compared for the biocatalyzed hydrolytic kinetic resolution (BHKR) of 2-, 3- and 4-pyridyloxirane. The radioselectivity of the oxirane ring opening as well as the substrate concentration limi

  16. The gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch

    NARCIS (Netherlands)

    Gangoiti, Joana; van Leeuwen, Sander S; Vafiadi, Christina; Dijkhuizen, Lubbert

    2016-01-01

    BACKGROUND: Originally the glycoside hydrolase (GH) family 70 only comprised glucansucrases of lactic acid bacteria which synthesize α-glucan polymers from sucrose. Recently we have identified 2 novel subfamilies of GH70 enzymes represented by the Lactobacillus reuteri 121 GtfB and the Exiguobacteri

  17. Glycine Transporters and Their Inhibitors

    Science.gov (United States)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  18. Advances in Inhibitors of FXa.

    Science.gov (United States)

    Guo, Liwei; Ma, Shutao

    2015-01-01

    Thromboembolic diseases such as deep vein thrombosis (DVT), pulmonary embolism (PE), myocardial infarction (MI) and ischemic strokes are mainly responsible for people's morbidity and mortality and have severely affected the people's quality of life all over the world. According to WHO statistics, an average of 17 million people are killed by the thromboembolic diseases each year globally. Therefore, the prevention and treatment of thromboembolic diseases have received widespread attention in recent years. Based on thrombotic mechanism, anti-thrombotic drugs are mainly divided into anticoagulants, antiplatelet agents and direct thrombolytic drugs. In particular, anticoagulants such as vitamin K antagonists (VKAs), unfractionated heparin (UFH), and low-molecular-weight heparins (LMWHs) have become the main therapies for pre-treatment of thromboembolic disorders. However, the limitations of traditional anticoagulants such as slow onset of action, dose-adjusted requirement, drug-drug and drug-food interactions have restricted their improvement in the clinical treatment. The mechanism of the thromboembolic disorders has indicated that coagulation factor Xa (fXa) plays a pivotal role in the blood coagulation cascade. Thus, selective inhibition of fXa by diminishing the amplified generation of thrombin without affecting the pre-existing thrombin levels can provide better antithrombotic effect, thereby causing less impairment of primary hemostasis. In this paper, we mainly introduce the recent advances of fXa inhibitors, with focus on their biological activity and structure-activity relationship (SAR) information. In particular, the inspirations from the structures of the fXa inhibitors and their future direction are highlighted. PMID:25981610

  19. Modification of the activity of some C cycle hydrolases in soils afforested with Populus alba L. Preliminary results

    Science.gov (United States)

    Zorita, Félix; García-Campos, Elena; Gil-Sotres, Fernando; Leirós, Mā Carmen; Trasar-Cepeda, Carmen

    2010-05-01

    Since 1992 a large part of the agricultural land in Galicia (NW Spain) has disappeared as a result of the EU policy of providing grants and aid for transforming marginal land into forest terrain. In Galicia, this policy (EU Regulation 2080/1992) has mainly been applied to good quality agricultural land rather than to marginal land. As a result, the land has undergone a change in use, so that previously good quality agricultural land is now planted with various species of trees, usually of young age. Despite the large area of land transformed, until now the environmental cost of such changes has not been evaluated. Taking into account that one of the possible environmental effects derived from land transformation is changes in emissions of CO2 (a major greenhouse gas), it is therefore essential to evaluate any possible modifications undergone in such soils, with special attention given to biochemical properties, i.e. the properties that determine edaphic metabolism. With this aim, we are currently investigating the effect of afforestation on diverse biochemical properties, including the activity of hydrolytic enzymes involved in the C, N, P and S cycles, in a large number of afforested soils, planted with different trees and located in different areas throughout Galicia. In each case, an agricultural soil located close to the afforested soil, but under the original land use (usually maize cropped soils or pasture soils), is also collected and analysed, and the results obtained for afforested soils compared with those for the corresponding agricultural soils. Here we report some preliminary results on modifications in the activities of some C cycle hydrolases in six soils now planted with poplars, Populus alba L, but originally cropped with maize. Samples of all soils were collected in autumn, after harvesting and before any other agricultural activities were carried out. In all cases, the upper 10 cm of the soils were collected. The soils were sieved (4 mm) prior to

  20. Angiotensin converting enzyme inhibitor induced hyperkalaemic paralysis

    OpenAIRE

    Dutta., D; Fischler, M; McClung, A

    2001-01-01

    Secondary hyperkalaemic paralysis is a rare condition often mimicking the Guillain-Barré syndrome. There have been a few case reports of hyperkalaemia caused by renal failure, trauma, and drugs where the presentation has been with muscle weakness. A case of hyperkalaemic paralysis caused by an angiotensin converting enzyme inhibitor is reported.


Keywords: hyperkalaemia; paralysis; ACE inhibitors